intel_pm.c 119 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eugeni Dodonov <eugeni.dodonov@intel.com>
  25. *
  26. */
  27. #include <linux/cpufreq.h>
  28. #include "i915_drv.h"
  29. #include "intel_drv.h"
  30. #include "../../../platform/x86/intel_ips.h"
  31. #include <linux/module.h>
  32. #define FORCEWAKE_ACK_TIMEOUT_MS 2
  33. /* FBC, or Frame Buffer Compression, is a technique employed to compress the
  34. * framebuffer contents in-memory, aiming at reducing the required bandwidth
  35. * during in-memory transfers and, therefore, reduce the power packet.
  36. *
  37. * The benefits of FBC are mostly visible with solid backgrounds and
  38. * variation-less patterns.
  39. *
  40. * FBC-related functionality can be enabled by the means of the
  41. * i915.i915_enable_fbc parameter
  42. */
  43. static void i8xx_disable_fbc(struct drm_device *dev)
  44. {
  45. struct drm_i915_private *dev_priv = dev->dev_private;
  46. u32 fbc_ctl;
  47. /* Disable compression */
  48. fbc_ctl = I915_READ(FBC_CONTROL);
  49. if ((fbc_ctl & FBC_CTL_EN) == 0)
  50. return;
  51. fbc_ctl &= ~FBC_CTL_EN;
  52. I915_WRITE(FBC_CONTROL, fbc_ctl);
  53. /* Wait for compressing bit to clear */
  54. if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
  55. DRM_DEBUG_KMS("FBC idle timed out\n");
  56. return;
  57. }
  58. DRM_DEBUG_KMS("disabled FBC\n");
  59. }
  60. static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  61. {
  62. struct drm_device *dev = crtc->dev;
  63. struct drm_i915_private *dev_priv = dev->dev_private;
  64. struct drm_framebuffer *fb = crtc->fb;
  65. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  66. struct drm_i915_gem_object *obj = intel_fb->obj;
  67. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  68. int cfb_pitch;
  69. int plane, i;
  70. u32 fbc_ctl, fbc_ctl2;
  71. cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
  72. if (fb->pitches[0] < cfb_pitch)
  73. cfb_pitch = fb->pitches[0];
  74. /* FBC_CTL wants 64B units */
  75. cfb_pitch = (cfb_pitch / 64) - 1;
  76. plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
  77. /* Clear old tags */
  78. for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
  79. I915_WRITE(FBC_TAG + (i * 4), 0);
  80. /* Set it up... */
  81. fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
  82. fbc_ctl2 |= plane;
  83. I915_WRITE(FBC_CONTROL2, fbc_ctl2);
  84. I915_WRITE(FBC_FENCE_OFF, crtc->y);
  85. /* enable it... */
  86. fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
  87. if (IS_I945GM(dev))
  88. fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
  89. fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
  90. fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
  91. fbc_ctl |= obj->fence_reg;
  92. I915_WRITE(FBC_CONTROL, fbc_ctl);
  93. DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
  94. cfb_pitch, crtc->y, intel_crtc->plane);
  95. }
  96. static bool i8xx_fbc_enabled(struct drm_device *dev)
  97. {
  98. struct drm_i915_private *dev_priv = dev->dev_private;
  99. return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
  100. }
  101. static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  102. {
  103. struct drm_device *dev = crtc->dev;
  104. struct drm_i915_private *dev_priv = dev->dev_private;
  105. struct drm_framebuffer *fb = crtc->fb;
  106. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  107. struct drm_i915_gem_object *obj = intel_fb->obj;
  108. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  109. int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
  110. unsigned long stall_watermark = 200;
  111. u32 dpfc_ctl;
  112. dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
  113. dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
  114. I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
  115. I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  116. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  117. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  118. I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
  119. /* enable it... */
  120. I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
  121. DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
  122. }
  123. static void g4x_disable_fbc(struct drm_device *dev)
  124. {
  125. struct drm_i915_private *dev_priv = dev->dev_private;
  126. u32 dpfc_ctl;
  127. /* Disable compression */
  128. dpfc_ctl = I915_READ(DPFC_CONTROL);
  129. if (dpfc_ctl & DPFC_CTL_EN) {
  130. dpfc_ctl &= ~DPFC_CTL_EN;
  131. I915_WRITE(DPFC_CONTROL, dpfc_ctl);
  132. DRM_DEBUG_KMS("disabled FBC\n");
  133. }
  134. }
  135. static bool g4x_fbc_enabled(struct drm_device *dev)
  136. {
  137. struct drm_i915_private *dev_priv = dev->dev_private;
  138. return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
  139. }
  140. static void sandybridge_blit_fbc_update(struct drm_device *dev)
  141. {
  142. struct drm_i915_private *dev_priv = dev->dev_private;
  143. u32 blt_ecoskpd;
  144. /* Make sure blitter notifies FBC of writes */
  145. gen6_gt_force_wake_get(dev_priv);
  146. blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
  147. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
  148. GEN6_BLITTER_LOCK_SHIFT;
  149. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  150. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
  151. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  152. blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
  153. GEN6_BLITTER_LOCK_SHIFT);
  154. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  155. POSTING_READ(GEN6_BLITTER_ECOSKPD);
  156. gen6_gt_force_wake_put(dev_priv);
  157. }
  158. static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  159. {
  160. struct drm_device *dev = crtc->dev;
  161. struct drm_i915_private *dev_priv = dev->dev_private;
  162. struct drm_framebuffer *fb = crtc->fb;
  163. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  164. struct drm_i915_gem_object *obj = intel_fb->obj;
  165. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  166. int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
  167. unsigned long stall_watermark = 200;
  168. u32 dpfc_ctl;
  169. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  170. dpfc_ctl &= DPFC_RESERVED;
  171. dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
  172. /* Set persistent mode for front-buffer rendering, ala X. */
  173. dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
  174. dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
  175. I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
  176. I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  177. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  178. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  179. I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
  180. I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
  181. /* enable it... */
  182. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
  183. if (IS_GEN6(dev)) {
  184. I915_WRITE(SNB_DPFC_CTL_SA,
  185. SNB_CPU_FENCE_ENABLE | obj->fence_reg);
  186. I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
  187. sandybridge_blit_fbc_update(dev);
  188. }
  189. DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
  190. }
  191. static void ironlake_disable_fbc(struct drm_device *dev)
  192. {
  193. struct drm_i915_private *dev_priv = dev->dev_private;
  194. u32 dpfc_ctl;
  195. /* Disable compression */
  196. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  197. if (dpfc_ctl & DPFC_CTL_EN) {
  198. dpfc_ctl &= ~DPFC_CTL_EN;
  199. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
  200. DRM_DEBUG_KMS("disabled FBC\n");
  201. }
  202. }
  203. static bool ironlake_fbc_enabled(struct drm_device *dev)
  204. {
  205. struct drm_i915_private *dev_priv = dev->dev_private;
  206. return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
  207. }
  208. bool intel_fbc_enabled(struct drm_device *dev)
  209. {
  210. struct drm_i915_private *dev_priv = dev->dev_private;
  211. if (!dev_priv->display.fbc_enabled)
  212. return false;
  213. return dev_priv->display.fbc_enabled(dev);
  214. }
  215. static void intel_fbc_work_fn(struct work_struct *__work)
  216. {
  217. struct intel_fbc_work *work =
  218. container_of(to_delayed_work(__work),
  219. struct intel_fbc_work, work);
  220. struct drm_device *dev = work->crtc->dev;
  221. struct drm_i915_private *dev_priv = dev->dev_private;
  222. mutex_lock(&dev->struct_mutex);
  223. if (work == dev_priv->fbc_work) {
  224. /* Double check that we haven't switched fb without cancelling
  225. * the prior work.
  226. */
  227. if (work->crtc->fb == work->fb) {
  228. dev_priv->display.enable_fbc(work->crtc,
  229. work->interval);
  230. dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
  231. dev_priv->cfb_fb = work->crtc->fb->base.id;
  232. dev_priv->cfb_y = work->crtc->y;
  233. }
  234. dev_priv->fbc_work = NULL;
  235. }
  236. mutex_unlock(&dev->struct_mutex);
  237. kfree(work);
  238. }
  239. static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
  240. {
  241. if (dev_priv->fbc_work == NULL)
  242. return;
  243. DRM_DEBUG_KMS("cancelling pending FBC enable\n");
  244. /* Synchronisation is provided by struct_mutex and checking of
  245. * dev_priv->fbc_work, so we can perform the cancellation
  246. * entirely asynchronously.
  247. */
  248. if (cancel_delayed_work(&dev_priv->fbc_work->work))
  249. /* tasklet was killed before being run, clean up */
  250. kfree(dev_priv->fbc_work);
  251. /* Mark the work as no longer wanted so that if it does
  252. * wake-up (because the work was already running and waiting
  253. * for our mutex), it will discover that is no longer
  254. * necessary to run.
  255. */
  256. dev_priv->fbc_work = NULL;
  257. }
  258. void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  259. {
  260. struct intel_fbc_work *work;
  261. struct drm_device *dev = crtc->dev;
  262. struct drm_i915_private *dev_priv = dev->dev_private;
  263. if (!dev_priv->display.enable_fbc)
  264. return;
  265. intel_cancel_fbc_work(dev_priv);
  266. work = kzalloc(sizeof *work, GFP_KERNEL);
  267. if (work == NULL) {
  268. dev_priv->display.enable_fbc(crtc, interval);
  269. return;
  270. }
  271. work->crtc = crtc;
  272. work->fb = crtc->fb;
  273. work->interval = interval;
  274. INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
  275. dev_priv->fbc_work = work;
  276. DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
  277. /* Delay the actual enabling to let pageflipping cease and the
  278. * display to settle before starting the compression. Note that
  279. * this delay also serves a second purpose: it allows for a
  280. * vblank to pass after disabling the FBC before we attempt
  281. * to modify the control registers.
  282. *
  283. * A more complicated solution would involve tracking vblanks
  284. * following the termination of the page-flipping sequence
  285. * and indeed performing the enable as a co-routine and not
  286. * waiting synchronously upon the vblank.
  287. */
  288. schedule_delayed_work(&work->work, msecs_to_jiffies(50));
  289. }
  290. void intel_disable_fbc(struct drm_device *dev)
  291. {
  292. struct drm_i915_private *dev_priv = dev->dev_private;
  293. intel_cancel_fbc_work(dev_priv);
  294. if (!dev_priv->display.disable_fbc)
  295. return;
  296. dev_priv->display.disable_fbc(dev);
  297. dev_priv->cfb_plane = -1;
  298. }
  299. /**
  300. * intel_update_fbc - enable/disable FBC as needed
  301. * @dev: the drm_device
  302. *
  303. * Set up the framebuffer compression hardware at mode set time. We
  304. * enable it if possible:
  305. * - plane A only (on pre-965)
  306. * - no pixel mulitply/line duplication
  307. * - no alpha buffer discard
  308. * - no dual wide
  309. * - framebuffer <= 2048 in width, 1536 in height
  310. *
  311. * We can't assume that any compression will take place (worst case),
  312. * so the compressed buffer has to be the same size as the uncompressed
  313. * one. It also must reside (along with the line length buffer) in
  314. * stolen memory.
  315. *
  316. * We need to enable/disable FBC on a global basis.
  317. */
  318. void intel_update_fbc(struct drm_device *dev)
  319. {
  320. struct drm_i915_private *dev_priv = dev->dev_private;
  321. struct drm_crtc *crtc = NULL, *tmp_crtc;
  322. struct intel_crtc *intel_crtc;
  323. struct drm_framebuffer *fb;
  324. struct intel_framebuffer *intel_fb;
  325. struct drm_i915_gem_object *obj;
  326. int enable_fbc;
  327. if (!i915_powersave)
  328. return;
  329. if (!I915_HAS_FBC(dev))
  330. return;
  331. /*
  332. * If FBC is already on, we just have to verify that we can
  333. * keep it that way...
  334. * Need to disable if:
  335. * - more than one pipe is active
  336. * - changing FBC params (stride, fence, mode)
  337. * - new fb is too large to fit in compressed buffer
  338. * - going to an unsupported config (interlace, pixel multiply, etc.)
  339. */
  340. list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
  341. if (tmp_crtc->enabled &&
  342. !to_intel_crtc(tmp_crtc)->primary_disabled &&
  343. tmp_crtc->fb) {
  344. if (crtc) {
  345. DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
  346. dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
  347. goto out_disable;
  348. }
  349. crtc = tmp_crtc;
  350. }
  351. }
  352. if (!crtc || crtc->fb == NULL) {
  353. DRM_DEBUG_KMS("no output, disabling\n");
  354. dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
  355. goto out_disable;
  356. }
  357. intel_crtc = to_intel_crtc(crtc);
  358. fb = crtc->fb;
  359. intel_fb = to_intel_framebuffer(fb);
  360. obj = intel_fb->obj;
  361. enable_fbc = i915_enable_fbc;
  362. if (enable_fbc < 0) {
  363. DRM_DEBUG_KMS("fbc set to per-chip default\n");
  364. enable_fbc = 1;
  365. if (INTEL_INFO(dev)->gen <= 6)
  366. enable_fbc = 0;
  367. }
  368. if (!enable_fbc) {
  369. DRM_DEBUG_KMS("fbc disabled per module param\n");
  370. dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
  371. goto out_disable;
  372. }
  373. if (intel_fb->obj->base.size > dev_priv->cfb_size) {
  374. DRM_DEBUG_KMS("framebuffer too large, disabling "
  375. "compression\n");
  376. dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
  377. goto out_disable;
  378. }
  379. if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
  380. (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
  381. DRM_DEBUG_KMS("mode incompatible with compression, "
  382. "disabling\n");
  383. dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
  384. goto out_disable;
  385. }
  386. if ((crtc->mode.hdisplay > 2048) ||
  387. (crtc->mode.vdisplay > 1536)) {
  388. DRM_DEBUG_KMS("mode too large for compression, disabling\n");
  389. dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
  390. goto out_disable;
  391. }
  392. if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
  393. DRM_DEBUG_KMS("plane not 0, disabling compression\n");
  394. dev_priv->no_fbc_reason = FBC_BAD_PLANE;
  395. goto out_disable;
  396. }
  397. /* The use of a CPU fence is mandatory in order to detect writes
  398. * by the CPU to the scanout and trigger updates to the FBC.
  399. */
  400. if (obj->tiling_mode != I915_TILING_X ||
  401. obj->fence_reg == I915_FENCE_REG_NONE) {
  402. DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
  403. dev_priv->no_fbc_reason = FBC_NOT_TILED;
  404. goto out_disable;
  405. }
  406. /* If the kernel debugger is active, always disable compression */
  407. if (in_dbg_master())
  408. goto out_disable;
  409. /* If the scanout has not changed, don't modify the FBC settings.
  410. * Note that we make the fundamental assumption that the fb->obj
  411. * cannot be unpinned (and have its GTT offset and fence revoked)
  412. * without first being decoupled from the scanout and FBC disabled.
  413. */
  414. if (dev_priv->cfb_plane == intel_crtc->plane &&
  415. dev_priv->cfb_fb == fb->base.id &&
  416. dev_priv->cfb_y == crtc->y)
  417. return;
  418. if (intel_fbc_enabled(dev)) {
  419. /* We update FBC along two paths, after changing fb/crtc
  420. * configuration (modeswitching) and after page-flipping
  421. * finishes. For the latter, we know that not only did
  422. * we disable the FBC at the start of the page-flip
  423. * sequence, but also more than one vblank has passed.
  424. *
  425. * For the former case of modeswitching, it is possible
  426. * to switch between two FBC valid configurations
  427. * instantaneously so we do need to disable the FBC
  428. * before we can modify its control registers. We also
  429. * have to wait for the next vblank for that to take
  430. * effect. However, since we delay enabling FBC we can
  431. * assume that a vblank has passed since disabling and
  432. * that we can safely alter the registers in the deferred
  433. * callback.
  434. *
  435. * In the scenario that we go from a valid to invalid
  436. * and then back to valid FBC configuration we have
  437. * no strict enforcement that a vblank occurred since
  438. * disabling the FBC. However, along all current pipe
  439. * disabling paths we do need to wait for a vblank at
  440. * some point. And we wait before enabling FBC anyway.
