intel_display.c 249 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/dmi.h>
  27. #include <linux/module.h>
  28. #include <linux/input.h>
  29. #include <linux/i2c.h>
  30. #include <linux/kernel.h>
  31. #include <linux/slab.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/drm_edid.h>
  34. #include <drm/drmP.h>
  35. #include "intel_drv.h"
  36. #include <drm/i915_drm.h>
  37. #include "i915_drv.h"
  38. #include "i915_trace.h"
  39. #include <drm/drm_dp_helper.h>
  40. #include <drm/drm_crtc_helper.h>
  41. #include <linux/dma_remapping.h>
  42. bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
  43. static void intel_increase_pllclock(struct drm_crtc *crtc);
  44. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  45. typedef struct {
  46. /* given values */
  47. int n;
  48. int m1, m2;
  49. int p1, p2;
  50. /* derived values */
  51. int dot;
  52. int vco;
  53. int m;
  54. int p;
  55. } intel_clock_t;
  56. typedef struct {
  57. int min, max;
  58. } intel_range_t;
  59. typedef struct {
  60. int dot_limit;
  61. int p2_slow, p2_fast;
  62. } intel_p2_t;
  63. #define INTEL_P2_NUM 2
  64. typedef struct intel_limit intel_limit_t;
  65. struct intel_limit {
  66. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  67. intel_p2_t p2;
  68. bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
  69. int, int, intel_clock_t *, intel_clock_t *);
  70. };
  71. /* FDI */
  72. #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
  73. int
  74. intel_pch_rawclk(struct drm_device *dev)
  75. {
  76. struct drm_i915_private *dev_priv = dev->dev_private;
  77. WARN_ON(!HAS_PCH_SPLIT(dev));
  78. return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
  79. }
  80. static bool
  81. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  82. int target, int refclk, intel_clock_t *match_clock,
  83. intel_clock_t *best_clock);
  84. static bool
  85. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  86. int target, int refclk, intel_clock_t *match_clock,
  87. intel_clock_t *best_clock);
  88. static bool
  89. intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
  90. int target, int refclk, intel_clock_t *match_clock,
  91. intel_clock_t *best_clock);
  92. static bool
  93. intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
  94. int target, int refclk, intel_clock_t *match_clock,
  95. intel_clock_t *best_clock);
  96. static bool
  97. intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
  98. int target, int refclk, intel_clock_t *match_clock,
  99. intel_clock_t *best_clock);
  100. static inline u32 /* units of 100MHz */
  101. intel_fdi_link_freq(struct drm_device *dev)
  102. {
  103. if (IS_GEN5(dev)) {
  104. struct drm_i915_private *dev_priv = dev->dev_private;
  105. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  106. } else
  107. return 27;
  108. }
  109. static const intel_limit_t intel_limits_i8xx_dvo = {
  110. .dot = { .min = 25000, .max = 350000 },
  111. .vco = { .min = 930000, .max = 1400000 },
  112. .n = { .min = 3, .max = 16 },
  113. .m = { .min = 96, .max = 140 },
  114. .m1 = { .min = 18, .max = 26 },
  115. .m2 = { .min = 6, .max = 16 },
  116. .p = { .min = 4, .max = 128 },
  117. .p1 = { .min = 2, .max = 33 },
  118. .p2 = { .dot_limit = 165000,
  119. .p2_slow = 4, .p2_fast = 2 },
  120. .find_pll = intel_find_best_PLL,
  121. };
  122. static const intel_limit_t intel_limits_i8xx_lvds = {
  123. .dot = { .min = 25000, .max = 350000 },
  124. .vco = { .min = 930000, .max = 1400000 },
  125. .n = { .min = 3, .max = 16 },
  126. .m = { .min = 96, .max = 140 },
  127. .m1 = { .min = 18, .max = 26 },
  128. .m2 = { .min = 6, .max = 16 },
  129. .p = { .min = 4, .max = 128 },
  130. .p1 = { .min = 1, .max = 6 },
  131. .p2 = { .dot_limit = 165000,
  132. .p2_slow = 14, .p2_fast = 7 },
  133. .find_pll = intel_find_best_PLL,
  134. };
  135. static const intel_limit_t intel_limits_i9xx_sdvo = {
  136. .dot = { .min = 20000, .max = 400000 },
  137. .vco = { .min = 1400000, .max = 2800000 },
  138. .n = { .min = 1, .max = 6 },
  139. .m = { .min = 70, .max = 120 },
  140. .m1 = { .min = 10, .max = 22 },
  141. .m2 = { .min = 5, .max = 9 },
  142. .p = { .min = 5, .max = 80 },
  143. .p1 = { .min = 1, .max = 8 },
  144. .p2 = { .dot_limit = 200000,
  145. .p2_slow = 10, .p2_fast = 5 },
  146. .find_pll = intel_find_best_PLL,
  147. };
  148. static const intel_limit_t intel_limits_i9xx_lvds = {
  149. .dot = { .min = 20000, .max = 400000 },
  150. .vco = { .min = 1400000, .max = 2800000 },
  151. .n = { .min = 1, .max = 6 },
  152. .m = { .min = 70, .max = 120 },
  153. .m1 = { .min = 10, .max = 22 },
  154. .m2 = { .min = 5, .max = 9 },
  155. .p = { .min = 7, .max = 98 },
  156. .p1 = { .min = 1, .max = 8 },
  157. .p2 = { .dot_limit = 112000,
  158. .p2_slow = 14, .p2_fast = 7 },
  159. .find_pll = intel_find_best_PLL,
  160. };
  161. static const intel_limit_t intel_limits_g4x_sdvo = {
  162. .dot = { .min = 25000, .max = 270000 },
  163. .vco = { .min = 1750000, .max = 3500000},
  164. .n = { .min = 1, .max = 4 },
  165. .m = { .min = 104, .max = 138 },
  166. .m1 = { .min = 17, .max = 23 },
  167. .m2 = { .min = 5, .max = 11 },
  168. .p = { .min = 10, .max = 30 },
  169. .p1 = { .min = 1, .max = 3},
  170. .p2 = { .dot_limit = 270000,
  171. .p2_slow = 10,
  172. .p2_fast = 10
  173. },
  174. .find_pll = intel_g4x_find_best_PLL,
  175. };
  176. static const intel_limit_t intel_limits_g4x_hdmi = {
  177. .dot = { .min = 22000, .max = 400000 },
  178. .vco = { .min = 1750000, .max = 3500000},
  179. .n = { .min = 1, .max = 4 },
  180. .m = { .min = 104, .max = 138 },
  181. .m1 = { .min = 16, .max = 23 },
  182. .m2 = { .min = 5, .max = 11 },
  183. .p = { .min = 5, .max = 80 },
  184. .p1 = { .min = 1, .max = 8},
  185. .p2 = { .dot_limit = 165000,
  186. .p2_slow = 10, .p2_fast = 5 },
  187. .find_pll = intel_g4x_find_best_PLL,
  188. };
  189. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  190. .dot = { .min = 20000, .max = 115000 },
  191. .vco = { .min = 1750000, .max = 3500000 },
  192. .n = { .min = 1, .max = 3 },
  193. .m = { .min = 104, .max = 138 },
  194. .m1 = { .min = 17, .max = 23 },
  195. .m2 = { .min = 5, .max = 11 },
  196. .p = { .min = 28, .max = 112 },
  197. .p1 = { .min = 2, .max = 8 },
  198. .p2 = { .dot_limit = 0,
  199. .p2_slow = 14, .p2_fast = 14
  200. },
  201. .find_pll = intel_g4x_find_best_PLL,
  202. };
  203. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  204. .dot = { .min = 80000, .max = 224000 },
  205. .vco = { .min = 1750000, .max = 3500000 },
  206. .n = { .min = 1, .max = 3 },
  207. .m = { .min = 104, .max = 138 },
  208. .m1 = { .min = 17, .max = 23 },
  209. .m2 = { .min = 5, .max = 11 },
  210. .p = { .min = 14, .max = 42 },
  211. .p1 = { .min = 2, .max = 6 },
  212. .p2 = { .dot_limit = 0,
  213. .p2_slow = 7, .p2_fast = 7
  214. },
  215. .find_pll = intel_g4x_find_best_PLL,
  216. };
  217. static const intel_limit_t intel_limits_g4x_display_port = {
  218. .dot = { .min = 161670, .max = 227000 },
  219. .vco = { .min = 1750000, .max = 3500000},
  220. .n = { .min = 1, .max = 2 },
  221. .m = { .min = 97, .max = 108 },
  222. .m1 = { .min = 0x10, .max = 0x12 },
  223. .m2 = { .min = 0x05, .max = 0x06 },
  224. .p = { .min = 10, .max = 20 },
  225. .p1 = { .min = 1, .max = 2},
  226. .p2 = { .dot_limit = 0,
  227. .p2_slow = 10, .p2_fast = 10 },
  228. .find_pll = intel_find_pll_g4x_dp,
  229. };
  230. static const intel_limit_t intel_limits_pineview_sdvo = {
  231. .dot = { .min = 20000, .max = 400000},
  232. .vco = { .min = 1700000, .max = 3500000 },
  233. /* Pineview's Ncounter is a ring counter */
  234. .n = { .min = 3, .max = 6 },
  235. .m = { .min = 2, .max = 256 },
  236. /* Pineview only has one combined m divider, which we treat as m2. */
  237. .m1 = { .min = 0, .max = 0 },
  238. .m2 = { .min = 0, .max = 254 },
  239. .p = { .min = 5, .max = 80 },
  240. .p1 = { .min = 1, .max = 8 },
  241. .p2 = { .dot_limit = 200000,
  242. .p2_slow = 10, .p2_fast = 5 },
  243. .find_pll = intel_find_best_PLL,
  244. };
  245. static const intel_limit_t intel_limits_pineview_lvds = {
  246. .dot = { .min = 20000, .max = 400000 },
  247. .vco = { .min = 1700000, .max = 3500000 },
  248. .n = { .min = 3, .max = 6 },
  249. .m = { .min = 2, .max = 256 },
  250. .m1 = { .min = 0, .max = 0 },
  251. .m2 = { .min = 0, .max = 254 },
  252. .p = { .min = 7, .max = 112 },
  253. .p1 = { .min = 1, .max = 8 },
  254. .p2 = { .dot_limit = 112000,
  255. .p2_slow = 14, .p2_fast = 14 },
  256. .find_pll = intel_find_best_PLL,
  257. };
  258. /* Ironlake / Sandybridge
  259. *
  260. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  261. * the range value for them is (actual_value - 2).
  262. */
  263. static const intel_limit_t intel_limits_ironlake_dac = {
  264. .dot = { .min = 25000, .max = 350000 },
  265. .vco = { .min = 1760000, .max = 3510000 },
  266. .n = { .min = 1, .max = 5 },
  267. .m = { .min = 79, .max = 127 },
  268. .m1 = { .min = 12, .max = 22 },
  269. .m2 = { .min = 5, .max = 9 },
  270. .p = { .min = 5, .max = 80 },
  271. .p1 = { .min = 1, .max = 8 },
  272. .p2 = { .dot_limit = 225000,
  273. .p2_slow = 10, .p2_fast = 5 },
  274. .find_pll = intel_g4x_find_best_PLL,
  275. };
  276. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  277. .dot = { .min = 25000, .max = 350000 },
  278. .vco = { .min = 1760000, .max = 3510000 },
  279. .n = { .min = 1, .max = 3 },
  280. .m = { .min = 79, .max = 118 },
  281. .m1 = { .min = 12, .max = 22 },
  282. .m2 = { .min = 5, .max = 9 },
  283. .p = { .min = 28, .max = 112 },
  284. .p1 = { .min = 2, .max = 8 },
  285. .p2 = { .dot_limit = 225000,
  286. .p2_slow = 14, .p2_fast = 14 },
  287. .find_pll = intel_g4x_find_best_PLL,
  288. };
  289. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  290. .dot = { .min = 25000, .max = 350000 },
  291. .vco = { .min = 1760000, .max = 3510000 },
  292. .n = { .min = 1, .max = 3 },
  293. .m = { .min = 79, .max = 127 },
  294. .m1 = { .min = 12, .max = 22 },
  295. .m2 = { .min = 5, .max = 9 },
  296. .p = { .min = 14, .max = 56 },
  297. .p1 = { .min = 2, .max = 8 },
  298. .p2 = { .dot_limit = 225000,
  299. .p2_slow = 7, .p2_fast = 7 },
  300. .find_pll = intel_g4x_find_best_PLL,
  301. };
  302. /* LVDS 100mhz refclk limits. */
  303. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  304. .dot = { .min = 25000, .max = 350000 },
  305. .vco = { .min = 1760000, .max = 3510000 },
  306. .n = { .min = 1, .max = 2 },
  307. .m = { .min = 79, .max = 126 },
  308. .m1 = { .min = 12, .max = 22 },
  309. .m2 = { .min = 5, .max = 9 },
  310. .p = { .min = 28, .max = 112 },
  311. .p1 = { .min = 2, .max = 8 },
  312. .p2 = { .dot_limit = 225000,
  313. .p2_slow = 14, .p2_fast = 14 },
  314. .find_pll = intel_g4x_find_best_PLL,
  315. };
  316. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  317. .dot = { .min = 25000, .max = 350000 },
  318. .vco = { .min = 1760000, .max = 3510000 },
  319. .n = { .min = 1, .max = 3 },
  320. .m = { .min = 79, .max = 126 },
  321. .m1 = { .min = 12, .max = 22 },
  322. .m2 = { .min = 5, .max = 9 },
  323. .p = { .min = 14, .max = 42 },
  324. .p1 = { .min = 2, .max = 6 },
  325. .p2 = { .dot_limit = 225000,
  326. .p2_slow = 7, .p2_fast = 7 },
  327. .find_pll = intel_g4x_find_best_PLL,
  328. };
  329. static const intel_limit_t intel_limits_ironlake_display_port = {
  330. .dot = { .min = 25000, .max = 350000 },
  331. .vco = { .min = 1760000, .max = 3510000},
  332. .n = { .min = 1, .max = 2 },
  333. .m = { .min = 81, .max = 90 },
  334. .m1 = { .min = 12, .max = 22 },
  335. .m2 = { .min = 5, .max = 9 },
  336. .p = { .min = 10, .max = 20 },
  337. .p1 = { .min = 1, .max = 2},
  338. .p2 = { .dot_limit = 0,
  339. .p2_slow = 10, .p2_fast = 10 },
  340. .find_pll = intel_find_pll_ironlake_dp,
  341. };
  342. static const intel_limit_t intel_limits_vlv_dac = {
  343. .dot = { .min = 25000, .max = 270000 },
  344. .vco = { .min = 4000000, .max = 6000000 },
  345. .n = { .min = 1, .max = 7 },
  346. .m = { .min = 22, .max = 450 }, /* guess */
  347. .m1 = { .min = 2, .max = 3 },
  348. .m2 = { .min = 11, .max = 156 },
  349. .p = { .min = 10, .max = 30 },
  350. .p1 = { .min = 2, .max = 3 },
  351. .p2 = { .dot_limit = 270000,
  352. .p2_slow = 2, .p2_fast = 20 },
  353. .find_pll = intel_vlv_find_best_pll,
  354. };
  355. static const intel_limit_t intel_limits_vlv_hdmi = {
  356. .dot = { .min = 20000, .max = 165000 },
  357. .vco = { .min = 4000000, .max = 5994000},
  358. .n = { .min = 1, .max = 7 },
  359. .m = { .min = 60, .max = 300 }, /* guess */
  360. .m1 = { .min = 2, .max = 3 },
  361. .m2 = { .min = 11, .max = 156 },
  362. .p = { .min = 10, .max = 30 },
  363. .p1 = { .min = 2, .max = 3 },
  364. .p2 = { .dot_limit = 270000,
  365. .p2_slow = 2, .p2_fast = 20 },
  366. .find_pll = intel_vlv_find_best_pll,
  367. };
  368. static const intel_limit_t intel_limits_vlv_dp = {
  369. .dot = { .min = 25000, .max = 270000 },
  370. .vco = { .min = 4000000, .max = 6000000 },
  371. .n = { .min = 1, .max = 7 },
  372. .m = { .min = 22, .max = 450 },
  373. .m1 = { .min = 2, .max = 3 },
  374. .m2 = { .min = 11, .max = 156 },
  375. .p = { .min = 10, .max = 30 },
  376. .p1 = { .min = 2, .max = 3 },
  377. .p2 = { .dot_limit = 270000,
  378. .p2_slow = 2, .p2_fast = 20 },
  379. .find_pll = intel_vlv_find_best_pll,
  380. };
  381. u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
  382. {
  383. unsigned long flags;
  384. u32 val = 0;
  385. spin_lock_irqsave(&dev_priv->dpio_lock, flags);
  386. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  387. DRM_ERROR("DPIO idle wait timed out\n");
  388. goto out_unlock;
  389. }
  390. I915_WRITE(DPIO_REG, reg);
  391. I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
  392. DPIO_BYTE);
  393. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  394. DRM_ERROR("DPIO read wait timed out\n");
  395. goto out_unlock;
  396. }
  397. val = I915_READ(DPIO_DATA);
  398. out_unlock:
  399. spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
  400. return val;
  401. }
  402. static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
  403. u32 val)
  404. {
  405. unsigned long flags;
  406. spin_lock_irqsave(&dev_priv->dpio_lock, flags);
  407. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  408. DRM_ERROR("DPIO idle wait timed out\n");
  409. goto out_unlock;
  410. }
  411. I915_WRITE(DPIO_DATA, val);
  412. I915_WRITE(DPIO_REG, reg);
  413. I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
  414. DPIO_BYTE);
  415. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
  416. DRM_ERROR("DPIO write wait timed out\n");
  417. out_unlock:
  418. spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
  419. }
  420. static void vlv_init_dpio(struct drm_device *dev)
  421. {
  422. struct drm_i915_private *dev_priv = dev->dev_private;
  423. /* Reset the DPIO config */
  424. I915_WRITE(DPIO_CTL, 0);
  425. POSTING_READ(DPIO_CTL);
  426. I915_WRITE(DPIO_CTL, 1);
  427. POSTING_READ(DPIO_CTL);
  428. }
  429. static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
  430. {
  431. DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
  432. return 1;
  433. }
  434. static const struct dmi_system_id intel_dual_link_lvds[] = {
  435. {
  436. .callback = intel_dual_link_lvds_callback,
  437. .ident = "Apple MacBook Pro (Core i5/i7 Series)",
  438. .matches = {
  439. DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
  440. DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
  441. },
  442. },
  443. { } /* terminating entry */
  444. };
  445. static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
  446. unsigned int reg)
  447. {
  448. unsigned int val;
  449. /* use the module option value if specified */
  450. if (i915_lvds_channel_mode > 0)
  451. return i915_lvds_channel_mode == 2;
  452. if (dmi_check_system(intel_dual_link_lvds))
  453. return true;
  454. if (dev_priv->lvds_val)
  455. val = dev_priv->lvds_val;
  456. else {
  457. /* BIOS should set the proper LVDS register value at boot, but
  458. * in reality, it doesn't set the value when the lid is closed;
  459. * we need to check "the value to be set" in VBT when LVDS
  460. * register is uninitialized.
  461. */
  462. val = I915_READ(reg);
  463. if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
  464. val = dev_priv->bios_lvds_val;
  465. dev_priv->lvds_val = val;
  466. }
  467. return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
  468. }
  469. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  470. int refclk)
  471. {
  472. struct drm_device *dev = crtc->dev;
  473. struct drm_i915_private *dev_priv = dev->dev_private;
  474. const intel_limit_t *limit;
  475. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  476. if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
  477. /* LVDS dual channel */
  478. if (refclk == 100000)
  479. limit = &intel_limits_ironlake_dual_lvds_100m;
  480. else
  481. limit = &intel_limits_ironlake_dual_lvds;
  482. } else {
  483. if (refclk == 100000)
  484. limit = &intel_limits_ironlake_single_lvds_100m;
  485. else
  486. limit = &intel_limits_ironlake_single_lvds;
  487. }
  488. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  489. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
  490. limit = &intel_limits_ironlake_display_port;
  491. else
  492. limit = &intel_limits_ironlake_dac;
  493. return limit;
  494. }
  495. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  496. {
  497. struct drm_device *dev = crtc->dev;
  498. struct drm_i915_private *dev_priv = dev->dev_private;
  499. const intel_limit_t *limit;
  500. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  501. if (is_dual_link_lvds(dev_priv, LVDS))
  502. /* LVDS with dual channel */
  503. limit = &intel_limits_g4x_dual_channel_lvds;
  504. else
  505. /* LVDS with dual channel */
  506. limit = &intel_limits_g4x_single_channel_lvds;
  507. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  508. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  509. limit = &intel_limits_g4x_hdmi;
  510. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  511. limit = &intel_limits_g4x_sdvo;
  512. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  513. limit = &intel_limits_g4x_display_port;
  514. } else /* The option is for other outputs */
  515. limit = &intel_limits_i9xx_sdvo;
  516. return limit;
  517. }
  518. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  519. {
  520. struct drm_device *dev = crtc->dev;
  521. const intel_limit_t *limit;
  522. if (HAS_PCH_SPLIT(dev))
  523. limit = intel_ironlake_limit(crtc, refclk);
  524. else if (IS_G4X(dev)) {
  525. limit = intel_g4x_limit(crtc);
  526. } else if (IS_PINEVIEW(dev)) {
  527. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  528. limit = &intel_limits_pineview_lvds;
  529. else
  530. limit = &intel_limits_pineview_sdvo;
  531. } else if (IS_VALLEYVIEW(dev)) {
  532. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
  533. limit = &intel_limits_vlv_dac;
  534. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
  535. limit = &intel_limits_vlv_hdmi;
  536. else
  537. limit = &intel_limits_vlv_dp;
  538. } else if (!IS_GEN2(dev)) {
  539. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  540. limit = &intel_limits_i9xx_lvds;
  541. else
  542. limit = &intel_limits_i9xx_sdvo;
  543. } else {
  544. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  545. limit = &intel_limits_i8xx_lvds;
  546. else
  547. limit = &intel_limits_i8xx_dvo;
  548. }
  549. return limit;
  550. }
  551. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  552. static void pineview_clock(int refclk, intel_clock_t *clock)
  553. {
  554. clock->m = clock->m2 + 2;
  555. clock->p = clock->p1 * clock->p2;
  556. clock->vco = refclk * clock->m / clock->n;
  557. clock->dot = clock->vco / clock->p;
  558. }
  559. static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
  560. {
  561. if (IS_PINEVIEW(dev)) {
  562. pineview_clock(refclk, clock);
  563. return;
  564. }
  565. clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
  566. clock->p = clock->p1 * clock->p2;
  567. clock->vco = refclk * clock->m / (clock->n + 2);
  568. clock->dot = clock->vco / clock->p;
  569. }
  570. /**
  571. * Returns whether any output on the specified pipe is of the specified type
  572. */
  573. bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  574. {
  575. struct drm_device *dev = crtc->dev;
  576. struct intel_encoder *encoder;
  577. for_each_encoder_on_crtc(dev, crtc, encoder)
  578. if (encoder->type == type)
  579. return true;
  580. return false;
  581. }
  582. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  583. /**
  584. * Returns whether the given set of divisors are valid for a given refclk with
  585. * the given connectors.
