sh_mmcif.c 32 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225
  1. /*
  2. * MMCIF eMMC driver.
  3. *
  4. * Copyright (C) 2010 Renesas Solutions Corp.
  5. * Yusuke Goda <yusuke.goda.sx@renesas.com>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License.
  10. *
  11. *
  12. * TODO
  13. * 1. DMA
  14. * 2. Power management
  15. * 3. Handle MMC errors better
  16. *
  17. */
  18. #include <linux/clk.h>
  19. #include <linux/completion.h>
  20. #include <linux/delay.h>
  21. #include <linux/dma-mapping.h>
  22. #include <linux/dmaengine.h>
  23. #include <linux/mmc/card.h>
  24. #include <linux/mmc/core.h>
  25. #include <linux/mmc/host.h>
  26. #include <linux/mmc/mmc.h>
  27. #include <linux/mmc/sdio.h>
  28. #include <linux/mmc/sh_mmcif.h>
  29. #include <linux/pagemap.h>
  30. #include <linux/platform_device.h>
  31. #include <linux/pm_runtime.h>
  32. #include <linux/spinlock.h>
  33. #define DRIVER_NAME "sh_mmcif"
  34. #define DRIVER_VERSION "2010-04-28"
  35. /* CE_CMD_SET */
  36. #define CMD_MASK 0x3f000000
  37. #define CMD_SET_RTYP_NO ((0 << 23) | (0 << 22))
  38. #define CMD_SET_RTYP_6B ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
  39. #define CMD_SET_RTYP_17B ((1 << 23) | (0 << 22)) /* R2 */
  40. #define CMD_SET_RBSY (1 << 21) /* R1b */
  41. #define CMD_SET_CCSEN (1 << 20)
  42. #define CMD_SET_WDAT (1 << 19) /* 1: on data, 0: no data */
  43. #define CMD_SET_DWEN (1 << 18) /* 1: write, 0: read */
  44. #define CMD_SET_CMLTE (1 << 17) /* 1: multi block trans, 0: single */
  45. #define CMD_SET_CMD12EN (1 << 16) /* 1: CMD12 auto issue */
  46. #define CMD_SET_RIDXC_INDEX ((0 << 15) | (0 << 14)) /* index check */
  47. #define CMD_SET_RIDXC_BITS ((0 << 15) | (1 << 14)) /* check bits check */
  48. #define CMD_SET_RIDXC_NO ((1 << 15) | (0 << 14)) /* no check */
  49. #define CMD_SET_CRC7C ((0 << 13) | (0 << 12)) /* CRC7 check*/
  50. #define CMD_SET_CRC7C_BITS ((0 << 13) | (1 << 12)) /* check bits check*/
  51. #define CMD_SET_CRC7C_INTERNAL ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
  52. #define CMD_SET_CRC16C (1 << 10) /* 0: CRC16 check*/
  53. #define CMD_SET_CRCSTE (1 << 8) /* 1: not receive CRC status */
  54. #define CMD_SET_TBIT (1 << 7) /* 1: tran mission bit "Low" */
  55. #define CMD_SET_OPDM (1 << 6) /* 1: open/drain */
  56. #define CMD_SET_CCSH (1 << 5)
  57. #define CMD_SET_DATW_1 ((0 << 1) | (0 << 0)) /* 1bit */
  58. #define CMD_SET_DATW_4 ((0 << 1) | (1 << 0)) /* 4bit */
  59. #define CMD_SET_DATW_8 ((1 << 1) | (0 << 0)) /* 8bit */
  60. /* CE_CMD_CTRL */
  61. #define CMD_CTRL_BREAK (1 << 0)
  62. /* CE_BLOCK_SET */
  63. #define BLOCK_SIZE_MASK 0x0000ffff
  64. /* CE_INT */
  65. #define INT_CCSDE (1 << 29)
  66. #define INT_CMD12DRE (1 << 26)
  67. #define INT_CMD12RBE (1 << 25)
  68. #define INT_CMD12CRE (1 << 24)
  69. #define INT_DTRANE (1 << 23)
  70. #define INT_BUFRE (1 << 22)
  71. #define INT_BUFWEN (1 << 21)
  72. #define INT_BUFREN (1 << 20)
  73. #define INT_CCSRCV (1 << 19)
  74. #define INT_RBSYE (1 << 17)
  75. #define INT_CRSPE (1 << 16)
  76. #define INT_CMDVIO (1 << 15)
  77. #define INT_BUFVIO (1 << 14)
  78. #define INT_WDATERR (1 << 11)
  79. #define INT_RDATERR (1 << 10)
  80. #define INT_RIDXERR (1 << 9)
  81. #define INT_RSPERR (1 << 8)
  82. #define INT_CCSTO (1 << 5)
  83. #define INT_CRCSTO (1 << 4)
  84. #define INT_WDATTO (1 << 3)
  85. #define INT_RDATTO (1 << 2)
  86. #define INT_RBSYTO (1 << 1)
  87. #define INT_RSPTO (1 << 0)
  88. #define INT_ERR_STS (INT_CMDVIO | INT_BUFVIO | INT_WDATERR | \
  89. INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
  90. INT_CCSTO | INT_CRCSTO | INT_WDATTO | \
  91. INT_RDATTO | INT_RBSYTO | INT_RSPTO)
  92. /* CE_INT_MASK */
  93. #define MASK_ALL 0x00000000
  94. #define MASK_MCCSDE (1 << 29)
  95. #define MASK_MCMD12DRE (1 << 26)
  96. #define MASK_MCMD12RBE (1 << 25)
  97. #define MASK_MCMD12CRE (1 << 24)
  98. #define MASK_MDTRANE (1 << 23)
  99. #define MASK_MBUFRE (1 << 22)
  100. #define MASK_MBUFWEN (1 << 21)
  101. #define MASK_MBUFREN (1 << 20)
  102. #define MASK_MCCSRCV (1 << 19)
  103. #define MASK_MRBSYE (1 << 17)
  104. #define MASK_MCRSPE (1 << 16)
  105. #define MASK_MCMDVIO (1 << 15)
  106. #define MASK_MBUFVIO (1 << 14)
  107. #define MASK_MWDATERR (1 << 11)
  108. #define MASK_MRDATERR (1 << 10)
  109. #define MASK_MRIDXERR (1 << 9)
  110. #define MASK_MRSPERR (1 << 8)
  111. #define MASK_MCCSTO (1 << 5)
  112. #define MASK_MCRCSTO (1 << 4)
  113. #define MASK_MWDATTO (1 << 3)
  114. #define MASK_MRDATTO (1 << 2)
  115. #define MASK_MRBSYTO (1 << 1)
  116. #define MASK_MRSPTO (1 << 0)
  117. /* CE_HOST_STS1 */
  118. #define STS1_CMDSEQ (1 << 31)
  119. /* CE_HOST_STS2 */
  120. #define STS2_CRCSTE (1 << 31)
  121. #define STS2_CRC16E (1 << 30)
