cfq-iosched.c 77 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150
  1. /*
  2. * CFQ, or complete fairness queueing, disk scheduler.
  3. *
  4. * Based on ideas from a previously unfinished io
  5. * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
  6. *
  7. * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
  8. */
  9. #include <linux/module.h>
  10. #include <linux/blkdev.h>
  11. #include <linux/elevator.h>
  12. #include <linux/rbtree.h>
  13. #include <linux/ioprio.h>
  14. #include <linux/blktrace_api.h>
  15. /*
  16. * tunables
  17. */
  18. /* max queue in one round of service */
  19. static const int cfq_quantum = 4;
  20. static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
  21. /* maximum backwards seek, in KiB */
  22. static const int cfq_back_max = 16 * 1024;
  23. /* penalty of a backwards seek */
  24. static const int cfq_back_penalty = 2;
  25. static const int cfq_slice_sync = HZ / 10;
  26. static int cfq_slice_async = HZ / 25;
  27. static const int cfq_slice_async_rq = 2;
  28. static int cfq_slice_idle = HZ / 125;
  29. static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
  30. static const int cfq_hist_divisor = 4;
  31. /*
  32. * offset from end of service tree
  33. */
  34. #define CFQ_IDLE_DELAY (HZ / 5)
  35. /*
  36. * below this threshold, we consider thinktime immediate
  37. */
  38. #define CFQ_MIN_TT (2)
  39. /*
  40. * Allow merged cfqqs to perform this amount of seeky I/O before
  41. * deciding to break the queues up again.
  42. */
  43. #define CFQQ_COOP_TOUT (HZ)
  44. #define CFQ_SLICE_SCALE (5)
  45. #define CFQ_HW_QUEUE_MIN (5)
  46. #define RQ_CIC(rq) \
  47. ((struct cfq_io_context *) (rq)->elevator_private)
  48. #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
  49. static struct kmem_cache *cfq_pool;
  50. static struct kmem_cache *cfq_ioc_pool;
  51. static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
  52. static struct completion *ioc_gone;
  53. static DEFINE_SPINLOCK(ioc_gone_lock);
  54. #define CFQ_PRIO_LISTS IOPRIO_BE_NR
  55. #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
  56. #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
  57. #define sample_valid(samples) ((samples) > 80)
  58. /*
  59. * Most of our rbtree usage is for sorting with min extraction, so
  60. * if we cache the leftmost node we don't have to walk down the tree
  61. * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
  62. * move this into the elevator for the rq sorting as well.
  63. */
  64. struct cfq_rb_root {
  65. struct rb_root rb;
  66. struct rb_node *left;
  67. unsigned count;
  68. };
  69. #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, 0, }
  70. /*
  71. * Per process-grouping structure
  72. */
  73. struct cfq_queue {
  74. /* reference count */
  75. atomic_t ref;
  76. /* various state flags, see below */
  77. unsigned int flags;
  78. /* parent cfq_data */
  79. struct cfq_data *cfqd;
  80. /* service_tree member */
  81. struct rb_node rb_node;
  82. /* service_tree key */
  83. unsigned long rb_key;
  84. /* prio tree member */
  85. struct rb_node p_node;
  86. /* prio tree root we belong to, if any */
  87. struct rb_root *p_root;
  88. /* sorted list of pending requests */
  89. struct rb_root sort_list;
  90. /* if fifo isn't expired, next request to serve */
  91. struct request *next_rq;
  92. /* requests queued in sort_list */
  93. int queued[2];
  94. /* currently allocated requests */
  95. int allocated[2];
  96. /* fifo list of requests in sort_list */
  97. struct list_head fifo;
  98. unsigned long slice_end;
  99. long slice_resid;
  100. unsigned int slice_dispatch;
  101. /* pending metadata requests */
  102. int meta_pending;
  103. /* number of requests that are on the dispatch list or inside driver */
  104. int dispatched;
  105. /* io prio of this group */
  106. unsigned short ioprio, org_ioprio;
  107. unsigned short ioprio_class, org_ioprio_class;
  108. unsigned int seek_samples;
  109. u64 seek_total;
  110. sector_t seek_mean;
  111. sector_t last_request_pos;
  112. unsigned long seeky_start;
  113. pid_t pid;
  114. struct cfq_rb_root *service_tree;
  115. struct cfq_queue *new_cfqq;
  116. };
  117. /*
  118. * First index in the service_trees.
  119. * IDLE is handled separately, so it has negative index
  120. */
  121. enum wl_prio_t {
  122. IDLE_WORKLOAD = -1,
  123. BE_WORKLOAD = 0,
  124. RT_WORKLOAD = 1
  125. };
  126. /*
  127. * Second index in the service_trees.
  128. */
  129. enum wl_type_t {
  130. ASYNC_WORKLOAD = 0,
  131. SYNC_NOIDLE_WORKLOAD = 1,
  132. SYNC_WORKLOAD = 2
  133. };
  134. /*
  135. * Per block device queue structure
  136. */
  137. struct cfq_data {
  138. struct request_queue *queue;
  139. /*
  140. * rr lists of queues with requests, onle rr for each priority class.
  141. * Counts are embedded in the cfq_rb_root
  142. */
  143. struct cfq_rb_root service_trees[2][3];
  144. struct cfq_rb_root service_tree_idle;
  145. /*
  146. * The priority currently being served
  147. */
  148. enum wl_prio_t serving_prio;
  149. enum wl_type_t serving_type;
  150. unsigned long workload_expires;
  151. /*
  152. * Each priority tree is sorted by next_request position. These
  153. * trees are used when determining if two or more queues are
  154. * interleaving requests (see cfq_close_cooperator).
  155. */
  156. struct rb_root prio_trees[CFQ_PRIO_LISTS];
  157. unsigned int busy_queues;
  158. unsigned int busy_queues_avg[2];
  159. int rq_in_driver[2];
  160. int sync_flight;
  161. /*
  162. * queue-depth detection
  163. */
  164. int rq_queued;
  165. int hw_tag;
  166. int hw_tag_samples;
  167. int rq_in_driver_peak;
  168. /*
  169. * idle window management
  170. */
  171. struct timer_list idle_slice_timer;
  172. struct work_struct unplug_work;
  173. struct cfq_queue *active_queue;
  174. struct cfq_io_context *active_cic;
  175. /*
  176. * async queue for each priority case
  177. */
  178. struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
  179. struct cfq_queue *async_idle_cfqq;
  180. sector_t last_position;
  181. /*
  182. * tunables, see top of file
  183. */
  184. unsigned int cfq_quantum;
  185. unsigned int cfq_fifo_expire[2];
  186. unsigned int cfq_back_penalty;
  187. unsigned int cfq_back_max;
  188. unsigned int cfq_slice[2];
  189. unsigned int cfq_slice_async_rq;
  190. unsigned int cfq_slice_idle;
  191. unsigned int cfq_latency;
  192. struct list_head cic_list;
  193. /*
  194. * Fallback dummy cfqq for extreme OOM conditions
  195. */
  196. struct cfq_queue oom_cfqq;
  197. unsigned long last_end_sync_rq;
  198. };
  199. static struct cfq_rb_root *service_tree_for(enum wl_prio_t prio,
  200. enum wl_type_t type,
  201. struct cfq_data *cfqd)
  202. {
  203. if (prio == IDLE_WORKLOAD)
  204. return &cfqd->service_tree_idle;
  205. return &cfqd->service_trees[prio][type];
  206. }
  207. enum cfqq_state_flags {
  208. CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
  209. CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
  210. CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
  211. CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
  212. CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
  213. CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
  214. CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
  215. CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
  216. CFQ_CFQQ_FLAG_sync, /* synchronous queue */
  217. CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
  218. };
  219. #define CFQ_CFQQ_FNS(name) \
  220. static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
  221. { \
  222. (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
  223. } \
  224. static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
  225. { \
  226. (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
  227. } \
  228. static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
  229. { \
  230. return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
  231. }
  232. CFQ_CFQQ_FNS(on_rr);
  233. CFQ_CFQQ_FNS(wait_request);
  234. CFQ_CFQQ_FNS(must_dispatch);
  235. CFQ_CFQQ_FNS(must_alloc_slice);
  236. CFQ_CFQQ_FNS(fifo_expire);
  237. CFQ_CFQQ_FNS(idle_window);
  238. CFQ_CFQQ_FNS(prio_changed);
  239. CFQ_CFQQ_FNS(slice_new);
  240. CFQ_CFQQ_FNS(sync);
  241. CFQ_CFQQ_FNS(coop);
  242. #undef CFQ_CFQQ_FNS
  243. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  244. blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
  245. #define cfq_log(cfqd, fmt, args...) \
  246. blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
  247. static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
  248. {
  249. if (cfq_class_idle(cfqq))
  250. return IDLE_WORKLOAD;
  251. if (cfq_class_rt(cfqq))
  252. return RT_WORKLOAD;
  253. return BE_WORKLOAD;
  254. }
  255. static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
  256. {
  257. if (!cfq_cfqq_sync(cfqq))
  258. return ASYNC_WORKLOAD;
  259. if (!cfq_cfqq_idle_window(cfqq))
  260. return SYNC_NOIDLE_WORKLOAD;
  261. return SYNC_WORKLOAD;
  262. }
  263. static inline int cfq_busy_queues_wl(enum wl_prio_t wl, struct cfq_data *cfqd)
  264. {
  265. if (wl == IDLE_WORKLOAD)
  266. return cfqd->service_tree_idle.count;
  267. return cfqd->service_trees[wl][ASYNC_WORKLOAD].count
  268. + cfqd->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
  269. + cfqd->service_trees[wl][SYNC_WORKLOAD].count;
  270. }
  271. static void cfq_dispatch_insert(struct request_queue *, struct request *);
  272. static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
  273. struct io_context *, gfp_t);
  274. static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
  275. struct io_context *);
  276. static inline int rq_in_driver(struct cfq_data *cfqd)
  277. {
  278. return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
  279. }
  280. static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
  281. bool is_sync)
  282. {
  283. return cic->cfqq[is_sync];
  284. }
  285. static inline void cic_set_cfqq(struct cfq_io_context *cic,
  286. struct cfq_queue *cfqq, bool is_sync)
  287. {
  288. cic->cfqq[is_sync] = cfqq;
  289. }
  290. /*
  291. * We regard a request as SYNC, if it's either a read or has the SYNC bit
  292. * set (in which case it could also be direct WRITE).
  293. */
  294. static inline bool cfq_bio_sync(struct bio *bio)
  295. {
  296. return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
  297. }
  298. /*
  299. * scheduler run of queue, if there are requests pending and no one in the
  300. * driver that will restart queueing
  301. */
  302. static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
  303. {
  304. if (cfqd->busy_queues) {
  305. cfq_log(cfqd, "schedule dispatch");
  306. kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
  307. }
  308. }
  309. static int cfq_queue_empty(struct request_queue *q)
  310. {
  311. struct cfq_data *cfqd = q->elevator->elevator_data;
  312. return !cfqd->busy_queues;
  313. }
  314. /*
  315. * Scale schedule slice based on io priority. Use the sync time slice only
  316. * if a queue is marked sync and has sync io queued. A sync queue with async
  317. * io only, should not get full sync slice length.
  318. */
  319. static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
  320. unsigned short prio)
  321. {
  322. const int base_slice = cfqd->cfq_slice[sync];
  323. WARN_ON(prio >= IOPRIO_BE_NR);
  324. return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
  325. }
  326. static inline int
  327. cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  328. {
  329. return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
  330. }
  331. /*
  332. * get averaged number of queues of RT/BE priority.