  586. */
  587. static bool intel_PLL_is_valid(struct drm_device *dev,
  588. const intel_limit_t *limit,
  589. const intel_clock_t *clock)
  590. {
  591. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  592. INTELPllInvalid("p1 out of range\n");
  593. if (clock->p < limit->p.min || limit->p.max < clock->p)
  594. INTELPllInvalid("p out of range\n");
  595. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  596. INTELPllInvalid("m2 out of range\n");
  597. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  598. INTELPllInvalid("m1 out of range\n");
  599. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  600. INTELPllInvalid("m1 <= m2\n");
  601. if (clock->m < limit->m.min || limit->m.max < clock->m)
  602. INTELPllInvalid("m out of range\n");
  603. if (clock->n < limit->n.min || limit->n.max < clock->n)
  604. INTELPllInvalid("n out of range\n");
  605. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  606. INTELPllInvalid("vco out of range\n");
  607. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  608. * connector, etc., rather than just a single range.
  609. */
  610. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  611. INTELPllInvalid("dot out of range\n");
  612. return true;
  613. }
  614. static bool
  615. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  616. int target, int refclk, intel_clock_t *match_clock,
  617. intel_clock_t *best_clock)
  618. {
  619. struct drm_device *dev = crtc->dev;
  620. struct drm_i915_private *dev_priv = dev->dev_private;
  621. intel_clock_t clock;
  622. int err = target;
  623. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  624. (I915_READ(LVDS)) != 0) {
  625. /*
  626. * For LVDS, if the panel is on, just rely on its current
  627. * settings for dual-channel. We haven't figured out how to
  628. * reliably set up different single/dual channel state, if we
  629. * even can.
  630. */
  631. if (is_dual_link_lvds(dev_priv, LVDS))
  632. clock.p2 = limit->p2.p2_fast;
  633. else
  634. clock.p2 = limit->p2.p2_slow;
  635. } else {
  636. if (target < limit->p2.dot_limit)
  637. clock.p2 = limit->p2.p2_slow;
  638. else
  639. clock.p2 = limit->p2.p2_fast;
  640. }
  641. memset(best_clock, 0, sizeof(*best_clock));
  642. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  643. clock.m1++) {
  644. for (clock.m2 = limit->m2.min;
  645. clock.m2 <= limit->m2.max; clock.m2++) {
  646. /* m1 is always 0 in Pineview */
  647. if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
  648. break;
  649. for (clock.n = limit->n.min;
  650. clock.n <= limit->n.max; clock.n++) {
  651. for (clock.p1 = limit->p1.min;
  652. clock.p1 <= limit->p1.max; clock.p1++) {
  653. int this_err;
  654. intel_clock(dev, refclk, &clock);
  655. if (!intel_PLL_is_valid(dev, limit,
  656. &clock))
  657. continue;
  658. if (match_clock &&
  659. clock.p != match_clock->p)
  660. continue;
  661. this_err = abs(clock.dot - target);
  662. if (this_err < err) {
  663. *best_clock = clock;
  664. err = this_err;
  665. }
  666. }
  667. }
  668. }
  669. }
  670. return (err != target);
  671. }
  672. static bool
  673. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  674. int target, int refclk, intel_clock_t *match_clock,
  675. intel_clock_t *best_clock)
  676. {
  677. struct drm_device *dev = crtc->dev;
  678. struct drm_i915_private *dev_priv = dev->dev_private;
  679. intel_clock_t clock;
  680. int max_n;
  681. bool found;
  682. /* approximately equals target * 0.00585 */
  683. int err_most = (target >> 8) + (target >> 9);
  684. found = false;
  685. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  686. int lvds_reg;
  687. if (HAS_PCH_SPLIT(dev))
  688. lvds_reg = PCH_LVDS;
  689. else
  690. lvds_reg = LVDS;
  691. if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
  692. LVDS_CLKB_POWER_UP)
  693. clock.p2 = limit->p2.p2_fast;
  694. else
  695. clock.p2 = limit->p2.p2_slow;
  696. } else {
  697. if (target < limit->p2.dot_limit)
  698. clock.p2 = limit->p2.p2_slow;
  699. else
  700. clock.p2 = limit->p2.p2_fast;
  701. }
  702. memset(best_clock, 0, sizeof(*best_clock));
  703. max_n = limit->n.max;
  704. /* based on hardware requirement, prefer smaller n to precision */
  705. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  706. /* based on hardware requirement, prefere larger m1,m2 */
  707. for (clock.m1 = limit->m1.max;
  708. clock.m1 >= limit->m1.min; clock.m1--) {
  709. for (clock.m2 = limit->m2.max;
  710. clock.m2 >= limit->m2.min; clock.m2--) {
  711. for (clock.p1 = limit->p1.max;
  712. clock.p1 >= limit->p1.min; clock.p1--) {
  713. int this_err;
  714. intel_clock(dev, refclk, &clock);
  715. if (!intel_PLL_is_valid(dev, limit,
  716. &clock))
  717. continue;
  718. if (match_clock &&
  719. clock.p != match_clock->p)
  720. continue;
  721. this_err = abs(clock.dot - target);
  722. if (this_err < err_most) {
  723. *best_clock = clock;
  724. err_most = this_err;
  725. max_n = clock.n;
  726. found = true;
  727. }
  728. }
  729. }
  730. }
  731. }
  732. return found;
  733. }
  734. static bool
  735. intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  736. int target, int refclk, intel_clock_t *match_clock,
  737. intel_clock_t *best_clock)
  738. {
  739. struct drm_device *dev = crtc->dev;
  740. intel_clock_t clock;
  741. if (target < 200000) {
  742. clock.n = 1;
  743. clock.p1 = 2;
  744. clock.p2 = 10;
  745. clock.m1 = 12;
  746. clock.m2 = 9;
  747. } else {
  748. clock.n = 2;
  749. clock.p1 = 1;
  750. clock.p2 = 10;
  751. clock.m1 = 14;
  752. clock.m2 = 8;
  753. }
  754. intel_clock(dev, refclk, &clock);
  755. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  756. return true;
  757. }
  758. /* DisplayPort has only two frequencies, 162MHz and 270MHz */
  759. static bool
  760. intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  761. int target, int refclk, intel_clock_t *match_clock,
  762. intel_clock_t *best_clock)
  763. {
  764. intel_clock_t clock;
  765. if (target < 200000) {
  766. clock.p1 = 2;
  767. clock.p2 = 10;
  768. clock.n = 2;
  769. clock.m1 = 23;
  770. clock.m2 = 8;
  771. } else {
  772. clock.p1 = 1;
  773. clock.p2 = 10;
  774. clock.n = 1;
  775. clock.m1 = 14;
  776. clock.m2 = 2;
  777. }
  778. clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
  779. clock.p = (clock.p1 * clock.p2);
  780. clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
  781. clock.vco = 0;
  782. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  783. return true;
  784. }
  785. static bool
  786. intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
  787. int target, int refclk, intel_clock_t *match_clock,
  788. intel_clock_t *best_clock)
  789. {
  790. u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
  791. u32 m, n, fastclk;
  792. u32 updrate, minupdate, fracbits, p;
  793. unsigned long bestppm, ppm, absppm;
  794. int dotclk, flag;
  795. flag = 0;
  796. dotclk = target * 1000;
  797. bestppm = 1000000;
  798. ppm = absppm = 0;
  799. fastclk = dotclk / (2*100);
  800. updrate = 0;
  801. minupdate = 19200;
  802. fracbits = 1;
  803. n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
  804. bestm1 = bestm2 = bestp1 = bestp2 = 0;
  805. /* based on hardware requirement, prefer smaller n to precision */
  806. for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
  807. updrate = refclk / n;
  808. for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
  809. for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
  810. if (p2 > 10)
  811. p2 = p2 - 1;
  812. p = p1 * p2;
  813. /* based on hardware requirement, prefer bigger m1,m2 values */
  814. for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
  815. m2 = (((2*(fastclk * p * n / m1 )) +
  816. refclk) / (2*refclk));
  817. m = m1 * m2;
  818. vco = updrate * m;
  819. if (vco >= limit->vco.min && vco < limit->vco.max) {
  820. ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
  821. absppm = (ppm > 0) ? ppm : (-ppm);
  822. if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
  823. bestppm = 0;
  824. flag = 1;
  825. }
  826. if (absppm < bestppm - 10) {
  827. bestppm = absppm;
  828. flag = 1;
  829. }
  830. if (flag) {
  831. bestn = n;
  832. bestm1 = m1;
  833. bestm2 = m2;
  834. bestp1 = p1;
  835. bestp2 = p2;
  836. flag = 0;
  837. }
  838. }
  839. }
  840. }
  841. }
  842. }
  843. best_clock->n = bestn;
  844. best_clock->m1 = bestm1;
  845. best_clock->m2 = bestm2;
  846. best_clock->p1 = bestp1;
  847. best_clock->p2 = bestp2;
  848. return true;
  849. }
  850. enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
  851. enum pipe pipe)
  852. {
  853. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  854. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  855. return intel_crtc->cpu_transcoder;
  856. }
  857. static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
  858. {
  859. struct drm_i915_private *dev_priv = dev->dev_private;
  860. u32 frame, frame_reg = PIPEFRAME(pipe);
  861. frame = I915_READ(frame_reg);
  862. if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
  863. DRM_DEBUG_KMS("vblank wait timed out\n");
  864. }
  865. /**
  866. * intel_wait_for_vblank - wait for vblank on a given pipe
  867. * @dev: drm device
  868. * @pipe: pipe to wait for
  869. *
  870. * Wait for vblank to occur on a given pipe. Needed for various bits of
  871. * mode setting code.
  872. */
  873. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  874. {
  875. struct drm_i915_private *dev_priv = dev->dev_private;
  876. int pipestat_reg = PIPESTAT(pipe);
  877. if (INTEL_INFO(dev)->gen >= 5) {
  878. ironlake_wait_for_vblank(dev, pipe);
  879. return;
  880. }
  881. /* Clear existing vblank status. Note this will clear any other
  882. * sticky status fields as well.
  883. *
  884. * This races with i915_driver_irq_handler() with the result
  885. * that either function could miss a vblank event. Here it is not
  886. * fatal, as we will either wait upon the next vblank interrupt or
  887. * timeout. Generally speaking intel_wait_for_vblank() is only
  888. * called during modeset at which time the GPU should be idle and
  889. * should *not* be performing page flips and thus not waiting on
  890. * vblanks...
  891. * Currently, the result of us stealing a vblank from the irq
  892. * handler is that a single frame will be skipped during swapbuffers.
  893. */
  894. I915_WRITE(pipestat_reg,
  895. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  896. /* Wait for vblank interrupt bit to set */
  897. if (wait_for(I915_READ(pipestat_reg) &
  898. PIPE_VBLANK_INTERRUPT_STATUS,
  899. 50))
  900. DRM_DEBUG_KMS("vblank wait timed out\n");
  901. }
  902. /*
  903. * intel_wait_for_pipe_off - wait for pipe to turn off
  904. * @dev: drm device
  905. * @pipe: pipe to wait for
  906. *
  907. * After disabling a pipe, we can't wait for vblank in the usual way,
  908. * spinning on the vblank interrupt status bit, since we won't actually
  909. * see an interrupt when the pipe is disabled.
  910. *
  911. * On Gen4 and above:
  912. * wait for the pipe register state bit to turn off
  913. *
  914. * Otherwise:
  915. * wait for the display line value to settle (it usually
  916. * ends up stopping at the start of the next frame).
  917. *
  918. */
  919. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  920. {
  921. struct drm_i915_private *dev_priv = dev->dev_private;
  922. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  923. pipe);
  924. if (INTEL_INFO(dev)->gen >= 4) {
  925. int reg = PIPECONF(cpu_transcoder);
  926. /* Wait for the Pipe State to go off */
  927. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  928. 100))
  929. WARN(1, "pipe_off wait timed out\n");
  930. } else {
  931. u32 last_line, line_mask;
  932. int reg = PIPEDSL(pipe);
  933. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  934. if (IS_GEN2(dev))
  935. line_mask = DSL_LINEMASK_GEN2;
  936. else
  937. line_mask = DSL_LINEMASK_GEN3;
  938. /* Wait for the display line to settle */
  939. do {
  940. last_line = I915_READ(reg) & line_mask;
  941. mdelay(5);
  942. } while (((I915_READ(reg) & line_mask) != last_line) &&
  943. time_after(timeout, jiffies));
  944. if (time_after(jiffies, timeout))
  945. WARN(1, "pipe_off wait timed out\n");
  946. }
  947. }
  948. static const char *state_string(bool enabled)
  949. {
  950. return enabled ? "on" : "off";
  951. }
  952. /* Only for pre-ILK configs */
  953. static void assert_pll(struct drm_i915_private *dev_priv,
  954. enum pipe pipe, bool state)
  955. {
  956. int reg;
  957. u32 val;
  958. bool cur_state;
  959. reg = DPLL(pipe);
  960. val = I915_READ(reg);
  961. cur_state = !!(val & DPLL_VCO_ENABLE);
  962. WARN(cur_state != state,
  963. "PLL state assertion failure (expected %s, current %s)\n",
  964. state_string(state), state_string(cur_state));
  965. }
  966. #define assert_pll_enabled(d, p) assert_pll(d, p, true)
  967. #define assert_pll_disabled(d, p) assert_pll(d, p, false)
  968. /* For ILK+ */
  969. static void assert_pch_pll(struct drm_i915_private *dev_priv,
  970. struct intel_pch_pll *pll,
  971. struct intel_crtc *crtc,
  972. bool state)
  973. {
  974. u32 val;
  975. bool cur_state;
  976. if (HAS_PCH_LPT(dev_priv->dev)) {
  977. DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
  978. return;
  979. }
  980. if (WARN (!pll,
  981. "asserting PCH PLL %s with no PLL\n", state_string(state)))
  982. return;
  983. val = I915_READ(pll->pll_reg);
  984. cur_state = !!(val & DPLL_VCO_ENABLE);
  985. WARN(cur_state != state,
  986. "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
  987. pll->pll_reg, state_string(state), state_string(cur_state), val);
  988. /* Make sure the selected PLL is correctly attached to the transcoder */
  989. if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
  990. u32 pch_dpll;
  991. pch_dpll = I915_READ(PCH_DPLL_SEL);
  992. cur_state = pll->pll_reg == _PCH_DPLL_B;
  993. if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
  994. "PLL[%d] not attached to this transcoder %d: %08x\n",
  995. cur_state, crtc->pipe, pch_dpll)) {
  996. cur_state = !!(val >> (4*crtc->pipe + 3));
  997. WARN(cur_state != state,
  998. "PLL[%d] not %s on this transcoder %d: %08x\n",
  999. pll->pll_reg == _PCH_DPLL_B,
  1000. state_string(state),
  1001. crtc->pipe,
  1002. val);
  1003. }
  1004. }
  1005. }
  1006. #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
  1007. #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
  1008. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  1009. enum pipe pipe, bool state)
  1010. {
  1011. int reg;
  1012. u32 val;
  1013. bool cur_state;
  1014. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1015. pipe);
  1016. if (IS_HASWELL(dev_priv->dev)) {
  1017. /* On Haswell, DDI is used instead of FDI_TX_CTL */
  1018. reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  1019. val = I915_READ(reg);
  1020. cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
  1021. } else {
  1022. reg = FDI_TX_CTL(pipe);
  1023. val = I915_READ(reg);
  1024. cur_state = !!(val & FDI_TX_ENABLE);
  1025. }
  1026. WARN(cur_state != state,
  1027. "FDI TX state assertion failure (expected %s, current %s)\n",
  1028. state_string(state), state_string(cur_state));
  1029. }
  1030. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  1031. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  1032. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  1033. enum pipe pipe, bool state)
  1034. {
  1035. int reg;
  1036. u32 val;
  1037. bool cur_state;
  1038. reg = FDI_RX_CTL(pipe);
  1039. val = I915_READ(reg);
  1040. cur_state = !!(val & FDI_RX_ENABLE);
  1041. WARN(cur_state != state,
  1042. "FDI RX state assertion failure (expected %s, current %s)\n",
  1043. state_string(state), state_string(cur_state));
  1044. }
  1045. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  1046. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  1047. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  1048. enum pipe pipe)
  1049. {
  1050. int reg;
  1051. u32 val;
  1052. /* ILK FDI PLL is always enabled */
  1053. if (dev_priv->info->gen == 5)
  1054. return;
  1055. /* On Haswell, DDI ports are responsible for the FDI PLL setup */
  1056. if (IS_HASWELL(dev_priv->dev))
  1057. return;
  1058. reg = FDI_TX_CTL(pipe);
  1059. val = I915_READ(reg);
  1060. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  1061. }
  1062. static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
  1063. enum pipe pipe)
  1064. {
  1065. int reg;
  1066. u32 val;
  1067. reg = FDI_RX_CTL(pipe);
  1068. val = I915_READ(reg);
  1069. WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
  1070. }
  1071. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  1072. enum pipe pipe)
  1073. {
  1074. int pp_reg, lvds_reg;
  1075. u32 val;
  1076. enum pipe panel_pipe = PIPE_A;
  1077. bool locked = true;
  1078. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  1079. pp_reg = PCH_PP_CONTROL;
  1080. lvds_reg = PCH_LVDS;
  1081. } else {
  1082. pp_reg = PP_CONTROL;
  1083. lvds_reg = LVDS;
  1084. }
  1085. val = I915_READ(pp_reg);
  1086. if (!(val & PANEL_POWER_ON) ||
  1087. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  1088. locked = false;
  1089. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  1090. panel_pipe = PIPE_B;
  1091. WARN(panel_pipe == pipe && locked,
  1092. "panel assertion failure, pipe %c regs locked\n",
  1093. pipe_name(pipe));
  1094. }
  1095. void assert_pipe(struct drm_i915_private *dev_priv,
  1096. enum pipe pipe, bool state)
  1097. {
  1098. int reg;
  1099. u32 val;
  1100. bool cur_state;
  1101. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1102. pipe);
  1103. /* if we need the pipe A quirk it must be always on */
  1104. if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  1105. state = true;
  1106. reg = PIPECONF(cpu_transcoder);
  1107. val = I915_READ(reg);
  1108. cur_state = !!(val & PIPECONF_ENABLE);
  1109. WARN(cur_state != state,
  1110. "pipe %c assertion failure (expected %s, current %s)\n",
  1111. pipe_name(pipe), state_string(state), state_string(cur_state));
  1112. }
  1113. static void assert_plane(struct drm_i915_private *dev_priv,
  1114. enum plane plane, bool state)
  1115. {
  1116. int reg;
  1117. u32 val;
  1118. bool cur_state;
  1119. reg = DSPCNTR(plane);
  1120. val = I915_READ(reg);
  1121. cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  1122. WARN(cur_state != state,
  1123. "plane %c assertion failure (expected %s, current %s)\n",
  1124. plane_name(plane), state_string(state), state_string(cur_state));
  1125. }
  1126. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  1127. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  1128. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  1129. enum pipe pipe)
  1130. {
  1131. int reg, i;
  1132. u32 val;
  1133. int cur_pipe;
  1134. /* Planes are fixed to pipes on ILK+ */
  1135. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  1136. reg = DSPCNTR(pipe);
  1137. val = I915_READ(reg);
  1138. WARN((val & DISPLAY_PLANE_ENABLE),
  1139. "plane %c assertion failure, should be disabled but not\n",
  1140. plane_name(pipe));
  1141. return;
  1142. }
  1143. /* Need to check both planes against the pipe */
  1144. for (i = 0; i < 2; i++) {
  1145. reg = DSPCNTR(i);
  1146. val = I915_READ(reg);
  1147. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  1148. DISPPLANE_SEL_PIPE_SHIFT;
  1149. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  1150. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  1151. plane_name(i), pipe_name(pipe));
  1152. }
  1153. }
  1154. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  1155. {
  1156. u32 val;
  1157. bool enabled;
  1158. if (HAS_PCH_LPT(dev_priv->dev)) {
  1159. DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
  1160. return;
  1161. }
  1162. val = I915_READ(PCH_DREF_CONTROL);
  1163. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  1164. DREF_SUPERSPREAD_SOURCE_MASK));
  1165. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  1166. }
  1167. static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
  1168. enum pipe pipe)
  1169. {
  1170. int reg;
  1171. u32 val;
  1172. bool enabled;
  1173. reg = TRANSCONF(pipe);
  1174. val = I915_READ(reg);
  1175. enabled = !!(val & TRANS_ENABLE);
  1176. WARN(enabled,
  1177. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  1178. pipe_name(pipe));
  1179. }
  1180. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  1181. enum pipe pipe, u32 port_sel, u32 val)
  1182. {
  1183. if ((val & DP_PORT_EN) == 0)
  1184. return false;
  1185. if (HAS_PCH_CPT(dev_priv->dev)) {
  1186. u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  1187. u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  1188. if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  1189. return false;
  1190. } else {
  1191. if ((val & DP_PIPE_MASK) != (pipe << 30))
  1192. return false;
  1193. }
  1194. return true;
  1195. }
  1196. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  1197. enum pipe pipe, u32 val)
  1198. {
  1199. if ((val & PORT_ENABLE) == 0)
  1200. return false;
  1201. if (HAS_PCH_CPT(dev_priv->dev)) {
  1202. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1203. return false;
  1204. } else {
  1205. if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
  1206. return false;
  1207. }
  1208. return true;
  1209. }
  1210. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  1211. enum pipe pipe, u32 val)
  1212. {
  1213. if ((val & LVDS_PORT_EN) == 0)
  1214. return false;
  1215. if (HAS_PCH_CPT(dev_priv->dev)) {
  1216. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1217. return false;
  1218. } else {
  1219. if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  1220. return false;
  1221. }
  1222. return true;
  1223. }
  1224. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  1225. enum pipe pipe, u32 val)
  1226. {
  1227. if ((val & ADPA_DAC_ENABLE) == 0)
  1228. return false;
  1229. if (HAS_PCH_CPT(dev_priv->dev)) {
  1230. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1231. return false;
  1232. } else {
  1233. if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  1234. return false;
  1235. }
  1236. return true;
  1237. }
  1238. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  1239. enum pipe pipe, int reg, u32 port_sel)
  1240. {
  1241. u32 val = I915_READ(reg);
  1242. WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  1243. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  1244. reg, pipe_name(pipe));
  1245. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
  1246. && (val & DP_PIPEB_SELECT),
  1247. "IBX PCH dp port still using transcoder B\n");
  1248. }
  1249. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  1250. enum pipe pipe, int reg)
  1251. {
  1252. u32 val = I915_READ(reg);
  1253. WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
  1254. "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  1255. reg, pipe_name(pipe));
  1256. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
  1257. && (val & SDVO_PIPE_B_SELECT),
  1258. "IBX PCH hdmi port still using transcoder B\n");
  1259. }
  1260. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  1261. enum pipe pipe)
  1262. {
  1263. int reg;
  1264. u32 val;
  1265. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1266. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1267. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1268. reg = PCH_ADPA;
  1269. val = I915_READ(reg);
  1270. WARN(adpa_pipe_enabled(dev_priv, pipe, val),
  1271. "PCH VGA enabled on transcoder %c, should be disabled\n",
  1272. pipe_name(pipe));
  1273. reg = PCH_LVDS;
  1274. val = I915_READ(reg);
  1275. WARN(lvds_pipe_enabled(dev_priv, pipe, val),
  1276. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1277. pipe_name(pipe));
  1278. assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
  1279. assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
  1280. assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
  1281. }
  1282. /**
  1283. * intel_enable_pll - enable a PLL
  1284. * @dev_priv: i915 private structure
  1285. * @pipe: pipe PLL to enable
  1286. *
  1287. * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
  1288. * make sure the PLL reg is writable first though, since the panel write
  1289. * protect mechanism may be enabled.