  122. #define STS2_AC12CRCE (1 << 29)
  123. #define STS2_RSPCRC7E (1 << 28)
  124. #define STS2_CRCSTEBE (1 << 27)
  125. #define STS2_RDATEBE (1 << 26)
  126. #define STS2_AC12REBE (1 << 25)
  127. #define STS2_RSPEBE (1 << 24)
  128. #define STS2_AC12IDXE (1 << 23)
  129. #define STS2_RSPIDXE (1 << 22)
  130. #define STS2_CCSTO (1 << 15)
  131. #define STS2_RDATTO (1 << 14)
  132. #define STS2_DATBSYTO (1 << 13)
  133. #define STS2_CRCSTTO (1 << 12)
  134. #define STS2_AC12BSYTO (1 << 11)
  135. #define STS2_RSPBSYTO (1 << 10)
  136. #define STS2_AC12RSPTO (1 << 9)
  137. #define STS2_RSPTO (1 << 8)
  138. #define STS2_CRC_ERR (STS2_CRCSTE | STS2_CRC16E | \
  139. STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
  140. #define STS2_TIMEOUT_ERR (STS2_CCSTO | STS2_RDATTO | \
  141. STS2_DATBSYTO | STS2_CRCSTTO | \
  142. STS2_AC12BSYTO | STS2_RSPBSYTO | \
  143. STS2_AC12RSPTO | STS2_RSPTO)
  144. #define CLKDEV_EMMC_DATA 52000000 /* 52MHz */
  145. #define CLKDEV_MMC_DATA 20000000 /* 20MHz */
  146. #define CLKDEV_INIT 400000 /* 400 KHz */
  147. enum mmcif_state {
  148. STATE_IDLE,
  149. STATE_REQUEST,
  150. STATE_IOS,
  151. };
  152. struct sh_mmcif_host {
  153. struct mmc_host *mmc;
  154. struct mmc_data *data;
  155. struct platform_device *pd;
  156. struct sh_dmae_slave dma_slave_tx;
  157. struct sh_dmae_slave dma_slave_rx;
  158. struct clk *hclk;
  159. unsigned int clk;
  160. int bus_width;
  161. bool sd_error;
  162. long timeout;
  163. void __iomem *addr;
  164. struct completion intr_wait;
  165. enum mmcif_state state;
  166. spinlock_t lock;
  167. bool power;
  168. bool card_present;
  169. /* DMA support */
  170. struct dma_chan *chan_rx;
  171. struct dma_chan *chan_tx;
  172. struct completion dma_complete;
  173. bool dma_active;
  174. };
  175. static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
  176. unsigned int reg, u32 val)
  177. {
  178. writel(val | readl(host->addr + reg), host->addr + reg);
  179. }
  180. static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
  181. unsigned int reg, u32 val)
  182. {
  183. writel(~val & readl(host->addr + reg), host->addr + reg);
  184. }
  185. static void mmcif_dma_complete(void *arg)
  186. {
  187. struct sh_mmcif_host *host = arg;
  188. dev_dbg(&host->pd->dev, "Command completed\n");
  189. if (WARN(!host->data, "%s: NULL data in DMA completion!\n",
  190. dev_name(&host->pd->dev)))
  191. return;
  192. if (host->data->flags & MMC_DATA_READ)
  193. dma_unmap_sg(host->chan_rx->device->dev,
  194. host->data->sg, host->data->sg_len,
  195. DMA_FROM_DEVICE);
  196. else
  197. dma_unmap_sg(host->chan_tx->device->dev,
  198. host->data->sg, host->data->sg_len,
  199. DMA_TO_DEVICE);
  200. complete(&host->dma_complete);
  201. }
  202. static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
  203. {
  204. struct scatterlist *sg = host->data->sg;
  205. struct dma_async_tx_descriptor *desc = NULL;
  206. struct dma_chan *chan = host->chan_rx;
  207. dma_cookie_t cookie = -EINVAL;
  208. int ret;
  209. ret = dma_map_sg(chan->device->dev, sg, host->data->sg_len,
  210. DMA_FROM_DEVICE);
  211. if (ret > 0) {
  212. host->dma_active = true;
  213. desc = chan->device->device_prep_slave_sg(chan, sg, ret,
  214. DMA_FROM_DEVICE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  215. }
  216. if (desc) {
  217. desc->callback = mmcif_dma_complete;
  218. desc->callback_param = host;
  219. cookie = dmaengine_submit(desc);
  220. sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
  221. dma_async_issue_pending(chan);
  222. }
  223. dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
  224. __func__, host->data->sg_len, ret, cookie);
  225. if (!desc) {
  226. /* DMA failed, fall back to PIO */
  227. if (ret >= 0)
  228. ret = -EIO;
  229. host->chan_rx = NULL;
  230. host->dma_active = false;
  231. dma_release_channel(chan);
  232. /* Free the Tx channel too */
  233. chan = host->chan_tx;
  234. if (chan) {
  235. host->chan_tx = NULL;
  236. dma_release_channel(chan);
  237. }
  238. dev_warn(&host->pd->dev,
  239. "DMA failed: %d, falling back to PIO\n", ret);
  240. sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
  241. }
  242. dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
  243. desc, cookie, host->data->sg_len);
  244. }
  245. static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
  246. {
  247. struct scatterlist *sg = host->data->sg;
  248. struct dma_async_tx_descriptor *desc = NULL;
  249. struct dma_chan *chan = host->chan_tx;
  250. dma_cookie_t cookie = -EINVAL;
  251. int ret;
  252. ret = dma_map_sg(chan->device->dev, sg, host->data->sg_len,
  253. DMA_TO_DEVICE);
  254. if (ret > 0) {
  255. host->dma_active = true;
  256. desc = chan->device->device_prep_slave_sg(chan, sg, ret,