  333. * average is updated, with a formula that gives more weight to higher numbers,
  334. * to quickly follows sudden increases and decrease slowly
  335. */
  336. static inline unsigned
  337. cfq_get_avg_queues(struct cfq_data *cfqd, bool rt) {
  338. unsigned min_q, max_q;
  339. unsigned mult = cfq_hist_divisor - 1;
  340. unsigned round = cfq_hist_divisor / 2;
  341. unsigned busy = cfq_busy_queues_wl(rt, cfqd);
  342. min_q = min(cfqd->busy_queues_avg[rt], busy);
  343. max_q = max(cfqd->busy_queues_avg[rt], busy);
  344. cfqd->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
  345. cfq_hist_divisor;
  346. return cfqd->busy_queues_avg[rt];
  347. }
  348. static inline void
  349. cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  350. {
  351. unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
  352. if (cfqd->cfq_latency) {
  353. /* interested queues (we consider only the ones with the same
  354. * priority class) */
  355. unsigned iq = cfq_get_avg_queues(cfqd, cfq_class_rt(cfqq));
  356. unsigned sync_slice = cfqd->cfq_slice[1];
  357. unsigned expect_latency = sync_slice * iq;
  358. if (expect_latency > cfq_target_latency) {
  359. unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
  360. /* scale low_slice according to IO priority
  361. * and sync vs async */
  362. unsigned low_slice =
  363. min(slice, base_low_slice * slice / sync_slice);
  364. /* the adapted slice value is scaled to fit all iqs
  365. * into the target latency */
  366. slice = max(slice * cfq_target_latency / expect_latency,
  367. low_slice);
  368. }
  369. }
  370. cfqq->slice_end = jiffies + slice;
  371. cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
  372. }
  373. /*
  374. * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
  375. * isn't valid until the first request from the dispatch is activated
  376. * and the slice time set.
  377. */
  378. static inline bool cfq_slice_used(struct cfq_queue *cfqq)
  379. {
  380. if (cfq_cfqq_slice_new(cfqq))
  381. return 0;
  382. if (time_before(jiffies, cfqq->slice_end))
  383. return 0;
  384. return 1;
  385. }
  386. /*
  387. * Lifted from AS - choose which of rq1 and rq2 that is best served now.
  388. * We choose the request that is closest to the head right now. Distance
  389. * behind the head is penalized and only allowed to a certain extent.
  390. */
  391. static struct request *
  392. cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
  393. {
  394. sector_t last, s1, s2, d1 = 0, d2 = 0;
  395. unsigned long back_max;
  396. #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
  397. #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
  398. unsigned wrap = 0; /* bit mask: requests behind the disk head? */
  399. if (rq1 == NULL || rq1 == rq2)
  400. return rq2;
  401. if (rq2 == NULL)
  402. return rq1;
  403. if (rq_is_sync(rq1) && !rq_is_sync(rq2))
  404. return rq1;
  405. else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
  406. return rq2;
  407. if (rq_is_meta(rq1) && !rq_is_meta(rq2))
  408. return rq1;
  409. else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
  410. return rq2;
  411. s1 = blk_rq_pos(rq1);
  412. s2 = blk_rq_pos(rq2);
  413. last = cfqd->last_position;
  414. /*
  415. * by definition, 1KiB is 2 sectors
  416. */
  417. back_max = cfqd->cfq_back_max * 2;
  418. /*
  419. * Strict one way elevator _except_ in the case where we allow
  420. * short backward seeks which are biased as twice the cost of a
  421. * similar forward seek.
  422. */
  423. if (s1 >= last)
  424. d1 = s1 - last;
  425. else if (s1 + back_max >= last)
  426. d1 = (last - s1) * cfqd->cfq_back_penalty;
  427. else
  428. wrap |= CFQ_RQ1_WRAP;
  429. if (s2 >= last)
  430. d2 = s2 - last;
  431. else if (s2 + back_max >= last)
  432. d2 = (last - s2) * cfqd->cfq_back_penalty;
  433. else
  434. wrap |= CFQ_RQ2_WRAP;
  435. /* Found required data */
  436. /*
  437. * By doing switch() on the bit mask "wrap" we avoid having to
  438. * check two variables for all permutations: --> faster!
  439. */
  440. switch (wrap) {
  441. case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
  442. if (d1 < d2)
  443. return rq1;
  444. else if (d2 < d1)
  445. return rq2;
  446. else {
  447. if (s1 >= s2)
  448. return rq1;
  449. else
  450. return rq2;
  451. }
  452. case CFQ_RQ2_WRAP:
  453. return rq1;
  454. case CFQ_RQ1_WRAP:
  455. return rq2;
  456. case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
  457. default:
  458. /*
  459. * Since both rqs are wrapped,
  460. * start with the one that's further behind head
  461. * (--> only *one* back seek required),
  462. * since back seek takes more time than forward.
  463. */
  464. if (s1 <= s2)
  465. return rq1;
  466. else
  467. return rq2;
  468. }
  469. }
  470. /*
  471. * The below is leftmost cache rbtree addon
  472. */
  473. static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
  474. {
  475. if (!root->left)
  476. root->left = rb_first(&root->rb);
  477. if (root->left)
  478. return rb_entry(root->left, struct cfq_queue, rb_node);
  479. return NULL;
  480. }
  481. static void rb_erase_init(struct rb_node *n, struct rb_root *root)
  482. {
  483. rb_erase(n, root);
  484. RB_CLEAR_NODE(n);
  485. }
  486. static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
  487. {
  488. if (root->left == n)
  489. root->left = NULL;
  490. rb_erase_init(n, &root->rb);
  491. --root->count;
  492. }
  493. /*
  494. * would be nice to take fifo expire time into account as well
  495. */
  496. static struct request *
  497. cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  498. struct request *last)
  499. {
  500. struct rb_node *rbnext = rb_next(&last->rb_node);
  501. struct rb_node *rbprev = rb_prev(&last->rb_node);
  502. struct request *next = NULL, *prev = NULL;
  503. BUG_ON(RB_EMPTY_NODE(&last->rb_node));
  504. if (rbprev)
  505. prev = rb_entry_rq(rbprev);
  506. if (rbnext)
  507. next = rb_entry_rq(rbnext);
  508. else {
  509. rbnext = rb_first(&cfqq->sort_list);
  510. if (rbnext && rbnext != &last->rb_node)
  511. next = rb_entry_rq(rbnext);
  512. }
  513. return cfq_choose_req(cfqd, next, prev);
  514. }
  515. static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
  516. struct cfq_queue *cfqq)
  517. {
  518. /*
  519. * just an approximation, should be ok.
  520. */
  521. return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
  522. cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
  523. }
  524. /*
  525. * The cfqd->service_trees holds all pending cfq_queue's that have
  526. * requests waiting to be processed. It is sorted in the order that
  527. * we will service the queues.
  528. */
  529. static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  530. bool add_front)
  531. {
  532. struct rb_node **p, *parent;
  533. struct cfq_queue *__cfqq;
  534. unsigned long rb_key;
  535. struct cfq_rb_root *service_tree;
  536. int left;
  537. service_tree = service_tree_for(cfqq_prio(cfqq), cfqq_type(cfqq), cfqd);
  538. if (cfq_class_idle(cfqq)) {
  539. rb_key = CFQ_IDLE_DELAY;
  540. parent = rb_last(&service_tree->rb);
  541. if (parent && parent != &cfqq->rb_node) {
  542. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  543. rb_key += __cfqq->rb_key;
  544. } else
  545. rb_key += jiffies;
  546. } else if (!add_front) {
  547. /*
  548. * Get our rb key offset. Subtract any residual slice
  549. * value carried from last service. A negative resid
  550. * count indicates slice overrun, and this should position
  551. * the next service time further away in the tree.
  552. */
  553. rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
  554. rb_key -= cfqq->slice_resid;
  555. cfqq->slice_resid = 0;
  556. } else {
  557. rb_key = -HZ;
  558. __cfqq = cfq_rb_first(service_tree);
  559. rb_key += __cfqq ? __cfqq->rb_key : jiffies;
  560. }
  561. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  562. /*
  563. * same position, nothing more to do
  564. */
  565. if (rb_key == cfqq->rb_key &&
  566. cfqq->service_tree == service_tree)
  567. return;
  568. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  569. cfqq->service_tree = NULL;
  570. }
  571. left = 1;
  572. parent = NULL;
  573. cfqq->service_tree = service_tree;
  574. p = &service_tree->rb.rb_node;
  575. while (*p) {
  576. struct rb_node **n;
  577. parent = *p;
  578. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  579. /*
  580. * sort by key, that represents service time.
  581. */
  582. if (time_before(rb_key, __cfqq->rb_key))
  583. n = &(*p)->rb_left;
  584. else {
  585. n = &(*p)->rb_right;
  586. left = 0;
  587. }
  588. p = n;
  589. }
  590. if (left)
  591. service_tree->left = &cfqq->rb_node;
  592. cfqq->rb_key = rb_key;
  593. rb_link_node(&cfqq->rb_node, parent, p);
  594. rb_insert_color(&cfqq->rb_node, &service_tree->rb);
  595. service_tree->count++;
  596. }
  597. static struct cfq_queue *
  598. cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
  599. sector_t sector, struct rb_node **ret_parent,
  600. struct rb_node ***rb_link)
  601. {
  602. struct rb_node **p, *parent;
  603. struct cfq_queue *cfqq = NULL;
  604. parent = NULL;
  605. p = &root->rb_node;
  606. while (*p) {
  607. struct rb_node **n;
  608. parent = *p;
  609. cfqq = rb_entry(parent, struct cfq_queue, p_node);
  610. /*
  611. * Sort strictly based on sector. Smallest to the left,
  612. * largest to the right.
  613. */
  614. if (sector > blk_rq_pos(cfqq->next_rq))
  615. n = &(*p)->rb_right;
  616. else if (sector < blk_rq_pos(cfqq->next_rq))
  617. n = &(*p)->rb_left;
  618. else
  619. break;
  620. p = n;
  621. cfqq = NULL;
  622. }
  623. *ret_parent = parent;
  624. if (rb_link)
  625. *rb_link = p;
  626. return cfqq;
  627. }
  628. static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  629. {
  630. struct rb_node **p, *parent;
  631. struct cfq_queue *__cfqq;
  632. if (cfqq->p_root) {
  633. rb_erase(&cfqq->p_node, cfqq->p_root);
  634. cfqq->p_root = NULL;
  635. }
  636. if (cfq_class_idle(cfqq))
  637. return;
  638. if (!cfqq->next_rq)
  639. return;
  640. cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
  641. __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
  642. blk_rq_pos(cfqq->next_rq), &parent, &p);
  643. if (!__cfqq) {
  644. rb_link_node(&cfqq->p_node, parent, p);
  645. rb_insert_color(&cfqq->p_node, cfqq->p_root);
  646. } else
  647. cfqq->p_root = NULL;
  648. }
  649. /*
  650. * Update cfqq's position in the service tree.
  651. */
  652. static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  653. {
  654. /*
  655. * Resorting requires the cfqq to be on the RR list already.
  656. */
  657. if (cfq_cfqq_on_rr(cfqq)) {
  658. cfq_service_tree_add(cfqd, cfqq, 0);
  659. cfq_prio_tree_add(cfqd, cfqq);
  660. }
  661. }
  662. /*
  663. * add to busy list of queues for service, trying to be fair in ordering
  664. * the pending list according to last request service
  665. */
  666. static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  667. {
  668. cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
  669. BUG_ON(cfq_cfqq_on_rr(cfqq));
  670. cfq_mark_cfqq_on_rr(cfqq);
  671. cfqd->busy_queues++;
  672. cfq_resort_rr_list(cfqd, cfqq);
  673. }
  674. /*
  675. * Called when the cfqq no longer has requests pending, remove it from
  676. * the service tree.
  677. */
  678. static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  679. {
  680. cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
  681. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  682. cfq_clear_cfqq_on_rr(cfqq);
  683. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  684. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  685. cfqq->service_tree = NULL;
  686. }
  687. if (cfqq->p_root) {
  688. rb_erase(&cfqq->p_node, cfqq->p_root);
  689. cfqq->p_root = NULL;
  690. }
  691. BUG_ON(!cfqd->busy_queues);
  692. cfqd->busy_queues--;
  693. }
  694. /*
  695. * rb tree support functions
  696. */
  697. static void cfq_del_rq_rb(struct request *rq)
  698. {
  699. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  700. struct cfq_data *cfqd = cfqq->cfqd;
  701. const int sync = rq_is_sync(rq);
  702. BUG_ON(!cfqq->queued[sync]);
  703. cfqq->queued[sync]--;
  704. elv_rb_del(&cfqq->sort_list, rq);
  705. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
  706. cfq_del_cfqq_rr(cfqd, cfqq);
  707. }
  708. static void cfq_add_rq_rb(struct request *rq)
  709. {
  710. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  711. struct cfq_data *cfqd = cfqq->cfqd;
  712. struct request *__alias, *prev;
  713. cfqq->queued[rq_is_sync(rq)]++;
  714. /*
  715. * looks a little odd, but the first insert might return an alias.