  1290. *
  1291. * Note! This is for pre-ILK only.
  1292. *
  1293. * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
  1294. */
  1295. static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1296. {
  1297. int reg;
  1298. u32 val;
  1299. /* No really, not for ILK+ */
  1300. BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
  1301. /* PLL is protected by panel, make sure we can write it */
  1302. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1303. assert_panel_unlocked(dev_priv, pipe);
  1304. reg = DPLL(pipe);
  1305. val = I915_READ(reg);
  1306. val |= DPLL_VCO_ENABLE;
  1307. /* We do this three times for luck */
  1308. I915_WRITE(reg, val);
  1309. POSTING_READ(reg);
  1310. udelay(150); /* wait for warmup */
  1311. I915_WRITE(reg, val);
  1312. POSTING_READ(reg);
  1313. udelay(150); /* wait for warmup */
  1314. I915_WRITE(reg, val);
  1315. POSTING_READ(reg);
  1316. udelay(150); /* wait for warmup */
  1317. }
  1318. /**
  1319. * intel_disable_pll - disable a PLL
  1320. * @dev_priv: i915 private structure
  1321. * @pipe: pipe PLL to disable
  1322. *
  1323. * Disable the PLL for @pipe, making sure the pipe is off first.
  1324. *
  1325. * Note! This is for pre-ILK only.
  1326. */
  1327. static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1328. {
  1329. int reg;
  1330. u32 val;
  1331. /* Don't disable pipe A or pipe A PLLs if needed */
  1332. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1333. return;
  1334. /* Make sure the pipe isn't still relying on us */
  1335. assert_pipe_disabled(dev_priv, pipe);
  1336. reg = DPLL(pipe);
  1337. val = I915_READ(reg);
  1338. val &= ~DPLL_VCO_ENABLE;
  1339. I915_WRITE(reg, val);
  1340. POSTING_READ(reg);
  1341. }
  1342. /* SBI access */
  1343. static void
  1344. intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
  1345. {
  1346. unsigned long flags;
  1347. spin_lock_irqsave(&dev_priv->dpio_lock, flags);
  1348. if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
  1349. 100)) {
  1350. DRM_ERROR("timeout waiting for SBI to become ready\n");
  1351. goto out_unlock;
  1352. }
  1353. I915_WRITE(SBI_ADDR,
  1354. (reg << 16));
  1355. I915_WRITE(SBI_DATA,
  1356. value);
  1357. I915_WRITE(SBI_CTL_STAT,
  1358. SBI_BUSY |
  1359. SBI_CTL_OP_CRWR);
  1360. if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
  1361. 100)) {
  1362. DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
  1363. goto out_unlock;
  1364. }
  1365. out_unlock:
  1366. spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
  1367. }
  1368. static u32
  1369. intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
  1370. {
  1371. unsigned long flags;
  1372. u32 value = 0;
  1373. spin_lock_irqsave(&dev_priv->dpio_lock, flags);
  1374. if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
  1375. 100)) {
  1376. DRM_ERROR("timeout waiting for SBI to become ready\n");
  1377. goto out_unlock;
  1378. }
  1379. I915_WRITE(SBI_ADDR,
  1380. (reg << 16));
  1381. I915_WRITE(SBI_CTL_STAT,
  1382. SBI_BUSY |
  1383. SBI_CTL_OP_CRRD);
  1384. if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
  1385. 100)) {
  1386. DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
  1387. goto out_unlock;
  1388. }
  1389. value = I915_READ(SBI_DATA);
  1390. out_unlock:
  1391. spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
  1392. return value;
  1393. }
  1394. /**
  1395. * ironlake_enable_pch_pll - enable PCH PLL
  1396. * @dev_priv: i915 private structure
  1397. * @pipe: pipe PLL to enable
  1398. *
  1399. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1400. * drives the transcoder clock.
  1401. */
  1402. static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
  1403. {
  1404. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1405. struct intel_pch_pll *pll;
  1406. int reg;
  1407. u32 val;
  1408. /* PCH PLLs only available on ILK, SNB and IVB */
  1409. BUG_ON(dev_priv->info->gen < 5);
  1410. pll = intel_crtc->pch_pll;
  1411. if (pll == NULL)
  1412. return;
  1413. if (WARN_ON(pll->refcount == 0))
  1414. return;
  1415. DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
  1416. pll->pll_reg, pll->active, pll->on,
  1417. intel_crtc->base.base.id);
  1418. /* PCH refclock must be enabled first */
  1419. assert_pch_refclk_enabled(dev_priv);
  1420. if (pll->active++ && pll->on) {
  1421. assert_pch_pll_enabled(dev_priv, pll, NULL);
  1422. return;
  1423. }
  1424. DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
  1425. reg = pll->pll_reg;
  1426. val = I915_READ(reg);
  1427. val |= DPLL_VCO_ENABLE;
  1428. I915_WRITE(reg, val);
  1429. POSTING_READ(reg);
  1430. udelay(200);
  1431. pll->on = true;
  1432. }
  1433. static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
  1434. {
  1435. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1436. struct intel_pch_pll *pll = intel_crtc->pch_pll;
  1437. int reg;
  1438. u32 val;
  1439. /* PCH only available on ILK+ */
  1440. BUG_ON(dev_priv->info->gen < 5);
  1441. if (pll == NULL)
  1442. return;
  1443. if (WARN_ON(pll->refcount == 0))
  1444. return;
  1445. DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
  1446. pll->pll_reg, pll->active, pll->on,
  1447. intel_crtc->base.base.id);
  1448. if (WARN_ON(pll->active == 0)) {
  1449. assert_pch_pll_disabled(dev_priv, pll, NULL);
  1450. return;
  1451. }
  1452. if (--pll->active) {
  1453. assert_pch_pll_enabled(dev_priv, pll, NULL);
  1454. return;
  1455. }
  1456. DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
  1457. /* Make sure transcoder isn't still depending on us */
  1458. assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
  1459. reg = pll->pll_reg;
  1460. val = I915_READ(reg);
  1461. val &= ~DPLL_VCO_ENABLE;
  1462. I915_WRITE(reg, val);
  1463. POSTING_READ(reg);
  1464. udelay(200);
  1465. pll->on = false;
  1466. }
  1467. static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1468. enum pipe pipe)
  1469. {
  1470. struct drm_device *dev = dev_priv->dev;
  1471. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1472. uint32_t reg, val, pipeconf_val;
  1473. /* PCH only available on ILK+ */
  1474. BUG_ON(dev_priv->info->gen < 5);
  1475. /* Make sure PCH DPLL is enabled */
  1476. assert_pch_pll_enabled(dev_priv,
  1477. to_intel_crtc(crtc)->pch_pll,
  1478. to_intel_crtc(crtc));
  1479. /* FDI must be feeding us bits for PCH ports */
  1480. assert_fdi_tx_enabled(dev_priv, pipe);
  1481. assert_fdi_rx_enabled(dev_priv, pipe);
  1482. if (HAS_PCH_CPT(dev)) {
  1483. /* Workaround: Set the timing override bit before enabling the
  1484. * pch transcoder. */
  1485. reg = TRANS_CHICKEN2(pipe);
  1486. val = I915_READ(reg);
  1487. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1488. I915_WRITE(reg, val);
  1489. }
  1490. reg = TRANSCONF(pipe);
  1491. val = I915_READ(reg);
  1492. pipeconf_val = I915_READ(PIPECONF(pipe));
  1493. if (HAS_PCH_IBX(dev_priv->dev)) {
  1494. /*
  1495. * make the BPC in transcoder be consistent with
  1496. * that in pipeconf reg.
  1497. */
  1498. val &= ~PIPE_BPC_MASK;
  1499. val |= pipeconf_val & PIPE_BPC_MASK;
  1500. }
  1501. val &= ~TRANS_INTERLACE_MASK;
  1502. if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
  1503. if (HAS_PCH_IBX(dev_priv->dev) &&
  1504. intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
  1505. val |= TRANS_LEGACY_INTERLACED_ILK;
  1506. else
  1507. val |= TRANS_INTERLACED;
  1508. else
  1509. val |= TRANS_PROGRESSIVE;
  1510. I915_WRITE(reg, val | TRANS_ENABLE);
  1511. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1512. DRM_ERROR("failed to enable transcoder %d\n", pipe);
  1513. }
  1514. static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1515. enum transcoder cpu_transcoder)
  1516. {
  1517. u32 val, pipeconf_val;
  1518. /* PCH only available on ILK+ */
  1519. BUG_ON(dev_priv->info->gen < 5);
  1520. /* FDI must be feeding us bits for PCH ports */
  1521. assert_fdi_tx_enabled(dev_priv, cpu_transcoder);
  1522. assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
  1523. /* Workaround: set timing override bit. */
  1524. val = I915_READ(_TRANSA_CHICKEN2);
  1525. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1526. I915_WRITE(_TRANSA_CHICKEN2, val);
  1527. val = TRANS_ENABLE;
  1528. pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
  1529. if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
  1530. PIPECONF_INTERLACED_ILK)
  1531. val |= TRANS_INTERLACED;
  1532. else
  1533. val |= TRANS_PROGRESSIVE;
  1534. I915_WRITE(TRANSCONF(TRANSCODER_A), val);
  1535. if (wait_for(I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE, 100))
  1536. DRM_ERROR("Failed to enable PCH transcoder\n");
  1537. }
  1538. static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
  1539. enum pipe pipe)
  1540. {
  1541. struct drm_device *dev = dev_priv->dev;
  1542. uint32_t reg, val;
  1543. /* FDI relies on the transcoder */
  1544. assert_fdi_tx_disabled(dev_priv, pipe);
  1545. assert_fdi_rx_disabled(dev_priv, pipe);
  1546. /* Ports must be off as well */
  1547. assert_pch_ports_disabled(dev_priv, pipe);
  1548. reg = TRANSCONF(pipe);
  1549. val = I915_READ(reg);
  1550. val &= ~TRANS_ENABLE;
  1551. I915_WRITE(reg, val);
  1552. /* wait for PCH transcoder off, transcoder state */
  1553. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1554. DRM_ERROR("failed to disable transcoder %d\n", pipe);
  1555. if (!HAS_PCH_IBX(dev)) {
  1556. /* Workaround: Clear the timing override chicken bit again. */
  1557. reg = TRANS_CHICKEN2(pipe);
  1558. val = I915_READ(reg);
  1559. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1560. I915_WRITE(reg, val);
  1561. }
  1562. }
  1563. static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
  1564. {
  1565. u32 val;
  1566. val = I915_READ(_TRANSACONF);
  1567. val &= ~TRANS_ENABLE;
  1568. I915_WRITE(_TRANSACONF, val);
  1569. /* wait for PCH transcoder off, transcoder state */
  1570. if (wait_for((I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE) == 0, 50))
  1571. DRM_ERROR("Failed to disable PCH transcoder\n");
  1572. /* Workaround: clear timing override bit. */
  1573. val = I915_READ(_TRANSA_CHICKEN2);
  1574. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1575. I915_WRITE(_TRANSA_CHICKEN2, val);
  1576. }
  1577. /**
  1578. * intel_enable_pipe - enable a pipe, asserting requirements
  1579. * @dev_priv: i915 private structure
  1580. * @pipe: pipe to enable
  1581. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1582. *
  1583. * Enable @pipe, making sure that various hardware specific requirements
  1584. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1585. *
  1586. * @pipe should be %PIPE_A or %PIPE_B.
  1587. *
  1588. * Will wait until the pipe is actually running (i.e. first vblank) before
  1589. * returning.
  1590. */
  1591. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1592. bool pch_port)
  1593. {
  1594. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1595. pipe);
  1596. enum transcoder pch_transcoder;
  1597. int reg;
  1598. u32 val;
  1599. if (IS_HASWELL(dev_priv->dev))
  1600. pch_transcoder = TRANSCODER_A;
  1601. else
  1602. pch_transcoder = pipe;
  1603. /*
  1604. * A pipe without a PLL won't actually be able to drive bits from
  1605. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1606. * need the check.
  1607. */
  1608. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1609. assert_pll_enabled(dev_priv, pipe);
  1610. else {
  1611. if (pch_port) {
  1612. /* if driving the PCH, we need FDI enabled */
  1613. assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
  1614. assert_fdi_tx_pll_enabled(dev_priv, cpu_transcoder);
  1615. }
  1616. /* FIXME: assert CPU port conditions for SNB+ */
  1617. }
  1618. reg = PIPECONF(cpu_transcoder);
  1619. val = I915_READ(reg);
  1620. if (val & PIPECONF_ENABLE)
  1621. return;
  1622. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1623. intel_wait_for_vblank(dev_priv->dev, pipe);
  1624. }
  1625. /**
  1626. * intel_disable_pipe - disable a pipe, asserting requirements
  1627. * @dev_priv: i915 private structure
  1628. * @pipe: pipe to disable
  1629. *
  1630. * Disable @pipe, making sure that various hardware specific requirements
  1631. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1632. *
  1633. * @pipe should be %PIPE_A or %PIPE_B.
  1634. *
  1635. * Will wait until the pipe has shut down before returning.
  1636. */
  1637. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1638. enum pipe pipe)
  1639. {
  1640. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1641. pipe);
  1642. int reg;
  1643. u32 val;
  1644. /*
  1645. * Make sure planes won't keep trying to pump pixels to us,
  1646. * or we might hang the display.
  1647. */
  1648. assert_planes_disabled(dev_priv, pipe);
  1649. /* Don't disable pipe A or pipe A PLLs if needed */
  1650. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1651. return;
  1652. reg = PIPECONF(cpu_transcoder);
  1653. val = I915_READ(reg);
  1654. if ((val & PIPECONF_ENABLE) == 0)
  1655. return;
  1656. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1657. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1658. }
  1659. /*
  1660. * Plane regs are double buffered, going from enabled->disabled needs a
  1661. * trigger in order to latch. The display address reg provides this.
  1662. */
  1663. void intel_flush_display_plane(struct drm_i915_private *dev_priv,
  1664. enum plane plane)
  1665. {
  1666. if (dev_priv->info->gen >= 4)
  1667. I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
  1668. else
  1669. I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
  1670. }
  1671. /**
  1672. * intel_enable_plane - enable a display plane on a given pipe
  1673. * @dev_priv: i915 private structure
  1674. * @plane: plane to enable
  1675. * @pipe: pipe being fed
  1676. *
  1677. * Enable @plane on @pipe, making sure that @pipe is running first.
  1678. */
  1679. static void intel_enable_plane(struct drm_i915_private *dev_priv,
  1680. enum plane plane, enum pipe pipe)
  1681. {
  1682. int reg;
  1683. u32 val;
  1684. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1685. assert_pipe_enabled(dev_priv, pipe);
  1686. reg = DSPCNTR(plane);
  1687. val = I915_READ(reg);
  1688. if (val & DISPLAY_PLANE_ENABLE)
  1689. return;
  1690. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1691. intel_flush_display_plane(dev_priv, plane);
  1692. intel_wait_for_vblank(dev_priv->dev, pipe);
  1693. }
  1694. /**
  1695. * intel_disable_plane - disable a display plane
  1696. * @dev_priv: i915 private structure
  1697. * @plane: plane to disable
  1698. * @pipe: pipe consuming the data
  1699. *
  1700. * Disable @plane; should be an independent operation.
  1701. */
  1702. static void intel_disable_plane(struct drm_i915_private *dev_priv,
  1703. enum plane plane, enum pipe pipe)
  1704. {
  1705. int reg;
  1706. u32 val;
  1707. reg = DSPCNTR(plane);
  1708. val = I915_READ(reg);
  1709. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1710. return;
  1711. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1712. intel_flush_display_plane(dev_priv, plane);
  1713. intel_wait_for_vblank(dev_priv->dev, pipe);
  1714. }
  1715. int
  1716. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1717. struct drm_i915_gem_object *obj,
  1718. struct intel_ring_buffer *pipelined)
  1719. {
  1720. struct drm_i915_private *dev_priv = dev->dev_private;
  1721. u32 alignment;
  1722. int ret;
  1723. switch (obj->tiling_mode) {
  1724. case I915_TILING_NONE:
  1725. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1726. alignment = 128 * 1024;
  1727. else if (INTEL_INFO(dev)->gen >= 4)
  1728. alignment = 4 * 1024;
  1729. else
  1730. alignment = 64 * 1024;
  1731. break;
  1732. case I915_TILING_X:
  1733. /* pin() will align the object as required by fence */
  1734. alignment = 0;
  1735. break;
  1736. case I915_TILING_Y:
  1737. /* FIXME: Is this true? */
  1738. DRM_ERROR("Y tiled not allowed for scan out buffers\n");
  1739. return -EINVAL;
  1740. default:
  1741. BUG();
  1742. }
  1743. dev_priv->mm.interruptible = false;
  1744. ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1745. if (ret)
  1746. goto err_interruptible;
  1747. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1748. * fence, whereas 965+ only requires a fence if using
  1749. * framebuffer compression. For simplicity, we always install
  1750. * a fence as the cost is not that onerous.
