kvm_main.c 46 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include <linux/kvm.h>
  19. #include <linux/module.h>
  20. #include <linux/errno.h>
  21. #include <asm/processor.h>
  22. #include <linux/percpu.h>
  23. #include <linux/gfp.h>
  24. #include <asm/msr.h>
  25. #include <linux/mm.h>
  26. #include <linux/miscdevice.h>
  27. #include <linux/vmalloc.h>
  28. #include <asm/uaccess.h>
  29. #include <linux/reboot.h>
  30. #include <asm/io.h>
  31. #include <linux/debugfs.h>
  32. #include <linux/highmem.h>
  33. #include <linux/file.h>
  34. #include <asm/desc.h>
  35. #include "x86_emulate.h"
  36. #include "segment_descriptor.h"
  37. MODULE_AUTHOR("Qumranet");
  38. MODULE_LICENSE("GPL");
  39. struct kvm_arch_ops *kvm_arch_ops;
  40. struct kvm_stat kvm_stat;
  41. EXPORT_SYMBOL_GPL(kvm_stat);
  42. static struct kvm_stats_debugfs_item {
  43. const char *name;
  44. u32 *data;
  45. struct dentry *dentry;
  46. } debugfs_entries[] = {
  47. { "pf_fixed", &kvm_stat.pf_fixed },
  48. { "pf_guest", &kvm_stat.pf_guest },
  49. { "tlb_flush", &kvm_stat.tlb_flush },
  50. { "invlpg", &kvm_stat.invlpg },
  51. { "exits", &kvm_stat.exits },
  52. { "io_exits", &kvm_stat.io_exits },
  53. { "mmio_exits", &kvm_stat.mmio_exits },
  54. { "signal_exits", &kvm_stat.signal_exits },
  55. { "irq_window", &kvm_stat.irq_window_exits },
  56. { "halt_exits", &kvm_stat.halt_exits },
  57. { "request_irq", &kvm_stat.request_irq_exits },
  58. { "irq_exits", &kvm_stat.irq_exits },
  59. { 0, 0 }
  60. };
  61. static struct dentry *debugfs_dir;
  62. #define MAX_IO_MSRS 256
  63. #define CR0_RESEVED_BITS 0xffffffff1ffaffc0ULL
  64. #define LMSW_GUEST_MASK 0x0eULL
  65. #define CR4_RESEVED_BITS (~((1ULL << 11) - 1))
  66. #define CR8_RESEVED_BITS (~0x0fULL)
  67. #define EFER_RESERVED_BITS 0xfffffffffffff2fe
  68. #ifdef CONFIG_X86_64
  69. // LDT or TSS descriptor in the GDT. 16 bytes.
  70. struct segment_descriptor_64 {
  71. struct segment_descriptor s;
  72. u32 base_higher;
  73. u32 pad_zero;
  74. };
  75. #endif
  76. unsigned long segment_base(u16 selector)
  77. {
  78. struct descriptor_table gdt;
  79. struct segment_descriptor *d;
  80. unsigned long table_base;
  81. typedef unsigned long ul;
  82. unsigned long v;
  83. if (selector == 0)
  84. return 0;
  85. asm ("sgdt %0" : "=m"(gdt));
  86. table_base = gdt.base;
  87. if (selector & 4) { /* from ldt */
  88. u16 ldt_selector;
  89. asm ("sldt %0" : "=g"(ldt_selector));
  90. table_base = segment_base(ldt_selector);
  91. }
  92. d = (struct segment_descriptor *)(table_base + (selector & ~7));
  93. v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
  94. #ifdef CONFIG_X86_64
  95. if (d->system == 0
  96. && (d->type == 2 || d->type == 9 || d->type == 11))
  97. v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
  98. #endif
  99. return v;
  100. }
  101. EXPORT_SYMBOL_GPL(segment_base);
  102. static inline int valid_vcpu(int n)
  103. {
  104. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  105. }
  106. int kvm_read_guest(struct kvm_vcpu *vcpu,
  107. gva_t addr,
  108. unsigned long size,
  109. void *dest)
  110. {
  111. unsigned char *host_buf = dest;
  112. unsigned long req_size = size;
  113. while (size) {
  114. hpa_t paddr;
  115. unsigned now;
  116. unsigned offset;
  117. hva_t guest_buf;
  118. paddr = gva_to_hpa(vcpu, addr);
  119. if (is_error_hpa(paddr))
  120. break;
  121. guest_buf = (hva_t)kmap_atomic(
  122. pfn_to_page(paddr >> PAGE_SHIFT),
  123. KM_USER0);
  124. offset = addr & ~PAGE_MASK;
  125. guest_buf |= offset;
  126. now = min(size, PAGE_SIZE - offset);
  127. memcpy(host_buf, (void*)guest_buf, now);
  128. host_buf += now;
  129. addr += now;
  130. size -= now;
  131. kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
  132. }
  133. return req_size - size;
  134. }
  135. EXPORT_SYMBOL_GPL(kvm_read_guest);
  136. int kvm_write_guest(struct kvm_vcpu *vcpu,
  137. gva_t addr,
  138. unsigned long size,
  139. void *data)
  140. {
  141. unsigned char *host_buf = data;
  142. unsigned long req_size = size;
  143. while (size) {
  144. hpa_t paddr;
  145. unsigned now;
  146. unsigned offset;
  147. hva_t guest_buf;
  148. paddr = gva_to_hpa(vcpu, addr);
  149. if (is_error_hpa(paddr))
  150. break;
  151. guest_buf = (hva_t)kmap_atomic(
  152. pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0);
  153. offset = addr & ~PAGE_MASK;
  154. guest_buf |= offset;
  155. now = min(size, PAGE_SIZE - offset);
  156. memcpy((void*)guest_buf, host_buf, now);
  157. host_buf += now;
  158. addr += now;
  159. size -= now;
  160. kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
  161. }
  162. return req_size - size;
  163. }
  164. EXPORT_SYMBOL_GPL(kvm_write_guest);
  165. static int vcpu_slot(struct kvm_vcpu *vcpu)
  166. {
  167. return vcpu - vcpu->kvm->vcpus;
  168. }
  169. /*
  170. * Switches to specified vcpu, until a matching vcpu_put()
  171. */
  172. static struct kvm_vcpu *vcpu_load(struct kvm *kvm, int vcpu_slot)
  173. {
  174. struct kvm_vcpu *vcpu = &kvm->vcpus[vcpu_slot];
  175. mutex_lock(&vcpu->mutex);
  176. if (unlikely(!vcpu->vmcs)) {
  177. mutex_unlock(&vcpu->mutex);
  178. return 0;
  179. }
  180. return kvm_arch_ops->vcpu_load(vcpu);
  181. }
  182. static void vcpu_put(struct kvm_vcpu *vcpu)
  183. {
  184. kvm_arch_ops->vcpu_put(vcpu);
  185. mutex_unlock(&vcpu->mutex);
  186. }
  187. static int kvm_dev_open(struct inode *inode, struct file *filp)
  188. {
  189. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  190. int i;
  191. if (!kvm)
  192. return -ENOMEM;
  193. spin_lock_init(&kvm->lock);
  194. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  195. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  196. struct kvm_vcpu *vcpu = &kvm->vcpus[i];
  197. mutex_init(&vcpu->mutex);
  198. vcpu->mmu.root_hpa = INVALID_PAGE;
  199. INIT_LIST_HEAD(&vcpu->free_pages);
  200. }
  201. filp->private_data = kvm;
  202. return 0;
  203. }
  204. /*
  205. * Free any memory in @free but not in @dont.