  716. * if that happens, put the alias on the dispatch list
  717. */
  718. while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
  719. cfq_dispatch_insert(cfqd->queue, __alias);
  720. if (!cfq_cfqq_on_rr(cfqq))
  721. cfq_add_cfqq_rr(cfqd, cfqq);
  722. /*
  723. * check if this request is a better next-serve candidate
  724. */
  725. prev = cfqq->next_rq;
  726. cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
  727. /*
  728. * adjust priority tree position, if ->next_rq changes
  729. */
  730. if (prev != cfqq->next_rq)
  731. cfq_prio_tree_add(cfqd, cfqq);
  732. BUG_ON(!cfqq->next_rq);
  733. }
  734. static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
  735. {
  736. elv_rb_del(&cfqq->sort_list, rq);
  737. cfqq->queued[rq_is_sync(rq)]--;
  738. cfq_add_rq_rb(rq);
  739. }
  740. static struct request *
  741. cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
  742. {
  743. struct task_struct *tsk = current;
  744. struct cfq_io_context *cic;
  745. struct cfq_queue *cfqq;
  746. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  747. if (!cic)
  748. return NULL;
  749. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  750. if (cfqq) {
  751. sector_t sector = bio->bi_sector + bio_sectors(bio);
  752. return elv_rb_find(&cfqq->sort_list, sector);
  753. }
  754. return NULL;
  755. }
  756. static void cfq_activate_request(struct request_queue *q, struct request *rq)
  757. {
  758. struct cfq_data *cfqd = q->elevator->elevator_data;
  759. cfqd->rq_in_driver[rq_is_sync(rq)]++;
  760. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
  761. rq_in_driver(cfqd));
  762. cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
  763. }
  764. static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
  765. {
  766. struct cfq_data *cfqd = q->elevator->elevator_data;
  767. const int sync = rq_is_sync(rq);
  768. WARN_ON(!cfqd->rq_in_driver[sync]);
  769. cfqd->rq_in_driver[sync]--;
  770. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
  771. rq_in_driver(cfqd));
  772. }
  773. static void cfq_remove_request(struct request *rq)
  774. {
  775. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  776. if (cfqq->next_rq == rq)
  777. cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
  778. list_del_init(&rq->queuelist);
  779. cfq_del_rq_rb(rq);
  780. cfqq->cfqd->rq_queued--;
  781. if (rq_is_meta(rq)) {
  782. WARN_ON(!cfqq->meta_pending);
  783. cfqq->meta_pending--;
  784. }
  785. }
  786. static int cfq_merge(struct request_queue *q, struct request **req,
  787. struct bio *bio)
  788. {
  789. struct cfq_data *cfqd = q->elevator->elevator_data;
  790. struct request *__rq;
  791. __rq = cfq_find_rq_fmerge(cfqd, bio);
  792. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  793. *req = __rq;
  794. return ELEVATOR_FRONT_MERGE;
  795. }
  796. return ELEVATOR_NO_MERGE;
  797. }
  798. static void cfq_merged_request(struct request_queue *q, struct request *req,
  799. int type)
  800. {
  801. if (type == ELEVATOR_FRONT_MERGE) {
  802. struct cfq_queue *cfqq = RQ_CFQQ(req);
  803. cfq_reposition_rq_rb(cfqq, req);
  804. }
  805. }
  806. static void
  807. cfq_merged_requests(struct request_queue *q, struct request *rq,
  808. struct request *next)
  809. {
  810. /*
  811. * reposition in fifo if next is older than rq
  812. */
  813. if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
  814. time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
  815. list_move(&rq->queuelist, &next->queuelist);
  816. rq_set_fifo_time(rq, rq_fifo_time(next));
  817. }
  818. cfq_remove_request(next);
  819. }
  820. static int cfq_allow_merge(struct request_queue *q, struct request *rq,
  821. struct bio *bio)
  822. {
  823. struct cfq_data *cfqd = q->elevator->elevator_data;
  824. struct cfq_io_context *cic;
  825. struct cfq_queue *cfqq;
  826. /*
  827. * Disallow merge of a sync bio into an async request.
  828. */
  829. if (cfq_bio_sync(bio) && !rq_is_sync(rq))
  830. return false;
  831. /*
  832. * Lookup the cfqq that this bio will be queued with. Allow
  833. * merge only if rq is queued there.
  834. */
  835. cic = cfq_cic_lookup(cfqd, current->io_context);
  836. if (!cic)
  837. return false;
  838. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  839. return cfqq == RQ_CFQQ(rq);
  840. }
  841. static void __cfq_set_active_queue(struct cfq_data *cfqd,
  842. struct cfq_queue *cfqq)
  843. {
  844. if (cfqq) {
  845. cfq_log_cfqq(cfqd, cfqq, "set_active");
  846. cfqq->slice_end = 0;
  847. cfqq->slice_dispatch = 0;
  848. cfq_clear_cfqq_wait_request(cfqq);
  849. cfq_clear_cfqq_must_dispatch(cfqq);
  850. cfq_clear_cfqq_must_alloc_slice(cfqq);
  851. cfq_clear_cfqq_fifo_expire(cfqq);
  852. cfq_mark_cfqq_slice_new(cfqq);
  853. del_timer(&cfqd->idle_slice_timer);
  854. }
  855. cfqd->active_queue = cfqq;
  856. }
  857. /*
  858. * current cfqq expired its slice (or was too idle), select new one
  859. */
  860. static void
  861. __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  862. bool timed_out)
  863. {
  864. cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
  865. if (cfq_cfqq_wait_request(cfqq))
  866. del_timer(&cfqd->idle_slice_timer);
  867. cfq_clear_cfqq_wait_request(cfqq);
  868. /*
  869. * store what was left of this slice, if the queue idled/timed out
  870. */
  871. if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
  872. cfqq->slice_resid = cfqq->slice_end - jiffies;
  873. cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
  874. }
  875. cfq_resort_rr_list(cfqd, cfqq);
  876. if (cfqq == cfqd->active_queue)
  877. cfqd->active_queue = NULL;
  878. if (cfqd->active_cic) {
  879. put_io_context(cfqd->active_cic->ioc);
  880. cfqd->active_cic = NULL;
  881. }
  882. }
  883. static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
  884. {
  885. struct cfq_queue *cfqq = cfqd->active_queue;
  886. if (cfqq)
  887. __cfq_slice_expired(cfqd, cfqq, timed_out);
  888. }
  889. /*
  890. * Get next queue for service. Unless we have a queue preemption,
  891. * we'll simply select the first cfqq in the service tree.
  892. */
  893. static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
  894. {
  895. struct cfq_rb_root *service_tree =
  896. service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd);
  897. if (RB_EMPTY_ROOT(&service_tree->rb))
  898. return NULL;
  899. return cfq_rb_first(service_tree);
  900. }
  901. /*
  902. * Get and set a new active queue for service.
  903. */
  904. static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
  905. struct cfq_queue *cfqq)
  906. {
  907. if (!cfqq)
  908. cfqq = cfq_get_next_queue(cfqd);
  909. __cfq_set_active_queue(cfqd, cfqq);
  910. return cfqq;
  911. }
  912. static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
  913. struct request *rq)
  914. {
  915. if (blk_rq_pos(rq) >= cfqd->last_position)
  916. return blk_rq_pos(rq) - cfqd->last_position;
  917. else
  918. return cfqd->last_position - blk_rq_pos(rq);
  919. }
  920. #define CFQQ_SEEK_THR 8 * 1024
  921. #define CFQQ_SEEKY(cfqq) ((cfqq)->seek_mean > CFQQ_SEEK_THR)
  922. static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  923. struct request *rq)
  924. {
  925. sector_t sdist = cfqq->seek_mean;
  926. if (!sample_valid(cfqq->seek_samples))
  927. sdist = CFQQ_SEEK_THR;
  928. return cfq_dist_from_last(cfqd, rq) <= sdist;
  929. }
  930. static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
  931. struct cfq_queue *cur_cfqq)
  932. {
  933. struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
  934. struct rb_node *parent, *node;
  935. struct cfq_queue *__cfqq;
  936. sector_t sector = cfqd->last_position;
  937. if (RB_EMPTY_ROOT(root))
  938. return NULL;
  939. /*
  940. * First, if we find a request starting at the end of the last
  941. * request, choose it.
  942. */
  943. __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
  944. if (__cfqq)
  945. return __cfqq;
  946. /*
  947. * If the exact sector wasn't found, the parent of the NULL leaf
  948. * will contain the closest sector.
  949. */
  950. __cfqq = rb_entry(parent, struct cfq_queue, p_node);
  951. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  952. return __cfqq;
  953. if (blk_rq_pos(__cfqq->next_rq) < sector)
  954. node = rb_next(&__cfqq->p_node);
  955. else
  956. node = rb_prev(&__cfqq->p_node);
  957. if (!node)
  958. return NULL;
  959. __cfqq = rb_entry(node, struct cfq_queue, p_node);
  960. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  961. return __cfqq;
  962. return NULL;
  963. }
  964. /*
  965. * cfqd - obvious
  966. * cur_cfqq - passed in so that we don't decide that the current queue is
  967. * closely cooperating with itself.
  968. *
  969. * So, basically we're assuming that that cur_cfqq has dispatched at least
  970. * one request, and that cfqd->last_position reflects a position on the disk
  971. * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
  972. * assumption.
  973. */
  974. static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
  975. struct cfq_queue *cur_cfqq)
  976. {
  977. struct cfq_queue *cfqq;
  978. if (!cfq_cfqq_sync(cur_cfqq))
  979. return NULL;
  980. if (CFQQ_SEEKY(cur_cfqq))
  981. return NULL;
  982. /*
  983. * We should notice if some of the queues are cooperating, eg
  984. * working closely on the same area of the disk. In that case,
  985. * we can group them together and don't waste time idling.
  986. */
  987. cfqq = cfqq_close(cfqd, cur_cfqq);
  988. if (!cfqq)
  989. return NULL;
  990. /*
  991. * It only makes sense to merge sync queues.
  992. */
  993. if (!cfq_cfqq_sync(cfqq))
  994. return NULL;
  995. if (CFQQ_SEEKY(cfqq))
  996. return NULL;
  997. /*
  998. * Do not merge queues of different priority classes
  999. */
  1000. if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
  1001. return NULL;
  1002. return cfqq;
  1003. }
  1004. /*
  1005. * Determine whether we should enforce idle window for this queue.
  1006. */
  1007. static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1008. {
  1009. enum wl_prio_t prio = cfqq_prio(cfqq);
  1010. struct cfq_rb_root *service_tree = cfqq->service_tree;
  1011. /* We never do for idle class queues. */
  1012. if (prio == IDLE_WORKLOAD)
  1013. return false;
  1014. /* We do for queues that were marked with idle window flag. */
  1015. if (cfq_cfqq_idle_window(cfqq))
  1016. return true;
  1017. /*
  1018. * Otherwise, we do only if they are the last ones
  1019. * in their service tree.
  1020. */
  1021. if (!service_tree)
  1022. service_tree = service_tree_for(prio, cfqq_type(cfqq), cfqd);
  1023. if (service_tree->count == 0)
  1024. return true;
  1025. return (service_tree->count == 1 && cfq_rb_first(service_tree) == cfqq);
  1026. }
  1027. static void cfq_arm_slice_timer(struct cfq_data *cfqd)
  1028. {
  1029. struct cfq_queue *cfqq = cfqd->active_queue;
  1030. struct cfq_io_context *cic;
  1031. unsigned long sl;
  1032. /*
  1033. * SSD device without seek penalty, disable idling. But only do so
  1034. * for devices that support queuing, otherwise we still have a problem
  1035. * with sync vs async workloads.
  1036. */
  1037. if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
  1038. return;
  1039. WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
  1040. WARN_ON(cfq_cfqq_slice_new(cfqq));
  1041. /*
  1042. * idle is disabled, either manually or by past process history
  1043. */
  1044. if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
  1045. return;
  1046. /*
  1047. * still requests with the driver, don't idle
  1048. */
  1049. if (rq_in_driver(cfqd))
  1050. return;
  1051. /*
  1052. * task has exited, don't wait
  1053. */
  1054. cic = cfqd->active_cic;
  1055. if (!cic || !atomic_read(&cic->ioc->nr_tasks))
  1056. return;
  1057. /*
  1058. * If our average think time is larger than the remaining time
  1059. * slice, then don't idle. This avoids overrunning the allotted
  1060. * time slice.
