vmx.c 101 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "irq.h"
  18. #include "mmu.h"
  19. #include <linux/kvm_host.h>
  20. #include <linux/module.h>
  21. #include <linux/kernel.h>
  22. #include <linux/mm.h>
  23. #include <linux/highmem.h>
  24. #include <linux/sched.h>
  25. #include <linux/moduleparam.h>
  26. #include "kvm_cache_regs.h"
  27. #include "x86.h"
  28. #include <asm/io.h>
  29. #include <asm/desc.h>
  30. #include <asm/vmx.h>
  31. #include <asm/virtext.h>
  32. #include <asm/mce.h>
  33. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  34. MODULE_AUTHOR("Qumranet");
  35. MODULE_LICENSE("GPL");
  36. static int __read_mostly bypass_guest_pf = 1;
  37. module_param(bypass_guest_pf, bool, S_IRUGO);
  38. static int __read_mostly enable_vpid = 1;
  39. module_param_named(vpid, enable_vpid, bool, 0444);
  40. static int __read_mostly flexpriority_enabled = 1;
  41. module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  42. static int __read_mostly enable_ept = 1;
  43. module_param_named(ept, enable_ept, bool, S_IRUGO);
  44. static int __read_mostly enable_unrestricted_guest = 1;
  45. module_param_named(unrestricted_guest,
  46. enable_unrestricted_guest, bool, S_IRUGO);
  47. static int __read_mostly emulate_invalid_guest_state = 0;
  48. module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  49. struct vmcs {
  50. u32 revision_id;
  51. u32 abort;
  52. char data[0];
  53. };
  54. struct vcpu_vmx {
  55. struct kvm_vcpu vcpu;
  56. struct list_head local_vcpus_link;
  57. unsigned long host_rsp;
  58. int launched;
  59. u8 fail;
  60. u32 idt_vectoring_info;
  61. struct kvm_msr_entry *guest_msrs;
  62. struct kvm_msr_entry *host_msrs;
  63. int nmsrs;
  64. int save_nmsrs;
  65. int msr_offset_efer;
  66. #ifdef CONFIG_X86_64
  67. int msr_offset_kernel_gs_base;
  68. #endif
  69. struct vmcs *vmcs;
  70. struct {
  71. int loaded;
  72. u16 fs_sel, gs_sel, ldt_sel;
  73. int gs_ldt_reload_needed;
  74. int fs_reload_needed;
  75. int guest_efer_loaded;
  76. } host_state;
  77. struct {
  78. int vm86_active;
  79. u8 save_iopl;
  80. struct kvm_save_segment {
  81. u16 selector;
  82. unsigned long base;
  83. u32 limit;
  84. u32 ar;
  85. } tr, es, ds, fs, gs;
  86. struct {
  87. bool pending;
  88. u8 vector;
  89. unsigned rip;
  90. } irq;
  91. } rmode;
  92. int vpid;
  93. bool emulation_required;
  94. enum emulation_result invalid_state_emulation_result;
  95. /* Support for vnmi-less CPUs */
  96. int soft_vnmi_blocked;
  97. ktime_t entry_time;
  98. s64 vnmi_blocked_time;
  99. u32 exit_reason;
  100. };
  101. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  102. {
  103. return container_of(vcpu, struct vcpu_vmx, vcpu);
  104. }
  105. static int init_rmode(struct kvm *kvm);
  106. static u64 construct_eptp(unsigned long root_hpa);
  107. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  108. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  109. static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
  110. static unsigned long *vmx_io_bitmap_a;
  111. static unsigned long *vmx_io_bitmap_b;
  112. static unsigned long *vmx_msr_bitmap_legacy;
  113. static unsigned long *vmx_msr_bitmap_longmode;
  114. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  115. static DEFINE_SPINLOCK(vmx_vpid_lock);
  116. static struct vmcs_config {
  117. int size;
  118. int order;
  119. u32 revision_id;
  120. u32 pin_based_exec_ctrl;
  121. u32 cpu_based_exec_ctrl;
  122. u32 cpu_based_2nd_exec_ctrl;
  123. u32 vmexit_ctrl;
  124. u32 vmentry_ctrl;
  125. } vmcs_config;
  126. static struct vmx_capability {
  127. u32 ept;
  128. u32 vpid;
  129. } vmx_capability;
  130. #define VMX_SEGMENT_FIELD(seg) \
  131. [VCPU_SREG_##seg] = { \
  132. .selector = GUEST_##seg##_SELECTOR, \
  133. .base = GUEST_##seg##_BASE, \
  134. .limit = GUEST_##seg##_LIMIT, \
  135. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  136. }
  137. static struct kvm_vmx_segment_field {
  138. unsigned selector;
  139. unsigned base;
  140. unsigned limit;
  141. unsigned ar_bytes;
  142. } kvm_vmx_segment_fields[] = {
  143. VMX_SEGMENT_FIELD(CS),
  144. VMX_SEGMENT_FIELD(DS),
  145. VMX_SEGMENT_FIELD(ES),
  146. VMX_SEGMENT_FIELD(FS),
  147. VMX_SEGMENT_FIELD(GS),
  148. VMX_SEGMENT_FIELD(SS),
  149. VMX_SEGMENT_FIELD(TR),
  150. VMX_SEGMENT_FIELD(LDTR),
  151. };
  152. static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
  153. /*
  154. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  155. * away by decrementing the array size.
  156. */
  157. static const u32 vmx_msr_index[] = {
  158. #ifdef CONFIG_X86_64
  159. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  160. #endif
  161. MSR_EFER, MSR_K6_STAR,
  162. };
  163. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  164. static void load_msrs(struct kvm_msr_entry *e, int n)
  165. {
  166. int i;
  167. for (i = 0; i < n; ++i)
  168. wrmsrl(e[i].index, e[i].data);
  169. }
  170. static void save_msrs(struct kvm_msr_entry *e, int n)
  171. {
  172. int i;
  173. for (i = 0; i < n; ++i)
  174. rdmsrl(e[i].index, e[i].data);
  175. }
  176. static inline int is_page_fault(u32 intr_info)
  177. {
  178. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  179. INTR_INFO_VALID_MASK)) ==
  180. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  181. }
  182. static inline int is_no_device(u32 intr_info)
  183. {
  184. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  185. INTR_INFO_VALID_MASK)) ==
  186. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  187. }
  188. static inline int is_invalid_opcode(u32 intr_info)
  189. {
  190. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  191. INTR_INFO_VALID_MASK)) ==
  192. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  193. }
  194. static inline int is_external_interrupt(u32 intr_info)
  195. {
  196. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  197. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  198. }
  199. static inline int is_machine_check(u32 intr_info)
  200. {
  201. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  202. INTR_INFO_VALID_MASK)) ==
  203. (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
  204. }
  205. static inline int cpu_has_vmx_msr_bitmap(void)
  206. {
  207. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
  208. }
  209. static inline int cpu_has_vmx_tpr_shadow(void)
  210. {
  211. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
  212. }
  213. static inline int vm_need_tpr_shadow(struct kvm *kvm)
  214. {
  215. return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
  216. }
  217. static inline int cpu_has_secondary_exec_ctrls(void)
  218. {
  219. return vmcs_config.cpu_based_exec_ctrl &
  220. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  221. }
  222. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  223. {
  224. return vmcs_config.cpu_based_2nd_exec_ctrl &
  225. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  226. }
  227. static inline bool cpu_has_vmx_flexpriority(void)
  228. {
  229. return cpu_has_vmx_tpr_shadow() &&
  230. cpu_has_vmx_virtualize_apic_accesses();
  231. }
  232. static inline int cpu_has_vmx_invept_individual_addr(void)
  233. {
  234. return !!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT);
  235. }
  236. static inline int cpu_has_vmx_invept_context(void)
  237. {
  238. return !!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT);
  239. }
  240. static inline int cpu_has_vmx_invept_global(void)
  241. {
  242. return !!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT);
  243. }
  244. static inline int cpu_has_vmx_ept(void)
  245. {
  246. return vmcs_config.cpu_based_2nd_exec_ctrl &
  247. SECONDARY_EXEC_ENABLE_EPT;
  248. }
  249. static inline int cpu_has_vmx_unrestricted_guest(void)
  250. {
  251. return vmcs_config.cpu_based_2nd_exec_ctrl &
  252. SECONDARY_EXEC_UNRESTRICTED_GUEST;
  253. }
  254. static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
  255. {
  256. return flexpriority_enabled &&
  257. (cpu_has_vmx_virtualize_apic_accesses()) &&
  258. (irqchip_in_kernel(kvm));
  259. }
  260. static inline int cpu_has_vmx_vpid(void)
  261. {
  262. return vmcs_config.cpu_based_2nd_exec_ctrl &
  263. SECONDARY_EXEC_ENABLE_VPID;
  264. }
  265. static inline int cpu_has_virtual_nmis(void)
  266. {
  267. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  268. }
  269. static inline bool report_flexpriority(void)
  270. {
  271. return flexpriority_enabled;
  272. }
  273. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  274. {
  275. int i;
  276. for (i = 0; i < vmx->nmsrs; ++i)
  277. if (vmx->guest_msrs[i].index == msr)
  278. return i;
  279. return -1;
  280. }
  281. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  282. {
  283. struct {
  284. u64 vpid : 16;
  285. u64 rsvd : 48;
  286. u64 gva;
  287. } operand = { vpid, 0, gva };
  288. asm volatile (__ex(ASM_VMX_INVVPID)
  289. /* CF==1 or ZF==1 --> rc = -1 */
  290. "; ja 1f ; ud2 ; 1:"
  291. : : "a"(&operand), "c"(ext) : "cc", "memory");
  292. }
  293. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  294. {
  295. struct {
  296. u64 eptp, gpa;
  297. } operand = {eptp, gpa};
  298. asm volatile (__ex(ASM_VMX_INVEPT)
  299. /* CF==1 or ZF==1 --> rc = -1 */
  300. "; ja 1f ; ud2 ; 1:\n"
  301. : : "a" (&operand), "c" (ext) : "cc", "memory");
  302. }
  303. static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  304. {
  305. int i;
  306. i = __find_msr_index(vmx, msr);
  307. if (i >= 0)
  308. return &vmx->guest_msrs[i];
  309. return NULL;
  310. }
  311. static void vmcs_clear(struct vmcs *vmcs)
  312. {
  313. u64 phys_addr = __pa(vmcs);
  314. u8 error;
  315. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  316. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  317. : "cc", "memory");
  318. if (error)
  319. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  320. vmcs, phys_addr);
  321. }
  322. static void __vcpu_clear(void *arg)
  323. {
  324. struct vcpu_vmx *vmx = arg;
  325. int cpu = raw_smp_processor_id();
  326. if (vmx->vcpu.cpu == cpu)
  327. vmcs_clear(vmx->vmcs);
  328. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  329. per_cpu(current_vmcs, cpu) = NULL;
  330. rdtscll(vmx->vcpu.arch.host_tsc);
  331. list_del(&vmx->local_vcpus_link);
  332. vmx->vcpu.cpu = -1;
  333. vmx->launched = 0;
  334. }
  335. static void vcpu_clear(struct vcpu_vmx *vmx)
  336. {
  337. if (vmx->vcpu.cpu == -1)
  338. return;
  339. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
  340. }
  341. static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
  342. {
  343. if (vmx->vpid == 0)
  344. return;
  345. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  346. }
  347. static inline void ept_sync_global(void)
  348. {
  349. if (cpu_has_vmx_invept_global())
  350. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  351. }
  352. static inline void ept_sync_context(u64 eptp)
  353. {
  354. if (enable_ept) {
  355. if (cpu_has_vmx_invept_context())
  356. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  357. else
  358. ept_sync_global();
  359. }
  360. }
  361. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  362. {
  363. if (enable_ept) {
  364. if (cpu_has_vmx_invept_individual_addr())
  365. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  366. eptp, gpa);
  367. else
  368. ept_sync_context(eptp);
  369. }
  370. }
  371. static unsigned long vmcs_readl(unsigned long field)
  372. {
  373. unsigned long value;
  374. asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
  375. : "=a"(value) : "d"(field) : "cc");
  376. return value;
  377. }
  378. static u16 vmcs_read16(unsigned long field)
  379. {
  380. return vmcs_readl(field);
  381. }
  382. static u32 vmcs_read32(unsigned long field)
  383. {
  384. return vmcs_readl(field);
  385. }
  386. static u64 vmcs_read64(unsigned long field)
  387. {
  388. #ifdef CONFIG_X86_64
  389. return vmcs_readl(field);
  390. #else
  391. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  392. #endif
  393. }
  394. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  395. {
  396. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  397. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  398. dump_stack();
  399. }
  400. static void vmcs_writel(unsigned long field, unsigned long value)
  401. {
  402. u8 error;
  403. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  404. : "=q"(error) : "a"(value), "d"(field) : "cc");
  405. if (unlikely(error))
  406. vmwrite_error(field, value);
  407. }
  408. static void vmcs_write16(unsigned long field, u16 value)
  409. {
  410. vmcs_writel(field, value);
  411. }
  412. static void vmcs_write32(unsigned long field, u32 value)
  413. {
  414. vmcs_writel(field, value);
  415. }
  416. static void vmcs_write64(unsigned long field, u64 value)
  417. {
  418. vmcs_writel(field, value);
  419. #ifndef CONFIG_X86_64
  420. asm volatile ("");
  421. vmcs_writel(field+1, value >> 32);
  422. #endif
  423. }
  424. static void vmcs_clear_bits(unsigned long field, u32 mask)
  425. {
  426. vmcs_writel(field, vmcs_readl(field) & ~mask);
  427. }
  428. static void vmcs_set_bits(unsigned long field, u32 mask)
  429. {
  430. vmcs_writel(field, vmcs_readl(field) | mask);
  431. }
  432. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  433. {
  434. u32 eb;
  435. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR);
  436. if (!vcpu->fpu_active)
  437. eb |= 1u << NM_VECTOR;
  438. if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
  439. if (vcpu->guest_debug &
  440. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  441. eb |= 1u << DB_VECTOR;
  442. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  443. eb |= 1u << BP_VECTOR;
  444. }
  445. if (to_vmx(vcpu)->rmode.vm86_active)
  446. eb = ~0;
  447. if (enable_ept)
  448. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  449. vmcs_write32(EXCEPTION_BITMAP, eb);
  450. }
  451. static void reload_tss(void)
  452. {
  453. /*
  454. * VT restores TR but not its size. Useless.