  1751. */
  1752. ret = i915_gem_object_get_fence(obj);
  1753. if (ret)
  1754. goto err_unpin;
  1755. i915_gem_object_pin_fence(obj);
  1756. dev_priv->mm.interruptible = true;
  1757. return 0;
  1758. err_unpin:
  1759. i915_gem_object_unpin(obj);
  1760. err_interruptible:
  1761. dev_priv->mm.interruptible = true;
  1762. return ret;
  1763. }
  1764. void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
  1765. {
  1766. i915_gem_object_unpin_fence(obj);
  1767. i915_gem_object_unpin(obj);
  1768. }
  1769. /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
  1770. * is assumed to be a power-of-two. */
  1771. unsigned long intel_gen4_compute_offset_xtiled(int *x, int *y,
  1772. unsigned int bpp,
  1773. unsigned int pitch)
  1774. {
  1775. int tile_rows, tiles;
  1776. tile_rows = *y / 8;
  1777. *y %= 8;
  1778. tiles = *x / (512/bpp);
  1779. *x %= 512/bpp;
  1780. return tile_rows * pitch * 8 + tiles * 4096;
  1781. }
  1782. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1783. int x, int y)
  1784. {
  1785. struct drm_device *dev = crtc->dev;
  1786. struct drm_i915_private *dev_priv = dev->dev_private;
  1787. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1788. struct intel_framebuffer *intel_fb;
  1789. struct drm_i915_gem_object *obj;
  1790. int plane = intel_crtc->plane;
  1791. unsigned long linear_offset;
  1792. u32 dspcntr;
  1793. u32 reg;
  1794. switch (plane) {
  1795. case 0:
  1796. case 1:
  1797. break;
  1798. default:
  1799. DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1800. return -EINVAL;
  1801. }
  1802. intel_fb = to_intel_framebuffer(fb);
  1803. obj = intel_fb->obj;
  1804. reg = DSPCNTR(plane);
  1805. dspcntr = I915_READ(reg);
  1806. /* Mask out pixel format bits in case we change it */
  1807. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1808. switch (fb->pixel_format) {
  1809. case DRM_FORMAT_C8:
  1810. dspcntr |= DISPPLANE_8BPP;
  1811. break;
  1812. case DRM_FORMAT_XRGB1555:
  1813. case DRM_FORMAT_ARGB1555:
  1814. dspcntr |= DISPPLANE_BGRX555;
  1815. break;
  1816. case DRM_FORMAT_RGB565:
  1817. dspcntr |= DISPPLANE_BGRX565;
  1818. break;
  1819. case DRM_FORMAT_XRGB8888:
  1820. case DRM_FORMAT_ARGB8888:
  1821. dspcntr |= DISPPLANE_BGRX888;
  1822. break;
  1823. case DRM_FORMAT_XBGR8888:
  1824. case DRM_FORMAT_ABGR8888:
  1825. dspcntr |= DISPPLANE_RGBX888;
  1826. break;
  1827. case DRM_FORMAT_XRGB2101010:
  1828. case DRM_FORMAT_ARGB2101010:
  1829. dspcntr |= DISPPLANE_BGRX101010;
  1830. break;
  1831. case DRM_FORMAT_XBGR2101010:
  1832. case DRM_FORMAT_ABGR2101010:
  1833. dspcntr |= DISPPLANE_RGBX101010;
  1834. break;
  1835. default:
  1836. DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
  1837. return -EINVAL;
  1838. }
  1839. if (INTEL_INFO(dev)->gen >= 4) {
  1840. if (obj->tiling_mode != I915_TILING_NONE)
  1841. dspcntr |= DISPPLANE_TILED;
  1842. else
  1843. dspcntr &= ~DISPPLANE_TILED;
  1844. }
  1845. I915_WRITE(reg, dspcntr);
  1846. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1847. if (INTEL_INFO(dev)->gen >= 4) {
  1848. intel_crtc->dspaddr_offset =
  1849. intel_gen4_compute_offset_xtiled(&x, &y,
  1850. fb->bits_per_pixel / 8,
  1851. fb->pitches[0]);
  1852. linear_offset -= intel_crtc->dspaddr_offset;
  1853. } else {
  1854. intel_crtc->dspaddr_offset = linear_offset;
  1855. }
  1856. DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  1857. obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  1858. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1859. if (INTEL_INFO(dev)->gen >= 4) {
  1860. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1861. obj->gtt_offset + intel_crtc->dspaddr_offset);
  1862. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1863. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1864. } else
  1865. I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
  1866. POSTING_READ(reg);
  1867. return 0;
  1868. }
  1869. static int ironlake_update_plane(struct drm_crtc *crtc,
  1870. struct drm_framebuffer *fb, int x, int y)
  1871. {
  1872. struct drm_device *dev = crtc->dev;
  1873. struct drm_i915_private *dev_priv = dev->dev_private;
  1874. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1875. struct intel_framebuffer *intel_fb;
  1876. struct drm_i915_gem_object *obj;
  1877. int plane = intel_crtc->plane;
  1878. unsigned long linear_offset;
  1879. u32 dspcntr;
  1880. u32 reg;
  1881. switch (plane) {
  1882. case 0:
  1883. case 1:
  1884. case 2:
  1885. break;
  1886. default:
  1887. DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1888. return -EINVAL;
  1889. }
  1890. intel_fb = to_intel_framebuffer(fb);
  1891. obj = intel_fb->obj;
  1892. reg = DSPCNTR(plane);
  1893. dspcntr = I915_READ(reg);
  1894. /* Mask out pixel format bits in case we change it */
  1895. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1896. switch (fb->pixel_format) {
  1897. case DRM_FORMAT_C8:
  1898. dspcntr |= DISPPLANE_8BPP;
  1899. break;
  1900. case DRM_FORMAT_RGB565:
  1901. dspcntr |= DISPPLANE_BGRX565;
  1902. break;
  1903. case DRM_FORMAT_XRGB8888:
  1904. case DRM_FORMAT_ARGB8888:
  1905. dspcntr |= DISPPLANE_BGRX888;
  1906. break;
  1907. case DRM_FORMAT_XBGR8888:
  1908. case DRM_FORMAT_ABGR8888:
  1909. dspcntr |= DISPPLANE_RGBX888;
  1910. break;
  1911. case DRM_FORMAT_XRGB2101010:
  1912. case DRM_FORMAT_ARGB2101010:
  1913. dspcntr |= DISPPLANE_BGRX101010;
  1914. break;
  1915. case DRM_FORMAT_XBGR2101010:
  1916. case DRM_FORMAT_ABGR2101010:
  1917. dspcntr |= DISPPLANE_RGBX101010;
  1918. break;
  1919. default:
  1920. DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
  1921. return -EINVAL;
  1922. }
  1923. if (obj->tiling_mode != I915_TILING_NONE)
  1924. dspcntr |= DISPPLANE_TILED;
  1925. else
  1926. dspcntr &= ~DISPPLANE_TILED;
  1927. /* must disable */
  1928. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1929. I915_WRITE(reg, dspcntr);
  1930. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1931. intel_crtc->dspaddr_offset =
  1932. intel_gen4_compute_offset_xtiled(&x, &y,
  1933. fb->bits_per_pixel / 8,
  1934. fb->pitches[0]);
  1935. linear_offset -= intel_crtc->dspaddr_offset;
  1936. DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  1937. obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  1938. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1939. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1940. obj->gtt_offset + intel_crtc->dspaddr_offset);
  1941. if (IS_HASWELL(dev)) {
  1942. I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
  1943. } else {
  1944. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1945. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1946. }
  1947. POSTING_READ(reg);
  1948. return 0;
  1949. }
  1950. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  1951. static int
  1952. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1953. int x, int y, enum mode_set_atomic state)
  1954. {
  1955. struct drm_device *dev = crtc->dev;
  1956. struct drm_i915_private *dev_priv = dev->dev_private;
  1957. if (dev_priv->display.disable_fbc)
  1958. dev_priv->display.disable_fbc(dev);
  1959. intel_increase_pllclock(crtc);
  1960. return dev_priv->display.update_plane(crtc, fb, x, y);
  1961. }
  1962. static int
  1963. intel_finish_fb(struct drm_framebuffer *old_fb)
  1964. {
  1965. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  1966. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1967. bool was_interruptible = dev_priv->mm.interruptible;
  1968. int ret;
  1969. wait_event(dev_priv->pending_flip_queue,
  1970. atomic_read(&dev_priv->mm.wedged) ||
  1971. atomic_read(&obj->pending_flip) == 0);
  1972. /* Big Hammer, we also need to ensure that any pending
  1973. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  1974. * current scanout is retired before unpinning the old
  1975. * framebuffer.
  1976. *
  1977. * This should only fail upon a hung GPU, in which case we
  1978. * can safely continue.
  1979. */
  1980. dev_priv->mm.interruptible = false;
  1981. ret = i915_gem_object_finish_gpu(obj);
  1982. dev_priv->mm.interruptible = was_interruptible;
  1983. return ret;
  1984. }
  1985. static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
  1986. {
  1987. struct drm_device *dev = crtc->dev;
  1988. struct drm_i915_master_private *master_priv;
  1989. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1990. if (!dev->primary->master)
  1991. return;
  1992. master_priv = dev->primary->master->driver_priv;
  1993. if (!master_priv->sarea_priv)
  1994. return;
  1995. switch (intel_crtc->pipe) {
  1996. case 0:
  1997. master_priv->sarea_priv->pipeA_x = x;
  1998. master_priv->sarea_priv->pipeA_y = y;
  1999. break;
  2000. case 1:
  2001. master_priv->sarea_priv->pipeB_x = x;
  2002. master_priv->sarea_priv->pipeB_y = y;
  2003. break;
  2004. default:
  2005. break;
  2006. }
  2007. }
  2008. static int
  2009. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  2010. struct drm_framebuffer *fb)
  2011. {
  2012. struct drm_device *dev = crtc->dev;
  2013. struct drm_i915_private *dev_priv = dev->dev_private;
  2014. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2015. struct drm_framebuffer *old_fb;
  2016. int ret;
  2017. /* no fb bound */
  2018. if (!fb) {
  2019. DRM_ERROR("No FB bound\n");
  2020. return 0;
  2021. }
  2022. if(intel_crtc->plane > dev_priv->num_pipe) {
  2023. DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
  2024. intel_crtc->plane,
  2025. dev_priv->num_pipe);
  2026. return -EINVAL;
  2027. }
  2028. mutex_lock(&dev->struct_mutex);
  2029. ret = intel_pin_and_fence_fb_obj(dev,
  2030. to_intel_framebuffer(fb)->obj,
  2031. NULL);
  2032. if (ret != 0) {
  2033. mutex_unlock(&dev->struct_mutex);
  2034. DRM_ERROR("pin & fence failed\n");
  2035. return ret;
  2036. }
  2037. if (crtc->fb)
  2038. intel_finish_fb(crtc->fb);
  2039. ret = dev_priv->display.update_plane(crtc, fb, x, y);
  2040. if (ret) {
  2041. intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
  2042. mutex_unlock(&dev->struct_mutex);
  2043. DRM_ERROR("failed to update base address\n");
  2044. return ret;
  2045. }
  2046. old_fb = crtc->fb;
  2047. crtc->fb = fb;
  2048. crtc->x = x;
  2049. crtc->y = y;
  2050. if (old_fb) {
  2051. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2052. intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
  2053. }
  2054. intel_update_fbc(dev);
  2055. mutex_unlock(&dev->struct_mutex);
  2056. intel_crtc_update_sarea_pos(crtc, x, y);
  2057. return 0;
  2058. }
  2059. static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
  2060. {
  2061. struct drm_device *dev = crtc->dev;
  2062. struct drm_i915_private *dev_priv = dev->dev_private;
  2063. u32 dpa_ctl;
  2064. DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
  2065. dpa_ctl = I915_READ(DP_A);
  2066. dpa_ctl &= ~DP_PLL_FREQ_MASK;
  2067. if (clock < 200000) {
  2068. u32 temp;
  2069. dpa_ctl |= DP_PLL_FREQ_160MHZ;
  2070. /* workaround for 160Mhz:
  2071. 1) program 0x4600c bits 15:0 = 0x8124
  2072. 2) program 0x46010 bit 0 = 1
  2073. 3) program 0x46034 bit 24 = 1
  2074. 4) program 0x64000 bit 14 = 1
  2075. */
  2076. temp = I915_READ(0x4600c);
  2077. temp &= 0xffff0000;
  2078. I915_WRITE(0x4600c, temp | 0x8124);
  2079. temp = I915_READ(0x46010);
  2080. I915_WRITE(0x46010, temp | 1);
  2081. temp = I915_READ(0x46034);
  2082. I915_WRITE(0x46034, temp | (1 << 24));
  2083. } else {
  2084. dpa_ctl |= DP_PLL_FREQ_270MHZ;
  2085. }
  2086. I915_WRITE(DP_A, dpa_ctl);
  2087. POSTING_READ(DP_A);
  2088. udelay(500);
  2089. }
  2090. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  2091. {
  2092. struct drm_device *dev = crtc->dev;
  2093. struct drm_i915_private *dev_priv = dev->dev_private;
  2094. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2095. int pipe = intel_crtc->pipe;
  2096. u32 reg, temp;
  2097. /* enable normal train */
  2098. reg = FDI_TX_CTL(pipe);
  2099. temp = I915_READ(reg);
  2100. if (IS_IVYBRIDGE(dev)) {
  2101. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2102. temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  2103. } else {
  2104. temp &= ~FDI_LINK_TRAIN_NONE;
  2105. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  2106. }
  2107. I915_WRITE(reg, temp);
  2108. reg = FDI_RX_CTL(pipe);
  2109. temp = I915_READ(reg);
  2110. if (HAS_PCH_CPT(dev)) {
  2111. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2112. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  2113. } else {
  2114. temp &= ~FDI_LINK_TRAIN_NONE;
  2115. temp |= FDI_LINK_TRAIN_NONE;
  2116. }
  2117. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  2118. /* wait one idle pattern time */
  2119. POSTING_READ(reg);
  2120. udelay(1000);
  2121. /* IVB wants error correction enabled */
  2122. if (IS_IVYBRIDGE(dev))
  2123. I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  2124. FDI_FE_ERRC_ENABLE);
  2125. }
  2126. static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
  2127. {
  2128. struct drm_i915_private *dev_priv = dev->dev_private;
  2129. u32 flags = I915_READ(SOUTH_CHICKEN1);
  2130. flags |= FDI_PHASE_SYNC_OVR(pipe);
  2131. I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
  2132. flags |= FDI_PHASE_SYNC_EN(pipe);
  2133. I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
  2134. POSTING_READ(SOUTH_CHICKEN1);
  2135. }
  2136. static void ivb_modeset_global_resources(struct drm_device *dev)
  2137. {
  2138. struct drm_i915_private *dev_priv = dev->dev_private;
  2139. struct intel_crtc *pipe_B_crtc =
  2140. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  2141. struct intel_crtc *pipe_C_crtc =
  2142. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
  2143. uint32_t temp;
  2144. /* When everything is off disable fdi C so that we could enable fdi B
  2145. * with all lanes. XXX: This misses the case where a pipe is not using
  2146. * any pch resources and so doesn't need any fdi lanes. */
  2147. if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) {
  2148. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  2149. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  2150. temp = I915_READ(SOUTH_CHICKEN1);
  2151. temp &= ~FDI_BC_BIFURCATION_SELECT;
  2152. DRM_DEBUG_KMS("disabling fdi C rx\n");
  2153. I915_WRITE(SOUTH_CHICKEN1, temp);
  2154. }
  2155. }
  2156. /* The FDI link training functions for ILK/Ibexpeak. */
  2157. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2158. {
  2159. struct drm_device *dev = crtc->dev;
  2160. struct drm_i915_private *dev_priv = dev->dev_private;
  2161. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2162. int pipe = intel_crtc->pipe;
  2163. int plane = intel_crtc->plane;
  2164. u32 reg, temp, tries;
  2165. /* FDI needs bits from pipe & plane first */
  2166. assert_pipe_enabled(dev_priv, pipe);
  2167. assert_plane_enabled(dev_priv, plane);
  2168. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2169. for train result */
  2170. reg = FDI_RX_IMR(pipe);
  2171. temp = I915_READ(reg);
  2172. temp &= ~FDI_RX_SYMBOL_LOCK;
  2173. temp &= ~FDI_RX_BIT_LOCK;
  2174. I915_WRITE(reg, temp);
  2175. I915_READ(reg);
  2176. udelay(150);
  2177. /* enable CPU FDI TX and PCH FDI RX */
  2178. reg = FDI_TX_CTL(pipe);
  2179. temp = I915_READ(reg);
  2180. temp &= ~(7 << 19);
  2181. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2182. temp &= ~FDI_LINK_TRAIN_NONE;
  2183. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2184. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2185. reg = FDI_RX_CTL(pipe);
  2186. temp = I915_READ(reg);
  2187. temp &= ~FDI_LINK_TRAIN_NONE;
  2188. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2189. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2190. POSTING_READ(reg);
  2191. udelay(150);
  2192. /* Ironlake workaround, enable clock pointer after FDI enable*/
  2193. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2194. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2195. FDI_RX_PHASE_SYNC_POINTER_EN);
  2196. reg = FDI_RX_IIR(pipe);
  2197. for (tries = 0; tries < 5; tries++) {
  2198. temp = I915_READ(reg);
  2199. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2200. if ((temp & FDI_RX_BIT_LOCK)) {
  2201. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2202. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2203. break;
  2204. }
  2205. }
  2206. if (tries == 5)
  2207. DRM_ERROR("FDI train 1 fail!\n");
  2208. /* Train 2 */
  2209. reg = FDI_TX_CTL(pipe);
  2210. temp = I915_READ(reg);
  2211. temp &= ~FDI_LINK_TRAIN_NONE;
  2212. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2213. I915_WRITE(reg, temp);
  2214. reg = FDI_RX_CTL(pipe);
  2215. temp = I915_READ(reg);
  2216. temp &= ~FDI_LINK_TRAIN_NONE;
  2217. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2218. I915_WRITE(reg, temp);
  2219. POSTING_READ(reg);
  2220. udelay(150);
  2221. reg = FDI_RX_IIR(pipe);
  2222. for (tries = 0; tries < 5; tries++) {
  2223. temp = I915_READ(reg);
  2224. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2225. if (temp & FDI_RX_SYMBOL_LOCK) {
  2226. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2227. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2228. break;
  2229. }
  2230. }
  2231. if (tries == 5)
  2232. DRM_ERROR("FDI train 2 fail!\n");
  2233. DRM_DEBUG_KMS("FDI train done\n");
  2234. }
  2235. static const int snb_b_fdi_train_param[] = {
  2236. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2237. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2238. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2239. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2240. };
  2241. /* The FDI link training functions for SNB/Cougarpoint. */
  2242. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2243. {
  2244. struct drm_device *dev = crtc->dev;
  2245. struct drm_i915_private *dev_priv = dev->dev_private;
  2246. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2247. int pipe = intel_crtc->pipe;
  2248. u32 reg, temp, i, retry;
  2249. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2250. for train result */
  2251. reg = FDI_RX_IMR(pipe);
  2252. temp = I915_READ(reg);
  2253. temp &= ~FDI_RX_SYMBOL_LOCK;
  2254. temp &= ~FDI_RX_BIT_LOCK;
  2255. I915_WRITE(reg, temp);
  2256. POSTING_READ(reg);
  2257. udelay(150);
  2258. /* enable CPU FDI TX and PCH FDI RX */
  2259. reg = FDI_TX_CTL(pipe);
  2260. temp = I915_READ(reg);
  2261. temp &= ~(7 << 19);
  2262. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2263. temp &= ~FDI_LINK_TRAIN_NONE;
  2264. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2265. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2266. /* SNB-B */
  2267. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2268. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2269. I915_WRITE(FDI_RX_MISC(pipe),
  2270. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2271. reg = FDI_RX_CTL(pipe);
  2272. temp = I915_READ(reg);
  2273. if (HAS_PCH_CPT(dev)) {
  2274. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2275. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2276. } else {
  2277. temp &= ~FDI_LINK_TRAIN_NONE;
  2278. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2279. }
  2280. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2281. POSTING_READ(reg);
  2282. udelay(150);
  2283. cpt_phase_pointer_enable(dev, pipe);
  2284. for (i = 0; i < 4; i++) {
  2285. reg = FDI_TX_CTL(pipe);
  2286. temp = I915_READ(reg);
  2287. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2288. temp |= snb_b_fdi_train_param[i];
  2289. I915_WRITE(reg, temp);
  2290. POSTING_READ(reg);
  2291. udelay(500);
  2292. for (retry = 0; retry < 5; retry++) {
  2293. reg = FDI_RX_IIR(pipe);
  2294. temp = I915_READ(reg);
  2295. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2296. if (temp & FDI_RX_BIT_LOCK) {
  2297. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2298. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2299. break;
  2300. }
  2301. udelay(50);
  2302. }
  2303. if (retry < 5)
  2304. break;
  2305. }
  2306. if (i == 4)
  2307. DRM_ERROR("FDI train 1 fail!\n");
  2308. /* Train 2 */
  2309. reg = FDI_TX_CTL(pipe);
  2310. temp = I915_READ(reg);
  2311. temp &= ~FDI_LINK_TRAIN_NONE;
  2312. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2313. if (IS_GEN6(dev)) {
  2314. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2315. /* SNB-B */
  2316. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2317. }
  2318. I915_WRITE(reg, temp);
  2319. reg = FDI_RX_CTL(pipe);
  2320. temp = I915_READ(reg);
  2321. if (HAS_PCH_CPT(dev)) {
  2322. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2323. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2324. } else {
  2325. temp &= ~FDI_LINK_TRAIN_NONE;
  2326. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2327. }
  2328. I915_WRITE(reg, temp);
  2329. POSTING_READ(reg);
  2330. udelay(150);
  2331. for (i = 0; i < 4; i++) {
  2332. reg = FDI_TX_CTL(pipe);
  2333. temp = I915_READ(reg);
  2334. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2335. temp |= snb_b_fdi_train_param[i];
  2336. I915_WRITE(reg, temp);
  2337. POSTING_READ(reg);
  2338. udelay(500);
  2339. for (retry = 0; retry < 5; retry++) {
  2340. reg = FDI_RX_IIR(pipe);
  2341. temp = I915_READ(reg);
  2342. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2343. if (temp & FDI_RX_SYMBOL_LOCK) {
  2344. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2345. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2346. break;
  2347. }
  2348. udelay(50);
  2349. }
  2350. if (retry < 5)
  2351. break;
  2352. }
  2353. if (i == 4)
  2354. DRM_ERROR("FDI train 2 fail!\n");
  2355. DRM_DEBUG_KMS("FDI train done.\n");
  2356. }
  2357. /* Manual link training for Ivy Bridge A0 parts */
  2358. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2359. {
  2360. struct drm_device *dev = crtc->dev;
  2361. struct drm_i915_private *dev_priv = dev->dev_private;
  2362. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2363. int pipe = intel_crtc->pipe;
