mm.h 54 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606
  1. #ifndef _LINUX_MM_H
  2. #define _LINUX_MM_H
  3. #include <linux/errno.h>
  4. #ifdef __KERNEL__
  5. #include <linux/gfp.h>
  6. #include <linux/list.h>
  7. #include <linux/mmzone.h>
  8. #include <linux/rbtree.h>
  9. #include <linux/prio_tree.h>
  10. #include <linux/debug_locks.h>
  11. #include <linux/mm_types.h>
  12. #include <linux/range.h>
  13. #include <linux/pfn.h>
  14. #include <linux/bit_spinlock.h>
  15. struct mempolicy;
  16. struct anon_vma;
  17. struct file_ra_state;
  18. struct user_struct;
  19. struct writeback_control;
  20. #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
  21. extern unsigned long max_mapnr;
  22. #endif
  23. extern unsigned long num_physpages;
  24. extern unsigned long totalram_pages;
  25. extern void * high_memory;
  26. extern int page_cluster;
  27. #ifdef CONFIG_SYSCTL
  28. extern int sysctl_legacy_va_layout;
  29. #else
  30. #define sysctl_legacy_va_layout 0
  31. #endif
  32. #include <asm/page.h>
  33. #include <asm/pgtable.h>
  34. #include <asm/processor.h>
  35. #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
  36. /* to align the pointer to the (next) page boundary */
  37. #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
  38. /*
  39. * Linux kernel virtual memory manager primitives.
  40. * The idea being to have a "virtual" mm in the same way
  41. * we have a virtual fs - giving a cleaner interface to the
  42. * mm details, and allowing different kinds of memory mappings
  43. * (from shared memory to executable loading to arbitrary
  44. * mmap() functions).
  45. */
  46. extern struct kmem_cache *vm_area_cachep;
  47. #ifndef CONFIG_MMU
  48. extern struct rb_root nommu_region_tree;
  49. extern struct rw_semaphore nommu_region_sem;
  50. extern unsigned int kobjsize(const void *objp);
  51. #endif
  52. /*
  53. * vm_flags in vm_area_struct, see mm_types.h.
  54. */
  55. #define VM_READ 0x00000001 /* currently active flags */
  56. #define VM_WRITE 0x00000002
  57. #define VM_EXEC 0x00000004
  58. #define VM_SHARED 0x00000008
  59. /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
  60. #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
  61. #define VM_MAYWRITE 0x00000020
  62. #define VM_MAYEXEC 0x00000040
  63. #define VM_MAYSHARE 0x00000080
  64. #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
  65. #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
  66. #define VM_GROWSUP 0x00000200
  67. #else
  68. #define VM_GROWSUP 0x00000000
  69. #endif
  70. #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
  71. #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
  72. #define VM_EXECUTABLE 0x00001000
  73. #define VM_LOCKED 0x00002000
  74. #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
  75. /* Used by sys_madvise() */
  76. #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
  77. #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
  78. #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
  79. #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
  80. #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
  81. #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
  82. #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
  83. #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
  84. #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
  85. #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
  86. #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
  87. #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
  88. #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
  89. #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
  90. #define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */
  91. #define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */
  92. #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
  93. #if BITS_PER_LONG > 32
  94. #define VM_HUGEPAGE 0x100000000UL /* MADV_HUGEPAGE marked this vma */
  95. #endif
  96. /* Bits set in the VMA until the stack is in its final location */
  97. #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
  98. #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
  99. #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
  100. #endif
  101. #ifdef CONFIG_STACK_GROWSUP
  102. #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  103. #else
  104. #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  105. #endif
  106. #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
  107. #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
  108. #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
  109. #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
  110. #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
  111. /*
  112. * special vmas that are non-mergable, non-mlock()able
  113. */
  114. #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
  115. /*
  116. * mapping from the currently active vm_flags protection bits (the
  117. * low four bits) to a page protection mask..
  118. */
  119. extern pgprot_t protection_map[16];
  120. #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
  121. #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
  122. #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
  123. #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
  124. /*
  125. * This interface is used by x86 PAT code to identify a pfn mapping that is
  126. * linear over entire vma. This is to optimize PAT code that deals with
  127. * marking the physical region with a particular prot. This is not for generic
  128. * mm use. Note also that this check will not work if the pfn mapping is
  129. * linear for a vma starting at physical address 0. In which case PAT code
  130. * falls back to slow path of reserving physical range page by page.
  131. */
  132. static inline int is_linear_pfn_mapping(struct vm_area_struct *vma)
  133. {
  134. return (vma->vm_flags & VM_PFN_AT_MMAP);
  135. }
  136. static inline int is_pfn_mapping(struct vm_area_struct *vma)
  137. {
  138. return (vma->vm_flags & VM_PFNMAP);
  139. }
  140. /*
  141. * vm_fault is filled by the the pagefault handler and passed to the vma's
  142. * ->fault function. The vma's ->fault is responsible for returning a bitmask
  143. * of VM_FAULT_xxx flags that give details about how the fault was handled.
  144. *
  145. * pgoff should be used in favour of virtual_address, if possible. If pgoff
  146. * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
  147. * mapping support.
  148. */
  149. struct vm_fault {
  150. unsigned int flags; /* FAULT_FLAG_xxx flags */
  151. pgoff_t pgoff; /* Logical page offset based on vma */
  152. void __user *virtual_address; /* Faulting virtual address */
  153. struct page *page; /* ->fault handlers should return a
  154. * page here, unless VM_FAULT_NOPAGE
  155. * is set (which is also implied by
  156. * VM_FAULT_ERROR).
  157. */
  158. };
  159. /*
  160. * These are the virtual MM functions - opening of an area, closing and
  161. * unmapping it (needed to keep files on disk up-to-date etc), pointer
  162. * to the functions called when a no-page or a wp-page exception occurs.
  163. */
  164. struct vm_operations_struct {
  165. void (*open)(struct vm_area_struct * area);
  166. void (*close)(struct vm_area_struct * area);
  167. int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
  168. /* notification that a previously read-only page is about to become
  169. * writable, if an error is returned it will cause a SIGBUS */
  170. int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
  171. /* called by access_process_vm when get_user_pages() fails, typically
  172. * for use by special VMAs that can switch between memory and hardware
  173. */
  174. int (*access)(struct vm_area_struct *vma, unsigned long addr,
  175. void *buf, int len, int write);
  176. #ifdef CONFIG_NUMA
  177. /*
  178. * set_policy() op must add a reference to any non-NULL @new mempolicy
  179. * to hold the policy upon return. Caller should pass NULL @new to
  180. * remove a policy and fall back to surrounding context--i.e. do not
  181. * install a MPOL_DEFAULT policy, nor the task or system default
  182. * mempolicy.