  206. */
  207. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  208. struct kvm_memory_slot *dont)
  209. {
  210. int i;
  211. if (!dont || free->phys_mem != dont->phys_mem)
  212. if (free->phys_mem) {
  213. for (i = 0; i < free->npages; ++i)
  214. if (free->phys_mem[i])
  215. __free_page(free->phys_mem[i]);
  216. vfree(free->phys_mem);
  217. }
  218. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  219. vfree(free->dirty_bitmap);
  220. free->phys_mem = 0;
  221. free->npages = 0;
  222. free->dirty_bitmap = 0;
  223. }
  224. static void kvm_free_physmem(struct kvm *kvm)
  225. {
  226. int i;
  227. for (i = 0; i < kvm->nmemslots; ++i)
  228. kvm_free_physmem_slot(&kvm->memslots[i], 0);
  229. }
  230. static void kvm_free_vcpu(struct kvm_vcpu *vcpu)
  231. {
  232. kvm_arch_ops->vcpu_free(vcpu);
  233. kvm_mmu_destroy(vcpu);
  234. }
  235. static void kvm_free_vcpus(struct kvm *kvm)
  236. {
  237. unsigned int i;
  238. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  239. kvm_free_vcpu(&kvm->vcpus[i]);
  240. }
  241. static int kvm_dev_release(struct inode *inode, struct file *filp)
  242. {
  243. struct kvm *kvm = filp->private_data;
  244. kvm_free_vcpus(kvm);
  245. kvm_free_physmem(kvm);
  246. kfree(kvm);
  247. return 0;
  248. }
  249. static void inject_gp(struct kvm_vcpu *vcpu)
  250. {
  251. kvm_arch_ops->inject_gp(vcpu, 0);
  252. }
  253. /*
  254. * Load the pae pdptrs. Return true is they are all valid.
  255. */
  256. static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  257. {
  258. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  259. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  260. int i;
  261. u64 pdpte;
  262. u64 *pdpt;
  263. int ret;
  264. struct kvm_memory_slot *memslot;
  265. spin_lock(&vcpu->kvm->lock);
  266. memslot = gfn_to_memslot(vcpu->kvm, pdpt_gfn);
  267. /* FIXME: !memslot - emulate? 0xff? */
  268. pdpt = kmap_atomic(gfn_to_page(memslot, pdpt_gfn), KM_USER0);
  269. ret = 1;
  270. for (i = 0; i < 4; ++i) {
  271. pdpte = pdpt[offset + i];
  272. if ((pdpte & 1) && (pdpte & 0xfffffff0000001e6ull)) {
  273. ret = 0;
  274. goto out;
  275. }
  276. }
  277. for (i = 0; i < 4; ++i)
  278. vcpu->pdptrs[i] = pdpt[offset + i];
  279. out:
  280. kunmap_atomic(pdpt, KM_USER0);
  281. spin_unlock(&vcpu->kvm->lock);
  282. return ret;
  283. }
  284. void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  285. {
  286. if (cr0 & CR0_RESEVED_BITS) {
  287. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  288. cr0, vcpu->cr0);
  289. inject_gp(vcpu);
  290. return;
  291. }
  292. if ((cr0 & CR0_NW_MASK) && !(cr0 & CR0_CD_MASK)) {
  293. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  294. inject_gp(vcpu);
  295. return;
  296. }
  297. if ((cr0 & CR0_PG_MASK) && !(cr0 & CR0_PE_MASK)) {
  298. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  299. "and a clear PE flag\n");
  300. inject_gp(vcpu);
  301. return;
  302. }
  303. if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
  304. #ifdef CONFIG_X86_64
  305. if ((vcpu->shadow_efer & EFER_LME)) {
  306. int cs_db, cs_l;
  307. if (!is_pae(vcpu)) {
  308. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  309. "in long mode while PAE is disabled\n");
  310. inject_gp(vcpu);
  311. return;
  312. }
  313. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  314. if (cs_l) {
  315. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  316. "in long mode while CS.L == 1\n");
  317. inject_gp(vcpu);
  318. return;
  319. }
  320. } else
  321. #endif
  322. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
  323. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  324. "reserved bits\n");
  325. inject_gp(vcpu);
  326. return;
  327. }
  328. }
  329. kvm_arch_ops->set_cr0(vcpu, cr0);
  330. vcpu->cr0 = cr0;
  331. spin_lock(&vcpu->kvm->lock);
  332. kvm_mmu_reset_context(vcpu);
  333. spin_unlock(&vcpu->kvm->lock);
  334. return;
  335. }
  336. EXPORT_SYMBOL_GPL(set_cr0);
  337. void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  338. {
  339. kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
  340. set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
  341. }
  342. EXPORT_SYMBOL_GPL(lmsw);
  343. void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  344. {
  345. if (cr4 & CR4_RESEVED_BITS) {
  346. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  347. inject_gp(vcpu);
  348. return;
  349. }
  350. if (is_long_mode(vcpu)) {
  351. if (!(cr4 & CR4_PAE_MASK)) {
  352. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  353. "in long mode\n");
  354. inject_gp(vcpu);
  355. return;
  356. }
  357. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & CR4_PAE_MASK)
  358. && !load_pdptrs(vcpu, vcpu->cr3)) {
  359. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  360. inject_gp(vcpu);
  361. }
  362. if (cr4 & CR4_VMXE_MASK) {
  363. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  364. inject_gp(vcpu);
  365. return;
  366. }
  367. kvm_arch_ops->set_cr4(vcpu, cr4);
  368. spin_lock(&vcpu->kvm->lock);
  369. kvm_mmu_reset_context(vcpu);
  370. spin_unlock(&vcpu->kvm->lock);
  371. }
  372. EXPORT_SYMBOL_GPL(set_cr4);
  373. void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  374. {
  375. if (is_long_mode(vcpu)) {
  376. if ( cr3 & CR3_L_MODE_RESEVED_BITS) {
  377. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  378. inject_gp(vcpu);
  379. return;
  380. }
  381. } else {
  382. if (cr3 & CR3_RESEVED_BITS) {
  383. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  384. inject_gp(vcpu);
  385. return;
  386. }
  387. if (is_paging(vcpu) && is_pae(vcpu) &&
  388. !load_pdptrs(vcpu, cr3)) {
  389. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  390. "reserved bits\n");
  391. inject_gp(vcpu);
  392. return;
  393. }
  394. }
  395. vcpu->cr3 = cr3;
  396. spin_lock(&vcpu->kvm->lock);
  397. vcpu->mmu.new_cr3(vcpu);
  398. spin_unlock(&vcpu->kvm->lock);
  399. }
  400. EXPORT_SYMBOL_GPL(set_cr3);
  401. void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  402. {
  403. if ( cr8 & CR8_RESEVED_BITS) {
  404. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  405. inject_gp(vcpu);
  406. return;
  407. }
  408. vcpu->cr8 = cr8;
  409. }
  410. EXPORT_SYMBOL_GPL(set_cr8);
  411. void fx_init(struct kvm_vcpu *vcpu)
  412. {
  413. struct __attribute__ ((__packed__)) fx_image_s {
  414. u16 control; //fcw
  415. u16 status; //fsw
  416. u16 tag; // ftw
  417. u16 opcode; //fop
  418. u64 ip; // fpu ip
  419. u64 operand;// fpu dp
  420. u32 mxcsr;
  421. u32 mxcsr_mask;
  422. } *fx_image;
  423. fx_save(vcpu->host_fx_image);
  424. fpu_init();
  425. fx_save(vcpu->guest_fx_image);
  426. fx_restore(vcpu->host_fx_image);
  427. fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
  428. fx_image->mxcsr = 0x1f80;
  429. memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
  430. 0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
  431. }
  432. EXPORT_SYMBOL_GPL(fx_init);
  433. /*
  434. * Creates some virtual cpus. Good luck creating more than one.
  435. */
  436. static int kvm_dev_ioctl_create_vcpu(struct kvm *kvm, int n)
  437. {
  438. int r;
  439. struct kvm_vcpu *vcpu;
  440. r = -EINVAL;
  441. if (!valid_vcpu(n))
  442. goto out;
  443. vcpu = &kvm->vcpus[n];
  444. mutex_lock(&vcpu->mutex);
  445. if (vcpu->vmcs) {
  446. mutex_unlock(&vcpu->mutex);
  447. return -EEXIST;
  448. }
  449. vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
  450. FX_IMAGE_ALIGN);
  451. vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
  452. vcpu->cpu = -1; /* First load will set up TR */
  453. vcpu->kvm = kvm;
  454. r = kvm_arch_ops->vcpu_create(vcpu);
  455. if (r < 0)
  456. goto out_free_vcpus;
  457. r = kvm_mmu_create(vcpu);
  458. if (r < 0)
  459. goto out_free_vcpus;
  460. kvm_arch_ops->vcpu_load(vcpu);
  461. r = kvm_mmu_setup(vcpu);
  462. if (r >= 0)
  463. r = kvm_arch_ops->vcpu_setup(vcpu);
  464. vcpu_put(vcpu);
  465. if (r < 0)
  466. goto out_free_vcpus;
  467. return 0;
  468. out_free_vcpus:
  469. kvm_free_vcpu(vcpu);
  470. mutex_unlock(&vcpu->mutex);
  471. out:
  472. return r;
  473. }
  474. /*
  475. * Allocate some memory and give it an address in the guest physical address
  476. * space.