  455. */
  456. struct descriptor_table gdt;
  457. struct desc_struct *descs;
  458. kvm_get_gdt(&gdt);
  459. descs = (void *)gdt.base;
  460. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  461. load_TR_desc();
  462. }
  463. static void load_transition_efer(struct vcpu_vmx *vmx)
  464. {
  465. int efer_offset = vmx->msr_offset_efer;
  466. u64 host_efer = vmx->host_msrs[efer_offset].data;
  467. u64 guest_efer = vmx->guest_msrs[efer_offset].data;
  468. u64 ignore_bits;
  469. if (efer_offset < 0)
  470. return;
  471. /*
  472. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  473. * outside long mode
  474. */
  475. ignore_bits = EFER_NX | EFER_SCE;
  476. #ifdef CONFIG_X86_64
  477. ignore_bits |= EFER_LMA | EFER_LME;
  478. /* SCE is meaningful only in long mode on Intel */
  479. if (guest_efer & EFER_LMA)
  480. ignore_bits &= ~(u64)EFER_SCE;
  481. #endif
  482. if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
  483. return;
  484. vmx->host_state.guest_efer_loaded = 1;
  485. guest_efer &= ~ignore_bits;
  486. guest_efer |= host_efer & ignore_bits;
  487. wrmsrl(MSR_EFER, guest_efer);
  488. vmx->vcpu.stat.efer_reload++;
  489. }
  490. static void reload_host_efer(struct vcpu_vmx *vmx)
  491. {
  492. if (vmx->host_state.guest_efer_loaded) {
  493. vmx->host_state.guest_efer_loaded = 0;
  494. load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
  495. }
  496. }
  497. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  498. {
  499. struct vcpu_vmx *vmx = to_vmx(vcpu);
  500. if (vmx->host_state.loaded)
  501. return;
  502. vmx->host_state.loaded = 1;
  503. /*
  504. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  505. * allow segment selectors with cpl > 0 or ti == 1.
  506. */
  507. vmx->host_state.ldt_sel = kvm_read_ldt();
  508. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  509. vmx->host_state.fs_sel = kvm_read_fs();
  510. if (!(vmx->host_state.fs_sel & 7)) {
  511. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  512. vmx->host_state.fs_reload_needed = 0;
  513. } else {
  514. vmcs_write16(HOST_FS_SELECTOR, 0);
  515. vmx->host_state.fs_reload_needed = 1;
  516. }
  517. vmx->host_state.gs_sel = kvm_read_gs();
  518. if (!(vmx->host_state.gs_sel & 7))
  519. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  520. else {
  521. vmcs_write16(HOST_GS_SELECTOR, 0);
  522. vmx->host_state.gs_ldt_reload_needed = 1;
  523. }
  524. #ifdef CONFIG_X86_64
  525. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  526. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  527. #else
  528. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  529. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  530. #endif
  531. #ifdef CONFIG_X86_64
  532. if (is_long_mode(&vmx->vcpu))
  533. save_msrs(vmx->host_msrs +
  534. vmx->msr_offset_kernel_gs_base, 1);
  535. #endif
  536. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  537. load_transition_efer(vmx);
  538. }
  539. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  540. {
  541. unsigned long flags;
  542. if (!vmx->host_state.loaded)
  543. return;
  544. ++vmx->vcpu.stat.host_state_reload;
  545. vmx->host_state.loaded = 0;
  546. if (vmx->host_state.fs_reload_needed)
  547. kvm_load_fs(vmx->host_state.fs_sel);
  548. if (vmx->host_state.gs_ldt_reload_needed) {
  549. kvm_load_ldt(vmx->host_state.ldt_sel);
  550. /*
  551. * If we have to reload gs, we must take care to
  552. * preserve our gs base.
  553. */
  554. local_irq_save(flags);
  555. kvm_load_gs(vmx->host_state.gs_sel);
  556. #ifdef CONFIG_X86_64
  557. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  558. #endif
  559. local_irq_restore(flags);
  560. }
  561. reload_tss();
  562. save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  563. load_msrs(vmx->host_msrs, vmx->save_nmsrs);
  564. reload_host_efer(vmx);
  565. }
  566. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  567. {
  568. preempt_disable();
  569. __vmx_load_host_state(vmx);
  570. preempt_enable();
  571. }
  572. /*
  573. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  574. * vcpu mutex is already taken.
  575. */
  576. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  577. {
  578. struct vcpu_vmx *vmx = to_vmx(vcpu);
  579. u64 phys_addr = __pa(vmx->vmcs);
  580. u64 tsc_this, delta, new_offset;
  581. if (vcpu->cpu != cpu) {
  582. vcpu_clear(vmx);
  583. kvm_migrate_timers(vcpu);
  584. vpid_sync_vcpu_all(vmx);
  585. local_irq_disable();
  586. list_add(&vmx->local_vcpus_link,
  587. &per_cpu(vcpus_on_cpu, cpu));
  588. local_irq_enable();
  589. }
  590. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  591. u8 error;
  592. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  593. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  594. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  595. : "cc");
  596. if (error)
  597. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  598. vmx->vmcs, phys_addr);
  599. }
  600. if (vcpu->cpu != cpu) {
  601. struct descriptor_table dt;
  602. unsigned long sysenter_esp;
  603. vcpu->cpu = cpu;
  604. /*
  605. * Linux uses per-cpu TSS and GDT, so set these when switching
  606. * processors.
  607. */
  608. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  609. kvm_get_gdt(&dt);
  610. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  611. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  612. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  613. /*
  614. * Make sure the time stamp counter is monotonous.
  615. */
  616. rdtscll(tsc_this);
  617. if (tsc_this < vcpu->arch.host_tsc) {
  618. delta = vcpu->arch.host_tsc - tsc_this;
  619. new_offset = vmcs_read64(TSC_OFFSET) + delta;
  620. vmcs_write64(TSC_OFFSET, new_offset);
  621. }
  622. }
  623. }
  624. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  625. {
  626. __vmx_load_host_state(to_vmx(vcpu));
  627. }
  628. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  629. {
  630. if (vcpu->fpu_active)
  631. return;
  632. vcpu->fpu_active = 1;
  633. vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
  634. if (vcpu->arch.cr0 & X86_CR0_TS)
  635. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  636. update_exception_bitmap(vcpu);
  637. }
  638. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  639. {
  640. if (!vcpu->fpu_active)
  641. return;
  642. vcpu->fpu_active = 0;
  643. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  644. update_exception_bitmap(vcpu);
  645. }
  646. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  647. {
  648. return vmcs_readl(GUEST_RFLAGS);
  649. }
  650. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  651. {
  652. if (to_vmx(vcpu)->rmode.vm86_active)
  653. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  654. vmcs_writel(GUEST_RFLAGS, rflags);
  655. }
  656. static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  657. {
  658. u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  659. int ret = 0;
  660. if (interruptibility & GUEST_INTR_STATE_STI)
  661. ret |= X86_SHADOW_INT_STI;
  662. if (interruptibility & GUEST_INTR_STATE_MOV_SS)
  663. ret |= X86_SHADOW_INT_MOV_SS;
  664. return ret & mask;
  665. }
  666. static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  667. {
  668. u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  669. u32 interruptibility = interruptibility_old;
  670. interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
  671. if (mask & X86_SHADOW_INT_MOV_SS)
  672. interruptibility |= GUEST_INTR_STATE_MOV_SS;
  673. if (mask & X86_SHADOW_INT_STI)
  674. interruptibility |= GUEST_INTR_STATE_STI;
  675. if ((interruptibility != interruptibility_old))
  676. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
  677. }
  678. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  679. {
  680. unsigned long rip;
  681. rip = kvm_rip_read(vcpu);
  682. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  683. kvm_rip_write(vcpu, rip);
  684. /* skipping an emulated instruction also counts */
  685. vmx_set_interrupt_shadow(vcpu, 0);
  686. }
  687. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  688. bool has_error_code, u32 error_code)
  689. {
  690. struct vcpu_vmx *vmx = to_vmx(vcpu);
  691. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  692. if (has_error_code) {
  693. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  694. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  695. }
  696. if (vmx->rmode.vm86_active) {
  697. vmx->rmode.irq.pending = true;
  698. vmx->rmode.irq.vector = nr;
  699. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  700. if (kvm_exception_is_soft(nr))
  701. vmx->rmode.irq.rip +=
  702. vmx->vcpu.arch.event_exit_inst_len;
  703. intr_info |= INTR_TYPE_SOFT_INTR;
  704. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  705. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  706. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  707. return;
  708. }
  709. if (kvm_exception_is_soft(nr)) {
  710. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  711. vmx->vcpu.arch.event_exit_inst_len);
  712. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  713. } else
  714. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  715. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  716. }
  717. /*
  718. * Swap MSR entry in host/guest MSR entry array.
  719. */
  720. #ifdef CONFIG_X86_64
  721. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  722. {
  723. struct kvm_msr_entry tmp;
  724. tmp = vmx->guest_msrs[to];
  725. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  726. vmx->guest_msrs[from] = tmp;
  727. tmp = vmx->host_msrs[to];
  728. vmx->host_msrs[to] = vmx->host_msrs[from];
  729. vmx->host_msrs[from] = tmp;
  730. }
  731. #endif
  732. /*
  733. * Set up the vmcs to automatically save and restore system
  734. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  735. * mode, as fiddling with msrs is very expensive.
  736. */
  737. static void setup_msrs(struct vcpu_vmx *vmx)
  738. {
  739. int save_nmsrs;
  740. unsigned long *msr_bitmap;
  741. vmx_load_host_state(vmx);
  742. save_nmsrs = 0;
  743. #ifdef CONFIG_X86_64
  744. if (is_long_mode(&vmx->vcpu)) {
  745. int index;
  746. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  747. if (index >= 0)
  748. move_msr_up(vmx, index, save_nmsrs++);
  749. index = __find_msr_index(vmx, MSR_LSTAR);
  750. if (index >= 0)
  751. move_msr_up(vmx, index, save_nmsrs++);
  752. index = __find_msr_index(vmx, MSR_CSTAR);
  753. if (index >= 0)
  754. move_msr_up(vmx, index, save_nmsrs++);
  755. index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  756. if (index >= 0)
  757. move_msr_up(vmx, index, save_nmsrs++);
  758. /*
  759. * MSR_K6_STAR is only needed on long mode guests, and only
  760. * if efer.sce is enabled.
  761. */
  762. index = __find_msr_index(vmx, MSR_K6_STAR);
  763. if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
  764. move_msr_up(vmx, index, save_nmsrs++);
  765. }
  766. #endif
  767. vmx->save_nmsrs = save_nmsrs;
  768. #ifdef CONFIG_X86_64
  769. vmx->msr_offset_kernel_gs_base =
  770. __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  771. #endif
  772. vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
  773. if (cpu_has_vmx_msr_bitmap()) {
  774. if (is_long_mode(&vmx->vcpu))
  775. msr_bitmap = vmx_msr_bitmap_longmode;
  776. else
  777. msr_bitmap = vmx_msr_bitmap_legacy;
  778. vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
  779. }
  780. }
  781. /*
  782. * reads and returns guest's timestamp counter "register"
  783. * guest_tsc = host_tsc + tsc_offset -- 21.3
  784. */
  785. static u64 guest_read_tsc(void)
  786. {
  787. u64 host_tsc, tsc_offset;
  788. rdtscll(host_tsc);
  789. tsc_offset = vmcs_read64(TSC_OFFSET);
  790. return host_tsc + tsc_offset;
  791. }
  792. /*
  793. * writes 'guest_tsc' into guest's timestamp counter "register"
  794. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  795. */
  796. static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
  797. {
  798. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  799. }
  800. /*
  801. * Reads an msr value (of 'msr_index') into 'pdata'.
  802. * Returns 0 on success, non-0 otherwise.
  803. * Assumes vcpu_load() was already called.
  804. */
  805. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  806. {
  807. u64 data;
  808. struct kvm_msr_entry *msr;
  809. if (!pdata) {
  810. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  811. return -EINVAL;
  812. }
  813. switch (msr_index) {
  814. #ifdef CONFIG_X86_64
  815. case MSR_FS_BASE:
  816. data = vmcs_readl(GUEST_FS_BASE);
  817. break;
  818. case MSR_GS_BASE:
  819. data = vmcs_readl(GUEST_GS_BASE);
  820. break;
  821. case MSR_EFER:
  822. return kvm_get_msr_common(vcpu, msr_index, pdata);
  823. #endif
  824. case MSR_IA32_TSC:
  825. data = guest_read_tsc();
  826. break;
  827. case MSR_IA32_SYSENTER_CS:
  828. data = vmcs_read32(GUEST_SYSENTER_CS);
  829. break;
  830. case MSR_IA32_SYSENTER_EIP:
  831. data = vmcs_readl(GUEST_SYSENTER_EIP);
  832. break;
  833. case MSR_IA32_SYSENTER_ESP:
  834. data = vmcs_readl(GUEST_SYSENTER_ESP);
  835. break;
  836. default:
  837. vmx_load_host_state(to_vmx(vcpu));
  838. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  839. if (msr) {
  840. data = msr->data;
  841. break;
  842. }
  843. return kvm_get_msr_common(vcpu, msr_index, pdata);
  844. }
  845. *pdata = data;
  846. return 0;
  847. }
  848. /*
  849. * Writes msr value into into the appropriate "register".
  850. * Returns 0 on success, non-0 otherwise.
  851. * Assumes vcpu_load() was already called.