  183. */
  184. int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
  185. /*
  186. * get_policy() op must add reference [mpol_get()] to any policy at
  187. * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
  188. * in mm/mempolicy.c will do this automatically.
  189. * get_policy() must NOT add a ref if the policy at (vma,addr) is not
  190. * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
  191. * If no [shared/vma] mempolicy exists at the addr, get_policy() op
  192. * must return NULL--i.e., do not "fallback" to task or system default
  193. * policy.
  194. */
  195. struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
  196. unsigned long addr);
  197. int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
  198. const nodemask_t *to, unsigned long flags);
  199. #endif
  200. };
  201. struct mmu_gather;
  202. struct inode;
  203. #define page_private(page) ((page)->private)
  204. #define set_page_private(page, v) ((page)->private = (v))
  205. /*
  206. * FIXME: take this include out, include page-flags.h in
  207. * files which need it (119 of them)
  208. */
  209. #include <linux/page-flags.h>
  210. #include <linux/huge_mm.h>
  211. /*
  212. * Methods to modify the page usage count.
  213. *
  214. * What counts for a page usage:
  215. * - cache mapping (page->mapping)
  216. * - private data (page->private)
  217. * - page mapped in a task's page tables, each mapping
  218. * is counted separately
  219. *
  220. * Also, many kernel routines increase the page count before a critical
  221. * routine so they can be sure the page doesn't go away from under them.
  222. */
  223. /*
  224. * Drop a ref, return true if the refcount fell to zero (the page has no users)
  225. */
  226. static inline int put_page_testzero(struct page *page)
  227. {
  228. VM_BUG_ON(atomic_read(&page->_count) == 0);
  229. return atomic_dec_and_test(&page->_count);
  230. }
  231. /*
  232. * Try to grab a ref unless the page has a refcount of zero, return false if
  233. * that is the case.
  234. */
  235. static inline int get_page_unless_zero(struct page *page)
  236. {
  237. return atomic_inc_not_zero(&page->_count);
  238. }
  239. extern int page_is_ram(unsigned long pfn);
  240. /* Support for virtually mapped pages */
  241. struct page *vmalloc_to_page(const void *addr);
  242. unsigned long vmalloc_to_pfn(const void *addr);
  243. /*
  244. * Determine if an address is within the vmalloc range
  245. *
  246. * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
  247. * is no special casing required.
  248. */
  249. static inline int is_vmalloc_addr(const void *x)
  250. {
  251. #ifdef CONFIG_MMU
  252. unsigned long addr = (unsigned long)x;
  253. return addr >= VMALLOC_START && addr < VMALLOC_END;
  254. #else
  255. return 0;
  256. #endif
  257. }
  258. #ifdef CONFIG_MMU
  259. extern int is_vmalloc_or_module_addr(const void *x);
  260. #else
  261. static inline int is_vmalloc_or_module_addr(const void *x)
  262. {
  263. return 0;
  264. }
  265. #endif
  266. static inline void compound_lock(struct page *page)
  267. {
  268. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  269. bit_spin_lock(PG_compound_lock, &page->flags);
  270. #endif
  271. }
  272. static inline void compound_unlock(struct page *page)
  273. {
  274. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  275. bit_spin_unlock(PG_compound_lock, &page->flags);
  276. #endif
  277. }
  278. static inline unsigned long compound_lock_irqsave(struct page *page)
  279. {
  280. unsigned long uninitialized_var(flags);
  281. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  282. local_irq_save(flags);
  283. compound_lock(page);
  284. #endif
  285. return flags;
  286. }
  287. static inline void compound_unlock_irqrestore(struct page *page,
  288. unsigned long flags)
  289. {
  290. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  291. compound_unlock(page);
  292. local_irq_restore(flags);
  293. #endif
  294. }
  295. static inline struct page *compound_head(struct page *page)
  296. {
  297. if (unlikely(PageTail(page)))
  298. return page->first_page;
  299. return page;
  300. }
  301. static inline int page_count(struct page *page)
  302. {
  303. return atomic_read(&compound_head(page)->_count);
  304. }
  305. static inline void get_page(struct page *page)
  306. {
  307. /*
  308. * Getting a normal page or the head of a compound page
  309. * requires to already have an elevated page->_count. Only if
  310. * we're getting a tail page, the elevated page->_count is
  311. * required only in the head page, so for tail pages the
  312. * bugcheck only verifies that the page->_count isn't
  313. * negative.
  314. */
  315. VM_BUG_ON(atomic_read(&page->_count) < !PageTail(page));
  316. atomic_inc(&page->_count);
  317. /*
  318. * Getting a tail page will elevate both the head and tail
  319. * page->_count(s).
  320. */
  321. if (unlikely(PageTail(page))) {
  322. /*
  323. * This is safe only because
  324. * __split_huge_page_refcount can't run under
  325. * get_page().
  326. */
  327. VM_BUG_ON(atomic_read(&page->first_page->_count) <= 0);
  328. atomic_inc(&page->first_page->_count);
  329. }
  330. }
  331. static inline struct page *virt_to_head_page(const void *x)
  332. {
  333. struct page *page = virt_to_page(x);
  334. return compound_head(page);
  335. }
  336. /*
  337. * Setup the page count before being freed into the page allocator for
  338. * the first time (boot or memory hotplug)
  339. */
  340. static inline void init_page_count(struct page *page)
  341. {
  342. atomic_set(&page->_count, 1);
  343. }
  344. void put_page(struct page *page);
  345. void put_pages_list(struct list_head *pages);
  346. void split_page(struct page *page, unsigned int order);
  347. int split_free_page(struct page *page);
  348. /*
  349. * Compound pages have a destructor function. Provide a
  350. * prototype for that function and accessor functions.
  351. * These are _only_ valid on the head of a PG_compound page.
  352. */
  353. typedef void compound_page_dtor(struct page *);
  354. static inline void set_compound_page_dtor(struct page *page,
  355. compound_page_dtor *dtor)
  356. {
  357. page[1].lru.next = (void *)dtor;
  358. }
  359. static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
  360. {
  361. return (compound_page_dtor *)page[1].lru.next;
  362. }
  363. static inline int compound_order(struct page *page)
  364. {
  365. if (!PageHead(page))
  366. return 0;
  367. return (unsigned long)page[1].lru.prev;
  368. }
  369. static inline void set_compound_order(struct page *page, unsigned long order)
  370. {
  371. page[1].lru.prev = (void *)order;
  372. }
  373. /*
  374. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  375. * servicing faults for write access. In the normal case, do always want
  376. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  377. * that do not have writing enabled, when used by access_process_vm.