  1061. */
  1062. if (sample_valid(cic->ttime_samples) &&
  1063. (cfqq->slice_end - jiffies < cic->ttime_mean))
  1064. return;
  1065. cfq_mark_cfqq_wait_request(cfqq);
  1066. sl = cfqd->cfq_slice_idle;
  1067. /* are we servicing noidle tree, and there are more queues?
  1068. * non-rotational or NCQ: no idle
  1069. * non-NCQ rotational : very small idle, to allow
  1070. * fair distribution of slice time for a process doing back-to-back
  1071. * seeks.
  1072. */
  1073. if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
  1074. service_tree_for(cfqd->serving_prio, SYNC_NOIDLE_WORKLOAD, cfqd)
  1075. ->count > 0) {
  1076. if (blk_queue_nonrot(cfqd->queue) || cfqd->hw_tag)
  1077. return;
  1078. sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
  1079. }
  1080. mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
  1081. cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
  1082. }
  1083. /*
  1084. * Move request from internal lists to the request queue dispatch list.
  1085. */
  1086. static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
  1087. {
  1088. struct cfq_data *cfqd = q->elevator->elevator_data;
  1089. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1090. cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
  1091. cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
  1092. cfq_remove_request(rq);
  1093. cfqq->dispatched++;
  1094. elv_dispatch_sort(q, rq);
  1095. if (cfq_cfqq_sync(cfqq))
  1096. cfqd->sync_flight++;
  1097. }
  1098. /*
  1099. * return expired entry, or NULL to just start from scratch in rbtree
  1100. */
  1101. static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
  1102. {
  1103. struct request *rq = NULL;
  1104. if (cfq_cfqq_fifo_expire(cfqq))
  1105. return NULL;
  1106. cfq_mark_cfqq_fifo_expire(cfqq);
  1107. if (list_empty(&cfqq->fifo))
  1108. return NULL;
  1109. rq = rq_entry_fifo(cfqq->fifo.next);
  1110. if (time_before(jiffies, rq_fifo_time(rq)))
  1111. rq = NULL;
  1112. cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
  1113. return rq;
  1114. }
  1115. static inline int
  1116. cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1117. {
  1118. const int base_rq = cfqd->cfq_slice_async_rq;
  1119. WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
  1120. return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
  1121. }
  1122. /*
  1123. * Must be called with the queue_lock held.
  1124. */
  1125. static int cfqq_process_refs(struct cfq_queue *cfqq)
  1126. {
  1127. int process_refs, io_refs;
  1128. io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
  1129. process_refs = atomic_read(&cfqq->ref) - io_refs;
  1130. BUG_ON(process_refs < 0);
  1131. return process_refs;
  1132. }
  1133. static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
  1134. {
  1135. int process_refs, new_process_refs;
  1136. struct cfq_queue *__cfqq;
  1137. /* Avoid a circular list and skip interim queue merges */
  1138. while ((__cfqq = new_cfqq->new_cfqq)) {
  1139. if (__cfqq == cfqq)
  1140. return;
  1141. new_cfqq = __cfqq;
  1142. }
  1143. process_refs = cfqq_process_refs(cfqq);
  1144. /*
  1145. * If the process for the cfqq has gone away, there is no
  1146. * sense in merging the queues.
  1147. */
  1148. if (process_refs == 0)
  1149. return;
  1150. /*
  1151. * Merge in the direction of the lesser amount of work.
  1152. */
  1153. new_process_refs = cfqq_process_refs(new_cfqq);
  1154. if (new_process_refs >= process_refs) {
  1155. cfqq->new_cfqq = new_cfqq;
  1156. atomic_add(process_refs, &new_cfqq->ref);
  1157. } else {
  1158. new_cfqq->new_cfqq = cfqq;
  1159. atomic_add(new_process_refs, &cfqq->ref);
  1160. }
  1161. }
  1162. static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd, enum wl_prio_t prio,
  1163. bool prio_changed)
  1164. {
  1165. struct cfq_queue *queue;
  1166. int i;
  1167. bool key_valid = false;
  1168. unsigned long lowest_key = 0;
  1169. enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
  1170. if (prio_changed) {
  1171. /*
  1172. * When priorities switched, we prefer starting
  1173. * from SYNC_NOIDLE (first choice), or just SYNC
  1174. * over ASYNC
  1175. */
  1176. if (service_tree_for(prio, cur_best, cfqd)->count)
  1177. return cur_best;
  1178. cur_best = SYNC_WORKLOAD;
  1179. if (service_tree_for(prio, cur_best, cfqd)->count)
  1180. return cur_best;
  1181. return ASYNC_WORKLOAD;
  1182. }
  1183. for (i = 0; i < 3; ++i) {
  1184. /* otherwise, select the one with lowest rb_key */
  1185. queue = cfq_rb_first(service_tree_for(prio, i, cfqd));
  1186. if (queue &&
  1187. (!key_valid || time_before(queue->rb_key, lowest_key))) {
  1188. lowest_key = queue->rb_key;
  1189. cur_best = i;
  1190. key_valid = true;
  1191. }
  1192. }
  1193. return cur_best;
  1194. }
  1195. static void choose_service_tree(struct cfq_data *cfqd)
  1196. {
  1197. enum wl_prio_t previous_prio = cfqd->serving_prio;
  1198. bool prio_changed;
  1199. unsigned slice;
  1200. unsigned count;
  1201. /* Choose next priority. RT > BE > IDLE */
  1202. if (cfq_busy_queues_wl(RT_WORKLOAD, cfqd))
  1203. cfqd->serving_prio = RT_WORKLOAD;
  1204. else if (cfq_busy_queues_wl(BE_WORKLOAD, cfqd))
  1205. cfqd->serving_prio = BE_WORKLOAD;
  1206. else {
  1207. cfqd->serving_prio = IDLE_WORKLOAD;
  1208. cfqd->workload_expires = jiffies + 1;
  1209. return;
  1210. }
  1211. /*
  1212. * For RT and BE, we have to choose also the type
  1213. * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
  1214. * expiration time
  1215. */
  1216. prio_changed = (cfqd->serving_prio != previous_prio);
  1217. count = service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd)
  1218. ->count;
  1219. /*
  1220. * If priority didn't change, check workload expiration,
  1221. * and that we still have other queues ready
  1222. */
  1223. if (!prio_changed && count &&
  1224. !time_after(jiffies, cfqd->workload_expires))
  1225. return;
  1226. /* otherwise select new workload type */
  1227. cfqd->serving_type =
  1228. cfq_choose_wl(cfqd, cfqd->serving_prio, prio_changed);
  1229. count = service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd)
  1230. ->count;
  1231. /*
  1232. * the workload slice is computed as a fraction of target latency
  1233. * proportional to the number of queues in that workload, over
  1234. * all the queues in the same priority class
  1235. */
  1236. slice = cfq_target_latency * count /
  1237. max_t(unsigned, cfqd->busy_queues_avg[cfqd->serving_prio],
  1238. cfq_busy_queues_wl(cfqd->serving_prio, cfqd));
  1239. if (cfqd->serving_type == ASYNC_WORKLOAD)
  1240. /* async workload slice is scaled down according to
  1241. * the sync/async slice ratio. */
  1242. slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
  1243. else
  1244. /* sync workload slice is at least 2 * cfq_slice_idle */
  1245. slice = max(slice, 2 * cfqd->cfq_slice_idle);
  1246. slice = max_t(unsigned, slice, CFQ_MIN_TT);
  1247. cfqd->workload_expires = jiffies + slice;
  1248. }
  1249. /*
  1250. * Select a queue for service. If we have a current active queue,
  1251. * check whether to continue servicing it, or retrieve and set a new one.
  1252. */
  1253. static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
  1254. {
  1255. struct cfq_queue *cfqq, *new_cfqq = NULL;
  1256. cfqq = cfqd->active_queue;
  1257. if (!cfqq)
  1258. goto new_queue;
  1259. /*
  1260. * The active queue has run out of time, expire it and select new.
  1261. */
  1262. if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
  1263. goto expire;
  1264. /*
  1265. * The active queue has requests and isn't expired, allow it to
  1266. * dispatch.
  1267. */
  1268. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  1269. goto keep_queue;
  1270. /*
  1271. * If another queue has a request waiting within our mean seek
  1272. * distance, let it run. The expire code will check for close
  1273. * cooperators and put the close queue at the front of the service
  1274. * tree. If possible, merge the expiring queue with the new cfqq.
  1275. */
  1276. new_cfqq = cfq_close_cooperator(cfqd, cfqq);
  1277. if (new_cfqq) {
  1278. if (!cfqq->new_cfqq)
  1279. cfq_setup_merge(cfqq, new_cfqq);
  1280. goto expire;
  1281. }
  1282. /*
  1283. * No requests pending. If the active queue still has requests in
  1284. * flight or is idling for a new request, allow either of these
  1285. * conditions to happen (or time out) before selecting a new queue.
  1286. */
  1287. if (timer_pending(&cfqd->idle_slice_timer) ||
  1288. (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
  1289. cfqq = NULL;
  1290. goto keep_queue;
  1291. }
  1292. expire:
  1293. cfq_slice_expired(cfqd, 0);
  1294. new_queue:
  1295. /*
  1296. * Current queue expired. Check if we have to switch to a new
  1297. * service tree
  1298. */
  1299. if (!new_cfqq)
  1300. choose_service_tree(cfqd);
  1301. cfqq = cfq_set_active_queue(cfqd, new_cfqq);
  1302. keep_queue:
  1303. return cfqq;
  1304. }
  1305. static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
  1306. {
  1307. int dispatched = 0;
  1308. while (cfqq->next_rq) {
  1309. cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
  1310. dispatched++;
  1311. }
  1312. BUG_ON(!list_empty(&cfqq->fifo));
  1313. return dispatched;
  1314. }
  1315. /*
  1316. * Drain our current requests. Used for barriers and when switching
  1317. * io schedulers on-the-fly.
  1318. */
  1319. static int cfq_forced_dispatch(struct cfq_data *cfqd)
  1320. {
  1321. struct cfq_queue *cfqq;
  1322. int dispatched = 0;
  1323. int i, j;
  1324. for (i = 0; i < 2; ++i)
  1325. for (j = 0; j < 3; ++j)
  1326. while ((cfqq = cfq_rb_first(&cfqd->service_trees[i][j]))
  1327. != NULL)
  1328. dispatched += __cfq_forced_dispatch_cfqq(cfqq);
  1329. while ((cfqq = cfq_rb_first(&cfqd->service_tree_idle)) != NULL)
  1330. dispatched += __cfq_forced_dispatch_cfqq(cfqq);
  1331. cfq_slice_expired(cfqd, 0);
  1332. BUG_ON(cfqd->busy_queues);
  1333. cfq_log(cfqd, "forced_dispatch=%d", dispatched);
  1334. return dispatched;
  1335. }
  1336. static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1337. {
  1338. unsigned int max_dispatch;
  1339. /*
  1340. * Drain async requests before we start sync IO
  1341. */
  1342. if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
  1343. return false;
  1344. /*
  1345. * If this is an async queue and we have sync IO in flight, let it wait
  1346. */
  1347. if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
  1348. return false;
  1349. max_dispatch = cfqd->cfq_quantum;
  1350. if (cfq_class_idle(cfqq))
  1351. max_dispatch = 1;
  1352. /*
  1353. * Does this cfqq already have too much IO in flight?
  1354. */
  1355. if (cfqq->dispatched >= max_dispatch) {
  1356. /*
  1357. * idle queue must always only have a single IO in flight
  1358. */
  1359. if (cfq_class_idle(cfqq))
  1360. return false;
  1361. /*
  1362. * We have other queues, don't allow more IO from this one
  1363. */
  1364. if (cfqd->busy_queues > 1)
  1365. return false;
  1366. /*
  1367. * Sole queue user, allow bigger slice
  1368. */
  1369. max_dispatch *= 4;
  1370. }
  1371. /*
  1372. * Async queues must wait a bit before being allowed dispatch.