  852. */
  853. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  854. {
  855. struct vcpu_vmx *vmx = to_vmx(vcpu);
  856. struct kvm_msr_entry *msr;
  857. u64 host_tsc;
  858. int ret = 0;
  859. switch (msr_index) {
  860. case MSR_EFER:
  861. vmx_load_host_state(vmx);
  862. ret = kvm_set_msr_common(vcpu, msr_index, data);
  863. break;
  864. #ifdef CONFIG_X86_64
  865. case MSR_FS_BASE:
  866. vmcs_writel(GUEST_FS_BASE, data);
  867. break;
  868. case MSR_GS_BASE:
  869. vmcs_writel(GUEST_GS_BASE, data);
  870. break;
  871. #endif
  872. case MSR_IA32_SYSENTER_CS:
  873. vmcs_write32(GUEST_SYSENTER_CS, data);
  874. break;
  875. case MSR_IA32_SYSENTER_EIP:
  876. vmcs_writel(GUEST_SYSENTER_EIP, data);
  877. break;
  878. case MSR_IA32_SYSENTER_ESP:
  879. vmcs_writel(GUEST_SYSENTER_ESP, data);
  880. break;
  881. case MSR_IA32_TSC:
  882. rdtscll(host_tsc);
  883. guest_write_tsc(data, host_tsc);
  884. break;
  885. case MSR_IA32_CR_PAT:
  886. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  887. vmcs_write64(GUEST_IA32_PAT, data);
  888. vcpu->arch.pat = data;
  889. break;
  890. }
  891. /* Otherwise falls through to kvm_set_msr_common */
  892. default:
  893. vmx_load_host_state(vmx);
  894. msr = find_msr_entry(vmx, msr_index);
  895. if (msr) {
  896. msr->data = data;
  897. break;
  898. }
  899. ret = kvm_set_msr_common(vcpu, msr_index, data);
  900. }
  901. return ret;
  902. }
  903. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  904. {
  905. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  906. switch (reg) {
  907. case VCPU_REGS_RSP:
  908. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  909. break;
  910. case VCPU_REGS_RIP:
  911. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  912. break;
  913. case VCPU_EXREG_PDPTR:
  914. if (enable_ept)
  915. ept_save_pdptrs(vcpu);
  916. break;
  917. default:
  918. break;
  919. }
  920. }
  921. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
  922. {
  923. int old_debug = vcpu->guest_debug;
  924. unsigned long flags;
  925. vcpu->guest_debug = dbg->control;
  926. if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
  927. vcpu->guest_debug = 0;
  928. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  929. vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
  930. else
  931. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  932. flags = vmcs_readl(GUEST_RFLAGS);
  933. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  934. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  935. else if (old_debug & KVM_GUESTDBG_SINGLESTEP)
  936. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  937. vmcs_writel(GUEST_RFLAGS, flags);
  938. update_exception_bitmap(vcpu);
  939. return 0;
  940. }
  941. static __init int cpu_has_kvm_support(void)
  942. {
  943. return cpu_has_vmx();
  944. }
  945. static __init int vmx_disabled_by_bios(void)
  946. {
  947. u64 msr;
  948. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  949. return (msr & (FEATURE_CONTROL_LOCKED |
  950. FEATURE_CONTROL_VMXON_ENABLED))
  951. == FEATURE_CONTROL_LOCKED;
  952. /* locked but not enabled */
  953. }
  954. static void hardware_enable(void *garbage)
  955. {
  956. int cpu = raw_smp_processor_id();
  957. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  958. u64 old;
  959. INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
  960. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  961. if ((old & (FEATURE_CONTROL_LOCKED |
  962. FEATURE_CONTROL_VMXON_ENABLED))
  963. != (FEATURE_CONTROL_LOCKED |
  964. FEATURE_CONTROL_VMXON_ENABLED))
  965. /* enable and lock */
  966. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  967. FEATURE_CONTROL_LOCKED |
  968. FEATURE_CONTROL_VMXON_ENABLED);
  969. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  970. asm volatile (ASM_VMX_VMXON_RAX
  971. : : "a"(&phys_addr), "m"(phys_addr)
  972. : "memory", "cc");
  973. }
  974. static void vmclear_local_vcpus(void)
  975. {
  976. int cpu = raw_smp_processor_id();
  977. struct vcpu_vmx *vmx, *n;
  978. list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
  979. local_vcpus_link)
  980. __vcpu_clear(vmx);
  981. }
  982. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  983. * tricks.
  984. */
  985. static void kvm_cpu_vmxoff(void)
  986. {
  987. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  988. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  989. }
  990. static void hardware_disable(void *garbage)
  991. {
  992. vmclear_local_vcpus();
  993. kvm_cpu_vmxoff();
  994. }
  995. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  996. u32 msr, u32 *result)
  997. {
  998. u32 vmx_msr_low, vmx_msr_high;
  999. u32 ctl = ctl_min | ctl_opt;
  1000. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  1001. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  1002. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  1003. /* Ensure minimum (required) set of control bits are supported. */
  1004. if (ctl_min & ~ctl)
  1005. return -EIO;
  1006. *result = ctl;
  1007. return 0;
  1008. }
  1009. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  1010. {
  1011. u32 vmx_msr_low, vmx_msr_high;
  1012. u32 min, opt, min2, opt2;
  1013. u32 _pin_based_exec_control = 0;
  1014. u32 _cpu_based_exec_control = 0;
  1015. u32 _cpu_based_2nd_exec_control = 0;
  1016. u32 _vmexit_control = 0;
  1017. u32 _vmentry_control = 0;
  1018. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  1019. opt = PIN_BASED_VIRTUAL_NMIS;
  1020. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  1021. &_pin_based_exec_control) < 0)
  1022. return -EIO;
  1023. min = CPU_BASED_HLT_EXITING |
  1024. #ifdef CONFIG_X86_64
  1025. CPU_BASED_CR8_LOAD_EXITING |
  1026. CPU_BASED_CR8_STORE_EXITING |
  1027. #endif
  1028. CPU_BASED_CR3_LOAD_EXITING |
  1029. CPU_BASED_CR3_STORE_EXITING |
  1030. CPU_BASED_USE_IO_BITMAPS |
  1031. CPU_BASED_MOV_DR_EXITING |
  1032. CPU_BASED_USE_TSC_OFFSETING |
  1033. CPU_BASED_INVLPG_EXITING;
  1034. opt = CPU_BASED_TPR_SHADOW |
  1035. CPU_BASED_USE_MSR_BITMAPS |
  1036. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1037. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1038. &_cpu_based_exec_control) < 0)
  1039. return -EIO;
  1040. #ifdef CONFIG_X86_64
  1041. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  1042. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  1043. ~CPU_BASED_CR8_STORE_EXITING;
  1044. #endif
  1045. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  1046. min2 = 0;
  1047. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  1048. SECONDARY_EXEC_WBINVD_EXITING |
  1049. SECONDARY_EXEC_ENABLE_VPID |
  1050. SECONDARY_EXEC_ENABLE_EPT |
  1051. SECONDARY_EXEC_UNRESTRICTED_GUEST;
  1052. if (adjust_vmx_controls(min2, opt2,
  1053. MSR_IA32_VMX_PROCBASED_CTLS2,
  1054. &_cpu_based_2nd_exec_control) < 0)
  1055. return -EIO;
  1056. }
  1057. #ifndef CONFIG_X86_64
  1058. if (!(_cpu_based_2nd_exec_control &
  1059. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  1060. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  1061. #endif
  1062. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  1063. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  1064. enabled */
  1065. min &= ~(CPU_BASED_CR3_LOAD_EXITING |
  1066. CPU_BASED_CR3_STORE_EXITING |
  1067. CPU_BASED_INVLPG_EXITING);
  1068. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1069. &_cpu_based_exec_control) < 0)
  1070. return -EIO;
  1071. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  1072. vmx_capability.ept, vmx_capability.vpid);
  1073. }
  1074. min = 0;
  1075. #ifdef CONFIG_X86_64
  1076. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1077. #endif
  1078. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
  1079. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  1080. &_vmexit_control) < 0)
  1081. return -EIO;
  1082. min = 0;
  1083. opt = VM_ENTRY_LOAD_IA32_PAT;
  1084. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  1085. &_vmentry_control) < 0)
  1086. return -EIO;
  1087. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  1088. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  1089. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  1090. return -EIO;
  1091. #ifdef CONFIG_X86_64
  1092. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  1093. if (vmx_msr_high & (1u<<16))
  1094. return -EIO;
  1095. #endif
  1096. /* Require Write-Back (WB) memory type for VMCS accesses. */
  1097. if (((vmx_msr_high >> 18) & 15) != 6)
  1098. return -EIO;
  1099. vmcs_conf->size = vmx_msr_high & 0x1fff;
  1100. vmcs_conf->order = get_order(vmcs_config.size);
  1101. vmcs_conf->revision_id = vmx_msr_low;
  1102. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  1103. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  1104. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  1105. vmcs_conf->vmexit_ctrl = _vmexit_control;
  1106. vmcs_conf->vmentry_ctrl = _vmentry_control;
  1107. return 0;
  1108. }
  1109. static struct vmcs *alloc_vmcs_cpu(int cpu)
  1110. {
  1111. int node = cpu_to_node(cpu);
  1112. struct page *pages;
  1113. struct vmcs *vmcs;
  1114. pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
  1115. if (!pages)
  1116. return NULL;
  1117. vmcs = page_address(pages);
  1118. memset(vmcs, 0, vmcs_config.size);
  1119. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  1120. return vmcs;
  1121. }
  1122. static struct vmcs *alloc_vmcs(void)
  1123. {
  1124. return alloc_vmcs_cpu(raw_smp_processor_id());
  1125. }
  1126. static void free_vmcs(struct vmcs *vmcs)
  1127. {
  1128. free_pages((unsigned long)vmcs, vmcs_config.order);
  1129. }
  1130. static void free_kvm_area(void)
  1131. {
  1132. int cpu;
  1133. for_each_online_cpu(cpu)
  1134. free_vmcs(per_cpu(vmxarea, cpu));
  1135. }
  1136. static __init int alloc_kvm_area(void)
  1137. {
  1138. int cpu;
  1139. for_each_online_cpu(cpu) {
  1140. struct vmcs *vmcs;
  1141. vmcs = alloc_vmcs_cpu(cpu);
  1142. if (!vmcs) {
  1143. free_kvm_area();
  1144. return -ENOMEM;
  1145. }
  1146. per_cpu(vmxarea, cpu) = vmcs;
  1147. }
  1148. return 0;
  1149. }
  1150. static __init int hardware_setup(void)
  1151. {
  1152. if (setup_vmcs_config(&vmcs_config) < 0)
  1153. return -EIO;
  1154. if (boot_cpu_has(X86_FEATURE_NX))
  1155. kvm_enable_efer_bits(EFER_NX);
  1156. if (!cpu_has_vmx_vpid())
  1157. enable_vpid = 0;
  1158. if (!cpu_has_vmx_ept()) {
  1159. enable_ept = 0;
  1160. enable_unrestricted_guest = 0;
  1161. }
  1162. if (!cpu_has_vmx_unrestricted_guest())
  1163. enable_unrestricted_guest = 0;
  1164. if (!cpu_has_vmx_flexpriority())
  1165. flexpriority_enabled = 0;
  1166. if (!cpu_has_vmx_tpr_shadow())
  1167. kvm_x86_ops->update_cr8_intercept = NULL;
  1168. return alloc_kvm_area();
  1169. }
  1170. static __exit void hardware_unsetup(void)
  1171. {
  1172. free_kvm_area();
  1173. }
  1174. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  1175. {
  1176. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1177. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  1178. vmcs_write16(sf->selector, save->selector);
  1179. vmcs_writel(sf->base, save->base);
  1180. vmcs_write32(sf->limit, save->limit);
  1181. vmcs_write32(sf->ar_bytes, save->ar);
  1182. } else {
  1183. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  1184. << AR_DPL_SHIFT;
  1185. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  1186. }
  1187. }
  1188. static void enter_pmode(struct kvm_vcpu *vcpu)
  1189. {
  1190. unsigned long flags;
  1191. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1192. vmx->emulation_required = 1;
  1193. vmx->rmode.vm86_active = 0;
  1194. vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
  1195. vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
  1196. vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
  1197. flags = vmcs_readl(GUEST_RFLAGS);
  1198. flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  1199. flags |= (vmx->rmode.save_iopl << IOPL_SHIFT);
  1200. vmcs_writel(GUEST_RFLAGS, flags);
  1201. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  1202. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  1203. update_exception_bitmap(vcpu);
  1204. if (emulate_invalid_guest_state)
  1205. return;
  1206. fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
  1207. fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
  1208. fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
  1209. fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
  1210. vmcs_write16(GUEST_SS_SELECTOR, 0);
  1211. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  1212. vmcs_write16(GUEST_CS_SELECTOR,
  1213. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  1214. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1215. }
  1216. static gva_t rmode_tss_base(struct kvm *kvm)
  1217. {
  1218. if (!kvm->arch.tss_addr) {
  1219. gfn_t base_gfn = kvm->memslots[0].base_gfn +
  1220. kvm->memslots[0].npages - 3;
  1221. return base_gfn << PAGE_SHIFT;
  1222. }
  1223. return kvm->arch.tss_addr;
  1224. }
  1225. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  1226. {
  1227. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1228. save->selector = vmcs_read16(sf->selector);
  1229. save->base = vmcs_readl(sf->base);
  1230. save->limit = vmcs_read32(sf->limit);
  1231. save->ar = vmcs_read32(sf->ar_bytes);
  1232. vmcs_write16(sf->selector, save->base >> 4);
  1233. vmcs_write32(sf->base, save->base & 0xfffff);
  1234. vmcs_write32(sf->limit, 0xffff);
  1235. vmcs_write32(sf->ar_bytes, 0xf3);
  1236. }
  1237. static void enter_rmode(struct kvm_vcpu *vcpu)
  1238. {
  1239. unsigned long flags;
  1240. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1241. if (enable_unrestricted_guest)
  1242. return;
  1243. vmx->emulation_required = 1;
  1244. vmx->rmode.vm86_active = 1;
  1245. vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1246. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1247. vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1248. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1249. vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1250. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1251. flags = vmcs_readl(GUEST_RFLAGS);
  1252. vmx->rmode.save_iopl
  1253. = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1254. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1255. vmcs_writel(GUEST_RFLAGS, flags);
  1256. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1257. update_exception_bitmap(vcpu);
  1258. if (emulate_invalid_guest_state)
  1259. goto continue_rmode;
  1260. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1261. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1262. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1263. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1264. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1265. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1266. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1267. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1268. fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