  477. *
  478. * Discontiguous memory is allowed, mostly for framebuffers.
  479. */
  480. static int kvm_dev_ioctl_set_memory_region(struct kvm *kvm,
  481. struct kvm_memory_region *mem)
  482. {
  483. int r;
  484. gfn_t base_gfn;
  485. unsigned long npages;
  486. unsigned long i;
  487. struct kvm_memory_slot *memslot;
  488. struct kvm_memory_slot old, new;
  489. int memory_config_version;
  490. r = -EINVAL;
  491. /* General sanity checks */
  492. if (mem->memory_size & (PAGE_SIZE - 1))
  493. goto out;
  494. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  495. goto out;
  496. if (mem->slot >= KVM_MEMORY_SLOTS)
  497. goto out;
  498. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  499. goto out;
  500. memslot = &kvm->memslots[mem->slot];
  501. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  502. npages = mem->memory_size >> PAGE_SHIFT;
  503. if (!npages)
  504. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  505. raced:
  506. spin_lock(&kvm->lock);
  507. memory_config_version = kvm->memory_config_version;
  508. new = old = *memslot;
  509. new.base_gfn = base_gfn;
  510. new.npages = npages;
  511. new.flags = mem->flags;
  512. /* Disallow changing a memory slot's size. */
  513. r = -EINVAL;
  514. if (npages && old.npages && npages != old.npages)
  515. goto out_unlock;
  516. /* Check for overlaps */
  517. r = -EEXIST;
  518. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  519. struct kvm_memory_slot *s = &kvm->memslots[i];
  520. if (s == memslot)
  521. continue;
  522. if (!((base_gfn + npages <= s->base_gfn) ||
  523. (base_gfn >= s->base_gfn + s->npages)))
  524. goto out_unlock;
  525. }
  526. /*
  527. * Do memory allocations outside lock. memory_config_version will
  528. * detect any races.
  529. */
  530. spin_unlock(&kvm->lock);
  531. /* Deallocate if slot is being removed */
  532. if (!npages)
  533. new.phys_mem = 0;
  534. /* Free page dirty bitmap if unneeded */
  535. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  536. new.dirty_bitmap = 0;
  537. r = -ENOMEM;
  538. /* Allocate if a slot is being created */
  539. if (npages && !new.phys_mem) {
  540. new.phys_mem = vmalloc(npages * sizeof(struct page *));
  541. if (!new.phys_mem)
  542. goto out_free;
  543. memset(new.phys_mem, 0, npages * sizeof(struct page *));
  544. for (i = 0; i < npages; ++i) {
  545. new.phys_mem[i] = alloc_page(GFP_HIGHUSER
  546. | __GFP_ZERO);
  547. if (!new.phys_mem[i])
  548. goto out_free;
  549. new.phys_mem[i]->private = 0;
  550. }
  551. }
  552. /* Allocate page dirty bitmap if needed */
  553. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  554. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  555. new.dirty_bitmap = vmalloc(dirty_bytes);
  556. if (!new.dirty_bitmap)
  557. goto out_free;
  558. memset(new.dirty_bitmap, 0, dirty_bytes);
  559. }
  560. spin_lock(&kvm->lock);
  561. if (memory_config_version != kvm->memory_config_version) {
  562. spin_unlock(&kvm->lock);
  563. kvm_free_physmem_slot(&new, &old);
  564. goto raced;
  565. }
  566. r = -EAGAIN;
  567. if (kvm->busy)
  568. goto out_unlock;
  569. if (mem->slot >= kvm->nmemslots)
  570. kvm->nmemslots = mem->slot + 1;
  571. *memslot = new;
  572. ++kvm->memory_config_version;
  573. spin_unlock(&kvm->lock);
  574. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  575. struct kvm_vcpu *vcpu;
  576. vcpu = vcpu_load(kvm, i);
  577. if (!vcpu)
  578. continue;
  579. kvm_mmu_reset_context(vcpu);
  580. vcpu_put(vcpu);
  581. }
  582. kvm_free_physmem_slot(&old, &new);
  583. return 0;
  584. out_unlock:
  585. spin_unlock(&kvm->lock);
  586. out_free:
  587. kvm_free_physmem_slot(&new, &old);
  588. out:
  589. return r;
  590. }
  591. static void do_remove_write_access(struct kvm_vcpu *vcpu, int slot)
  592. {
  593. spin_lock(&vcpu->kvm->lock);
  594. kvm_mmu_slot_remove_write_access(vcpu, slot);
  595. spin_unlock(&vcpu->kvm->lock);
  596. }
  597. /*
  598. * Get (and clear) the dirty memory log for a memory slot.
  599. */
  600. static int kvm_dev_ioctl_get_dirty_log(struct kvm *kvm,
  601. struct kvm_dirty_log *log)
  602. {
  603. struct kvm_memory_slot *memslot;
  604. int r, i;
  605. int n;
  606. int cleared;
  607. unsigned long any = 0;
  608. spin_lock(&kvm->lock);
  609. /*
  610. * Prevent changes to guest memory configuration even while the lock
  611. * is not taken.
  612. */
  613. ++kvm->busy;
  614. spin_unlock(&kvm->lock);
  615. r = -EINVAL;
  616. if (log->slot >= KVM_MEMORY_SLOTS)
  617. goto out;
  618. memslot = &kvm->memslots[log->slot];
  619. r = -ENOENT;
  620. if (!memslot->dirty_bitmap)
  621. goto out;
  622. n = ALIGN(memslot->npages, 8) / 8;
  623. for (i = 0; !any && i < n; ++i)
  624. any = memslot->dirty_bitmap[i];
  625. r = -EFAULT;
  626. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  627. goto out;
  628. if (any) {
  629. cleared = 0;
  630. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  631. struct kvm_vcpu *vcpu = vcpu_load(kvm, i);
  632. if (!vcpu)
  633. continue;
  634. if (!cleared) {
  635. do_remove_write_access(vcpu, log->slot);
  636. memset(memslot->dirty_bitmap, 0, n);
  637. cleared = 1;
  638. }
  639. kvm_arch_ops->tlb_flush(vcpu);
  640. vcpu_put(vcpu);
  641. }
  642. }
  643. r = 0;
  644. out:
  645. spin_lock(&kvm->lock);
  646. --kvm->busy;
  647. spin_unlock(&kvm->lock);
  648. return r;
  649. }
  650. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  651. {
  652. int i;
  653. for (i = 0; i < kvm->nmemslots; ++i) {
  654. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  655. if (gfn >= memslot->base_gfn
  656. && gfn < memslot->base_gfn + memslot->npages)
  657. return memslot;
  658. }
  659. return 0;
  660. }
  661. EXPORT_SYMBOL_GPL(gfn_to_memslot);
  662. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  663. {
  664. int i;
  665. struct kvm_memory_slot *memslot = 0;
  666. unsigned long rel_gfn;
  667. for (i = 0; i < kvm->nmemslots; ++i) {
  668. memslot = &kvm->memslots[i];
  669. if (gfn >= memslot->base_gfn
  670. && gfn < memslot->base_gfn + memslot->npages) {
  671. if (!memslot || !memslot->dirty_bitmap)
  672. return;
  673. rel_gfn = gfn - memslot->base_gfn;
  674. /* avoid RMW */