  2364. u32 reg, temp, i;
  2365. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2366. for train result */
  2367. reg = FDI_RX_IMR(pipe);
  2368. temp = I915_READ(reg);
  2369. temp &= ~FDI_RX_SYMBOL_LOCK;
  2370. temp &= ~FDI_RX_BIT_LOCK;
  2371. I915_WRITE(reg, temp);
  2372. POSTING_READ(reg);
  2373. udelay(150);
  2374. DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
  2375. I915_READ(FDI_RX_IIR(pipe)));
  2376. /* enable CPU FDI TX and PCH FDI RX */
  2377. reg = FDI_TX_CTL(pipe);
  2378. temp = I915_READ(reg);
  2379. temp &= ~(7 << 19);
  2380. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2381. temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2382. temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2383. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2384. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2385. temp |= FDI_COMPOSITE_SYNC;
  2386. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2387. I915_WRITE(FDI_RX_MISC(pipe),
  2388. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2389. reg = FDI_RX_CTL(pipe);
  2390. temp = I915_READ(reg);
  2391. temp &= ~FDI_LINK_TRAIN_AUTO;
  2392. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2393. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2394. temp |= FDI_COMPOSITE_SYNC;
  2395. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2396. POSTING_READ(reg);
  2397. udelay(150);
  2398. cpt_phase_pointer_enable(dev, pipe);
  2399. for (i = 0; i < 4; i++) {
  2400. reg = FDI_TX_CTL(pipe);
  2401. temp = I915_READ(reg);
  2402. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2403. temp |= snb_b_fdi_train_param[i];
  2404. I915_WRITE(reg, temp);
  2405. POSTING_READ(reg);
  2406. udelay(500);
  2407. reg = FDI_RX_IIR(pipe);
  2408. temp = I915_READ(reg);
  2409. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2410. if (temp & FDI_RX_BIT_LOCK ||
  2411. (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2412. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2413. DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
  2414. break;
  2415. }
  2416. }
  2417. if (i == 4)
  2418. DRM_ERROR("FDI train 1 fail!\n");
  2419. /* Train 2 */
  2420. reg = FDI_TX_CTL(pipe);
  2421. temp = I915_READ(reg);
  2422. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2423. temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2424. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2425. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2426. I915_WRITE(reg, temp);
  2427. reg = FDI_RX_CTL(pipe);
  2428. temp = I915_READ(reg);
  2429. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2430. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2431. I915_WRITE(reg, temp);
  2432. POSTING_READ(reg);
  2433. udelay(150);
  2434. for (i = 0; i < 4; i++) {
  2435. reg = FDI_TX_CTL(pipe);
  2436. temp = I915_READ(reg);
  2437. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2438. temp |= snb_b_fdi_train_param[i];
  2439. I915_WRITE(reg, temp);
  2440. POSTING_READ(reg);
  2441. udelay(500);
  2442. reg = FDI_RX_IIR(pipe);
  2443. temp = I915_READ(reg);
  2444. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2445. if (temp & FDI_RX_SYMBOL_LOCK) {
  2446. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2447. DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
  2448. break;
  2449. }
  2450. }
  2451. if (i == 4)
  2452. DRM_ERROR("FDI train 2 fail!\n");
  2453. DRM_DEBUG_KMS("FDI train done.\n");
  2454. }
  2455. static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
  2456. {
  2457. struct drm_device *dev = intel_crtc->base.dev;
  2458. struct drm_i915_private *dev_priv = dev->dev_private;
  2459. int pipe = intel_crtc->pipe;
  2460. u32 reg, temp;
  2461. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2462. reg = FDI_RX_CTL(pipe);
  2463. temp = I915_READ(reg);
  2464. temp &= ~((0x7 << 19) | (0x7 << 16));
  2465. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2466. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2467. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2468. POSTING_READ(reg);
  2469. udelay(200);
  2470. /* Switch from Rawclk to PCDclk */
  2471. temp = I915_READ(reg);
  2472. I915_WRITE(reg, temp | FDI_PCDCLK);
  2473. POSTING_READ(reg);
  2474. udelay(200);
  2475. /* On Haswell, the PLL configuration for ports and pipes is handled
  2476. * separately, as part of DDI setup */
  2477. if (!IS_HASWELL(dev)) {
  2478. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2479. reg = FDI_TX_CTL(pipe);
  2480. temp = I915_READ(reg);
  2481. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2482. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2483. POSTING_READ(reg);
  2484. udelay(100);
  2485. }
  2486. }
  2487. }
  2488. static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
  2489. {
  2490. struct drm_device *dev = intel_crtc->base.dev;
  2491. struct drm_i915_private *dev_priv = dev->dev_private;
  2492. int pipe = intel_crtc->pipe;
  2493. u32 reg, temp;
  2494. /* Switch from PCDclk to Rawclk */
  2495. reg = FDI_RX_CTL(pipe);
  2496. temp = I915_READ(reg);
  2497. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2498. /* Disable CPU FDI TX PLL */
  2499. reg = FDI_TX_CTL(pipe);
  2500. temp = I915_READ(reg);
  2501. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2502. POSTING_READ(reg);
  2503. udelay(100);
  2504. reg = FDI_RX_CTL(pipe);
  2505. temp = I915_READ(reg);
  2506. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2507. /* Wait for the clocks to turn off. */
  2508. POSTING_READ(reg);
  2509. udelay(100);
  2510. }
  2511. static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
  2512. {
  2513. struct drm_i915_private *dev_priv = dev->dev_private;
  2514. u32 flags = I915_READ(SOUTH_CHICKEN1);
  2515. flags &= ~(FDI_PHASE_SYNC_EN(pipe));
  2516. I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
  2517. flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
  2518. I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
  2519. POSTING_READ(SOUTH_CHICKEN1);
  2520. }
  2521. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2522. {
  2523. struct drm_device *dev = crtc->dev;
  2524. struct drm_i915_private *dev_priv = dev->dev_private;
  2525. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2526. int pipe = intel_crtc->pipe;
  2527. u32 reg, temp;
  2528. /* disable CPU FDI tx and PCH FDI rx */
  2529. reg = FDI_TX_CTL(pipe);
  2530. temp = I915_READ(reg);
  2531. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2532. POSTING_READ(reg);
  2533. reg = FDI_RX_CTL(pipe);
  2534. temp = I915_READ(reg);
  2535. temp &= ~(0x7 << 16);
  2536. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2537. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2538. POSTING_READ(reg);
  2539. udelay(100);
  2540. /* Ironlake workaround, disable clock pointer after downing FDI */
  2541. if (HAS_PCH_IBX(dev)) {
  2542. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2543. } else if (HAS_PCH_CPT(dev)) {
  2544. cpt_phase_pointer_disable(dev, pipe);
  2545. }
  2546. /* still set train pattern 1 */
  2547. reg = FDI_TX_CTL(pipe);
  2548. temp = I915_READ(reg);
  2549. temp &= ~FDI_LINK_TRAIN_NONE;
  2550. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2551. I915_WRITE(reg, temp);
  2552. reg = FDI_RX_CTL(pipe);
  2553. temp = I915_READ(reg);
  2554. if (HAS_PCH_CPT(dev)) {
  2555. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2556. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2557. } else {
  2558. temp &= ~FDI_LINK_TRAIN_NONE;
  2559. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2560. }
  2561. /* BPC in FDI rx is consistent with that in PIPECONF */
  2562. temp &= ~(0x07 << 16);
  2563. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2564. I915_WRITE(reg, temp);
  2565. POSTING_READ(reg);
  2566. udelay(100);
  2567. }
  2568. static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
  2569. {
  2570. struct drm_device *dev = crtc->dev;
  2571. struct drm_i915_private *dev_priv = dev->dev_private;
  2572. unsigned long flags;
  2573. bool pending;
  2574. if (atomic_read(&dev_priv->mm.wedged))
  2575. return false;
  2576. spin_lock_irqsave(&dev->event_lock, flags);
  2577. pending = to_intel_crtc(crtc)->unpin_work != NULL;
  2578. spin_unlock_irqrestore(&dev->event_lock, flags);
  2579. return pending;
  2580. }
  2581. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2582. {
  2583. struct drm_device *dev = crtc->dev;
  2584. struct drm_i915_private *dev_priv = dev->dev_private;
  2585. if (crtc->fb == NULL)
  2586. return;
  2587. wait_event(dev_priv->pending_flip_queue,
  2588. !intel_crtc_has_pending_flip(crtc));
  2589. mutex_lock(&dev->struct_mutex);
  2590. intel_finish_fb(crtc->fb);
  2591. mutex_unlock(&dev->struct_mutex);
  2592. }
  2593. static bool ironlake_crtc_driving_pch(struct drm_crtc *crtc)
  2594. {
  2595. struct drm_device *dev = crtc->dev;
  2596. struct intel_encoder *intel_encoder;
  2597. /*
  2598. * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
  2599. * must be driven by its own crtc; no sharing is possible.
  2600. */
  2601. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  2602. switch (intel_encoder->type) {
  2603. case INTEL_OUTPUT_EDP:
  2604. if (!intel_encoder_is_pch_edp(&intel_encoder->base))
  2605. return false;
  2606. continue;
  2607. }
  2608. }
  2609. return true;
  2610. }
  2611. static bool haswell_crtc_driving_pch(struct drm_crtc *crtc)
  2612. {
  2613. return intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG);
  2614. }
  2615. /* Program iCLKIP clock to the desired frequency */
  2616. static void lpt_program_iclkip(struct drm_crtc *crtc)
  2617. {
  2618. struct drm_device *dev = crtc->dev;
  2619. struct drm_i915_private *dev_priv = dev->dev_private;
  2620. u32 divsel, phaseinc, auxdiv, phasedir = 0;
  2621. u32 temp;
  2622. /* It is necessary to ungate the pixclk gate prior to programming
  2623. * the divisors, and gate it back when it is done.
  2624. */
  2625. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
  2626. /* Disable SSCCTL */
  2627. intel_sbi_write(dev_priv, SBI_SSCCTL6,
  2628. intel_sbi_read(dev_priv, SBI_SSCCTL6) |
  2629. SBI_SSCCTL_DISABLE);
  2630. /* 20MHz is a corner case which is out of range for the 7-bit divisor */
  2631. if (crtc->mode.clock == 20000) {
  2632. auxdiv = 1;
  2633. divsel = 0x41;
  2634. phaseinc = 0x20;
  2635. } else {
  2636. /* The iCLK virtual clock root frequency is in MHz,
  2637. * but the crtc->mode.clock in in KHz. To get the divisors,
  2638. * it is necessary to divide one by another, so we
  2639. * convert the virtual clock precision to KHz here for higher
  2640. * precision.
  2641. */
  2642. u32 iclk_virtual_root_freq = 172800 * 1000;
  2643. u32 iclk_pi_range = 64;
  2644. u32 desired_divisor, msb_divisor_value, pi_value;
  2645. desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
  2646. msb_divisor_value = desired_divisor / iclk_pi_range;
  2647. pi_value = desired_divisor % iclk_pi_range;
  2648. auxdiv = 0;
  2649. divsel = msb_divisor_value - 2;
  2650. phaseinc = pi_value;
  2651. }
  2652. /* This should not happen with any sane values */
  2653. WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
  2654. ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
  2655. WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
  2656. ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
  2657. DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
  2658. crtc->mode.clock,
  2659. auxdiv,
  2660. divsel,
  2661. phasedir,
  2662. phaseinc);
  2663. /* Program SSCDIVINTPHASE6 */
  2664. temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
  2665. temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
  2666. temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
  2667. temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
  2668. temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
  2669. temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
  2670. temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
  2671. intel_sbi_write(dev_priv,
  2672. SBI_SSCDIVINTPHASE6,
  2673. temp);
  2674. /* Program SSCAUXDIV */
  2675. temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
  2676. temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
  2677. temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
  2678. intel_sbi_write(dev_priv,
  2679. SBI_SSCAUXDIV6,
  2680. temp);
  2681. /* Enable modulator and associated divider */
  2682. temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
  2683. temp &= ~SBI_SSCCTL_DISABLE;
  2684. intel_sbi_write(dev_priv,
  2685. SBI_SSCCTL6,
  2686. temp);
  2687. /* Wait for initialization time */
  2688. udelay(24);
  2689. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
  2690. }
  2691. /*
  2692. * Enable PCH resources required for PCH ports:
  2693. * - PCH PLLs
  2694. * - FDI training & RX/TX
  2695. * - update transcoder timings
  2696. * - DP transcoding bits
  2697. * - transcoder
  2698. */
  2699. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2700. {
  2701. struct drm_device *dev = crtc->dev;
  2702. struct drm_i915_private *dev_priv = dev->dev_private;
  2703. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2704. int pipe = intel_crtc->pipe;
  2705. u32 reg, temp;
  2706. assert_transcoder_disabled(dev_priv, pipe);
  2707. /* Write the TU size bits before fdi link training, so that error
  2708. * detection works. */
  2709. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2710. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2711. /* For PCH output, training FDI link */
  2712. dev_priv->display.fdi_link_train(crtc);
  2713. /* XXX: pch pll's can be enabled any time before we enable the PCH
  2714. * transcoder, and we actually should do this to not upset any PCH
  2715. * transcoder that already use the clock when we share it.
  2716. *
  2717. * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
  2718. * unconditionally resets the pll - we need that to have the right LVDS
  2719. * enable sequence. */
  2720. ironlake_enable_pch_pll(intel_crtc);
  2721. if (HAS_PCH_CPT(dev)) {
  2722. u32 sel;
  2723. temp = I915_READ(PCH_DPLL_SEL);
  2724. switch (pipe) {
  2725. default:
  2726. case 0:
  2727. temp |= TRANSA_DPLL_ENABLE;
  2728. sel = TRANSA_DPLLB_SEL;
  2729. break;
  2730. case 1:
  2731. temp |= TRANSB_DPLL_ENABLE;
  2732. sel = TRANSB_DPLLB_SEL;
  2733. break;
  2734. case 2:
  2735. temp |= TRANSC_DPLL_ENABLE;
  2736. sel = TRANSC_DPLLB_SEL;
  2737. break;
  2738. }
  2739. if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
  2740. temp |= sel;
  2741. else
  2742. temp &= ~sel;
  2743. I915_WRITE(PCH_DPLL_SEL, temp);
  2744. }
  2745. /* set transcoder timing, panel must allow it */
  2746. assert_panel_unlocked(dev_priv, pipe);
  2747. I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
  2748. I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
  2749. I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
  2750. I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
  2751. I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
  2752. I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
  2753. I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
  2754. intel_fdi_normal_train(crtc);
  2755. /* For PCH DP, enable TRANS_DP_CTL */
  2756. if (HAS_PCH_CPT(dev) &&
  2757. (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  2758. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2759. u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
  2760. reg = TRANS_DP_CTL(pipe);
  2761. temp = I915_READ(reg);
  2762. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2763. TRANS_DP_SYNC_MASK |
  2764. TRANS_DP_BPC_MASK);
  2765. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2766. TRANS_DP_ENH_FRAMING);
  2767. temp |= bpc << 9; /* same format but at 11:9 */
  2768. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2769. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2770. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2771. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2772. switch (intel_trans_dp_port_sel(crtc)) {
  2773. case PCH_DP_B:
  2774. temp |= TRANS_DP_PORT_SEL_B;
  2775. break;
  2776. case PCH_DP_C:
  2777. temp |= TRANS_DP_PORT_SEL_C;
  2778. break;
  2779. case PCH_DP_D:
  2780. temp |= TRANS_DP_PORT_SEL_D;
  2781. break;
  2782. default:
  2783. BUG();
  2784. }
  2785. I915_WRITE(reg, temp);
  2786. }
  2787. ironlake_enable_pch_transcoder(dev_priv, pipe);
  2788. }
  2789. static void lpt_pch_enable(struct drm_crtc *crtc)
  2790. {
  2791. struct drm_device *dev = crtc->dev;
  2792. struct drm_i915_private *dev_priv = dev->dev_private;
  2793. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2794. enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
  2795. assert_transcoder_disabled(dev_priv, TRANSCODER_A);
  2796. lpt_program_iclkip(crtc);
  2797. /* Set transcoder timing. */
  2798. I915_WRITE(_TRANS_HTOTAL_A, I915_READ(HTOTAL(cpu_transcoder)));
  2799. I915_WRITE(_TRANS_HBLANK_A, I915_READ(HBLANK(cpu_transcoder)));
  2800. I915_WRITE(_TRANS_HSYNC_A, I915_READ(HSYNC(cpu_transcoder)));
  2801. I915_WRITE(_TRANS_VTOTAL_A, I915_READ(VTOTAL(cpu_transcoder)));
  2802. I915_WRITE(_TRANS_VBLANK_A, I915_READ(VBLANK(cpu_transcoder)));
  2803. I915_WRITE(_TRANS_VSYNC_A, I915_READ(VSYNC(cpu_transcoder)));
  2804. I915_WRITE(_TRANS_VSYNCSHIFT_A, I915_READ(VSYNCSHIFT(cpu_transcoder)));
  2805. lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
  2806. }
  2807. static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
  2808. {
  2809. struct intel_pch_pll *pll = intel_crtc->pch_pll;
  2810. if (pll == NULL)
  2811. return;
  2812. if (pll->refcount == 0) {
  2813. WARN(1, "bad PCH PLL refcount\n");
  2814. return;
  2815. }
  2816. --pll->refcount;
  2817. intel_crtc->pch_pll = NULL;
  2818. }
  2819. static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
  2820. {
  2821. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  2822. struct intel_pch_pll *pll;
  2823. int i;
  2824. pll = intel_crtc->pch_pll;
  2825. if (pll) {
  2826. DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
  2827. intel_crtc->base.base.id, pll->pll_reg);
  2828. goto prepare;
  2829. }
  2830. if (HAS_PCH_IBX(dev_priv->dev)) {
  2831. /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  2832. i = intel_crtc->pipe;
  2833. pll = &dev_priv->pch_plls[i];
  2834. DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
  2835. intel_crtc->base.base.id, pll->pll_reg);
  2836. goto found;
  2837. }
  2838. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  2839. pll = &dev_priv->pch_plls[i];
  2840. /* Only want to check enabled timings first */
  2841. if (pll->refcount == 0)
  2842. continue;
  2843. if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
  2844. fp == I915_READ(pll->fp0_reg)) {
  2845. DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
  2846. intel_crtc->base.base.id,
  2847. pll->pll_reg, pll->refcount, pll->active);
  2848. goto found;
  2849. }
  2850. }
  2851. /* Ok no matching timings, maybe there's a free one? */
  2852. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  2853. pll = &dev_priv->pch_plls[i];
  2854. if (pll->refcount == 0) {
  2855. DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
  2856. intel_crtc->base.base.id, pll->pll_reg);
  2857. goto found;
  2858. }
  2859. }
  2860. return NULL;
  2861. found:
  2862. intel_crtc->pch_pll = pll;
  2863. pll->refcount++;
  2864. DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
  2865. prepare: /* separate function? */
  2866. DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
  2867. /* Wait for the clocks to stabilize before rewriting the regs */
  2868. I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
  2869. POSTING_READ(pll->pll_reg);
  2870. udelay(150);
  2871. I915_WRITE(pll->fp0_reg, fp);
  2872. I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
  2873. pll->on = false;
  2874. return pll;
  2875. }
  2876. void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
  2877. {
  2878. struct drm_i915_private *dev_priv = dev->dev_private;
  2879. int dslreg = PIPEDSL(pipe);
  2880. u32 temp;
  2881. temp = I915_READ(dslreg);
  2882. udelay(500);
  2883. if (wait_for(I915_READ(dslreg) != temp, 5)) {
  2884. if (wait_for(I915_READ(dslreg) != temp, 5))
  2885. DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
  2886. }
  2887. }
  2888. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2889. {
  2890. struct drm_device *dev = crtc->dev;
  2891. struct drm_i915_private *dev_priv = dev->dev_private;
  2892. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2893. struct intel_encoder *encoder;
  2894. int pipe = intel_crtc->pipe;
  2895. int plane = intel_crtc->plane;
  2896. u32 temp;
  2897. bool is_pch_port;
  2898. WARN_ON(!crtc->enabled);
  2899. if (intel_crtc->active)
  2900. return;
  2901. intel_crtc->active = true;
  2902. intel_update_watermarks(dev);
  2903. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  2904. temp = I915_READ(PCH_LVDS);
  2905. if ((temp & LVDS_PORT_EN) == 0)
  2906. I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
  2907. }
  2908. is_pch_port = ironlake_crtc_driving_pch(crtc);
  2909. if (is_pch_port) {
  2910. /* Note: FDI PLL enabling _must_ be done before we enable the
  2911. * cpu pipes, hence this is separate from all the other fdi/pch
  2912. * enabling. */
  2913. ironlake_fdi_pll_enable(intel_crtc);
  2914. } else {
  2915. assert_fdi_tx_disabled(dev_priv, pipe);
  2916. assert_fdi_rx_disabled(dev_priv, pipe);
  2917. }
  2918. for_each_encoder_on_crtc(dev, crtc, encoder)
  2919. if (encoder->pre_enable)
  2920. encoder->pre_enable(encoder);
  2921. /* Enable panel fitting for LVDS */
  2922. if (dev_priv->pch_pf_size &&
  2923. (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
  2924. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2925. /* Force use of hard-coded filter coefficients
  2926. * as some pre-programmed values are broken,
  2927. * e.g. x201.