  1269. fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
  1270. fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
  1271. fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
  1272. continue_rmode:
  1273. kvm_mmu_reset_context(vcpu);
  1274. init_rmode(vcpu->kvm);
  1275. }
  1276. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1277. {
  1278. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1279. struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1280. vcpu->arch.shadow_efer = efer;
  1281. if (!msr)
  1282. return;
  1283. if (efer & EFER_LMA) {
  1284. vmcs_write32(VM_ENTRY_CONTROLS,
  1285. vmcs_read32(VM_ENTRY_CONTROLS) |
  1286. VM_ENTRY_IA32E_MODE);
  1287. msr->data = efer;
  1288. } else {
  1289. vmcs_write32(VM_ENTRY_CONTROLS,
  1290. vmcs_read32(VM_ENTRY_CONTROLS) &
  1291. ~VM_ENTRY_IA32E_MODE);
  1292. msr->data = efer & ~EFER_LME;
  1293. }
  1294. setup_msrs(vmx);
  1295. }
  1296. #ifdef CONFIG_X86_64
  1297. static void enter_lmode(struct kvm_vcpu *vcpu)
  1298. {
  1299. u32 guest_tr_ar;
  1300. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1301. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1302. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1303. __func__);
  1304. vmcs_write32(GUEST_TR_AR_BYTES,
  1305. (guest_tr_ar & ~AR_TYPE_MASK)
  1306. | AR_TYPE_BUSY_64_TSS);
  1307. }
  1308. vcpu->arch.shadow_efer |= EFER_LMA;
  1309. vmx_set_efer(vcpu, vcpu->arch.shadow_efer);
  1310. }
  1311. static void exit_lmode(struct kvm_vcpu *vcpu)
  1312. {
  1313. vcpu->arch.shadow_efer &= ~EFER_LMA;
  1314. vmcs_write32(VM_ENTRY_CONTROLS,
  1315. vmcs_read32(VM_ENTRY_CONTROLS)
  1316. & ~VM_ENTRY_IA32E_MODE);
  1317. }
  1318. #endif
  1319. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1320. {
  1321. vpid_sync_vcpu_all(to_vmx(vcpu));
  1322. if (enable_ept)
  1323. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  1324. }
  1325. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1326. {
  1327. vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
  1328. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  1329. }
  1330. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  1331. {
  1332. if (!test_bit(VCPU_EXREG_PDPTR,
  1333. (unsigned long *)&vcpu->arch.regs_dirty))
  1334. return;
  1335. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1336. vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
  1337. vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
  1338. vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
  1339. vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
  1340. }
  1341. }
  1342. static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
  1343. {
  1344. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1345. vcpu->arch.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
  1346. vcpu->arch.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
  1347. vcpu->arch.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
  1348. vcpu->arch.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
  1349. }
  1350. __set_bit(VCPU_EXREG_PDPTR,
  1351. (unsigned long *)&vcpu->arch.regs_avail);
  1352. __set_bit(VCPU_EXREG_PDPTR,
  1353. (unsigned long *)&vcpu->arch.regs_dirty);
  1354. }
  1355. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  1356. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  1357. unsigned long cr0,
  1358. struct kvm_vcpu *vcpu)
  1359. {
  1360. if (!(cr0 & X86_CR0_PG)) {
  1361. /* From paging/starting to nonpaging */
  1362. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1363. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  1364. (CPU_BASED_CR3_LOAD_EXITING |
  1365. CPU_BASED_CR3_STORE_EXITING));
  1366. vcpu->arch.cr0 = cr0;
  1367. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1368. *hw_cr0 &= ~X86_CR0_WP;
  1369. } else if (!is_paging(vcpu)) {
  1370. /* From nonpaging to paging */
  1371. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1372. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  1373. ~(CPU_BASED_CR3_LOAD_EXITING |
  1374. CPU_BASED_CR3_STORE_EXITING));
  1375. vcpu->arch.cr0 = cr0;
  1376. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1377. if (!(vcpu->arch.cr0 & X86_CR0_WP))
  1378. *hw_cr0 &= ~X86_CR0_WP;
  1379. }
  1380. }
  1381. static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
  1382. struct kvm_vcpu *vcpu)
  1383. {
  1384. if (!is_paging(vcpu)) {
  1385. *hw_cr4 &= ~X86_CR4_PAE;
  1386. *hw_cr4 |= X86_CR4_PSE;
  1387. } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
  1388. *hw_cr4 &= ~X86_CR4_PAE;
  1389. }
  1390. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1391. {
  1392. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1393. unsigned long hw_cr0;
  1394. if (enable_unrestricted_guest)
  1395. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
  1396. | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
  1397. else
  1398. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
  1399. vmx_fpu_deactivate(vcpu);
  1400. if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
  1401. enter_pmode(vcpu);
  1402. if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
  1403. enter_rmode(vcpu);
  1404. #ifdef CONFIG_X86_64
  1405. if (vcpu->arch.shadow_efer & EFER_LME) {
  1406. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1407. enter_lmode(vcpu);
  1408. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1409. exit_lmode(vcpu);
  1410. }
  1411. #endif
  1412. if (enable_ept)
  1413. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  1414. vmcs_writel(CR0_READ_SHADOW, cr0);
  1415. vmcs_writel(GUEST_CR0, hw_cr0);
  1416. vcpu->arch.cr0 = cr0;
  1417. if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
  1418. vmx_fpu_activate(vcpu);
  1419. }
  1420. static u64 construct_eptp(unsigned long root_hpa)
  1421. {
  1422. u64 eptp;
  1423. /* TODO write the value reading from MSR */
  1424. eptp = VMX_EPT_DEFAULT_MT |
  1425. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  1426. eptp |= (root_hpa & PAGE_MASK);
  1427. return eptp;
  1428. }
  1429. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1430. {
  1431. unsigned long guest_cr3;
  1432. u64 eptp;
  1433. guest_cr3 = cr3;
  1434. if (enable_ept) {
  1435. eptp = construct_eptp(cr3);
  1436. vmcs_write64(EPT_POINTER, eptp);
  1437. guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
  1438. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  1439. }
  1440. vmx_flush_tlb(vcpu);
  1441. vmcs_writel(GUEST_CR3, guest_cr3);
  1442. if (vcpu->arch.cr0 & X86_CR0_PE)
  1443. vmx_fpu_deactivate(vcpu);
  1444. }
  1445. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1446. {
  1447. unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
  1448. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  1449. vcpu->arch.cr4 = cr4;
  1450. if (enable_ept)
  1451. ept_update_paging_mode_cr4(&hw_cr4, vcpu);
  1452. vmcs_writel(CR4_READ_SHADOW, cr4);
  1453. vmcs_writel(GUEST_CR4, hw_cr4);
  1454. }
  1455. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1456. {
  1457. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1458. return vmcs_readl(sf->base);
  1459. }
  1460. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1461. struct kvm_segment *var, int seg)
  1462. {
  1463. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1464. u32 ar;
  1465. var->base = vmcs_readl(sf->base);
  1466. var->limit = vmcs_read32(sf->limit);
  1467. var->selector = vmcs_read16(sf->selector);
  1468. ar = vmcs_read32(sf->ar_bytes);
  1469. if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
  1470. ar = 0;
  1471. var->type = ar & 15;
  1472. var->s = (ar >> 4) & 1;
  1473. var->dpl = (ar >> 5) & 3;
  1474. var->present = (ar >> 7) & 1;
  1475. var->avl = (ar >> 12) & 1;
  1476. var->l = (ar >> 13) & 1;
  1477. var->db = (ar >> 14) & 1;
  1478. var->g = (ar >> 15) & 1;
  1479. var->unusable = (ar >> 16) & 1;
  1480. }
  1481. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  1482. {
  1483. struct kvm_segment kvm_seg;
  1484. if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
  1485. return 0;
  1486. if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
  1487. return 3;
  1488. vmx_get_segment(vcpu, &kvm_seg, VCPU_SREG_CS);
  1489. return kvm_seg.selector & 3;
  1490. }
  1491. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1492. {
  1493. u32 ar;
  1494. if (var->unusable)
  1495. ar = 1 << 16;
  1496. else {
  1497. ar = var->type & 15;
  1498. ar |= (var->s & 1) << 4;
  1499. ar |= (var->dpl & 3) << 5;
  1500. ar |= (var->present & 1) << 7;
  1501. ar |= (var->avl & 1) << 12;
  1502. ar |= (var->l & 1) << 13;
  1503. ar |= (var->db & 1) << 14;
  1504. ar |= (var->g & 1) << 15;
  1505. }
  1506. if (ar == 0) /* a 0 value means unusable */
  1507. ar = AR_UNUSABLE_MASK;
  1508. return ar;
  1509. }
  1510. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1511. struct kvm_segment *var, int seg)
  1512. {
  1513. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1514. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1515. u32 ar;
  1516. if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
  1517. vmx->rmode.tr.selector = var->selector;
  1518. vmx->rmode.tr.base = var->base;
  1519. vmx->rmode.tr.limit = var->limit;
  1520. vmx->rmode.tr.ar = vmx_segment_access_rights(var);
  1521. return;
  1522. }
  1523. vmcs_writel(sf->base, var->base);
  1524. vmcs_write32(sf->limit, var->limit);
  1525. vmcs_write16(sf->selector, var->selector);
  1526. if (vmx->rmode.vm86_active && var->s) {
  1527. /*
  1528. * Hack real-mode segments into vm86 compatibility.
  1529. */
  1530. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1531. vmcs_writel(sf->base, 0xf0000);
  1532. ar = 0xf3;
  1533. } else
  1534. ar = vmx_segment_access_rights(var);
  1535. /*
  1536. * Fix the "Accessed" bit in AR field of segment registers for older
  1537. * qemu binaries.
  1538. * IA32 arch specifies that at the time of processor reset the
  1539. * "Accessed" bit in the AR field of segment registers is 1. And qemu
  1540. * is setting it to 0 in the usedland code. This causes invalid guest
  1541. * state vmexit when "unrestricted guest" mode is turned on.
  1542. * Fix for this setup issue in cpu_reset is being pushed in the qemu
  1543. * tree. Newer qemu binaries with that qemu fix would not need this
  1544. * kvm hack.
  1545. */
  1546. if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
  1547. ar |= 0x1; /* Accessed */
  1548. vmcs_write32(sf->ar_bytes, ar);
  1549. }
  1550. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1551. {
  1552. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1553. *db = (ar >> 14) & 1;
  1554. *l = (ar >> 13) & 1;
  1555. }
  1556. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1557. {
  1558. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1559. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1560. }
  1561. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1562. {
  1563. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1564. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1565. }
  1566. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1567. {
  1568. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1569. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1570. }
  1571. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1572. {
  1573. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1574. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1575. }
  1576. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1577. {
  1578. struct kvm_segment var;
  1579. u32 ar;
  1580. vmx_get_segment(vcpu, &var, seg);
  1581. ar = vmx_segment_access_rights(&var);
  1582. if (var.base != (var.selector << 4))
  1583. return false;
  1584. if (var.limit != 0xffff)
  1585. return false;
  1586. if (ar != 0xf3)
  1587. return false;
  1588. return true;
  1589. }
  1590. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  1591. {
  1592. struct kvm_segment cs;
  1593. unsigned int cs_rpl;
  1594. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1595. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  1596. if (cs.unusable)
  1597. return false;
  1598. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  1599. return false;
  1600. if (!cs.s)
  1601. return false;
  1602. if (cs.type & AR_TYPE_WRITEABLE_MASK) {
  1603. if (cs.dpl > cs_rpl)
  1604. return false;
  1605. } else {
  1606. if (cs.dpl != cs_rpl)
  1607. return false;
  1608. }
  1609. if (!cs.present)
  1610. return false;
  1611. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  1612. return true;
  1613. }
  1614. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  1615. {
  1616. struct kvm_segment ss;
  1617. unsigned int ss_rpl;
  1618. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1619. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  1620. if (ss.unusable)
  1621. return true;
  1622. if (ss.type != 3 && ss.type != 7)
  1623. return false;
  1624. if (!ss.s)
  1625. return false;
  1626. if (ss.dpl != ss_rpl) /* DPL != RPL */
  1627. return false;
  1628. if (!ss.present)
  1629. return false;
  1630. return true;
  1631. }
  1632. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1633. {
  1634. struct kvm_segment var;
  1635. unsigned int rpl;
  1636. vmx_get_segment(vcpu, &var, seg);
  1637. rpl = var.selector & SELECTOR_RPL_MASK;
  1638. if (var.unusable)
  1639. return true;
  1640. if (!var.s)
  1641. return false;
  1642. if (!var.present)
  1643. return false;
  1644. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  1645. if (var.dpl < rpl) /* DPL < RPL */
  1646. return false;
  1647. }
  1648. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  1649. * rights flags
  1650. */
  1651. return true;
  1652. }
  1653. static bool tr_valid(struct kvm_vcpu *vcpu)
  1654. {
  1655. struct kvm_segment tr;
  1656. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  1657. if (tr.unusable)
  1658. return false;
  1659. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1660. return false;
  1661. if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
  1662. return false;
  1663. if (!tr.present)
  1664. return false;
  1665. return true;
  1666. }
  1667. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  1668. {
  1669. struct kvm_segment ldtr;
  1670. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  1671. if (ldtr.unusable)
  1672. return true;
  1673. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1674. return false;
  1675. if (ldtr.type != 2)
  1676. return false;
  1677. if (!ldtr.present)
  1678. return false;
  1679. return true;
  1680. }
  1681. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  1682. {
  1683. struct kvm_segment cs, ss;
  1684. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1685. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1686. return ((cs.selector & SELECTOR_RPL_MASK) ==
  1687. (ss.selector & SELECTOR_RPL_MASK));
  1688. }
  1689. /*
  1690. * Check if guest state is valid. Returns true if valid, false if
  1691. * not.