  675. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  676. set_bit(rel_gfn, memslot->dirty_bitmap);
  677. return;
  678. }
  679. }
  680. }
  681. static int emulator_read_std(unsigned long addr,
  682. unsigned long *val,
  683. unsigned int bytes,
  684. struct x86_emulate_ctxt *ctxt)
  685. {
  686. struct kvm_vcpu *vcpu = ctxt->vcpu;
  687. void *data = val;
  688. while (bytes) {
  689. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  690. unsigned offset = addr & (PAGE_SIZE-1);
  691. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  692. unsigned long pfn;
  693. struct kvm_memory_slot *memslot;
  694. void *page;
  695. if (gpa == UNMAPPED_GVA)
  696. return X86EMUL_PROPAGATE_FAULT;
  697. pfn = gpa >> PAGE_SHIFT;
  698. memslot = gfn_to_memslot(vcpu->kvm, pfn);
  699. if (!memslot)
  700. return X86EMUL_UNHANDLEABLE;
  701. page = kmap_atomic(gfn_to_page(memslot, pfn), KM_USER0);
  702. memcpy(data, page + offset, tocopy);
  703. kunmap_atomic(page, KM_USER0);
  704. bytes -= tocopy;
  705. data += tocopy;
  706. addr += tocopy;
  707. }
  708. return X86EMUL_CONTINUE;
  709. }
  710. static int emulator_write_std(unsigned long addr,
  711. unsigned long val,
  712. unsigned int bytes,
  713. struct x86_emulate_ctxt *ctxt)
  714. {
  715. printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
  716. addr, bytes);
  717. return X86EMUL_UNHANDLEABLE;
  718. }
  719. static int emulator_read_emulated(unsigned long addr,
  720. unsigned long *val,
  721. unsigned int bytes,
  722. struct x86_emulate_ctxt *ctxt)
  723. {
  724. struct kvm_vcpu *vcpu = ctxt->vcpu;
  725. if (vcpu->mmio_read_completed) {
  726. memcpy(val, vcpu->mmio_data, bytes);
  727. vcpu->mmio_read_completed = 0;
  728. return X86EMUL_CONTINUE;
  729. } else if (emulator_read_std(addr, val, bytes, ctxt)
  730. == X86EMUL_CONTINUE)
  731. return X86EMUL_CONTINUE;
  732. else {
  733. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  734. if (gpa == UNMAPPED_GVA)
  735. return vcpu_printf(vcpu, "not present\n"), X86EMUL_PROPAGATE_FAULT;
  736. vcpu->mmio_needed = 1;
  737. vcpu->mmio_phys_addr = gpa;
  738. vcpu->mmio_size = bytes;
  739. vcpu->mmio_is_write = 0;
  740. return X86EMUL_UNHANDLEABLE;
  741. }
  742. }
  743. static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  744. unsigned long val, int bytes)
  745. {
  746. struct kvm_memory_slot *m;
  747. struct page *page;
  748. void *virt;
  749. if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
  750. return 0;
  751. m = gfn_to_memslot(vcpu->kvm, gpa >> PAGE_SHIFT);
  752. if (!m)
  753. return 0;
  754. page = gfn_to_page(m, gpa >> PAGE_SHIFT);
  755. kvm_mmu_pre_write(vcpu, gpa, bytes);
  756. virt = kmap_atomic(page, KM_USER0);
  757. memcpy(virt + offset_in_page(gpa), &val, bytes);
  758. kunmap_atomic(virt, KM_USER0);
  759. kvm_mmu_post_write(vcpu, gpa, bytes);
  760. return 1;
  761. }
  762. static int emulator_write_emulated(unsigned long addr,
  763. unsigned long val,
  764. unsigned int bytes,
  765. struct x86_emulate_ctxt *ctxt)
  766. {
  767. struct kvm_vcpu *vcpu = ctxt->vcpu;
  768. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  769. if (gpa == UNMAPPED_GVA)
  770. return X86EMUL_PROPAGATE_FAULT;
  771. if (emulator_write_phys(vcpu, gpa, val, bytes))
  772. return X86EMUL_CONTINUE;
  773. vcpu->mmio_needed = 1;
  774. vcpu->mmio_phys_addr = gpa;
  775. vcpu->mmio_size = bytes;
  776. vcpu->mmio_is_write = 1;
  777. memcpy(vcpu->mmio_data, &val, bytes);
  778. return X86EMUL_CONTINUE;
  779. }
  780. static int emulator_cmpxchg_emulated(unsigned long addr,
  781. unsigned long old,
  782. unsigned long new,
  783. unsigned int bytes,
  784. struct x86_emulate_ctxt *ctxt)
  785. {
  786. static int reported;
  787. if (!reported) {
  788. reported = 1;
  789. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  790. }
  791. return emulator_write_emulated(addr, new, bytes, ctxt);
  792. }
  793. #ifdef CONFIG_X86_32
  794. static int emulator_cmpxchg8b_emulated(unsigned long addr,
  795. unsigned long old_lo,
  796. unsigned long old_hi,
  797. unsigned long new_lo,
  798. unsigned long new_hi,
  799. struct x86_emulate_ctxt *ctxt)
  800. {
  801. static int reported;
  802. int r;
  803. if (!reported) {
  804. reported = 1;
  805. printk(KERN_WARNING "kvm: emulating exchange8b as write\n");
  806. }
  807. r = emulator_write_emulated(addr, new_lo, 4, ctxt);
  808. if (r != X86EMUL_CONTINUE)
  809. return r;
  810. return emulator_write_emulated(addr+4, new_hi, 4, ctxt);
  811. }
  812. #endif
  813. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  814. {
  815. return kvm_arch_ops->get_segment_base(vcpu, seg);
  816. }
  817. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  818. {
  819. return X86EMUL_CONTINUE;
  820. }
  821. int emulate_clts(struct kvm_vcpu *vcpu)
  822. {
  823. unsigned long cr0;
  824. kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
  825. cr0 = vcpu->cr0 & ~CR0_TS_MASK;
  826. kvm_arch_ops->set_cr0(vcpu, cr0);
  827. return X86EMUL_CONTINUE;
  828. }
  829. int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
  830. {
  831. struct kvm_vcpu *vcpu = ctxt->vcpu;
  832. switch (dr) {
  833. case 0 ... 3:
  834. *dest = kvm_arch_ops->get_dr(vcpu, dr);
  835. return X86EMUL_CONTINUE;
  836. default:
  837. printk(KERN_DEBUG "%s: unexpected dr %u\n",
  838. __FUNCTION__, dr);
  839. return X86EMUL_UNHANDLEABLE;
  840. }
  841. }
  842. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  843. {
  844. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  845. int exception;
  846. kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  847. if (exception) {
  848. /* FIXME: better handling */
  849. return X86EMUL_UNHANDLEABLE;
  850. }
  851. return X86EMUL_CONTINUE;
  852. }
  853. static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
  854. {
  855. static int reported;
  856. u8 opcodes[4];
  857. unsigned long rip = ctxt->vcpu->rip;
  858. unsigned long rip_linear;
  859. rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
  860. if (reported)
  861. return;
  862. emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt);
  863. printk(KERN_ERR "emulation failed but !mmio_needed?"