  441. */
  442. DRM_DEBUG_KMS("disabling active FBC for update\n");
  443. intel_disable_fbc(dev);
  444. }
  445. intel_enable_fbc(crtc, 500);
  446. return;
  447. out_disable:
  448. /* Multiple disables should be harmless */
  449. if (intel_fbc_enabled(dev)) {
  450. DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
  451. intel_disable_fbc(dev);
  452. }
  453. }
  454. static void i915_pineview_get_mem_freq(struct drm_device *dev)
  455. {
  456. drm_i915_private_t *dev_priv = dev->dev_private;
  457. u32 tmp;
  458. tmp = I915_READ(CLKCFG);
  459. switch (tmp & CLKCFG_FSB_MASK) {
  460. case CLKCFG_FSB_533:
  461. dev_priv->fsb_freq = 533; /* 133*4 */
  462. break;
  463. case CLKCFG_FSB_800:
  464. dev_priv->fsb_freq = 800; /* 200*4 */
  465. break;
  466. case CLKCFG_FSB_667:
  467. dev_priv->fsb_freq = 667; /* 167*4 */
  468. break;
  469. case CLKCFG_FSB_400:
  470. dev_priv->fsb_freq = 400; /* 100*4 */
  471. break;
  472. }
  473. switch (tmp & CLKCFG_MEM_MASK) {
  474. case CLKCFG_MEM_533:
  475. dev_priv->mem_freq = 533;
  476. break;
  477. case CLKCFG_MEM_667:
  478. dev_priv->mem_freq = 667;
  479. break;
  480. case CLKCFG_MEM_800:
  481. dev_priv->mem_freq = 800;
  482. break;
  483. }
  484. /* detect pineview DDR3 setting */
  485. tmp = I915_READ(CSHRDDR3CTL);
  486. dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
  487. }
  488. static void i915_ironlake_get_mem_freq(struct drm_device *dev)
  489. {
  490. drm_i915_private_t *dev_priv = dev->dev_private;
  491. u16 ddrpll, csipll;
  492. ddrpll = I915_READ16(DDRMPLL1);
  493. csipll = I915_READ16(CSIPLL0);
  494. switch (ddrpll & 0xff) {
  495. case 0xc:
  496. dev_priv->mem_freq = 800;
  497. break;
  498. case 0x10:
  499. dev_priv->mem_freq = 1066;
  500. break;
  501. case 0x14:
  502. dev_priv->mem_freq = 1333;
  503. break;
  504. case 0x18:
  505. dev_priv->mem_freq = 1600;
  506. break;
  507. default:
  508. DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
  509. ddrpll & 0xff);
  510. dev_priv->mem_freq = 0;
  511. break;
  512. }
  513. dev_priv->ips.r_t = dev_priv->mem_freq;
  514. switch (csipll & 0x3ff) {
  515. case 0x00c:
  516. dev_priv->fsb_freq = 3200;
  517. break;
  518. case 0x00e:
  519. dev_priv->fsb_freq = 3733;
  520. break;
  521. case 0x010:
  522. dev_priv->fsb_freq = 4266;
  523. break;
  524. case 0x012:
  525. dev_priv->fsb_freq = 4800;
  526. break;
  527. case 0x014:
  528. dev_priv->fsb_freq = 5333;
  529. break;
  530. case 0x016:
  531. dev_priv->fsb_freq = 5866;
  532. break;
  533. case 0x018:
  534. dev_priv->fsb_freq = 6400;
  535. break;
  536. default:
  537. DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
  538. csipll & 0x3ff);
  539. dev_priv->fsb_freq = 0;
  540. break;
  541. }
  542. if (dev_priv->fsb_freq == 3200) {
  543. dev_priv->ips.c_m = 0;
  544. } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
  545. dev_priv->ips.c_m = 1;
  546. } else {
  547. dev_priv->ips.c_m = 2;
  548. }
  549. }
  550. static const struct cxsr_latency cxsr_latency_table[] = {
  551. {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
  552. {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
  553. {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
  554. {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
  555. {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
  556. {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
  557. {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
  558. {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
  559. {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
  560. {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
  561. {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
  562. {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
  563. {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
  564. {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
  565. {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
  566. {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
  567. {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
  568. {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
  569. {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
  570. {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
  571. {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
  572. {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
  573. {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
  574. {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
  575. {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
  576. {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
  577. {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
  578. {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
  579. {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
  580. {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
  581. };
  582. static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
  583. int is_ddr3,
  584. int fsb,
  585. int mem)
  586. {
  587. const struct cxsr_latency *latency;
  588. int i;
  589. if (fsb == 0 || mem == 0)
  590. return NULL;
  591. for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  592. latency = &cxsr_latency_table[i];
  593. if (is_desktop == latency->is_desktop &&
  594. is_ddr3 == latency->is_ddr3 &&
  595. fsb == latency->fsb_freq && mem == latency->mem_freq)
  596. return latency;
  597. }
  598. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  599. return NULL;
  600. }
  601. static void pineview_disable_cxsr(struct drm_device *dev)
  602. {
  603. struct drm_i915_private *dev_priv = dev->dev_private;
  604. /* deactivate cxsr */
  605. I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
  606. }
  607. /*
  608. * Latency for FIFO fetches is dependent on several factors:
  609. * - memory configuration (speed, channels)
  610. * - chipset
  611. * - current MCH state
  612. * It can be fairly high in some situations, so here we assume a fairly
  613. * pessimal value. It's a tradeoff between extra memory fetches (if we
  614. * set this value too high, the FIFO will fetch frequently to stay full)
  615. * and power consumption (set it too low to save power and we might see
  616. * FIFO underruns and display "flicker").
  617. *
  618. * A value of 5us seems to be a good balance; safe for very low end
  619. * platforms but not overly aggressive on lower latency configs.
  620. */
  621. static const int latency_ns = 5000;
  622. static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
  623. {
  624. struct drm_i915_private *dev_priv = dev->dev_private;
  625. uint32_t dsparb = I915_READ(DSPARB);
  626. int size;
  627. size = dsparb & 0x7f;
  628. if (plane)
  629. size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
  630. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  631. plane ? "B" : "A", size);
  632. return size;
  633. }
  634. static int i85x_get_fifo_size(struct drm_device *dev, int plane)
  635. {
  636. struct drm_i915_private *dev_priv = dev->dev_private;
  637. uint32_t dsparb = I915_READ(DSPARB);
  638. int size;
  639. size = dsparb & 0x1ff;
  640. if (plane)
  641. size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
  642. size >>= 1; /* Convert to cachelines */
  643. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  644. plane ? "B" : "A", size);
  645. return size;
  646. }
  647. static int i845_get_fifo_size(struct drm_device *dev, int plane)
  648. {
  649. struct drm_i915_private *dev_priv = dev->dev_private;
  650. uint32_t dsparb = I915_READ(DSPARB);
  651. int size;
  652. size = dsparb & 0x7f;
  653. size >>= 2; /* Convert to cachelines */
  654. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  655. plane ? "B" : "A",
  656. size);
  657. return size;
  658. }
  659. static int i830_get_fifo_size(struct drm_device *dev, int plane)
  660. {
  661. struct drm_i915_private *dev_priv = dev->dev_private;
  662. uint32_t dsparb = I915_READ(DSPARB);
  663. int size;
  664. size = dsparb & 0x7f;
  665. size >>= 1; /* Convert to cachelines */
  666. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  667. plane ? "B" : "A", size);
  668. return size;
  669. }
  670. /* Pineview has different values for various configs */
  671. static const struct intel_watermark_params pineview_display_wm = {
  672. PINEVIEW_DISPLAY_FIFO,
  673. PINEVIEW_MAX_WM,
  674. PINEVIEW_DFT_WM,
  675. PINEVIEW_GUARD_WM,
  676. PINEVIEW_FIFO_LINE_SIZE
  677. };
  678. static const struct intel_watermark_params pineview_display_hplloff_wm = {
  679. PINEVIEW_DISPLAY_FIFO,
  680. PINEVIEW_MAX_WM,
  681. PINEVIEW_DFT_HPLLOFF_WM,
  682. PINEVIEW_GUARD_WM,
  683. PINEVIEW_FIFO_LINE_SIZE
  684. };
  685. static const struct intel_watermark_params pineview_cursor_wm = {
  686. PINEVIEW_CURSOR_FIFO,
  687. PINEVIEW_CURSOR_MAX_WM,
  688. PINEVIEW_CURSOR_DFT_WM,
  689. PINEVIEW_CURSOR_GUARD_WM,
  690. PINEVIEW_FIFO_LINE_SIZE,
  691. };
  692. static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
  693. PINEVIEW_CURSOR_FIFO,
  694. PINEVIEW_CURSOR_MAX_WM,
  695. PINEVIEW_CURSOR_DFT_WM,
  696. PINEVIEW_CURSOR_GUARD_WM,
  697. PINEVIEW_FIFO_LINE_SIZE
  698. };
  699. static const struct intel_watermark_params g4x_wm_info = {
  700. G4X_FIFO_SIZE,
  701. G4X_MAX_WM,
  702. G4X_MAX_WM,
  703. 2,
  704. G4X_FIFO_LINE_SIZE,
  705. };
  706. static const struct intel_watermark_params g4x_cursor_wm_info = {
  707. I965_CURSOR_FIFO,
  708. I965_CURSOR_MAX_WM,
  709. I965_CURSOR_DFT_WM,
  710. 2,
  711. G4X_FIFO_LINE_SIZE,
  712. };
  713. static const struct intel_watermark_params valleyview_wm_info = {
  714. VALLEYVIEW_FIFO_SIZE,
  715. VALLEYVIEW_MAX_WM,
  716. VALLEYVIEW_MAX_WM,
  717. 2,
  718. G4X_FIFO_LINE_SIZE,
  719. };
  720. static const struct intel_watermark_params valleyview_cursor_wm_info = {
  721. I965_CURSOR_FIFO,
  722. VALLEYVIEW_CURSOR_MAX_WM,
  723. I965_CURSOR_DFT_WM,
  724. 2,
  725. G4X_FIFO_LINE_SIZE,
  726. };
  727. static const struct intel_watermark_params i965_cursor_wm_info = {
  728. I965_CURSOR_FIFO,
  729. I965_CURSOR_MAX_WM,
  730. I965_CURSOR_DFT_WM,
  731. 2,
  732. I915_FIFO_LINE_SIZE,
  733. };
  734. static const struct intel_watermark_params i945_wm_info = {
  735. I945_FIFO_SIZE,
  736. I915_MAX_WM,
  737. 1,
  738. 2,
  739. I915_FIFO_LINE_SIZE
  740. };
  741. static const struct intel_watermark_params i915_wm_info = {
  742. I915_FIFO_SIZE,
  743. I915_MAX_WM,
  744. 1,
  745. 2,
  746. I915_FIFO_LINE_SIZE
  747. };
  748. static const struct intel_watermark_params i855_wm_info = {
  749. I855GM_FIFO_SIZE,
  750. I915_MAX_WM,
  751. 1,
  752. 2,
  753. I830_FIFO_LINE_SIZE
  754. };
  755. static const struct intel_watermark_params i830_wm_info = {
  756. I830_FIFO_SIZE,
  757. I915_MAX_WM,
  758. 1,
  759. 2,
  760. I830_FIFO_LINE_SIZE
  761. };
  762. static const struct intel_watermark_params ironlake_display_wm_info = {
  763. ILK_DISPLAY_FIFO,
  764. ILK_DISPLAY_MAXWM,
  765. ILK_DISPLAY_DFTWM,
  766. 2,
  767. ILK_FIFO_LINE_SIZE
  768. };
  769. static const struct intel_watermark_params ironlake_cursor_wm_info = {
  770. ILK_CURSOR_FIFO,
  771. ILK_CURSOR_MAXWM,
  772. ILK_CURSOR_DFTWM,
  773. 2,
  774. ILK_FIFO_LINE_SIZE
  775. };
  776. static const struct intel_watermark_params ironlake_display_srwm_info = {
  777. ILK_DISPLAY_SR_FIFO,
  778. ILK_DISPLAY_MAX_SRWM,
  779. ILK_DISPLAY_DFT_SRWM,
  780. 2,
  781. ILK_FIFO_LINE_SIZE
  782. };
  783. static const struct intel_watermark_params ironlake_cursor_srwm_info = {
  784. ILK_CURSOR_SR_FIFO,
  785. ILK_CURSOR_MAX_SRWM,
  786. ILK_CURSOR_DFT_SRWM,
  787. 2,
  788. ILK_FIFO_LINE_SIZE
  789. };
  790. static const struct intel_watermark_params sandybridge_display_wm_info = {
  791. SNB_DISPLAY_FIFO,
  792. SNB_DISPLAY_MAXWM,
  793. SNB_DISPLAY_DFTWM,
  794. 2,
  795. SNB_FIFO_LINE_SIZE
  796. };
  797. static const struct intel_watermark_params sandybridge_cursor_wm_info = {
  798. SNB_CURSOR_FIFO,
  799. SNB_CURSOR_MAXWM,
  800. SNB_CURSOR_DFTWM,
  801. 2,
  802. SNB_FIFO_LINE_SIZE
  803. };
  804. static const struct intel_watermark_params sandybridge_display_srwm_info = {
  805. SNB_DISPLAY_SR_FIFO,
  806. SNB_DISPLAY_MAX_SRWM,
  807. SNB_DISPLAY_DFT_SRWM,
  808. 2,
  809. SNB_FIFO_LINE_SIZE
  810. };
  811. static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
  812. SNB_CURSOR_SR_FIFO,
  813. SNB_CURSOR_MAX_SRWM,
  814. SNB_CURSOR_DFT_SRWM,
  815. 2,
  816. SNB_FIFO_LINE_SIZE
  817. };
  818. /**
  819. * intel_calculate_wm - calculate watermark level
  820. * @clock_in_khz: pixel clock
  821. * @wm: chip FIFO params
  822. * @pixel_size: display pixel size
  823. * @latency_ns: memory latency for the platform
  824. *
  825. * Calculate the watermark level (the level at which the display plane will
  826. * start fetching from memory again). Each chip has a different display
  827. * FIFO size and allocation, so the caller needs to figure that out and pass
  828. * in the correct intel_watermark_params structure.
  829. *
  830. * As the pixel clock runs, the FIFO will be drained at a rate that depends
  831. * on the pixel size. When it reaches the watermark level, it'll start
  832. * fetching FIFO line sized based chunks from memory until the FIFO fills
  833. * past the watermark point. If the FIFO drains completely, a FIFO underrun
  834. * will occur, and a display engine hang could result.
  835. */
  836. static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
  837. const struct intel_watermark_params *wm,
  838. int fifo_size,
  839. int pixel_size,
  840. unsigned long latency_ns)
  841. {
  842. long entries_required, wm_size;
  843. /*
  844. * Note: we need to make sure we don't overflow for various clock &
  845. * latency values.
  846. * clocks go from a few thousand to several hundred thousand.
  847. * latency is usually a few thousand
  848. */
  849. entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
  850. 1000;
  851. entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
  852. DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
  853. wm_size = fifo_size - (entries_required + wm->guard_size);
  854. DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
  855. /* Don't promote wm_size to unsigned... */
  856. if (wm_size > (long)wm->max_wm)
  857. wm_size = wm->max_wm;
  858. if (wm_size <= 0)
  859. wm_size = wm->default_wm;
  860. return wm_size;
  861. }
  862. static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
  863. {
  864. struct drm_crtc *crtc, *enabled = NULL;
  865. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  866. if (crtc->enabled && crtc->fb) {
  867. if (enabled)
  868. return NULL;
  869. enabled = crtc;
  870. }
  871. }
  872. return enabled;
  873. }
  874. static void pineview_update_wm(struct drm_device *dev)
  875. {
  876. struct drm_i915_private *dev_priv = dev->dev_private;
  877. struct drm_crtc *crtc;
  878. const struct cxsr_latency *latency;
  879. u32 reg;
  880. unsigned long wm;
  881. latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
  882. dev_priv->fsb_freq, dev_priv->mem_freq);
  883. if (!latency) {
  884. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  885. pineview_disable_cxsr(dev);
  886. return;
  887. }
  888. crtc = single_enabled_crtc(dev);
  889. if (crtc) {
  890. int clock = crtc->mode.clock;
  891. int pixel_size = crtc->fb->bits_per_pixel / 8;
  892. /* Display SR */
  893. wm = intel_calculate_wm(clock, &pineview_display_wm,
  894. pineview_display_wm.fifo_size,
  895. pixel_size, latency->display_sr);
  896. reg = I915_READ(DSPFW1);
  897. reg &= ~DSPFW_SR_MASK;
  898. reg |= wm << DSPFW_SR_SHIFT;
  899. I915_WRITE(DSPFW1, reg);
  900. DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
  901. /* cursor SR */
  902. wm = intel_calculate_wm(clock, &pineview_cursor_wm,
  903. pineview_display_wm.fifo_size,
  904. pixel_size, latency->cursor_sr);
  905. reg = I915_READ(DSPFW3);
  906. reg &= ~DSPFW_CURSOR_SR_MASK;
  907. reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
  908. I915_WRITE(DSPFW3, reg);
  909. /* Display HPLL off SR */
  910. wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
  911. pineview_display_hplloff_wm.fifo_size,
  912. pixel_size, latency->display_hpll_disable);
  913. reg = I915_READ(DSPFW3);
  914. reg &= ~DSPFW_HPLL_SR_MASK;
  915. reg |= wm & DSPFW_HPLL_SR_MASK;
  916. I915_WRITE(DSPFW3, reg);
  917. /* cursor HPLL off SR */
  918. wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
  919. pineview_display_hplloff_wm.fifo_size,
  920. pixel_size, latency->cursor_hpll_disable);
  921. reg = I915_READ(DSPFW3);
  922. reg &= ~DSPFW_HPLL_CURSOR_MASK;
  923. reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
  924. I915_WRITE(DSPFW3, reg);
  925. DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
  926. /* activate cxsr */
  927. I915_WRITE(DSPFW3,
  928. I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
  929. DRM_DEBUG_KMS("Self-refresh is enabled\n");
  930. } else {
  931. pineview_disable_cxsr(dev);
  932. DRM_DEBUG_KMS("Self-refresh is disabled\n");
  933. }
  934. }
  935. static bool g4x_compute_wm0(struct drm_device *dev,
  936. int plane,
  937. const struct intel_watermark_params *display,
  938. int display_latency_ns,
  939. const struct intel_watermark_params *cursor,
  940. int cursor_latency_ns,
  941. int *plane_wm,
  942. int *cursor_wm)
  943. {
  944. struct drm_crtc *crtc;
  945. int htotal, hdisplay, clock, pixel_size;
  946. int line_time_us, line_count;
  947. int entries, tlb_miss;
  948. crtc = intel_get_crtc_for_plane(dev, plane);
  949. if (crtc->fb == NULL || !crtc->enabled) {
  950. *cursor_wm = cursor->guard_size;
  951. *plane_wm = display->guard_size;
  952. return false;
  953. }
  954. htotal = crtc->mode.htotal;
  955. hdisplay = crtc->mode.hdisplay;
  956. clock = crtc->mode.clock;
  957. pixel_size = crtc->fb->bits_per_pixel / 8;
  958. /* Use the small buffer method to calculate plane watermark */
  959. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  960. tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
  961. if (tlb_miss > 0)
  962. entries += tlb_miss;
  963. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  964. *plane_wm = entries + display->guard_size;
  965. if (*plane_wm > (int)display->max_wm)
  966. *plane_wm = display->max_wm;
  967. /* Use the large buffer method to calculate cursor watermark */
  968. line_time_us = ((htotal * 1000) / clock);
  969. line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
  970. entries = line_count * 64 * pixel_size;
  971. tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
  972. if (tlb_miss > 0)
  973. entries += tlb_miss;
  974. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  975. *cursor_wm = entries + cursor->guard_size;
  976. if (*cursor_wm > (int)cursor->max_wm)
  977. *cursor_wm = (int)cursor->max_wm;
  978. return true;
  979. }
  980. /*
  981. * Check the wm result.
  982. *
  983. * If any calculated watermark values is larger than the maximum value that
  984. * can be programmed into the associated watermark register, that watermark
  985. * must be disabled.