  1692. * We assume that registers are always usable
  1693. */
  1694. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  1695. {
  1696. /* real mode guest state checks */
  1697. if (!(vcpu->arch.cr0 & X86_CR0_PE)) {
  1698. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  1699. return false;
  1700. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  1701. return false;
  1702. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  1703. return false;
  1704. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  1705. return false;
  1706. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  1707. return false;
  1708. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  1709. return false;
  1710. } else {
  1711. /* protected mode guest state checks */
  1712. if (!cs_ss_rpl_check(vcpu))
  1713. return false;
  1714. if (!code_segment_valid(vcpu))
  1715. return false;
  1716. if (!stack_segment_valid(vcpu))
  1717. return false;
  1718. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  1719. return false;
  1720. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  1721. return false;
  1722. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  1723. return false;
  1724. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  1725. return false;
  1726. if (!tr_valid(vcpu))
  1727. return false;
  1728. if (!ldtr_valid(vcpu))
  1729. return false;
  1730. }
  1731. /* TODO:
  1732. * - Add checks on RIP
  1733. * - Add checks on RFLAGS
  1734. */
  1735. return true;
  1736. }
  1737. static int init_rmode_tss(struct kvm *kvm)
  1738. {
  1739. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1740. u16 data = 0;
  1741. int ret = 0;
  1742. int r;
  1743. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1744. if (r < 0)
  1745. goto out;
  1746. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1747. r = kvm_write_guest_page(kvm, fn++, &data,
  1748. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  1749. if (r < 0)
  1750. goto out;
  1751. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  1752. if (r < 0)
  1753. goto out;
  1754. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1755. if (r < 0)
  1756. goto out;
  1757. data = ~0;
  1758. r = kvm_write_guest_page(kvm, fn, &data,
  1759. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  1760. sizeof(u8));
  1761. if (r < 0)
  1762. goto out;
  1763. ret = 1;
  1764. out:
  1765. return ret;
  1766. }
  1767. static int init_rmode_identity_map(struct kvm *kvm)
  1768. {
  1769. int i, r, ret;
  1770. pfn_t identity_map_pfn;
  1771. u32 tmp;
  1772. if (!enable_ept)
  1773. return 1;
  1774. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  1775. printk(KERN_ERR "EPT: identity-mapping pagetable "
  1776. "haven't been allocated!\n");
  1777. return 0;
  1778. }
  1779. if (likely(kvm->arch.ept_identity_pagetable_done))
  1780. return 1;
  1781. ret = 0;
  1782. identity_map_pfn = VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT;
  1783. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  1784. if (r < 0)
  1785. goto out;
  1786. /* Set up identity-mapping pagetable for EPT in real mode */
  1787. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  1788. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  1789. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  1790. r = kvm_write_guest_page(kvm, identity_map_pfn,
  1791. &tmp, i * sizeof(tmp), sizeof(tmp));
  1792. if (r < 0)
  1793. goto out;
  1794. }
  1795. kvm->arch.ept_identity_pagetable_done = true;
  1796. ret = 1;
  1797. out:
  1798. return ret;
  1799. }
  1800. static void seg_setup(int seg)
  1801. {
  1802. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1803. unsigned int ar;
  1804. vmcs_write16(sf->selector, 0);
  1805. vmcs_writel(sf->base, 0);
  1806. vmcs_write32(sf->limit, 0xffff);
  1807. if (enable_unrestricted_guest) {
  1808. ar = 0x93;
  1809. if (seg == VCPU_SREG_CS)
  1810. ar |= 0x08; /* code segment */
  1811. } else
  1812. ar = 0xf3;
  1813. vmcs_write32(sf->ar_bytes, ar);
  1814. }
  1815. static int alloc_apic_access_page(struct kvm *kvm)
  1816. {
  1817. struct kvm_userspace_memory_region kvm_userspace_mem;
  1818. int r = 0;
  1819. down_write(&kvm->slots_lock);
  1820. if (kvm->arch.apic_access_page)
  1821. goto out;
  1822. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  1823. kvm_userspace_mem.flags = 0;
  1824. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  1825. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1826. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1827. if (r)
  1828. goto out;
  1829. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  1830. out:
  1831. up_write(&kvm->slots_lock);
  1832. return r;
  1833. }
  1834. static int alloc_identity_pagetable(struct kvm *kvm)
  1835. {
  1836. struct kvm_userspace_memory_region kvm_userspace_mem;
  1837. int r = 0;
  1838. down_write(&kvm->slots_lock);
  1839. if (kvm->arch.ept_identity_pagetable)
  1840. goto out;
  1841. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  1842. kvm_userspace_mem.flags = 0;
  1843. kvm_userspace_mem.guest_phys_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  1844. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1845. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1846. if (r)
  1847. goto out;
  1848. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  1849. VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT);
  1850. out:
  1851. up_write(&kvm->slots_lock);
  1852. return r;
  1853. }
  1854. static void allocate_vpid(struct vcpu_vmx *vmx)
  1855. {
  1856. int vpid;
  1857. vmx->vpid = 0;
  1858. if (!enable_vpid)
  1859. return;
  1860. spin_lock(&vmx_vpid_lock);
  1861. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  1862. if (vpid < VMX_NR_VPIDS) {
  1863. vmx->vpid = vpid;
  1864. __set_bit(vpid, vmx_vpid_bitmap);
  1865. }
  1866. spin_unlock(&vmx_vpid_lock);
  1867. }
  1868. static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
  1869. {
  1870. int f = sizeof(unsigned long);
  1871. if (!cpu_has_vmx_msr_bitmap())
  1872. return;
  1873. /*
  1874. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  1875. * have the write-low and read-high bitmap offsets the wrong way round.
  1876. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  1877. */
  1878. if (msr <= 0x1fff) {
  1879. __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
  1880. __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
  1881. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  1882. msr &= 0x1fff;
  1883. __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
  1884. __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
  1885. }
  1886. }
  1887. static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
  1888. {
  1889. if (!longmode_only)
  1890. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
  1891. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
  1892. }
  1893. /*
  1894. * Sets up the vmcs for emulated real mode.
  1895. */
  1896. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  1897. {
  1898. u32 host_sysenter_cs, msr_low, msr_high;
  1899. u32 junk;
  1900. u64 host_pat, tsc_this, tsc_base;
  1901. unsigned long a;
  1902. struct descriptor_table dt;
  1903. int i;
  1904. unsigned long kvm_vmx_return;
  1905. u32 exec_control;
  1906. /* I/O */
  1907. vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
  1908. vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
  1909. if (cpu_has_vmx_msr_bitmap())
  1910. vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
  1911. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1912. /* Control */
  1913. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  1914. vmcs_config.pin_based_exec_ctrl);
  1915. exec_control = vmcs_config.cpu_based_exec_ctrl;
  1916. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  1917. exec_control &= ~CPU_BASED_TPR_SHADOW;
  1918. #ifdef CONFIG_X86_64
  1919. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  1920. CPU_BASED_CR8_LOAD_EXITING;
  1921. #endif
  1922. }
  1923. if (!enable_ept)
  1924. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  1925. CPU_BASED_CR3_LOAD_EXITING |
  1926. CPU_BASED_INVLPG_EXITING;
  1927. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  1928. if (cpu_has_secondary_exec_ctrls()) {
  1929. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  1930. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1931. exec_control &=
  1932. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1933. if (vmx->vpid == 0)
  1934. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  1935. if (!enable_ept)
  1936. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  1937. if (!enable_unrestricted_guest)
  1938. exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
  1939. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  1940. }
  1941. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  1942. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  1943. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1944. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1945. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1946. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  1947. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  1948. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1949. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1950. vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
  1951. vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
  1952. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1953. #ifdef CONFIG_X86_64
  1954. rdmsrl(MSR_FS_BASE, a);
  1955. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  1956. rdmsrl(MSR_GS_BASE, a);
  1957. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  1958. #else
  1959. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  1960. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  1961. #endif
  1962. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  1963. kvm_get_idt(&dt);
  1964. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  1965. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  1966. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  1967. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  1968. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  1969. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  1970. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  1971. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  1972. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  1973. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  1974. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  1975. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  1976. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  1977. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  1978. host_pat = msr_low | ((u64) msr_high << 32);
  1979. vmcs_write64(HOST_IA32_PAT, host_pat);
  1980. }
  1981. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  1982. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  1983. host_pat = msr_low | ((u64) msr_high << 32);
  1984. /* Write the default value follow host pat */
  1985. vmcs_write64(GUEST_IA32_PAT, host_pat);
  1986. /* Keep arch.pat sync with GUEST_IA32_PAT */
  1987. vmx->vcpu.arch.pat = host_pat;
  1988. }
  1989. for (i = 0; i < NR_VMX_MSR; ++i) {
  1990. u32 index = vmx_msr_index[i];
  1991. u32 data_low, data_high;
  1992. u64 data;
  1993. int j = vmx->nmsrs;
  1994. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  1995. continue;
  1996. if (wrmsr_safe(index, data_low, data_high) < 0)
  1997. continue;
  1998. data = data_low | ((u64)data_high << 32);
  1999. vmx->host_msrs[j].index = index;
  2000. vmx->host_msrs[j].reserved = 0;
  2001. vmx->host_msrs[j].data = data;
  2002. vmx->guest_msrs[j] = vmx->host_msrs[j];
  2003. ++vmx->nmsrs;
  2004. }
  2005. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  2006. /* 22.2.1, 20.8.1 */
  2007. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  2008. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  2009. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  2010. tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
  2011. rdtscll(tsc_this);
  2012. if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
  2013. tsc_base = tsc_this;
  2014. guest_write_tsc(0, tsc_base);
  2015. return 0;
  2016. }
  2017. static int init_rmode(struct kvm *kvm)
  2018. {
  2019. if (!init_rmode_tss(kvm))
  2020. return 0;
  2021. if (!init_rmode_identity_map(kvm))
  2022. return 0;
  2023. return 1;
  2024. }
  2025. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  2026. {
  2027. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2028. u64 msr;
  2029. int ret;
  2030. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  2031. down_read(&vcpu->kvm->slots_lock);
  2032. if (!init_rmode(vmx->vcpu.kvm)) {
  2033. ret = -ENOMEM;
  2034. goto out;
  2035. }
  2036. vmx->rmode.vm86_active = 0;
  2037. vmx->soft_vnmi_blocked = 0;
  2038. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  2039. kvm_set_cr8(&vmx->vcpu, 0);
  2040. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  2041. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  2042. msr |= MSR_IA32_APICBASE_BSP;
  2043. kvm_set_apic_base(&vmx->vcpu, msr);
  2044. fx_init(&vmx->vcpu);
  2045. seg_setup(VCPU_SREG_CS);
  2046. /*
  2047. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  2048. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  2049. */
  2050. if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
  2051. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  2052. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  2053. } else {
  2054. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  2055. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  2056. }
  2057. seg_setup(VCPU_SREG_DS);
  2058. seg_setup(VCPU_SREG_ES);
  2059. seg_setup(VCPU_SREG_FS);
  2060. seg_setup(VCPU_SREG_GS);
  2061. seg_setup(VCPU_SREG_SS);
  2062. vmcs_write16(GUEST_TR_SELECTOR, 0);
  2063. vmcs_writel(GUEST_TR_BASE, 0);
  2064. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  2065. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  2066. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  2067. vmcs_writel(GUEST_LDTR_BASE, 0);
  2068. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  2069. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  2070. vmcs_write32(GUEST_SYSENTER_CS, 0);
  2071. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  2072. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  2073. vmcs_writel(GUEST_RFLAGS, 0x02);
  2074. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  2075. kvm_rip_write(vcpu, 0xfff0);
  2076. else
  2077. kvm_rip_write(vcpu, 0);
  2078. kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
  2079. vmcs_writel(GUEST_DR7, 0x400);
  2080. vmcs_writel(GUEST_GDTR_BASE, 0);
  2081. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  2082. vmcs_writel(GUEST_IDTR_BASE, 0);
  2083. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  2084. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  2085. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  2086. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  2087. /* Special registers */
  2088. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  2089. setup_msrs(vmx);
  2090. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  2091. if (cpu_has_vmx_tpr_shadow()) {
  2092. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  2093. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  2094. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  2095. page_to_phys(vmx->vcpu.arch.apic->regs_page));
  2096. vmcs_write32(TPR_THRESHOLD, 0);
  2097. }
  2098. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  2099. vmcs_write64(APIC_ACCESS_ADDR,
  2100. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  2101. if (vmx->vpid != 0)
  2102. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  2103. vmx->vcpu.arch.cr0 = 0x60000010;
  2104. vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
  2105. vmx_set_cr4(&vmx->vcpu, 0);
  2106. vmx_set_efer(&vmx->vcpu, 0);
  2107. vmx_fpu_activate(&vmx->vcpu);
  2108. update_exception_bitmap(&vmx->vcpu);
  2109. vpid_sync_vcpu_all(vmx);
  2110. ret = 0;
  2111. /* HACK: Don't enable emulation on guest boot/reset */
  2112. vmx->emulation_required = 0;
  2113. out:
  2114. up_read(&vcpu->kvm->slots_lock);
  2115. return ret;
  2116. }
  2117. static void enable_irq_window(struct kvm_vcpu *vcpu)
  2118. {
  2119. u32 cpu_based_vm_exec_control;
  2120. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2121. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  2122. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2123. }
  2124. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  2125. {
  2126. u32 cpu_based_vm_exec_control;
  2127. if (!cpu_has_virtual_nmis()) {
  2128. enable_irq_window(vcpu);
  2129. return;
  2130. }
  2131. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2132. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  2133. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2134. }
  2135. static void vmx_inject_irq(struct kvm_vcpu *vcpu)
  2136. {
  2137. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2138. uint32_t intr;
  2139. int irq = vcpu->arch.interrupt.nr;
  2140. KVMTRACE_1D(INJ_VIRQ, vcpu, (u32)irq, handler);
  2141. ++vcpu->stat.irq_injections;
  2142. if (vmx->rmode.vm86_active) {
  2143. vmx->rmode.irq.pending = true;
  2144. vmx->rmode.irq.vector = irq;
  2145. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2146. if (vcpu->arch.interrupt.soft)
  2147. vmx->rmode.irq.rip +=
  2148. vmx->vcpu.arch.event_exit_inst_len;
  2149. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2150. irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
  2151. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2152. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2153. return;
  2154. }
  2155. intr = irq | INTR_INFO_VALID_MASK;
  2156. if (vcpu->arch.interrupt.soft) {
  2157. intr |= INTR_TYPE_SOFT_INTR;
  2158. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  2159. vmx->vcpu.arch.event_exit_inst_len);
  2160. } else
  2161. intr |= INTR_TYPE_EXT_INTR;
  2162. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
  2163. }
  2164. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  2165. {
  2166. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2167. if (!cpu_has_virtual_nmis()) {
  2168. /*
  2169. * Tracking the NMI-blocked state in software is built upon
  2170. * finding the next open IRQ window. This, in turn, depends on
  2171. * well-behaving guests: They have to keep IRQs disabled at
  2172. * least as long as the NMI handler runs. Otherwise we may
  2173. * cause NMI nesting, maybe breaking the guest. But as this is
  2174. * highly unlikely, we can live with the residual risk.
