main.c 47 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806
  1. /* Generic MTRR (Memory Type Range Register) driver.
  2. Copyright (C) 1997-2000 Richard Gooch
  3. Copyright (c) 2002 Patrick Mochel
  4. This library is free software; you can redistribute it and/or
  5. modify it under the terms of the GNU Library General Public
  6. License as published by the Free Software Foundation; either
  7. version 2 of the License, or (at your option) any later version.
  8. This library is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. Library General Public License for more details.
  12. You should have received a copy of the GNU Library General Public
  13. License along with this library; if not, write to the Free
  14. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  15. Richard Gooch may be reached by email at rgooch@atnf.csiro.au
  16. The postal address is:
  17. Richard Gooch, c/o ATNF, P. O. Box 76, Epping, N.S.W., 2121, Australia.
  18. Source: "Pentium Pro Family Developer's Manual, Volume 3:
  19. Operating System Writer's Guide" (Intel document number 242692),
  20. section 11.11.7
  21. This was cleaned and made readable by Patrick Mochel <mochel@osdl.org>
  22. on 6-7 March 2002.
  23. Source: Intel Architecture Software Developers Manual, Volume 3:
  24. System Programming Guide; Section 9.11. (1997 edition - PPro).
  25. */
  26. #include <linux/module.h>
  27. #include <linux/init.h>
  28. #include <linux/pci.h>
  29. #include <linux/smp.h>
  30. #include <linux/cpu.h>
  31. #include <linux/mutex.h>
  32. #include <linux/sort.h>
  33. #include <asm/e820.h>
  34. #include <asm/mtrr.h>
  35. #include <asm/uaccess.h>
  36. #include <asm/processor.h>
  37. #include <asm/msr.h>
  38. #include <asm/kvm_para.h>
  39. #include "mtrr.h"
  40. u32 num_var_ranges = 0;
  41. unsigned int mtrr_usage_table[MAX_VAR_RANGES];
  42. static DEFINE_MUTEX(mtrr_mutex);
  43. u64 size_or_mask, size_and_mask;
  44. static struct mtrr_ops * mtrr_ops[X86_VENDOR_NUM] = {};
  45. struct mtrr_ops * mtrr_if = NULL;
  46. static void set_mtrr(unsigned int reg, unsigned long base,
  47. unsigned long size, mtrr_type type);
  48. void set_mtrr_ops(struct mtrr_ops * ops)
  49. {
  50. if (ops->vendor && ops->vendor < X86_VENDOR_NUM)
  51. mtrr_ops[ops->vendor] = ops;
  52. }
  53. /* Returns non-zero if we have the write-combining memory type */
  54. static int have_wrcomb(void)
  55. {
  56. struct pci_dev *dev;
  57. u8 rev;
  58. if ((dev = pci_get_class(PCI_CLASS_BRIDGE_HOST << 8, NULL)) != NULL) {
  59. /* ServerWorks LE chipsets < rev 6 have problems with write-combining
  60. Don't allow it and leave room for other chipsets to be tagged */
  61. if (dev->vendor == PCI_VENDOR_ID_SERVERWORKS &&
  62. dev->device == PCI_DEVICE_ID_SERVERWORKS_LE) {
  63. pci_read_config_byte(dev, PCI_CLASS_REVISION, &rev);
  64. if (rev <= 5) {
  65. printk(KERN_INFO "mtrr: Serverworks LE rev < 6 detected. Write-combining disabled.\n");
  66. pci_dev_put(dev);
  67. return 0;
  68. }
  69. }
  70. /* Intel 450NX errata # 23. Non ascending cacheline evictions to
  71. write combining memory may resulting in data corruption */
  72. if (dev->vendor == PCI_VENDOR_ID_INTEL &&
  73. dev->device == PCI_DEVICE_ID_INTEL_82451NX) {
  74. printk(KERN_INFO "mtrr: Intel 450NX MMC detected. Write-combining disabled.\n");
  75. pci_dev_put(dev);
  76. return 0;
  77. }
  78. pci_dev_put(dev);
  79. }
  80. return (mtrr_if->have_wrcomb ? mtrr_if->have_wrcomb() : 0);
  81. }
  82. /* This function returns the number of variable MTRRs */
  83. static void __init set_num_var_ranges(void)
  84. {
  85. unsigned long config = 0, dummy;
  86. if (use_intel()) {
  87. rdmsr(MTRRcap_MSR, config, dummy);
  88. } else if (is_cpu(AMD))
  89. config = 2;
  90. else if (is_cpu(CYRIX) || is_cpu(CENTAUR))
  91. config = 8;
  92. num_var_ranges = config & 0xff;
  93. }
  94. static void __init init_table(void)
  95. {
  96. int i, max;
  97. max = num_var_ranges;
  98. for (i = 0; i < max; i++)
  99. mtrr_usage_table[i] = 1;
  100. }
  101. struct set_mtrr_data {
  102. atomic_t count;
  103. atomic_t gate;
  104. unsigned long smp_base;
  105. unsigned long smp_size;
  106. unsigned int smp_reg;
  107. mtrr_type smp_type;
  108. };
  109. static void ipi_handler(void *info)
  110. /* [SUMMARY] Synchronisation handler. Executed by "other" CPUs.
  111. [RETURNS] Nothing.
  112. */
  113. {
  114. #ifdef CONFIG_SMP
  115. struct set_mtrr_data *data = info;
  116. unsigned long flags;
  117. local_irq_save(flags);
  118. atomic_dec(&data->count);
  119. while(!atomic_read(&data->gate))
  120. cpu_relax();
  121. /* The master has cleared me to execute */
  122. if (data->smp_reg != ~0U)
  123. mtrr_if->set(data->smp_reg, data->smp_base,
  124. data->smp_size, data->smp_type);
  125. else
  126. mtrr_if->set_all();
  127. atomic_dec(&data->count);
  128. while(atomic_read(&data->gate))
  129. cpu_relax();
  130. atomic_dec(&data->count);
  131. local_irq_restore(flags);
  132. #endif
  133. }
  134. static inline int types_compatible(mtrr_type type1, mtrr_type type2) {
  135. return type1 == MTRR_TYPE_UNCACHABLE ||
  136. type2 == MTRR_TYPE_UNCACHABLE ||
  137. (type1 == MTRR_TYPE_WRTHROUGH && type2 == MTRR_TYPE_WRBACK) ||
  138. (type1 == MTRR_TYPE_WRBACK && type2 == MTRR_TYPE_WRTHROUGH);
  139. }
  140. /**
  141. * set_mtrr - update mtrrs on all processors
  142. * @reg: mtrr in question
  143. * @base: mtrr base
  144. * @size: mtrr size
  145. * @type: mtrr type
  146. *
  147. * This is kinda tricky, but fortunately, Intel spelled it out for us cleanly:
  148. *
  149. * 1. Send IPI to do the following:
  150. * 2. Disable Interrupts
  151. * 3. Wait for all procs to do so
  152. * 4. Enter no-fill cache mode
  153. * 5. Flush caches
  154. * 6. Clear PGE bit
  155. * 7. Flush all TLBs
  156. * 8. Disable all range registers
  157. * 9. Update the MTRRs
  158. * 10. Enable all range registers
  159. * 11. Flush all TLBs and caches again
  160. * 12. Enter normal cache mode and reenable caching
  161. * 13. Set PGE
  162. * 14. Wait for buddies to catch up
  163. * 15. Enable interrupts.
  164. *
  165. * What does that mean for us? Well, first we set data.count to the number
  166. * of CPUs. As each CPU disables interrupts, it'll decrement it once. We wait
  167. * until it hits 0 and proceed. We set the data.gate flag and reset data.count.
  168. * Meanwhile, they are waiting for that flag to be set. Once it's set, each
  169. * CPU goes through the transition of updating MTRRs. The CPU vendors may each do it
  170. * differently, so we call mtrr_if->set() callback and let them take care of it.
  171. * When they're done, they again decrement data->count and wait for data.gate to
  172. * be reset.
  173. * When we finish, we wait for data.count to hit 0 and toggle the data.gate flag.
  174. * Everyone then enables interrupts and we all continue on.
  175. *
  176. * Note that the mechanism is the same for UP systems, too; all the SMP stuff
  177. * becomes nops.