  864. " rip %lx %02x %02x %02x %02x\n",
  865. rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  866. reported = 1;
  867. }
  868. struct x86_emulate_ops emulate_ops = {
  869. .read_std = emulator_read_std,
  870. .write_std = emulator_write_std,
  871. .read_emulated = emulator_read_emulated,
  872. .write_emulated = emulator_write_emulated,
  873. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  874. #ifdef CONFIG_X86_32
  875. .cmpxchg8b_emulated = emulator_cmpxchg8b_emulated,
  876. #endif
  877. };
  878. int emulate_instruction(struct kvm_vcpu *vcpu,
  879. struct kvm_run *run,
  880. unsigned long cr2,
  881. u16 error_code)
  882. {
  883. struct x86_emulate_ctxt emulate_ctxt;
  884. int r;
  885. int cs_db, cs_l;
  886. kvm_arch_ops->cache_regs(vcpu);
  887. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  888. emulate_ctxt.vcpu = vcpu;
  889. emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
  890. emulate_ctxt.cr2 = cr2;
  891. emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
  892. ? X86EMUL_MODE_REAL : cs_l
  893. ? X86EMUL_MODE_PROT64 : cs_db
  894. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  895. if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  896. emulate_ctxt.cs_base = 0;
  897. emulate_ctxt.ds_base = 0;
  898. emulate_ctxt.es_base = 0;
  899. emulate_ctxt.ss_base = 0;
  900. } else {
  901. emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
  902. emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
  903. emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
  904. emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
  905. }
  906. emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
  907. emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
  908. vcpu->mmio_is_write = 0;
  909. r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
  910. if ((r || vcpu->mmio_is_write) && run) {
  911. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  912. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  913. run->mmio.len = vcpu->mmio_size;
  914. run->mmio.is_write = vcpu->mmio_is_write;
  915. }
  916. if (r) {
  917. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  918. return EMULATE_DONE;
  919. if (!vcpu->mmio_needed) {
  920. report_emulation_failure(&emulate_ctxt);
  921. return EMULATE_FAIL;
  922. }
  923. return EMULATE_DO_MMIO;
  924. }
  925. kvm_arch_ops->decache_regs(vcpu);
  926. kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
  927. if (vcpu->mmio_is_write)
  928. return EMULATE_DO_MMIO;
  929. return EMULATE_DONE;
  930. }
  931. EXPORT_SYMBOL_GPL(emulate_instruction);
  932. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  933. {
  934. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  935. }
  936. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  937. {
  938. struct descriptor_table dt = { limit, base };
  939. kvm_arch_ops->set_gdt(vcpu, &dt);
  940. }
  941. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  942. {
  943. struct descriptor_table dt = { limit, base };
  944. kvm_arch_ops->set_idt(vcpu, &dt);
  945. }
  946. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  947. unsigned long *rflags)
  948. {
  949. lmsw(vcpu, msw);
  950. *rflags = kvm_arch_ops->get_rflags(vcpu);
  951. }
  952. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  953. {
  954. kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
  955. switch (cr) {
  956. case 0:
  957. return vcpu->cr0;
  958. case 2:
  959. return vcpu->cr2;
  960. case 3:
  961. return vcpu->cr3;
  962. case 4:
  963. return vcpu->cr4;
  964. default:
  965. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  966. return 0;
  967. }
  968. }
  969. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  970. unsigned long *rflags)
  971. {
  972. switch (cr) {
  973. case 0:
  974. set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
  975. *rflags = kvm_arch_ops->get_rflags(vcpu);
  976. break;
  977. case 2:
  978. vcpu->cr2 = val;
  979. break;
  980. case 3:
  981. set_cr3(vcpu, val);
  982. break;
  983. case 4:
  984. set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
  985. break;
  986. default:
  987. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  988. }
  989. }
  990. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  991. {
  992. u64 data;
  993. switch (msr) {
  994. case 0xc0010010: /* SYSCFG */
  995. case 0xc0010015: /* HWCR */
  996. case MSR_IA32_PLATFORM_ID:
  997. case MSR_IA32_P5_MC_ADDR:
  998. case MSR_IA32_P5_MC_TYPE:
  999. case MSR_IA32_MC0_CTL:
  1000. case MSR_IA32_MCG_STATUS:
  1001. case MSR_IA32_MCG_CAP:
  1002. case MSR_IA32_MC0_MISC:
  1003. case MSR_IA32_MC0_MISC+4:
  1004. case MSR_IA32_MC0_MISC+8:
  1005. case MSR_IA32_MC0_MISC+12:
  1006. case MSR_IA32_MC0_MISC+16:
  1007. case MSR_IA32_UCODE_REV:
  1008. case MSR_IA32_PERF_STATUS:
  1009. /* MTRR registers */
  1010. case 0xfe:
  1011. case 0x200 ... 0x2ff:
  1012. data = 0;
  1013. break;
  1014. case 0xcd: /* fsb frequency */
  1015. data = 3;
  1016. break;
  1017. case MSR_IA32_APICBASE:
  1018. data = vcpu->apic_base;
  1019. break;
  1020. #ifdef CONFIG_X86_64
  1021. case MSR_EFER:
  1022. data = vcpu->shadow_efer;
  1023. break;
  1024. #endif
  1025. default:
  1026. printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
  1027. return 1;
  1028. }
  1029. *pdata = data;
  1030. return 0;
  1031. }
  1032. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1033. /*
  1034. * Reads an msr value (of 'msr_index') into 'pdata'.
  1035. * Returns 0 on success, non-0 otherwise.
  1036. * Assumes vcpu_load() was already called.
  1037. */
  1038. static int get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1039. {
  1040. return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
  1041. }
  1042. #ifdef CONFIG_X86_64
  1043. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1044. {
  1045. if (efer & EFER_RESERVED_BITS) {
  1046. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  1047. efer);
  1048. inject_gp(vcpu);
  1049. return;
  1050. }
  1051. if (is_paging(vcpu)
  1052. && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  1053. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  1054. inject_gp(vcpu);
  1055. return;
  1056. }
  1057. kvm_arch_ops->set_efer(vcpu, efer);
  1058. efer &= ~EFER_LMA;
  1059. efer |= vcpu->shadow_efer & EFER_LMA;
  1060. vcpu->shadow_efer = efer;
  1061. }
  1062. #endif
  1063. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1064. {
  1065. switch (msr) {
  1066. #ifdef CONFIG_X86_64
  1067. case MSR_EFER:
  1068. set_efer(vcpu, data);
  1069. break;
  1070. #endif
  1071. case MSR_IA32_MC0_STATUS:
  1072. printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  1073. __FUNCTION__, data);
  1074. break;
  1075. case MSR_IA32_UCODE_REV:
  1076. case MSR_IA32_UCODE_WRITE:
  1077. case 0x200 ... 0x2ff: /* MTRRs */
  1078. break;
  1079. case MSR_IA32_APICBASE:
  1080. vcpu->apic_base = data;
  1081. break;
  1082. default:
  1083. printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
  1084. return 1;
  1085. }
  1086. return 0;
  1087. }
  1088. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1089. /*
  1090. * Writes msr value into into the appropriate "register".
  1091. * Returns 0 on success, non-0 otherwise.
  1092. * Assumes vcpu_load() was already called.