  378. */
  379. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  380. {
  381. if (likely(vma->vm_flags & VM_WRITE))
  382. pte = pte_mkwrite(pte);
  383. return pte;
  384. }
  385. /*
  386. * Multiple processes may "see" the same page. E.g. for untouched
  387. * mappings of /dev/null, all processes see the same page full of
  388. * zeroes, and text pages of executables and shared libraries have
  389. * only one copy in memory, at most, normally.
  390. *
  391. * For the non-reserved pages, page_count(page) denotes a reference count.
  392. * page_count() == 0 means the page is free. page->lru is then used for
  393. * freelist management in the buddy allocator.
  394. * page_count() > 0 means the page has been allocated.
  395. *
  396. * Pages are allocated by the slab allocator in order to provide memory
  397. * to kmalloc and kmem_cache_alloc. In this case, the management of the
  398. * page, and the fields in 'struct page' are the responsibility of mm/slab.c
  399. * unless a particular usage is carefully commented. (the responsibility of
  400. * freeing the kmalloc memory is the caller's, of course).
  401. *
  402. * A page may be used by anyone else who does a __get_free_page().
  403. * In this case, page_count still tracks the references, and should only
  404. * be used through the normal accessor functions. The top bits of page->flags
  405. * and page->virtual store page management information, but all other fields
  406. * are unused and could be used privately, carefully. The management of this
  407. * page is the responsibility of the one who allocated it, and those who have
  408. * subsequently been given references to it.
  409. *
  410. * The other pages (we may call them "pagecache pages") are completely
  411. * managed by the Linux memory manager: I/O, buffers, swapping etc.
  412. * The following discussion applies only to them.
  413. *
  414. * A pagecache page contains an opaque `private' member, which belongs to the
  415. * page's address_space. Usually, this is the address of a circular list of
  416. * the page's disk buffers. PG_private must be set to tell the VM to call
  417. * into the filesystem to release these pages.
  418. *
  419. * A page may belong to an inode's memory mapping. In this case, page->mapping
  420. * is the pointer to the inode, and page->index is the file offset of the page,
  421. * in units of PAGE_CACHE_SIZE.
  422. *
  423. * If pagecache pages are not associated with an inode, they are said to be
  424. * anonymous pages. These may become associated with the swapcache, and in that
  425. * case PG_swapcache is set, and page->private is an offset into the swapcache.
  426. *
  427. * In either case (swapcache or inode backed), the pagecache itself holds one
  428. * reference to the page. Setting PG_private should also increment the
  429. * refcount. The each user mapping also has a reference to the page.
  430. *
  431. * The pagecache pages are stored in a per-mapping radix tree, which is
  432. * rooted at mapping->page_tree, and indexed by offset.
  433. * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
  434. * lists, we instead now tag pages as dirty/writeback in the radix tree.
  435. *
  436. * All pagecache pages may be subject to I/O:
  437. * - inode pages may need to be read from disk,
  438. * - inode pages which have been modified and are MAP_SHARED may need
  439. * to be written back to the inode on disk,
  440. * - anonymous pages (including MAP_PRIVATE file mappings) which have been
  441. * modified may need to be swapped out to swap space and (later) to be read
  442. * back into memory.
  443. */
  444. /*
  445. * The zone field is never updated after free_area_init_core()
  446. * sets it, so none of the operations on it need to be atomic.
  447. */
  448. /*
  449. * page->flags layout:
  450. *
  451. * There are three possibilities for how page->flags get
  452. * laid out. The first is for the normal case, without
  453. * sparsemem. The second is for sparsemem when there is
  454. * plenty of space for node and section. The last is when
  455. * we have run out of space and have to fall back to an
  456. * alternate (slower) way of determining the node.
  457. *
  458. * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
  459. * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
  460. * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
  461. */
  462. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  463. #define SECTIONS_WIDTH SECTIONS_SHIFT
  464. #else
  465. #define SECTIONS_WIDTH 0
  466. #endif
  467. #define ZONES_WIDTH ZONES_SHIFT
  468. #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
  469. #define NODES_WIDTH NODES_SHIFT
  470. #else
  471. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  472. #error "Vmemmap: No space for nodes field in page flags"
  473. #endif
  474. #define NODES_WIDTH 0
  475. #endif
  476. /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
  477. #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
  478. #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
  479. #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
  480. /*
  481. * We are going to use the flags for the page to node mapping if its in
  482. * there. This includes the case where there is no node, so it is implicit.
  483. */
  484. #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
  485. #define NODE_NOT_IN_PAGE_FLAGS
  486. #endif
  487. #ifndef PFN_SECTION_SHIFT
  488. #define PFN_SECTION_SHIFT 0
  489. #endif
  490. /*
  491. * Define the bit shifts to access each section. For non-existant
  492. * sections we define the shift as 0; that plus a 0 mask ensures
  493. * the compiler will optimise away reference to them.
  494. */
  495. #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
  496. #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
  497. #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
  498. /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
  499. #ifdef NODE_NOT_IN_PAGE_FLAGS
  500. #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
  501. #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
  502. SECTIONS_PGOFF : ZONES_PGOFF)
  503. #else
  504. #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
  505. #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
  506. NODES_PGOFF : ZONES_PGOFF)
  507. #endif
  508. #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
  509. #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  510. #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  511. #endif
  512. #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
  513. #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
  514. #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
  515. #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
  516. static inline enum zone_type page_zonenum(struct page *page)
  517. {
  518. return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
  519. }
  520. /*
  521. * The identification function is only used by the buddy allocator for
  522. * determining if two pages could be buddies. We are not really
  523. * identifying a zone since we could be using a the section number
  524. * id if we have not node id available in page flags.
  525. * We guarantee only that it will return the same value for two
  526. * combinable pages in a zone.