  178. */
  179. static void set_mtrr(unsigned int reg, unsigned long base,
  180. unsigned long size, mtrr_type type)
  181. {
  182. struct set_mtrr_data data;
  183. unsigned long flags;
  184. data.smp_reg = reg;
  185. data.smp_base = base;
  186. data.smp_size = size;
  187. data.smp_type = type;
  188. atomic_set(&data.count, num_booting_cpus() - 1);
  189. /* make sure data.count is visible before unleashing other CPUs */
  190. smp_wmb();
  191. atomic_set(&data.gate,0);
  192. /* Start the ball rolling on other CPUs */
  193. if (smp_call_function(ipi_handler, &data, 0) != 0)
  194. panic("mtrr: timed out waiting for other CPUs\n");
  195. local_irq_save(flags);
  196. while(atomic_read(&data.count))
  197. cpu_relax();
  198. /* ok, reset count and toggle gate */
  199. atomic_set(&data.count, num_booting_cpus() - 1);
  200. smp_wmb();
  201. atomic_set(&data.gate,1);
  202. /* do our MTRR business */
  203. /* HACK!
  204. * We use this same function to initialize the mtrrs on boot.
  205. * The state of the boot cpu's mtrrs has been saved, and we want
  206. * to replicate across all the APs.
  207. * If we're doing that @reg is set to something special...
  208. */
  209. if (reg != ~0U)
  210. mtrr_if->set(reg,base,size,type);
  211. /* wait for the others */
  212. while(atomic_read(&data.count))
  213. cpu_relax();
  214. atomic_set(&data.count, num_booting_cpus() - 1);
  215. smp_wmb();
  216. atomic_set(&data.gate,0);
  217. /*
  218. * Wait here for everyone to have seen the gate change
  219. * So we're the last ones to touch 'data'
  220. */
  221. while(atomic_read(&data.count))
  222. cpu_relax();
  223. local_irq_restore(flags);
  224. }
  225. /**
  226. * mtrr_add_page - Add a memory type region
  227. * @base: Physical base address of region in pages (in units of 4 kB!)
  228. * @size: Physical size of region in pages (4 kB)
  229. * @type: Type of MTRR desired
  230. * @increment: If this is true do usage counting on the region
  231. *
  232. * Memory type region registers control the caching on newer Intel and
  233. * non Intel processors. This function allows drivers to request an
  234. * MTRR is added. The details and hardware specifics of each processor's
  235. * implementation are hidden from the caller, but nevertheless the
  236. * caller should expect to need to provide a power of two size on an
  237. * equivalent power of two boundary.
  238. *
  239. * If the region cannot be added either because all regions are in use
  240. * or the CPU cannot support it a negative value is returned. On success
  241. * the register number for this entry is returned, but should be treated
  242. * as a cookie only.
  243. *
  244. * On a multiprocessor machine the changes are made to all processors.
  245. * This is required on x86 by the Intel processors.
  246. *
  247. * The available types are
  248. *
  249. * %MTRR_TYPE_UNCACHABLE - No caching
  250. *
  251. * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
  252. *
  253. * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
  254. *
  255. * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
  256. *
  257. * BUGS: Needs a quiet flag for the cases where drivers do not mind
  258. * failures and do not wish system log messages to be sent.
  259. */
  260. int mtrr_add_page(unsigned long base, unsigned long size,
  261. unsigned int type, bool increment)
  262. {
  263. int i, replace, error;
  264. mtrr_type ltype;
  265. unsigned long lbase, lsize;
  266. if (!mtrr_if)
  267. return -ENXIO;
  268. if ((error = mtrr_if->validate_add_page(base,size,type)))
  269. return error;
  270. if (type >= MTRR_NUM_TYPES) {
  271. printk(KERN_WARNING "mtrr: type: %u invalid\n", type);
  272. return -EINVAL;
  273. }
  274. /* If the type is WC, check that this processor supports it */
  275. if ((type == MTRR_TYPE_WRCOMB) && !have_wrcomb()) {
  276. printk(KERN_WARNING
  277. "mtrr: your processor doesn't support write-combining\n");
  278. return -ENOSYS;
  279. }
  280. if (!size) {
  281. printk(KERN_WARNING "mtrr: zero sized request\n");
  282. return -EINVAL;
  283. }
  284. if (base & size_or_mask || size & size_or_mask) {
  285. printk(KERN_WARNING "mtrr: base or size exceeds the MTRR width\n");
  286. return -EINVAL;
  287. }
  288. error = -EINVAL;
  289. replace = -1;
  290. /* No CPU hotplug when we change MTRR entries */
  291. get_online_cpus();
  292. /* Search for existing MTRR */
  293. mutex_lock(&mtrr_mutex);
  294. for (i = 0; i < num_var_ranges; ++i) {
  295. mtrr_if->get(i, &lbase, &lsize, &ltype);
  296. if (!lsize || base > lbase + lsize - 1 || base + size - 1 < lbase)
  297. continue;
  298. /* At this point we know there is some kind of overlap/enclosure */
  299. if (base < lbase || base + size - 1 > lbase + lsize - 1) {
  300. if (base <= lbase && base + size - 1 >= lbase + lsize - 1) {
  301. /* New region encloses an existing region */
  302. if (type == ltype) {
  303. replace = replace == -1 ? i : -2;
  304. continue;
  305. }
  306. else if (types_compatible(type, ltype))
  307. continue;
  308. }
  309. printk(KERN_WARNING
  310. "mtrr: 0x%lx000,0x%lx000 overlaps existing"
  311. " 0x%lx000,0x%lx000\n", base, size, lbase,
  312. lsize);
  313. goto out;
  314. }
  315. /* New region is enclosed by an existing region */
  316. if (ltype != type) {
  317. if (types_compatible(type, ltype))
  318. continue;
  319. printk (KERN_WARNING "mtrr: type mismatch for %lx000,%lx000 old: %s new: %s\n",
  320. base, size, mtrr_attrib_to_str(ltype),
  321. mtrr_attrib_to_str(type));
  322. goto out;
  323. }
  324. if (increment)
  325. ++mtrr_usage_table[i];
  326. error = i;
  327. goto out;
  328. }
  329. /* Search for an empty MTRR */
  330. i = mtrr_if->get_free_region(base, size, replace);
  331. if (i >= 0) {
  332. set_mtrr(i, base, size, type);
  333. if (likely(replace < 0)) {
  334. mtrr_usage_table[i] = 1;
  335. } else {
  336. mtrr_usage_table[i] = mtrr_usage_table[replace];
  337. if (increment)
  338. mtrr_usage_table[i]++;
  339. if (unlikely(replace != i)) {
  340. set_mtrr(replace, 0, 0, 0);
  341. mtrr_usage_table[replace] = 0;
  342. }
  343. }
  344. } else
  345. printk(KERN_INFO "mtrr: no more MTRRs available\n");
  346. error = i;
  347. out:
  348. mutex_unlock(&mtrr_mutex);
  349. put_online_cpus();
  350. return error;
  351. }
  352. static int mtrr_check(unsigned long base, unsigned long size)
  353. {
  354. if ((base & (PAGE_SIZE - 1)) || (size & (PAGE_SIZE - 1))) {
  355. printk(KERN_WARNING
  356. "mtrr: size and base must be multiples of 4 kiB\n");
  357. printk(KERN_DEBUG
  358. "mtrr: size: 0x%lx base: 0x%lx\n", size, base);
  359. dump_stack();
  360. return -1;
  361. }
  362. return 0;
  363. }
  364. /**
  365. * mtrr_add - Add a memory type region
  366. * @base: Physical base address of region
  367. * @size: Physical size of region
  368. * @type: Type of MTRR desired
  369. * @increment: If this is true do usage counting on the region
  370. *
  371. * Memory type region registers control the caching on newer Intel and
  372. * non Intel processors. This function allows drivers to request an
  373. * MTRR is added. The details and hardware specifics of each processor's
  374. * implementation are hidden from the caller, but nevertheless the
  375. * caller should expect to need to provide a power of two size on an
  376. * equivalent power of two boundary.
  377. *
  378. * If the region cannot be added either because all regions are in use
  379. * or the CPU cannot support it a negative value is returned. On success
  380. * the register number for this entry is returned, but should be treated
  381. * as a cookie only.
  382. *
  383. * On a multiprocessor machine the changes are made to all processors.
  384. * This is required on x86 by the Intel processors.
  385. *
  386. * The available types are
  387. *
  388. * %MTRR_TYPE_UNCACHABLE - No caching
  389. *
  390. * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
  391. *
  392. * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
  393. *
  394. * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
  395. *
  396. * BUGS: Needs a quiet flag for the cases where drivers do not mind
  397. * failures and do not wish system log messages to be sent.