  257. DMA_TO_DEVICE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  258. }
  259. if (desc) {
  260. desc->callback = mmcif_dma_complete;
  261. desc->callback_param = host;
  262. cookie = dmaengine_submit(desc);
  263. sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
  264. dma_async_issue_pending(chan);
  265. }
  266. dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
  267. __func__, host->data->sg_len, ret, cookie);
  268. if (!desc) {
  269. /* DMA failed, fall back to PIO */
  270. if (ret >= 0)
  271. ret = -EIO;
  272. host->chan_tx = NULL;
  273. host->dma_active = false;
  274. dma_release_channel(chan);
  275. /* Free the Rx channel too */
  276. chan = host->chan_rx;
  277. if (chan) {
  278. host->chan_rx = NULL;
  279. dma_release_channel(chan);
  280. }
  281. dev_warn(&host->pd->dev,
  282. "DMA failed: %d, falling back to PIO\n", ret);
  283. sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
  284. }
  285. dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d\n", __func__,
  286. desc, cookie);
  287. }
  288. static bool sh_mmcif_filter(struct dma_chan *chan, void *arg)
  289. {
  290. dev_dbg(chan->device->dev, "%s: slave data %p\n", __func__, arg);
  291. chan->private = arg;
  292. return true;
  293. }
  294. static void sh_mmcif_request_dma(struct sh_mmcif_host *host,
  295. struct sh_mmcif_plat_data *pdata)
  296. {
  297. struct sh_dmae_slave *tx, *rx;
  298. host->dma_active = false;
  299. /* We can only either use DMA for both Tx and Rx or not use it at all */
  300. if (pdata->dma) {
  301. dev_warn(&host->pd->dev,
  302. "Update your platform to use embedded DMA slave IDs\n");
  303. tx = &pdata->dma->chan_priv_tx;
  304. rx = &pdata->dma->chan_priv_rx;
  305. } else {
  306. tx = &host->dma_slave_tx;
  307. tx->slave_id = pdata->slave_id_tx;
  308. rx = &host->dma_slave_rx;
  309. rx->slave_id = pdata->slave_id_rx;
  310. }
  311. if (tx->slave_id > 0 && rx->slave_id > 0) {
  312. dma_cap_mask_t mask;
  313. dma_cap_zero(mask);
  314. dma_cap_set(DMA_SLAVE, mask);
  315. host->chan_tx = dma_request_channel(mask, sh_mmcif_filter, tx);
  316. dev_dbg(&host->pd->dev, "%s: TX: got channel %p\n", __func__,
  317. host->chan_tx);
  318. if (!host->chan_tx)
  319. return;
  320. host->chan_rx = dma_request_channel(mask, sh_mmcif_filter, rx);
  321. dev_dbg(&host->pd->dev, "%s: RX: got channel %p\n", __func__,
  322. host->chan_rx);
  323. if (!host->chan_rx) {
  324. dma_release_channel(host->chan_tx);
  325. host->chan_tx = NULL;
  326. return;
  327. }
  328. init_completion(&host->dma_complete);
  329. }
  330. }
  331. static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
  332. {
  333. sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
  334. /* Descriptors are freed automatically */
  335. if (host->chan_tx) {
  336. struct dma_chan *chan = host->chan_tx;
  337. host->chan_tx = NULL;
  338. dma_release_channel(chan);
  339. }
  340. if (host->chan_rx) {
  341. struct dma_chan *chan = host->chan_rx;
  342. host->chan_rx = NULL;
  343. dma_release_channel(chan);
  344. }
  345. host->dma_active = false;
  346. }
  347. static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
  348. {
  349. struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
  350. sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
  351. sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
  352. if (!clk)
  353. return;
  354. if (p->sup_pclk && clk == host->clk)
  355. sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_SUP_PCLK);
  356. else
  357. sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR &
  358. (ilog2(__rounddown_pow_of_two(host->clk / clk)) << 16));
  359. sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
  360. }
  361. static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
  362. {
  363. u32 tmp;
  364. tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
  365. sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
  366. sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
  367. sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
  368. SRSPTO_256 | SRBSYTO_29 | SRWDTO_29 | SCCSTO_29);
  369. /* byte swap on */
  370. sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
  371. }
  372. static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
  373. {
  374. u32 state1, state2;
  375. int ret, timeout = 10000000;
  376. host->sd_error = false;
  377. state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
  378. state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
  379. dev_dbg(&host->pd->dev, "ERR HOST_STS1 = %08x\n", state1);
  380. dev_dbg(&host->pd->dev, "ERR HOST_STS2 = %08x\n", state2);
  381. if (state1 & STS1_CMDSEQ) {
  382. sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