  2928. */
  2929. if (IS_IVYBRIDGE(dev))
  2930. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
  2931. PF_PIPE_SEL_IVB(pipe));
  2932. else
  2933. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2934. I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
  2935. I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
  2936. }
  2937. /*
  2938. * On ILK+ LUT must be loaded before the pipe is running but with
  2939. * clocks enabled
  2940. */
  2941. intel_crtc_load_lut(crtc);
  2942. intel_enable_pipe(dev_priv, pipe, is_pch_port);
  2943. intel_enable_plane(dev_priv, plane, pipe);
  2944. if (is_pch_port)
  2945. ironlake_pch_enable(crtc);
  2946. mutex_lock(&dev->struct_mutex);
  2947. intel_update_fbc(dev);
  2948. mutex_unlock(&dev->struct_mutex);
  2949. intel_crtc_update_cursor(crtc, true);
  2950. for_each_encoder_on_crtc(dev, crtc, encoder)
  2951. encoder->enable(encoder);
  2952. if (HAS_PCH_CPT(dev))
  2953. intel_cpt_verify_modeset(dev, intel_crtc->pipe);
  2954. /*
  2955. * There seems to be a race in PCH platform hw (at least on some
  2956. * outputs) where an enabled pipe still completes any pageflip right
  2957. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2958. * as the first vblank happend, everything works as expected. Hence just
  2959. * wait for one vblank before returning to avoid strange things
  2960. * happening.
  2961. */
  2962. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2963. }
  2964. static void haswell_crtc_enable(struct drm_crtc *crtc)
  2965. {
  2966. struct drm_device *dev = crtc->dev;
  2967. struct drm_i915_private *dev_priv = dev->dev_private;
  2968. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2969. struct intel_encoder *encoder;
  2970. int pipe = intel_crtc->pipe;
  2971. int plane = intel_crtc->plane;
  2972. bool is_pch_port;
  2973. WARN_ON(!crtc->enabled);
  2974. if (intel_crtc->active)
  2975. return;
  2976. intel_crtc->active = true;
  2977. intel_update_watermarks(dev);
  2978. is_pch_port = haswell_crtc_driving_pch(crtc);
  2979. if (is_pch_port)
  2980. dev_priv->display.fdi_link_train(crtc);
  2981. for_each_encoder_on_crtc(dev, crtc, encoder)
  2982. if (encoder->pre_enable)
  2983. encoder->pre_enable(encoder);
  2984. intel_ddi_enable_pipe_clock(intel_crtc);
  2985. /* Enable panel fitting for eDP */
  2986. if (dev_priv->pch_pf_size &&
  2987. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  2988. /* Force use of hard-coded filter coefficients
  2989. * as some pre-programmed values are broken,
  2990. * e.g. x201.
  2991. */
  2992. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
  2993. PF_PIPE_SEL_IVB(pipe));
  2994. I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
  2995. I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
  2996. }
  2997. /*
  2998. * On ILK+ LUT must be loaded before the pipe is running but with
  2999. * clocks enabled
  3000. */
  3001. intel_crtc_load_lut(crtc);
  3002. intel_ddi_set_pipe_settings(crtc);
  3003. intel_ddi_enable_pipe_func(crtc);
  3004. intel_enable_pipe(dev_priv, pipe, is_pch_port);
  3005. intel_enable_plane(dev_priv, plane, pipe);
  3006. if (is_pch_port)
  3007. lpt_pch_enable(crtc);
  3008. mutex_lock(&dev->struct_mutex);
  3009. intel_update_fbc(dev);
  3010. mutex_unlock(&dev->struct_mutex);
  3011. intel_crtc_update_cursor(crtc, true);
  3012. for_each_encoder_on_crtc(dev, crtc, encoder)
  3013. encoder->enable(encoder);
  3014. /*
  3015. * There seems to be a race in PCH platform hw (at least on some
  3016. * outputs) where an enabled pipe still completes any pageflip right
  3017. * away (as if the pipe is off) instead of waiting for vblank. As soon
  3018. * as the first vblank happend, everything works as expected. Hence just
  3019. * wait for one vblank before returning to avoid strange things
  3020. * happening.
  3021. */
  3022. intel_wait_for_vblank(dev, intel_crtc->pipe);
  3023. }
  3024. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  3025. {
  3026. struct drm_device *dev = crtc->dev;
  3027. struct drm_i915_private *dev_priv = dev->dev_private;
  3028. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3029. struct intel_encoder *encoder;
  3030. int pipe = intel_crtc->pipe;
  3031. int plane = intel_crtc->plane;
  3032. u32 reg, temp;
  3033. if (!intel_crtc->active)
  3034. return;
  3035. for_each_encoder_on_crtc(dev, crtc, encoder)
  3036. encoder->disable(encoder);
  3037. intel_crtc_wait_for_pending_flips(crtc);
  3038. drm_vblank_off(dev, pipe);
  3039. intel_crtc_update_cursor(crtc, false);
  3040. intel_disable_plane(dev_priv, plane, pipe);
  3041. if (dev_priv->cfb_plane == plane)
  3042. intel_disable_fbc(dev);
  3043. intel_disable_pipe(dev_priv, pipe);
  3044. /* Disable PF */
  3045. I915_WRITE(PF_CTL(pipe), 0);
  3046. I915_WRITE(PF_WIN_SZ(pipe), 0);
  3047. for_each_encoder_on_crtc(dev, crtc, encoder)
  3048. if (encoder->post_disable)
  3049. encoder->post_disable(encoder);
  3050. ironlake_fdi_disable(crtc);
  3051. ironlake_disable_pch_transcoder(dev_priv, pipe);
  3052. if (HAS_PCH_CPT(dev)) {
  3053. /* disable TRANS_DP_CTL */
  3054. reg = TRANS_DP_CTL(pipe);
  3055. temp = I915_READ(reg);
  3056. temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
  3057. temp |= TRANS_DP_PORT_SEL_NONE;
  3058. I915_WRITE(reg, temp);
  3059. /* disable DPLL_SEL */
  3060. temp = I915_READ(PCH_DPLL_SEL);
  3061. switch (pipe) {
  3062. case 0:
  3063. temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
  3064. break;
  3065. case 1:
  3066. temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  3067. break;
  3068. case 2:
  3069. /* C shares PLL A or B */
  3070. temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
  3071. break;
  3072. default:
  3073. BUG(); /* wtf */
  3074. }
  3075. I915_WRITE(PCH_DPLL_SEL, temp);
  3076. }
  3077. /* disable PCH DPLL */
  3078. intel_disable_pch_pll(intel_crtc);
  3079. ironlake_fdi_pll_disable(intel_crtc);
  3080. intel_crtc->active = false;
  3081. intel_update_watermarks(dev);
  3082. mutex_lock(&dev->struct_mutex);
  3083. intel_update_fbc(dev);
  3084. mutex_unlock(&dev->struct_mutex);
  3085. }
  3086. static void haswell_crtc_disable(struct drm_crtc *crtc)
  3087. {
  3088. struct drm_device *dev = crtc->dev;
  3089. struct drm_i915_private *dev_priv = dev->dev_private;
  3090. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3091. struct intel_encoder *encoder;
  3092. int pipe = intel_crtc->pipe;
  3093. int plane = intel_crtc->plane;
  3094. enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
  3095. bool is_pch_port;
  3096. if (!intel_crtc->active)
  3097. return;
  3098. is_pch_port = haswell_crtc_driving_pch(crtc);
  3099. for_each_encoder_on_crtc(dev, crtc, encoder)
  3100. encoder->disable(encoder);
  3101. intel_crtc_wait_for_pending_flips(crtc);
  3102. drm_vblank_off(dev, pipe);
  3103. intel_crtc_update_cursor(crtc, false);
  3104. intel_disable_plane(dev_priv, plane, pipe);
  3105. if (dev_priv->cfb_plane == plane)
  3106. intel_disable_fbc(dev);
  3107. intel_disable_pipe(dev_priv, pipe);
  3108. intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
  3109. /* Disable PF */
  3110. I915_WRITE(PF_CTL(pipe), 0);
  3111. I915_WRITE(PF_WIN_SZ(pipe), 0);
  3112. intel_ddi_disable_pipe_clock(intel_crtc);
  3113. for_each_encoder_on_crtc(dev, crtc, encoder)
  3114. if (encoder->post_disable)
  3115. encoder->post_disable(encoder);
  3116. if (is_pch_port) {
  3117. lpt_disable_pch_transcoder(dev_priv);
  3118. intel_ddi_fdi_disable(crtc);
  3119. }
  3120. intel_crtc->active = false;
  3121. intel_update_watermarks(dev);
  3122. mutex_lock(&dev->struct_mutex);
  3123. intel_update_fbc(dev);
  3124. mutex_unlock(&dev->struct_mutex);
  3125. }
  3126. static void ironlake_crtc_off(struct drm_crtc *crtc)
  3127. {
  3128. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3129. intel_put_pch_pll(intel_crtc);
  3130. }
  3131. static void haswell_crtc_off(struct drm_crtc *crtc)
  3132. {
  3133. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3134. /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
  3135. * start using it. */
  3136. intel_crtc->cpu_transcoder = intel_crtc->pipe;
  3137. intel_ddi_put_crtc_pll(crtc);
  3138. }
  3139. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  3140. {
  3141. if (!enable && intel_crtc->overlay) {
  3142. struct drm_device *dev = intel_crtc->base.dev;
  3143. struct drm_i915_private *dev_priv = dev->dev_private;
  3144. mutex_lock(&dev->struct_mutex);
  3145. dev_priv->mm.interruptible = false;
  3146. (void) intel_overlay_switch_off(intel_crtc->overlay);
  3147. dev_priv->mm.interruptible = true;
  3148. mutex_unlock(&dev->struct_mutex);
  3149. }
  3150. /* Let userspace switch the overlay on again. In most cases userspace
  3151. * has to recompute where to put it anyway.
  3152. */
  3153. }
  3154. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  3155. {
  3156. struct drm_device *dev = crtc->dev;
  3157. struct drm_i915_private *dev_priv = dev->dev_private;
  3158. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3159. struct intel_encoder *encoder;
  3160. int pipe = intel_crtc->pipe;
  3161. int plane = intel_crtc->plane;
  3162. WARN_ON(!crtc->enabled);
  3163. if (intel_crtc->active)
  3164. return;
  3165. intel_crtc->active = true;
  3166. intel_update_watermarks(dev);
  3167. intel_enable_pll(dev_priv, pipe);
  3168. intel_enable_pipe(dev_priv, pipe, false);
  3169. intel_enable_plane(dev_priv, plane, pipe);
  3170. intel_crtc_load_lut(crtc);
  3171. intel_update_fbc(dev);
  3172. /* Give the overlay scaler a chance to enable if it's on this pipe */
  3173. intel_crtc_dpms_overlay(intel_crtc, true);
  3174. intel_crtc_update_cursor(crtc, true);
  3175. for_each_encoder_on_crtc(dev, crtc, encoder)
  3176. encoder->enable(encoder);
  3177. }
  3178. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  3179. {
  3180. struct drm_device *dev = crtc->dev;
  3181. struct drm_i915_private *dev_priv = dev->dev_private;
  3182. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3183. struct intel_encoder *encoder;
  3184. int pipe = intel_crtc->pipe;
  3185. int plane = intel_crtc->plane;
  3186. if (!intel_crtc->active)
  3187. return;
  3188. for_each_encoder_on_crtc(dev, crtc, encoder)
  3189. encoder->disable(encoder);
  3190. /* Give the overlay scaler a chance to disable if it's on this pipe */
  3191. intel_crtc_wait_for_pending_flips(crtc);
  3192. drm_vblank_off(dev, pipe);
  3193. intel_crtc_dpms_overlay(intel_crtc, false);
  3194. intel_crtc_update_cursor(crtc, false);
  3195. if (dev_priv->cfb_plane == plane)
  3196. intel_disable_fbc(dev);
  3197. intel_disable_plane(dev_priv, plane, pipe);
  3198. intel_disable_pipe(dev_priv, pipe);
  3199. intel_disable_pll(dev_priv, pipe);
  3200. intel_crtc->active = false;
  3201. intel_update_fbc(dev);
  3202. intel_update_watermarks(dev);
  3203. }
  3204. static void i9xx_crtc_off(struct drm_crtc *crtc)
  3205. {
  3206. }
  3207. static void intel_crtc_update_sarea(struct drm_crtc *crtc,
  3208. bool enabled)
  3209. {
  3210. struct drm_device *dev = crtc->dev;
  3211. struct drm_i915_master_private *master_priv;
  3212. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3213. int pipe = intel_crtc->pipe;
  3214. if (!dev->primary->master)
  3215. return;
  3216. master_priv = dev->primary->master->driver_priv;
  3217. if (!master_priv->sarea_priv)
  3218. return;
  3219. switch (pipe) {
  3220. case 0:
  3221. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  3222. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  3223. break;
  3224. case 1:
  3225. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  3226. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  3227. break;
  3228. default:
  3229. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  3230. break;
  3231. }
  3232. }
  3233. /**
  3234. * Sets the power management mode of the pipe and plane.
  3235. */
  3236. void intel_crtc_update_dpms(struct drm_crtc *crtc)
  3237. {
  3238. struct drm_device *dev = crtc->dev;
  3239. struct drm_i915_private *dev_priv = dev->dev_private;
  3240. struct intel_encoder *intel_encoder;
  3241. bool enable = false;
  3242. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  3243. enable |= intel_encoder->connectors_active;
  3244. if (enable)
  3245. dev_priv->display.crtc_enable(crtc);
  3246. else
  3247. dev_priv->display.crtc_disable(crtc);
  3248. intel_crtc_update_sarea(crtc, enable);
  3249. }
  3250. static void intel_crtc_noop(struct drm_crtc *crtc)
  3251. {
  3252. }
  3253. static void intel_crtc_disable(struct drm_crtc *crtc)
  3254. {
  3255. struct drm_device *dev = crtc->dev;
  3256. struct drm_connector *connector;
  3257. struct drm_i915_private *dev_priv = dev->dev_private;
  3258. /* crtc should still be enabled when we disable it. */
  3259. WARN_ON(!crtc->enabled);
  3260. dev_priv->display.crtc_disable(crtc);
  3261. intel_crtc_update_sarea(crtc, false);
  3262. dev_priv->display.off(crtc);
  3263. assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
  3264. assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
  3265. if (crtc->fb) {
  3266. mutex_lock(&dev->struct_mutex);
  3267. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  3268. mutex_unlock(&dev->struct_mutex);
  3269. crtc->fb = NULL;
  3270. }
  3271. /* Update computed state. */
  3272. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  3273. if (!connector->encoder || !connector->encoder->crtc)
  3274. continue;
  3275. if (connector->encoder->crtc != crtc)
  3276. continue;
  3277. connector->dpms = DRM_MODE_DPMS_OFF;
  3278. to_intel_encoder(connector->encoder)->connectors_active = false;
  3279. }
  3280. }
  3281. void intel_modeset_disable(struct drm_device *dev)
  3282. {
  3283. struct drm_crtc *crtc;
  3284. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3285. if (crtc->enabled)
  3286. intel_crtc_disable(crtc);
  3287. }
  3288. }
  3289. void intel_encoder_noop(struct drm_encoder *encoder)
  3290. {
  3291. }
  3292. void intel_encoder_destroy(struct drm_encoder *encoder)
  3293. {
  3294. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  3295. drm_encoder_cleanup(encoder);
  3296. kfree(intel_encoder);
  3297. }
  3298. /* Simple dpms helper for encodres with just one connector, no cloning and only
  3299. * one kind of off state. It clamps all !ON modes to fully OFF and changes the
  3300. * state of the entire output pipe. */
  3301. void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
  3302. {
  3303. if (mode == DRM_MODE_DPMS_ON) {
  3304. encoder->connectors_active = true;
  3305. intel_crtc_update_dpms(encoder->base.crtc);
  3306. } else {
  3307. encoder->connectors_active = false;
  3308. intel_crtc_update_dpms(encoder->base.crtc);
  3309. }
  3310. }
  3311. /* Cross check the actual hw state with our own modeset state tracking (and it's
  3312. * internal consistency). */
  3313. static void intel_connector_check_state(struct intel_connector *connector)
  3314. {
  3315. if (connector->get_hw_state(connector)) {
  3316. struct intel_encoder *encoder = connector->encoder;
  3317. struct drm_crtc *crtc;
  3318. bool encoder_enabled;
  3319. enum pipe pipe;
  3320. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  3321. connector->base.base.id,
  3322. drm_get_connector_name(&connector->base));
  3323. WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
  3324. "wrong connector dpms state\n");
  3325. WARN(connector->base.encoder != &encoder->base,
  3326. "active connector not linked to encoder\n");
  3327. WARN(!encoder->connectors_active,
  3328. "encoder->connectors_active not set\n");
  3329. encoder_enabled = encoder->get_hw_state(encoder, &pipe);
  3330. WARN(!encoder_enabled, "encoder not enabled\n");
  3331. if (WARN_ON(!encoder->base.crtc))
  3332. return;
  3333. crtc = encoder->base.crtc;
  3334. WARN(!crtc->enabled, "crtc not enabled\n");
  3335. WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
  3336. WARN(pipe != to_intel_crtc(crtc)->pipe,
  3337. "encoder active on the wrong pipe\n");
  3338. }
  3339. }
  3340. /* Even simpler default implementation, if there's really no special case to
  3341. * consider. */
  3342. void intel_connector_dpms(struct drm_connector *connector, int mode)
  3343. {
  3344. struct intel_encoder *encoder = intel_attached_encoder(connector);
  3345. /* All the simple cases only support two dpms states. */
  3346. if (mode != DRM_MODE_DPMS_ON)
  3347. mode = DRM_MODE_DPMS_OFF;
  3348. if (mode == connector->dpms)
  3349. return;
  3350. connector->dpms = mode;
  3351. /* Only need to change hw state when actually enabled */
  3352. if (encoder->base.crtc)
  3353. intel_encoder_dpms(encoder, mode);
  3354. else
  3355. WARN_ON(encoder->connectors_active != false);
  3356. intel_modeset_check_state(connector->dev);
  3357. }
  3358. /* Simple connector->get_hw_state implementation for encoders that support only
  3359. * one connector and no cloning and hence the encoder state determines the state
  3360. * of the connector. */
  3361. bool intel_connector_get_hw_state(struct intel_connector *connector)
  3362. {
  3363. enum pipe pipe = 0;
  3364. struct intel_encoder *encoder = connector->encoder;
  3365. return encoder->get_hw_state(encoder, &pipe);
  3366. }
  3367. static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
  3368. const struct drm_display_mode *mode,
  3369. struct drm_display_mode *adjusted_mode)
  3370. {
  3371. struct drm_device *dev = crtc->dev;
  3372. if (HAS_PCH_SPLIT(dev)) {
  3373. /* FDI link clock is fixed at 2.7G */
  3374. if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
  3375. return false;
  3376. }
  3377. /* All interlaced capable intel hw wants timings in frames. Note though
  3378. * that intel_lvds_mode_fixup does some funny tricks with the crtc
  3379. * timings, so we need to be careful not to clobber these.*/
  3380. if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
  3381. drm_mode_set_crtcinfo(adjusted_mode, 0);
  3382. /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
  3383. * with a hsync front porch of 0.