  398. */
  399. int
  400. mtrr_add(unsigned long base, unsigned long size, unsigned int type,
  401. bool increment)
  402. {
  403. if (mtrr_check(base, size))
  404. return -EINVAL;
  405. return mtrr_add_page(base >> PAGE_SHIFT, size >> PAGE_SHIFT, type,
  406. increment);
  407. }
  408. /**
  409. * mtrr_del_page - delete a memory type region
  410. * @reg: Register returned by mtrr_add
  411. * @base: Physical base address
  412. * @size: Size of region
  413. *
  414. * If register is supplied then base and size are ignored. This is
  415. * how drivers should call it.
  416. *
  417. * Releases an MTRR region. If the usage count drops to zero the
  418. * register is freed and the region returns to default state.
  419. * On success the register is returned, on failure a negative error
  420. * code.
  421. */
  422. int mtrr_del_page(int reg, unsigned long base, unsigned long size)
  423. {
  424. int i, max;
  425. mtrr_type ltype;
  426. unsigned long lbase, lsize;
  427. int error = -EINVAL;
  428. if (!mtrr_if)
  429. return -ENXIO;
  430. max = num_var_ranges;
  431. /* No CPU hotplug when we change MTRR entries */
  432. get_online_cpus();
  433. mutex_lock(&mtrr_mutex);
  434. if (reg < 0) {
  435. /* Search for existing MTRR */
  436. for (i = 0; i < max; ++i) {
  437. mtrr_if->get(i, &lbase, &lsize, &ltype);
  438. if (lbase == base && lsize == size) {
  439. reg = i;
  440. break;
  441. }
  442. }
  443. if (reg < 0) {
  444. printk(KERN_DEBUG "mtrr: no MTRR for %lx000,%lx000 found\n", base,
  445. size);
  446. goto out;
  447. }
  448. }
  449. if (reg >= max) {
  450. printk(KERN_WARNING "mtrr: register: %d too big\n", reg);
  451. goto out;
  452. }
  453. mtrr_if->get(reg, &lbase, &lsize, &ltype);
  454. if (lsize < 1) {
  455. printk(KERN_WARNING "mtrr: MTRR %d not used\n", reg);
  456. goto out;
  457. }
  458. if (mtrr_usage_table[reg] < 1) {
  459. printk(KERN_WARNING "mtrr: reg: %d has count=0\n", reg);
  460. goto out;
  461. }
  462. if (--mtrr_usage_table[reg] < 1)
  463. set_mtrr(reg, 0, 0, 0);
  464. error = reg;
  465. out:
  466. mutex_unlock(&mtrr_mutex);
  467. put_online_cpus();
  468. return error;
  469. }
  470. /**
  471. * mtrr_del - delete a memory type region
  472. * @reg: Register returned by mtrr_add
  473. * @base: Physical base address
  474. * @size: Size of region
  475. *
  476. * If register is supplied then base and size are ignored. This is
  477. * how drivers should call it.
  478. *
  479. * Releases an MTRR region. If the usage count drops to zero the
  480. * register is freed and the region returns to default state.
  481. * On success the register is returned, on failure a negative error
  482. * code.
  483. */
  484. int
  485. mtrr_del(int reg, unsigned long base, unsigned long size)
  486. {
  487. if (mtrr_check(base, size))
  488. return -EINVAL;
  489. return mtrr_del_page(reg, base >> PAGE_SHIFT, size >> PAGE_SHIFT);
  490. }
  491. EXPORT_SYMBOL(mtrr_add);
  492. EXPORT_SYMBOL(mtrr_del);
  493. /* HACK ALERT!
  494. * These should be called implicitly, but we can't yet until all the initcall
  495. * stuff is done...
  496. */
  497. static void __init init_ifs(void)
  498. {
  499. #ifndef CONFIG_X86_64
  500. amd_init_mtrr();
  501. cyrix_init_mtrr();
  502. centaur_init_mtrr();
  503. #endif
  504. }
  505. /* The suspend/resume methods are only for CPU without MTRR. CPU using generic
  506. * MTRR driver doesn't require this
  507. */
  508. struct mtrr_value {
  509. mtrr_type ltype;
  510. unsigned long lbase;
  511. unsigned long lsize;
  512. };
  513. static struct mtrr_value mtrr_state[MAX_VAR_RANGES];
  514. static int mtrr_save(struct sys_device * sysdev, pm_message_t state)
  515. {
  516. int i;
  517. for (i = 0; i < num_var_ranges; i++) {
  518. mtrr_if->get(i,
  519. &mtrr_state[i].lbase,
  520. &mtrr_state[i].lsize,
  521. &mtrr_state[i].ltype);
  522. }
  523. return 0;
  524. }
  525. static int mtrr_restore(struct sys_device * sysdev)
  526. {
  527. int i;
  528. for (i = 0; i < num_var_ranges; i++) {
  529. if (mtrr_state[i].lsize)
  530. set_mtrr(i,
  531. mtrr_state[i].lbase,
  532. mtrr_state[i].lsize,
  533. mtrr_state[i].ltype);
  534. }
  535. return 0;
  536. }
  537. static struct sysdev_driver mtrr_sysdev_driver = {
  538. .suspend = mtrr_save,
  539. .resume = mtrr_restore,
  540. };
  541. /* should be related to MTRR_VAR_RANGES nums */
  542. #define RANGE_NUM 256
  543. struct res_range {
  544. unsigned long start;
  545. unsigned long end;
  546. };
  547. static int __init
  548. add_range(struct res_range *range, int nr_range, unsigned long start,
  549. unsigned long end)
  550. {
  551. /* out of slots */
  552. if (nr_range >= RANGE_NUM)
  553. return nr_range;
  554. range[nr_range].start = start;
  555. range[nr_range].end = end;
  556. nr_range++;
  557. return nr_range;
  558. }
  559. static int __init
  560. add_range_with_merge(struct res_range *range, int nr_range, unsigned long start,
  561. unsigned long end)
  562. {
  563. int i;
  564. /* try to merge it with old one */
  565. for (i = 0; i < nr_range; i++) {
  566. unsigned long final_start, final_end;
  567. unsigned long common_start, common_end;
  568. if (!range[i].end)
  569. continue;
  570. common_start = max(range[i].start, start);
  571. common_end = min(range[i].end, end);
  572. if (common_start > common_end + 1)
  573. continue;
  574. final_start = min(range[i].start, start);
  575. final_end = max(range[i].end, end);
  576. range[i].start = final_start;
  577. range[i].end = final_end;
  578. return nr_range;
  579. }
  580. /* need to add that */
  581. return add_range(range, nr_range, start, end);
  582. }
  583. static void __init
  584. subtract_range(struct res_range *range, unsigned long start, unsigned long end)
  585. {
  586. int i, j;
  587. for (j = 0; j < RANGE_NUM; j++) {
  588. if (!range[j].end)
  589. continue;
  590. if (start <= range[j].start && end >= range[j].end) {
  591. range[j].start = 0;
  592. range[j].end = 0;
  593. continue;
  594. }
  595. if (start <= range[j].start && end < range[j].end &&
  596. range[j].start < end + 1) {
  597. range[j].start = end + 1;
  598. continue;
  599. }
  600. if (start > range[j].start && end >= range[j].end &&
  601. range[j].end > start - 1) {
  602. range[j].end = start - 1;
  603. continue;
  604. }
  605. if (start > range[j].start && end < range[j].end) {
  606. /* find the new spare */
  607. for (i = 0; i < RANGE_NUM; i++) {
  608. if (range[i].end == 0)
  609. break;
  610. }
  611. if (i < RANGE_NUM) {
  612. range[i].end = range[j].end;
  613. range[i].start = end + 1;
  614. } else {
  615. printk(KERN_ERR "run of slot in ranges\n");