  383. sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
  384. while (1) {
  385. timeout--;
  386. if (timeout < 0) {
  387. dev_err(&host->pd->dev,
  388. "Forceed end of command sequence timeout err\n");
  389. return -EIO;
  390. }
  391. if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
  392. & STS1_CMDSEQ))
  393. break;
  394. mdelay(1);
  395. }
  396. sh_mmcif_sync_reset(host);
  397. dev_dbg(&host->pd->dev, "Forced end of command sequence\n");
  398. return -EIO;
  399. }
  400. if (state2 & STS2_CRC_ERR) {
  401. dev_dbg(&host->pd->dev, ": Happened CRC error\n");
  402. ret = -EIO;
  403. } else if (state2 & STS2_TIMEOUT_ERR) {
  404. dev_dbg(&host->pd->dev, ": Happened Timeout error\n");
  405. ret = -ETIMEDOUT;
  406. } else {
  407. dev_dbg(&host->pd->dev, ": Happened End/Index error\n");
  408. ret = -EIO;
  409. }
  410. return ret;
  411. }
  412. static int sh_mmcif_single_read(struct sh_mmcif_host *host,
  413. struct mmc_request *mrq)
  414. {
  415. struct mmc_data *data = mrq->data;
  416. long time;
  417. u32 blocksize, i, *p = sg_virt(data->sg);
  418. /* buf read enable */
  419. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
  420. time = wait_for_completion_interruptible_timeout(&host->intr_wait,
  421. host->timeout);
  422. if (time <= 0 || host->sd_error)
  423. return sh_mmcif_error_manage(host);
  424. blocksize = (BLOCK_SIZE_MASK &
  425. sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET)) + 3;
  426. for (i = 0; i < blocksize / 4; i++)
  427. *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
  428. /* buffer read end */
  429. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
  430. time = wait_for_completion_interruptible_timeout(&host->intr_wait,
  431. host->timeout);
  432. if (time <= 0 || host->sd_error)
  433. return sh_mmcif_error_manage(host);
  434. return 0;
  435. }
  436. static int sh_mmcif_multi_read(struct sh_mmcif_host *host,
  437. struct mmc_request *mrq)
  438. {
  439. struct mmc_data *data = mrq->data;
  440. long time;
  441. u32 blocksize, i, j, sec, *p;
  442. blocksize = BLOCK_SIZE_MASK & sh_mmcif_readl(host->addr,
  443. MMCIF_CE_BLOCK_SET);
  444. for (j = 0; j < data->sg_len; j++) {
  445. p = sg_virt(data->sg);
  446. for (sec = 0; sec < data->sg->length / blocksize; sec++) {
  447. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
  448. /* buf read enable */
  449. time = wait_for_completion_interruptible_timeout(&host->intr_wait,
  450. host->timeout);
  451. if (time <= 0 || host->sd_error)
  452. return sh_mmcif_error_manage(host);
  453. for (i = 0; i < blocksize / 4; i++)
  454. *p++ = sh_mmcif_readl(host->addr,
  455. MMCIF_CE_DATA);
  456. }
  457. if (j < data->sg_len - 1)
  458. data->sg++;
  459. }
  460. return 0;
  461. }
  462. static int sh_mmcif_single_write(struct sh_mmcif_host *host,
  463. struct mmc_request *mrq)
  464. {
  465. struct mmc_data *data = mrq->data;
  466. long time;
  467. u32 blocksize, i, *p = sg_virt(data->sg);
  468. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
  469. /* buf write enable */
  470. time = wait_for_completion_interruptible_timeout(&host->intr_wait,
  471. host->timeout);
  472. if (time <= 0 || host->sd_error)
  473. return sh_mmcif_error_manage(host);
  474. blocksize = (BLOCK_SIZE_MASK &
  475. sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET)) + 3;
  476. for (i = 0; i < blocksize / 4; i++)
  477. sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
  478. /* buffer write end */
  479. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
  480. time = wait_for_completion_interruptible_timeout(&host->intr_wait,
  481. host->timeout);
  482. if (time <= 0 || host->sd_error)
  483. return sh_mmcif_error_manage(host);
  484. return 0;
  485. }
  486. static int sh_mmcif_multi_write(struct sh_mmcif_host *host,
  487. struct mmc_request *mrq)
  488. {
  489. struct mmc_data *data = mrq->data;
  490. long time;
  491. u32 i, sec, j, blocksize, *p;
  492. blocksize = BLOCK_SIZE_MASK & sh_mmcif_readl(host->addr,
  493. MMCIF_CE_BLOCK_SET);
  494. for (j = 0; j < data->sg_len; j++) {
  495. p = sg_virt(data->sg);
  496. for (sec = 0; sec < data->sg->length / blocksize; sec++) {
  497. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
  498. /* buf write enable*/
  499. time = wait_for_completion_interruptible_timeout(&host->intr_wait,
  500. host->timeout);
  501. if (time <= 0 || host->sd_error)
  502. return sh_mmcif_error_manage(host);
  503. for (i = 0; i < blocksize / 4; i++)
  504. sh_mmcif_writel(host->addr,
  505. MMCIF_CE_DATA, *p++);
  506. }
  507. if (j < data->sg_len - 1)
  508. data->sg++;
  509. }
  510. return 0;
  511. }
  512. static void sh_mmcif_get_response(struct sh_mmcif_host *host,
  513. struct mmc_command *cmd)
  514. {
  515. if (cmd->flags & MMC_RSP_136) {