  986. */
  987. static bool g4x_check_srwm(struct drm_device *dev,
  988. int display_wm, int cursor_wm,
  989. const struct intel_watermark_params *display,
  990. const struct intel_watermark_params *cursor)
  991. {
  992. DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
  993. display_wm, cursor_wm);
  994. if (display_wm > display->max_wm) {
  995. DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
  996. display_wm, display->max_wm);
  997. return false;
  998. }
  999. if (cursor_wm > cursor->max_wm) {
  1000. DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
  1001. cursor_wm, cursor->max_wm);
  1002. return false;
  1003. }
  1004. if (!(display_wm || cursor_wm)) {
  1005. DRM_DEBUG_KMS("SR latency is 0, disabling\n");
  1006. return false;
  1007. }
  1008. return true;
  1009. }
  1010. static bool g4x_compute_srwm(struct drm_device *dev,
  1011. int plane,
  1012. int latency_ns,
  1013. const struct intel_watermark_params *display,
  1014. const struct intel_watermark_params *cursor,
  1015. int *display_wm, int *cursor_wm)
  1016. {
  1017. struct drm_crtc *crtc;
  1018. int hdisplay, htotal, pixel_size, clock;
  1019. unsigned long line_time_us;
  1020. int line_count, line_size;
  1021. int small, large;
  1022. int entries;
  1023. if (!latency_ns) {
  1024. *display_wm = *cursor_wm = 0;
  1025. return false;
  1026. }
  1027. crtc = intel_get_crtc_for_plane(dev, plane);
  1028. hdisplay = crtc->mode.hdisplay;
  1029. htotal = crtc->mode.htotal;
  1030. clock = crtc->mode.clock;
  1031. pixel_size = crtc->fb->bits_per_pixel / 8;
  1032. line_time_us = (htotal * 1000) / clock;
  1033. line_count = (latency_ns / line_time_us + 1000) / 1000;
  1034. line_size = hdisplay * pixel_size;
  1035. /* Use the minimum of the small and large buffer method for primary */
  1036. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  1037. large = line_count * line_size;
  1038. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  1039. *display_wm = entries + display->guard_size;
  1040. /* calculate the self-refresh watermark for display cursor */
  1041. entries = line_count * pixel_size * 64;
  1042. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  1043. *cursor_wm = entries + cursor->guard_size;
  1044. return g4x_check_srwm(dev,
  1045. *display_wm, *cursor_wm,
  1046. display, cursor);
  1047. }
  1048. static bool vlv_compute_drain_latency(struct drm_device *dev,
  1049. int plane,
  1050. int *plane_prec_mult,
  1051. int *plane_dl,
  1052. int *cursor_prec_mult,
  1053. int *cursor_dl)
  1054. {
  1055. struct drm_crtc *crtc;
  1056. int clock, pixel_size;
  1057. int entries;
  1058. crtc = intel_get_crtc_for_plane(dev, plane);
  1059. if (crtc->fb == NULL || !crtc->enabled)
  1060. return false;
  1061. clock = crtc->mode.clock; /* VESA DOT Clock */
  1062. pixel_size = crtc->fb->bits_per_pixel / 8; /* BPP */
  1063. entries = (clock / 1000) * pixel_size;
  1064. *plane_prec_mult = (entries > 256) ?
  1065. DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
  1066. *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
  1067. pixel_size);
  1068. entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */
  1069. *cursor_prec_mult = (entries > 256) ?
  1070. DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
  1071. *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
  1072. return true;
  1073. }
  1074. /*
  1075. * Update drain latency registers of memory arbiter
  1076. *
  1077. * Valleyview SoC has a new memory arbiter and needs drain latency registers
  1078. * to be programmed. Each plane has a drain latency multiplier and a drain
  1079. * latency value.
  1080. */
  1081. static void vlv_update_drain_latency(struct drm_device *dev)
  1082. {
  1083. struct drm_i915_private *dev_priv = dev->dev_private;
  1084. int planea_prec, planea_dl, planeb_prec, planeb_dl;
  1085. int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
  1086. int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
  1087. either 16 or 32 */
  1088. /* For plane A, Cursor A */
  1089. if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
  1090. &cursor_prec_mult, &cursora_dl)) {
  1091. cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1092. DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
  1093. planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1094. DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
  1095. I915_WRITE(VLV_DDL1, cursora_prec |
  1096. (cursora_dl << DDL_CURSORA_SHIFT) |
  1097. planea_prec | planea_dl);
  1098. }
  1099. /* For plane B, Cursor B */
  1100. if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
  1101. &cursor_prec_mult, &cursorb_dl)) {
  1102. cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1103. DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
  1104. planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1105. DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
  1106. I915_WRITE(VLV_DDL2, cursorb_prec |
  1107. (cursorb_dl << DDL_CURSORB_SHIFT) |
  1108. planeb_prec | planeb_dl);
  1109. }
  1110. }
  1111. #define single_plane_enabled(mask) is_power_of_2(mask)
  1112. static void valleyview_update_wm(struct drm_device *dev)
  1113. {
  1114. static const int sr_latency_ns = 12000;
  1115. struct drm_i915_private *dev_priv = dev->dev_private;
  1116. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  1117. int plane_sr, cursor_sr;
  1118. unsigned int enabled = 0;
  1119. vlv_update_drain_latency(dev);
  1120. if (g4x_compute_wm0(dev, 0,
  1121. &valleyview_wm_info, latency_ns,
  1122. &valleyview_cursor_wm_info, latency_ns,
  1123. &planea_wm, &cursora_wm))
  1124. enabled |= 1;
  1125. if (g4x_compute_wm0(dev, 1,
  1126. &valleyview_wm_info, latency_ns,
  1127. &valleyview_cursor_wm_info, latency_ns,
  1128. &planeb_wm, &cursorb_wm))
  1129. enabled |= 2;
  1130. plane_sr = cursor_sr = 0;
  1131. if (single_plane_enabled(enabled) &&
  1132. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1133. sr_latency_ns,
  1134. &valleyview_wm_info,
  1135. &valleyview_cursor_wm_info,
  1136. &plane_sr, &cursor_sr))
  1137. I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
  1138. else
  1139. I915_WRITE(FW_BLC_SELF_VLV,
  1140. I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
  1141. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  1142. planea_wm, cursora_wm,
  1143. planeb_wm, cursorb_wm,
  1144. plane_sr, cursor_sr);
  1145. I915_WRITE(DSPFW1,
  1146. (plane_sr << DSPFW_SR_SHIFT) |
  1147. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  1148. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  1149. planea_wm);
  1150. I915_WRITE(DSPFW2,
  1151. (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
  1152. (cursora_wm << DSPFW_CURSORA_SHIFT));
  1153. I915_WRITE(DSPFW3,
  1154. (I915_READ(DSPFW3) | (cursor_sr << DSPFW_CURSOR_SR_SHIFT)));
  1155. }
  1156. static void g4x_update_wm(struct drm_device *dev)
  1157. {
  1158. static const int sr_latency_ns = 12000;
  1159. struct drm_i915_private *dev_priv = dev->dev_private;
  1160. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  1161. int plane_sr, cursor_sr;
  1162. unsigned int enabled = 0;
  1163. if (g4x_compute_wm0(dev, 0,
  1164. &g4x_wm_info, latency_ns,
  1165. &g4x_cursor_wm_info, latency_ns,
  1166. &planea_wm, &cursora_wm))
  1167. enabled |= 1;
  1168. if (g4x_compute_wm0(dev, 1,
  1169. &g4x_wm_info, latency_ns,
  1170. &g4x_cursor_wm_info, latency_ns,
  1171. &planeb_wm, &cursorb_wm))
  1172. enabled |= 2;
  1173. plane_sr = cursor_sr = 0;
  1174. if (single_plane_enabled(enabled) &&
  1175. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1176. sr_latency_ns,
  1177. &g4x_wm_info,
  1178. &g4x_cursor_wm_info,
  1179. &plane_sr, &cursor_sr))
  1180. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  1181. else
  1182. I915_WRITE(FW_BLC_SELF,
  1183. I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
  1184. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  1185. planea_wm, cursora_wm,
  1186. planeb_wm, cursorb_wm,
  1187. plane_sr, cursor_sr);
  1188. I915_WRITE(DSPFW1,
  1189. (plane_sr << DSPFW_SR_SHIFT) |
  1190. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  1191. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  1192. planea_wm);
  1193. I915_WRITE(DSPFW2,
  1194. (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
  1195. (cursora_wm << DSPFW_CURSORA_SHIFT));
  1196. /* HPLL off in SR has some issues on G4x... disable it */
  1197. I915_WRITE(DSPFW3,
  1198. (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
  1199. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1200. }
  1201. static void i965_update_wm(struct drm_device *dev)
  1202. {
  1203. struct drm_i915_private *dev_priv = dev->dev_private;
  1204. struct drm_crtc *crtc;
  1205. int srwm = 1;
  1206. int cursor_sr = 16;
  1207. /* Calc sr entries for one plane configs */
  1208. crtc = single_enabled_crtc(dev);
  1209. if (crtc) {
  1210. /* self-refresh has much higher latency */
  1211. static const int sr_latency_ns = 12000;
  1212. int clock = crtc->mode.clock;
  1213. int htotal = crtc->mode.htotal;
  1214. int hdisplay = crtc->mode.hdisplay;
  1215. int pixel_size = crtc->fb->bits_per_pixel / 8;
  1216. unsigned long line_time_us;
  1217. int entries;
  1218. line_time_us = ((htotal * 1000) / clock);
  1219. /* Use ns/us then divide to preserve precision */
  1220. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1221. pixel_size * hdisplay;
  1222. entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
  1223. srwm = I965_FIFO_SIZE - entries;
  1224. if (srwm < 0)
  1225. srwm = 1;
  1226. srwm &= 0x1ff;
  1227. DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
  1228. entries, srwm);
  1229. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1230. pixel_size * 64;
  1231. entries = DIV_ROUND_UP(entries,
  1232. i965_cursor_wm_info.cacheline_size);
  1233. cursor_sr = i965_cursor_wm_info.fifo_size -
  1234. (entries + i965_cursor_wm_info.guard_size);
  1235. if (cursor_sr > i965_cursor_wm_info.max_wm)
  1236. cursor_sr = i965_cursor_wm_info.max_wm;
  1237. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  1238. "cursor %d\n", srwm, cursor_sr);
  1239. if (IS_CRESTLINE(dev))
  1240. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  1241. } else {
  1242. /* Turn off self refresh if both pipes are enabled */
  1243. if (IS_CRESTLINE(dev))
  1244. I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
  1245. & ~FW_BLC_SELF_EN);
  1246. }
  1247. DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
  1248. srwm);
  1249. /* 965 has limitations... */
  1250. I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
  1251. (8 << 16) | (8 << 8) | (8 << 0));
  1252. I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
  1253. /* update cursor SR watermark */
  1254. I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1255. }
  1256. static void i9xx_update_wm(struct drm_device *dev)
  1257. {
  1258. struct drm_i915_private *dev_priv = dev->dev_private;
  1259. const struct intel_watermark_params *wm_info;
  1260. uint32_t fwater_lo;
  1261. uint32_t fwater_hi;
  1262. int cwm, srwm = 1;
  1263. int fifo_size;
  1264. int planea_wm, planeb_wm;
  1265. struct drm_crtc *crtc, *enabled = NULL;
  1266. if (IS_I945GM(dev))
  1267. wm_info = &i945_wm_info;
  1268. else if (!IS_GEN2(dev))
  1269. wm_info = &i915_wm_info;
  1270. else
  1271. wm_info = &i855_wm_info;
  1272. fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  1273. crtc = intel_get_crtc_for_plane(dev, 0);
  1274. if (crtc->enabled && crtc->fb) {
  1275. int cpp = crtc->fb->bits_per_pixel / 8;
  1276. if (IS_GEN2(dev))
  1277. cpp = 4;
  1278. planea_wm = intel_calculate_wm(crtc->mode.clock,
  1279. wm_info, fifo_size, cpp,
  1280. latency_ns);
  1281. enabled = crtc;
  1282. } else
  1283. planea_wm = fifo_size - wm_info->guard_size;
  1284. fifo_size = dev_priv->display.get_fifo_size(dev, 1);
  1285. crtc = intel_get_crtc_for_plane(dev, 1);
  1286. if (crtc->enabled && crtc->fb) {
  1287. int cpp = crtc->fb->bits_per_pixel / 8;
  1288. if (IS_GEN2(dev))
  1289. cpp = 4;
  1290. planeb_wm = intel_calculate_wm(crtc->mode.clock,
  1291. wm_info, fifo_size, cpp,
  1292. latency_ns);
  1293. if (enabled == NULL)
  1294. enabled = crtc;
  1295. else
  1296. enabled = NULL;
  1297. } else
  1298. planeb_wm = fifo_size - wm_info->guard_size;
  1299. DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  1300. /*
  1301. * Overlay gets an aggressive default since video jitter is bad.
  1302. */
  1303. cwm = 2;
  1304. /* Play safe and disable self-refresh before adjusting watermarks. */
  1305. if (IS_I945G(dev) || IS_I945GM(dev))
  1306. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
  1307. else if (IS_I915GM(dev))
  1308. I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
  1309. /* Calc sr entries for one plane configs */
  1310. if (HAS_FW_BLC(dev) && enabled) {
  1311. /* self-refresh has much higher latency */
  1312. static const int sr_latency_ns = 6000;
  1313. int clock = enabled->mode.clock;
  1314. int htotal = enabled->mode.htotal;
  1315. int hdisplay = enabled->mode.hdisplay;
  1316. int pixel_size = enabled->fb->bits_per_pixel / 8;
  1317. unsigned long line_time_us;
  1318. int entries;
  1319. line_time_us = (htotal * 1000) / clock;
  1320. /* Use ns/us then divide to preserve precision */
  1321. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1322. pixel_size * hdisplay;
  1323. entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
  1324. DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
  1325. srwm = wm_info->fifo_size - entries;
  1326. if (srwm < 0)
  1327. srwm = 1;
  1328. if (IS_I945G(dev) || IS_I945GM(dev))
  1329. I915_WRITE(FW_BLC_SELF,
  1330. FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
  1331. else if (IS_I915GM(dev))
  1332. I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
  1333. }
  1334. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  1335. planea_wm, planeb_wm, cwm, srwm);
  1336. fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  1337. fwater_hi = (cwm & 0x1f);
  1338. /* Set request length to 8 cachelines per fetch */
  1339. fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  1340. fwater_hi = fwater_hi | (1 << 8);
  1341. I915_WRITE(FW_BLC, fwater_lo);
  1342. I915_WRITE(FW_BLC2, fwater_hi);
  1343. if (HAS_FW_BLC(dev)) {
  1344. if (enabled) {
  1345. if (IS_I945G(dev) || IS_I945GM(dev))
  1346. I915_WRITE(FW_BLC_SELF,
  1347. FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
  1348. else if (IS_I915GM(dev))
  1349. I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
  1350. DRM_DEBUG_KMS("memory self refresh enabled\n");
  1351. } else
  1352. DRM_DEBUG_KMS("memory self refresh disabled\n");
  1353. }
  1354. }
  1355. static void i830_update_wm(struct drm_device *dev)
  1356. {
  1357. struct drm_i915_private *dev_priv = dev->dev_private;
  1358. struct drm_crtc *crtc;
  1359. uint32_t fwater_lo;
  1360. int planea_wm;
  1361. crtc = single_enabled_crtc(dev);
  1362. if (crtc == NULL)
  1363. return;
  1364. planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
  1365. dev_priv->display.get_fifo_size(dev, 0),
  1366. 4, latency_ns);
  1367. fwater_lo = I915_READ(FW_BLC) & ~0xfff;
  1368. fwater_lo |= (3<<8) | planea_wm;
  1369. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
  1370. I915_WRITE(FW_BLC, fwater_lo);
  1371. }
  1372. #define ILK_LP0_PLANE_LATENCY 700
  1373. #define ILK_LP0_CURSOR_LATENCY 1300
  1374. /*
  1375. * Check the wm result.
  1376. *
  1377. * If any calculated watermark values is larger than the maximum value that
  1378. * can be programmed into the associated watermark register, that watermark
  1379. * must be disabled.
  1380. */
  1381. static bool ironlake_check_srwm(struct drm_device *dev, int level,
  1382. int fbc_wm, int display_wm, int cursor_wm,
  1383. const struct intel_watermark_params *display,
  1384. const struct intel_watermark_params *cursor)
  1385. {
  1386. struct drm_i915_private *dev_priv = dev->dev_private;
  1387. DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
  1388. " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
  1389. if (fbc_wm > SNB_FBC_MAX_SRWM) {
  1390. DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
  1391. fbc_wm, SNB_FBC_MAX_SRWM, level);
  1392. /* fbc has it's own way to disable FBC WM */
  1393. I915_WRITE(DISP_ARB_CTL,
  1394. I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
  1395. return false;
  1396. }
  1397. if (display_wm > display->max_wm) {
  1398. DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
  1399. display_wm, SNB_DISPLAY_MAX_SRWM, level);
  1400. return false;
  1401. }
  1402. if (cursor_wm > cursor->max_wm) {
  1403. DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
  1404. cursor_wm, SNB_CURSOR_MAX_SRWM, level);
  1405. return false;
  1406. }
  1407. if (!(fbc_wm || display_wm || cursor_wm)) {
  1408. DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
  1409. return false;
  1410. }
  1411. return true;
  1412. }
  1413. /*
  1414. * Compute watermark values of WM[1-3],
  1415. */
  1416. static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
  1417. int latency_ns,
  1418. const struct intel_watermark_params *display,
  1419. const struct intel_watermark_params *cursor,
  1420. int *fbc_wm, int *display_wm, int *cursor_wm)
  1421. {
  1422. struct drm_crtc *crtc;
  1423. unsigned long line_time_us;
  1424. int hdisplay, htotal, pixel_size, clock;
  1425. int line_count, line_size;
  1426. int small, large;
  1427. int entries;
  1428. if (!latency_ns) {
  1429. *fbc_wm = *display_wm = *cursor_wm = 0;
  1430. return false;
  1431. }
  1432. crtc = intel_get_crtc_for_plane(dev, plane);
  1433. hdisplay = crtc->mode.hdisplay;
  1434. htotal = crtc->mode.htotal;
  1435. clock = crtc->mode.clock;
  1436. pixel_size = crtc->fb->bits_per_pixel / 8;
  1437. line_time_us = (htotal * 1000) / clock;
  1438. line_count = (latency_ns / line_time_us + 1000) / 1000;
  1439. line_size = hdisplay * pixel_size;
  1440. /* Use the minimum of the small and large buffer method for primary */
  1441. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  1442. large = line_count * line_size;
  1443. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  1444. *display_wm = entries + display->guard_size;
  1445. /*
  1446. * Spec says:
  1447. * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
  1448. */
  1449. *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
  1450. /* calculate the self-refresh watermark for display cursor */
  1451. entries = line_count * pixel_size * 64;
  1452. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  1453. *cursor_wm = entries + cursor->guard_size;
  1454. return ironlake_check_srwm(dev, level,
  1455. *fbc_wm, *display_wm, *cursor_wm,
  1456. display, cursor);
  1457. }
  1458. static void ironlake_update_wm(struct drm_device *dev)
  1459. {
  1460. struct drm_i915_private *dev_priv = dev->dev_private;
  1461. int fbc_wm, plane_wm, cursor_wm;
  1462. unsigned int enabled;
  1463. enabled = 0;
  1464. if (g4x_compute_wm0(dev, 0,
  1465. &ironlake_display_wm_info,
  1466. ILK_LP0_PLANE_LATENCY,
  1467. &ironlake_cursor_wm_info,
  1468. ILK_LP0_CURSOR_LATENCY,
  1469. &plane_wm, &cursor_wm)) {
  1470. I915_WRITE(WM0_PIPEA_ILK,
  1471. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  1472. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  1473. " plane %d, " "cursor: %d\n",
  1474. plane_wm, cursor_wm);
  1475. enabled |= 1;
  1476. }
  1477. if (g4x_compute_wm0(dev, 1,
  1478. &ironlake_display_wm_info,
  1479. ILK_LP0_PLANE_LATENCY,
  1480. &ironlake_cursor_wm_info,
  1481. ILK_LP0_CURSOR_LATENCY,
  1482. &plane_wm, &cursor_wm)) {
  1483. I915_WRITE(WM0_PIPEB_ILK,
  1484. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  1485. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  1486. " plane %d, cursor: %d\n",
  1487. plane_wm, cursor_wm);
  1488. enabled |= 2;
  1489. }
  1490. /*
  1491. * Calculate and update the self-refresh watermark only when one
  1492. * display plane is used.