  527. */
  528. static inline int page_zone_id(struct page *page)
  529. {
  530. return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
  531. }
  532. static inline int zone_to_nid(struct zone *zone)
  533. {
  534. #ifdef CONFIG_NUMA
  535. return zone->node;
  536. #else
  537. return 0;
  538. #endif
  539. }
  540. #ifdef NODE_NOT_IN_PAGE_FLAGS
  541. extern int page_to_nid(struct page *page);
  542. #else
  543. static inline int page_to_nid(struct page *page)
  544. {
  545. return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
  546. }
  547. #endif
  548. static inline struct zone *page_zone(struct page *page)
  549. {
  550. return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
  551. }
  552. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  553. static inline unsigned long page_to_section(struct page *page)
  554. {
  555. return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
  556. }
  557. #endif
  558. static inline void set_page_zone(struct page *page, enum zone_type zone)
  559. {
  560. page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
  561. page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
  562. }
  563. static inline void set_page_node(struct page *page, unsigned long node)
  564. {
  565. page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
  566. page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
  567. }
  568. static inline void set_page_section(struct page *page, unsigned long section)
  569. {
  570. page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
  571. page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
  572. }
  573. static inline void set_page_links(struct page *page, enum zone_type zone,
  574. unsigned long node, unsigned long pfn)
  575. {
  576. set_page_zone(page, zone);
  577. set_page_node(page, node);
  578. set_page_section(page, pfn_to_section_nr(pfn));
  579. }
  580. /*
  581. * Some inline functions in vmstat.h depend on page_zone()
  582. */
  583. #include <linux/vmstat.h>
  584. static __always_inline void *lowmem_page_address(struct page *page)
  585. {
  586. return __va(PFN_PHYS(page_to_pfn(page)));
  587. }
  588. #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
  589. #define HASHED_PAGE_VIRTUAL
  590. #endif
  591. #if defined(WANT_PAGE_VIRTUAL)
  592. #define page_address(page) ((page)->virtual)
  593. #define set_page_address(page, address) \
  594. do { \
  595. (page)->virtual = (address); \
  596. } while(0)
  597. #define page_address_init() do { } while(0)
  598. #endif
  599. #if defined(HASHED_PAGE_VIRTUAL)
  600. void *page_address(struct page *page);
  601. void set_page_address(struct page *page, void *virtual);
  602. void page_address_init(void);
  603. #endif
  604. #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
  605. #define page_address(page) lowmem_page_address(page)
  606. #define set_page_address(page, address) do { } while(0)
  607. #define page_address_init() do { } while(0)
  608. #endif
  609. /*
  610. * On an anonymous page mapped into a user virtual memory area,
  611. * page->mapping points to its anon_vma, not to a struct address_space;
  612. * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
  613. *
  614. * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
  615. * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
  616. * and then page->mapping points, not to an anon_vma, but to a private
  617. * structure which KSM associates with that merged page. See ksm.h.
  618. *
  619. * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
  620. *
  621. * Please note that, confusingly, "page_mapping" refers to the inode
  622. * address_space which maps the page from disk; whereas "page_mapped"
  623. * refers to user virtual address space into which the page is mapped.
  624. */
  625. #define PAGE_MAPPING_ANON 1
  626. #define PAGE_MAPPING_KSM 2
  627. #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
  628. extern struct address_space swapper_space;
  629. static inline struct address_space *page_mapping(struct page *page)
  630. {
  631. struct address_space *mapping = page->mapping;
  632. VM_BUG_ON(PageSlab(page));
  633. if (unlikely(PageSwapCache(page)))
  634. mapping = &swapper_space;
  635. else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
  636. mapping = NULL;
  637. return mapping;
  638. }
  639. /* Neutral page->mapping pointer to address_space or anon_vma or other */
  640. static inline void *page_rmapping(struct page *page)
  641. {
  642. return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
  643. }
  644. static inline int PageAnon(struct page *page)
  645. {
  646. return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
  647. }
  648. /*
  649. * Return the pagecache index of the passed page. Regular pagecache pages
  650. * use ->index whereas swapcache pages use ->private
  651. */
  652. static inline pgoff_t page_index(struct page *page)
  653. {
  654. if (unlikely(PageSwapCache(page)))
  655. return page_private(page);
  656. return page->index;
  657. }
  658. /*
  659. * The atomic page->_mapcount, like _count, starts from -1:
  660. * so that transitions both from it and to it can be tracked,
  661. * using atomic_inc_and_test and atomic_add_negative(-1).
  662. */
  663. static inline void reset_page_mapcount(struct page *page)
  664. {
  665. atomic_set(&(page)->_mapcount, -1);
  666. }
  667. static inline int page_mapcount(struct page *page)
  668. {
  669. return atomic_read(&(page)->_mapcount) + 1;
  670. }
  671. /*
  672. * Return true if this page is mapped into pagetables.
  673. */
  674. static inline int page_mapped(struct page *page)
  675. {
  676. return atomic_read(&(page)->_mapcount) >= 0;
  677. }
  678. /*
  679. * Different kinds of faults, as returned by handle_mm_fault().
  680. * Used to decide whether a process gets delivered SIGBUS or
  681. * just gets major/minor fault counters bumped up.
  682. */
  683. #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
  684. #define VM_FAULT_OOM 0x0001
  685. #define VM_FAULT_SIGBUS 0x0002
  686. #define VM_FAULT_MAJOR 0x0004
  687. #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
  688. #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
  689. #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
  690. #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
  691. #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
  692. #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
  693. #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
  694. #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
  695. VM_FAULT_HWPOISON_LARGE)
  696. /* Encode hstate index for a hwpoisoned large page */
  697. #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
  698. #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
  699. /*
  700. * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
  701. */
  702. extern void pagefault_out_of_memory(void);
  703. #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
  704. extern void show_free_areas(void);
  705. int shmem_lock(struct file *file, int lock, struct user_struct *user);
  706. struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags);
  707. int shmem_zero_setup(struct vm_area_struct *);
  708. #ifndef CONFIG_MMU
  709. extern unsigned long shmem_get_unmapped_area(struct file *file,
  710. unsigned long addr,
  711. unsigned long len,
  712. unsigned long pgoff,
  713. unsigned long flags);
  714. #endif
  715. extern int can_do_mlock(void);
  716. extern int user_shm_lock(size_t, struct user_struct *);
  717. extern void user_shm_unlock(size_t, struct user_struct *);
  718. /*
  719. * Parameter block passed down to zap_pte_range in exceptional cases.