  1373. * We also ramp up the dispatch depth gradually for async IO,
  1374. * based on the last sync IO we serviced
  1375. */
  1376. if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
  1377. unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
  1378. unsigned int depth;
  1379. depth = last_sync / cfqd->cfq_slice[1];
  1380. if (!depth && !cfqq->dispatched)
  1381. depth = 1;
  1382. if (depth < max_dispatch)
  1383. max_dispatch = depth;
  1384. }
  1385. /*
  1386. * If we're below the current max, allow a dispatch
  1387. */
  1388. return cfqq->dispatched < max_dispatch;
  1389. }
  1390. /*
  1391. * Dispatch a request from cfqq, moving them to the request queue
  1392. * dispatch list.
  1393. */
  1394. static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1395. {
  1396. struct request *rq;
  1397. BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
  1398. if (!cfq_may_dispatch(cfqd, cfqq))
  1399. return false;
  1400. /*
  1401. * follow expired path, else get first next available
  1402. */
  1403. rq = cfq_check_fifo(cfqq);
  1404. if (!rq)
  1405. rq = cfqq->next_rq;
  1406. /*
  1407. * insert request into driver dispatch list
  1408. */
  1409. cfq_dispatch_insert(cfqd->queue, rq);
  1410. if (!cfqd->active_cic) {
  1411. struct cfq_io_context *cic = RQ_CIC(rq);
  1412. atomic_long_inc(&cic->ioc->refcount);
  1413. cfqd->active_cic = cic;
  1414. }
  1415. return true;
  1416. }
  1417. /*
  1418. * Find the cfqq that we need to service and move a request from that to the
  1419. * dispatch list
  1420. */
  1421. static int cfq_dispatch_requests(struct request_queue *q, int force)
  1422. {
  1423. struct cfq_data *cfqd = q->elevator->elevator_data;
  1424. struct cfq_queue *cfqq;
  1425. if (!cfqd->busy_queues)
  1426. return 0;
  1427. if (unlikely(force))
  1428. return cfq_forced_dispatch(cfqd);
  1429. cfqq = cfq_select_queue(cfqd);
  1430. if (!cfqq)
  1431. return 0;
  1432. /*
  1433. * Dispatch a request from this cfqq, if it is allowed
  1434. */
  1435. if (!cfq_dispatch_request(cfqd, cfqq))
  1436. return 0;
  1437. cfqq->slice_dispatch++;
  1438. cfq_clear_cfqq_must_dispatch(cfqq);
  1439. /*
  1440. * expire an async queue immediately if it has used up its slice. idle
  1441. * queue always expire after 1 dispatch round.
  1442. */
  1443. if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
  1444. cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
  1445. cfq_class_idle(cfqq))) {
  1446. cfqq->slice_end = jiffies + 1;
  1447. cfq_slice_expired(cfqd, 0);
  1448. }
  1449. cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
  1450. return 1;
  1451. }
  1452. /*
  1453. * task holds one reference to the queue, dropped when task exits. each rq
  1454. * in-flight on this queue also holds a reference, dropped when rq is freed.
  1455. *
  1456. * queue lock must be held here.
  1457. */
  1458. static void cfq_put_queue(struct cfq_queue *cfqq)
  1459. {
  1460. struct cfq_data *cfqd = cfqq->cfqd;
  1461. BUG_ON(atomic_read(&cfqq->ref) <= 0);
  1462. if (!atomic_dec_and_test(&cfqq->ref))
  1463. return;
  1464. cfq_log_cfqq(cfqd, cfqq, "put_queue");
  1465. BUG_ON(rb_first(&cfqq->sort_list));
  1466. BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
  1467. BUG_ON(cfq_cfqq_on_rr(cfqq));
  1468. if (unlikely(cfqd->active_queue == cfqq)) {
  1469. __cfq_slice_expired(cfqd, cfqq, 0);
  1470. cfq_schedule_dispatch(cfqd);
  1471. }
  1472. kmem_cache_free(cfq_pool, cfqq);
  1473. }
  1474. /*
  1475. * Must always be called with the rcu_read_lock() held
  1476. */
  1477. static void
  1478. __call_for_each_cic(struct io_context *ioc,
  1479. void (*func)(struct io_context *, struct cfq_io_context *))
  1480. {
  1481. struct cfq_io_context *cic;
  1482. struct hlist_node *n;
  1483. hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
  1484. func(ioc, cic);
  1485. }
  1486. /*
  1487. * Call func for each cic attached to this ioc.
  1488. */
  1489. static void
  1490. call_for_each_cic(struct io_context *ioc,
  1491. void (*func)(struct io_context *, struct cfq_io_context *))
  1492. {
  1493. rcu_read_lock();
  1494. __call_for_each_cic(ioc, func);
  1495. rcu_read_unlock();
  1496. }
  1497. static void cfq_cic_free_rcu(struct rcu_head *head)
  1498. {
  1499. struct cfq_io_context *cic;
  1500. cic = container_of(head, struct cfq_io_context, rcu_head);
  1501. kmem_cache_free(cfq_ioc_pool, cic);
  1502. elv_ioc_count_dec(cfq_ioc_count);
  1503. if (ioc_gone) {
  1504. /*
  1505. * CFQ scheduler is exiting, grab exit lock and check
  1506. * the pending io context count. If it hits zero,
  1507. * complete ioc_gone and set it back to NULL
  1508. */
  1509. spin_lock(&ioc_gone_lock);
  1510. if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
  1511. complete(ioc_gone);
  1512. ioc_gone = NULL;
  1513. }
  1514. spin_unlock(&ioc_gone_lock);
  1515. }
  1516. }
  1517. static void cfq_cic_free(struct cfq_io_context *cic)
  1518. {
  1519. call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
  1520. }
  1521. static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
  1522. {
  1523. unsigned long flags;
  1524. BUG_ON(!cic->dead_key);
  1525. spin_lock_irqsave(&ioc->lock, flags);
  1526. radix_tree_delete(&ioc->radix_root, cic->dead_key);
  1527. hlist_del_rcu(&cic->cic_list);
  1528. spin_unlock_irqrestore(&ioc->lock, flags);
  1529. cfq_cic_free(cic);
  1530. }
  1531. /*
  1532. * Must be called with rcu_read_lock() held or preemption otherwise disabled.
  1533. * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
  1534. * and ->trim() which is called with the task lock held
  1535. */
  1536. static void cfq_free_io_context(struct io_context *ioc)
  1537. {
  1538. /*
  1539. * ioc->refcount is zero here, or we are called from elv_unregister(),
  1540. * so no more cic's are allowed to be linked into this ioc. So it
  1541. * should be ok to iterate over the known list, we will see all cic's
  1542. * since no new ones are added.
  1543. */
  1544. __call_for_each_cic(ioc, cic_free_func);
  1545. }
  1546. static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1547. {
  1548. struct cfq_queue *__cfqq, *next;
  1549. if (unlikely(cfqq == cfqd->active_queue)) {
  1550. __cfq_slice_expired(cfqd, cfqq, 0);
  1551. cfq_schedule_dispatch(cfqd);
  1552. }
  1553. /*
  1554. * If this queue was scheduled to merge with another queue, be
  1555. * sure to drop the reference taken on that queue (and others in
  1556. * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
  1557. */
  1558. __cfqq = cfqq->new_cfqq;
  1559. while (__cfqq) {
  1560. if (__cfqq == cfqq) {
  1561. WARN(1, "cfqq->new_cfqq loop detected\n");
  1562. break;
  1563. }
  1564. next = __cfqq->new_cfqq;
  1565. cfq_put_queue(__cfqq);
  1566. __cfqq = next;
  1567. }
  1568. cfq_put_queue(cfqq);
  1569. }
  1570. static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
  1571. struct cfq_io_context *cic)
  1572. {
  1573. struct io_context *ioc = cic->ioc;
  1574. list_del_init(&cic->queue_list);
  1575. /*
  1576. * Make sure key == NULL is seen for dead queues
  1577. */
  1578. smp_wmb();
  1579. cic->dead_key = (unsigned long) cic->key;
  1580. cic->key = NULL;
  1581. if (ioc->ioc_data == cic)
  1582. rcu_assign_pointer(ioc->ioc_data, NULL);
  1583. if (cic->cfqq[BLK_RW_ASYNC]) {
  1584. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
  1585. cic->cfqq[BLK_RW_ASYNC] = NULL;
  1586. }
  1587. if (cic->cfqq[BLK_RW_SYNC]) {
  1588. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
  1589. cic->cfqq[BLK_RW_SYNC] = NULL;
  1590. }
  1591. }
  1592. static void cfq_exit_single_io_context(struct io_context *ioc,
  1593. struct cfq_io_context *cic)
  1594. {
  1595. struct cfq_data *cfqd = cic->key;
  1596. if (cfqd) {
  1597. struct request_queue *q = cfqd->queue;
  1598. unsigned long flags;
  1599. spin_lock_irqsave(q->queue_lock, flags);
  1600. /*
  1601. * Ensure we get a fresh copy of the ->key to prevent
  1602. * race between exiting task and queue
  1603. */
  1604. smp_read_barrier_depends();
  1605. if (cic->key)
  1606. __cfq_exit_single_io_context(cfqd, cic);
  1607. spin_unlock_irqrestore(q->queue_lock, flags);
  1608. }
  1609. }
  1610. /*
  1611. * The process that ioc belongs to has exited, we need to clean up
  1612. * and put the internal structures we have that belongs to that process.
  1613. */
  1614. static void cfq_exit_io_context(struct io_context *ioc)
  1615. {
  1616. call_for_each_cic(ioc, cfq_exit_single_io_context);
  1617. }
  1618. static struct cfq_io_context *
  1619. cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  1620. {
  1621. struct cfq_io_context *cic;
  1622. cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
  1623. cfqd->queue->node);
  1624. if (cic) {
  1625. cic->last_end_request = jiffies;
  1626. INIT_LIST_HEAD(&cic->queue_list);
  1627. INIT_HLIST_NODE(&cic->cic_list);
  1628. cic->dtor = cfq_free_io_context;
  1629. cic->exit = cfq_exit_io_context;
  1630. elv_ioc_count_inc(cfq_ioc_count);
  1631. }
  1632. return cic;
  1633. }
  1634. static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
  1635. {
  1636. struct task_struct *tsk = current;
  1637. int ioprio_class;
  1638. if (!cfq_cfqq_prio_changed(cfqq))
  1639. return;
  1640. ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
  1641. switch (ioprio_class) {
  1642. default:
  1643. printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
  1644. case IOPRIO_CLASS_NONE:
  1645. /*
  1646. * no prio set, inherit CPU scheduling settings
  1647. */
  1648. cfqq->ioprio = task_nice_ioprio(tsk);
  1649. cfqq->ioprio_class = task_nice_ioclass(tsk);
  1650. break;
  1651. case IOPRIO_CLASS_RT:
  1652. cfqq->ioprio = task_ioprio(ioc);
  1653. cfqq->ioprio_class = IOPRIO_CLASS_RT;
  1654. break;
  1655. case IOPRIO_CLASS_BE:
  1656. cfqq->ioprio = task_ioprio(ioc);
  1657. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  1658. break;
  1659. case IOPRIO_CLASS_IDLE:
  1660. cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
  1661. cfqq->ioprio = 7;
  1662. cfq_clear_cfqq_idle_window(cfqq);
  1663. break;
  1664. }
  1665. /*
  1666. * keep track of original prio settings in case we have to temporarily
  1667. * elevate the priority of this queue
  1668. */
  1669. cfqq->org_ioprio = cfqq->ioprio;
  1670. cfqq->org_ioprio_class = cfqq->ioprio_class;
  1671. cfq_clear_cfqq_prio_changed(cfqq);
  1672. }
  1673. static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
  1674. {
  1675. struct cfq_data *cfqd = cic->key;
  1676. struct cfq_queue *cfqq;
  1677. unsigned long flags;
  1678. if (unlikely(!cfqd))
  1679. return;
  1680. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  1681. cfqq = cic->cfqq[BLK_RW_ASYNC];
  1682. if (cfqq) {
  1683. struct cfq_queue *new_cfqq;
  1684. new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
  1685. GFP_ATOMIC);
  1686. if (new_cfqq) {
  1687. cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
  1688. cfq_put_queue(cfqq);
  1689. }
  1690. }
  1691. cfqq = cic->cfqq[BLK_RW_SYNC];
  1692. if (cfqq)
  1693. cfq_mark_cfqq_prio_changed(cfqq);
  1694. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  1695. }
  1696. static void cfq_ioc_set_ioprio(struct io_context *ioc)
  1697. {
  1698. call_for_each_cic(ioc, changed_ioprio);
  1699. ioc->ioprio_changed = 0;
  1700. }
  1701. static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1702. pid_t pid, bool is_sync)
  1703. {
  1704. RB_CLEAR_NODE(&cfqq->rb_node);
  1705. RB_CLEAR_NODE(&cfqq->p_node);
  1706. INIT_LIST_HEAD(&cfqq->fifo);
  1707. atomic_set(&cfqq->ref, 0);
  1708. cfqq->cfqd = cfqd;
  1709. cfq_mark_cfqq_prio_changed(cfqq);
  1710. if (is_sync) {
  1711. if (!cfq_class_idle(cfqq))
  1712. cfq_mark_cfqq_idle_window(cfqq);
  1713. cfq_mark_cfqq_sync(cfqq);
  1714. }
  1715. cfqq->pid = pid;
  1716. }
  1717. static struct cfq_queue *
  1718. cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
  1719. struct io_context *ioc, gfp_t gfp_mask)
  1720. {
  1721. struct cfq_queue *cfqq, *new_cfqq = NULL;
  1722. struct cfq_io_context *cic;
  1723. retry:
  1724. cic = cfq_cic_lookup(cfqd, ioc);
  1725. /* cic always exists here */
  1726. cfqq = cic_to_cfqq(cic, is_sync);
  1727. /*
  1728. * Always try a new alloc if we fell back to the OOM cfqq
  1729. * originally, since it should just be a temporary situation.