  616. }
  617. range[j].end = start - 1;
  618. continue;
  619. }
  620. }
  621. }
  622. static int __init cmp_range(const void *x1, const void *x2)
  623. {
  624. const struct res_range *r1 = x1;
  625. const struct res_range *r2 = x2;
  626. long start1, start2;
  627. start1 = r1->start;
  628. start2 = r2->start;
  629. return start1 - start2;
  630. }
  631. struct var_mtrr_range_state {
  632. unsigned long base_pfn;
  633. unsigned long size_pfn;
  634. mtrr_type type;
  635. };
  636. static struct var_mtrr_range_state __initdata range_state[RANGE_NUM];
  637. static int __initdata debug_print;
  638. static int __init
  639. x86_get_mtrr_mem_range(struct res_range *range, int nr_range,
  640. unsigned long extra_remove_base,
  641. unsigned long extra_remove_size)
  642. {
  643. unsigned long i, base, size;
  644. mtrr_type type;
  645. for (i = 0; i < num_var_ranges; i++) {
  646. type = range_state[i].type;
  647. if (type != MTRR_TYPE_WRBACK)
  648. continue;
  649. base = range_state[i].base_pfn;
  650. size = range_state[i].size_pfn;
  651. nr_range = add_range_with_merge(range, nr_range, base,
  652. base + size - 1);
  653. }
  654. if (debug_print) {
  655. printk(KERN_DEBUG "After WB checking\n");
  656. for (i = 0; i < nr_range; i++)
  657. printk(KERN_DEBUG "MTRR MAP PFN: %016lx - %016lx\n",
  658. range[i].start, range[i].end + 1);
  659. }
  660. /* take out UC ranges */
  661. for (i = 0; i < num_var_ranges; i++) {
  662. type = range_state[i].type;
  663. if (type != MTRR_TYPE_UNCACHABLE &&
  664. type != MTRR_TYPE_WRPROT)
  665. continue;
  666. size = range_state[i].size_pfn;
  667. if (!size)
  668. continue;
  669. base = range_state[i].base_pfn;
  670. subtract_range(range, base, base + size - 1);
  671. }
  672. if (extra_remove_size)
  673. subtract_range(range, extra_remove_base,
  674. extra_remove_base + extra_remove_size - 1);
  675. /* get new range num */
  676. nr_range = 0;
  677. for (i = 0; i < RANGE_NUM; i++) {
  678. if (!range[i].end)
  679. continue;
  680. nr_range++;
  681. }
  682. if (debug_print) {
  683. printk(KERN_DEBUG "After UC checking\n");
  684. for (i = 0; i < nr_range; i++)
  685. printk(KERN_DEBUG "MTRR MAP PFN: %016lx - %016lx\n",
  686. range[i].start, range[i].end + 1);
  687. }
  688. /* sort the ranges */
  689. sort(range, nr_range, sizeof(struct res_range), cmp_range, NULL);
  690. if (debug_print) {
  691. printk(KERN_DEBUG "After sorting\n");
  692. for (i = 0; i < nr_range; i++)
  693. printk(KERN_DEBUG "MTRR MAP PFN: %016lx - %016lx\n",
  694. range[i].start, range[i].end + 1);
  695. }
  696. /* clear those is not used */
  697. for (i = nr_range; i < RANGE_NUM; i++)
  698. memset(&range[i], 0, sizeof(range[i]));
  699. return nr_range;
  700. }
  701. static struct res_range __initdata range[RANGE_NUM];
  702. #ifdef CONFIG_MTRR_SANITIZER
  703. static unsigned long __init sum_ranges(struct res_range *range, int nr_range)
  704. {
  705. unsigned long sum;
  706. int i;
  707. sum = 0;
  708. for (i = 0; i < nr_range; i++)
  709. sum += range[i].end + 1 - range[i].start;
  710. return sum;
  711. }
  712. static int enable_mtrr_cleanup __initdata =
  713. CONFIG_MTRR_SANITIZER_ENABLE_DEFAULT;
  714. static int __init disable_mtrr_cleanup_setup(char *str)
  715. {
  716. enable_mtrr_cleanup = 0;
  717. return 0;
  718. }
  719. early_param("disable_mtrr_cleanup", disable_mtrr_cleanup_setup);
  720. static int __init enable_mtrr_cleanup_setup(char *str)
  721. {
  722. enable_mtrr_cleanup = 1;
  723. return 0;
  724. }
  725. early_param("enable_mtrr_cleanup", enable_mtrr_cleanup_setup);
  726. static int __init mtrr_cleanup_debug_setup(char *str)
  727. {
  728. debug_print = 1;
  729. return 0;
  730. }
  731. early_param("mtrr_cleanup_debug", mtrr_cleanup_debug_setup);
  732. struct var_mtrr_state {
  733. unsigned long range_startk;
  734. unsigned long range_sizek;
  735. unsigned long chunk_sizek;
  736. unsigned long gran_sizek;
  737. unsigned int reg;
  738. };
  739. static void __init
  740. set_var_mtrr(unsigned int reg, unsigned long basek, unsigned long sizek,
  741. unsigned char type, unsigned int address_bits)
  742. {
  743. u32 base_lo, base_hi, mask_lo, mask_hi;
  744. u64 base, mask;
  745. if (!sizek) {
  746. fill_mtrr_var_range(reg, 0, 0, 0, 0);
  747. return;
  748. }
  749. mask = (1ULL << address_bits) - 1;
  750. mask &= ~((((u64)sizek) << 10) - 1);
  751. base = ((u64)basek) << 10;
  752. base |= type;
  753. mask |= 0x800;
  754. base_lo = base & ((1ULL<<32) - 1);
  755. base_hi = base >> 32;
  756. mask_lo = mask & ((1ULL<<32) - 1);
  757. mask_hi = mask >> 32;
  758. fill_mtrr_var_range(reg, base_lo, base_hi, mask_lo, mask_hi);
  759. }
  760. static void __init
  761. save_var_mtrr(unsigned int reg, unsigned long basek, unsigned long sizek,
  762. unsigned char type)
  763. {
  764. range_state[reg].base_pfn = basek >> (PAGE_SHIFT - 10);
  765. range_state[reg].size_pfn = sizek >> (PAGE_SHIFT - 10);
  766. range_state[reg].type = type;
  767. }
  768. static void __init
  769. set_var_mtrr_all(unsigned int address_bits)
  770. {
  771. unsigned long basek, sizek;
  772. unsigned char type;
  773. unsigned int reg;
  774. for (reg = 0; reg < num_var_ranges; reg++) {
  775. basek = range_state[reg].base_pfn << (PAGE_SHIFT - 10);
  776. sizek = range_state[reg].size_pfn << (PAGE_SHIFT - 10);
  777. type = range_state[reg].type;
  778. set_var_mtrr(reg, basek, sizek, type, address_bits);
  779. }
  780. }
  781. static unsigned long to_size_factor(unsigned long sizek, char *factorp)
  782. {
  783. char factor;
  784. unsigned long base = sizek;
  785. if (base & ((1<<10) - 1)) {
  786. /* not MB alignment */
  787. factor = 'K';
  788. } else if (base & ((1<<20) - 1)){
  789. factor = 'M';
  790. base >>= 10;
  791. } else {
  792. factor = 'G';
  793. base >>= 20;
  794. }
  795. *factorp = factor;
  796. return base;
  797. }
  798. static unsigned int __init
  799. range_to_mtrr(unsigned int reg, unsigned long range_startk,
  800. unsigned long range_sizek, unsigned char type)
  801. {
  802. if (!range_sizek || (reg >= num_var_ranges))
  803. return reg;
  804. while (range_sizek) {
  805. unsigned long max_align, align;
  806. unsigned long sizek;
  807. /* Compute the maximum size I can make a range */
  808. if (range_startk)
  809. max_align = ffs(range_startk) - 1;
  810. else
  811. max_align = 32;
  812. align = fls(range_sizek) - 1;
  813. if (align > max_align)
  814. align = max_align;
  815. sizek = 1 << align;
  816. if (debug_print) {
  817. char start_factor = 'K', size_factor = 'K';
  818. unsigned long start_base, size_base;