  720. */
  721. struct zap_details {
  722. struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
  723. struct address_space *check_mapping; /* Check page->mapping if set */
  724. pgoff_t first_index; /* Lowest page->index to unmap */
  725. pgoff_t last_index; /* Highest page->index to unmap */
  726. spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
  727. unsigned long truncate_count; /* Compare vm_truncate_count */
  728. };
  729. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  730. pte_t pte);
  731. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  732. unsigned long size);
  733. unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
  734. unsigned long size, struct zap_details *);
  735. unsigned long unmap_vmas(struct mmu_gather **tlb,
  736. struct vm_area_struct *start_vma, unsigned long start_addr,
  737. unsigned long end_addr, unsigned long *nr_accounted,
  738. struct zap_details *);
  739. /**
  740. * mm_walk - callbacks for walk_page_range
  741. * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
  742. * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
  743. * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
  744. * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
  745. * @pte_hole: if set, called for each hole at all levels
  746. * @hugetlb_entry: if set, called for each hugetlb entry
  747. *
  748. * (see walk_page_range for more details)
  749. */
  750. struct mm_walk {
  751. int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
  752. int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
  753. int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
  754. int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
  755. int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
  756. int (*hugetlb_entry)(pte_t *, unsigned long,
  757. unsigned long, unsigned long, struct mm_walk *);
  758. struct mm_struct *mm;
  759. void *private;
  760. };
  761. int walk_page_range(unsigned long addr, unsigned long end,
  762. struct mm_walk *walk);
  763. void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
  764. unsigned long end, unsigned long floor, unsigned long ceiling);
  765. int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
  766. struct vm_area_struct *vma);
  767. void unmap_mapping_range(struct address_space *mapping,
  768. loff_t const holebegin, loff_t const holelen, int even_cows);
  769. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  770. unsigned long *pfn);
  771. int follow_phys(struct vm_area_struct *vma, unsigned long address,
  772. unsigned int flags, unsigned long *prot, resource_size_t *phys);
  773. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  774. void *buf, int len, int write);
  775. static inline void unmap_shared_mapping_range(struct address_space *mapping,
  776. loff_t const holebegin, loff_t const holelen)
  777. {
  778. unmap_mapping_range(mapping, holebegin, holelen, 0);
  779. }
  780. extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
  781. extern void truncate_setsize(struct inode *inode, loff_t newsize);
  782. extern int vmtruncate(struct inode *inode, loff_t offset);
  783. extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end);
  784. int truncate_inode_page(struct address_space *mapping, struct page *page);
  785. int generic_error_remove_page(struct address_space *mapping, struct page *page);
  786. int invalidate_inode_page(struct page *page);
  787. #ifdef CONFIG_MMU
  788. extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  789. unsigned long address, unsigned int flags);
  790. #else
  791. static inline int handle_mm_fault(struct mm_struct *mm,
  792. struct vm_area_struct *vma, unsigned long address,
  793. unsigned int flags)
  794. {
  795. /* should never happen if there's no MMU */
  796. BUG();
  797. return VM_FAULT_SIGBUS;
  798. }
  799. #endif
  800. extern int make_pages_present(unsigned long addr, unsigned long end);
  801. extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
  802. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  803. unsigned long start, int nr_pages, int write, int force,
  804. struct page **pages, struct vm_area_struct **vmas);
  805. int get_user_pages_fast(unsigned long start, int nr_pages, int write,
  806. struct page **pages);
  807. struct page *get_dump_page(unsigned long addr);
  808. extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
  809. extern void do_invalidatepage(struct page *page, unsigned long offset);
  810. int __set_page_dirty_nobuffers(struct page *page);
  811. int __set_page_dirty_no_writeback(struct page *page);
  812. int redirty_page_for_writepage(struct writeback_control *wbc,
  813. struct page *page);
  814. void account_page_dirtied(struct page *page, struct address_space *mapping);
  815. void account_page_writeback(struct page *page);
  816. int set_page_dirty(struct page *page);
  817. int set_page_dirty_lock(struct page *page);
  818. int clear_page_dirty_for_io(struct page *page);
  819. /* Is the vma a continuation of the stack vma above it? */
  820. static inline int vma_stack_continue(struct vm_area_struct *vma, unsigned long addr)
  821. {
  822. return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
  823. }
  824. extern unsigned long move_page_tables(struct vm_area_struct *vma,
  825. unsigned long old_addr, struct vm_area_struct *new_vma,
  826. unsigned long new_addr, unsigned long len);
  827. extern unsigned long do_mremap(unsigned long addr,
  828. unsigned long old_len, unsigned long new_len,
  829. unsigned long flags, unsigned long new_addr);
  830. extern int mprotect_fixup(struct vm_area_struct *vma,
  831. struct vm_area_struct **pprev, unsigned long start,
  832. unsigned long end, unsigned long newflags);
  833. /*
  834. * doesn't attempt to fault and will return short.
  835. */
  836. int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
  837. struct page **pages);
  838. /*
  839. * per-process(per-mm_struct) statistics.
  840. */
  841. #if defined(SPLIT_RSS_COUNTING)
  842. /*
  843. * The mm counters are not protected by its page_table_lock,
  844. * so must be incremented atomically.
  845. */
  846. static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
  847. {
  848. atomic_long_set(&mm->rss_stat.count[member], value);
  849. }
  850. unsigned long get_mm_counter(struct mm_struct *mm, int member);
  851. static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
  852. {
  853. atomic_long_add(value, &mm->rss_stat.count[member]);
  854. }
  855. static inline void inc_mm_counter(struct mm_struct *mm, int member)
  856. {
  857. atomic_long_inc(&mm->rss_stat.count[member]);
  858. }
  859. static inline void dec_mm_counter(struct mm_struct *mm, int member)
  860. {
  861. atomic_long_dec(&mm->rss_stat.count[member]);
  862. }
  863. #else /* !USE_SPLIT_PTLOCKS */
  864. /*
  865. * The mm counters are protected by its page_table_lock,
  866. * so can be incremented directly.
  867. */
  868. static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
  869. {
  870. mm->rss_stat.count[member] = value;
  871. }
  872. static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
  873. {
  874. return mm->rss_stat.count[member];
  875. }
  876. static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
  877. {
  878. mm->rss_stat.count[member] += value;
  879. }
  880. static inline void inc_mm_counter(struct mm_struct *mm, int member)
  881. {
  882. mm->rss_stat.count[member]++;
  883. }
  884. static inline void dec_mm_counter(struct mm_struct *mm, int member)
  885. {
  886. mm->rss_stat.count[member]--;
  887. }
  888. #endif /* !USE_SPLIT_PTLOCKS */
  889. static inline unsigned long get_mm_rss(struct mm_struct *mm)
  890. {
  891. return get_mm_counter(mm, MM_FILEPAGES) +
  892. get_mm_counter(mm, MM_ANONPAGES);
  893. }
  894. static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
  895. {
  896. return max(mm->hiwater_rss, get_mm_rss(mm));
  897. }
  898. static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
  899. {
  900. return max(mm->hiwater_vm, mm->total_vm);
  901. }
  902. static inline void update_hiwater_rss(struct mm_struct *mm)
  903. {
  904. unsigned long _rss = get_mm_rss(mm);
  905. if ((mm)->hiwater_rss < _rss)
  906. (mm)->hiwater_rss = _rss;
  907. }
  908. static inline void update_hiwater_vm(struct mm_struct *mm)
  909. {
  910. if (mm->hiwater_vm < mm->total_vm)
  911. mm->hiwater_vm = mm->total_vm;
  912. }
  913. static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
  914. struct mm_struct *mm)
  915. {
  916. unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
  917. if (*maxrss < hiwater_rss)
  918. *maxrss = hiwater_rss;
  919. }
  920. #if defined(SPLIT_RSS_COUNTING)
  921. void sync_mm_rss(struct task_struct *task, struct mm_struct *mm);
  922. #else
  923. static inline void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
  924. {
  925. }
  926. #endif
  927. /*
  928. * A callback you can register to apply pressure to ageable caches.