  1730. */
  1731. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  1732. cfqq = NULL;
  1733. if (new_cfqq) {
  1734. cfqq = new_cfqq;
  1735. new_cfqq = NULL;
  1736. } else if (gfp_mask & __GFP_WAIT) {
  1737. spin_unlock_irq(cfqd->queue->queue_lock);
  1738. new_cfqq = kmem_cache_alloc_node(cfq_pool,
  1739. gfp_mask | __GFP_ZERO,
  1740. cfqd->queue->node);
  1741. spin_lock_irq(cfqd->queue->queue_lock);
  1742. if (new_cfqq)
  1743. goto retry;
  1744. } else {
  1745. cfqq = kmem_cache_alloc_node(cfq_pool,
  1746. gfp_mask | __GFP_ZERO,
  1747. cfqd->queue->node);
  1748. }
  1749. if (cfqq) {
  1750. cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
  1751. cfq_init_prio_data(cfqq, ioc);
  1752. cfq_log_cfqq(cfqd, cfqq, "alloced");
  1753. } else
  1754. cfqq = &cfqd->oom_cfqq;
  1755. }
  1756. if (new_cfqq)
  1757. kmem_cache_free(cfq_pool, new_cfqq);
  1758. return cfqq;
  1759. }
  1760. static struct cfq_queue **
  1761. cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
  1762. {
  1763. switch (ioprio_class) {
  1764. case IOPRIO_CLASS_RT:
  1765. return &cfqd->async_cfqq[0][ioprio];
  1766. case IOPRIO_CLASS_BE:
  1767. return &cfqd->async_cfqq[1][ioprio];
  1768. case IOPRIO_CLASS_IDLE:
  1769. return &cfqd->async_idle_cfqq;
  1770. default:
  1771. BUG();
  1772. }
  1773. }
  1774. static struct cfq_queue *
  1775. cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
  1776. gfp_t gfp_mask)
  1777. {
  1778. const int ioprio = task_ioprio(ioc);
  1779. const int ioprio_class = task_ioprio_class(ioc);
  1780. struct cfq_queue **async_cfqq = NULL;
  1781. struct cfq_queue *cfqq = NULL;
  1782. if (!is_sync) {
  1783. async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
  1784. cfqq = *async_cfqq;
  1785. }
  1786. if (!cfqq)
  1787. cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
  1788. /*
  1789. * pin the queue now that it's allocated, scheduler exit will prune it
  1790. */
  1791. if (!is_sync && !(*async_cfqq)) {
  1792. atomic_inc(&cfqq->ref);
  1793. *async_cfqq = cfqq;
  1794. }
  1795. atomic_inc(&cfqq->ref);
  1796. return cfqq;
  1797. }
  1798. /*
  1799. * We drop cfq io contexts lazily, so we may find a dead one.
  1800. */
  1801. static void
  1802. cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
  1803. struct cfq_io_context *cic)
  1804. {
  1805. unsigned long flags;
  1806. WARN_ON(!list_empty(&cic->queue_list));
  1807. spin_lock_irqsave(&ioc->lock, flags);
  1808. BUG_ON(ioc->ioc_data == cic);
  1809. radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
  1810. hlist_del_rcu(&cic->cic_list);
  1811. spin_unlock_irqrestore(&ioc->lock, flags);
  1812. cfq_cic_free(cic);
  1813. }
  1814. static struct cfq_io_context *
  1815. cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
  1816. {
  1817. struct cfq_io_context *cic;
  1818. unsigned long flags;
  1819. void *k;
  1820. if (unlikely(!ioc))
  1821. return NULL;
  1822. rcu_read_lock();
  1823. /*
  1824. * we maintain a last-hit cache, to avoid browsing over the tree
  1825. */
  1826. cic = rcu_dereference(ioc->ioc_data);
  1827. if (cic && cic->key == cfqd) {
  1828. rcu_read_unlock();
  1829. return cic;
  1830. }
  1831. do {
  1832. cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
  1833. rcu_read_unlock();
  1834. if (!cic)
  1835. break;
  1836. /* ->key must be copied to avoid race with cfq_exit_queue() */
  1837. k = cic->key;
  1838. if (unlikely(!k)) {
  1839. cfq_drop_dead_cic(cfqd, ioc, cic);
  1840. rcu_read_lock();
  1841. continue;
  1842. }
  1843. spin_lock_irqsave(&ioc->lock, flags);
  1844. rcu_assign_pointer(ioc->ioc_data, cic);
  1845. spin_unlock_irqrestore(&ioc->lock, flags);
  1846. break;
  1847. } while (1);
  1848. return cic;
  1849. }
  1850. /*
  1851. * Add cic into ioc, using cfqd as the search key. This enables us to lookup
  1852. * the process specific cfq io context when entered from the block layer.
  1853. * Also adds the cic to a per-cfqd list, used when this queue is removed.
  1854. */
  1855. static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
  1856. struct cfq_io_context *cic, gfp_t gfp_mask)
  1857. {
  1858. unsigned long flags;
  1859. int ret;
  1860. ret = radix_tree_preload(gfp_mask);
  1861. if (!ret) {
  1862. cic->ioc = ioc;
  1863. cic->key = cfqd;
  1864. spin_lock_irqsave(&ioc->lock, flags);
  1865. ret = radix_tree_insert(&ioc->radix_root,
  1866. (unsigned long) cfqd, cic);
  1867. if (!ret)
  1868. hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
  1869. spin_unlock_irqrestore(&ioc->lock, flags);
  1870. radix_tree_preload_end();
  1871. if (!ret) {
  1872. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  1873. list_add(&cic->queue_list, &cfqd->cic_list);
  1874. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  1875. }
  1876. }
  1877. if (ret)
  1878. printk(KERN_ERR "cfq: cic link failed!\n");
  1879. return ret;
  1880. }
  1881. /*
  1882. * Setup general io context and cfq io context. There can be several cfq
  1883. * io contexts per general io context, if this process is doing io to more
  1884. * than one device managed by cfq.
  1885. */
  1886. static struct cfq_io_context *
  1887. cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  1888. {
  1889. struct io_context *ioc = NULL;
  1890. struct cfq_io_context *cic;
  1891. might_sleep_if(gfp_mask & __GFP_WAIT);
  1892. ioc = get_io_context(gfp_mask, cfqd->queue->node);
  1893. if (!ioc)
  1894. return NULL;
  1895. cic = cfq_cic_lookup(cfqd, ioc);
  1896. if (cic)
  1897. goto out;
  1898. cic = cfq_alloc_io_context(cfqd, gfp_mask);
  1899. if (cic == NULL)
  1900. goto err;
  1901. if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
  1902. goto err_free;
  1903. out:
  1904. smp_read_barrier_depends();
  1905. if (unlikely(ioc->ioprio_changed))
  1906. cfq_ioc_set_ioprio(ioc);
  1907. return cic;
  1908. err_free:
  1909. cfq_cic_free(cic);
  1910. err:
  1911. put_io_context(ioc);
  1912. return NULL;
  1913. }
  1914. static void
  1915. cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
  1916. {
  1917. unsigned long elapsed = jiffies - cic->last_end_request;
  1918. unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
  1919. cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
  1920. cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
  1921. cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
  1922. }
  1923. static void
  1924. cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1925. struct request *rq)
  1926. {
  1927. sector_t sdist;
  1928. u64 total;
  1929. if (!cfqq->last_request_pos)
  1930. sdist = 0;
  1931. else if (cfqq->last_request_pos < blk_rq_pos(rq))
  1932. sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
  1933. else
  1934. sdist = cfqq->last_request_pos - blk_rq_pos(rq);
  1935. /*
  1936. * Don't allow the seek distance to get too large from the
  1937. * odd fragment, pagein, etc
  1938. */
  1939. if (cfqq->seek_samples <= 60) /* second&third seek */
  1940. sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
  1941. else
  1942. sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
  1943. cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
  1944. cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
  1945. total = cfqq->seek_total + (cfqq->seek_samples/2);
  1946. do_div(total, cfqq->seek_samples);
  1947. cfqq->seek_mean = (sector_t)total;
  1948. /*
  1949. * If this cfqq is shared between multiple processes, check to
  1950. * make sure that those processes are still issuing I/Os within
  1951. * the mean seek distance. If not, it may be time to break the
  1952. * queues apart again.
  1953. */
  1954. if (cfq_cfqq_coop(cfqq)) {
  1955. if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
  1956. cfqq->seeky_start = jiffies;
  1957. else if (!CFQQ_SEEKY(cfqq))
  1958. cfqq->seeky_start = 0;
  1959. }
  1960. }
  1961. /*
  1962. * Disable idle window if the process thinks too long or seeks so much that
  1963. * it doesn't matter
  1964. */
  1965. static void
  1966. cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1967. struct cfq_io_context *cic)
  1968. {
  1969. int old_idle, enable_idle;
  1970. /*
  1971. * Don't idle for async or idle io prio class
  1972. */
  1973. if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
  1974. return;
  1975. enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
  1976. if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
  1977. (sample_valid(cfqq->seek_samples) && CFQQ_SEEKY(cfqq)))
  1978. enable_idle = 0;
  1979. else if (sample_valid(cic->ttime_samples)) {
  1980. if (cic->ttime_mean > cfqd->cfq_slice_idle)
  1981. enable_idle = 0;
  1982. else
  1983. enable_idle = 1;
  1984. }
  1985. if (old_idle != enable_idle) {
  1986. cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
  1987. if (enable_idle)
  1988. cfq_mark_cfqq_idle_window(cfqq);
  1989. else
  1990. cfq_clear_cfqq_idle_window(cfqq);
  1991. }
  1992. }
  1993. /*
  1994. * Check if new_cfqq should preempt the currently active queue. Return 0 for
  1995. * no or if we aren't sure, a 1 will cause a preempt.
  1996. */
  1997. static bool
  1998. cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
  1999. struct request *rq)
  2000. {
  2001. struct cfq_queue *cfqq;
  2002. cfqq = cfqd->active_queue;
  2003. if (!cfqq)
  2004. return false;
  2005. if (cfq_slice_used(cfqq))
  2006. return true;
  2007. if (cfq_class_idle(new_cfqq))
  2008. return false;
  2009. if (cfq_class_idle(cfqq))
  2010. return true;
  2011. if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD
  2012. && new_cfqq->service_tree == cfqq->service_tree)
  2013. return true;
  2014. /*
  2015. * if the new request is sync, but the currently running queue is
  2016. * not, let the sync request have priority.
  2017. */
  2018. if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
  2019. return true;
  2020. /*
  2021. * So both queues are sync. Let the new request get disk time if
  2022. * it's a metadata request and the current queue is doing regular IO.