  1093. */
  1094. static int set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1095. {
  1096. return kvm_arch_ops->set_msr(vcpu, msr_index, data);
  1097. }
  1098. void kvm_resched(struct kvm_vcpu *vcpu)
  1099. {
  1100. vcpu_put(vcpu);
  1101. cond_resched();
  1102. /* Cannot fail - no vcpu unplug yet. */
  1103. vcpu_load(vcpu->kvm, vcpu_slot(vcpu));
  1104. }
  1105. EXPORT_SYMBOL_GPL(kvm_resched);
  1106. void load_msrs(struct vmx_msr_entry *e, int n)
  1107. {
  1108. int i;
  1109. for (i = 0; i < n; ++i)
  1110. wrmsrl(e[i].index, e[i].data);
  1111. }
  1112. EXPORT_SYMBOL_GPL(load_msrs);
  1113. void save_msrs(struct vmx_msr_entry *e, int n)
  1114. {
  1115. int i;
  1116. for (i = 0; i < n; ++i)
  1117. rdmsrl(e[i].index, e[i].data);
  1118. }
  1119. EXPORT_SYMBOL_GPL(save_msrs);
  1120. static int kvm_dev_ioctl_run(struct kvm *kvm, struct kvm_run *kvm_run)
  1121. {
  1122. struct kvm_vcpu *vcpu;
  1123. int r;
  1124. if (!valid_vcpu(kvm_run->vcpu))
  1125. return -EINVAL;
  1126. vcpu = vcpu_load(kvm, kvm_run->vcpu);
  1127. if (!vcpu)
  1128. return -ENOENT;
  1129. if (kvm_run->emulated) {
  1130. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1131. kvm_run->emulated = 0;
  1132. }
  1133. if (kvm_run->mmio_completed) {
  1134. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  1135. vcpu->mmio_read_completed = 1;
  1136. }
  1137. vcpu->mmio_needed = 0;
  1138. r = kvm_arch_ops->run(vcpu, kvm_run);
  1139. vcpu_put(vcpu);
  1140. return r;
  1141. }
  1142. static int kvm_dev_ioctl_get_regs(struct kvm *kvm, struct kvm_regs *regs)
  1143. {
  1144. struct kvm_vcpu *vcpu;
  1145. if (!valid_vcpu(regs->vcpu))
  1146. return -EINVAL;
  1147. vcpu = vcpu_load(kvm, regs->vcpu);
  1148. if (!vcpu)
  1149. return -ENOENT;
  1150. kvm_arch_ops->cache_regs(vcpu);
  1151. regs->rax = vcpu->regs[VCPU_REGS_RAX];
  1152. regs->rbx = vcpu->regs[VCPU_REGS_RBX];
  1153. regs->rcx = vcpu->regs[VCPU_REGS_RCX];
  1154. regs->rdx = vcpu->regs[VCPU_REGS_RDX];
  1155. regs->rsi = vcpu->regs[VCPU_REGS_RSI];
  1156. regs->rdi = vcpu->regs[VCPU_REGS_RDI];
  1157. regs->rsp = vcpu->regs[VCPU_REGS_RSP];
  1158. regs->rbp = vcpu->regs[VCPU_REGS_RBP];
  1159. #ifdef CONFIG_X86_64
  1160. regs->r8 = vcpu->regs[VCPU_REGS_R8];
  1161. regs->r9 = vcpu->regs[VCPU_REGS_R9];
  1162. regs->r10 = vcpu->regs[VCPU_REGS_R10];
  1163. regs->r11 = vcpu->regs[VCPU_REGS_R11];
  1164. regs->r12 = vcpu->regs[VCPU_REGS_R12];
  1165. regs->r13 = vcpu->regs[VCPU_REGS_R13];
  1166. regs->r14 = vcpu->regs[VCPU_REGS_R14];
  1167. regs->r15 = vcpu->regs[VCPU_REGS_R15];
  1168. #endif
  1169. regs->rip = vcpu->rip;
  1170. regs->rflags = kvm_arch_ops->get_rflags(vcpu);
  1171. /*
  1172. * Don't leak debug flags in case they were set for guest debugging
  1173. */
  1174. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  1175. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1176. vcpu_put(vcpu);
  1177. return 0;
  1178. }
  1179. static int kvm_dev_ioctl_set_regs(struct kvm *kvm, struct kvm_regs *regs)
  1180. {
  1181. struct kvm_vcpu *vcpu;
  1182. if (!valid_vcpu(regs->vcpu))
  1183. return -EINVAL;
  1184. vcpu = vcpu_load(kvm, regs->vcpu);
  1185. if (!vcpu)
  1186. return -ENOENT;
  1187. vcpu->regs[VCPU_REGS_RAX] = regs->rax;
  1188. vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
  1189. vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
  1190. vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
  1191. vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
  1192. vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
  1193. vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
  1194. vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
  1195. #ifdef CONFIG_X86_64
  1196. vcpu->regs[VCPU_REGS_R8] = regs->r8;
  1197. vcpu->regs[VCPU_REGS_R9] = regs->r9;
  1198. vcpu->regs[VCPU_REGS_R10] = regs->r10;
  1199. vcpu->regs[VCPU_REGS_R11] = regs->r11;
  1200. vcpu->regs[VCPU_REGS_R12] = regs->r12;
  1201. vcpu->regs[VCPU_REGS_R13] = regs->r13;
  1202. vcpu->regs[VCPU_REGS_R14] = regs->r14;
  1203. vcpu->regs[VCPU_REGS_R15] = regs->r15;
  1204. #endif
  1205. vcpu->rip = regs->rip;
  1206. kvm_arch_ops->set_rflags(vcpu, regs->rflags);
  1207. kvm_arch_ops->decache_regs(vcpu);
  1208. vcpu_put(vcpu);
  1209. return 0;
  1210. }
  1211. static void get_segment(struct kvm_vcpu *vcpu,
  1212. struct kvm_segment *var, int seg)
  1213. {
  1214. return kvm_arch_ops->get_segment(vcpu, var, seg);
  1215. }
  1216. static int kvm_dev_ioctl_get_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
  1217. {
  1218. struct kvm_vcpu *vcpu;
  1219. struct descriptor_table dt;
  1220. if (!valid_vcpu(sregs->vcpu))
  1221. return -EINVAL;
  1222. vcpu = vcpu_load(kvm, sregs->vcpu);
  1223. if (!vcpu)
  1224. return -ENOENT;
  1225. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1226. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1227. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1228. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1229. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1230. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1231. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1232. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1233. kvm_arch_ops->get_idt(vcpu, &dt);
  1234. sregs->idt.limit = dt.limit;
  1235. sregs->idt.base = dt.base;
  1236. kvm_arch_ops->get_gdt(vcpu, &dt);
  1237. sregs->gdt.limit = dt.limit;
  1238. sregs->gdt.base = dt.base;
  1239. kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
  1240. sregs->cr0 = vcpu->cr0;
  1241. sregs->cr2 = vcpu->cr2;
  1242. sregs->cr3 = vcpu->cr3;
  1243. sregs->cr4 = vcpu->cr4;
  1244. sregs->cr8 = vcpu->cr8;
  1245. sregs->efer = vcpu->shadow_efer;
  1246. sregs->apic_base = vcpu->apic_base;
  1247. memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
  1248. sizeof sregs->interrupt_bitmap);
  1249. vcpu_put(vcpu);
  1250. return 0;
  1251. }
  1252. static void set_segment(struct kvm_vcpu *vcpu,
  1253. struct kvm_segment *var, int seg)
  1254. {
  1255. return kvm_arch_ops->set_segment(vcpu, var, seg);
  1256. }
  1257. static int kvm_dev_ioctl_set_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
  1258. {
  1259. struct kvm_vcpu *vcpu;
  1260. int mmu_reset_needed = 0;
  1261. int i;
  1262. struct descriptor_table dt;
  1263. if (!valid_vcpu(sregs->vcpu))
  1264. return -EINVAL;
  1265. vcpu = vcpu_load(kvm, sregs->vcpu);
  1266. if (!vcpu)
  1267. return -ENOENT;
  1268. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1269. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1270. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1271. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1272. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1273. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1274. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1275. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1276. dt.limit = sregs->idt.limit;
  1277. dt.base = sregs->idt.base;
  1278. kvm_arch_ops->set_idt(vcpu, &dt);
  1279. dt.limit = sregs->gdt.limit;
  1280. dt.base = sregs->gdt.base;
  1281. kvm_arch_ops->set_gdt(vcpu, &dt);
  1282. vcpu->cr2 = sregs->cr2;
  1283. mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
  1284. vcpu->cr3 = sregs->cr3;
  1285. vcpu->cr8 = sregs->cr8;
  1286. mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
  1287. #ifdef CONFIG_X86_64
  1288. kvm_arch_ops->set_efer(vcpu, sregs->efer);
  1289. #endif
  1290. vcpu->apic_base = sregs->apic_base;
  1291. kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
  1292. mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
  1293. kvm_arch_ops->set_cr0_no_modeswitch(vcpu, sregs->cr0);
  1294. mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
  1295. kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
  1296. if (!is_long_mode(vcpu) && is_pae(vcpu))
  1297. load_pdptrs(vcpu, vcpu->cr3);
  1298. if (mmu_reset_needed)
  1299. kvm_mmu_reset_context(vcpu);
  1300. memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
  1301. sizeof vcpu->irq_pending);
  1302. vcpu->irq_summary = 0;
  1303. for (i = 0; i < NR_IRQ_WORDS; ++i)
  1304. if (vcpu->irq_pending[i])
  1305. __set_bit(i, &vcpu->irq_summary);
  1306. vcpu_put(vcpu);
  1307. return 0;
  1308. }
  1309. /*
  1310. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  1311. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  1312. *
  1313. * This list is modified at module load time to reflect the
  1314. * capabilities of the host cpu.
  1315. */
  1316. static u32 msrs_to_save[] = {
  1317. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  1318. MSR_K6_STAR,
  1319. #ifdef CONFIG_X86_64
  1320. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  1321. #endif
  1322. MSR_IA32_TIME_STAMP_COUNTER,
  1323. };
  1324. static unsigned num_msrs_to_save;
  1325. static __init void kvm_init_msr_list(void)
  1326. {
  1327. u32 dummy[2];
  1328. unsigned i, j;
  1329. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  1330. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  1331. continue;
  1332. if (j < i)
  1333. msrs_to_save[j] = msrs_to_save[i];
  1334. j++;
  1335. }
  1336. num_msrs_to_save = j;
  1337. }
  1338. /*
  1339. * Adapt set_msr() to msr_io()'s calling convention
  1340. */
  1341. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  1342. {
  1343. return set_msr(vcpu, index, *data);
  1344. }
  1345. /*
  1346. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1347. *
  1348. * @return number of msrs set successfully.