  819. start_base = to_size_factor(range_startk, &start_factor),
  820. size_base = to_size_factor(sizek, &size_factor),
  821. printk(KERN_DEBUG "Setting variable MTRR %d, "
  822. "base: %ld%cB, range: %ld%cB, type %s\n",
  823. reg, start_base, start_factor,
  824. size_base, size_factor,
  825. (type == MTRR_TYPE_UNCACHABLE)?"UC":
  826. ((type == MTRR_TYPE_WRBACK)?"WB":"Other")
  827. );
  828. }
  829. save_var_mtrr(reg++, range_startk, sizek, type);
  830. range_startk += sizek;
  831. range_sizek -= sizek;
  832. if (reg >= num_var_ranges)
  833. break;
  834. }
  835. return reg;
  836. }
  837. static unsigned __init
  838. range_to_mtrr_with_hole(struct var_mtrr_state *state, unsigned long basek,
  839. unsigned long sizek)
  840. {
  841. unsigned long hole_basek, hole_sizek;
  842. unsigned long second_basek, second_sizek;
  843. unsigned long range0_basek, range0_sizek;
  844. unsigned long range_basek, range_sizek;
  845. unsigned long chunk_sizek;
  846. unsigned long gran_sizek;
  847. hole_basek = 0;
  848. hole_sizek = 0;
  849. second_basek = 0;
  850. second_sizek = 0;
  851. chunk_sizek = state->chunk_sizek;
  852. gran_sizek = state->gran_sizek;
  853. /* align with gran size, prevent small block used up MTRRs */
  854. range_basek = ALIGN(state->range_startk, gran_sizek);
  855. if ((range_basek > basek) && basek)
  856. return second_sizek;
  857. state->range_sizek -= (range_basek - state->range_startk);
  858. range_sizek = ALIGN(state->range_sizek, gran_sizek);
  859. while (range_sizek > state->range_sizek) {
  860. range_sizek -= gran_sizek;
  861. if (!range_sizek)
  862. return 0;
  863. }
  864. state->range_sizek = range_sizek;
  865. /* try to append some small hole */
  866. range0_basek = state->range_startk;
  867. range0_sizek = ALIGN(state->range_sizek, chunk_sizek);
  868. /* no increase */
  869. if (range0_sizek == state->range_sizek) {
  870. if (debug_print)
  871. printk(KERN_DEBUG "rangeX: %016lx - %016lx\n",
  872. range0_basek<<10,
  873. (range0_basek + state->range_sizek)<<10);
  874. state->reg = range_to_mtrr(state->reg, range0_basek,
  875. state->range_sizek, MTRR_TYPE_WRBACK);
  876. return 0;
  877. }
  878. /* only cut back, when it is not the last */
  879. if (sizek) {
  880. while (range0_basek + range0_sizek > (basek + sizek)) {
  881. if (range0_sizek >= chunk_sizek)
  882. range0_sizek -= chunk_sizek;
  883. else
  884. range0_sizek = 0;
  885. if (!range0_sizek)
  886. break;
  887. }
  888. }
  889. second_try:
  890. range_basek = range0_basek + range0_sizek;
  891. /* one hole in the middle */
  892. if (range_basek > basek && range_basek <= (basek + sizek))
  893. second_sizek = range_basek - basek;
  894. if (range0_sizek > state->range_sizek) {
  895. /* one hole in middle or at end */
  896. hole_sizek = range0_sizek - state->range_sizek - second_sizek;
  897. /* hole size should be less than half of range0 size */
  898. if (hole_sizek >= (range0_sizek >> 1) &&
  899. range0_sizek >= chunk_sizek) {
  900. range0_sizek -= chunk_sizek;
  901. second_sizek = 0;
  902. hole_sizek = 0;
  903. goto second_try;
  904. }
  905. }
  906. if (range0_sizek) {
  907. if (debug_print)
  908. printk(KERN_DEBUG "range0: %016lx - %016lx\n",
  909. range0_basek<<10,
  910. (range0_basek + range0_sizek)<<10);
  911. state->reg = range_to_mtrr(state->reg, range0_basek,
  912. range0_sizek, MTRR_TYPE_WRBACK);
  913. }
  914. if (range0_sizek < state->range_sizek) {
  915. /* need to handle left over */
  916. range_sizek = state->range_sizek - range0_sizek;
  917. if (debug_print)
  918. printk(KERN_DEBUG "range: %016lx - %016lx\n",
  919. range_basek<<10,
  920. (range_basek + range_sizek)<<10);
  921. state->reg = range_to_mtrr(state->reg, range_basek,
  922. range_sizek, MTRR_TYPE_WRBACK);
  923. }
  924. if (hole_sizek) {
  925. hole_basek = range_basek - hole_sizek - second_sizek;
  926. if (debug_print)
  927. printk(KERN_DEBUG "hole: %016lx - %016lx\n",
  928. hole_basek<<10,
  929. (hole_basek + hole_sizek)<<10);
  930. state->reg = range_to_mtrr(state->reg, hole_basek,
  931. hole_sizek, MTRR_TYPE_UNCACHABLE);
  932. }
  933. return second_sizek;
  934. }
  935. static void __init
  936. set_var_mtrr_range(struct var_mtrr_state *state, unsigned long base_pfn,
  937. unsigned long size_pfn)
  938. {
  939. unsigned long basek, sizek;
  940. unsigned long second_sizek = 0;
  941. if (state->reg >= num_var_ranges)
  942. return;
  943. basek = base_pfn << (PAGE_SHIFT - 10);
  944. sizek = size_pfn << (PAGE_SHIFT - 10);
  945. /* See if I can merge with the last range */
  946. if ((basek <= 1024) ||
  947. (state->range_startk + state->range_sizek == basek)) {
  948. unsigned long endk = basek + sizek;
  949. state->range_sizek = endk - state->range_startk;
  950. return;
  951. }
  952. /* Write the range mtrrs */
  953. if (state->range_sizek != 0)
  954. second_sizek = range_to_mtrr_with_hole(state, basek, sizek);
  955. /* Allocate an msr */
  956. state->range_startk = basek + second_sizek;
  957. state->range_sizek = sizek - second_sizek;
  958. }
  959. /* mininum size of mtrr block that can take hole */
  960. static u64 mtrr_chunk_size __initdata = (256ULL<<20);
  961. static int __init parse_mtrr_chunk_size_opt(char *p)
  962. {
  963. if (!p)
  964. return -EINVAL;
  965. mtrr_chunk_size = memparse(p, &p);
  966. return 0;
  967. }
  968. early_param("mtrr_chunk_size", parse_mtrr_chunk_size_opt);
  969. /* granity of mtrr of block */
  970. static u64 mtrr_gran_size __initdata;
  971. static int __init parse_mtrr_gran_size_opt(char *p)
  972. {
  973. if (!p)
  974. return -EINVAL;
  975. mtrr_gran_size = memparse(p, &p);
  976. return 0;
  977. }
  978. early_param("mtrr_gran_size", parse_mtrr_gran_size_opt);
  979. static int nr_mtrr_spare_reg __initdata =
  980. CONFIG_MTRR_SANITIZER_SPARE_REG_NR_DEFAULT;
  981. static int __init parse_mtrr_spare_reg(char *arg)
  982. {
  983. if (arg)
  984. nr_mtrr_spare_reg = simple_strtoul(arg, NULL, 0);
  985. return 0;
  986. }
  987. early_param("mtrr_spare_reg_nr", parse_mtrr_spare_reg);
  988. static int __init
  989. x86_setup_var_mtrrs(struct res_range *range, int nr_range,
  990. u64 chunk_size, u64 gran_size)
  991. {
  992. struct var_mtrr_state var_state;
  993. int i;
  994. int num_reg;
  995. var_state.range_startk = 0;
  996. var_state.range_sizek = 0;
  997. var_state.reg = 0;
  998. var_state.chunk_sizek = chunk_size >> 10;
  999. var_state.gran_sizek = gran_size >> 10;
  1000. memset(range_state, 0, sizeof(range_state));
  1001. /* Write the range etc */
  1002. for (i = 0; i < nr_range; i++)
  1003. set_var_mtrr_range(&var_state, range[i].start,
  1004. range[i].end - range[i].start + 1);