  2175. */
  2176. vmx->soft_vnmi_blocked = 1;
  2177. vmx->vnmi_blocked_time = 0;
  2178. }
  2179. ++vcpu->stat.nmi_injections;
  2180. if (vmx->rmode.vm86_active) {
  2181. vmx->rmode.irq.pending = true;
  2182. vmx->rmode.irq.vector = NMI_VECTOR;
  2183. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2184. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2185. NMI_VECTOR | INTR_TYPE_SOFT_INTR |
  2186. INTR_INFO_VALID_MASK);
  2187. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2188. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2189. return;
  2190. }
  2191. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2192. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  2193. }
  2194. static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
  2195. {
  2196. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  2197. return 0;
  2198. return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2199. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS |
  2200. GUEST_INTR_STATE_NMI));
  2201. }
  2202. static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
  2203. {
  2204. return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  2205. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2206. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
  2207. }
  2208. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  2209. {
  2210. int ret;
  2211. struct kvm_userspace_memory_region tss_mem = {
  2212. .slot = TSS_PRIVATE_MEMSLOT,
  2213. .guest_phys_addr = addr,
  2214. .memory_size = PAGE_SIZE * 3,
  2215. .flags = 0,
  2216. };
  2217. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  2218. if (ret)
  2219. return ret;
  2220. kvm->arch.tss_addr = addr;
  2221. return 0;
  2222. }
  2223. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  2224. int vec, u32 err_code)
  2225. {
  2226. /*
  2227. * Instruction with address size override prefix opcode 0x67
  2228. * Cause the #SS fault with 0 error code in VM86 mode.
  2229. */
  2230. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  2231. if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
  2232. return 1;
  2233. /*
  2234. * Forward all other exceptions that are valid in real mode.
  2235. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  2236. * the required debugging infrastructure rework.
  2237. */
  2238. switch (vec) {
  2239. case DB_VECTOR:
  2240. if (vcpu->guest_debug &
  2241. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  2242. return 0;
  2243. kvm_queue_exception(vcpu, vec);
  2244. return 1;
  2245. case BP_VECTOR:
  2246. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  2247. return 0;
  2248. /* fall through */
  2249. case DE_VECTOR:
  2250. case OF_VECTOR:
  2251. case BR_VECTOR:
  2252. case UD_VECTOR:
  2253. case DF_VECTOR:
  2254. case SS_VECTOR:
  2255. case GP_VECTOR:
  2256. case MF_VECTOR:
  2257. kvm_queue_exception(vcpu, vec);
  2258. return 1;
  2259. }
  2260. return 0;
  2261. }
  2262. /*
  2263. * Trigger machine check on the host. We assume all the MSRs are already set up
  2264. * by the CPU and that we still run on the same CPU as the MCE occurred on.
  2265. * We pass a fake environment to the machine check handler because we want
  2266. * the guest to be always treated like user space, no matter what context
  2267. * it used internally.
  2268. */
  2269. static void kvm_machine_check(void)
  2270. {
  2271. #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
  2272. struct pt_regs regs = {
  2273. .cs = 3, /* Fake ring 3 no matter what the guest ran on */
  2274. .flags = X86_EFLAGS_IF,
  2275. };
  2276. do_machine_check(&regs, 0);
  2277. #endif
  2278. }
  2279. static int handle_machine_check(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2280. {
  2281. /* already handled by vcpu_run */
  2282. return 1;
  2283. }
  2284. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2285. {
  2286. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2287. u32 intr_info, ex_no, error_code;
  2288. unsigned long cr2, rip, dr6;
  2289. u32 vect_info;
  2290. enum emulation_result er;
  2291. vect_info = vmx->idt_vectoring_info;
  2292. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2293. if (is_machine_check(intr_info))
  2294. return handle_machine_check(vcpu, kvm_run);
  2295. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  2296. !is_page_fault(intr_info))
  2297. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  2298. "intr info 0x%x\n", __func__, vect_info, intr_info);
  2299. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  2300. return 1; /* already handled by vmx_vcpu_run() */
  2301. if (is_no_device(intr_info)) {
  2302. vmx_fpu_activate(vcpu);
  2303. return 1;
  2304. }
  2305. if (is_invalid_opcode(intr_info)) {
  2306. er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
  2307. if (er != EMULATE_DONE)
  2308. kvm_queue_exception(vcpu, UD_VECTOR);
  2309. return 1;
  2310. }
  2311. error_code = 0;
  2312. rip = kvm_rip_read(vcpu);
  2313. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  2314. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  2315. if (is_page_fault(intr_info)) {
  2316. /* EPT won't cause page fault directly */
  2317. if (enable_ept)
  2318. BUG();
  2319. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  2320. KVMTRACE_3D(PAGE_FAULT, vcpu, error_code, (u32)cr2,
  2321. (u32)((u64)cr2 >> 32), handler);
  2322. if (kvm_event_needs_reinjection(vcpu))
  2323. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  2324. return kvm_mmu_page_fault(vcpu, cr2, error_code);
  2325. }
  2326. if (vmx->rmode.vm86_active &&
  2327. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  2328. error_code)) {
  2329. if (vcpu->arch.halt_request) {
  2330. vcpu->arch.halt_request = 0;
  2331. return kvm_emulate_halt(vcpu);
  2332. }
  2333. return 1;
  2334. }
  2335. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  2336. switch (ex_no) {
  2337. case DB_VECTOR:
  2338. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  2339. if (!(vcpu->guest_debug &
  2340. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  2341. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  2342. kvm_queue_exception(vcpu, DB_VECTOR);
  2343. return 1;
  2344. }
  2345. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  2346. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  2347. /* fall through */
  2348. case BP_VECTOR:
  2349. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  2350. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  2351. kvm_run->debug.arch.exception = ex_no;
  2352. break;
  2353. default:
  2354. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  2355. kvm_run->ex.exception = ex_no;
  2356. kvm_run->ex.error_code = error_code;
  2357. break;
  2358. }
  2359. return 0;
  2360. }
  2361. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  2362. struct kvm_run *kvm_run)
  2363. {
  2364. ++vcpu->stat.irq_exits;
  2365. KVMTRACE_1D(INTR, vcpu, vmcs_read32(VM_EXIT_INTR_INFO), handler);
  2366. return 1;
  2367. }
  2368. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2369. {
  2370. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  2371. return 0;
  2372. }
  2373. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2374. {
  2375. unsigned long exit_qualification;
  2376. int size, in, string;
  2377. unsigned port;
  2378. ++vcpu->stat.io_exits;
  2379. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2380. string = (exit_qualification & 16) != 0;
  2381. if (string) {
  2382. if (emulate_instruction(vcpu,
  2383. kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
  2384. return 0;
  2385. return 1;
  2386. }
  2387. size = (exit_qualification & 7) + 1;
  2388. in = (exit_qualification & 8) != 0;
  2389. port = exit_qualification >> 16;
  2390. skip_emulated_instruction(vcpu);
  2391. return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
  2392. }
  2393. static void
  2394. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  2395. {
  2396. /*
  2397. * Patch in the VMCALL instruction:
  2398. */
  2399. hypercall[0] = 0x0f;
  2400. hypercall[1] = 0x01;
  2401. hypercall[2] = 0xc1;
  2402. }
  2403. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2404. {
  2405. unsigned long exit_qualification;
  2406. int cr;
  2407. int reg;
  2408. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2409. cr = exit_qualification & 15;
  2410. reg = (exit_qualification >> 8) & 15;
  2411. switch ((exit_qualification >> 4) & 3) {
  2412. case 0: /* mov to cr */
  2413. KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr,
  2414. (u32)kvm_register_read(vcpu, reg),
  2415. (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
  2416. handler);
  2417. switch (cr) {
  2418. case 0:
  2419. kvm_set_cr0(vcpu, kvm_register_read(vcpu, reg));
  2420. skip_emulated_instruction(vcpu);
  2421. return 1;
  2422. case 3:
  2423. kvm_set_cr3(vcpu, kvm_register_read(vcpu, reg));
  2424. skip_emulated_instruction(vcpu);
  2425. return 1;
  2426. case 4:
  2427. kvm_set_cr4(vcpu, kvm_register_read(vcpu, reg));
  2428. skip_emulated_instruction(vcpu);
  2429. return 1;
  2430. case 8: {
  2431. u8 cr8_prev = kvm_get_cr8(vcpu);
  2432. u8 cr8 = kvm_register_read(vcpu, reg);
  2433. kvm_set_cr8(vcpu, cr8);
  2434. skip_emulated_instruction(vcpu);
  2435. if (irqchip_in_kernel(vcpu->kvm))
  2436. return 1;
  2437. if (cr8_prev <= cr8)
  2438. return 1;
  2439. kvm_run->exit_reason = KVM_EXIT_SET_TPR;
  2440. return 0;
  2441. }
  2442. };
  2443. break;
  2444. case 2: /* clts */
  2445. vmx_fpu_deactivate(vcpu);
  2446. vcpu->arch.cr0 &= ~X86_CR0_TS;
  2447. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  2448. vmx_fpu_activate(vcpu);
  2449. KVMTRACE_0D(CLTS, vcpu, handler);
  2450. skip_emulated_instruction(vcpu);
  2451. return 1;
  2452. case 1: /*mov from cr*/
  2453. switch (cr) {
  2454. case 3:
  2455. kvm_register_write(vcpu, reg, vcpu->arch.cr3);
  2456. KVMTRACE_3D(CR_READ, vcpu, (u32)cr,
  2457. (u32)kvm_register_read(vcpu, reg),
  2458. (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
  2459. handler);
  2460. skip_emulated_instruction(vcpu);
  2461. return 1;
  2462. case 8:
  2463. kvm_register_write(vcpu, reg, kvm_get_cr8(vcpu));
  2464. KVMTRACE_2D(CR_READ, vcpu, (u32)cr,
  2465. (u32)kvm_register_read(vcpu, reg), handler);
  2466. skip_emulated_instruction(vcpu);
  2467. return 1;
  2468. }
  2469. break;
  2470. case 3: /* lmsw */
  2471. kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  2472. skip_emulated_instruction(vcpu);
  2473. return 1;
  2474. default:
  2475. break;
  2476. }
  2477. kvm_run->exit_reason = 0;
  2478. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  2479. (int)(exit_qualification >> 4) & 3, cr);
  2480. return 0;
  2481. }
  2482. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2483. {
  2484. unsigned long exit_qualification;
  2485. unsigned long val;
  2486. int dr, reg;
  2487. dr = vmcs_readl(GUEST_DR7);
  2488. if (dr & DR7_GD) {
  2489. /*
  2490. * As the vm-exit takes precedence over the debug trap, we
  2491. * need to emulate the latter, either for the host or the
  2492. * guest debugging itself.
  2493. */
  2494. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  2495. kvm_run->debug.arch.dr6 = vcpu->arch.dr6;
  2496. kvm_run->debug.arch.dr7 = dr;
  2497. kvm_run->debug.arch.pc =
  2498. vmcs_readl(GUEST_CS_BASE) +
  2499. vmcs_readl(GUEST_RIP);
  2500. kvm_run->debug.arch.exception = DB_VECTOR;
  2501. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  2502. return 0;
  2503. } else {
  2504. vcpu->arch.dr7 &= ~DR7_GD;
  2505. vcpu->arch.dr6 |= DR6_BD;
  2506. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2507. kvm_queue_exception(vcpu, DB_VECTOR);
  2508. return 1;
  2509. }
  2510. }
  2511. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2512. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  2513. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  2514. if (exit_qualification & TYPE_MOV_FROM_DR) {
  2515. switch (dr) {
  2516. case 0 ... 3:
  2517. val = vcpu->arch.db[dr];
  2518. break;
  2519. case 6:
  2520. val = vcpu->arch.dr6;
  2521. break;
  2522. case 7:
  2523. val = vcpu->arch.dr7;
  2524. break;
  2525. default:
  2526. val = 0;
  2527. }
  2528. kvm_register_write(vcpu, reg, val);
  2529. KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
  2530. } else {
  2531. val = vcpu->arch.regs[reg];
  2532. switch (dr) {
  2533. case 0 ... 3:
  2534. vcpu->arch.db[dr] = val;
  2535. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
  2536. vcpu->arch.eff_db[dr] = val;
  2537. break;
  2538. case 4 ... 5:
  2539. if (vcpu->arch.cr4 & X86_CR4_DE)
  2540. kvm_queue_exception(vcpu, UD_VECTOR);
  2541. break;
  2542. case 6:
  2543. if (val & 0xffffffff00000000ULL) {
  2544. kvm_queue_exception(vcpu, GP_VECTOR);
  2545. break;
  2546. }
  2547. vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
  2548. break;
  2549. case 7:
  2550. if (val & 0xffffffff00000000ULL) {
  2551. kvm_queue_exception(vcpu, GP_VECTOR);
  2552. break;
  2553. }
  2554. vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
  2555. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
  2556. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2557. vcpu->arch.switch_db_regs =
  2558. (val & DR7_BP_EN_MASK);
  2559. }
  2560. break;
  2561. }
  2562. KVMTRACE_2D(DR_WRITE, vcpu, (u32)dr, (u32)val, handler);
  2563. }
  2564. skip_emulated_instruction(vcpu);
  2565. return 1;
  2566. }
  2567. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2568. {
  2569. kvm_emulate_cpuid(vcpu);
  2570. return 1;
  2571. }
  2572. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2573. {
  2574. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2575. u64 data;
  2576. if (vmx_get_msr(vcpu, ecx, &data)) {
  2577. kvm_inject_gp(vcpu, 0);
  2578. return 1;
  2579. }
  2580. KVMTRACE_3D(MSR_READ, vcpu, ecx, (u32)data, (u32)(data >> 32),
  2581. handler);
  2582. /* FIXME: handling of bits 32:63 of rax, rdx */
  2583. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  2584. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  2585. skip_emulated_instruction(vcpu);
  2586. return 1;
  2587. }
  2588. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2589. {
  2590. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2591. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  2592. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  2593. KVMTRACE_3D(MSR_WRITE, vcpu, ecx, (u32)data, (u32)(data >> 32),
  2594. handler);
  2595. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  2596. kvm_inject_gp(vcpu, 0);
  2597. return 1;
  2598. }
  2599. skip_emulated_instruction(vcpu);
  2600. return 1;
  2601. }
  2602. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
  2603. struct kvm_run *kvm_run)
  2604. {
  2605. return 1;
  2606. }
  2607. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  2608. struct kvm_run *kvm_run)
  2609. {
  2610. u32 cpu_based_vm_exec_control;
  2611. /* clear pending irq */
  2612. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2613. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  2614. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2615. KVMTRACE_0D(PEND_INTR, vcpu, handler);
  2616. ++vcpu->stat.irq_window_exits;
  2617. /*
  2618. * If the user space waits to inject interrupts, exit as soon as
  2619. * possible
  2620. */
  2621. if (!irqchip_in_kernel(vcpu->kvm) &&
  2622. kvm_run->request_interrupt_window &&
  2623. !kvm_cpu_has_interrupt(vcpu)) {
  2624. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  2625. return 0;
  2626. }
  2627. return 1;
  2628. }
  2629. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2630. {
  2631. skip_emulated_instruction(vcpu);
  2632. return kvm_emulate_halt(vcpu);
  2633. }
  2634. static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2635. {
  2636. skip_emulated_instruction(vcpu);
  2637. kvm_emulate_hypercall(vcpu);
  2638. return 1;
  2639. }
  2640. static int handle_vmx_insn(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2641. {
  2642. kvm_queue_exception(vcpu, UD_VECTOR);
  2643. return 1;
  2644. }
  2645. static int handle_invlpg(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2646. {
  2647. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2648. kvm_mmu_invlpg(vcpu, exit_qualification);
  2649. skip_emulated_instruction(vcpu);
  2650. return 1;
  2651. }
  2652. static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2653. {
  2654. skip_emulated_instruction(vcpu);
  2655. /* TODO: Add support for VT-d/pass-through device */
  2656. return 1;
  2657. }
  2658. static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2659. {
  2660. unsigned long exit_qualification;
  2661. enum emulation_result er;
  2662. unsigned long offset;
  2663. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2664. offset = exit_qualification & 0xffful;
  2665. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2666. if (er != EMULATE_DONE) {
  2667. printk(KERN_ERR
  2668. "Fail to handle apic access vmexit! Offset is 0x%lx\n",
  2669. offset);
  2670. return -ENOTSUPP;
  2671. }
  2672. return 1;
  2673. }
  2674. static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2675. {
  2676. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2677. unsigned long exit_qualification;
  2678. u16 tss_selector;
  2679. int reason, type, idt_v;
  2680. idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  2681. type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
  2682. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2683. reason = (u32)exit_qualification >> 30;
  2684. if (reason == TASK_SWITCH_GATE && idt_v) {
  2685. switch (type) {
  2686. case INTR_TYPE_NMI_INTR:
  2687. vcpu->arch.nmi_injected = false;
  2688. if (cpu_has_virtual_nmis())
  2689. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2690. GUEST_INTR_STATE_NMI);
  2691. break;
  2692. case INTR_TYPE_EXT_INTR:
  2693. case INTR_TYPE_SOFT_INTR:
  2694. kvm_clear_interrupt_queue(vcpu);
  2695. break;
  2696. case INTR_TYPE_HARD_EXCEPTION:
  2697. case INTR_TYPE_SOFT_EXCEPTION:
  2698. kvm_clear_exception_queue(vcpu);
  2699. break;
  2700. default:
  2701. break;
  2702. }
  2703. }
  2704. tss_selector = exit_qualification;
  2705. if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
  2706. type != INTR_TYPE_EXT_INTR &&
  2707. type != INTR_TYPE_NMI_INTR))
  2708. skip_emulated_instruction(vcpu);
  2709. if (!kvm_task_switch(vcpu, tss_selector, reason))
  2710. return 0;
  2711. /* clear all local breakpoint enable flags */
  2712. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  2713. /*
  2714. * TODO: What about debug traps on tss switch?