  3384. */
  3385. if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
  3386. adjusted_mode->hsync_start == adjusted_mode->hdisplay)
  3387. return false;
  3388. return true;
  3389. }
  3390. static int valleyview_get_display_clock_speed(struct drm_device *dev)
  3391. {
  3392. return 400000; /* FIXME */
  3393. }
  3394. static int i945_get_display_clock_speed(struct drm_device *dev)
  3395. {
  3396. return 400000;
  3397. }
  3398. static int i915_get_display_clock_speed(struct drm_device *dev)
  3399. {
  3400. return 333000;
  3401. }
  3402. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  3403. {
  3404. return 200000;
  3405. }
  3406. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  3407. {
  3408. u16 gcfgc = 0;
  3409. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3410. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  3411. return 133000;
  3412. else {
  3413. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3414. case GC_DISPLAY_CLOCK_333_MHZ:
  3415. return 333000;
  3416. default:
  3417. case GC_DISPLAY_CLOCK_190_200_MHZ:
  3418. return 190000;
  3419. }
  3420. }
  3421. }
  3422. static int i865_get_display_clock_speed(struct drm_device *dev)
  3423. {
  3424. return 266000;
  3425. }
  3426. static int i855_get_display_clock_speed(struct drm_device *dev)
  3427. {
  3428. u16 hpllcc = 0;
  3429. /* Assume that the hardware is in the high speed state. This
  3430. * should be the default.
  3431. */
  3432. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  3433. case GC_CLOCK_133_200:
  3434. case GC_CLOCK_100_200:
  3435. return 200000;
  3436. case GC_CLOCK_166_250:
  3437. return 250000;
  3438. case GC_CLOCK_100_133:
  3439. return 133000;
  3440. }
  3441. /* Shouldn't happen */
  3442. return 0;
  3443. }
  3444. static int i830_get_display_clock_speed(struct drm_device *dev)
  3445. {
  3446. return 133000;
  3447. }
  3448. struct fdi_m_n {
  3449. u32 tu;
  3450. u32 gmch_m;
  3451. u32 gmch_n;
  3452. u32 link_m;
  3453. u32 link_n;
  3454. };
  3455. static void
  3456. fdi_reduce_ratio(u32 *num, u32 *den)
  3457. {
  3458. while (*num > 0xffffff || *den > 0xffffff) {
  3459. *num >>= 1;
  3460. *den >>= 1;
  3461. }
  3462. }
  3463. static void
  3464. ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
  3465. int link_clock, struct fdi_m_n *m_n)
  3466. {
  3467. m_n->tu = 64; /* default size */
  3468. /* BUG_ON(pixel_clock > INT_MAX / 36); */
  3469. m_n->gmch_m = bits_per_pixel * pixel_clock;
  3470. m_n->gmch_n = link_clock * nlanes * 8;
  3471. fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  3472. m_n->link_m = pixel_clock;
  3473. m_n->link_n = link_clock;
  3474. fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
  3475. }
  3476. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  3477. {
  3478. if (i915_panel_use_ssc >= 0)
  3479. return i915_panel_use_ssc != 0;
  3480. return dev_priv->lvds_use_ssc
  3481. && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  3482. }
  3483. /**
  3484. * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
  3485. * @crtc: CRTC structure
  3486. * @mode: requested mode
  3487. *
  3488. * A pipe may be connected to one or more outputs. Based on the depth of the
  3489. * attached framebuffer, choose a good color depth to use on the pipe.
  3490. *
  3491. * If possible, match the pipe depth to the fb depth. In some cases, this
  3492. * isn't ideal, because the connected output supports a lesser or restricted
  3493. * set of depths. Resolve that here:
  3494. * LVDS typically supports only 6bpc, so clamp down in that case
  3495. * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
  3496. * Displays may support a restricted set as well, check EDID and clamp as
  3497. * appropriate.
  3498. * DP may want to dither down to 6bpc to fit larger modes
  3499. *
  3500. * RETURNS:
  3501. * Dithering requirement (i.e. false if display bpc and pipe bpc match,
  3502. * true if they don't match).
  3503. */
  3504. static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
  3505. struct drm_framebuffer *fb,
  3506. unsigned int *pipe_bpp,
  3507. struct drm_display_mode *mode)
  3508. {
  3509. struct drm_device *dev = crtc->dev;
  3510. struct drm_i915_private *dev_priv = dev->dev_private;
  3511. struct drm_connector *connector;
  3512. struct intel_encoder *intel_encoder;
  3513. unsigned int display_bpc = UINT_MAX, bpc;
  3514. /* Walk the encoders & connectors on this crtc, get min bpc */
  3515. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  3516. if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
  3517. unsigned int lvds_bpc;
  3518. if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
  3519. LVDS_A3_POWER_UP)
  3520. lvds_bpc = 8;
  3521. else
  3522. lvds_bpc = 6;
  3523. if (lvds_bpc < display_bpc) {
  3524. DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
  3525. display_bpc = lvds_bpc;
  3526. }
  3527. continue;
  3528. }
  3529. /* Not one of the known troublemakers, check the EDID */
  3530. list_for_each_entry(connector, &dev->mode_config.connector_list,
  3531. head) {
  3532. if (connector->encoder != &intel_encoder->base)
  3533. continue;
  3534. /* Don't use an invalid EDID bpc value */
  3535. if (connector->display_info.bpc &&
  3536. connector->display_info.bpc < display_bpc) {
  3537. DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
  3538. display_bpc = connector->display_info.bpc;
  3539. }
  3540. }
  3541. /*
  3542. * HDMI is either 12 or 8, so if the display lets 10bpc sneak
  3543. * through, clamp it down. (Note: >12bpc will be caught below.)
  3544. */
  3545. if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
  3546. if (display_bpc > 8 && display_bpc < 12) {
  3547. DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
  3548. display_bpc = 12;
  3549. } else {
  3550. DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
  3551. display_bpc = 8;
  3552. }
  3553. }
  3554. }
  3555. if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
  3556. DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
  3557. display_bpc = 6;
  3558. }
  3559. /*
  3560. * We could just drive the pipe at the highest bpc all the time and
  3561. * enable dithering as needed, but that costs bandwidth. So choose
  3562. * the minimum value that expresses the full color range of the fb but
  3563. * also stays within the max display bpc discovered above.
  3564. */
  3565. switch (fb->depth) {
  3566. case 8:
  3567. bpc = 8; /* since we go through a colormap */
  3568. break;
  3569. case 15:
  3570. case 16:
  3571. bpc = 6; /* min is 18bpp */
  3572. break;
  3573. case 24:
  3574. bpc = 8;
  3575. break;
  3576. case 30:
  3577. bpc = 10;
  3578. break;
  3579. case 48:
  3580. bpc = 12;
  3581. break;
  3582. default:
  3583. DRM_DEBUG("unsupported depth, assuming 24 bits\n");
  3584. bpc = min((unsigned int)8, display_bpc);
  3585. break;
  3586. }
  3587. display_bpc = min(display_bpc, bpc);
  3588. DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
  3589. bpc, display_bpc);
  3590. *pipe_bpp = display_bpc * 3;
  3591. return display_bpc != bpc;
  3592. }
  3593. static int vlv_get_refclk(struct drm_crtc *crtc)
  3594. {
  3595. struct drm_device *dev = crtc->dev;
  3596. struct drm_i915_private *dev_priv = dev->dev_private;
  3597. int refclk = 27000; /* for DP & HDMI */
  3598. return 100000; /* only one validated so far */
  3599. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  3600. refclk = 96000;
  3601. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  3602. if (intel_panel_use_ssc(dev_priv))
  3603. refclk = 100000;
  3604. else
  3605. refclk = 96000;
  3606. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  3607. refclk = 100000;
  3608. }
  3609. return refclk;
  3610. }
  3611. static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
  3612. {
  3613. struct drm_device *dev = crtc->dev;
  3614. struct drm_i915_private *dev_priv = dev->dev_private;
  3615. int refclk;
  3616. if (IS_VALLEYVIEW(dev)) {
  3617. refclk = vlv_get_refclk(crtc);
  3618. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3619. intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  3620. refclk = dev_priv->lvds_ssc_freq * 1000;
  3621. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  3622. refclk / 1000);
  3623. } else if (!IS_GEN2(dev)) {
  3624. refclk = 96000;
  3625. } else {
  3626. refclk = 48000;
  3627. }
  3628. return refclk;
  3629. }
  3630. static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
  3631. intel_clock_t *clock)
  3632. {
  3633. /* SDVO TV has fixed PLL values depend on its clock range,
  3634. this mirrors vbios setting. */
  3635. if (adjusted_mode->clock >= 100000
  3636. && adjusted_mode->clock < 140500) {
  3637. clock->p1 = 2;
  3638. clock->p2 = 10;
  3639. clock->n = 3;
  3640. clock->m1 = 16;
  3641. clock->m2 = 8;
  3642. } else if (adjusted_mode->clock >= 140500
  3643. && adjusted_mode->clock <= 200000) {
  3644. clock->p1 = 1;
  3645. clock->p2 = 10;
  3646. clock->n = 6;
  3647. clock->m1 = 12;
  3648. clock->m2 = 8;
  3649. }
  3650. }
  3651. static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
  3652. intel_clock_t *clock,
  3653. intel_clock_t *reduced_clock)
  3654. {
  3655. struct drm_device *dev = crtc->dev;
  3656. struct drm_i915_private *dev_priv = dev->dev_private;
  3657. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3658. int pipe = intel_crtc->pipe;
  3659. u32 fp, fp2 = 0;
  3660. if (IS_PINEVIEW(dev)) {
  3661. fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
  3662. if (reduced_clock)
  3663. fp2 = (1 << reduced_clock->n) << 16 |
  3664. reduced_clock->m1 << 8 | reduced_clock->m2;
  3665. } else {
  3666. fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
  3667. if (reduced_clock)
  3668. fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
  3669. reduced_clock->m2;
  3670. }
  3671. I915_WRITE(FP0(pipe), fp);
  3672. intel_crtc->lowfreq_avail = false;
  3673. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3674. reduced_clock && i915_powersave) {
  3675. I915_WRITE(FP1(pipe), fp2);
  3676. intel_crtc->lowfreq_avail = true;
  3677. } else {
  3678. I915_WRITE(FP1(pipe), fp);
  3679. }
  3680. }
  3681. static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
  3682. struct drm_display_mode *adjusted_mode)
  3683. {
  3684. struct drm_device *dev = crtc->dev;
  3685. struct drm_i915_private *dev_priv = dev->dev_private;
  3686. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3687. int pipe = intel_crtc->pipe;
  3688. u32 temp;
  3689. temp = I915_READ(LVDS);
  3690. temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  3691. if (pipe == 1) {
  3692. temp |= LVDS_PIPEB_SELECT;
  3693. } else {
  3694. temp &= ~LVDS_PIPEB_SELECT;
  3695. }
  3696. /* set the corresponsding LVDS_BORDER bit */
  3697. temp |= dev_priv->lvds_border_bits;
  3698. /* Set the B0-B3 data pairs corresponding to whether we're going to
  3699. * set the DPLLs for dual-channel mode or not.
  3700. */
  3701. if (clock->p2 == 7)
  3702. temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  3703. else
  3704. temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
  3705. /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
  3706. * appropriately here, but we need to look more thoroughly into how
  3707. * panels behave in the two modes.
  3708. */
  3709. /* set the dithering flag on LVDS as needed */
  3710. if (INTEL_INFO(dev)->gen >= 4) {
  3711. if (dev_priv->lvds_dither)
  3712. temp |= LVDS_ENABLE_DITHER;
  3713. else
  3714. temp &= ~LVDS_ENABLE_DITHER;
  3715. }
  3716. temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
  3717. if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
  3718. temp |= LVDS_HSYNC_POLARITY;
  3719. if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
  3720. temp |= LVDS_VSYNC_POLARITY;
  3721. I915_WRITE(LVDS, temp);
  3722. }
  3723. static void vlv_update_pll(struct drm_crtc *crtc,
  3724. struct drm_display_mode *mode,
  3725. struct drm_display_mode *adjusted_mode,
  3726. intel_clock_t *clock, intel_clock_t *reduced_clock,
  3727. int num_connectors)
  3728. {
  3729. struct drm_device *dev = crtc->dev;
  3730. struct drm_i915_private *dev_priv = dev->dev_private;
  3731. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3732. int pipe = intel_crtc->pipe;
  3733. u32 dpll, mdiv, pdiv;
  3734. u32 bestn, bestm1, bestm2, bestp1, bestp2;
  3735. bool is_sdvo;
  3736. u32 temp;
  3737. is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
  3738. intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
  3739. dpll = DPLL_VGA_MODE_DIS;
  3740. dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
  3741. dpll |= DPLL_REFA_CLK_ENABLE_VLV;
  3742. dpll |= DPLL_INTEGRATED_CLOCK_VLV;
  3743. I915_WRITE(DPLL(pipe), dpll);
  3744. POSTING_READ(DPLL(pipe));
  3745. bestn = clock->n;
  3746. bestm1 = clock->m1;
  3747. bestm2 = clock->m2;
  3748. bestp1 = clock->p1;
  3749. bestp2 = clock->p2;
  3750. /*
  3751. * In Valleyview PLL and program lane counter registers are exposed
  3752. * through DPIO interface
  3753. */
  3754. mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
  3755. mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
  3756. mdiv |= ((bestn << DPIO_N_SHIFT));
  3757. mdiv |= (1 << DPIO_POST_DIV_SHIFT);
  3758. mdiv |= (1 << DPIO_K_SHIFT);
  3759. mdiv |= DPIO_ENABLE_CALIBRATION;
  3760. intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  3761. intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
  3762. pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
  3763. (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
  3764. (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
  3765. (5 << DPIO_CLK_BIAS_CTL_SHIFT);
  3766. intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
  3767. intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
  3768. dpll |= DPLL_VCO_ENABLE;
  3769. I915_WRITE(DPLL(pipe), dpll);
  3770. POSTING_READ(DPLL(pipe));
  3771. if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
  3772. DRM_ERROR("DPLL %d failed to lock\n", pipe);
  3773. intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
  3774. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
  3775. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  3776. I915_WRITE(DPLL(pipe), dpll);
  3777. /* Wait for the clocks to stabilize. */
  3778. POSTING_READ(DPLL(pipe));
  3779. udelay(150);
  3780. temp = 0;
  3781. if (is_sdvo) {
  3782. temp = intel_mode_get_pixel_multiplier(adjusted_mode);
  3783. if (temp > 1)
  3784. temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3785. else
  3786. temp = 0;
  3787. }
  3788. I915_WRITE(DPLL_MD(pipe), temp);
  3789. POSTING_READ(DPLL_MD(pipe));
  3790. /* Now program lane control registers */
  3791. if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
  3792. || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
  3793. {
  3794. temp = 0x1000C4;
  3795. if(pipe == 1)
  3796. temp |= (1 << 21);
  3797. intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
  3798. }
  3799. if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
  3800. {
  3801. temp = 0x1000C4;
  3802. if(pipe == 1)
  3803. temp |= (1 << 21);
  3804. intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
  3805. }
  3806. }
  3807. static void i9xx_update_pll(struct drm_crtc *crtc,
  3808. struct drm_display_mode *mode,
  3809. struct drm_display_mode *adjusted_mode,
  3810. intel_clock_t *clock, intel_clock_t *reduced_clock,
  3811. int num_connectors)
  3812. {
  3813. struct drm_device *dev = crtc->dev;
  3814. struct drm_i915_private *dev_priv = dev->dev_private;
  3815. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3816. int pipe = intel_crtc->pipe;
  3817. u32 dpll;
  3818. bool is_sdvo;
  3819. i9xx_update_pll_dividers(crtc, clock, reduced_clock);
  3820. is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
  3821. intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
  3822. dpll = DPLL_VGA_MODE_DIS;
  3823. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  3824. dpll |= DPLLB_MODE_LVDS;
  3825. else
  3826. dpll |= DPLLB_MODE_DAC_SERIAL;
  3827. if (is_sdvo) {
  3828. int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  3829. if (pixel_multiplier > 1) {
  3830. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3831. dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
  3832. }
  3833. dpll |= DPLL_DVO_HIGH_SPEED;
  3834. }
  3835. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
  3836. dpll |= DPLL_DVO_HIGH_SPEED;
  3837. /* compute bitmask from p1 value */
  3838. if (IS_PINEVIEW(dev))
  3839. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  3840. else {
  3841. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3842. if (IS_G4X(dev) && reduced_clock)
  3843. dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3844. }
  3845. switch (clock->p2) {
  3846. case 5:
  3847. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  3848. break;
  3849. case 7:
  3850. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  3851. break;
  3852. case 10:
  3853. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  3854. break;
  3855. case 14:
  3856. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  3857. break;
  3858. }
  3859. if (INTEL_INFO(dev)->gen >= 4)
  3860. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  3861. if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
  3862. dpll |= PLL_REF_INPUT_TVCLKINBC;
  3863. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
  3864. /* XXX: just matching BIOS for now */
  3865. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  3866. dpll |= 3;
  3867. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3868. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3869. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3870. else
  3871. dpll |= PLL_REF_INPUT_DREFCLK;
  3872. dpll |= DPLL_VCO_ENABLE;
  3873. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  3874. POSTING_READ(DPLL(pipe));
  3875. udelay(150);
  3876. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  3877. * This is an exception to the general rule that mode_set doesn't turn
  3878. * things on.
  3879. */
  3880. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  3881. intel_update_lvds(crtc, clock, adjusted_mode);
  3882. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
  3883. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  3884. I915_WRITE(DPLL(pipe), dpll);
  3885. /* Wait for the clocks to stabilize. */
  3886. POSTING_READ(DPLL(pipe));
  3887. udelay(150);
  3888. if (INTEL_INFO(dev)->gen >= 4) {
  3889. u32 temp = 0;
  3890. if (is_sdvo) {
  3891. temp = intel_mode_get_pixel_multiplier(adjusted_mode);
  3892. if (temp > 1)
  3893. temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3894. else
  3895. temp = 0;
  3896. }
  3897. I915_WRITE(DPLL_MD(pipe), temp);
  3898. } else {
  3899. /* The pixel multiplier can only be updated once the
  3900. * DPLL is enabled and the clocks are stable.
  3901. *
  3902. * So write it again.
  3903. */
  3904. I915_WRITE(DPLL(pipe), dpll);
  3905. }
  3906. }
  3907. static void i8xx_update_pll(struct drm_crtc *crtc,
  3908. struct drm_display_mode *adjusted_mode,
  3909. intel_clock_t *clock, intel_clock_t *reduced_clock,
  3910. int num_connectors)
  3911. {
  3912. struct drm_device *dev = crtc->dev;
  3913. struct drm_i915_private *dev_priv = dev->dev_private;
  3914. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3915. int pipe = intel_crtc->pipe;
  3916. u32 dpll;
  3917. i9xx_update_pll_dividers(crtc, clock, reduced_clock);
  3918. dpll = DPLL_VGA_MODE_DIS;
  3919. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  3920. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3921. } else {
  3922. if (clock->p1 == 2)
  3923. dpll |= PLL_P1_DIVIDE_BY_TWO;
  3924. else
  3925. dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3926. if (clock->p2 == 4)
  3927. dpll |= PLL_P2_DIVIDE_BY_4;
  3928. }
  3929. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
  3930. /* XXX: just matching BIOS for now */
  3931. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  3932. dpll |= 3;
  3933. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3934. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3935. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3936. else
  3937. dpll |= PLL_REF_INPUT_DREFCLK;
  3938. dpll |= DPLL_VCO_ENABLE;
  3939. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  3940. POSTING_READ(DPLL(pipe));
  3941. udelay(150);
  3942. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  3943. * This is an exception to the general rule that mode_set doesn't turn
  3944. * things on.
  3945. */
  3946. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  3947. intel_update_lvds(crtc, clock, adjusted_mode);
  3948. I915_WRITE(DPLL(pipe), dpll);
  3949. /* Wait for the clocks to stabilize. */
  3950. POSTING_READ(DPLL(pipe));
  3951. udelay(150);
  3952. /* The pixel multiplier can only be updated once the
  3953. * DPLL is enabled and the clocks are stable.
  3954. *
  3955. * So write it again.
  3956. */
  3957. I915_WRITE(DPLL(pipe), dpll);
  3958. }
  3959. static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
  3960. struct drm_display_mode *mode,
  3961. struct drm_display_mode *adjusted_mode)
  3962. {
  3963. struct drm_device *dev = intel_crtc->base.dev;
  3964. struct drm_i915_private *dev_priv = dev->dev_private;
  3965. enum pipe pipe = intel_crtc->pipe;
  3966. enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
  3967. uint32_t vsyncshift;
  3968. if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  3969. /* the chip adds 2 halflines automatically */
  3970. adjusted_mode->crtc_vtotal -= 1;
  3971. adjusted_mode->crtc_vblank_end -= 1;
  3972. vsyncshift = adjusted_mode->crtc_hsync_start
  3973. - adjusted_mode->crtc_htotal / 2;
  3974. } else {
  3975. vsyncshift = 0;
  3976. }
  3977. if (INTEL_INFO(dev)->gen > 3)
  3978. I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
  3979. I915_WRITE(HTOTAL(cpu_transcoder),
  3980. (adjusted_mode->crtc_hdisplay - 1) |
  3981. ((adjusted_mode->crtc_htotal - 1) << 16));
  3982. I915_WRITE(HBLANK(cpu_transcoder),
  3983. (adjusted_mode->crtc_hblank_start - 1) |
  3984. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  3985. I915_WRITE(HSYNC(cpu_transcoder),
  3986. (adjusted_mode->crtc_hsync_start - 1) |
  3987. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  3988. I915_WRITE(VTOTAL(cpu_transcoder),
  3989. (adjusted_mode->crtc_vdisplay - 1) |
  3990. ((adjusted_mode->crtc_vtotal - 1) << 16));
  3991. I915_WRITE(VBLANK(cpu_transcoder),
  3992. (adjusted_mode->crtc_vblank_start - 1) |
  3993. ((adjusted_mode->crtc_vblank_end - 1) << 16));
  3994. I915_WRITE(VSYNC(cpu_transcoder),
  3995. (adjusted_mode->crtc_vsync_start - 1) |
  3996. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  3997. /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
  3998. * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
  3999. * documented on the DDI_FUNC_CTL register description, EDP Input Select
  4000. * bits. */
  4001. if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
  4002. (pipe == PIPE_B || pipe == PIPE_C))
  4003. I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
  4004. /* pipesrc controls the size that is scaled from, which should
  4005. * always be the user's requested size.