  1005. /* Write the last range */
  1006. if (var_state.range_sizek != 0)
  1007. range_to_mtrr_with_hole(&var_state, 0, 0);
  1008. num_reg = var_state.reg;
  1009. /* Clear out the extra MTRR's */
  1010. while (var_state.reg < num_var_ranges) {
  1011. save_var_mtrr(var_state.reg, 0, 0, 0);
  1012. var_state.reg++;
  1013. }
  1014. return num_reg;
  1015. }
  1016. struct mtrr_cleanup_result {
  1017. unsigned long gran_sizek;
  1018. unsigned long chunk_sizek;
  1019. unsigned long lose_cover_sizek;
  1020. unsigned int num_reg;
  1021. int bad;
  1022. };
  1023. /*
  1024. * gran_size: 64K, 128K, 256K, 512K, 1M, 2M, ..., 2G
  1025. * chunk size: gran_size, ..., 2G
  1026. * so we need (1+16)*8
  1027. */
  1028. #define NUM_RESULT 136
  1029. #define PSHIFT (PAGE_SHIFT - 10)
  1030. static struct mtrr_cleanup_result __initdata result[NUM_RESULT];
  1031. static struct res_range __initdata range_new[RANGE_NUM];
  1032. static unsigned long __initdata min_loss_pfn[RANGE_NUM];
  1033. static int __init mtrr_cleanup(unsigned address_bits)
  1034. {
  1035. unsigned long extra_remove_base, extra_remove_size;
  1036. unsigned long base, size, def, dummy;
  1037. mtrr_type type;
  1038. int nr_range, nr_range_new;
  1039. u64 chunk_size, gran_size;
  1040. unsigned long range_sums, range_sums_new;
  1041. int index_good;
  1042. int num_reg_good;
  1043. int i;
  1044. /* extra one for all 0 */
  1045. int num[MTRR_NUM_TYPES + 1];
  1046. if (!is_cpu(INTEL) || enable_mtrr_cleanup < 1)
  1047. return 0;
  1048. rdmsr(MTRRdefType_MSR, def, dummy);
  1049. def &= 0xff;
  1050. if (def != MTRR_TYPE_UNCACHABLE)
  1051. return 0;
  1052. /* get it and store it aside */
  1053. memset(range_state, 0, sizeof(range_state));
  1054. for (i = 0; i < num_var_ranges; i++) {
  1055. mtrr_if->get(i, &base, &size, &type);
  1056. range_state[i].base_pfn = base;
  1057. range_state[i].size_pfn = size;
  1058. range_state[i].type = type;
  1059. }
  1060. /* check entries number */
  1061. memset(num, 0, sizeof(num));
  1062. for (i = 0; i < num_var_ranges; i++) {
  1063. type = range_state[i].type;
  1064. size = range_state[i].size_pfn;
  1065. if (type >= MTRR_NUM_TYPES)
  1066. continue;
  1067. if (!size)
  1068. type = MTRR_NUM_TYPES;
  1069. if (type == MTRR_TYPE_WRPROT)
  1070. type = MTRR_TYPE_UNCACHABLE;
  1071. num[type]++;
  1072. }
  1073. /* check if we got UC entries */
  1074. if (!num[MTRR_TYPE_UNCACHABLE])
  1075. return 0;
  1076. /* check if we only had WB and UC */
  1077. if (num[MTRR_TYPE_WRBACK] + num[MTRR_TYPE_UNCACHABLE] !=
  1078. num_var_ranges - num[MTRR_NUM_TYPES])
  1079. return 0;
  1080. /* print original var MTRRs at first, for debugging: */
  1081. printk(KERN_DEBUG "original variable MTRRs\n");
  1082. for (i = 0; i < num_var_ranges; i++) {
  1083. char start_factor = 'K', size_factor = 'K';
  1084. unsigned long start_base, size_base;
  1085. size_base = range_state[i].size_pfn << (PAGE_SHIFT - 10);
  1086. if (!size_base)
  1087. continue;
  1088. size_base = to_size_factor(size_base, &size_factor),
  1089. start_base = range_state[i].base_pfn << (PAGE_SHIFT - 10);
  1090. start_base = to_size_factor(start_base, &start_factor),
  1091. type = range_state[i].type;
  1092. printk(KERN_DEBUG "reg %d, base: %ld%cB, range: %ld%cB, type %s\n",
  1093. i, start_base, start_factor,
  1094. size_base, size_factor,
  1095. (type == MTRR_TYPE_UNCACHABLE) ? "UC" :
  1096. ((type == MTRR_TYPE_WRPROT) ? "WP" :
  1097. ((type == MTRR_TYPE_WRBACK) ? "WB" : "Other"))
  1098. );
  1099. }
  1100. memset(range, 0, sizeof(range));
  1101. extra_remove_size = 0;
  1102. extra_remove_base = 1 << (32 - PAGE_SHIFT);
  1103. if (mtrr_tom2)
  1104. extra_remove_size =
  1105. (mtrr_tom2 >> PAGE_SHIFT) - extra_remove_base;
  1106. nr_range = x86_get_mtrr_mem_range(range, 0, extra_remove_base,
  1107. extra_remove_size);
  1108. /*
  1109. * [0, 1M) should always be coverred by var mtrr with WB
  1110. * and fixed mtrrs should take effective before var mtrr for it
  1111. */
  1112. nr_range = add_range_with_merge(range, nr_range, 0,
  1113. (1ULL<<(20 - PAGE_SHIFT)) - 1);
  1114. /* sort the ranges */
  1115. sort(range, nr_range, sizeof(struct res_range), cmp_range, NULL);
  1116. range_sums = sum_ranges(range, nr_range);
  1117. printk(KERN_INFO "total RAM coverred: %ldM\n",
  1118. range_sums >> (20 - PAGE_SHIFT));
  1119. if (mtrr_chunk_size && mtrr_gran_size) {
  1120. int num_reg;
  1121. char gran_factor, chunk_factor, lose_factor;
  1122. unsigned long gran_base, chunk_base, lose_base;
  1123. debug_print++;
  1124. /* convert ranges to var ranges state */
  1125. num_reg = x86_setup_var_mtrrs(range, nr_range, mtrr_chunk_size,
  1126. mtrr_gran_size);
  1127. /* we got new setting in range_state, check it */
  1128. memset(range_new, 0, sizeof(range_new));
  1129. nr_range_new = x86_get_mtrr_mem_range(range_new, 0,
  1130. extra_remove_base,
  1131. extra_remove_size);
  1132. range_sums_new = sum_ranges(range_new, nr_range_new);
  1133. i = 0;
  1134. result[i].chunk_sizek = mtrr_chunk_size >> 10;
  1135. result[i].gran_sizek = mtrr_gran_size >> 10;
  1136. result[i].num_reg = num_reg;
  1137. if (range_sums < range_sums_new) {
  1138. result[i].lose_cover_sizek =
  1139. (range_sums_new - range_sums) << PSHIFT;
  1140. result[i].bad = 1;
  1141. } else
  1142. result[i].lose_cover_sizek =
  1143. (range_sums - range_sums_new) << PSHIFT;
  1144. gran_base = to_size_factor(result[i].gran_sizek, &gran_factor),
  1145. chunk_base = to_size_factor(result[i].chunk_sizek, &chunk_factor),
  1146. lose_base = to_size_factor(result[i].lose_cover_sizek, &lose_factor),
  1147. printk(KERN_INFO "%sgran_size: %ld%c \tchunk_size: %ld%c \t",
  1148. result[i].bad?"*BAD*":" ",
  1149. gran_base, gran_factor, chunk_base, chunk_factor);
  1150. printk(KERN_CONT "num_reg: %d \tlose cover RAM: %s%ld%c\n",
  1151. result[i].num_reg, result[i].bad?"-":"",
  1152. lose_base, lose_factor);
  1153. if (!result[i].bad) {
  1154. set_var_mtrr_all(address_bits);
  1155. return 1;
  1156. }
  1157. printk(KERN_INFO "invalid mtrr_gran_size or mtrr_chunk_size, "
  1158. "will find optimal one\n");
  1159. debug_print--;
  1160. memset(result, 0, sizeof(result[0]));
  1161. }
  1162. i = 0;
  1163. memset(min_loss_pfn, 0xff, sizeof(min_loss_pfn));
  1164. memset(result, 0, sizeof(result));
  1165. for (gran_size = (1ULL<<16); gran_size < (1ULL<<32); gran_size <<= 1) {
  1166. char gran_factor;
  1167. unsigned long gran_base;
  1168. if (debug_print)
  1169. gran_base = to_size_factor(gran_size >> 10, &gran_factor);
  1170. for (chunk_size = gran_size; chunk_size < (1ULL<<32);
  1171. chunk_size <<= 1) {