  516. cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
  517. cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
  518. cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
  519. cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
  520. } else
  521. cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
  522. }
  523. static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
  524. struct mmc_command *cmd)
  525. {
  526. cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
  527. }
  528. static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
  529. struct mmc_request *mrq, struct mmc_command *cmd, u32 opc)
  530. {
  531. u32 tmp = 0;
  532. /* Response Type check */
  533. switch (mmc_resp_type(cmd)) {
  534. case MMC_RSP_NONE:
  535. tmp |= CMD_SET_RTYP_NO;
  536. break;
  537. case MMC_RSP_R1:
  538. case MMC_RSP_R1B:
  539. case MMC_RSP_R3:
  540. tmp |= CMD_SET_RTYP_6B;
  541. break;
  542. case MMC_RSP_R2:
  543. tmp |= CMD_SET_RTYP_17B;
  544. break;
  545. default:
  546. dev_err(&host->pd->dev, "Unsupported response type.\n");
  547. break;
  548. }
  549. switch (opc) {
  550. /* RBSY */
  551. case MMC_SWITCH:
  552. case MMC_STOP_TRANSMISSION:
  553. case MMC_SET_WRITE_PROT:
  554. case MMC_CLR_WRITE_PROT:
  555. case MMC_ERASE:
  556. case MMC_GEN_CMD:
  557. tmp |= CMD_SET_RBSY;
  558. break;
  559. }
  560. /* WDAT / DATW */
  561. if (host->data) {
  562. tmp |= CMD_SET_WDAT;
  563. switch (host->bus_width) {
  564. case MMC_BUS_WIDTH_1:
  565. tmp |= CMD_SET_DATW_1;
  566. break;
  567. case MMC_BUS_WIDTH_4:
  568. tmp |= CMD_SET_DATW_4;
  569. break;
  570. case MMC_BUS_WIDTH_8:
  571. tmp |= CMD_SET_DATW_8;
  572. break;
  573. default:
  574. dev_err(&host->pd->dev, "Unsupported bus width.\n");
  575. break;
  576. }
  577. }
  578. /* DWEN */
  579. if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
  580. tmp |= CMD_SET_DWEN;
  581. /* CMLTE/CMD12EN */
  582. if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
  583. tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
  584. sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
  585. mrq->data->blocks << 16);
  586. }
  587. /* RIDXC[1:0] check bits */
  588. if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
  589. opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
  590. tmp |= CMD_SET_RIDXC_BITS;
  591. /* RCRC7C[1:0] check bits */
  592. if (opc == MMC_SEND_OP_COND)
  593. tmp |= CMD_SET_CRC7C_BITS;
  594. /* RCRC7C[1:0] internal CRC7 */
  595. if (opc == MMC_ALL_SEND_CID ||
  596. opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
  597. tmp |= CMD_SET_CRC7C_INTERNAL;
  598. return opc = ((opc << 24) | tmp);
  599. }
  600. static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
  601. struct mmc_request *mrq, u32 opc)
  602. {
  603. int ret;
  604. switch (opc) {
  605. case MMC_READ_MULTIPLE_BLOCK:
  606. ret = sh_mmcif_multi_read(host, mrq);
  607. break;
  608. case MMC_WRITE_MULTIPLE_BLOCK:
  609. ret = sh_mmcif_multi_write(host, mrq);
  610. break;
  611. case MMC_WRITE_BLOCK:
  612. ret = sh_mmcif_single_write(host, mrq);
  613. break;
  614. case MMC_READ_SINGLE_BLOCK:
  615. case MMC_SEND_EXT_CSD:
  616. ret = sh_mmcif_single_read(host, mrq);
  617. break;
  618. default:
  619. dev_err(&host->pd->dev, "UNSUPPORTED CMD = d'%08d\n", opc);
  620. ret = -EINVAL;
  621. break;
  622. }
  623. return ret;
  624. }
  625. static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
  626. struct mmc_request *mrq, struct mmc_command *cmd)
  627. {
  628. long time;
  629. int ret = 0, mask = 0;
  630. u32 opc = cmd->opcode;
  631. switch (opc) {
  632. /* respons busy check */
  633. case MMC_SWITCH:
  634. case MMC_STOP_TRANSMISSION:
  635. case MMC_SET_WRITE_PROT:
  636. case MMC_CLR_WRITE_PROT:
  637. case MMC_ERASE:
  638. case MMC_GEN_CMD:
  639. mask = MASK_MRBSYE;
  640. break;
  641. default:
  642. mask = MASK_MCRSPE;
  643. break;
  644. }
  645. mask |= MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR |
  646. MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR |
  647. MASK_MCCSTO | MASK_MCRCSTO | MASK_MWDATTO |
  648. MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO;
  649. if (host->data) {
  650. sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
  651. sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
  652. mrq->data->blksz);
  653. }
  654. opc = sh_mmcif_set_cmd(host, mrq, cmd, opc);
  655. sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
  656. sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
  657. /* set arg */
  658. sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
  659. /* set cmd */
  660. sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
  661. time = wait_for_completion_interruptible_timeout(&host->intr_wait,