  929. *
  930. * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should
  931. * look through the least-recently-used 'nr_to_scan' entries and
  932. * attempt to free them up. It should return the number of objects
  933. * which remain in the cache. If it returns -1, it means it cannot do
  934. * any scanning at this time (eg. there is a risk of deadlock).
  935. *
  936. * The 'gfpmask' refers to the allocation we are currently trying to
  937. * fulfil.
  938. *
  939. * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
  940. * querying the cache size, so a fastpath for that case is appropriate.
  941. */
  942. struct shrinker {
  943. int (*shrink)(struct shrinker *, int nr_to_scan, gfp_t gfp_mask);
  944. int seeks; /* seeks to recreate an obj */
  945. /* These are for internal use */
  946. struct list_head list;
  947. long nr; /* objs pending delete */
  948. };
  949. #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
  950. extern void register_shrinker(struct shrinker *);
  951. extern void unregister_shrinker(struct shrinker *);
  952. int vma_wants_writenotify(struct vm_area_struct *vma);
  953. extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  954. spinlock_t **ptl);
  955. static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  956. spinlock_t **ptl)
  957. {
  958. pte_t *ptep;
  959. __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
  960. return ptep;
  961. }
  962. #ifdef __PAGETABLE_PUD_FOLDED
  963. static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
  964. unsigned long address)
  965. {
  966. return 0;
  967. }
  968. #else
  969. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
  970. #endif
  971. #ifdef __PAGETABLE_PMD_FOLDED
  972. static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
  973. unsigned long address)
  974. {
  975. return 0;
  976. }
  977. #else
  978. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
  979. #endif
  980. int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
  981. pmd_t *pmd, unsigned long address);
  982. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
  983. /*
  984. * The following ifdef needed to get the 4level-fixup.h header to work.
  985. * Remove it when 4level-fixup.h has been removed.
  986. */
  987. #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
  988. static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  989. {
  990. return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
  991. NULL: pud_offset(pgd, address);
  992. }
  993. static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  994. {
  995. return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
  996. NULL: pmd_offset(pud, address);
  997. }
  998. #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
  999. #if USE_SPLIT_PTLOCKS
  1000. /*
  1001. * We tuck a spinlock to guard each pagetable page into its struct page,
  1002. * at page->private, with BUILD_BUG_ON to make sure that this will not
  1003. * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
  1004. * When freeing, reset page->mapping so free_pages_check won't complain.
  1005. */
  1006. #define __pte_lockptr(page) &((page)->ptl)
  1007. #define pte_lock_init(_page) do { \
  1008. spin_lock_init(__pte_lockptr(_page)); \
  1009. } while (0)
  1010. #define pte_lock_deinit(page) ((page)->mapping = NULL)
  1011. #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
  1012. #else /* !USE_SPLIT_PTLOCKS */
  1013. /*
  1014. * We use mm->page_table_lock to guard all pagetable pages of the mm.
  1015. */
  1016. #define pte_lock_init(page) do {} while (0)
  1017. #define pte_lock_deinit(page) do {} while (0)
  1018. #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
  1019. #endif /* USE_SPLIT_PTLOCKS */
  1020. static inline void pgtable_page_ctor(struct page *page)
  1021. {
  1022. pte_lock_init(page);
  1023. inc_zone_page_state(page, NR_PAGETABLE);
  1024. }
  1025. static inline void pgtable_page_dtor(struct page *page)
  1026. {
  1027. pte_lock_deinit(page);
  1028. dec_zone_page_state(page, NR_PAGETABLE);
  1029. }
  1030. #define pte_offset_map_lock(mm, pmd, address, ptlp) \
  1031. ({ \
  1032. spinlock_t *__ptl = pte_lockptr(mm, pmd); \
  1033. pte_t *__pte = pte_offset_map(pmd, address); \
  1034. *(ptlp) = __ptl; \
  1035. spin_lock(__ptl); \
  1036. __pte; \
  1037. })
  1038. #define pte_unmap_unlock(pte, ptl) do { \
  1039. spin_unlock(ptl); \
  1040. pte_unmap(pte); \
  1041. } while (0)
  1042. #define pte_alloc_map(mm, vma, pmd, address) \
  1043. ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
  1044. pmd, address))? \
  1045. NULL: pte_offset_map(pmd, address))
  1046. #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
  1047. ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
  1048. pmd, address))? \
  1049. NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
  1050. #define pte_alloc_kernel(pmd, address) \
  1051. ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
  1052. NULL: pte_offset_kernel(pmd, address))
  1053. extern void free_area_init(unsigned long * zones_size);
  1054. extern void free_area_init_node(int nid, unsigned long * zones_size,
  1055. unsigned long zone_start_pfn, unsigned long *zholes_size);
  1056. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  1057. /*
  1058. * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
  1059. * zones, allocate the backing mem_map and account for memory holes in a more
  1060. * architecture independent manner. This is a substitute for creating the
  1061. * zone_sizes[] and zholes_size[] arrays and passing them to
  1062. * free_area_init_node()
  1063. *
  1064. * An architecture is expected to register range of page frames backed by
  1065. * physical memory with add_active_range() before calling
  1066. * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
  1067. * usage, an architecture is expected to do something like
  1068. *
  1069. * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
  1070. * max_highmem_pfn};
  1071. * for_each_valid_physical_page_range()
  1072. * add_active_range(node_id, start_pfn, end_pfn)
  1073. * free_area_init_nodes(max_zone_pfns);
  1074. *
  1075. * If the architecture guarantees that there are no holes in the ranges
  1076. * registered with add_active_range(), free_bootmem_active_regions()
  1077. * will call free_bootmem_node() for each registered physical page range.
  1078. * Similarly sparse_memory_present_with_active_regions() calls
  1079. * memory_present() for each range when SPARSEMEM is enabled.