  1172. int num_reg;
  1173. if (debug_print) {
  1174. char chunk_factor;
  1175. unsigned long chunk_base;
  1176. chunk_base = to_size_factor(chunk_size>>10, &chunk_factor),
  1177. printk(KERN_INFO "\n");
  1178. printk(KERN_INFO "gran_size: %ld%c chunk_size: %ld%c \n",
  1179. gran_base, gran_factor, chunk_base, chunk_factor);
  1180. }
  1181. if (i >= NUM_RESULT)
  1182. continue;
  1183. /* convert ranges to var ranges state */
  1184. num_reg = x86_setup_var_mtrrs(range, nr_range,
  1185. chunk_size, gran_size);
  1186. /* we got new setting in range_state, check it */
  1187. memset(range_new, 0, sizeof(range_new));
  1188. nr_range_new = x86_get_mtrr_mem_range(range_new, 0,
  1189. extra_remove_base, extra_remove_size);
  1190. range_sums_new = sum_ranges(range_new, nr_range_new);
  1191. result[i].chunk_sizek = chunk_size >> 10;
  1192. result[i].gran_sizek = gran_size >> 10;
  1193. result[i].num_reg = num_reg;
  1194. if (range_sums < range_sums_new) {
  1195. result[i].lose_cover_sizek =
  1196. (range_sums_new - range_sums) << PSHIFT;
  1197. result[i].bad = 1;
  1198. } else
  1199. result[i].lose_cover_sizek =
  1200. (range_sums - range_sums_new) << PSHIFT;
  1201. /* double check it */
  1202. if (!result[i].bad && !result[i].lose_cover_sizek) {
  1203. if (nr_range_new != nr_range ||
  1204. memcmp(range, range_new, sizeof(range)))
  1205. result[i].bad = 1;
  1206. }
  1207. if (!result[i].bad && (range_sums - range_sums_new <
  1208. min_loss_pfn[num_reg])) {
  1209. min_loss_pfn[num_reg] =
  1210. range_sums - range_sums_new;
  1211. }
  1212. i++;
  1213. }
  1214. }
  1215. /* print out all */
  1216. for (i = 0; i < NUM_RESULT; i++) {
  1217. char gran_factor, chunk_factor, lose_factor;
  1218. unsigned long gran_base, chunk_base, lose_base;
  1219. gran_base = to_size_factor(result[i].gran_sizek, &gran_factor),
  1220. chunk_base = to_size_factor(result[i].chunk_sizek, &chunk_factor),
  1221. lose_base = to_size_factor(result[i].lose_cover_sizek, &lose_factor),
  1222. printk(KERN_INFO "%sgran_size: %ld%c \tchunk_size: %ld%c \t",
  1223. result[i].bad?"*BAD*":" ",
  1224. gran_base, gran_factor, chunk_base, chunk_factor);
  1225. printk(KERN_CONT "num_reg: %d \tlose cover RAM: %s%ld%c\n",
  1226. result[i].num_reg, result[i].bad?"-":"",
  1227. lose_base, lose_factor);
  1228. }
  1229. /* try to find the optimal index */
  1230. if (nr_mtrr_spare_reg >= num_var_ranges)
  1231. nr_mtrr_spare_reg = num_var_ranges - 1;
  1232. num_reg_good = -1;
  1233. for (i = num_var_ranges - nr_mtrr_spare_reg; i > 0; i--) {
  1234. if (!min_loss_pfn[i])
  1235. num_reg_good = i;
  1236. }
  1237. index_good = -1;
  1238. if (num_reg_good != -1) {
  1239. for (i = 0; i < NUM_RESULT; i++) {
  1240. if (!result[i].bad &&
  1241. result[i].num_reg == num_reg_good &&
  1242. !result[i].lose_cover_sizek) {
  1243. index_good = i;
  1244. break;
  1245. }
  1246. }
  1247. }
  1248. if (index_good != -1) {
  1249. char gran_factor, chunk_factor, lose_factor;
  1250. unsigned long gran_base, chunk_base, lose_base;
  1251. printk(KERN_INFO "Found optimal setting for mtrr clean up\n");
  1252. i = index_good;
  1253. gran_base = to_size_factor(result[i].gran_sizek, &gran_factor),
  1254. chunk_base = to_size_factor(result[i].chunk_sizek, &chunk_factor),
  1255. lose_base = to_size_factor(result[i].lose_cover_sizek, &lose_factor),
  1256. printk(KERN_INFO "gran_size: %ld%c \tchunk_size: %ld%c \t",
  1257. gran_base, gran_factor, chunk_base, chunk_factor);
  1258. printk(KERN_CONT "num_reg: %d \tlose RAM: %ld%c\n",
  1259. result[i].num_reg, lose_base, lose_factor);
  1260. /* convert ranges to var ranges state */
  1261. chunk_size = result[i].chunk_sizek;
  1262. chunk_size <<= 10;
  1263. gran_size = result[i].gran_sizek;
  1264. gran_size <<= 10;
  1265. debug_print++;
  1266. x86_setup_var_mtrrs(range, nr_range, chunk_size, gran_size);
  1267. debug_print--;
  1268. set_var_mtrr_all(address_bits);
  1269. return 1;
  1270. }
  1271. printk(KERN_INFO "mtrr_cleanup: can not find optimal value\n");
  1272. printk(KERN_INFO "please specify mtrr_gran_size/mtrr_chunk_size\n");
  1273. return 0;
  1274. }
  1275. #else
  1276. static int __init mtrr_cleanup(unsigned address_bits)
  1277. {
  1278. return 0;
  1279. }
  1280. #endif
  1281. static int __initdata changed_by_mtrr_cleanup;
  1282. static int disable_mtrr_trim;
  1283. static int __init disable_mtrr_trim_setup(char *str)
  1284. {
  1285. disable_mtrr_trim = 1;
  1286. return 0;
  1287. }
  1288. early_param("disable_mtrr_trim", disable_mtrr_trim_setup);
  1289. /*
  1290. * Newer AMD K8s and later CPUs have a special magic MSR way to force WB
  1291. * for memory >4GB. Check for that here.
  1292. * Note this won't check if the MTRRs < 4GB where the magic bit doesn't
  1293. * apply to are wrong, but so far we don't know of any such case in the wild.
  1294. */
  1295. #define Tom2Enabled (1U << 21)
  1296. #define Tom2ForceMemTypeWB (1U << 22)
  1297. int __init amd_special_default_mtrr(void)
  1298. {
  1299. u32 l, h;
  1300. if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD)
  1301. return 0;
  1302. if (boot_cpu_data.x86 < 0xf || boot_cpu_data.x86 > 0x11)
  1303. return 0;
  1304. /* In case some hypervisor doesn't pass SYSCFG through */
  1305. if (rdmsr_safe(MSR_K8_SYSCFG, &l, &h) < 0)
  1306. return 0;
  1307. /*
  1308. * Memory between 4GB and top of mem is forced WB by this magic bit.
  1309. * Reserved before K8RevF, but should be zero there.
  1310. */
  1311. if ((l & (Tom2Enabled | Tom2ForceMemTypeWB)) ==
  1312. (Tom2Enabled | Tom2ForceMemTypeWB))
  1313. return 1;
  1314. return 0;
  1315. }
  1316. static u64 __init real_trim_memory(unsigned long start_pfn,
  1317. unsigned long limit_pfn)
  1318. {
  1319. u64 trim_start, trim_size;
  1320. trim_start = start_pfn;
  1321. trim_start <<= PAGE_SHIFT;
  1322. trim_size = limit_pfn;
  1323. trim_size <<= PAGE_SHIFT;
  1324. trim_size -= trim_start;
  1325. return e820_update_range(trim_start, trim_size, E820_RAM,
  1326. E820_RESERVED);
  1327. }
  1328. /**
  1329. * mtrr_trim_uncached_memory - trim RAM not covered by MTRRs
  1330. * @end_pfn: ending page frame number
  1331. *
  1332. * Some buggy BIOSes don't setup the MTRRs properly for systems with certain
  1333. * memory configurations. This routine checks that the highest MTRR matches
  1334. * the end of memory, to make sure the MTRRs having a write back type cover
  1335. * all of the memory the kernel is intending to use. If not, it'll trim any
  1336. * memory off the end by adjusting end_pfn, removing it from the kernel's
  1337. * allocation pools, warning the user with an obnoxious message.