  1493. */
  1494. I915_WRITE(WM3_LP_ILK, 0);
  1495. I915_WRITE(WM2_LP_ILK, 0);
  1496. I915_WRITE(WM1_LP_ILK, 0);
  1497. if (!single_plane_enabled(enabled))
  1498. return;
  1499. enabled = ffs(enabled) - 1;
  1500. /* WM1 */
  1501. if (!ironlake_compute_srwm(dev, 1, enabled,
  1502. ILK_READ_WM1_LATENCY() * 500,
  1503. &ironlake_display_srwm_info,
  1504. &ironlake_cursor_srwm_info,
  1505. &fbc_wm, &plane_wm, &cursor_wm))
  1506. return;
  1507. I915_WRITE(WM1_LP_ILK,
  1508. WM1_LP_SR_EN |
  1509. (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  1510. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1511. (plane_wm << WM1_LP_SR_SHIFT) |
  1512. cursor_wm);
  1513. /* WM2 */
  1514. if (!ironlake_compute_srwm(dev, 2, enabled,
  1515. ILK_READ_WM2_LATENCY() * 500,
  1516. &ironlake_display_srwm_info,
  1517. &ironlake_cursor_srwm_info,
  1518. &fbc_wm, &plane_wm, &cursor_wm))
  1519. return;
  1520. I915_WRITE(WM2_LP_ILK,
  1521. WM2_LP_EN |
  1522. (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  1523. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1524. (plane_wm << WM1_LP_SR_SHIFT) |
  1525. cursor_wm);
  1526. /*
  1527. * WM3 is unsupported on ILK, probably because we don't have latency
  1528. * data for that power state
  1529. */
  1530. }
  1531. static void sandybridge_update_wm(struct drm_device *dev)
  1532. {
  1533. struct drm_i915_private *dev_priv = dev->dev_private;
  1534. int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
  1535. u32 val;
  1536. int fbc_wm, plane_wm, cursor_wm;
  1537. unsigned int enabled;
  1538. enabled = 0;
  1539. if (g4x_compute_wm0(dev, 0,
  1540. &sandybridge_display_wm_info, latency,
  1541. &sandybridge_cursor_wm_info, latency,
  1542. &plane_wm, &cursor_wm)) {
  1543. val = I915_READ(WM0_PIPEA_ILK);
  1544. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1545. I915_WRITE(WM0_PIPEA_ILK, val |
  1546. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1547. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  1548. " plane %d, " "cursor: %d\n",
  1549. plane_wm, cursor_wm);
  1550. enabled |= 1;
  1551. }
  1552. if (g4x_compute_wm0(dev, 1,
  1553. &sandybridge_display_wm_info, latency,
  1554. &sandybridge_cursor_wm_info, latency,
  1555. &plane_wm, &cursor_wm)) {
  1556. val = I915_READ(WM0_PIPEB_ILK);
  1557. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1558. I915_WRITE(WM0_PIPEB_ILK, val |
  1559. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1560. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  1561. " plane %d, cursor: %d\n",
  1562. plane_wm, cursor_wm);
  1563. enabled |= 2;
  1564. }
  1565. if ((dev_priv->num_pipe == 3) &&
  1566. g4x_compute_wm0(dev, 2,
  1567. &sandybridge_display_wm_info, latency,
  1568. &sandybridge_cursor_wm_info, latency,
  1569. &plane_wm, &cursor_wm)) {
  1570. val = I915_READ(WM0_PIPEC_IVB);
  1571. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1572. I915_WRITE(WM0_PIPEC_IVB, val |
  1573. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1574. DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
  1575. " plane %d, cursor: %d\n",
  1576. plane_wm, cursor_wm);
  1577. enabled |= 3;
  1578. }
  1579. /*
  1580. * Calculate and update the self-refresh watermark only when one
  1581. * display plane is used.
  1582. *
  1583. * SNB support 3 levels of watermark.
  1584. *
  1585. * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
  1586. * and disabled in the descending order
  1587. *
  1588. */
  1589. I915_WRITE(WM3_LP_ILK, 0);
  1590. I915_WRITE(WM2_LP_ILK, 0);
  1591. I915_WRITE(WM1_LP_ILK, 0);
  1592. if (!single_plane_enabled(enabled) ||
  1593. dev_priv->sprite_scaling_enabled)
  1594. return;
  1595. enabled = ffs(enabled) - 1;
  1596. /* WM1 */
  1597. if (!ironlake_compute_srwm(dev, 1, enabled,
  1598. SNB_READ_WM1_LATENCY() * 500,
  1599. &sandybridge_display_srwm_info,
  1600. &sandybridge_cursor_srwm_info,
  1601. &fbc_wm, &plane_wm, &cursor_wm))
  1602. return;
  1603. I915_WRITE(WM1_LP_ILK,
  1604. WM1_LP_SR_EN |
  1605. (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  1606. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1607. (plane_wm << WM1_LP_SR_SHIFT) |
  1608. cursor_wm);
  1609. /* WM2 */
  1610. if (!ironlake_compute_srwm(dev, 2, enabled,
  1611. SNB_READ_WM2_LATENCY() * 500,
  1612. &sandybridge_display_srwm_info,
  1613. &sandybridge_cursor_srwm_info,
  1614. &fbc_wm, &plane_wm, &cursor_wm))
  1615. return;
  1616. I915_WRITE(WM2_LP_ILK,
  1617. WM2_LP_EN |
  1618. (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  1619. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1620. (plane_wm << WM1_LP_SR_SHIFT) |
  1621. cursor_wm);
  1622. /* WM3 */
  1623. if (!ironlake_compute_srwm(dev, 3, enabled,
  1624. SNB_READ_WM3_LATENCY() * 500,
  1625. &sandybridge_display_srwm_info,
  1626. &sandybridge_cursor_srwm_info,
  1627. &fbc_wm, &plane_wm, &cursor_wm))
  1628. return;
  1629. I915_WRITE(WM3_LP_ILK,
  1630. WM3_LP_EN |
  1631. (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  1632. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1633. (plane_wm << WM1_LP_SR_SHIFT) |
  1634. cursor_wm);
  1635. }
  1636. static void
  1637. haswell_update_linetime_wm(struct drm_device *dev, int pipe,
  1638. struct drm_display_mode *mode)
  1639. {
  1640. struct drm_i915_private *dev_priv = dev->dev_private;
  1641. u32 temp;
  1642. temp = I915_READ(PIPE_WM_LINETIME(pipe));
  1643. temp &= ~PIPE_WM_LINETIME_MASK;
  1644. /* The WM are computed with base on how long it takes to fill a single
  1645. * row at the given clock rate, multiplied by 8.
  1646. * */
  1647. temp |= PIPE_WM_LINETIME_TIME(
  1648. ((mode->crtc_hdisplay * 1000) / mode->clock) * 8);
  1649. /* IPS watermarks are only used by pipe A, and are ignored by
  1650. * pipes B and C. They are calculated similarly to the common
  1651. * linetime values, except that we are using CD clock frequency
  1652. * in MHz instead of pixel rate for the division.
  1653. *
  1654. * This is a placeholder for the IPS watermark calculation code.
  1655. */
  1656. I915_WRITE(PIPE_WM_LINETIME(pipe), temp);
  1657. }
  1658. static bool
  1659. sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
  1660. uint32_t sprite_width, int pixel_size,
  1661. const struct intel_watermark_params *display,
  1662. int display_latency_ns, int *sprite_wm)
  1663. {
  1664. struct drm_crtc *crtc;
  1665. int clock;
  1666. int entries, tlb_miss;
  1667. crtc = intel_get_crtc_for_plane(dev, plane);
  1668. if (crtc->fb == NULL || !crtc->enabled) {
  1669. *sprite_wm = display->guard_size;
  1670. return false;
  1671. }
  1672. clock = crtc->mode.clock;
  1673. /* Use the small buffer method to calculate the sprite watermark */
  1674. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  1675. tlb_miss = display->fifo_size*display->cacheline_size -
  1676. sprite_width * 8;
  1677. if (tlb_miss > 0)
  1678. entries += tlb_miss;
  1679. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  1680. *sprite_wm = entries + display->guard_size;
  1681. if (*sprite_wm > (int)display->max_wm)
  1682. *sprite_wm = display->max_wm;
  1683. return true;
  1684. }
  1685. static bool
  1686. sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
  1687. uint32_t sprite_width, int pixel_size,
  1688. const struct intel_watermark_params *display,
  1689. int latency_ns, int *sprite_wm)
  1690. {
  1691. struct drm_crtc *crtc;
  1692. unsigned long line_time_us;
  1693. int clock;
  1694. int line_count, line_size;
  1695. int small, large;
  1696. int entries;
  1697. if (!latency_ns) {
  1698. *sprite_wm = 0;
  1699. return false;
  1700. }
  1701. crtc = intel_get_crtc_for_plane(dev, plane);
  1702. clock = crtc->mode.clock;
  1703. if (!clock) {
  1704. *sprite_wm = 0;
  1705. return false;
  1706. }
  1707. line_time_us = (sprite_width * 1000) / clock;
  1708. if (!line_time_us) {
  1709. *sprite_wm = 0;
  1710. return false;
  1711. }
  1712. line_count = (latency_ns / line_time_us + 1000) / 1000;
  1713. line_size = sprite_width * pixel_size;
  1714. /* Use the minimum of the small and large buffer method for primary */
  1715. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  1716. large = line_count * line_size;
  1717. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  1718. *sprite_wm = entries + display->guard_size;
  1719. return *sprite_wm > 0x3ff ? false : true;
  1720. }
  1721. static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
  1722. uint32_t sprite_width, int pixel_size)
  1723. {
  1724. struct drm_i915_private *dev_priv = dev->dev_private;
  1725. int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
  1726. u32 val;
  1727. int sprite_wm, reg;
  1728. int ret;
  1729. switch (pipe) {
  1730. case 0:
  1731. reg = WM0_PIPEA_ILK;
  1732. break;
  1733. case 1:
  1734. reg = WM0_PIPEB_ILK;
  1735. break;
  1736. case 2:
  1737. reg = WM0_PIPEC_IVB;
  1738. break;
  1739. default:
  1740. return; /* bad pipe */
  1741. }
  1742. ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
  1743. &sandybridge_display_wm_info,
  1744. latency, &sprite_wm);
  1745. if (!ret) {
  1746. DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
  1747. pipe);
  1748. return;
  1749. }
  1750. val = I915_READ(reg);
  1751. val &= ~WM0_PIPE_SPRITE_MASK;
  1752. I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
  1753. DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
  1754. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  1755. pixel_size,
  1756. &sandybridge_display_srwm_info,
  1757. SNB_READ_WM1_LATENCY() * 500,
  1758. &sprite_wm);
  1759. if (!ret) {
  1760. DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
  1761. pipe);
  1762. return;
  1763. }
  1764. I915_WRITE(WM1S_LP_ILK, sprite_wm);
  1765. /* Only IVB has two more LP watermarks for sprite */
  1766. if (!IS_IVYBRIDGE(dev))
  1767. return;
  1768. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  1769. pixel_size,
  1770. &sandybridge_display_srwm_info,
  1771. SNB_READ_WM2_LATENCY() * 500,
  1772. &sprite_wm);
  1773. if (!ret) {
  1774. DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
  1775. pipe);
  1776. return;
  1777. }
  1778. I915_WRITE(WM2S_LP_IVB, sprite_wm);
  1779. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  1780. pixel_size,
  1781. &sandybridge_display_srwm_info,
  1782. SNB_READ_WM3_LATENCY() * 500,
  1783. &sprite_wm);
  1784. if (!ret) {
  1785. DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
  1786. pipe);
  1787. return;
  1788. }
  1789. I915_WRITE(WM3S_LP_IVB, sprite_wm);
  1790. }
  1791. /**
  1792. * intel_update_watermarks - update FIFO watermark values based on current modes
  1793. *
  1794. * Calculate watermark values for the various WM regs based on current mode
  1795. * and plane configuration.
  1796. *
  1797. * There are several cases to deal with here:
  1798. * - normal (i.e. non-self-refresh)
  1799. * - self-refresh (SR) mode
  1800. * - lines are large relative to FIFO size (buffer can hold up to 2)
  1801. * - lines are small relative to FIFO size (buffer can hold more than 2
  1802. * lines), so need to account for TLB latency
  1803. *
  1804. * The normal calculation is:
  1805. * watermark = dotclock * bytes per pixel * latency
  1806. * where latency is platform & configuration dependent (we assume pessimal
  1807. * values here).
  1808. *
  1809. * The SR calculation is:
  1810. * watermark = (trunc(latency/line time)+1) * surface width *
  1811. * bytes per pixel
  1812. * where
  1813. * line time = htotal / dotclock
  1814. * surface width = hdisplay for normal plane and 64 for cursor
  1815. * and latency is assumed to be high, as above.
  1816. *
  1817. * The final value programmed to the register should always be rounded up,
  1818. * and include an extra 2 entries to account for clock crossings.
  1819. *
  1820. * We don't use the sprite, so we can ignore that. And on Crestline we have
  1821. * to set the non-SR watermarks to 8.
  1822. */
  1823. void intel_update_watermarks(struct drm_device *dev)
  1824. {
  1825. struct drm_i915_private *dev_priv = dev->dev_private;
  1826. if (dev_priv->display.update_wm)
  1827. dev_priv->display.update_wm(dev);
  1828. }
  1829. void intel_update_linetime_watermarks(struct drm_device *dev,
  1830. int pipe, struct drm_display_mode *mode)
  1831. {
  1832. struct drm_i915_private *dev_priv = dev->dev_private;
  1833. if (dev_priv->display.update_linetime_wm)
  1834. dev_priv->display.update_linetime_wm(dev, pipe, mode);
  1835. }
  1836. void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
  1837. uint32_t sprite_width, int pixel_size)
  1838. {
  1839. struct drm_i915_private *dev_priv = dev->dev_private;
  1840. if (dev_priv->display.update_sprite_wm)
  1841. dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
  1842. pixel_size);
  1843. }
  1844. static struct drm_i915_gem_object *
  1845. intel_alloc_context_page(struct drm_device *dev)
  1846. {
  1847. struct drm_i915_gem_object *ctx;
  1848. int ret;
  1849. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  1850. ctx = i915_gem_alloc_object(dev, 4096);
  1851. if (!ctx) {
  1852. DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
  1853. return NULL;
  1854. }
  1855. ret = i915_gem_object_pin(ctx, 4096, true, false);
  1856. if (ret) {
  1857. DRM_ERROR("failed to pin power context: %d\n", ret);
  1858. goto err_unref;
  1859. }
  1860. ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
  1861. if (ret) {
  1862. DRM_ERROR("failed to set-domain on power context: %d\n", ret);
  1863. goto err_unpin;
  1864. }
  1865. return ctx;
  1866. err_unpin:
  1867. i915_gem_object_unpin(ctx);
  1868. err_unref:
  1869. drm_gem_object_unreference(&ctx->base);
  1870. mutex_unlock(&dev->struct_mutex);
  1871. return NULL;
  1872. }
  1873. /**
  1874. * Lock protecting IPS related data structures
  1875. */
  1876. DEFINE_SPINLOCK(mchdev_lock);
  1877. /* Global for IPS driver to get at the current i915 device. Protected by
  1878. * mchdev_lock. */
  1879. static struct drm_i915_private *i915_mch_dev;
  1880. bool ironlake_set_drps(struct drm_device *dev, u8 val)
  1881. {
  1882. struct drm_i915_private *dev_priv = dev->dev_private;
  1883. u16 rgvswctl;
  1884. assert_spin_locked(&mchdev_lock);
  1885. rgvswctl = I915_READ16(MEMSWCTL);
  1886. if (rgvswctl & MEMCTL_CMD_STS) {
  1887. DRM_DEBUG("gpu busy, RCS change rejected\n");
  1888. return false; /* still busy with another command */
  1889. }
  1890. rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
  1891. (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
  1892. I915_WRITE16(MEMSWCTL, rgvswctl);
  1893. POSTING_READ16(MEMSWCTL);
  1894. rgvswctl |= MEMCTL_CMD_STS;
  1895. I915_WRITE16(MEMSWCTL, rgvswctl);
  1896. return true;
  1897. }
  1898. static void ironlake_enable_drps(struct drm_device *dev)
  1899. {
  1900. struct drm_i915_private *dev_priv = dev->dev_private;
  1901. u32 rgvmodectl = I915_READ(MEMMODECTL);
  1902. u8 fmax, fmin, fstart, vstart;
  1903. spin_lock_irq(&mchdev_lock);
  1904. /* Enable temp reporting */
  1905. I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
  1906. I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
  1907. /* 100ms RC evaluation intervals */
  1908. I915_WRITE(RCUPEI, 100000);
  1909. I915_WRITE(RCDNEI, 100000);
  1910. /* Set max/min thresholds to 90ms and 80ms respectively */
  1911. I915_WRITE(RCBMAXAVG, 90000);
  1912. I915_WRITE(RCBMINAVG, 80000);
  1913. I915_WRITE(MEMIHYST, 1);
  1914. /* Set up min, max, and cur for interrupt handling */
  1915. fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
  1916. fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
  1917. fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
  1918. MEMMODE_FSTART_SHIFT;
  1919. vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
  1920. PXVFREQ_PX_SHIFT;
  1921. dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
  1922. dev_priv->ips.fstart = fstart;
  1923. dev_priv->ips.max_delay = fstart;
  1924. dev_priv->ips.min_delay = fmin;
  1925. dev_priv->ips.cur_delay = fstart;
  1926. DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
  1927. fmax, fmin, fstart);
  1928. I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
  1929. /*
  1930. * Interrupts will be enabled in ironlake_irq_postinstall
  1931. */
  1932. I915_WRITE(VIDSTART, vstart);
  1933. POSTING_READ(VIDSTART);
  1934. rgvmodectl |= MEMMODE_SWMODE_EN;
  1935. I915_WRITE(MEMMODECTL, rgvmodectl);
  1936. if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
  1937. DRM_ERROR("stuck trying to change perf mode\n");
  1938. mdelay(1);
  1939. ironlake_set_drps(dev, fstart);
  1940. dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
  1941. I915_READ(0x112e0);
  1942. dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
  1943. dev_priv->ips.last_count2 = I915_READ(0x112f4);
  1944. getrawmonotonic(&dev_priv->ips.last_time2);
  1945. spin_unlock_irq(&mchdev_lock);
  1946. }
  1947. static void ironlake_disable_drps(struct drm_device *dev)
  1948. {
  1949. struct drm_i915_private *dev_priv = dev->dev_private;
  1950. u16 rgvswctl;
  1951. spin_lock_irq(&mchdev_lock);
  1952. rgvswctl = I915_READ16(MEMSWCTL);
  1953. /* Ack interrupts, disable EFC interrupt */
  1954. I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
  1955. I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
  1956. I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
  1957. I915_WRITE(DEIIR, DE_PCU_EVENT);
  1958. I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
  1959. /* Go back to the starting frequency */
  1960. ironlake_set_drps(dev, dev_priv->ips.fstart);
  1961. mdelay(1);
  1962. rgvswctl |= MEMCTL_CMD_STS;
  1963. I915_WRITE(MEMSWCTL, rgvswctl);
  1964. mdelay(1);
  1965. spin_unlock_irq(&mchdev_lock);
  1966. }
  1967. /* There's a funny hw issue where the hw returns all 0 when reading from
  1968. * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
  1969. * ourselves, instead of doing a rmw cycle (which might result in us clearing
  1970. * all limits and the gpu stuck at whatever frequency it is at atm).