  662. host->timeout);
  663. if (time <= 0) {
  664. cmd->error = sh_mmcif_error_manage(host);
  665. return;
  666. }
  667. if (host->sd_error) {
  668. switch (cmd->opcode) {
  669. case MMC_ALL_SEND_CID:
  670. case MMC_SELECT_CARD:
  671. case MMC_APP_CMD:
  672. cmd->error = -ETIMEDOUT;
  673. break;
  674. default:
  675. dev_dbg(&host->pd->dev, "Cmd(d'%d) err\n",
  676. cmd->opcode);
  677. cmd->error = sh_mmcif_error_manage(host);
  678. break;
  679. }
  680. host->sd_error = false;
  681. return;
  682. }
  683. if (!(cmd->flags & MMC_RSP_PRESENT)) {
  684. cmd->error = 0;
  685. return;
  686. }
  687. sh_mmcif_get_response(host, cmd);
  688. if (host->data) {
  689. if (!host->dma_active) {
  690. ret = sh_mmcif_data_trans(host, mrq, cmd->opcode);
  691. } else {
  692. long time =
  693. wait_for_completion_interruptible_timeout(&host->dma_complete,
  694. host->timeout);
  695. if (!time)
  696. ret = -ETIMEDOUT;
  697. else if (time < 0)
  698. ret = time;
  699. sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
  700. BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
  701. host->dma_active = false;
  702. }
  703. if (ret < 0)
  704. mrq->data->bytes_xfered = 0;
  705. else
  706. mrq->data->bytes_xfered =
  707. mrq->data->blocks * mrq->data->blksz;
  708. }
  709. cmd->error = ret;
  710. }
  711. static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
  712. struct mmc_request *mrq, struct mmc_command *cmd)
  713. {
  714. long time;
  715. if (mrq->cmd->opcode == MMC_READ_MULTIPLE_BLOCK)
  716. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
  717. else if (mrq->cmd->opcode == MMC_WRITE_MULTIPLE_BLOCK)
  718. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
  719. else {
  720. dev_err(&host->pd->dev, "unsupported stop cmd\n");
  721. cmd->error = sh_mmcif_error_manage(host);
  722. return;
  723. }
  724. time = wait_for_completion_interruptible_timeout(&host->intr_wait,
  725. host->timeout);
  726. if (time <= 0 || host->sd_error) {
  727. cmd->error = sh_mmcif_error_manage(host);
  728. return;
  729. }
  730. sh_mmcif_get_cmd12response(host, cmd);
  731. cmd->error = 0;
  732. }
  733. static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
  734. {
  735. struct sh_mmcif_host *host = mmc_priv(mmc);
  736. unsigned long flags;
  737. spin_lock_irqsave(&host->lock, flags);
  738. if (host->state != STATE_IDLE) {
  739. spin_unlock_irqrestore(&host->lock, flags);
  740. mrq->cmd->error = -EAGAIN;
  741. mmc_request_done(mmc, mrq);
  742. return;
  743. }
  744. host->state = STATE_REQUEST;
  745. spin_unlock_irqrestore(&host->lock, flags);
  746. switch (mrq->cmd->opcode) {
  747. /* MMCIF does not support SD/SDIO command */
  748. case SD_IO_SEND_OP_COND:
  749. case MMC_APP_CMD:
  750. host->state = STATE_IDLE;
  751. mrq->cmd->error = -ETIMEDOUT;
  752. mmc_request_done(mmc, mrq);
  753. return;
  754. case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
  755. if (!mrq->data) {
  756. /* send_if_cond cmd (not support) */
  757. host->state = STATE_IDLE;
  758. mrq->cmd->error = -ETIMEDOUT;
  759. mmc_request_done(mmc, mrq);
  760. return;
  761. }
  762. break;
  763. default:
  764. break;
  765. }
  766. host->data = mrq->data;
  767. if (mrq->data) {
  768. if (mrq->data->flags & MMC_DATA_READ) {
  769. if (host->chan_rx)
  770. sh_mmcif_start_dma_rx(host);
  771. } else {
  772. if (host->chan_tx)
  773. sh_mmcif_start_dma_tx(host);
  774. }
  775. }
  776. sh_mmcif_start_cmd(host, mrq, mrq->cmd);
  777. host->data = NULL;
  778. if (!mrq->cmd->error && mrq->stop)
  779. sh_mmcif_stop_cmd(host, mrq, mrq->stop);
  780. host->state = STATE_IDLE;
  781. mmc_request_done(mmc, mrq);
  782. }
  783. static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
  784. {
  785. struct sh_mmcif_host *host = mmc_priv(mmc);
  786. struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
  787. unsigned long flags;
  788. spin_lock_irqsave(&host->lock, flags);
  789. if (host->state != STATE_IDLE) {
  790. spin_unlock_irqrestore(&host->lock, flags);
  791. return;
  792. }
  793. host->state = STATE_IOS;
  794. spin_unlock_irqrestore(&host->lock, flags);
  795. if (ios->power_mode == MMC_POWER_UP) {
  796. if (!host->card_present) {
  797. /* See if we also get DMA */
  798. sh_mmcif_request_dma(host, host->pd->dev.platform_data);
  799. host->card_present = true;
  800. }
  801. } else if (ios->power_mode == MMC_POWER_OFF || !ios->clock) {
  802. /* clock stop */
  803. sh_mmcif_clock_control(host, 0);
  804. if (ios->power_mode == MMC_POWER_OFF) {
  805. if (host->card_present) {
  806. sh_mmcif_release_dma(host);
  807. host->card_present = false;
  808. }
  809. }
  810. if (host->power) {
  811. pm_runtime_put(&host->pd->dev);