  1349. */
  1350. static int __msr_io(struct kvm *kvm, struct kvm_msrs *msrs,
  1351. struct kvm_msr_entry *entries,
  1352. int (*do_msr)(struct kvm_vcpu *vcpu,
  1353. unsigned index, u64 *data))
  1354. {
  1355. struct kvm_vcpu *vcpu;
  1356. int i;
  1357. if (!valid_vcpu(msrs->vcpu))
  1358. return -EINVAL;
  1359. vcpu = vcpu_load(kvm, msrs->vcpu);
  1360. if (!vcpu)
  1361. return -ENOENT;
  1362. for (i = 0; i < msrs->nmsrs; ++i)
  1363. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1364. break;
  1365. vcpu_put(vcpu);
  1366. return i;
  1367. }
  1368. /*
  1369. * Read or write a bunch of msrs. Parameters are user addresses.
  1370. *
  1371. * @return number of msrs set successfully.
  1372. */
  1373. static int msr_io(struct kvm *kvm, struct kvm_msrs __user *user_msrs,
  1374. int (*do_msr)(struct kvm_vcpu *vcpu,
  1375. unsigned index, u64 *data),
  1376. int writeback)
  1377. {
  1378. struct kvm_msrs msrs;
  1379. struct kvm_msr_entry *entries;
  1380. int r, n;
  1381. unsigned size;
  1382. r = -EFAULT;
  1383. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1384. goto out;
  1385. r = -E2BIG;
  1386. if (msrs.nmsrs >= MAX_IO_MSRS)
  1387. goto out;
  1388. r = -ENOMEM;
  1389. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1390. entries = vmalloc(size);
  1391. if (!entries)
  1392. goto out;
  1393. r = -EFAULT;
  1394. if (copy_from_user(entries, user_msrs->entries, size))
  1395. goto out_free;
  1396. r = n = __msr_io(kvm, &msrs, entries, do_msr);
  1397. if (r < 0)
  1398. goto out_free;
  1399. r = -EFAULT;
  1400. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1401. goto out_free;
  1402. r = n;
  1403. out_free:
  1404. vfree(entries);
  1405. out:
  1406. return r;
  1407. }
  1408. /*
  1409. * Translate a guest virtual address to a guest physical address.
  1410. */
  1411. static int kvm_dev_ioctl_translate(struct kvm *kvm, struct kvm_translation *tr)
  1412. {
  1413. unsigned long vaddr = tr->linear_address;
  1414. struct kvm_vcpu *vcpu;
  1415. gpa_t gpa;
  1416. vcpu = vcpu_load(kvm, tr->vcpu);
  1417. if (!vcpu)
  1418. return -ENOENT;
  1419. spin_lock(&kvm->lock);
  1420. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  1421. tr->physical_address = gpa;
  1422. tr->valid = gpa != UNMAPPED_GVA;
  1423. tr->writeable = 1;
  1424. tr->usermode = 0;
  1425. spin_unlock(&kvm->lock);
  1426. vcpu_put(vcpu);
  1427. return 0;
  1428. }
  1429. static int kvm_dev_ioctl_interrupt(struct kvm *kvm, struct kvm_interrupt *irq)
  1430. {
  1431. struct kvm_vcpu *vcpu;
  1432. if (!valid_vcpu(irq->vcpu))
  1433. return -EINVAL;
  1434. if (irq->irq < 0 || irq->irq >= 256)
  1435. return -EINVAL;
  1436. vcpu = vcpu_load(kvm, irq->vcpu);
  1437. if (!vcpu)
  1438. return -ENOENT;
  1439. set_bit(irq->irq, vcpu->irq_pending);
  1440. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  1441. vcpu_put(vcpu);
  1442. return 0;
  1443. }
  1444. static int kvm_dev_ioctl_debug_guest(struct kvm *kvm,
  1445. struct kvm_debug_guest *dbg)
  1446. {
  1447. struct kvm_vcpu *vcpu;
  1448. int r;
  1449. if (!valid_vcpu(dbg->vcpu))
  1450. return -EINVAL;
  1451. vcpu = vcpu_load(kvm, dbg->vcpu);
  1452. if (!vcpu)
  1453. return -ENOENT;
  1454. r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
  1455. vcpu_put(vcpu);
  1456. return r;
  1457. }
  1458. static long kvm_dev_ioctl(struct file *filp,
  1459. unsigned int ioctl, unsigned long arg)
  1460. {
  1461. struct kvm *kvm = filp->private_data;
  1462. int r = -EINVAL;
  1463. switch (ioctl) {
  1464. case KVM_GET_API_VERSION:
  1465. r = KVM_API_VERSION;
  1466. break;
  1467. case KVM_CREATE_VCPU: {
  1468. r = kvm_dev_ioctl_create_vcpu(kvm, arg);
  1469. if (r)
  1470. goto out;
  1471. break;
  1472. }
  1473. case KVM_RUN: {
  1474. struct kvm_run kvm_run;
  1475. r = -EFAULT;
  1476. if (copy_from_user(&kvm_run, (void *)arg, sizeof kvm_run))
  1477. goto out;
  1478. r = kvm_dev_ioctl_run(kvm, &kvm_run);
  1479. if (r < 0 && r != -EINTR)
  1480. goto out;
  1481. if (copy_to_user((void *)arg, &kvm_run, sizeof kvm_run)) {
  1482. r = -EFAULT;
  1483. goto out;
  1484. }
  1485. break;
  1486. }
  1487. case KVM_GET_REGS: {
  1488. struct kvm_regs kvm_regs;
  1489. r = -EFAULT;
  1490. if (copy_from_user(&kvm_regs, (void *)arg, sizeof kvm_regs))
  1491. goto out;
  1492. r = kvm_dev_ioctl_get_regs(kvm, &kvm_regs);
  1493. if (r)
  1494. goto out;
  1495. r = -EFAULT;
  1496. if (copy_to_user((void *)arg, &kvm_regs, sizeof kvm_regs))
  1497. goto out;
  1498. r = 0;
  1499. break;
  1500. }
  1501. case KVM_SET_REGS: {
  1502. struct kvm_regs kvm_regs;
  1503. r = -EFAULT;
  1504. if (copy_from_user(&kvm_regs, (void *)arg, sizeof kvm_regs))
  1505. goto out;
  1506. r = kvm_dev_ioctl_set_regs(kvm, &kvm_regs);
  1507. if (r)
  1508. goto out;
  1509. r = 0;
  1510. break;
  1511. }
  1512. case KVM_GET_SREGS: {
  1513. struct kvm_sregs kvm_sregs;
  1514. r = -EFAULT;
  1515. if (copy_from_user(&kvm_sregs, (void *)arg, sizeof kvm_sregs))
  1516. goto out;
  1517. r = kvm_dev_ioctl_get_sregs(kvm, &kvm_sregs);
  1518. if (r)
  1519. goto out;
  1520. r = -EFAULT;
  1521. if (copy_to_user((void *)arg, &kvm_sregs, sizeof kvm_sregs))
  1522. goto out;
  1523. r = 0;
  1524. break;
  1525. }
  1526. case KVM_SET_SREGS: {
  1527. struct kvm_sregs kvm_sregs;
  1528. r = -EFAULT;
  1529. if (copy_from_user(&kvm_sregs, (void *)arg, sizeof kvm_sregs))
  1530. goto out;
  1531. r = kvm_dev_ioctl_set_sregs(kvm, &kvm_sregs);
  1532. if (r)
  1533. goto out;
  1534. r = 0;
  1535. break;
  1536. }
  1537. case KVM_TRANSLATE: {
  1538. struct kvm_translation tr;
  1539. r = -EFAULT;
  1540. if (copy_from_user(&tr, (void *)arg, sizeof tr))
  1541. goto out;
  1542. r = kvm_dev_ioctl_translate(kvm, &tr);
  1543. if (r)
  1544. goto out;
  1545. r = -EFAULT;
  1546. if (copy_to_user((void *)arg, &tr, sizeof tr))
  1547. goto out;
  1548. r = 0;
  1549. break;
  1550. }
  1551. case KVM_INTERRUPT: {
  1552. struct kvm_interrupt irq;
  1553. r = -EFAULT;
  1554. if (copy_from_user(&irq, (void *)arg, sizeof irq))
  1555. goto out;
  1556. r = kvm_dev_ioctl_interrupt(kvm, &irq);
  1557. if (r)
  1558. goto out;
  1559. r = 0;
  1560. break;
  1561. }
  1562. case KVM_DEBUG_GUEST: {