  1971. */
  1972. static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
  1973. {
  1974. u32 limits;
  1975. limits = 0;
  1976. if (*val >= dev_priv->rps.max_delay)
  1977. *val = dev_priv->rps.max_delay;
  1978. limits |= dev_priv->rps.max_delay << 24;
  1979. /* Only set the down limit when we've reached the lowest level to avoid
  1980. * getting more interrupts, otherwise leave this clear. This prevents a
  1981. * race in the hw when coming out of rc6: There's a tiny window where
  1982. * the hw runs at the minimal clock before selecting the desired
  1983. * frequency, if the down threshold expires in that window we will not
  1984. * receive a down interrupt. */
  1985. if (*val <= dev_priv->rps.min_delay) {
  1986. *val = dev_priv->rps.min_delay;
  1987. limits |= dev_priv->rps.min_delay << 16;
  1988. }
  1989. return limits;
  1990. }
  1991. void gen6_set_rps(struct drm_device *dev, u8 val)
  1992. {
  1993. struct drm_i915_private *dev_priv = dev->dev_private;
  1994. u32 limits = gen6_rps_limits(dev_priv, &val);
  1995. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  1996. WARN_ON(val > dev_priv->rps.max_delay);
  1997. WARN_ON(val < dev_priv->rps.min_delay);
  1998. if (val == dev_priv->rps.cur_delay)
  1999. return;
  2000. I915_WRITE(GEN6_RPNSWREQ,
  2001. GEN6_FREQUENCY(val) |
  2002. GEN6_OFFSET(0) |
  2003. GEN6_AGGRESSIVE_TURBO);
  2004. /* Make sure we continue to get interrupts
  2005. * until we hit the minimum or maximum frequencies.
  2006. */
  2007. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
  2008. POSTING_READ(GEN6_RPNSWREQ);
  2009. dev_priv->rps.cur_delay = val;
  2010. trace_intel_gpu_freq_change(val * 50);
  2011. }
  2012. static void gen6_disable_rps(struct drm_device *dev)
  2013. {
  2014. struct drm_i915_private *dev_priv = dev->dev_private;
  2015. I915_WRITE(GEN6_RC_CONTROL, 0);
  2016. I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
  2017. I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
  2018. I915_WRITE(GEN6_PMIER, 0);
  2019. /* Complete PM interrupt masking here doesn't race with the rps work
  2020. * item again unmasking PM interrupts because that is using a different
  2021. * register (PMIMR) to mask PM interrupts. The only risk is in leaving
  2022. * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
  2023. spin_lock_irq(&dev_priv->rps.lock);
  2024. dev_priv->rps.pm_iir = 0;
  2025. spin_unlock_irq(&dev_priv->rps.lock);
  2026. I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
  2027. }
  2028. int intel_enable_rc6(const struct drm_device *dev)
  2029. {
  2030. /* Respect the kernel parameter if it is set */
  2031. if (i915_enable_rc6 >= 0)
  2032. return i915_enable_rc6;
  2033. if (INTEL_INFO(dev)->gen == 5) {
  2034. #ifdef CONFIG_INTEL_IOMMU
  2035. /* Disable rc6 on ilk if VT-d is on. */
  2036. if (intel_iommu_gfx_mapped)
  2037. return false;
  2038. #endif
  2039. DRM_DEBUG_DRIVER("Ironlake: only RC6 available\n");
  2040. return INTEL_RC6_ENABLE;
  2041. }
  2042. if (IS_HASWELL(dev)) {
  2043. DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
  2044. return INTEL_RC6_ENABLE;
  2045. }
  2046. /* snb/ivb have more than one rc6 state. */
  2047. if (INTEL_INFO(dev)->gen == 6) {
  2048. DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
  2049. return INTEL_RC6_ENABLE;
  2050. }
  2051. DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
  2052. return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
  2053. }
  2054. static void gen6_enable_rps(struct drm_device *dev)
  2055. {
  2056. struct drm_i915_private *dev_priv = dev->dev_private;
  2057. struct intel_ring_buffer *ring;
  2058. u32 rp_state_cap;
  2059. u32 gt_perf_status;
  2060. u32 rc6vids, pcu_mbox, rc6_mask = 0;
  2061. u32 gtfifodbg;
  2062. int rc6_mode;
  2063. int i, ret;
  2064. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  2065. /* Here begins a magic sequence of register writes to enable
  2066. * auto-downclocking.
  2067. *
  2068. * Perhaps there might be some value in exposing these to
  2069. * userspace...
  2070. */
  2071. I915_WRITE(GEN6_RC_STATE, 0);
  2072. /* Clear the DBG now so we don't confuse earlier errors */
  2073. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  2074. DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
  2075. I915_WRITE(GTFIFODBG, gtfifodbg);
  2076. }
  2077. gen6_gt_force_wake_get(dev_priv);
  2078. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  2079. gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  2080. /* In units of 100MHz */
  2081. dev_priv->rps.max_delay = rp_state_cap & 0xff;
  2082. dev_priv->rps.min_delay = (rp_state_cap & 0xff0000) >> 16;
  2083. dev_priv->rps.cur_delay = 0;
  2084. /* disable the counters and set deterministic thresholds */
  2085. I915_WRITE(GEN6_RC_CONTROL, 0);
  2086. I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
  2087. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
  2088. I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
  2089. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  2090. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  2091. for_each_ring(ring, dev_priv, i)
  2092. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  2093. I915_WRITE(GEN6_RC_SLEEP, 0);
  2094. I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
  2095. I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
  2096. I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
  2097. I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
  2098. /* Check if we are enabling RC6 */
  2099. rc6_mode = intel_enable_rc6(dev_priv->dev);
  2100. if (rc6_mode & INTEL_RC6_ENABLE)
  2101. rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
  2102. /* We don't use those on Haswell */
  2103. if (!IS_HASWELL(dev)) {
  2104. if (rc6_mode & INTEL_RC6p_ENABLE)
  2105. rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
  2106. if (rc6_mode & INTEL_RC6pp_ENABLE)
  2107. rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
  2108. }
  2109. DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
  2110. (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
  2111. (rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
  2112. (rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
  2113. I915_WRITE(GEN6_RC_CONTROL,
  2114. rc6_mask |
  2115. GEN6_RC_CTL_EI_MODE(1) |
  2116. GEN6_RC_CTL_HW_ENABLE);
  2117. I915_WRITE(GEN6_RPNSWREQ,
  2118. GEN6_FREQUENCY(10) |
  2119. GEN6_OFFSET(0) |
  2120. GEN6_AGGRESSIVE_TURBO);
  2121. I915_WRITE(GEN6_RC_VIDEO_FREQ,
  2122. GEN6_FREQUENCY(12));
  2123. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
  2124. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
  2125. dev_priv->rps.max_delay << 24 |
  2126. dev_priv->rps.min_delay << 16);
  2127. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  2128. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  2129. I915_WRITE(GEN6_RP_UP_EI, 66000);
  2130. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  2131. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  2132. I915_WRITE(GEN6_RP_CONTROL,
  2133. GEN6_RP_MEDIA_TURBO |
  2134. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  2135. GEN6_RP_MEDIA_IS_GFX |
  2136. GEN6_RP_ENABLE |
  2137. GEN6_RP_UP_BUSY_AVG |
  2138. (IS_HASWELL(dev) ? GEN7_RP_DOWN_IDLE_AVG : GEN6_RP_DOWN_IDLE_CONT));
  2139. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
  2140. if (!ret) {
  2141. pcu_mbox = 0;
  2142. ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
  2143. if (ret && pcu_mbox & (1<<31)) { /* OC supported */
  2144. dev_priv->rps.max_delay = pcu_mbox & 0xff;
  2145. DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
  2146. }
  2147. } else {
  2148. DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
  2149. }
  2150. gen6_set_rps(dev_priv->dev, (gt_perf_status & 0xff00) >> 8);
  2151. /* requires MSI enabled */
  2152. I915_WRITE(GEN6_PMIER, GEN6_PM_DEFERRED_EVENTS);
  2153. spin_lock_irq(&dev_priv->rps.lock);
  2154. WARN_ON(dev_priv->rps.pm_iir != 0);
  2155. I915_WRITE(GEN6_PMIMR, 0);
  2156. spin_unlock_irq(&dev_priv->rps.lock);
  2157. /* enable all PM interrupts */
  2158. I915_WRITE(GEN6_PMINTRMSK, 0);
  2159. rc6vids = 0;
  2160. ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  2161. if (IS_GEN6(dev) && ret) {
  2162. DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
  2163. } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
  2164. DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
  2165. GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
  2166. rc6vids &= 0xffff00;
  2167. rc6vids |= GEN6_ENCODE_RC6_VID(450);
  2168. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
  2169. if (ret)
  2170. DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
  2171. }
  2172. gen6_gt_force_wake_put(dev_priv);
  2173. }
  2174. static void gen6_update_ring_freq(struct drm_device *dev)
  2175. {
  2176. struct drm_i915_private *dev_priv = dev->dev_private;
  2177. int min_freq = 15;
  2178. int gpu_freq;
  2179. unsigned int ia_freq, max_ia_freq;
  2180. int scaling_factor = 180;
  2181. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  2182. max_ia_freq = cpufreq_quick_get_max(0);
  2183. /*
  2184. * Default to measured freq if none found, PCU will ensure we don't go
  2185. * over
  2186. */
  2187. if (!max_ia_freq)
  2188. max_ia_freq = tsc_khz;
  2189. /* Convert from kHz to MHz */
  2190. max_ia_freq /= 1000;
  2191. /*
  2192. * For each potential GPU frequency, load a ring frequency we'd like
  2193. * to use for memory access. We do this by specifying the IA frequency
  2194. * the PCU should use as a reference to determine the ring frequency.
  2195. */
  2196. for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
  2197. gpu_freq--) {
  2198. int diff = dev_priv->rps.max_delay - gpu_freq;
  2199. /*
  2200. * For GPU frequencies less than 750MHz, just use the lowest
  2201. * ring freq.
  2202. */
  2203. if (gpu_freq < min_freq)
  2204. ia_freq = 800;
  2205. else
  2206. ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
  2207. ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
  2208. ia_freq <<= GEN6_PCODE_FREQ_IA_RATIO_SHIFT;
  2209. sandybridge_pcode_write(dev_priv,
  2210. GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
  2211. ia_freq | gpu_freq);
  2212. }
  2213. }
  2214. void ironlake_teardown_rc6(struct drm_device *dev)
  2215. {
  2216. struct drm_i915_private *dev_priv = dev->dev_private;
  2217. if (dev_priv->ips.renderctx) {
  2218. i915_gem_object_unpin(dev_priv->ips.renderctx);
  2219. drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
  2220. dev_priv->ips.renderctx = NULL;
  2221. }
  2222. if (dev_priv->ips.pwrctx) {
  2223. i915_gem_object_unpin(dev_priv->ips.pwrctx);
  2224. drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
  2225. dev_priv->ips.pwrctx = NULL;
  2226. }
  2227. }
  2228. static void ironlake_disable_rc6(struct drm_device *dev)
  2229. {
  2230. struct drm_i915_private *dev_priv = dev->dev_private;
  2231. if (I915_READ(PWRCTXA)) {
  2232. /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
  2233. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
  2234. wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
  2235. 50);
  2236. I915_WRITE(PWRCTXA, 0);
  2237. POSTING_READ(PWRCTXA);
  2238. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  2239. POSTING_READ(RSTDBYCTL);
  2240. }
  2241. }
  2242. static int ironlake_setup_rc6(struct drm_device *dev)
  2243. {
  2244. struct drm_i915_private *dev_priv = dev->dev_private;
  2245. if (dev_priv->ips.renderctx == NULL)
  2246. dev_priv->ips.renderctx = intel_alloc_context_page(dev);
  2247. if (!dev_priv->ips.renderctx)
  2248. return -ENOMEM;
  2249. if (dev_priv->ips.pwrctx == NULL)
  2250. dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
  2251. if (!dev_priv->ips.pwrctx) {
  2252. ironlake_teardown_rc6(dev);
  2253. return -ENOMEM;
  2254. }
  2255. return 0;
  2256. }
  2257. static void ironlake_enable_rc6(struct drm_device *dev)
  2258. {
  2259. struct drm_i915_private *dev_priv = dev->dev_private;
  2260. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  2261. int ret;
  2262. /* rc6 disabled by default due to repeated reports of hanging during
  2263. * boot and resume.
  2264. */
  2265. if (!intel_enable_rc6(dev))
  2266. return;
  2267. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  2268. ret = ironlake_setup_rc6(dev);
  2269. if (ret)
  2270. return;
  2271. /*
  2272. * GPU can automatically power down the render unit if given a page
  2273. * to save state.
  2274. */
  2275. ret = intel_ring_begin(ring, 6);
  2276. if (ret) {
  2277. ironlake_teardown_rc6(dev);
  2278. return;
  2279. }
  2280. intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
  2281. intel_ring_emit(ring, MI_SET_CONTEXT);
  2282. intel_ring_emit(ring, dev_priv->ips.renderctx->gtt_offset |
  2283. MI_MM_SPACE_GTT |
  2284. MI_SAVE_EXT_STATE_EN |
  2285. MI_RESTORE_EXT_STATE_EN |
  2286. MI_RESTORE_INHIBIT);
  2287. intel_ring_emit(ring, MI_SUSPEND_FLUSH);
  2288. intel_ring_emit(ring, MI_NOOP);
  2289. intel_ring_emit(ring, MI_FLUSH);
  2290. intel_ring_advance(ring);
  2291. /*
  2292. * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
  2293. * does an implicit flush, combined with MI_FLUSH above, it should be
  2294. * safe to assume that renderctx is valid
  2295. */
  2296. ret = intel_wait_ring_idle(ring);
  2297. if (ret) {
  2298. DRM_ERROR("failed to enable ironlake power power savings\n");
  2299. ironlake_teardown_rc6(dev);
  2300. return;
  2301. }
  2302. I915_WRITE(PWRCTXA, dev_priv->ips.pwrctx->gtt_offset | PWRCTX_EN);
  2303. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  2304. }
  2305. static unsigned long intel_pxfreq(u32 vidfreq)
  2306. {
  2307. unsigned long freq;
  2308. int div = (vidfreq & 0x3f0000) >> 16;
  2309. int post = (vidfreq & 0x3000) >> 12;
  2310. int pre = (vidfreq & 0x7);
  2311. if (!pre)
  2312. return 0;
  2313. freq = ((div * 133333) / ((1<<post) * pre));
  2314. return freq;
  2315. }
  2316. static const struct cparams {
  2317. u16 i;
  2318. u16 t;
  2319. u16 m;
  2320. u16 c;
  2321. } cparams[] = {
  2322. { 1, 1333, 301, 28664 },
  2323. { 1, 1066, 294, 24460 },
  2324. { 1, 800, 294, 25192 },
  2325. { 0, 1333, 276, 27605 },
  2326. { 0, 1066, 276, 27605 },
  2327. { 0, 800, 231, 23784 },
  2328. };
  2329. static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
  2330. {
  2331. u64 total_count, diff, ret;
  2332. u32 count1, count2, count3, m = 0, c = 0;
  2333. unsigned long now = jiffies_to_msecs(jiffies), diff1;
  2334. int i;
  2335. assert_spin_locked(&mchdev_lock);
  2336. diff1 = now - dev_priv->ips.last_time1;
  2337. /* Prevent division-by-zero if we are asking too fast.