  1080. *
  1081. * See mm/page_alloc.c for more information on each function exposed by
  1082. * CONFIG_ARCH_POPULATES_NODE_MAP
  1083. */
  1084. extern void free_area_init_nodes(unsigned long *max_zone_pfn);
  1085. extern void add_active_range(unsigned int nid, unsigned long start_pfn,
  1086. unsigned long end_pfn);
  1087. extern void remove_active_range(unsigned int nid, unsigned long start_pfn,
  1088. unsigned long end_pfn);
  1089. extern void remove_all_active_ranges(void);
  1090. void sort_node_map(void);
  1091. unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
  1092. unsigned long end_pfn);
  1093. extern unsigned long absent_pages_in_range(unsigned long start_pfn,
  1094. unsigned long end_pfn);
  1095. extern void get_pfn_range_for_nid(unsigned int nid,
  1096. unsigned long *start_pfn, unsigned long *end_pfn);
  1097. extern unsigned long find_min_pfn_with_active_regions(void);
  1098. extern void free_bootmem_with_active_regions(int nid,
  1099. unsigned long max_low_pfn);
  1100. int add_from_early_node_map(struct range *range, int az,
  1101. int nr_range, int nid);
  1102. u64 __init find_memory_core_early(int nid, u64 size, u64 align,
  1103. u64 goal, u64 limit);
  1104. void *__alloc_memory_core_early(int nodeid, u64 size, u64 align,
  1105. u64 goal, u64 limit);
  1106. typedef int (*work_fn_t)(unsigned long, unsigned long, void *);
  1107. extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data);
  1108. extern void sparse_memory_present_with_active_regions(int nid);
  1109. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  1110. #if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \
  1111. !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
  1112. static inline int __early_pfn_to_nid(unsigned long pfn)
  1113. {
  1114. return 0;
  1115. }
  1116. #else
  1117. /* please see mm/page_alloc.c */
  1118. extern int __meminit early_pfn_to_nid(unsigned long pfn);
  1119. #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  1120. /* there is a per-arch backend function. */
  1121. extern int __meminit __early_pfn_to_nid(unsigned long pfn);
  1122. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  1123. #endif
  1124. extern void set_dma_reserve(unsigned long new_dma_reserve);
  1125. extern void memmap_init_zone(unsigned long, int, unsigned long,
  1126. unsigned long, enum memmap_context);
  1127. extern void setup_per_zone_wmarks(void);
  1128. extern void calculate_zone_inactive_ratio(struct zone *zone);
  1129. extern void mem_init(void);
  1130. extern void __init mmap_init(void);
  1131. extern void show_mem(void);
  1132. extern void si_meminfo(struct sysinfo * val);
  1133. extern void si_meminfo_node(struct sysinfo *val, int nid);
  1134. extern int after_bootmem;
  1135. extern void setup_per_cpu_pageset(void);
  1136. extern void zone_pcp_update(struct zone *zone);
  1137. /* nommu.c */
  1138. extern atomic_long_t mmap_pages_allocated;
  1139. extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
  1140. /* prio_tree.c */
  1141. void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
  1142. void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
  1143. void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
  1144. struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
  1145. struct prio_tree_iter *iter);
  1146. #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
  1147. for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
  1148. (vma = vma_prio_tree_next(vma, iter)); )
  1149. static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
  1150. struct list_head *list)
  1151. {
  1152. vma->shared.vm_set.parent = NULL;
  1153. list_add_tail(&vma->shared.vm_set.list, list);
  1154. }
  1155. /* mmap.c */
  1156. extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
  1157. extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
  1158. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
  1159. extern struct vm_area_struct *vma_merge(struct mm_struct *,
  1160. struct vm_area_struct *prev, unsigned long addr, unsigned long end,
  1161. unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
  1162. struct mempolicy *);
  1163. extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
  1164. extern int split_vma(struct mm_struct *,
  1165. struct vm_area_struct *, unsigned long addr, int new_below);
  1166. extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
  1167. extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
  1168. struct rb_node **, struct rb_node *);
  1169. extern void unlink_file_vma(struct vm_area_struct *);
  1170. extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
  1171. unsigned long addr, unsigned long len, pgoff_t pgoff);
  1172. extern void exit_mmap(struct mm_struct *);
  1173. extern int mm_take_all_locks(struct mm_struct *mm);
  1174. extern void mm_drop_all_locks(struct mm_struct *mm);
  1175. #ifdef CONFIG_PROC_FS
  1176. /* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */
  1177. extern void added_exe_file_vma(struct mm_struct *mm);
  1178. extern void removed_exe_file_vma(struct mm_struct *mm);
  1179. #else
  1180. static inline void added_exe_file_vma(struct mm_struct *mm)
  1181. {}
  1182. static inline void removed_exe_file_vma(struct mm_struct *mm)
  1183. {}
  1184. #endif /* CONFIG_PROC_FS */
  1185. extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
  1186. extern int install_special_mapping(struct mm_struct *mm,
  1187. unsigned long addr, unsigned long len,
  1188. unsigned long flags, struct page **pages);
  1189. extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
  1190. extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
  1191. unsigned long len, unsigned long prot,
  1192. unsigned long flag, unsigned long pgoff);
  1193. extern unsigned long mmap_region(struct file *file, unsigned long addr,
  1194. unsigned long len, unsigned long flags,
  1195. unsigned int vm_flags, unsigned long pgoff);
  1196. static inline unsigned long do_mmap(struct file *file, unsigned long addr,
  1197. unsigned long len, unsigned long prot,
  1198. unsigned long flag, unsigned long offset)
  1199. {
  1200. unsigned long ret = -EINVAL;
  1201. if ((offset + PAGE_ALIGN(len)) < offset)
  1202. goto out;
  1203. if (!(offset & ~PAGE_MASK))
  1204. ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
  1205. out:
  1206. return ret;
  1207. }
  1208. extern int do_munmap(struct mm_struct *, unsigned long, size_t);
  1209. extern unsigned long do_brk(unsigned long, unsigned long);
  1210. /* filemap.c */
  1211. extern unsigned long page_unuse(struct page *);
  1212. extern void truncate_inode_pages(struct address_space *, loff_t);
  1213. extern void truncate_inode_pages_range(struct address_space *,
  1214. loff_t lstart, loff_t lend);
  1215. /* generic vm_area_ops exported for stackable file systems */
  1216. extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
  1217. /* mm/page-writeback.c */
  1218. int write_one_page(struct page *page, int wait);
  1219. void task_dirty_inc(struct task_struct *tsk);
  1220. /* readahead.c */
  1221. #define VM_MAX_READAHEAD 128 /* kbytes */
  1222. #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
  1223. int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