  1563. struct kvm_debug_guest dbg;
  1564. r = -EFAULT;
  1565. if (copy_from_user(&dbg, (void *)arg, sizeof dbg))
  1566. goto out;
  1567. r = kvm_dev_ioctl_debug_guest(kvm, &dbg);
  1568. if (r)
  1569. goto out;
  1570. r = 0;
  1571. break;
  1572. }
  1573. case KVM_SET_MEMORY_REGION: {
  1574. struct kvm_memory_region kvm_mem;
  1575. r = -EFAULT;
  1576. if (copy_from_user(&kvm_mem, (void *)arg, sizeof kvm_mem))
  1577. goto out;
  1578. r = kvm_dev_ioctl_set_memory_region(kvm, &kvm_mem);
  1579. if (r)
  1580. goto out;
  1581. break;
  1582. }
  1583. case KVM_GET_DIRTY_LOG: {
  1584. struct kvm_dirty_log log;
  1585. r = -EFAULT;
  1586. if (copy_from_user(&log, (void *)arg, sizeof log))
  1587. goto out;
  1588. r = kvm_dev_ioctl_get_dirty_log(kvm, &log);
  1589. if (r)
  1590. goto out;
  1591. break;
  1592. }
  1593. case KVM_GET_MSRS:
  1594. r = msr_io(kvm, (void __user *)arg, get_msr, 1);
  1595. break;
  1596. case KVM_SET_MSRS:
  1597. r = msr_io(kvm, (void __user *)arg, do_set_msr, 0);
  1598. break;
  1599. case KVM_GET_MSR_INDEX_LIST: {
  1600. struct kvm_msr_list __user *user_msr_list = (void __user *)arg;
  1601. struct kvm_msr_list msr_list;
  1602. unsigned n;
  1603. r = -EFAULT;
  1604. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1605. goto out;
  1606. n = msr_list.nmsrs;
  1607. msr_list.nmsrs = num_msrs_to_save;
  1608. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1609. goto out;
  1610. r = -E2BIG;
  1611. if (n < num_msrs_to_save)
  1612. goto out;
  1613. r = -EFAULT;
  1614. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1615. num_msrs_to_save * sizeof(u32)))
  1616. goto out;
  1617. r = 0;
  1618. }
  1619. default:
  1620. ;
  1621. }
  1622. out:
  1623. return r;
  1624. }
  1625. static struct page *kvm_dev_nopage(struct vm_area_struct *vma,
  1626. unsigned long address,
  1627. int *type)
  1628. {
  1629. struct kvm *kvm = vma->vm_file->private_data;
  1630. unsigned long pgoff;
  1631. struct kvm_memory_slot *slot;
  1632. struct page *page;
  1633. *type = VM_FAULT_MINOR;
  1634. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  1635. slot = gfn_to_memslot(kvm, pgoff);
  1636. if (!slot)
  1637. return NOPAGE_SIGBUS;
  1638. page = gfn_to_page(slot, pgoff);
  1639. if (!page)
  1640. return NOPAGE_SIGBUS;
  1641. get_page(page);
  1642. return page;
  1643. }
  1644. static struct vm_operations_struct kvm_dev_vm_ops = {
  1645. .nopage = kvm_dev_nopage,
  1646. };
  1647. static int kvm_dev_mmap(struct file *file, struct vm_area_struct *vma)
  1648. {
  1649. vma->vm_ops = &kvm_dev_vm_ops;
  1650. return 0;
  1651. }
  1652. static struct file_operations kvm_chardev_ops = {
  1653. .open = kvm_dev_open,
  1654. .release = kvm_dev_release,
  1655. .unlocked_ioctl = kvm_dev_ioctl,
  1656. .compat_ioctl = kvm_dev_ioctl,
  1657. .mmap = kvm_dev_mmap,
  1658. };
  1659. static struct miscdevice kvm_dev = {
  1660. MISC_DYNAMIC_MINOR,
  1661. "kvm",
  1662. &kvm_chardev_ops,
  1663. };
  1664. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  1665. void *v)
  1666. {
  1667. if (val == SYS_RESTART) {
  1668. /*
  1669. * Some (well, at least mine) BIOSes hang on reboot if
  1670. * in vmx root mode.
  1671. */
  1672. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1673. on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
  1674. }
  1675. return NOTIFY_OK;
  1676. }
  1677. static struct notifier_block kvm_reboot_notifier = {
  1678. .notifier_call = kvm_reboot,
  1679. .priority = 0,
  1680. };
  1681. static __init void kvm_init_debug(void)
  1682. {
  1683. struct kvm_stats_debugfs_item *p;
  1684. debugfs_dir = debugfs_create_dir("kvm", 0);
  1685. for (p = debugfs_entries; p->name; ++p)
  1686. p->dentry = debugfs_create_u32(p->name, 0444, debugfs_dir,
  1687. p->data);
  1688. }
  1689. static void kvm_exit_debug(void)
  1690. {
  1691. struct kvm_stats_debugfs_item *p;
  1692. for (p = debugfs_entries; p->name; ++p)
  1693. debugfs_remove(p->dentry);
  1694. debugfs_remove(debugfs_dir);
  1695. }
  1696. hpa_t bad_page_address;
  1697. int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
  1698. {
  1699. int r;
  1700. if (kvm_arch_ops) {
  1701. printk(KERN_ERR "kvm: already loaded the other module\n");
  1702. return -EEXIST;
  1703. }
  1704. if (!ops->cpu_has_kvm_support()) {
  1705. printk(KERN_ERR "kvm: no hardware support\n");
  1706. return -EOPNOTSUPP;
  1707. }
  1708. if (ops->disabled_by_bios()) {
  1709. printk(KERN_ERR "kvm: disabled by bios\n");
  1710. return -EOPNOTSUPP;
  1711. }
  1712. kvm_arch_ops = ops;
  1713. r = kvm_arch_ops->hardware_setup();
  1714. if (r < 0)
  1715. return r;
  1716. on_each_cpu(kvm_arch_ops->hardware_enable, 0, 0, 1);
  1717. register_reboot_notifier(&kvm_reboot_notifier);
  1718. kvm_chardev_ops.owner = module;
  1719. r = misc_register(&kvm_dev);
  1720. if (r) {
  1721. printk (KERN_ERR "kvm: misc device register failed\n");
  1722. goto out_free;
  1723. }
  1724. return r;
  1725. out_free:
  1726. unregister_reboot_notifier(&kvm_reboot_notifier);
  1727. on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
  1728. kvm_arch_ops->hardware_unsetup();
  1729. return r;
  1730. }
  1731. void kvm_exit_arch(void)
  1732. {
  1733. misc_deregister(&kvm_dev);
  1734. unregister_reboot_notifier(&kvm_reboot_notifier);
  1735. on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
  1736. kvm_arch_ops->hardware_unsetup();
  1737. kvm_arch_ops = NULL;
  1738. }
  1739. static __init int kvm_init(void)
  1740. {
  1741. static struct page *bad_page;
  1742. int r = 0;
  1743. kvm_init_debug();
  1744. kvm_init_msr_list();
  1745. if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
  1746. r = -ENOMEM;
  1747. goto out;
  1748. }
  1749. bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
  1750. memset(__va(bad_page_address), 0, PAGE_SIZE);
  1751. return r;
  1752. out:
  1753. kvm_exit_debug();
  1754. return r;
  1755. }
  1756. static __exit void kvm_exit(void)
  1757. {
  1758. kvm_exit_debug();
  1759. __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
  1760. }
  1761. module_init(kvm_init)
  1762. module_exit(kvm_exit)
  1763. EXPORT_SYMBOL_GPL(kvm_init_arch);
  1764. EXPORT_SYMBOL_GPL(kvm_exit_arch);