  2338. * Also, we don't get interesting results if we are polling
  2339. * faster than once in 10ms, so just return the saved value
  2340. * in such cases.
  2341. */
  2342. if (diff1 <= 10)
  2343. return dev_priv->ips.chipset_power;
  2344. count1 = I915_READ(DMIEC);
  2345. count2 = I915_READ(DDREC);
  2346. count3 = I915_READ(CSIEC);
  2347. total_count = count1 + count2 + count3;
  2348. /* FIXME: handle per-counter overflow */
  2349. if (total_count < dev_priv->ips.last_count1) {
  2350. diff = ~0UL - dev_priv->ips.last_count1;
  2351. diff += total_count;
  2352. } else {
  2353. diff = total_count - dev_priv->ips.last_count1;
  2354. }
  2355. for (i = 0; i < ARRAY_SIZE(cparams); i++) {
  2356. if (cparams[i].i == dev_priv->ips.c_m &&
  2357. cparams[i].t == dev_priv->ips.r_t) {
  2358. m = cparams[i].m;
  2359. c = cparams[i].c;
  2360. break;
  2361. }
  2362. }
  2363. diff = div_u64(diff, diff1);
  2364. ret = ((m * diff) + c);
  2365. ret = div_u64(ret, 10);
  2366. dev_priv->ips.last_count1 = total_count;
  2367. dev_priv->ips.last_time1 = now;
  2368. dev_priv->ips.chipset_power = ret;
  2369. return ret;
  2370. }
  2371. unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
  2372. {
  2373. unsigned long val;
  2374. if (dev_priv->info->gen != 5)
  2375. return 0;
  2376. spin_lock_irq(&mchdev_lock);
  2377. val = __i915_chipset_val(dev_priv);
  2378. spin_unlock_irq(&mchdev_lock);
  2379. return val;
  2380. }
  2381. unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
  2382. {
  2383. unsigned long m, x, b;
  2384. u32 tsfs;
  2385. tsfs = I915_READ(TSFS);
  2386. m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
  2387. x = I915_READ8(TR1);
  2388. b = tsfs & TSFS_INTR_MASK;
  2389. return ((m * x) / 127) - b;
  2390. }
  2391. static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
  2392. {
  2393. static const struct v_table {
  2394. u16 vd; /* in .1 mil */
  2395. u16 vm; /* in .1 mil */
  2396. } v_table[] = {
  2397. { 0, 0, },
  2398. { 375, 0, },
  2399. { 500, 0, },
  2400. { 625, 0, },
  2401. { 750, 0, },
  2402. { 875, 0, },
  2403. { 1000, 0, },
  2404. { 1125, 0, },
  2405. { 4125, 3000, },
  2406. { 4125, 3000, },
  2407. { 4125, 3000, },
  2408. { 4125, 3000, },
  2409. { 4125, 3000, },
  2410. { 4125, 3000, },
  2411. { 4125, 3000, },
  2412. { 4125, 3000, },
  2413. { 4125, 3000, },
  2414. { 4125, 3000, },
  2415. { 4125, 3000, },
  2416. { 4125, 3000, },
  2417. { 4125, 3000, },
  2418. { 4125, 3000, },
  2419. { 4125, 3000, },
  2420. { 4125, 3000, },
  2421. { 4125, 3000, },
  2422. { 4125, 3000, },
  2423. { 4125, 3000, },
  2424. { 4125, 3000, },
  2425. { 4125, 3000, },
  2426. { 4125, 3000, },
  2427. { 4125, 3000, },
  2428. { 4125, 3000, },
  2429. { 4250, 3125, },
  2430. { 4375, 3250, },
  2431. { 4500, 3375, },
  2432. { 4625, 3500, },
  2433. { 4750, 3625, },
  2434. { 4875, 3750, },
  2435. { 5000, 3875, },
  2436. { 5125, 4000, },
  2437. { 5250, 4125, },
  2438. { 5375, 4250, },
  2439. { 5500, 4375, },
  2440. { 5625, 4500, },
  2441. { 5750, 4625, },
  2442. { 5875, 4750, },
  2443. { 6000, 4875, },
  2444. { 6125, 5000, },
  2445. { 6250, 5125, },
  2446. { 6375, 5250, },
  2447. { 6500, 5375, },
  2448. { 6625, 5500, },
  2449. { 6750, 5625, },
  2450. { 6875, 5750, },
  2451. { 7000, 5875, },
  2452. { 7125, 6000, },
  2453. { 7250, 6125, },
  2454. { 7375, 6250, },
  2455. { 7500, 6375, },
  2456. { 7625, 6500, },
  2457. { 7750, 6625, },
  2458. { 7875, 6750, },
  2459. { 8000, 6875, },
  2460. { 8125, 7000, },
  2461. { 8250, 7125, },
  2462. { 8375, 7250, },
  2463. { 8500, 7375, },
  2464. { 8625, 7500, },
  2465. { 8750, 7625, },
  2466. { 8875, 7750, },
  2467. { 9000, 7875, },
  2468. { 9125, 8000, },
  2469. { 9250, 8125, },
  2470. { 9375, 8250, },
  2471. { 9500, 8375, },
  2472. { 9625, 8500, },
  2473. { 9750, 8625, },
  2474. { 9875, 8750, },
  2475. { 10000, 8875, },
  2476. { 10125, 9000, },
  2477. { 10250, 9125, },
  2478. { 10375, 9250, },
  2479. { 10500, 9375, },
  2480. { 10625, 9500, },
  2481. { 10750, 9625, },
  2482. { 10875, 9750, },
  2483. { 11000, 9875, },
  2484. { 11125, 10000, },
  2485. { 11250, 10125, },
  2486. { 11375, 10250, },
  2487. { 11500, 10375, },
  2488. { 11625, 10500, },
  2489. { 11750, 10625, },
  2490. { 11875, 10750, },
  2491. { 12000, 10875, },
  2492. { 12125, 11000, },
  2493. { 12250, 11125, },
  2494. { 12375, 11250, },
  2495. { 12500, 11375, },
  2496. { 12625, 11500, },
  2497. { 12750, 11625, },
  2498. { 12875, 11750, },
  2499. { 13000, 11875, },
  2500. { 13125, 12000, },
  2501. { 13250, 12125, },
  2502. { 13375, 12250, },
  2503. { 13500, 12375, },
  2504. { 13625, 12500, },
  2505. { 13750, 12625, },
  2506. { 13875, 12750, },
  2507. { 14000, 12875, },
  2508. { 14125, 13000, },
  2509. { 14250, 13125, },
  2510. { 14375, 13250, },
  2511. { 14500, 13375, },
  2512. { 14625, 13500, },
  2513. { 14750, 13625, },
  2514. { 14875, 13750, },
  2515. { 15000, 13875, },
  2516. { 15125, 14000, },
  2517. { 15250, 14125, },
  2518. { 15375, 14250, },
  2519. { 15500, 14375, },
  2520. { 15625, 14500, },
  2521. { 15750, 14625, },
  2522. { 15875, 14750, },
  2523. { 16000, 14875, },
  2524. { 16125, 15000, },
  2525. };
  2526. if (dev_priv->info->is_mobile)
  2527. return v_table[pxvid].vm;
  2528. else
  2529. return v_table[pxvid].vd;
  2530. }
  2531. static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
  2532. {
  2533. struct timespec now, diff1;
  2534. u64 diff;
  2535. unsigned long diffms;
  2536. u32 count;
  2537. assert_spin_locked(&mchdev_lock);
  2538. getrawmonotonic(&now);
  2539. diff1 = timespec_sub(now, dev_priv->ips.last_time2);
  2540. /* Don't divide by 0 */
  2541. diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
  2542. if (!diffms)
  2543. return;
  2544. count = I915_READ(GFXEC);
  2545. if (count < dev_priv->ips.last_count2) {
  2546. diff = ~0UL - dev_priv->ips.last_count2;
  2547. diff += count;
  2548. } else {
  2549. diff = count - dev_priv->ips.last_count2;
  2550. }
  2551. dev_priv->ips.last_count2 = count;
  2552. dev_priv->ips.last_time2 = now;
  2553. /* More magic constants... */
  2554. diff = diff * 1181;
  2555. diff = div_u64(diff, diffms * 10);
  2556. dev_priv->ips.gfx_power = diff;
  2557. }
  2558. void i915_update_gfx_val(struct drm_i915_private *dev_priv)
  2559. {
  2560. if (dev_priv->info->gen != 5)
  2561. return;
  2562. spin_lock_irq(&mchdev_lock);
  2563. __i915_update_gfx_val(dev_priv);
  2564. spin_unlock_irq(&mchdev_lock);
  2565. }
  2566. static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
  2567. {
  2568. unsigned long t, corr, state1, corr2, state2;
  2569. u32 pxvid, ext_v;
  2570. assert_spin_locked(&mchdev_lock);
  2571. pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
  2572. pxvid = (pxvid >> 24) & 0x7f;
  2573. ext_v = pvid_to_extvid(dev_priv, pxvid);
  2574. state1 = ext_v;
  2575. t = i915_mch_val(dev_priv);
  2576. /* Revel in the empirically derived constants */
  2577. /* Correction factor in 1/100000 units */
  2578. if (t > 80)
  2579. corr = ((t * 2349) + 135940);
  2580. else if (t >= 50)
  2581. corr = ((t * 964) + 29317);
  2582. else /* < 50 */
  2583. corr = ((t * 301) + 1004);
  2584. corr = corr * ((150142 * state1) / 10000 - 78642);
  2585. corr /= 100000;
  2586. corr2 = (corr * dev_priv->ips.corr);
  2587. state2 = (corr2 * state1) / 10000;
  2588. state2 /= 100; /* convert to mW */
  2589. __i915_update_gfx_val(dev_priv);
  2590. return dev_priv->ips.gfx_power + state2;
  2591. }
  2592. unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
  2593. {
  2594. unsigned long val;
  2595. if (dev_priv->info->gen != 5)
  2596. return 0;
  2597. spin_lock_irq(&mchdev_lock);
  2598. val = __i915_gfx_val(dev_priv);
  2599. spin_unlock_irq(&mchdev_lock);
  2600. return val;
  2601. }
  2602. /**
  2603. * i915_read_mch_val - return value for IPS use
  2604. *
  2605. * Calculate and return a value for the IPS driver to use when deciding whether
  2606. * we have thermal and power headroom to increase CPU or GPU power budget.
  2607. */
  2608. unsigned long i915_read_mch_val(void)
  2609. {
  2610. struct drm_i915_private *dev_priv;
  2611. unsigned long chipset_val, graphics_val, ret = 0;
  2612. spin_lock_irq(&mchdev_lock);
  2613. if (!i915_mch_dev)
  2614. goto out_unlock;
  2615. dev_priv = i915_mch_dev;
  2616. chipset_val = __i915_chipset_val(dev_priv);
  2617. graphics_val = __i915_gfx_val(dev_priv);
  2618. ret = chipset_val + graphics_val;
  2619. out_unlock:
  2620. spin_unlock_irq(&mchdev_lock);
  2621. return ret;
  2622. }
  2623. EXPORT_SYMBOL_GPL(i915_read_mch_val);
  2624. /**
  2625. * i915_gpu_raise - raise GPU frequency limit
  2626. *
  2627. * Raise the limit; IPS indicates we have thermal headroom.
  2628. */
  2629. bool i915_gpu_raise(void)
  2630. {
  2631. struct drm_i915_private *dev_priv;
  2632. bool ret = true;
  2633. spin_lock_irq(&mchdev_lock);
  2634. if (!i915_mch_dev) {
  2635. ret = false;
  2636. goto out_unlock;
  2637. }
  2638. dev_priv = i915_mch_dev;
  2639. if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
  2640. dev_priv->ips.max_delay--;
  2641. out_unlock:
  2642. spin_unlock_irq(&mchdev_lock);
  2643. return ret;
  2644. }
  2645. EXPORT_SYMBOL_GPL(i915_gpu_raise);
  2646. /**
  2647. * i915_gpu_lower - lower GPU frequency limit
  2648. *
  2649. * IPS indicates we're close to a thermal limit, so throttle back the GPU
  2650. * frequency maximum.
  2651. */
  2652. bool i915_gpu_lower(void)
  2653. {
  2654. struct drm_i915_private *dev_priv;
  2655. bool ret = true;
  2656. spin_lock_irq(&mchdev_lock);
  2657. if (!i915_mch_dev) {
  2658. ret = false;
  2659. goto out_unlock;
  2660. }
  2661. dev_priv = i915_mch_dev;
  2662. if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
  2663. dev_priv->ips.max_delay++;
  2664. out_unlock:
  2665. spin_unlock_irq(&mchdev_lock);
  2666. return ret;
  2667. }
  2668. EXPORT_SYMBOL_GPL(i915_gpu_lower);
  2669. /**
  2670. * i915_gpu_busy - indicate GPU business to IPS
  2671. *
  2672. * Tell the IPS driver whether or not the GPU is busy.
  2673. */
  2674. bool i915_gpu_busy(void)
  2675. {
  2676. struct drm_i915_private *dev_priv;
  2677. struct intel_ring_buffer *ring;
  2678. bool ret = false;
  2679. int i;
  2680. spin_lock_irq(&mchdev_lock);
  2681. if (!i915_mch_dev)
  2682. goto out_unlock;
  2683. dev_priv = i915_mch_dev;
  2684. for_each_ring(ring, dev_priv, i)
  2685. ret |= !list_empty(&ring->request_list);
  2686. out_unlock:
  2687. spin_unlock_irq(&mchdev_lock);
  2688. return ret;
  2689. }
  2690. EXPORT_SYMBOL_GPL(i915_gpu_busy);
  2691. /**
  2692. * i915_gpu_turbo_disable - disable graphics turbo
  2693. *
  2694. * Disable graphics turbo by resetting the max frequency and setting the
  2695. * current frequency to the default.
  2696. */
  2697. bool i915_gpu_turbo_disable(void)
  2698. {
  2699. struct drm_i915_private *dev_priv;
  2700. bool ret = true;
  2701. spin_lock_irq(&mchdev_lock);
  2702. if (!i915_mch_dev) {
  2703. ret = false;
  2704. goto out_unlock;
  2705. }
  2706. dev_priv = i915_mch_dev;
  2707. dev_priv->ips.max_delay = dev_priv->ips.fstart;
  2708. if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
  2709. ret = false;
  2710. out_unlock:
  2711. spin_unlock_irq(&mchdev_lock);
  2712. return ret;
  2713. }
  2714. EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
  2715. /**
  2716. * Tells the intel_ips driver that the i915 driver is now loaded, if
  2717. * IPS got loaded first.
  2718. *
  2719. * This awkward dance is so that neither module has to depend on the
  2720. * other in order for IPS to do the appropriate communication of
  2721. * GPU turbo limits to i915.
  2722. */
  2723. static void
  2724. ips_ping_for_i915_load(void)
  2725. {
  2726. void (*link)(void);
  2727. link = symbol_get(ips_link_to_i915_driver);
  2728. if (link) {
  2729. link();
  2730. symbol_put(ips_link_to_i915_driver);
  2731. }
  2732. }
  2733. void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
  2734. {
  2735. /* We only register the i915 ips part with intel-ips once everything is
  2736. * set up, to avoid intel-ips sneaking in and reading bogus values. */
  2737. spin_lock_irq(&mchdev_lock);
  2738. i915_mch_dev = dev_priv;
  2739. spin_unlock_irq(&mchdev_lock);
  2740. ips_ping_for_i915_load();
  2741. }
  2742. void intel_gpu_ips_teardown(void)
  2743. {
  2744. spin_lock_irq(&mchdev_lock);
  2745. i915_mch_dev = NULL;
  2746. spin_unlock_irq(&mchdev_lock);
  2747. }
  2748. static void intel_init_emon(struct drm_device *dev)
  2749. {
  2750. struct drm_i915_private *dev_priv = dev->dev_private;
  2751. u32 lcfuse;
  2752. u8 pxw[16];
  2753. int i;
  2754. /* Disable to program */
  2755. I915_WRITE(ECR, 0);
  2756. POSTING_READ(ECR);
  2757. /* Program energy weights for various events */
  2758. I915_WRITE(SDEW, 0x15040d00);
  2759. I915_WRITE(CSIEW0, 0x007f0000);
  2760. I915_WRITE(CSIEW1, 0x1e220004);
  2761. I915_WRITE(CSIEW2, 0x04000004);
  2762. for (i = 0; i < 5; i++)
  2763. I915_WRITE(PEW + (i * 4), 0);
  2764. for (i = 0; i < 3; i++)
  2765. I915_WRITE(DEW + (i * 4), 0);
  2766. /* Program P-state weights to account for frequency power adjustment */
  2767. for (i = 0; i < 16; i++) {
  2768. u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
  2769. unsigned long freq = intel_pxfreq(pxvidfreq);
  2770. unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
  2771. PXVFREQ_PX_SHIFT;
  2772. unsigned long val;
  2773. val = vid * vid;
  2774. val *= (freq / 1000);
  2775. val *= 255;
  2776. val /= (127*127*900);
  2777. if (val > 0xff)
  2778. DRM_ERROR("bad pxval: %ld\n", val);
  2779. pxw[i] = val;
  2780. }
  2781. /* Render standby states get 0 weight */
  2782. pxw[14] = 0;
  2783. pxw[15] = 0;
  2784. for (i = 0; i < 4; i++) {
  2785. u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
  2786. (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
  2787. I915_WRITE(PXW + (i * 4), val);
  2788. }
  2789. /* Adjust magic regs to magic values (more experimental results) */
  2790. I915_WRITE(OGW0, 0);
  2791. I915_WRITE(OGW1, 0);
  2792. I915_WRITE(EG0, 0x00007f00);
  2793. I915_WRITE(EG1, 0x0000000e);
  2794. I915_WRITE(EG2, 0x000e0000);
  2795. I915_WRITE(EG3, 0x68000300);
  2796. I915_WRITE(EG4, 0x42000000);
  2797. I915_WRITE(EG5, 0x00140031);
  2798. I915_WRITE(EG6, 0);
  2799. I915_WRITE(EG7, 0);
  2800. for (i = 0; i < 8; i++)
  2801. I915_WRITE(PXWL + (i * 4), 0);
  2802. /* Enable PMON + select events */
  2803. I915_WRITE(ECR, 0x80000019);
  2804. lcfuse = I915_READ(LCFUSE02);
  2805. dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
  2806. }
  2807. void intel_disable_gt_powersave(struct drm_device *dev)
  2808. {
  2809. struct drm_i915_private *dev_priv = dev->dev_private;
  2810. if (IS_IRONLAKE_M(dev)) {
  2811. ironlake_disable_drps(dev);
  2812. ironlake_disable_rc6(dev);
  2813. } else if (INTEL_INFO(dev)->gen >= 6 && !IS_VALLEYVIEW(dev)) {
  2814. cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
  2815. mutex_lock(&dev_priv->rps.hw_lock);
  2816. gen6_disable_rps(dev);
  2817. mutex_unlock(&dev_priv->rps.hw_lock);
  2818. }
  2819. }
  2820. static void intel_gen6_powersave_work(struct work_struct *work)
  2821. {
  2822. struct drm_i915_private *dev_priv =
  2823. container_of(work, struct drm_i915_private,
  2824. rps.delayed_resume_work.work);
  2825. struct drm_device *dev = dev_priv->dev;
  2826. mutex_lock(&dev_priv->rps.hw_lock);
  2827. gen6_enable_rps(dev);
  2828. gen6_update_ring_freq(dev);
  2829. mutex_unlock(&dev_priv->rps.hw_lock);
  2830. }
  2831. void intel_enable_gt_powersave(struct drm_device *dev)
  2832. {
  2833. struct drm_i915_private *dev_priv = dev->dev_private;
  2834. if (IS_IRONLAKE_M(dev)) {
  2835. ironlake_enable_drps(dev);
  2836. ironlake_enable_rc6(dev);
  2837. intel_init_emon(dev);
  2838. } else if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev)) {
  2839. /*
  2840. * PCU communication is slow and this doesn't need to be
  2841. * done at any specific time, so do this out of our fast path
  2842. * to make resume and init faster.