  812. host->power = false;
  813. if (p->down_pwr)
  814. p->down_pwr(host->pd);
  815. }
  816. host->state = STATE_IDLE;
  817. return;
  818. }
  819. if (ios->clock) {
  820. if (!host->power) {
  821. if (p->set_pwr)
  822. p->set_pwr(host->pd, ios->power_mode);
  823. pm_runtime_get_sync(&host->pd->dev);
  824. host->power = true;
  825. sh_mmcif_sync_reset(host);
  826. }
  827. sh_mmcif_clock_control(host, ios->clock);
  828. }
  829. host->bus_width = ios->bus_width;
  830. host->state = STATE_IDLE;
  831. }
  832. static int sh_mmcif_get_cd(struct mmc_host *mmc)
  833. {
  834. struct sh_mmcif_host *host = mmc_priv(mmc);
  835. struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
  836. if (!p->get_cd)
  837. return -ENOSYS;
  838. else
  839. return p->get_cd(host->pd);
  840. }
  841. static struct mmc_host_ops sh_mmcif_ops = {
  842. .request = sh_mmcif_request,
  843. .set_ios = sh_mmcif_set_ios,
  844. .get_cd = sh_mmcif_get_cd,
  845. };
  846. static void sh_mmcif_detect(struct mmc_host *mmc)
  847. {
  848. mmc_detect_change(mmc, 0);
  849. }
  850. static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
  851. {
  852. struct sh_mmcif_host *host = dev_id;
  853. u32 state;
  854. int err = 0;
  855. state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
  856. if (state & INT_RBSYE) {
  857. sh_mmcif_writel(host->addr, MMCIF_CE_INT,
  858. ~(INT_RBSYE | INT_CRSPE));
  859. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MRBSYE);
  860. } else if (state & INT_CRSPE) {
  861. sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_CRSPE);
  862. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCRSPE);
  863. } else if (state & INT_BUFREN) {
  864. sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFREN);
  865. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
  866. } else if (state & INT_BUFWEN) {
  867. sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFWEN);
  868. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
  869. } else if (state & INT_CMD12DRE) {
  870. sh_mmcif_writel(host->addr, MMCIF_CE_INT,
  871. ~(INT_CMD12DRE | INT_CMD12RBE |
  872. INT_CMD12CRE | INT_BUFRE));
  873. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
  874. } else if (state & INT_BUFRE) {
  875. sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFRE);
  876. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
  877. } else if (state & INT_DTRANE) {
  878. sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_DTRANE);
  879. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
  880. } else if (state & INT_CMD12RBE) {
  881. sh_mmcif_writel(host->addr, MMCIF_CE_INT,
  882. ~(INT_CMD12RBE | INT_CMD12CRE));
  883. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
  884. } else if (state & INT_ERR_STS) {
  885. /* err interrupts */
  886. sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
  887. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
  888. err = 1;
  889. } else {
  890. dev_dbg(&host->pd->dev, "Unsupported interrupt: 0x%x\n", state);
  891. sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
  892. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
  893. err = 1;
  894. }
  895. if (err) {
  896. host->sd_error = true;
  897. dev_dbg(&host->pd->dev, "int err state = %08x\n", state);
  898. }
  899. if (state & ~(INT_CMD12RBE | INT_CMD12CRE))
  900. complete(&host->intr_wait);
  901. else
  902. dev_dbg(&host->pd->dev, "Unexpected IRQ 0x%x\n", state);
  903. return IRQ_HANDLED;
  904. }
  905. static int __devinit sh_mmcif_probe(struct platform_device *pdev)
  906. {
  907. int ret = 0, irq[2];
  908. struct mmc_host *mmc;
  909. struct sh_mmcif_host *host;
  910. struct sh_mmcif_plat_data *pd;
  911. struct resource *res;
  912. void __iomem *reg;
  913. char clk_name[8];
  914. irq[0] = platform_get_irq(pdev, 0);
  915. irq[1] = platform_get_irq(pdev, 1);
  916. if (irq[0] < 0 || irq[1] < 0) {
  917. dev_err(&pdev->dev, "Get irq error\n");
  918. return -ENXIO;
  919. }
  920. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  921. if (!res) {
  922. dev_err(&pdev->dev, "platform_get_resource error.\n");
  923. return -ENXIO;
  924. }
  925. reg = ioremap(res->start, resource_size(res));
  926. if (!reg) {
  927. dev_err(&pdev->dev, "ioremap error.\n");
  928. return -ENOMEM;
  929. }
  930. pd = pdev->dev.platform_data;
  931. if (!pd) {
  932. dev_err(&pdev->dev, "sh_mmcif plat data error.\n");
  933. ret = -ENXIO;
  934. goto clean_up;
  935. }
  936. mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), &pdev->dev);
  937. if (!mmc) {
  938. ret = -ENOMEM;
  939. goto clean_up;
  940. }
  941. host = mmc_priv(mmc);
  942. host->mmc = mmc;
  943. host->addr = reg;
  944. host->timeout = 1000;
  945. snprintf(clk_name, sizeof(clk_name), "mmc%d", pdev->id);