  1338. */
  1339. int __init mtrr_trim_uncached_memory(unsigned long end_pfn)
  1340. {
  1341. unsigned long i, base, size, highest_pfn = 0, def, dummy;
  1342. mtrr_type type;
  1343. int nr_range;
  1344. u64 total_trim_size;
  1345. /* extra one for all 0 */
  1346. int num[MTRR_NUM_TYPES + 1];
  1347. /*
  1348. * Make sure we only trim uncachable memory on machines that
  1349. * support the Intel MTRR architecture:
  1350. */
  1351. if (!is_cpu(INTEL) || disable_mtrr_trim)
  1352. return 0;
  1353. rdmsr(MTRRdefType_MSR, def, dummy);
  1354. def &= 0xff;
  1355. if (def != MTRR_TYPE_UNCACHABLE)
  1356. return 0;
  1357. /* get it and store it aside */
  1358. memset(range_state, 0, sizeof(range_state));
  1359. for (i = 0; i < num_var_ranges; i++) {
  1360. mtrr_if->get(i, &base, &size, &type);
  1361. range_state[i].base_pfn = base;
  1362. range_state[i].size_pfn = size;
  1363. range_state[i].type = type;
  1364. }
  1365. /* Find highest cached pfn */
  1366. for (i = 0; i < num_var_ranges; i++) {
  1367. type = range_state[i].type;
  1368. if (type != MTRR_TYPE_WRBACK)
  1369. continue;
  1370. base = range_state[i].base_pfn;
  1371. size = range_state[i].size_pfn;
  1372. if (highest_pfn < base + size)
  1373. highest_pfn = base + size;
  1374. }
  1375. /* kvm/qemu doesn't have mtrr set right, don't trim them all */
  1376. if (!highest_pfn) {
  1377. WARN(!kvm_para_available(), KERN_WARNING
  1378. "WARNING: strange, CPU MTRRs all blank?\n");
  1379. return 0;
  1380. }
  1381. /* check entries number */
  1382. memset(num, 0, sizeof(num));
  1383. for (i = 0; i < num_var_ranges; i++) {
  1384. type = range_state[i].type;
  1385. if (type >= MTRR_NUM_TYPES)
  1386. continue;
  1387. size = range_state[i].size_pfn;
  1388. if (!size)
  1389. type = MTRR_NUM_TYPES;
  1390. num[type]++;
  1391. }
  1392. /* no entry for WB? */
  1393. if (!num[MTRR_TYPE_WRBACK])
  1394. return 0;
  1395. /* check if we only had WB and UC */
  1396. if (num[MTRR_TYPE_WRBACK] + num[MTRR_TYPE_UNCACHABLE] !=
  1397. num_var_ranges - num[MTRR_NUM_TYPES])
  1398. return 0;
  1399. memset(range, 0, sizeof(range));
  1400. nr_range = 0;
  1401. if (mtrr_tom2) {
  1402. range[nr_range].start = (1ULL<<(32 - PAGE_SHIFT));
  1403. range[nr_range].end = (mtrr_tom2 >> PAGE_SHIFT) - 1;
  1404. if (highest_pfn < range[nr_range].end + 1)
  1405. highest_pfn = range[nr_range].end + 1;
  1406. nr_range++;
  1407. }
  1408. nr_range = x86_get_mtrr_mem_range(range, nr_range, 0, 0);
  1409. total_trim_size = 0;
  1410. /* check the head */
  1411. if (range[0].start)
  1412. total_trim_size += real_trim_memory(0, range[0].start);
  1413. /* check the holes */
  1414. for (i = 0; i < nr_range - 1; i++) {
  1415. if (range[i].end + 1 < range[i+1].start)
  1416. total_trim_size += real_trim_memory(range[i].end + 1,
  1417. range[i+1].start);
  1418. }
  1419. /* check the top */
  1420. i = nr_range - 1;
  1421. if (range[i].end + 1 < end_pfn)
  1422. total_trim_size += real_trim_memory(range[i].end + 1,
  1423. end_pfn);
  1424. if (total_trim_size) {
  1425. printk(KERN_WARNING "WARNING: BIOS bug: CPU MTRRs don't cover"
  1426. " all of memory, losing %lluMB of RAM.\n",
  1427. total_trim_size >> 20);
  1428. if (!changed_by_mtrr_cleanup)
  1429. WARN_ON(1);
  1430. printk(KERN_INFO "update e820 for mtrr\n");
  1431. update_e820();
  1432. return 1;
  1433. }
  1434. return 0;
  1435. }
  1436. /**
  1437. * mtrr_bp_init - initialize mtrrs on the boot CPU
  1438. *
  1439. * This needs to be called early; before any of the other CPUs are
  1440. * initialized (i.e. before smp_init()).
  1441. *
  1442. */
  1443. void __init mtrr_bp_init(void)
  1444. {
  1445. u32 phys_addr;
  1446. init_ifs();
  1447. phys_addr = 32;
  1448. if (cpu_has_mtrr) {
  1449. mtrr_if = &generic_mtrr_ops;
  1450. size_or_mask = 0xff000000; /* 36 bits */
  1451. size_and_mask = 0x00f00000;
  1452. phys_addr = 36;
  1453. /* This is an AMD specific MSR, but we assume(hope?) that
  1454. Intel will implement it to when they extend the address
  1455. bus of the Xeon. */
  1456. if (cpuid_eax(0x80000000) >= 0x80000008) {
  1457. phys_addr = cpuid_eax(0x80000008) & 0xff;
  1458. /* CPUID workaround for Intel 0F33/0F34 CPU */
  1459. if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
  1460. boot_cpu_data.x86 == 0xF &&
  1461. boot_cpu_data.x86_model == 0x3 &&
  1462. (boot_cpu_data.x86_mask == 0x3 ||
  1463. boot_cpu_data.x86_mask == 0x4))
  1464. phys_addr = 36;
  1465. size_or_mask = ~((1ULL << (phys_addr - PAGE_SHIFT)) - 1);
  1466. size_and_mask = ~size_or_mask & 0xfffff00000ULL;
  1467. } else if (boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR &&
  1468. boot_cpu_data.x86 == 6) {
  1469. /* VIA C* family have Intel style MTRRs, but
  1470. don't support PAE */
  1471. size_or_mask = 0xfff00000; /* 32 bits */
  1472. size_and_mask = 0;
  1473. phys_addr = 32;
  1474. }
  1475. } else {
  1476. switch (boot_cpu_data.x86_vendor) {
  1477. case X86_VENDOR_AMD:
  1478. if (cpu_has_k6_mtrr) {
  1479. /* Pre-Athlon (K6) AMD CPU MTRRs */
  1480. mtrr_if = mtrr_ops[X86_VENDOR_AMD];
  1481. size_or_mask = 0xfff00000; /* 32 bits */
  1482. size_and_mask = 0;
  1483. }
  1484. break;
  1485. case X86_VENDOR_CENTAUR:
  1486. if (cpu_has_centaur_mcr) {
  1487. mtrr_if = mtrr_ops[X86_VENDOR_CENTAUR];
  1488. size_or_mask = 0xfff00000; /* 32 bits */
  1489. size_and_mask = 0;
  1490. }
  1491. break;
  1492. case X86_VENDOR_CYRIX:
  1493. if (cpu_has_cyrix_arr) {
  1494. mtrr_if = mtrr_ops[X86_VENDOR_CYRIX];
  1495. size_or_mask = 0xfff00000; /* 32 bits */
  1496. size_and_mask = 0;
  1497. }
  1498. break;
  1499. default:
  1500. break;
  1501. }
  1502. }
  1503. if (mtrr_if) {
  1504. set_num_var_ranges();
  1505. init_table();
  1506. if (use_intel()) {
  1507. get_mtrr_state();
  1508. if (mtrr_cleanup(phys_addr)) {
  1509. changed_by_mtrr_cleanup = 1;
  1510. mtrr_if->set_all();
  1511. }
  1512. }
  1513. }
  1514. }
  1515. void mtrr_ap_init(void)
  1516. {
  1517. unsigned long flags;
  1518. if (!mtrr_if || !use_intel())
  1519. return;
  1520. /*
  1521. * Ideally we should hold mtrr_mutex here to avoid mtrr entries changed,
  1522. * but this routine will be called in cpu boot time, holding the lock
  1523. * breaks it. This routine is called in two cases: 1.very earily time
  1524. * of software resume, when there absolutely isn't mtrr entry changes;
  1525. * 2.cpu hotadd time. We let mtrr_add/del_page hold cpuhotplug lock to
  1526. * prevent mtrr entry changes
  1527. */
  1528. local_irq_save(flags);
  1529. mtrr_if->set_all();
  1530. local_irq_restore(flags);
  1531. }
  1532. /**
  1533. * Save current fixed-range MTRR state of the BSP
  1534. */
  1535. void mtrr_save_state(void)
  1536. {
  1537. smp_call_function_single(0, mtrr_save_fixed_ranges, NULL, 1);
  1538. }
  1539. static int __init mtrr_init_finialize(void)
  1540. {
  1541. if (!mtrr_if)
  1542. return 0;
  1543. if (use_intel()) {
  1544. if (!changed_by_mtrr_cleanup)
  1545. mtrr_state_warn();
  1546. } else {
  1547. /* The CPUs haven't MTRR and seem to not support SMP. They have
  1548. * specific drivers, we use a tricky method to support
  1549. * suspend/resume for them.
  1550. * TBD: is there any system with such CPU which supports
  1551. * suspend/resume? if no, we should remove the code.
  1552. */
  1553. sysdev_driver_register(&cpu_sysdev_class,
  1554. &mtrr_sysdev_driver);
  1555. }
  1556. return 0;
  1557. }
  1558. subsys_initcall(mtrr_init_finialize);