  2843. */
  2844. schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
  2845. round_jiffies_up_relative(HZ));
  2846. }
  2847. }
  2848. static void ibx_init_clock_gating(struct drm_device *dev)
  2849. {
  2850. struct drm_i915_private *dev_priv = dev->dev_private;
  2851. /*
  2852. * On Ibex Peak and Cougar Point, we need to disable clock
  2853. * gating for the panel power sequencer or it will fail to
  2854. * start up when no ports are active.
  2855. */
  2856. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  2857. }
  2858. static void ironlake_init_clock_gating(struct drm_device *dev)
  2859. {
  2860. struct drm_i915_private *dev_priv = dev->dev_private;
  2861. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  2862. /* Required for FBC */
  2863. dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
  2864. ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
  2865. ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
  2866. I915_WRITE(PCH_3DCGDIS0,
  2867. MARIUNIT_CLOCK_GATE_DISABLE |
  2868. SVSMUNIT_CLOCK_GATE_DISABLE);
  2869. I915_WRITE(PCH_3DCGDIS1,
  2870. VFMUNIT_CLOCK_GATE_DISABLE);
  2871. /*
  2872. * According to the spec the following bits should be set in
  2873. * order to enable memory self-refresh
  2874. * The bit 22/21 of 0x42004
  2875. * The bit 5 of 0x42020
  2876. * The bit 15 of 0x45000
  2877. */
  2878. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  2879. (I915_READ(ILK_DISPLAY_CHICKEN2) |
  2880. ILK_DPARB_GATE | ILK_VSDPFD_FULL));
  2881. dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
  2882. I915_WRITE(DISP_ARB_CTL,
  2883. (I915_READ(DISP_ARB_CTL) |
  2884. DISP_FBC_WM_DIS));
  2885. I915_WRITE(WM3_LP_ILK, 0);
  2886. I915_WRITE(WM2_LP_ILK, 0);
  2887. I915_WRITE(WM1_LP_ILK, 0);
  2888. /*
  2889. * Based on the document from hardware guys the following bits
  2890. * should be set unconditionally in order to enable FBC.
  2891. * The bit 22 of 0x42000
  2892. * The bit 22 of 0x42004
  2893. * The bit 7,8,9 of 0x42020.
  2894. */
  2895. if (IS_IRONLAKE_M(dev)) {
  2896. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  2897. I915_READ(ILK_DISPLAY_CHICKEN1) |
  2898. ILK_FBCQ_DIS);
  2899. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  2900. I915_READ(ILK_DISPLAY_CHICKEN2) |
  2901. ILK_DPARB_GATE);
  2902. }
  2903. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  2904. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  2905. I915_READ(ILK_DISPLAY_CHICKEN2) |
  2906. ILK_ELPIN_409_SELECT);
  2907. I915_WRITE(_3D_CHICKEN2,
  2908. _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
  2909. _3D_CHICKEN2_WM_READ_PIPELINED);
  2910. /* WaDisableRenderCachePipelinedFlush */
  2911. I915_WRITE(CACHE_MODE_0,
  2912. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  2913. ibx_init_clock_gating(dev);
  2914. }
  2915. static void cpt_init_clock_gating(struct drm_device *dev)
  2916. {
  2917. struct drm_i915_private *dev_priv = dev->dev_private;
  2918. int pipe;
  2919. /*
  2920. * On Ibex Peak and Cougar Point, we need to disable clock
  2921. * gating for the panel power sequencer or it will fail to
  2922. * start up when no ports are active.
  2923. */
  2924. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  2925. I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
  2926. DPLS_EDP_PPS_FIX_DIS);
  2927. /* WADP0ClockGatingDisable */
  2928. for_each_pipe(pipe) {
  2929. I915_WRITE(TRANS_CHICKEN1(pipe),
  2930. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  2931. }
  2932. }
  2933. static void gen6_init_clock_gating(struct drm_device *dev)
  2934. {
  2935. struct drm_i915_private *dev_priv = dev->dev_private;
  2936. int pipe;
  2937. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  2938. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  2939. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  2940. I915_READ(ILK_DISPLAY_CHICKEN2) |
  2941. ILK_ELPIN_409_SELECT);
  2942. I915_WRITE(WM3_LP_ILK, 0);
  2943. I915_WRITE(WM2_LP_ILK, 0);
  2944. I915_WRITE(WM1_LP_ILK, 0);
  2945. I915_WRITE(CACHE_MODE_0,
  2946. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  2947. I915_WRITE(GEN6_UCGCTL1,
  2948. I915_READ(GEN6_UCGCTL1) |
  2949. GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
  2950. GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  2951. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  2952. * gating disable must be set. Failure to set it results in
  2953. * flickering pixels due to Z write ordering failures after
  2954. * some amount of runtime in the Mesa "fire" demo, and Unigine
  2955. * Sanctuary and Tropics, and apparently anything else with
  2956. * alpha test or pixel discard.
  2957. *
  2958. * According to the spec, bit 11 (RCCUNIT) must also be set,
  2959. * but we didn't debug actual testcases to find it out.
  2960. *
  2961. * Also apply WaDisableVDSUnitClockGating and
  2962. * WaDisableRCPBUnitClockGating.
  2963. */
  2964. I915_WRITE(GEN6_UCGCTL2,
  2965. GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
  2966. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  2967. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  2968. /* Bspec says we need to always set all mask bits. */
  2969. I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
  2970. _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
  2971. /*
  2972. * According to the spec the following bits should be
  2973. * set in order to enable memory self-refresh and fbc:
  2974. * The bit21 and bit22 of 0x42000
  2975. * The bit21 and bit22 of 0x42004
  2976. * The bit5 and bit7 of 0x42020
  2977. * The bit14 of 0x70180
  2978. * The bit14 of 0x71180
  2979. */
  2980. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  2981. I915_READ(ILK_DISPLAY_CHICKEN1) |
  2982. ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
  2983. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  2984. I915_READ(ILK_DISPLAY_CHICKEN2) |
  2985. ILK_DPARB_GATE | ILK_VSDPFD_FULL);
  2986. I915_WRITE(ILK_DSPCLK_GATE_D,
  2987. I915_READ(ILK_DSPCLK_GATE_D) |
  2988. ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
  2989. ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
  2990. /* WaMbcDriverBootEnable */
  2991. I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
  2992. GEN6_MBCTL_ENABLE_BOOT_FETCH);
  2993. for_each_pipe(pipe) {
  2994. I915_WRITE(DSPCNTR(pipe),
  2995. I915_READ(DSPCNTR(pipe)) |
  2996. DISPPLANE_TRICKLE_FEED_DISABLE);
  2997. intel_flush_display_plane(dev_priv, pipe);
  2998. }
  2999. /* The default value should be 0x200 according to docs, but the two
  3000. * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
  3001. I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
  3002. I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
  3003. cpt_init_clock_gating(dev);
  3004. }
  3005. static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
  3006. {
  3007. uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
  3008. reg &= ~GEN7_FF_SCHED_MASK;
  3009. reg |= GEN7_FF_TS_SCHED_HW;
  3010. reg |= GEN7_FF_VS_SCHED_HW;
  3011. reg |= GEN7_FF_DS_SCHED_HW;
  3012. I915_WRITE(GEN7_FF_THREAD_MODE, reg);
  3013. }
  3014. static void lpt_init_clock_gating(struct drm_device *dev)
  3015. {
  3016. struct drm_i915_private *dev_priv = dev->dev_private;
  3017. /*
  3018. * TODO: this bit should only be enabled when really needed, then
  3019. * disabled when not needed anymore in order to save power.
  3020. */
  3021. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
  3022. I915_WRITE(SOUTH_DSPCLK_GATE_D,
  3023. I915_READ(SOUTH_DSPCLK_GATE_D) |
  3024. PCH_LP_PARTITION_LEVEL_DISABLE);
  3025. }
  3026. static void haswell_init_clock_gating(struct drm_device *dev)
  3027. {
  3028. struct drm_i915_private *dev_priv = dev->dev_private;
  3029. int pipe;
  3030. I915_WRITE(WM3_LP_ILK, 0);
  3031. I915_WRITE(WM2_LP_ILK, 0);
  3032. I915_WRITE(WM1_LP_ILK, 0);
  3033. /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  3034. * This implements the WaDisableRCZUnitClockGating workaround.
  3035. */
  3036. I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  3037. /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
  3038. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  3039. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  3040. /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
  3041. I915_WRITE(GEN7_L3CNTLREG1,
  3042. GEN7_WA_FOR_GEN7_L3_CONTROL);
  3043. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
  3044. GEN7_WA_L3_CHICKEN_MODE);
  3045. /* This is required by WaCatErrorRejectionIssue */
  3046. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  3047. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  3048. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  3049. for_each_pipe(pipe) {
  3050. I915_WRITE(DSPCNTR(pipe),
  3051. I915_READ(DSPCNTR(pipe)) |
  3052. DISPPLANE_TRICKLE_FEED_DISABLE);
  3053. intel_flush_display_plane(dev_priv, pipe);
  3054. }
  3055. gen7_setup_fixed_func_scheduler(dev_priv);
  3056. /* WaDisable4x2SubspanOptimization */
  3057. I915_WRITE(CACHE_MODE_1,
  3058. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  3059. /* WaMbcDriverBootEnable */
  3060. I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
  3061. GEN6_MBCTL_ENABLE_BOOT_FETCH);
  3062. /* XXX: This is a workaround for early silicon revisions and should be
  3063. * removed later.
  3064. */
  3065. I915_WRITE(WM_DBG,
  3066. I915_READ(WM_DBG) |
  3067. WM_DBG_DISALLOW_MULTIPLE_LP |
  3068. WM_DBG_DISALLOW_SPRITE |
  3069. WM_DBG_DISALLOW_MAXFIFO);
  3070. lpt_init_clock_gating(dev);
  3071. }
  3072. static void ivybridge_init_clock_gating(struct drm_device *dev)
  3073. {
  3074. struct drm_i915_private *dev_priv = dev->dev_private;
  3075. int pipe;
  3076. uint32_t snpcr;
  3077. I915_WRITE(WM3_LP_ILK, 0);
  3078. I915_WRITE(WM2_LP_ILK, 0);
  3079. I915_WRITE(WM1_LP_ILK, 0);
  3080. I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
  3081. /* WaDisableEarlyCull */
  3082. I915_WRITE(_3D_CHICKEN3,
  3083. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  3084. /* WaDisableBackToBackFlipFix */
  3085. I915_WRITE(IVB_CHICKEN3,
  3086. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  3087. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  3088. /* WaDisablePSDDualDispatchEnable */
  3089. if (IS_IVB_GT1(dev))
  3090. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  3091. _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  3092. else
  3093. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
  3094. _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  3095. /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
  3096. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  3097. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  3098. /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
  3099. I915_WRITE(GEN7_L3CNTLREG1,
  3100. GEN7_WA_FOR_GEN7_L3_CONTROL);
  3101. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
  3102. GEN7_WA_L3_CHICKEN_MODE);
  3103. if (IS_IVB_GT1(dev))
  3104. I915_WRITE(GEN7_ROW_CHICKEN2,
  3105. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  3106. else
  3107. I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
  3108. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  3109. /* WaForceL3Serialization */
  3110. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  3111. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  3112. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  3113. * gating disable must be set. Failure to set it results in
  3114. * flickering pixels due to Z write ordering failures after
  3115. * some amount of runtime in the Mesa "fire" demo, and Unigine
  3116. * Sanctuary and Tropics, and apparently anything else with
  3117. * alpha test or pixel discard.
  3118. *
  3119. * According to the spec, bit 11 (RCCUNIT) must also be set,
  3120. * but we didn't debug actual testcases to find it out.
  3121. *
  3122. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  3123. * This implements the WaDisableRCZUnitClockGating workaround.
  3124. */
  3125. I915_WRITE(GEN6_UCGCTL2,
  3126. GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
  3127. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  3128. /* This is required by WaCatErrorRejectionIssue */
  3129. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  3130. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  3131. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  3132. for_each_pipe(pipe) {
  3133. I915_WRITE(DSPCNTR(pipe),
  3134. I915_READ(DSPCNTR(pipe)) |
  3135. DISPPLANE_TRICKLE_FEED_DISABLE);
  3136. intel_flush_display_plane(dev_priv, pipe);
  3137. }
  3138. /* WaMbcDriverBootEnable */
  3139. I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
  3140. GEN6_MBCTL_ENABLE_BOOT_FETCH);
  3141. gen7_setup_fixed_func_scheduler(dev_priv);
  3142. /* WaDisable4x2SubspanOptimization */
  3143. I915_WRITE(CACHE_MODE_1,
  3144. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  3145. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  3146. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  3147. snpcr |= GEN6_MBC_SNPCR_MED;
  3148. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  3149. cpt_init_clock_gating(dev);
  3150. }
  3151. static void valleyview_init_clock_gating(struct drm_device *dev)
  3152. {
  3153. struct drm_i915_private *dev_priv = dev->dev_private;
  3154. int pipe;
  3155. I915_WRITE(WM3_LP_ILK, 0);
  3156. I915_WRITE(WM2_LP_ILK, 0);
  3157. I915_WRITE(WM1_LP_ILK, 0);
  3158. I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
  3159. /* WaDisableEarlyCull */
  3160. I915_WRITE(_3D_CHICKEN3,
  3161. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  3162. /* WaDisableBackToBackFlipFix */
  3163. I915_WRITE(IVB_CHICKEN3,
  3164. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  3165. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  3166. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  3167. _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  3168. /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
  3169. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  3170. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  3171. /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
  3172. I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
  3173. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
  3174. /* WaForceL3Serialization */
  3175. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  3176. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  3177. /* WaDisableDopClockGating */
  3178. I915_WRITE(GEN7_ROW_CHICKEN2,
  3179. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  3180. /* WaForceL3Serialization */
  3181. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  3182. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  3183. /* This is required by WaCatErrorRejectionIssue */
  3184. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  3185. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  3186. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  3187. /* WaMbcDriverBootEnable */
  3188. I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
  3189. GEN6_MBCTL_ENABLE_BOOT_FETCH);
  3190. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  3191. * gating disable must be set. Failure to set it results in
  3192. * flickering pixels due to Z write ordering failures after
  3193. * some amount of runtime in the Mesa "fire" demo, and Unigine
  3194. * Sanctuary and Tropics, and apparently anything else with
  3195. * alpha test or pixel discard.
  3196. *
  3197. * According to the spec, bit 11 (RCCUNIT) must also be set,
  3198. * but we didn't debug actual testcases to find it out.
  3199. *
  3200. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  3201. * This implements the WaDisableRCZUnitClockGating workaround.
  3202. *
  3203. * Also apply WaDisableVDSUnitClockGating and
  3204. * WaDisableRCPBUnitClockGating.
  3205. */
  3206. I915_WRITE(GEN6_UCGCTL2,
  3207. GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
  3208. GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
  3209. GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
  3210. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  3211. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  3212. I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
  3213. for_each_pipe(pipe) {
  3214. I915_WRITE(DSPCNTR(pipe),
  3215. I915_READ(DSPCNTR(pipe)) |
  3216. DISPPLANE_TRICKLE_FEED_DISABLE);
  3217. intel_flush_display_plane(dev_priv, pipe);
  3218. }
  3219. I915_WRITE(CACHE_MODE_1,
  3220. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  3221. /*
  3222. * On ValleyView, the GUnit needs to signal the GT
  3223. * when flip and other events complete. So enable
  3224. * all the GUnit->GT interrupts here
  3225. */
  3226. I915_WRITE(VLV_DPFLIPSTAT, PIPEB_LINE_COMPARE_INT_EN |
  3227. PIPEB_HLINE_INT_EN | PIPEB_VBLANK_INT_EN |
  3228. SPRITED_FLIPDONE_INT_EN | SPRITEC_FLIPDONE_INT_EN |
  3229. PLANEB_FLIPDONE_INT_EN | PIPEA_LINE_COMPARE_INT_EN |
  3230. PIPEA_HLINE_INT_EN | PIPEA_VBLANK_INT_EN |
  3231. SPRITEB_FLIPDONE_INT_EN | SPRITEA_FLIPDONE_INT_EN |
  3232. PLANEA_FLIPDONE_INT_EN);
  3233. /*
  3234. * WaDisableVLVClockGating_VBIIssue
  3235. * Disable clock gating on th GCFG unit to prevent a delay
  3236. * in the reporting of vblank events.