  2715. * Are we supposed to inject them and update dr6?
  2716. */
  2717. return 1;
  2718. }
  2719. static int handle_ept_violation(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2720. {
  2721. unsigned long exit_qualification;
  2722. gpa_t gpa;
  2723. int gla_validity;
  2724. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2725. if (exit_qualification & (1 << 6)) {
  2726. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  2727. return -ENOTSUPP;
  2728. }
  2729. gla_validity = (exit_qualification >> 7) & 0x3;
  2730. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  2731. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  2732. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2733. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2734. vmcs_readl(GUEST_LINEAR_ADDRESS));
  2735. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2736. (long unsigned int)exit_qualification);
  2737. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2738. kvm_run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
  2739. return 0;
  2740. }
  2741. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2742. return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
  2743. }
  2744. static int handle_nmi_window(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2745. {
  2746. u32 cpu_based_vm_exec_control;
  2747. /* clear pending NMI */
  2748. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2749. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  2750. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2751. ++vcpu->stat.nmi_window_exits;
  2752. return 1;
  2753. }
  2754. static void handle_invalid_guest_state(struct kvm_vcpu *vcpu,
  2755. struct kvm_run *kvm_run)
  2756. {
  2757. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2758. enum emulation_result err = EMULATE_DONE;
  2759. local_irq_enable();
  2760. preempt_enable();
  2761. while (!guest_state_valid(vcpu)) {
  2762. err = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2763. if (err == EMULATE_DO_MMIO)
  2764. break;
  2765. if (err != EMULATE_DONE) {
  2766. kvm_report_emulation_failure(vcpu, "emulation failure");
  2767. break;
  2768. }
  2769. if (signal_pending(current))
  2770. break;
  2771. if (need_resched())
  2772. schedule();
  2773. }
  2774. preempt_disable();
  2775. local_irq_disable();
  2776. vmx->invalid_state_emulation_result = err;
  2777. }
  2778. /*
  2779. * The exit handlers return 1 if the exit was handled fully and guest execution
  2780. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  2781. * to be done to userspace and return 0.
  2782. */
  2783. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  2784. struct kvm_run *kvm_run) = {
  2785. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  2786. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  2787. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  2788. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  2789. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  2790. [EXIT_REASON_CR_ACCESS] = handle_cr,
  2791. [EXIT_REASON_DR_ACCESS] = handle_dr,
  2792. [EXIT_REASON_CPUID] = handle_cpuid,
  2793. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  2794. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  2795. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  2796. [EXIT_REASON_HLT] = handle_halt,
  2797. [EXIT_REASON_INVLPG] = handle_invlpg,
  2798. [EXIT_REASON_VMCALL] = handle_vmcall,
  2799. [EXIT_REASON_VMCLEAR] = handle_vmx_insn,
  2800. [EXIT_REASON_VMLAUNCH] = handle_vmx_insn,
  2801. [EXIT_REASON_VMPTRLD] = handle_vmx_insn,
  2802. [EXIT_REASON_VMPTRST] = handle_vmx_insn,
  2803. [EXIT_REASON_VMREAD] = handle_vmx_insn,
  2804. [EXIT_REASON_VMRESUME] = handle_vmx_insn,
  2805. [EXIT_REASON_VMWRITE] = handle_vmx_insn,
  2806. [EXIT_REASON_VMOFF] = handle_vmx_insn,
  2807. [EXIT_REASON_VMON] = handle_vmx_insn,
  2808. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  2809. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  2810. [EXIT_REASON_WBINVD] = handle_wbinvd,
  2811. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  2812. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  2813. [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
  2814. };
  2815. static const int kvm_vmx_max_exit_handlers =
  2816. ARRAY_SIZE(kvm_vmx_exit_handlers);
  2817. /*
  2818. * The guest has exited. See if we can fix it or if we need userspace
  2819. * assistance.
  2820. */
  2821. static int vmx_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  2822. {
  2823. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2824. u32 exit_reason = vmx->exit_reason;
  2825. u32 vectoring_info = vmx->idt_vectoring_info;
  2826. KVMTRACE_3D(VMEXIT, vcpu, exit_reason, (u32)kvm_rip_read(vcpu),
  2827. (u32)((u64)kvm_rip_read(vcpu) >> 32), entryexit);
  2828. /* If we need to emulate an MMIO from handle_invalid_guest_state
  2829. * we just return 0 */
  2830. if (vmx->emulation_required && emulate_invalid_guest_state) {
  2831. if (guest_state_valid(vcpu))
  2832. vmx->emulation_required = 0;
  2833. return vmx->invalid_state_emulation_result != EMULATE_DO_MMIO;
  2834. }
  2835. /* Access CR3 don't cause VMExit in paging mode, so we need
  2836. * to sync with guest real CR3. */
  2837. if (enable_ept && is_paging(vcpu))
  2838. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  2839. if (unlikely(vmx->fail)) {
  2840. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  2841. kvm_run->fail_entry.hardware_entry_failure_reason
  2842. = vmcs_read32(VM_INSTRUCTION_ERROR);
  2843. return 0;
  2844. }
  2845. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  2846. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  2847. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  2848. exit_reason != EXIT_REASON_TASK_SWITCH))
  2849. printk(KERN_WARNING "%s: unexpected, valid vectoring info "
  2850. "(0x%x) and exit reason is 0x%x\n",
  2851. __func__, vectoring_info, exit_reason);
  2852. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
  2853. if (vmx_interrupt_allowed(vcpu)) {
  2854. vmx->soft_vnmi_blocked = 0;
  2855. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  2856. vcpu->arch.nmi_pending) {
  2857. /*
  2858. * This CPU don't support us in finding the end of an
  2859. * NMI-blocked window if the guest runs with IRQs
  2860. * disabled. So we pull the trigger after 1 s of
  2861. * futile waiting, but inform the user about this.
  2862. */
  2863. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  2864. "state on VCPU %d after 1 s timeout\n",
  2865. __func__, vcpu->vcpu_id);
  2866. vmx->soft_vnmi_blocked = 0;
  2867. }
  2868. }
  2869. if (exit_reason < kvm_vmx_max_exit_handlers
  2870. && kvm_vmx_exit_handlers[exit_reason])
  2871. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  2872. else {
  2873. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2874. kvm_run->hw.hardware_exit_reason = exit_reason;
  2875. }
  2876. return 0;
  2877. }
  2878. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  2879. {
  2880. if (irr == -1 || tpr < irr) {
  2881. vmcs_write32(TPR_THRESHOLD, 0);
  2882. return;
  2883. }
  2884. vmcs_write32(TPR_THRESHOLD, irr);
  2885. }
  2886. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  2887. {
  2888. u32 exit_intr_info;
  2889. u32 idt_vectoring_info = vmx->idt_vectoring_info;
  2890. bool unblock_nmi;
  2891. u8 vector;
  2892. int type;
  2893. bool idtv_info_valid;
  2894. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2895. vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
  2896. /* Handle machine checks before interrupts are enabled */
  2897. if ((vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
  2898. || (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI
  2899. && is_machine_check(exit_intr_info)))
  2900. kvm_machine_check();
  2901. /* We need to handle NMIs before interrupts are enabled */
  2902. if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  2903. (exit_intr_info & INTR_INFO_VALID_MASK)) {
  2904. KVMTRACE_0D(NMI, &vmx->vcpu, handler);
  2905. asm("int $2");
  2906. }
  2907. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  2908. if (cpu_has_virtual_nmis()) {
  2909. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  2910. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  2911. /*
  2912. * SDM 3: 27.7.1.2 (September 2008)
  2913. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  2914. * a guest IRET fault.
  2915. * SDM 3: 23.2.2 (September 2008)
  2916. * Bit 12 is undefined in any of the following cases:
  2917. * If the VM exit sets the valid bit in the IDT-vectoring
  2918. * information field.
  2919. * If the VM exit is due to a double fault.
  2920. */
  2921. if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
  2922. vector != DF_VECTOR && !idtv_info_valid)
  2923. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2924. GUEST_INTR_STATE_NMI);
  2925. } else if (unlikely(vmx->soft_vnmi_blocked))
  2926. vmx->vnmi_blocked_time +=
  2927. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  2928. vmx->vcpu.arch.nmi_injected = false;
  2929. kvm_clear_exception_queue(&vmx->vcpu);
  2930. kvm_clear_interrupt_queue(&vmx->vcpu);
  2931. if (!idtv_info_valid)
  2932. return;
  2933. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  2934. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  2935. switch (type) {
  2936. case INTR_TYPE_NMI_INTR:
  2937. vmx->vcpu.arch.nmi_injected = true;
  2938. /*
  2939. * SDM 3: 27.7.1.2 (September 2008)
  2940. * Clear bit "block by NMI" before VM entry if a NMI
  2941. * delivery faulted.
  2942. */
  2943. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  2944. GUEST_INTR_STATE_NMI);
  2945. break;
  2946. case INTR_TYPE_SOFT_EXCEPTION:
  2947. vmx->vcpu.arch.event_exit_inst_len =
  2948. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  2949. /* fall through */
  2950. case INTR_TYPE_HARD_EXCEPTION:
  2951. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  2952. u32 err = vmcs_read32(IDT_VECTORING_ERROR_CODE);
  2953. kvm_queue_exception_e(&vmx->vcpu, vector, err);
  2954. } else
  2955. kvm_queue_exception(&vmx->vcpu, vector);
  2956. break;
  2957. case INTR_TYPE_SOFT_INTR:
  2958. vmx->vcpu.arch.event_exit_inst_len =
  2959. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  2960. /* fall through */
  2961. case INTR_TYPE_EXT_INTR:
  2962. kvm_queue_interrupt(&vmx->vcpu, vector,
  2963. type == INTR_TYPE_SOFT_INTR);
  2964. break;
  2965. default:
  2966. break;
  2967. }
  2968. }
  2969. /*
  2970. * Failure to inject an interrupt should give us the information
  2971. * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
  2972. * when fetching the interrupt redirection bitmap in the real-mode
  2973. * tss, this doesn't happen. So we do it ourselves.