  2023. */
  2024. if (rq_is_meta(rq) && !cfqq->meta_pending)
  2025. return false;
  2026. /*
  2027. * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
  2028. */
  2029. if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
  2030. return true;
  2031. if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
  2032. return false;
  2033. /*
  2034. * if this request is as-good as one we would expect from the
  2035. * current cfqq, let it preempt
  2036. */
  2037. if (cfq_rq_close(cfqd, cfqq, rq))
  2038. return true;
  2039. return false;
  2040. }
  2041. /*
  2042. * cfqq preempts the active queue. if we allowed preempt with no slice left,
  2043. * let it have half of its nominal slice.
  2044. */
  2045. static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2046. {
  2047. cfq_log_cfqq(cfqd, cfqq, "preempt");
  2048. cfq_slice_expired(cfqd, 1);
  2049. /*
  2050. * Put the new queue at the front of the of the current list,
  2051. * so we know that it will be selected next.
  2052. */
  2053. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  2054. cfq_service_tree_add(cfqd, cfqq, 1);
  2055. cfqq->slice_end = 0;
  2056. cfq_mark_cfqq_slice_new(cfqq);
  2057. }
  2058. /*
  2059. * Called when a new fs request (rq) is added (to cfqq). Check if there's
  2060. * something we should do about it
  2061. */
  2062. static void
  2063. cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2064. struct request *rq)
  2065. {
  2066. struct cfq_io_context *cic = RQ_CIC(rq);
  2067. cfqd->rq_queued++;
  2068. if (rq_is_meta(rq))
  2069. cfqq->meta_pending++;
  2070. cfq_update_io_thinktime(cfqd, cic);
  2071. cfq_update_io_seektime(cfqd, cfqq, rq);
  2072. cfq_update_idle_window(cfqd, cfqq, cic);
  2073. cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
  2074. if (cfqq == cfqd->active_queue) {
  2075. /*
  2076. * Remember that we saw a request from this process, but
  2077. * don't start queuing just yet. Otherwise we risk seeing lots
  2078. * of tiny requests, because we disrupt the normal plugging
  2079. * and merging. If the request is already larger than a single
  2080. * page, let it rip immediately. For that case we assume that
  2081. * merging is already done. Ditto for a busy system that
  2082. * has other work pending, don't risk delaying until the
  2083. * idle timer unplug to continue working.
  2084. */
  2085. if (cfq_cfqq_wait_request(cfqq)) {
  2086. if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
  2087. cfqd->busy_queues > 1) {
  2088. del_timer(&cfqd->idle_slice_timer);
  2089. __blk_run_queue(cfqd->queue);
  2090. }
  2091. cfq_mark_cfqq_must_dispatch(cfqq);
  2092. }
  2093. } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
  2094. /*
  2095. * not the active queue - expire current slice if it is
  2096. * idle and has expired it's mean thinktime or this new queue
  2097. * has some old slice time left and is of higher priority or
  2098. * this new queue is RT and the current one is BE
  2099. */
  2100. cfq_preempt_queue(cfqd, cfqq);
  2101. __blk_run_queue(cfqd->queue);
  2102. }
  2103. }
  2104. static void cfq_insert_request(struct request_queue *q, struct request *rq)
  2105. {
  2106. struct cfq_data *cfqd = q->elevator->elevator_data;
  2107. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2108. cfq_log_cfqq(cfqd, cfqq, "insert_request");
  2109. cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
  2110. rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
  2111. list_add_tail(&rq->queuelist, &cfqq->fifo);
  2112. cfq_add_rq_rb(rq);
  2113. cfq_rq_enqueued(cfqd, cfqq, rq);
  2114. }
  2115. /*
  2116. * Update hw_tag based on peak queue depth over 50 samples under
  2117. * sufficient load.
  2118. */
  2119. static void cfq_update_hw_tag(struct cfq_data *cfqd)
  2120. {
  2121. struct cfq_queue *cfqq = cfqd->active_queue;
  2122. if (rq_in_driver(cfqd) > cfqd->rq_in_driver_peak)
  2123. cfqd->rq_in_driver_peak = rq_in_driver(cfqd);
  2124. if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
  2125. rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
  2126. return;
  2127. /*
  2128. * If active queue hasn't enough requests and can idle, cfq might not
  2129. * dispatch sufficient requests to hardware. Don't zero hw_tag in this
  2130. * case
  2131. */
  2132. if (cfqq && cfq_cfqq_idle_window(cfqq) &&
  2133. cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
  2134. CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
  2135. return;
  2136. if (cfqd->hw_tag_samples++ < 50)
  2137. return;
  2138. if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
  2139. cfqd->hw_tag = 1;
  2140. else
  2141. cfqd->hw_tag = 0;
  2142. cfqd->hw_tag_samples = 0;
  2143. cfqd->rq_in_driver_peak = 0;
  2144. }
  2145. static void cfq_completed_request(struct request_queue *q, struct request *rq)
  2146. {
  2147. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2148. struct cfq_data *cfqd = cfqq->cfqd;
  2149. const int sync = rq_is_sync(rq);
  2150. unsigned long now;
  2151. now = jiffies;
  2152. cfq_log_cfqq(cfqd, cfqq, "complete");
  2153. cfq_update_hw_tag(cfqd);
  2154. WARN_ON(!cfqd->rq_in_driver[sync]);
  2155. WARN_ON(!cfqq->dispatched);
  2156. cfqd->rq_in_driver[sync]--;
  2157. cfqq->dispatched--;
  2158. if (cfq_cfqq_sync(cfqq))
  2159. cfqd->sync_flight--;
  2160. if (sync) {
  2161. RQ_CIC(rq)->last_end_request = now;
  2162. cfqd->last_end_sync_rq = now;
  2163. }
  2164. /*
  2165. * If this is the active queue, check if it needs to be expired,
  2166. * or if we want to idle in case it has no pending requests.
  2167. */
  2168. if (cfqd->active_queue == cfqq) {
  2169. const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
  2170. if (cfq_cfqq_slice_new(cfqq)) {
  2171. cfq_set_prio_slice(cfqd, cfqq);
  2172. cfq_clear_cfqq_slice_new(cfqq);
  2173. }
  2174. /*
  2175. * If there are no requests waiting in this queue, and
  2176. * there are other queues ready to issue requests, AND
  2177. * those other queues are issuing requests within our
  2178. * mean seek distance, give them a chance to run instead
  2179. * of idling.
  2180. */
  2181. if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
  2182. cfq_slice_expired(cfqd, 1);
  2183. else if (cfqq_empty && !cfq_close_cooperator(cfqd, cfqq) &&
  2184. sync && !rq_noidle(rq))
  2185. cfq_arm_slice_timer(cfqd);
  2186. }
  2187. if (!rq_in_driver(cfqd))
  2188. cfq_schedule_dispatch(cfqd);
  2189. }
  2190. /*
  2191. * we temporarily boost lower priority queues if they are holding fs exclusive
  2192. * resources. they are boosted to normal prio (CLASS_BE/4)
  2193. */
  2194. static void cfq_prio_boost(struct cfq_queue *cfqq)
  2195. {
  2196. if (has_fs_excl()) {
  2197. /*
  2198. * boost idle prio on transactions that would lock out other
  2199. * users of the filesystem
  2200. */
  2201. if (cfq_class_idle(cfqq))
  2202. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  2203. if (cfqq->ioprio > IOPRIO_NORM)
  2204. cfqq->ioprio = IOPRIO_NORM;
  2205. } else {
  2206. /*
  2207. * check if we need to unboost the queue
  2208. */
  2209. if (cfqq->ioprio_class != cfqq->org_ioprio_class)
  2210. cfqq->ioprio_class = cfqq->org_ioprio_class;
  2211. if (cfqq->ioprio != cfqq->org_ioprio)
  2212. cfqq->ioprio = cfqq->org_ioprio;
  2213. }
  2214. }
  2215. static inline int __cfq_may_queue(struct cfq_queue *cfqq)
  2216. {
  2217. if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
  2218. cfq_mark_cfqq_must_alloc_slice(cfqq);
  2219. return ELV_MQUEUE_MUST;
  2220. }
  2221. return ELV_MQUEUE_MAY;
  2222. }
  2223. static int cfq_may_queue(struct request_queue *q, int rw)
  2224. {
  2225. struct cfq_data *cfqd = q->elevator->elevator_data;
  2226. struct task_struct *tsk = current;
  2227. struct cfq_io_context *cic;
  2228. struct cfq_queue *cfqq;
  2229. /*
  2230. * don't force setup of a queue from here, as a call to may_queue
  2231. * does not necessarily imply that a request actually will be queued.
  2232. * so just lookup a possibly existing queue, or return 'may queue'
  2233. * if that fails
  2234. */
  2235. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  2236. if (!cic)
  2237. return ELV_MQUEUE_MAY;
  2238. cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
  2239. if (cfqq) {
  2240. cfq_init_prio_data(cfqq, cic->ioc);
  2241. cfq_prio_boost(cfqq);
  2242. return __cfq_may_queue(cfqq);
  2243. }
  2244. return ELV_MQUEUE_MAY;
  2245. }
  2246. /*
  2247. * queue lock held here
  2248. */
  2249. static void cfq_put_request(struct request *rq)
  2250. {
  2251. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2252. if (cfqq) {
  2253. const int rw = rq_data_dir(rq);
  2254. BUG_ON(!cfqq->allocated[rw]);
  2255. cfqq->allocated[rw]--;
  2256. put_io_context(RQ_CIC(rq)->ioc);
  2257. rq->elevator_private = NULL;
  2258. rq->elevator_private2 = NULL;
  2259. cfq_put_queue(cfqq);
  2260. }
  2261. }
  2262. static struct cfq_queue *
  2263. cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
  2264. struct cfq_queue *cfqq)
  2265. {
  2266. cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
  2267. cic_set_cfqq(cic, cfqq->new_cfqq, 1);
  2268. cfq_mark_cfqq_coop(cfqq->new_cfqq);
  2269. cfq_put_queue(cfqq);
  2270. return cic_to_cfqq(cic, 1);
  2271. }
  2272. static int should_split_cfqq(struct cfq_queue *cfqq)
  2273. {
  2274. if (cfqq->seeky_start &&
  2275. time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
  2276. return 1;
  2277. return 0;
  2278. }
  2279. /*
  2280. * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
  2281. * was the last process referring to said cfqq.
  2282. */
  2283. static struct cfq_queue *
  2284. split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
  2285. {
  2286. if (cfqq_process_refs(cfqq) == 1) {
  2287. cfqq->seeky_start = 0;
  2288. cfqq->pid = current->pid;
  2289. cfq_clear_cfqq_coop(cfqq);
  2290. return cfqq;
  2291. }
  2292. cic_set_cfqq(cic, NULL, 1);
  2293. cfq_put_queue(cfqq);
  2294. return NULL;
  2295. }
  2296. /*
  2297. * Allocate cfq data structures associated with this request.
  2298. */
  2299. static int
  2300. cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
  2301. {
  2302. struct cfq_data *cfqd = q->elevator->elevator_data;
  2303. struct cfq_io_context *cic;
  2304. const int rw = rq_data_dir(rq);
  2305. const bool is_sync = rq_is_sync(rq);
  2306. struct cfq_queue *cfqq;
  2307. unsigned long flags;
  2308. might_sleep_if(gfp_mask & __GFP_WAIT);
  2309. cic = cfq_get_io_context(cfqd, gfp_mask);
  2310. spin_lock_irqsave(q->queue_lock, flags);
  2311. if (!cic)
  2312. goto queue_fail;
  2313. new_queue:
  2314. cfqq = cic_to_cfqq(cic, is_sync);
  2315. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  2316. cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
  2317. cic_set_cfqq(cic, cfqq, is_sync);
  2318. } else {
  2319. /*
  2320. * If the queue was seeky for too long, break it apart.
  2321. */
  2322. if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
  2323. cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
  2324. cfqq = split_cfqq(cic, cfqq);
  2325. if (!cfqq)
  2326. goto new_queue;
  2327. }
  2328. /*
  2329. * Check to see if this queue is scheduled to merge with
  2330. * another, closely cooperating queue. The merging of
  2331. * queues happens here as it must be done in process context.
  2332. * The reference on new_cfqq was taken in merge_cfqqs.