  3237. */
  3238. I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
  3239. }
  3240. static void g4x_init_clock_gating(struct drm_device *dev)
  3241. {
  3242. struct drm_i915_private *dev_priv = dev->dev_private;
  3243. uint32_t dspclk_gate;
  3244. I915_WRITE(RENCLK_GATE_D1, 0);
  3245. I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
  3246. GS_UNIT_CLOCK_GATE_DISABLE |
  3247. CL_UNIT_CLOCK_GATE_DISABLE);
  3248. I915_WRITE(RAMCLK_GATE_D, 0);
  3249. dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
  3250. OVRUNIT_CLOCK_GATE_DISABLE |
  3251. OVCUNIT_CLOCK_GATE_DISABLE;
  3252. if (IS_GM45(dev))
  3253. dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
  3254. I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
  3255. /* WaDisableRenderCachePipelinedFlush */
  3256. I915_WRITE(CACHE_MODE_0,
  3257. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  3258. }
  3259. static void crestline_init_clock_gating(struct drm_device *dev)
  3260. {
  3261. struct drm_i915_private *dev_priv = dev->dev_private;
  3262. I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
  3263. I915_WRITE(RENCLK_GATE_D2, 0);
  3264. I915_WRITE(DSPCLK_GATE_D, 0);
  3265. I915_WRITE(RAMCLK_GATE_D, 0);
  3266. I915_WRITE16(DEUC, 0);
  3267. }
  3268. static void broadwater_init_clock_gating(struct drm_device *dev)
  3269. {
  3270. struct drm_i915_private *dev_priv = dev->dev_private;
  3271. I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
  3272. I965_RCC_CLOCK_GATE_DISABLE |
  3273. I965_RCPB_CLOCK_GATE_DISABLE |
  3274. I965_ISC_CLOCK_GATE_DISABLE |
  3275. I965_FBC_CLOCK_GATE_DISABLE);
  3276. I915_WRITE(RENCLK_GATE_D2, 0);
  3277. }
  3278. static void gen3_init_clock_gating(struct drm_device *dev)
  3279. {
  3280. struct drm_i915_private *dev_priv = dev->dev_private;
  3281. u32 dstate = I915_READ(D_STATE);
  3282. dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
  3283. DSTATE_DOT_CLOCK_GATING;
  3284. I915_WRITE(D_STATE, dstate);
  3285. if (IS_PINEVIEW(dev))
  3286. I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
  3287. /* IIR "flip pending" means done if this bit is set */
  3288. I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
  3289. }
  3290. static void i85x_init_clock_gating(struct drm_device *dev)
  3291. {
  3292. struct drm_i915_private *dev_priv = dev->dev_private;
  3293. I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
  3294. }
  3295. static void i830_init_clock_gating(struct drm_device *dev)
  3296. {
  3297. struct drm_i915_private *dev_priv = dev->dev_private;
  3298. I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
  3299. }
  3300. void intel_init_clock_gating(struct drm_device *dev)
  3301. {
  3302. struct drm_i915_private *dev_priv = dev->dev_private;
  3303. dev_priv->display.init_clock_gating(dev);
  3304. }
  3305. /* Starting with Haswell, we have different power wells for
  3306. * different parts of the GPU. This attempts to enable them all.
  3307. */
  3308. void intel_init_power_wells(struct drm_device *dev)
  3309. {
  3310. struct drm_i915_private *dev_priv = dev->dev_private;
  3311. unsigned long power_wells[] = {
  3312. HSW_PWR_WELL_CTL1,
  3313. HSW_PWR_WELL_CTL2,
  3314. HSW_PWR_WELL_CTL4
  3315. };
  3316. int i;
  3317. if (!IS_HASWELL(dev))
  3318. return;
  3319. mutex_lock(&dev->struct_mutex);
  3320. for (i = 0; i < ARRAY_SIZE(power_wells); i++) {
  3321. int well = I915_READ(power_wells[i]);
  3322. if ((well & HSW_PWR_WELL_STATE) == 0) {
  3323. I915_WRITE(power_wells[i], well & HSW_PWR_WELL_ENABLE);
  3324. if (wait_for((I915_READ(power_wells[i]) & HSW_PWR_WELL_STATE), 20))
  3325. DRM_ERROR("Error enabling power well %lx\n", power_wells[i]);
  3326. }
  3327. }
  3328. mutex_unlock(&dev->struct_mutex);
  3329. }
  3330. /* Set up chip specific power management-related functions */
  3331. void intel_init_pm(struct drm_device *dev)
  3332. {
  3333. struct drm_i915_private *dev_priv = dev->dev_private;
  3334. if (I915_HAS_FBC(dev)) {
  3335. if (HAS_PCH_SPLIT(dev)) {
  3336. dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
  3337. dev_priv->display.enable_fbc = ironlake_enable_fbc;
  3338. dev_priv->display.disable_fbc = ironlake_disable_fbc;
  3339. } else if (IS_GM45(dev)) {
  3340. dev_priv->display.fbc_enabled = g4x_fbc_enabled;
  3341. dev_priv->display.enable_fbc = g4x_enable_fbc;
  3342. dev_priv->display.disable_fbc = g4x_disable_fbc;
  3343. } else if (IS_CRESTLINE(dev)) {
  3344. dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
  3345. dev_priv->display.enable_fbc = i8xx_enable_fbc;
  3346. dev_priv->display.disable_fbc = i8xx_disable_fbc;
  3347. }
  3348. /* 855GM needs testing */
  3349. }
  3350. /* For cxsr */
  3351. if (IS_PINEVIEW(dev))
  3352. i915_pineview_get_mem_freq(dev);
  3353. else if (IS_GEN5(dev))
  3354. i915_ironlake_get_mem_freq(dev);
  3355. /* For FIFO watermark updates */
  3356. if (HAS_PCH_SPLIT(dev)) {
  3357. if (IS_GEN5(dev)) {
  3358. if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
  3359. dev_priv->display.update_wm = ironlake_update_wm;
  3360. else {
  3361. DRM_DEBUG_KMS("Failed to get proper latency. "
  3362. "Disable CxSR\n");
  3363. dev_priv->display.update_wm = NULL;
  3364. }
  3365. dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
  3366. } else if (IS_GEN6(dev)) {
  3367. if (SNB_READ_WM0_LATENCY()) {
  3368. dev_priv->display.update_wm = sandybridge_update_wm;
  3369. dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
  3370. } else {
  3371. DRM_DEBUG_KMS("Failed to read display plane latency. "
  3372. "Disable CxSR\n");
  3373. dev_priv->display.update_wm = NULL;
  3374. }
  3375. dev_priv->display.init_clock_gating = gen6_init_clock_gating;
  3376. } else if (IS_IVYBRIDGE(dev)) {
  3377. /* FIXME: detect B0+ stepping and use auto training */
  3378. if (SNB_READ_WM0_LATENCY()) {
  3379. dev_priv->display.update_wm = sandybridge_update_wm;
  3380. dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
  3381. } else {
  3382. DRM_DEBUG_KMS("Failed to read display plane latency. "
  3383. "Disable CxSR\n");
  3384. dev_priv->display.update_wm = NULL;
  3385. }
  3386. dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
  3387. } else if (IS_HASWELL(dev)) {
  3388. if (SNB_READ_WM0_LATENCY()) {
  3389. dev_priv->display.update_wm = sandybridge_update_wm;
  3390. dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
  3391. dev_priv->display.update_linetime_wm = haswell_update_linetime_wm;
  3392. } else {
  3393. DRM_DEBUG_KMS("Failed to read display plane latency. "
  3394. "Disable CxSR\n");
  3395. dev_priv->display.update_wm = NULL;
  3396. }
  3397. dev_priv->display.init_clock_gating = haswell_init_clock_gating;
  3398. } else
  3399. dev_priv->display.update_wm = NULL;
  3400. } else if (IS_VALLEYVIEW(dev)) {
  3401. dev_priv->display.update_wm = valleyview_update_wm;
  3402. dev_priv->display.init_clock_gating =
  3403. valleyview_init_clock_gating;
  3404. } else if (IS_PINEVIEW(dev)) {
  3405. if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
  3406. dev_priv->is_ddr3,
  3407. dev_priv->fsb_freq,
  3408. dev_priv->mem_freq)) {
  3409. DRM_INFO("failed to find known CxSR latency "
  3410. "(found ddr%s fsb freq %d, mem freq %d), "
  3411. "disabling CxSR\n",
  3412. (dev_priv->is_ddr3 == 1) ? "3" : "2",
  3413. dev_priv->fsb_freq, dev_priv->mem_freq);
  3414. /* Disable CxSR and never update its watermark again */
  3415. pineview_disable_cxsr(dev);
  3416. dev_priv->display.update_wm = NULL;
  3417. } else
  3418. dev_priv->display.update_wm = pineview_update_wm;
  3419. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  3420. } else if (IS_G4X(dev)) {
  3421. dev_priv->display.update_wm = g4x_update_wm;
  3422. dev_priv->display.init_clock_gating = g4x_init_clock_gating;
  3423. } else if (IS_GEN4(dev)) {
  3424. dev_priv->display.update_wm = i965_update_wm;
  3425. if (IS_CRESTLINE(dev))
  3426. dev_priv->display.init_clock_gating = crestline_init_clock_gating;
  3427. else if (IS_BROADWATER(dev))
  3428. dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
  3429. } else if (IS_GEN3(dev)) {
  3430. dev_priv->display.update_wm = i9xx_update_wm;
  3431. dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
  3432. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  3433. } else if (IS_I865G(dev)) {
  3434. dev_priv->display.update_wm = i830_update_wm;
  3435. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  3436. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  3437. } else if (IS_I85X(dev)) {
  3438. dev_priv->display.update_wm = i9xx_update_wm;
  3439. dev_priv->display.get_fifo_size = i85x_get_fifo_size;
  3440. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  3441. } else {
  3442. dev_priv->display.update_wm = i830_update_wm;
  3443. dev_priv->display.init_clock_gating = i830_init_clock_gating;
  3444. if (IS_845G(dev))
  3445. dev_priv->display.get_fifo_size = i845_get_fifo_size;
  3446. else
  3447. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  3448. }
  3449. }
  3450. static void __gen6_gt_wait_for_thread_c0(struct drm_i915_private *dev_priv)
  3451. {
  3452. u32 gt_thread_status_mask;
  3453. if (IS_HASWELL(dev_priv->dev))
  3454. gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK_HSW;
  3455. else
  3456. gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK;
  3457. /* w/a for a sporadic read returning 0 by waiting for the GT
  3458. * thread to wake up.
  3459. */
  3460. if (wait_for_atomic_us((I915_READ_NOTRACE(GEN6_GT_THREAD_STATUS_REG) & gt_thread_status_mask) == 0, 500))
  3461. DRM_ERROR("GT thread status wait timed out\n");
  3462. }
  3463. static void __gen6_gt_force_wake_reset(struct drm_i915_private *dev_priv)
  3464. {
  3465. I915_WRITE_NOTRACE(FORCEWAKE, 0);
  3466. POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
  3467. }
  3468. static void __gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
  3469. {
  3470. u32 forcewake_ack;
  3471. if (IS_HASWELL(dev_priv->dev))
  3472. forcewake_ack = FORCEWAKE_ACK_HSW;
  3473. else
  3474. forcewake_ack = FORCEWAKE_ACK;
  3475. if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1) == 0,
  3476. FORCEWAKE_ACK_TIMEOUT_MS))
  3477. DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
  3478. I915_WRITE_NOTRACE(FORCEWAKE, FORCEWAKE_KERNEL);
  3479. POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
  3480. if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1),
  3481. FORCEWAKE_ACK_TIMEOUT_MS))
  3482. DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
  3483. __gen6_gt_wait_for_thread_c0(dev_priv);
  3484. }
  3485. static void __gen6_gt_force_wake_mt_reset(struct drm_i915_private *dev_priv)
  3486. {
  3487. I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(0xffff));
  3488. POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
  3489. }
  3490. static void __gen6_gt_force_wake_mt_get(struct drm_i915_private *dev_priv)
  3491. {
  3492. u32 forcewake_ack;
  3493. if (IS_HASWELL(dev_priv->dev))
  3494. forcewake_ack = FORCEWAKE_ACK_HSW;
  3495. else
  3496. forcewake_ack = FORCEWAKE_MT_ACK;
  3497. if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1) == 0,
  3498. FORCEWAKE_ACK_TIMEOUT_MS))
  3499. DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
  3500. I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
  3501. POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
  3502. if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1),
  3503. FORCEWAKE_ACK_TIMEOUT_MS))
  3504. DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
  3505. __gen6_gt_wait_for_thread_c0(dev_priv);
  3506. }
  3507. /*
  3508. * Generally this is called implicitly by the register read function. However,
  3509. * if some sequence requires the GT to not power down then this function should
  3510. * be called at the beginning of the sequence followed by a call to
  3511. * gen6_gt_force_wake_put() at the end of the sequence.
  3512. */
  3513. void gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
  3514. {
  3515. unsigned long irqflags;
  3516. spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
  3517. if (dev_priv->forcewake_count++ == 0)
  3518. dev_priv->gt.force_wake_get(dev_priv);
  3519. spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
  3520. }
  3521. void gen6_gt_check_fifodbg(struct drm_i915_private *dev_priv)
  3522. {
  3523. u32 gtfifodbg;
  3524. gtfifodbg = I915_READ_NOTRACE(GTFIFODBG);
  3525. if (WARN(gtfifodbg & GT_FIFO_CPU_ERROR_MASK,
  3526. "MMIO read or write has been dropped %x\n", gtfifodbg))
  3527. I915_WRITE_NOTRACE(GTFIFODBG, GT_FIFO_CPU_ERROR_MASK);
  3528. }
  3529. static void __gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
  3530. {
  3531. I915_WRITE_NOTRACE(FORCEWAKE, 0);
  3532. /* gen6_gt_check_fifodbg doubles as the POSTING_READ */
  3533. gen6_gt_check_fifodbg(dev_priv);
  3534. }
  3535. static void __gen6_gt_force_wake_mt_put(struct drm_i915_private *dev_priv)
  3536. {
  3537. I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
  3538. /* gen6_gt_check_fifodbg doubles as the POSTING_READ */
  3539. gen6_gt_check_fifodbg(dev_priv);
  3540. }
  3541. /*
  3542. * see gen6_gt_force_wake_get()
  3543. */
  3544. void gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
  3545. {
  3546. unsigned long irqflags;
  3547. spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
  3548. if (--dev_priv->forcewake_count == 0)
  3549. dev_priv->gt.force_wake_put(dev_priv);
  3550. spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
  3551. }
  3552. int __gen6_gt_wait_for_fifo(struct drm_i915_private *dev_priv)
  3553. {
  3554. int ret = 0;
  3555. if (dev_priv->gt_fifo_count < GT_FIFO_NUM_RESERVED_ENTRIES) {
  3556. int loop = 500;
  3557. u32 fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
  3558. while (fifo <= GT_FIFO_NUM_RESERVED_ENTRIES && loop--) {
  3559. udelay(10);
  3560. fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
  3561. }
  3562. if (WARN_ON(loop < 0 && fifo <= GT_FIFO_NUM_RESERVED_ENTRIES))
  3563. ++ret;
  3564. dev_priv->gt_fifo_count = fifo;
  3565. }
  3566. dev_priv->gt_fifo_count--;
  3567. return ret;
  3568. }
  3569. static void vlv_force_wake_reset(struct drm_i915_private *dev_priv)
  3570. {
  3571. I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(0xffff));
  3572. }
  3573. static void vlv_force_wake_get(struct drm_i915_private *dev_priv)
  3574. {
  3575. if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & 1) == 0,
  3576. FORCEWAKE_ACK_TIMEOUT_MS))
  3577. DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
  3578. I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
  3579. if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & 1),
  3580. FORCEWAKE_ACK_TIMEOUT_MS))
  3581. DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
  3582. __gen6_gt_wait_for_thread_c0(dev_priv);
  3583. }
  3584. static void vlv_force_wake_put(struct drm_i915_private *dev_priv)
  3585. {
  3586. I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
  3587. /* The below doubles as a POSTING_READ */
  3588. gen6_gt_check_fifodbg(dev_priv);
  3589. }
  3590. void intel_gt_reset(struct drm_device *dev)
  3591. {
  3592. struct drm_i915_private *dev_priv = dev->dev_private;
  3593. if (IS_VALLEYVIEW(dev)) {
  3594. vlv_force_wake_reset(dev_priv);
  3595. } else if (INTEL_INFO(dev)->gen >= 6) {
  3596. __gen6_gt_force_wake_reset(dev_priv);
  3597. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  3598. __gen6_gt_force_wake_mt_reset(dev_priv);
  3599. }
  3600. }
  3601. void intel_gt_init(struct drm_device *dev)
  3602. {
  3603. struct drm_i915_private *dev_priv = dev->dev_private;
  3604. spin_lock_init(&dev_priv->gt_lock);
  3605. intel_gt_reset(dev);
  3606. if (IS_VALLEYVIEW(dev)) {
  3607. dev_priv->gt.force_wake_get = vlv_force_wake_get;
  3608. dev_priv->gt.force_wake_put = vlv_force_wake_put;
  3609. } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  3610. dev_priv->gt.force_wake_get = __gen6_gt_force_wake_mt_get;
  3611. dev_priv->gt.force_wake_put = __gen6_gt_force_wake_mt_put;
  3612. } else if (IS_GEN6(dev)) {
  3613. dev_priv->gt.force_wake_get = __gen6_gt_force_wake_get;
  3614. dev_priv->gt.force_wake_put = __gen6_gt_force_wake_put;
  3615. }
  3616. INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
  3617. intel_gen6_powersave_work);
  3618. }
  3619. int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
  3620. {
  3621. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3622. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  3623. DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
  3624. return -EAGAIN;
  3625. }
  3626. I915_WRITE(GEN6_PCODE_DATA, *val);
  3627. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  3628. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  3629. 500)) {
  3630. DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
  3631. return -ETIMEDOUT;
  3632. }
  3633. *val = I915_READ(GEN6_PCODE_DATA);
  3634. I915_WRITE(GEN6_PCODE_DATA, 0);
  3635. return 0;
  3636. }
  3637. int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
  3638. {
  3639. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3640. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  3641. DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
  3642. return -EAGAIN;
  3643. }
  3644. I915_WRITE(GEN6_PCODE_DATA, val);
  3645. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  3646. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  3647. 500)) {
  3648. DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
  3649. return -ETIMEDOUT;
  3650. }
  3651. I915_WRITE(GEN6_PCODE_DATA, 0);
  3652. return 0;
  3653. }