  2974. */
  2975. static void fixup_rmode_irq(struct vcpu_vmx *vmx)
  2976. {
  2977. vmx->rmode.irq.pending = 0;
  2978. if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
  2979. return;
  2980. kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
  2981. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  2982. vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
  2983. vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
  2984. return;
  2985. }
  2986. vmx->idt_vectoring_info =
  2987. VECTORING_INFO_VALID_MASK
  2988. | INTR_TYPE_EXT_INTR
  2989. | vmx->rmode.irq.vector;
  2990. }
  2991. #ifdef CONFIG_X86_64
  2992. #define R "r"
  2993. #define Q "q"
  2994. #else
  2995. #define R "e"
  2996. #define Q "l"
  2997. #endif
  2998. static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2999. {
  3000. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3001. if (enable_ept && is_paging(vcpu)) {
  3002. vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
  3003. ept_load_pdptrs(vcpu);
  3004. }
  3005. /* Record the guest's net vcpu time for enforced NMI injections. */
  3006. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  3007. vmx->entry_time = ktime_get();
  3008. /* Handle invalid guest state instead of entering VMX */
  3009. if (vmx->emulation_required && emulate_invalid_guest_state) {
  3010. handle_invalid_guest_state(vcpu, kvm_run);
  3011. return;
  3012. }
  3013. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  3014. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  3015. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  3016. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  3017. /* When single-stepping over STI and MOV SS, we must clear the
  3018. * corresponding interruptibility bits in the guest state. Otherwise
  3019. * vmentry fails as it then expects bit 14 (BS) in pending debug
  3020. * exceptions being set, but that's not correct for the guest debugging
  3021. * case. */
  3022. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  3023. vmx_set_interrupt_shadow(vcpu, 0);
  3024. /*
  3025. * Loading guest fpu may have cleared host cr0.ts
  3026. */
  3027. vmcs_writel(HOST_CR0, read_cr0());
  3028. set_debugreg(vcpu->arch.dr6, 6);
  3029. asm(
  3030. /* Store host registers */
  3031. "push %%"R"dx; push %%"R"bp;"
  3032. "push %%"R"cx \n\t"
  3033. "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
  3034. "je 1f \n\t"
  3035. "mov %%"R"sp, %c[host_rsp](%0) \n\t"
  3036. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  3037. "1: \n\t"
  3038. /* Check if vmlaunch of vmresume is needed */
  3039. "cmpl $0, %c[launched](%0) \n\t"
  3040. /* Load guest registers. Don't clobber flags. */
  3041. "mov %c[cr2](%0), %%"R"ax \n\t"
  3042. "mov %%"R"ax, %%cr2 \n\t"
  3043. "mov %c[rax](%0), %%"R"ax \n\t"
  3044. "mov %c[rbx](%0), %%"R"bx \n\t"
  3045. "mov %c[rdx](%0), %%"R"dx \n\t"
  3046. "mov %c[rsi](%0), %%"R"si \n\t"
  3047. "mov %c[rdi](%0), %%"R"di \n\t"
  3048. "mov %c[rbp](%0), %%"R"bp \n\t"
  3049. #ifdef CONFIG_X86_64
  3050. "mov %c[r8](%0), %%r8 \n\t"
  3051. "mov %c[r9](%0), %%r9 \n\t"
  3052. "mov %c[r10](%0), %%r10 \n\t"
  3053. "mov %c[r11](%0), %%r11 \n\t"
  3054. "mov %c[r12](%0), %%r12 \n\t"
  3055. "mov %c[r13](%0), %%r13 \n\t"
  3056. "mov %c[r14](%0), %%r14 \n\t"
  3057. "mov %c[r15](%0), %%r15 \n\t"
  3058. #endif
  3059. "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
  3060. /* Enter guest mode */
  3061. "jne .Llaunched \n\t"
  3062. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  3063. "jmp .Lkvm_vmx_return \n\t"
  3064. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  3065. ".Lkvm_vmx_return: "
  3066. /* Save guest registers, load host registers, keep flags */
  3067. "xchg %0, (%%"R"sp) \n\t"
  3068. "mov %%"R"ax, %c[rax](%0) \n\t"
  3069. "mov %%"R"bx, %c[rbx](%0) \n\t"
  3070. "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
  3071. "mov %%"R"dx, %c[rdx](%0) \n\t"
  3072. "mov %%"R"si, %c[rsi](%0) \n\t"
  3073. "mov %%"R"di, %c[rdi](%0) \n\t"
  3074. "mov %%"R"bp, %c[rbp](%0) \n\t"
  3075. #ifdef CONFIG_X86_64
  3076. "mov %%r8, %c[r8](%0) \n\t"
  3077. "mov %%r9, %c[r9](%0) \n\t"
  3078. "mov %%r10, %c[r10](%0) \n\t"
  3079. "mov %%r11, %c[r11](%0) \n\t"
  3080. "mov %%r12, %c[r12](%0) \n\t"
  3081. "mov %%r13, %c[r13](%0) \n\t"
  3082. "mov %%r14, %c[r14](%0) \n\t"
  3083. "mov %%r15, %c[r15](%0) \n\t"
  3084. #endif
  3085. "mov %%cr2, %%"R"ax \n\t"
  3086. "mov %%"R"ax, %c[cr2](%0) \n\t"
  3087. "pop %%"R"bp; pop %%"R"bp; pop %%"R"dx \n\t"
  3088. "setbe %c[fail](%0) \n\t"
  3089. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  3090. [launched]"i"(offsetof(struct vcpu_vmx, launched)),
  3091. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  3092. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  3093. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  3094. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  3095. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  3096. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  3097. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  3098. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  3099. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  3100. #ifdef CONFIG_X86_64
  3101. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  3102. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  3103. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  3104. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  3105. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  3106. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  3107. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  3108. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  3109. #endif
  3110. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
  3111. : "cc", "memory"
  3112. , R"bx", R"di", R"si"
  3113. #ifdef CONFIG_X86_64
  3114. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  3115. #endif
  3116. );
  3117. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
  3118. | (1 << VCPU_EXREG_PDPTR));
  3119. vcpu->arch.regs_dirty = 0;
  3120. get_debugreg(vcpu->arch.dr6, 6);
  3121. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  3122. if (vmx->rmode.irq.pending)
  3123. fixup_rmode_irq(vmx);
  3124. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  3125. vmx->launched = 1;
  3126. vmx_complete_interrupts(vmx);
  3127. }
  3128. #undef R
  3129. #undef Q
  3130. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  3131. {
  3132. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3133. if (vmx->vmcs) {
  3134. vcpu_clear(vmx);
  3135. free_vmcs(vmx->vmcs);
  3136. vmx->vmcs = NULL;
  3137. }
  3138. }
  3139. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  3140. {
  3141. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3142. spin_lock(&vmx_vpid_lock);
  3143. if (vmx->vpid != 0)
  3144. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  3145. spin_unlock(&vmx_vpid_lock);
  3146. vmx_free_vmcs(vcpu);
  3147. kfree(vmx->host_msrs);
  3148. kfree(vmx->guest_msrs);
  3149. kvm_vcpu_uninit(vcpu);
  3150. kmem_cache_free(kvm_vcpu_cache, vmx);
  3151. }
  3152. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  3153. {
  3154. int err;
  3155. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  3156. int cpu;
  3157. if (!vmx)
  3158. return ERR_PTR(-ENOMEM);
  3159. allocate_vpid(vmx);
  3160. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  3161. if (err)
  3162. goto free_vcpu;
  3163. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3164. if (!vmx->guest_msrs) {
  3165. err = -ENOMEM;
  3166. goto uninit_vcpu;
  3167. }
  3168. vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3169. if (!vmx->host_msrs)
  3170. goto free_guest_msrs;
  3171. vmx->vmcs = alloc_vmcs();
  3172. if (!vmx->vmcs)
  3173. goto free_msrs;
  3174. vmcs_clear(vmx->vmcs);
  3175. cpu = get_cpu();
  3176. vmx_vcpu_load(&vmx->vcpu, cpu);
  3177. err = vmx_vcpu_setup(vmx);
  3178. vmx_vcpu_put(&vmx->vcpu);
  3179. put_cpu();
  3180. if (err)
  3181. goto free_vmcs;
  3182. if (vm_need_virtualize_apic_accesses(kvm))
  3183. if (alloc_apic_access_page(kvm) != 0)
  3184. goto free_vmcs;
  3185. if (enable_ept)
  3186. if (alloc_identity_pagetable(kvm) != 0)
  3187. goto free_vmcs;
  3188. return &vmx->vcpu;
  3189. free_vmcs:
  3190. free_vmcs(vmx->vmcs);
  3191. free_msrs:
  3192. kfree(vmx->host_msrs);
  3193. free_guest_msrs:
  3194. kfree(vmx->guest_msrs);
  3195. uninit_vcpu:
  3196. kvm_vcpu_uninit(&vmx->vcpu);
  3197. free_vcpu:
  3198. kmem_cache_free(kvm_vcpu_cache, vmx);
  3199. return ERR_PTR(err);
  3200. }
  3201. static void __init vmx_check_processor_compat(void *rtn)
  3202. {
  3203. struct vmcs_config vmcs_conf;
  3204. *(int *)rtn = 0;
  3205. if (setup_vmcs_config(&vmcs_conf) < 0)
  3206. *(int *)rtn = -EIO;
  3207. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  3208. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  3209. smp_processor_id());
  3210. *(int *)rtn = -EIO;
  3211. }
  3212. }
  3213. static int get_ept_level(void)
  3214. {
  3215. return VMX_EPT_DEFAULT_GAW + 1;
  3216. }
  3217. static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
  3218. {
  3219. u64 ret;
  3220. /* For VT-d and EPT combination
  3221. * 1. MMIO: always map as UC
  3222. * 2. EPT with VT-d:
  3223. * a. VT-d without snooping control feature: can't guarantee the
  3224. * result, try to trust guest.
  3225. * b. VT-d with snooping control feature: snooping control feature of
  3226. * VT-d engine can guarantee the cache correctness. Just set it
  3227. * to WB to keep consistent with host. So the same as item 3.
  3228. * 3. EPT without VT-d: always map as WB and set IGMT=1 to keep
  3229. * consistent with host MTRR
  3230. */
  3231. if (is_mmio)
  3232. ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
  3233. else if (vcpu->kvm->arch.iommu_domain &&
  3234. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
  3235. ret = kvm_get_guest_memory_type(vcpu, gfn) <<
  3236. VMX_EPT_MT_EPTE_SHIFT;
  3237. else
  3238. ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
  3239. | VMX_EPT_IGMT_BIT;
  3240. return ret;
  3241. }
  3242. static struct kvm_x86_ops vmx_x86_ops = {
  3243. .cpu_has_kvm_support = cpu_has_kvm_support,
  3244. .disabled_by_bios = vmx_disabled_by_bios,
  3245. .hardware_setup = hardware_setup,
  3246. .hardware_unsetup = hardware_unsetup,
  3247. .check_processor_compatibility = vmx_check_processor_compat,
  3248. .hardware_enable = hardware_enable,
  3249. .hardware_disable = hardware_disable,
  3250. .cpu_has_accelerated_tpr = report_flexpriority,
  3251. .vcpu_create = vmx_create_vcpu,
  3252. .vcpu_free = vmx_free_vcpu,
  3253. .vcpu_reset = vmx_vcpu_reset,
  3254. .prepare_guest_switch = vmx_save_host_state,
  3255. .vcpu_load = vmx_vcpu_load,
  3256. .vcpu_put = vmx_vcpu_put,
  3257. .set_guest_debug = set_guest_debug,
  3258. .get_msr = vmx_get_msr,
  3259. .set_msr = vmx_set_msr,
  3260. .get_segment_base = vmx_get_segment_base,
  3261. .get_segment = vmx_get_segment,
  3262. .set_segment = vmx_set_segment,
  3263. .get_cpl = vmx_get_cpl,
  3264. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  3265. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  3266. .set_cr0 = vmx_set_cr0,
  3267. .set_cr3 = vmx_set_cr3,
  3268. .set_cr4 = vmx_set_cr4,
  3269. .set_efer = vmx_set_efer,
  3270. .get_idt = vmx_get_idt,
  3271. .set_idt = vmx_set_idt,
  3272. .get_gdt = vmx_get_gdt,
  3273. .set_gdt = vmx_set_gdt,
  3274. .cache_reg = vmx_cache_reg,
  3275. .get_rflags = vmx_get_rflags,
  3276. .set_rflags = vmx_set_rflags,
  3277. .tlb_flush = vmx_flush_tlb,
  3278. .run = vmx_vcpu_run,
  3279. .handle_exit = vmx_handle_exit,
  3280. .skip_emulated_instruction = skip_emulated_instruction,
  3281. .set_interrupt_shadow = vmx_set_interrupt_shadow,
  3282. .get_interrupt_shadow = vmx_get_interrupt_shadow,
  3283. .patch_hypercall = vmx_patch_hypercall,
  3284. .set_irq = vmx_inject_irq,
  3285. .set_nmi = vmx_inject_nmi,
  3286. .queue_exception = vmx_queue_exception,
  3287. .interrupt_allowed = vmx_interrupt_allowed,
  3288. .nmi_allowed = vmx_nmi_allowed,
  3289. .enable_nmi_window = enable_nmi_window,
  3290. .enable_irq_window = enable_irq_window,
  3291. .update_cr8_intercept = update_cr8_intercept,
  3292. .set_tss_addr = vmx_set_tss_addr,
  3293. .get_tdp_level = get_ept_level,
  3294. .get_mt_mask = vmx_get_mt_mask,
  3295. };
  3296. static int __init vmx_init(void)
  3297. {
  3298. int r;
  3299. vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
  3300. if (!vmx_io_bitmap_a)
  3301. return -ENOMEM;
  3302. vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
  3303. if (!vmx_io_bitmap_b) {
  3304. r = -ENOMEM;
  3305. goto out;
  3306. }
  3307. vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
  3308. if (!vmx_msr_bitmap_legacy) {
  3309. r = -ENOMEM;
  3310. goto out1;
  3311. }
  3312. vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
  3313. if (!vmx_msr_bitmap_longmode) {
  3314. r = -ENOMEM;
  3315. goto out2;
  3316. }
  3317. /*
  3318. * Allow direct access to the PC debug port (it is often used for I/O
  3319. * delays, but the vmexits simply slow things down).
  3320. */
  3321. memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
  3322. clear_bit(0x80, vmx_io_bitmap_a);
  3323. memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
  3324. memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
  3325. memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
  3326. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  3327. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
  3328. if (r)
  3329. goto out3;
  3330. vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
  3331. vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
  3332. vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
  3333. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
  3334. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
  3335. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
  3336. if (enable_ept) {
  3337. bypass_guest_pf = 0;
  3338. kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
  3339. VMX_EPT_WRITABLE_MASK);
  3340. kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
  3341. VMX_EPT_EXECUTABLE_MASK);
  3342. kvm_enable_tdp();
  3343. } else
  3344. kvm_disable_tdp();
  3345. if (bypass_guest_pf)
  3346. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  3347. ept_sync_global();
  3348. return 0;
  3349. out3:
  3350. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3351. out2:
  3352. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3353. out1:
  3354. free_page((unsigned long)vmx_io_bitmap_b);
  3355. out:
  3356. free_page((unsigned long)vmx_io_bitmap_a);
  3357. return r;
  3358. }
  3359. static void __exit vmx_exit(void)
  3360. {
  3361. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3362. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3363. free_page((unsigned long)vmx_io_bitmap_b);
  3364. free_page((unsigned long)vmx_io_bitmap_a);
  3365. kvm_exit();
  3366. }
  3367. module_init(vmx_init)
  3368. module_exit(vmx_exit)