  2333. */
  2334. if (cfqq->new_cfqq)
  2335. cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
  2336. }
  2337. cfqq->allocated[rw]++;
  2338. atomic_inc(&cfqq->ref);
  2339. spin_unlock_irqrestore(q->queue_lock, flags);
  2340. rq->elevator_private = cic;
  2341. rq->elevator_private2 = cfqq;
  2342. return 0;
  2343. queue_fail:
  2344. if (cic)
  2345. put_io_context(cic->ioc);
  2346. cfq_schedule_dispatch(cfqd);
  2347. spin_unlock_irqrestore(q->queue_lock, flags);
  2348. cfq_log(cfqd, "set_request fail");
  2349. return 1;
  2350. }
  2351. static void cfq_kick_queue(struct work_struct *work)
  2352. {
  2353. struct cfq_data *cfqd =
  2354. container_of(work, struct cfq_data, unplug_work);
  2355. struct request_queue *q = cfqd->queue;
  2356. spin_lock_irq(q->queue_lock);
  2357. __blk_run_queue(cfqd->queue);
  2358. spin_unlock_irq(q->queue_lock);
  2359. }
  2360. /*
  2361. * Timer running if the active_queue is currently idling inside its time slice
  2362. */
  2363. static void cfq_idle_slice_timer(unsigned long data)
  2364. {
  2365. struct cfq_data *cfqd = (struct cfq_data *) data;
  2366. struct cfq_queue *cfqq;
  2367. unsigned long flags;
  2368. int timed_out = 1;
  2369. cfq_log(cfqd, "idle timer fired");
  2370. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2371. cfqq = cfqd->active_queue;
  2372. if (cfqq) {
  2373. timed_out = 0;
  2374. /*
  2375. * We saw a request before the queue expired, let it through
  2376. */
  2377. if (cfq_cfqq_must_dispatch(cfqq))
  2378. goto out_kick;
  2379. /*
  2380. * expired
  2381. */
  2382. if (cfq_slice_used(cfqq))
  2383. goto expire;
  2384. /*
  2385. * only expire and reinvoke request handler, if there are
  2386. * other queues with pending requests
  2387. */
  2388. if (!cfqd->busy_queues)
  2389. goto out_cont;
  2390. /*
  2391. * not expired and it has a request pending, let it dispatch
  2392. */
  2393. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  2394. goto out_kick;
  2395. }
  2396. expire:
  2397. cfq_slice_expired(cfqd, timed_out);
  2398. out_kick:
  2399. cfq_schedule_dispatch(cfqd);
  2400. out_cont:
  2401. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2402. }
  2403. static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
  2404. {
  2405. del_timer_sync(&cfqd->idle_slice_timer);
  2406. cancel_work_sync(&cfqd->unplug_work);
  2407. }
  2408. static void cfq_put_async_queues(struct cfq_data *cfqd)
  2409. {
  2410. int i;
  2411. for (i = 0; i < IOPRIO_BE_NR; i++) {
  2412. if (cfqd->async_cfqq[0][i])
  2413. cfq_put_queue(cfqd->async_cfqq[0][i]);
  2414. if (cfqd->async_cfqq[1][i])
  2415. cfq_put_queue(cfqd->async_cfqq[1][i]);
  2416. }
  2417. if (cfqd->async_idle_cfqq)
  2418. cfq_put_queue(cfqd->async_idle_cfqq);
  2419. }
  2420. static void cfq_exit_queue(struct elevator_queue *e)
  2421. {
  2422. struct cfq_data *cfqd = e->elevator_data;
  2423. struct request_queue *q = cfqd->queue;
  2424. cfq_shutdown_timer_wq(cfqd);
  2425. spin_lock_irq(q->queue_lock);
  2426. if (cfqd->active_queue)
  2427. __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
  2428. while (!list_empty(&cfqd->cic_list)) {
  2429. struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
  2430. struct cfq_io_context,
  2431. queue_list);
  2432. __cfq_exit_single_io_context(cfqd, cic);
  2433. }
  2434. cfq_put_async_queues(cfqd);
  2435. spin_unlock_irq(q->queue_lock);
  2436. cfq_shutdown_timer_wq(cfqd);
  2437. kfree(cfqd);
  2438. }
  2439. static void *cfq_init_queue(struct request_queue *q)
  2440. {
  2441. struct cfq_data *cfqd;
  2442. int i, j;
  2443. cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
  2444. if (!cfqd)
  2445. return NULL;
  2446. for (i = 0; i < 2; ++i)
  2447. for (j = 0; j < 3; ++j)
  2448. cfqd->service_trees[i][j] = CFQ_RB_ROOT;
  2449. cfqd->service_tree_idle = CFQ_RB_ROOT;
  2450. /*
  2451. * Not strictly needed (since RB_ROOT just clears the node and we
  2452. * zeroed cfqd on alloc), but better be safe in case someone decides
  2453. * to add magic to the rb code
  2454. */
  2455. for (i = 0; i < CFQ_PRIO_LISTS; i++)
  2456. cfqd->prio_trees[i] = RB_ROOT;
  2457. /*
  2458. * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
  2459. * Grab a permanent reference to it, so that the normal code flow
  2460. * will not attempt to free it.
  2461. */
  2462. cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
  2463. atomic_inc(&cfqd->oom_cfqq.ref);
  2464. INIT_LIST_HEAD(&cfqd->cic_list);
  2465. cfqd->queue = q;
  2466. init_timer(&cfqd->idle_slice_timer);
  2467. cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
  2468. cfqd->idle_slice_timer.data = (unsigned long) cfqd;
  2469. INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
  2470. cfqd->cfq_quantum = cfq_quantum;
  2471. cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
  2472. cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
  2473. cfqd->cfq_back_max = cfq_back_max;
  2474. cfqd->cfq_back_penalty = cfq_back_penalty;
  2475. cfqd->cfq_slice[0] = cfq_slice_async;
  2476. cfqd->cfq_slice[1] = cfq_slice_sync;
  2477. cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
  2478. cfqd->cfq_slice_idle = cfq_slice_idle;
  2479. cfqd->cfq_latency = 1;
  2480. cfqd->hw_tag = 1;
  2481. cfqd->last_end_sync_rq = jiffies;
  2482. return cfqd;
  2483. }
  2484. static void cfq_slab_kill(void)
  2485. {
  2486. /*
  2487. * Caller already ensured that pending RCU callbacks are completed,
  2488. * so we should have no busy allocations at this point.
  2489. */
  2490. if (cfq_pool)
  2491. kmem_cache_destroy(cfq_pool);
  2492. if (cfq_ioc_pool)
  2493. kmem_cache_destroy(cfq_ioc_pool);
  2494. }
  2495. static int __init cfq_slab_setup(void)
  2496. {
  2497. cfq_pool = KMEM_CACHE(cfq_queue, 0);
  2498. if (!cfq_pool)
  2499. goto fail;
  2500. cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
  2501. if (!cfq_ioc_pool)
  2502. goto fail;
  2503. return 0;
  2504. fail:
  2505. cfq_slab_kill();
  2506. return -ENOMEM;
  2507. }
  2508. /*
  2509. * sysfs parts below -->
  2510. */
  2511. static ssize_t
  2512. cfq_var_show(unsigned int var, char *page)
  2513. {
  2514. return sprintf(page, "%d\n", var);
  2515. }
  2516. static ssize_t
  2517. cfq_var_store(unsigned int *var, const char *page, size_t count)
  2518. {
  2519. char *p = (char *) page;
  2520. *var = simple_strtoul(p, &p, 10);
  2521. return count;
  2522. }
  2523. #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
  2524. static ssize_t __FUNC(struct elevator_queue *e, char *page) \
  2525. { \
  2526. struct cfq_data *cfqd = e->elevator_data; \
  2527. unsigned int __data = __VAR; \
  2528. if (__CONV) \
  2529. __data = jiffies_to_msecs(__data); \
  2530. return cfq_var_show(__data, (page)); \
  2531. }
  2532. SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
  2533. SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
  2534. SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
  2535. SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
  2536. SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
  2537. SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
  2538. SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
  2539. SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
  2540. SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
  2541. SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
  2542. #undef SHOW_FUNCTION
  2543. #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
  2544. static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
  2545. { \
  2546. struct cfq_data *cfqd = e->elevator_data; \
  2547. unsigned int __data; \
  2548. int ret = cfq_var_store(&__data, (page), count); \
  2549. if (__data < (MIN)) \
  2550. __data = (MIN); \
  2551. else if (__data > (MAX)) \
  2552. __data = (MAX); \
  2553. if (__CONV) \
  2554. *(__PTR) = msecs_to_jiffies(__data); \
  2555. else \
  2556. *(__PTR) = __data; \
  2557. return ret; \
  2558. }
  2559. STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
  2560. STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
  2561. UINT_MAX, 1);
  2562. STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
  2563. UINT_MAX, 1);
  2564. STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
  2565. STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
  2566. UINT_MAX, 0);
  2567. STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
  2568. STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
  2569. STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
  2570. STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
  2571. UINT_MAX, 0);
  2572. STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
  2573. #undef STORE_FUNCTION
  2574. #define CFQ_ATTR(name) \
  2575. __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
  2576. static struct elv_fs_entry cfq_attrs[] = {
  2577. CFQ_ATTR(quantum),
  2578. CFQ_ATTR(fifo_expire_sync),
  2579. CFQ_ATTR(fifo_expire_async),
  2580. CFQ_ATTR(back_seek_max),
  2581. CFQ_ATTR(back_seek_penalty),
  2582. CFQ_ATTR(slice_sync),
  2583. CFQ_ATTR(slice_async),
  2584. CFQ_ATTR(slice_async_rq),
  2585. CFQ_ATTR(slice_idle),
  2586. CFQ_ATTR(low_latency),
  2587. __ATTR_NULL
  2588. };
  2589. static struct elevator_type iosched_cfq = {
  2590. .ops = {
  2591. .elevator_merge_fn = cfq_merge,
  2592. .elevator_merged_fn = cfq_merged_request,
  2593. .elevator_merge_req_fn = cfq_merged_requests,
  2594. .elevator_allow_merge_fn = cfq_allow_merge,
  2595. .elevator_dispatch_fn = cfq_dispatch_requests,
  2596. .elevator_add_req_fn = cfq_insert_request,
  2597. .elevator_activate_req_fn = cfq_activate_request,
  2598. .elevator_deactivate_req_fn = cfq_deactivate_request,
  2599. .elevator_queue_empty_fn = cfq_queue_empty,
  2600. .elevator_completed_req_fn = cfq_completed_request,
  2601. .elevator_former_req_fn = elv_rb_former_request,
  2602. .elevator_latter_req_fn = elv_rb_latter_request,
  2603. .elevator_set_req_fn = cfq_set_request,
  2604. .elevator_put_req_fn = cfq_put_request,
  2605. .elevator_may_queue_fn = cfq_may_queue,
  2606. .elevator_init_fn = cfq_init_queue,
  2607. .elevator_exit_fn = cfq_exit_queue,
  2608. .trim = cfq_free_io_context,
  2609. },
  2610. .elevator_attrs = cfq_attrs,
  2611. .elevator_name = "cfq",
  2612. .elevator_owner = THIS_MODULE,
  2613. };
  2614. static int __init cfq_init(void)
  2615. {
  2616. /*
  2617. * could be 0 on HZ < 1000 setups
  2618. */
  2619. if (!cfq_slice_async)
  2620. cfq_slice_async = 1;
  2621. if (!cfq_slice_idle)
  2622. cfq_slice_idle = 1;
  2623. if (cfq_slab_setup())
  2624. return -ENOMEM;
  2625. elv_register(&iosched_cfq);
  2626. return 0;
  2627. }
  2628. static void __exit cfq_exit(void)
  2629. {
  2630. DECLARE_COMPLETION_ONSTACK(all_gone);
  2631. elv_unregister(&iosched_cfq);
  2632. ioc_gone = &all_gone;
  2633. /* ioc_gone's update must be visible before reading ioc_count */
  2634. smp_wmb();
  2635. /*
  2636. * this also protects us from entering cfq_slab_kill() with
  2637. * pending RCU callbacks
  2638. */
  2639. if (elv_ioc_count_read(cfq_ioc_count))
  2640. wait_for_completion(&all_gone);
  2641. cfq_slab_kill();
  2642. }
  2643. module_init(cfq_init);
  2644. module_exit(cfq_exit);
  2645. MODULE_AUTHOR("Jens Axboe");
  2646. MODULE_LICENSE("GPL");
  2647. MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");