  946. host->hclk = clk_get(&pdev->dev, clk_name);
  947. if (IS_ERR(host->hclk)) {
  948. dev_err(&pdev->dev, "cannot get clock \"%s\"\n", clk_name);
  949. ret = PTR_ERR(host->hclk);
  950. goto clean_up1;
  951. }
  952. clk_enable(host->hclk);
  953. host->clk = clk_get_rate(host->hclk);
  954. host->pd = pdev;
  955. init_completion(&host->intr_wait);
  956. spin_lock_init(&host->lock);
  957. mmc->ops = &sh_mmcif_ops;
  958. mmc->f_max = host->clk;
  959. /* close to 400KHz */
  960. if (mmc->f_max < 51200000)
  961. mmc->f_min = mmc->f_max / 128;
  962. else if (mmc->f_max < 102400000)
  963. mmc->f_min = mmc->f_max / 256;
  964. else
  965. mmc->f_min = mmc->f_max / 512;
  966. if (pd->ocr)
  967. mmc->ocr_avail = pd->ocr;
  968. mmc->caps = MMC_CAP_MMC_HIGHSPEED;
  969. if (pd->caps)
  970. mmc->caps |= pd->caps;
  971. mmc->max_segs = 32;
  972. mmc->max_blk_size = 512;
  973. mmc->max_req_size = PAGE_CACHE_SIZE * mmc->max_segs;
  974. mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
  975. mmc->max_seg_size = mmc->max_req_size;
  976. sh_mmcif_sync_reset(host);
  977. platform_set_drvdata(pdev, host);
  978. pm_runtime_enable(&pdev->dev);
  979. host->power = false;
  980. ret = pm_runtime_resume(&pdev->dev);
  981. if (ret < 0)
  982. goto clean_up2;
  983. mmc_add_host(mmc);
  984. sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
  985. ret = request_irq(irq[0], sh_mmcif_intr, 0, "sh_mmc:error", host);
  986. if (ret) {
  987. dev_err(&pdev->dev, "request_irq error (sh_mmc:error)\n");
  988. goto clean_up3;
  989. }
  990. ret = request_irq(irq[1], sh_mmcif_intr, 0, "sh_mmc:int", host);
  991. if (ret) {
  992. free_irq(irq[0], host);
  993. dev_err(&pdev->dev, "request_irq error (sh_mmc:int)\n");
  994. goto clean_up3;
  995. }
  996. sh_mmcif_detect(host->mmc);
  997. dev_info(&pdev->dev, "driver version %s\n", DRIVER_VERSION);
  998. dev_dbg(&pdev->dev, "chip ver H'%04x\n",
  999. sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0x0000ffff);
  1000. return ret;
  1001. clean_up3:
  1002. mmc_remove_host(mmc);
  1003. pm_runtime_suspend(&pdev->dev);
  1004. clean_up2:
  1005. pm_runtime_disable(&pdev->dev);
  1006. clk_disable(host->hclk);
  1007. clean_up1:
  1008. mmc_free_host(mmc);
  1009. clean_up:
  1010. if (reg)
  1011. iounmap(reg);
  1012. return ret;
  1013. }
  1014. static int __devexit sh_mmcif_remove(struct platform_device *pdev)
  1015. {
  1016. struct sh_mmcif_host *host = platform_get_drvdata(pdev);
  1017. int irq[2];
  1018. pm_runtime_get_sync(&pdev->dev);
  1019. mmc_remove_host(host->mmc);
  1020. sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
  1021. if (host->addr)
  1022. iounmap(host->addr);
  1023. irq[0] = platform_get_irq(pdev, 0);
  1024. irq[1] = platform_get_irq(pdev, 1);
  1025. free_irq(irq[0], host);
  1026. free_irq(irq[1], host);
  1027. platform_set_drvdata(pdev, NULL);
  1028. clk_disable(host->hclk);
  1029. mmc_free_host(host->mmc);
  1030. pm_runtime_put_sync(&pdev->dev);
  1031. pm_runtime_disable(&pdev->dev);
  1032. return 0;
  1033. }
  1034. #ifdef CONFIG_PM
  1035. static int sh_mmcif_suspend(struct device *dev)
  1036. {
  1037. struct platform_device *pdev = to_platform_device(dev);
  1038. struct sh_mmcif_host *host = platform_get_drvdata(pdev);
  1039. int ret = mmc_suspend_host(host->mmc);
  1040. if (!ret) {
  1041. sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
  1042. clk_disable(host->hclk);
  1043. }
  1044. return ret;
  1045. }
  1046. static int sh_mmcif_resume(struct device *dev)
  1047. {
  1048. struct platform_device *pdev = to_platform_device(dev);
  1049. struct sh_mmcif_host *host = platform_get_drvdata(pdev);
  1050. clk_enable(host->hclk);
  1051. return mmc_resume_host(host->mmc);
  1052. }
  1053. #else
  1054. #define sh_mmcif_suspend NULL
  1055. #define sh_mmcif_resume NULL
  1056. #endif /* CONFIG_PM */
  1057. static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
  1058. .suspend = sh_mmcif_suspend,
  1059. .resume = sh_mmcif_resume,
  1060. };
  1061. static struct platform_driver sh_mmcif_driver = {
  1062. .probe = sh_mmcif_probe,
  1063. .remove = sh_mmcif_remove,
  1064. .driver = {
  1065. .name = DRIVER_NAME,
  1066. .pm = &sh_mmcif_dev_pm_ops,
  1067. },
  1068. };
  1069. static int __init sh_mmcif_init(void)
  1070. {
  1071. return platform_driver_register(&sh_mmcif_driver);
  1072. }
  1073. static void __exit sh_mmcif_exit(void)
  1074. {
  1075. platform_driver_unregister(&sh_mmcif_driver);
  1076. }
  1077. module_init(sh_mmcif_init);
  1078. module_exit(sh_mmcif_exit);
  1079. MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
  1080. MODULE_LICENSE("GPL");
  1081. MODULE_ALIAS("platform:" DRIVER_NAME);
  1082. MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");