  1224. pgoff_t offset, unsigned long nr_to_read);
  1225. void page_cache_sync_readahead(struct address_space *mapping,
  1226. struct file_ra_state *ra,
  1227. struct file *filp,
  1228. pgoff_t offset,
  1229. unsigned long size);
  1230. void page_cache_async_readahead(struct address_space *mapping,
  1231. struct file_ra_state *ra,
  1232. struct file *filp,
  1233. struct page *pg,
  1234. pgoff_t offset,
  1235. unsigned long size);
  1236. unsigned long max_sane_readahead(unsigned long nr);
  1237. unsigned long ra_submit(struct file_ra_state *ra,
  1238. struct address_space *mapping,
  1239. struct file *filp);
  1240. /* Do stack extension */
  1241. extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
  1242. #if VM_GROWSUP
  1243. extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
  1244. #else
  1245. #define expand_upwards(vma, address) do { } while (0)
  1246. #endif
  1247. extern int expand_stack_downwards(struct vm_area_struct *vma,
  1248. unsigned long address);
  1249. /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
  1250. extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
  1251. extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
  1252. struct vm_area_struct **pprev);
  1253. /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
  1254. NULL if none. Assume start_addr < end_addr. */
  1255. static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
  1256. {
  1257. struct vm_area_struct * vma = find_vma(mm,start_addr);
  1258. if (vma && end_addr <= vma->vm_start)
  1259. vma = NULL;
  1260. return vma;
  1261. }
  1262. static inline unsigned long vma_pages(struct vm_area_struct *vma)
  1263. {
  1264. return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  1265. }
  1266. #ifdef CONFIG_MMU
  1267. pgprot_t vm_get_page_prot(unsigned long vm_flags);
  1268. #else
  1269. static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
  1270. {
  1271. return __pgprot(0);
  1272. }
  1273. #endif
  1274. struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
  1275. int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
  1276. unsigned long pfn, unsigned long size, pgprot_t);
  1277. int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
  1278. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1279. unsigned long pfn);
  1280. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1281. unsigned long pfn);
  1282. struct page *follow_page(struct vm_area_struct *, unsigned long address,
  1283. unsigned int foll_flags);
  1284. #define FOLL_WRITE 0x01 /* check pte is writable */
  1285. #define FOLL_TOUCH 0x02 /* mark page accessed */
  1286. #define FOLL_GET 0x04 /* do get_page on page */
  1287. #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
  1288. #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
  1289. #define FOLL_MLOCK 0x40 /* mark page as mlocked */
  1290. typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
  1291. void *data);
  1292. extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
  1293. unsigned long size, pte_fn_t fn, void *data);
  1294. #ifdef CONFIG_PROC_FS
  1295. void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
  1296. #else
  1297. static inline void vm_stat_account(struct mm_struct *mm,
  1298. unsigned long flags, struct file *file, long pages)
  1299. {
  1300. }
  1301. #endif /* CONFIG_PROC_FS */
  1302. #ifdef CONFIG_DEBUG_PAGEALLOC
  1303. extern int debug_pagealloc_enabled;
  1304. extern void kernel_map_pages(struct page *page, int numpages, int enable);
  1305. static inline void enable_debug_pagealloc(void)
  1306. {
  1307. debug_pagealloc_enabled = 1;
  1308. }
  1309. #ifdef CONFIG_HIBERNATION
  1310. extern bool kernel_page_present(struct page *page);
  1311. #endif /* CONFIG_HIBERNATION */
  1312. #else
  1313. static inline void
  1314. kernel_map_pages(struct page *page, int numpages, int enable) {}
  1315. static inline void enable_debug_pagealloc(void)
  1316. {
  1317. }
  1318. #ifdef CONFIG_HIBERNATION
  1319. static inline bool kernel_page_present(struct page *page) { return true; }
  1320. #endif /* CONFIG_HIBERNATION */
  1321. #endif
  1322. extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
  1323. #ifdef __HAVE_ARCH_GATE_AREA
  1324. int in_gate_area_no_task(unsigned long addr);
  1325. int in_gate_area(struct task_struct *task, unsigned long addr);
  1326. #else
  1327. int in_gate_area_no_task(unsigned long addr);
  1328. #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
  1329. #endif /* __HAVE_ARCH_GATE_AREA */
  1330. int drop_caches_sysctl_handler(struct ctl_table *, int,
  1331. void __user *, size_t *, loff_t *);
  1332. unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
  1333. unsigned long lru_pages);
  1334. #ifndef CONFIG_MMU
  1335. #define randomize_va_space 0
  1336. #else
  1337. extern int randomize_va_space;
  1338. #endif
  1339. const char * arch_vma_name(struct vm_area_struct *vma);
  1340. void print_vma_addr(char *prefix, unsigned long rip);
  1341. void sparse_mem_maps_populate_node(struct page **map_map,
  1342. unsigned long pnum_begin,
  1343. unsigned long pnum_end,
  1344. unsigned long map_count,
  1345. int nodeid);
  1346. struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
  1347. pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
  1348. pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
  1349. pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
  1350. pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
  1351. void *vmemmap_alloc_block(unsigned long size, int node);
  1352. void *vmemmap_alloc_block_buf(unsigned long size, int node);
  1353. void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
  1354. int vmemmap_populate_basepages(struct page *start_page,
  1355. unsigned long pages, int node);
  1356. int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
  1357. void vmemmap_populate_print_last(void);
  1358. enum mf_flags {
  1359. MF_COUNT_INCREASED = 1 << 0,
  1360. };
  1361. extern void memory_failure(unsigned long pfn, int trapno);
  1362. extern int __memory_failure(unsigned long pfn, int trapno, int flags);
  1363. extern int unpoison_memory(unsigned long pfn);
  1364. extern int sysctl_memory_failure_early_kill;
  1365. extern int sysctl_memory_failure_recovery;
  1366. extern void shake_page(struct page *p, int access);
  1367. extern atomic_long_t mce_bad_pages;
  1368. extern int soft_offline_page(struct page *page, int flags);
  1369. #ifdef CONFIG_MEMORY_FAILURE
  1370. int is_hwpoison_address(unsigned long addr);
  1371. #else
  1372. static inline int is_hwpoison_address(unsigned long addr)
  1373. {
  1374. return 0;
  1375. }
  1376. #endif
  1377. extern void dump_page(struct page *page);
  1378. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  1379. extern void clear_huge_page(struct page *page,
  1380. unsigned long addr,
  1381. unsigned int pages_per_huge_page);
  1382. extern void copy_user_huge_page(struct page *dst, struct page *src,
  1383. unsigned long addr, struct vm_area_struct *vma,
  1384. unsigned int pages_per_huge_page);
  1385. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
  1386. #endif /* __KERNEL__ */
  1387. #endif /* _LINUX_MM_H */