  4006. */
  4007. I915_WRITE(PIPESRC(pipe),
  4008. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  4009. }
  4010. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  4011. struct drm_display_mode *mode,
  4012. struct drm_display_mode *adjusted_mode,
  4013. int x, int y,
  4014. struct drm_framebuffer *fb)
  4015. {
  4016. struct drm_device *dev = crtc->dev;
  4017. struct drm_i915_private *dev_priv = dev->dev_private;
  4018. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4019. int pipe = intel_crtc->pipe;
  4020. int plane = intel_crtc->plane;
  4021. int refclk, num_connectors = 0;
  4022. intel_clock_t clock, reduced_clock;
  4023. u32 dspcntr, pipeconf;
  4024. bool ok, has_reduced_clock = false, is_sdvo = false;
  4025. bool is_lvds = false, is_tv = false, is_dp = false;
  4026. struct intel_encoder *encoder;
  4027. const intel_limit_t *limit;
  4028. int ret;
  4029. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4030. switch (encoder->type) {
  4031. case INTEL_OUTPUT_LVDS:
  4032. is_lvds = true;
  4033. break;
  4034. case INTEL_OUTPUT_SDVO:
  4035. case INTEL_OUTPUT_HDMI:
  4036. is_sdvo = true;
  4037. if (encoder->needs_tv_clock)
  4038. is_tv = true;
  4039. break;
  4040. case INTEL_OUTPUT_TVOUT:
  4041. is_tv = true;
  4042. break;
  4043. case INTEL_OUTPUT_DISPLAYPORT:
  4044. is_dp = true;
  4045. break;
  4046. }
  4047. num_connectors++;
  4048. }
  4049. refclk = i9xx_get_refclk(crtc, num_connectors);
  4050. /*
  4051. * Returns a set of divisors for the desired target clock with the given
  4052. * refclk, or FALSE. The returned values represent the clock equation:
  4053. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4054. */
  4055. limit = intel_limit(crtc, refclk);
  4056. ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  4057. &clock);
  4058. if (!ok) {
  4059. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4060. return -EINVAL;
  4061. }
  4062. /* Ensure that the cursor is valid for the new mode before changing... */
  4063. intel_crtc_update_cursor(crtc, true);
  4064. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4065. /*
  4066. * Ensure we match the reduced clock's P to the target clock.
  4067. * If the clocks don't match, we can't switch the display clock
  4068. * by using the FP0/FP1. In such case we will disable the LVDS
  4069. * downclock feature.
  4070. */
  4071. has_reduced_clock = limit->find_pll(limit, crtc,
  4072. dev_priv->lvds_downclock,
  4073. refclk,
  4074. &clock,
  4075. &reduced_clock);
  4076. }
  4077. if (is_sdvo && is_tv)
  4078. i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
  4079. if (IS_GEN2(dev))
  4080. i8xx_update_pll(crtc, adjusted_mode, &clock,
  4081. has_reduced_clock ? &reduced_clock : NULL,
  4082. num_connectors);
  4083. else if (IS_VALLEYVIEW(dev))
  4084. vlv_update_pll(crtc, mode, adjusted_mode, &clock,
  4085. has_reduced_clock ? &reduced_clock : NULL,
  4086. num_connectors);
  4087. else
  4088. i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
  4089. has_reduced_clock ? &reduced_clock : NULL,
  4090. num_connectors);
  4091. /* setup pipeconf */
  4092. pipeconf = I915_READ(PIPECONF(pipe));
  4093. /* Set up the display plane register */
  4094. dspcntr = DISPPLANE_GAMMA_ENABLE;
  4095. if (pipe == 0)
  4096. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  4097. else
  4098. dspcntr |= DISPPLANE_SEL_PIPE_B;
  4099. if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
  4100. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  4101. * core speed.
  4102. *
  4103. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  4104. * pipe == 0 check?
  4105. */
  4106. if (mode->clock >
  4107. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  4108. pipeconf |= PIPECONF_DOUBLE_WIDE;
  4109. else
  4110. pipeconf &= ~PIPECONF_DOUBLE_WIDE;
  4111. }
  4112. /* default to 8bpc */
  4113. pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
  4114. if (is_dp) {
  4115. if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
  4116. pipeconf |= PIPECONF_BPP_6 |
  4117. PIPECONF_DITHER_EN |
  4118. PIPECONF_DITHER_TYPE_SP;
  4119. }
  4120. }
  4121. if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  4122. if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
  4123. pipeconf |= PIPECONF_BPP_6 |
  4124. PIPECONF_ENABLE |
  4125. I965_PIPECONF_ACTIVE;
  4126. }
  4127. }
  4128. DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
  4129. drm_mode_debug_printmodeline(mode);
  4130. if (HAS_PIPE_CXSR(dev)) {
  4131. if (intel_crtc->lowfreq_avail) {
  4132. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  4133. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  4134. } else {
  4135. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  4136. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  4137. }
  4138. }
  4139. pipeconf &= ~PIPECONF_INTERLACE_MASK;
  4140. if (!IS_GEN2(dev) &&
  4141. adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
  4142. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  4143. else
  4144. pipeconf |= PIPECONF_PROGRESSIVE;
  4145. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  4146. /* pipesrc and dspsize control the size that is scaled from,
  4147. * which should always be the user's requested size.
  4148. */
  4149. I915_WRITE(DSPSIZE(plane),
  4150. ((mode->vdisplay - 1) << 16) |
  4151. (mode->hdisplay - 1));
  4152. I915_WRITE(DSPPOS(plane), 0);
  4153. I915_WRITE(PIPECONF(pipe), pipeconf);
  4154. POSTING_READ(PIPECONF(pipe));
  4155. intel_enable_pipe(dev_priv, pipe, false);
  4156. intel_wait_for_vblank(dev, pipe);
  4157. I915_WRITE(DSPCNTR(plane), dspcntr);
  4158. POSTING_READ(DSPCNTR(plane));
  4159. ret = intel_pipe_set_base(crtc, x, y, fb);
  4160. intel_update_watermarks(dev);
  4161. return ret;
  4162. }
  4163. /*
  4164. * Initialize reference clocks when the driver loads
  4165. */
  4166. void ironlake_init_pch_refclk(struct drm_device *dev)
  4167. {
  4168. struct drm_i915_private *dev_priv = dev->dev_private;
  4169. struct drm_mode_config *mode_config = &dev->mode_config;
  4170. struct intel_encoder *encoder;
  4171. u32 temp;
  4172. bool has_lvds = false;
  4173. bool has_cpu_edp = false;
  4174. bool has_pch_edp = false;
  4175. bool has_panel = false;
  4176. bool has_ck505 = false;
  4177. bool can_ssc = false;
  4178. /* We need to take the global config into account */
  4179. list_for_each_entry(encoder, &mode_config->encoder_list,
  4180. base.head) {
  4181. switch (encoder->type) {
  4182. case INTEL_OUTPUT_LVDS:
  4183. has_panel = true;
  4184. has_lvds = true;
  4185. break;
  4186. case INTEL_OUTPUT_EDP:
  4187. has_panel = true;
  4188. if (intel_encoder_is_pch_edp(&encoder->base))
  4189. has_pch_edp = true;
  4190. else
  4191. has_cpu_edp = true;
  4192. break;
  4193. }
  4194. }
  4195. if (HAS_PCH_IBX(dev)) {
  4196. has_ck505 = dev_priv->display_clock_mode;
  4197. can_ssc = has_ck505;
  4198. } else {
  4199. has_ck505 = false;
  4200. can_ssc = true;
  4201. }
  4202. DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
  4203. has_panel, has_lvds, has_pch_edp, has_cpu_edp,
  4204. has_ck505);
  4205. /* Ironlake: try to setup display ref clock before DPLL
  4206. * enabling. This is only under driver's control after
  4207. * PCH B stepping, previous chipset stepping should be
  4208. * ignoring this setting.
  4209. */
  4210. temp = I915_READ(PCH_DREF_CONTROL);
  4211. /* Always enable nonspread source */
  4212. temp &= ~DREF_NONSPREAD_SOURCE_MASK;
  4213. if (has_ck505)
  4214. temp |= DREF_NONSPREAD_CK505_ENABLE;
  4215. else
  4216. temp |= DREF_NONSPREAD_SOURCE_ENABLE;
  4217. if (has_panel) {
  4218. temp &= ~DREF_SSC_SOURCE_MASK;
  4219. temp |= DREF_SSC_SOURCE_ENABLE;
  4220. /* SSC must be turned on before enabling the CPU output */
  4221. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4222. DRM_DEBUG_KMS("Using SSC on panel\n");
  4223. temp |= DREF_SSC1_ENABLE;
  4224. } else
  4225. temp &= ~DREF_SSC1_ENABLE;
  4226. /* Get SSC going before enabling the outputs */
  4227. I915_WRITE(PCH_DREF_CONTROL, temp);
  4228. POSTING_READ(PCH_DREF_CONTROL);
  4229. udelay(200);
  4230. temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4231. /* Enable CPU source on CPU attached eDP */
  4232. if (has_cpu_edp) {
  4233. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4234. DRM_DEBUG_KMS("Using SSC on eDP\n");
  4235. temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4236. }
  4237. else
  4238. temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4239. } else
  4240. temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4241. I915_WRITE(PCH_DREF_CONTROL, temp);
  4242. POSTING_READ(PCH_DREF_CONTROL);
  4243. udelay(200);
  4244. } else {
  4245. DRM_DEBUG_KMS("Disabling SSC entirely\n");
  4246. temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4247. /* Turn off CPU output */
  4248. temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4249. I915_WRITE(PCH_DREF_CONTROL, temp);
  4250. POSTING_READ(PCH_DREF_CONTROL);
  4251. udelay(200);
  4252. /* Turn off the SSC source */
  4253. temp &= ~DREF_SSC_SOURCE_MASK;
  4254. temp |= DREF_SSC_SOURCE_DISABLE;
  4255. /* Turn off SSC1 */
  4256. temp &= ~ DREF_SSC1_ENABLE;
  4257. I915_WRITE(PCH_DREF_CONTROL, temp);
  4258. POSTING_READ(PCH_DREF_CONTROL);
  4259. udelay(200);
  4260. }
  4261. }
  4262. static int ironlake_get_refclk(struct drm_crtc *crtc)
  4263. {
  4264. struct drm_device *dev = crtc->dev;
  4265. struct drm_i915_private *dev_priv = dev->dev_private;
  4266. struct intel_encoder *encoder;
  4267. struct intel_encoder *edp_encoder = NULL;
  4268. int num_connectors = 0;
  4269. bool is_lvds = false;
  4270. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4271. switch (encoder->type) {
  4272. case INTEL_OUTPUT_LVDS:
  4273. is_lvds = true;
  4274. break;
  4275. case INTEL_OUTPUT_EDP:
  4276. edp_encoder = encoder;
  4277. break;
  4278. }
  4279. num_connectors++;
  4280. }
  4281. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4282. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4283. dev_priv->lvds_ssc_freq);
  4284. return dev_priv->lvds_ssc_freq * 1000;
  4285. }
  4286. return 120000;
  4287. }
  4288. static void ironlake_set_pipeconf(struct drm_crtc *crtc,
  4289. struct drm_display_mode *adjusted_mode,
  4290. bool dither)
  4291. {
  4292. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4293. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4294. int pipe = intel_crtc->pipe;
  4295. uint32_t val;
  4296. val = I915_READ(PIPECONF(pipe));
  4297. val &= ~PIPE_BPC_MASK;
  4298. switch (intel_crtc->bpp) {
  4299. case 18:
  4300. val |= PIPE_6BPC;
  4301. break;
  4302. case 24:
  4303. val |= PIPE_8BPC;
  4304. break;
  4305. case 30:
  4306. val |= PIPE_10BPC;
  4307. break;
  4308. case 36:
  4309. val |= PIPE_12BPC;
  4310. break;
  4311. default:
  4312. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4313. BUG();
  4314. }
  4315. val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
  4316. if (dither)
  4317. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4318. val &= ~PIPECONF_INTERLACE_MASK;
  4319. if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
  4320. val |= PIPECONF_INTERLACED_ILK;
  4321. else
  4322. val |= PIPECONF_PROGRESSIVE;
  4323. I915_WRITE(PIPECONF(pipe), val);
  4324. POSTING_READ(PIPECONF(pipe));
  4325. }
  4326. static void haswell_set_pipeconf(struct drm_crtc *crtc,
  4327. struct drm_display_mode *adjusted_mode,
  4328. bool dither)
  4329. {
  4330. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4331. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4332. enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
  4333. uint32_t val;
  4334. val = I915_READ(PIPECONF(cpu_transcoder));
  4335. val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
  4336. if (dither)
  4337. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4338. val &= ~PIPECONF_INTERLACE_MASK_HSW;
  4339. if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
  4340. val |= PIPECONF_INTERLACED_ILK;
  4341. else
  4342. val |= PIPECONF_PROGRESSIVE;
  4343. I915_WRITE(PIPECONF(cpu_transcoder), val);
  4344. POSTING_READ(PIPECONF(cpu_transcoder));
  4345. }
  4346. static bool ironlake_compute_clocks(struct drm_crtc *crtc,
  4347. struct drm_display_mode *adjusted_mode,
  4348. intel_clock_t *clock,
  4349. bool *has_reduced_clock,
  4350. intel_clock_t *reduced_clock)
  4351. {
  4352. struct drm_device *dev = crtc->dev;
  4353. struct drm_i915_private *dev_priv = dev->dev_private;
  4354. struct intel_encoder *intel_encoder;
  4355. int refclk;
  4356. const intel_limit_t *limit;
  4357. bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
  4358. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4359. switch (intel_encoder->type) {
  4360. case INTEL_OUTPUT_LVDS:
  4361. is_lvds = true;
  4362. break;
  4363. case INTEL_OUTPUT_SDVO:
  4364. case INTEL_OUTPUT_HDMI:
  4365. is_sdvo = true;
  4366. if (intel_encoder->needs_tv_clock)
  4367. is_tv = true;
  4368. break;
  4369. case INTEL_OUTPUT_TVOUT:
  4370. is_tv = true;
  4371. break;
  4372. }
  4373. }
  4374. refclk = ironlake_get_refclk(crtc);
  4375. /*
  4376. * Returns a set of divisors for the desired target clock with the given
  4377. * refclk, or FALSE. The returned values represent the clock equation:
  4378. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4379. */
  4380. limit = intel_limit(crtc, refclk);
  4381. ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  4382. clock);
  4383. if (!ret)
  4384. return false;
  4385. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4386. /*
  4387. * Ensure we match the reduced clock's P to the target clock.
  4388. * If the clocks don't match, we can't switch the display clock
  4389. * by using the FP0/FP1. In such case we will disable the LVDS
  4390. * downclock feature.
  4391. */
  4392. *has_reduced_clock = limit->find_pll(limit, crtc,
  4393. dev_priv->lvds_downclock,
  4394. refclk,
  4395. clock,
  4396. reduced_clock);
  4397. }
  4398. if (is_sdvo && is_tv)
  4399. i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
  4400. return true;
  4401. }
  4402. static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
  4403. {
  4404. struct drm_i915_private *dev_priv = dev->dev_private;
  4405. uint32_t temp;
  4406. temp = I915_READ(SOUTH_CHICKEN1);
  4407. if (temp & FDI_BC_BIFURCATION_SELECT)
  4408. return;
  4409. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  4410. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  4411. temp |= FDI_BC_BIFURCATION_SELECT;
  4412. DRM_DEBUG_KMS("enabling fdi C rx\n");
  4413. I915_WRITE(SOUTH_CHICKEN1, temp);
  4414. POSTING_READ(SOUTH_CHICKEN1);
  4415. }
  4416. static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc)
  4417. {
  4418. struct drm_device *dev = intel_crtc->base.dev;
  4419. struct drm_i915_private *dev_priv = dev->dev_private;
  4420. struct intel_crtc *pipe_B_crtc =
  4421. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  4422. DRM_DEBUG_KMS("checking fdi config on pipe %i, lanes %i\n",
  4423. intel_crtc->pipe, intel_crtc->fdi_lanes);
  4424. if (intel_crtc->fdi_lanes > 4) {
  4425. DRM_DEBUG_KMS("invalid fdi lane config on pipe %i: %i lanes\n",
  4426. intel_crtc->pipe, intel_crtc->fdi_lanes);
  4427. /* Clamp lanes to avoid programming the hw with bogus values. */
  4428. intel_crtc->fdi_lanes = 4;
  4429. return false;
  4430. }
  4431. if (dev_priv->num_pipe == 2)
  4432. return true;
  4433. switch (intel_crtc->pipe) {
  4434. case PIPE_A:
  4435. return true;
  4436. case PIPE_B:
  4437. if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
  4438. intel_crtc->fdi_lanes > 2) {
  4439. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
  4440. intel_crtc->pipe, intel_crtc->fdi_lanes);
  4441. /* Clamp lanes to avoid programming the hw with bogus values. */
  4442. intel_crtc->fdi_lanes = 2;
  4443. return false;
  4444. }
  4445. if (intel_crtc->fdi_lanes > 2)
  4446. WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
  4447. else
  4448. cpt_enable_fdi_bc_bifurcation(dev);
  4449. return true;
  4450. case PIPE_C:
  4451. if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) {
  4452. if (intel_crtc->fdi_lanes > 2) {
  4453. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
  4454. intel_crtc->pipe, intel_crtc->fdi_lanes);
  4455. /* Clamp lanes to avoid programming the hw with bogus values. */
  4456. intel_crtc->fdi_lanes = 2;
  4457. return false;
  4458. }
  4459. } else {
  4460. DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
  4461. return false;
  4462. }
  4463. cpt_enable_fdi_bc_bifurcation(dev);
  4464. return true;
  4465. default:
  4466. BUG();
  4467. }
  4468. }
  4469. static void ironlake_set_m_n(struct drm_crtc *crtc,
  4470. struct drm_display_mode *mode,
  4471. struct drm_display_mode *adjusted_mode)
  4472. {
  4473. struct drm_device *dev = crtc->dev;
  4474. struct drm_i915_private *dev_priv = dev->dev_private;
  4475. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4476. enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
  4477. struct intel_encoder *intel_encoder, *edp_encoder = NULL;
  4478. struct fdi_m_n m_n = {0};
  4479. int target_clock, pixel_multiplier, lane, link_bw;
  4480. bool is_dp = false, is_cpu_edp = false;
  4481. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4482. switch (intel_encoder->type) {
  4483. case INTEL_OUTPUT_DISPLAYPORT:
  4484. is_dp = true;
  4485. break;
  4486. case INTEL_OUTPUT_EDP:
  4487. is_dp = true;
  4488. if (!intel_encoder_is_pch_edp(&intel_encoder->base))
  4489. is_cpu_edp = true;
  4490. edp_encoder = intel_encoder;
  4491. break;
  4492. }
  4493. }
  4494. /* FDI link */
  4495. pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  4496. lane = 0;
  4497. /* CPU eDP doesn't require FDI link, so just set DP M/N
  4498. according to current link config */
  4499. if (is_cpu_edp) {
  4500. intel_edp_link_config(edp_encoder, &lane, &link_bw);
  4501. } else {
  4502. /* FDI is a binary signal running at ~2.7GHz, encoding
  4503. * each output octet as 10 bits. The actual frequency
  4504. * is stored as a divider into a 100MHz clock, and the
  4505. * mode pixel clock is stored in units of 1KHz.
  4506. * Hence the bw of each lane in terms of the mode signal
  4507. * is:
  4508. */
  4509. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  4510. }
  4511. /* [e]DP over FDI requires target mode clock instead of link clock. */
  4512. if (edp_encoder)
  4513. target_clock = intel_edp_target_clock(edp_encoder, mode);
  4514. else if (is_dp)
  4515. target_clock = mode->clock;
  4516. else
  4517. target_clock = adjusted_mode->clock;
  4518. if (!lane) {
  4519. /*
  4520. * Account for spread spectrum to avoid
  4521. * oversubscribing the link. Max center spread
  4522. * is 2.5%; use 5% for safety's sake.
  4523. */
  4524. u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
  4525. lane = bps / (link_bw * 8) + 1;
  4526. }
  4527. intel_crtc->fdi_lanes = lane;
  4528. if (pixel_multiplier > 1)
  4529. link_bw *= pixel_multiplier;
  4530. ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
  4531. &m_n);
  4532. I915_WRITE(PIPE_DATA_M1(cpu_transcoder), TU_SIZE(m_n.tu) | m_n.gmch_m);
  4533. I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
  4534. I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
  4535. I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
  4536. }
  4537. static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
  4538. struct drm_display_mode *adjusted_mode,
  4539. intel_clock_t *clock, u32 fp)
  4540. {
  4541. struct drm_crtc *crtc = &intel_crtc->base;
  4542. struct drm_device *dev = crtc->dev;
  4543. struct drm_i915_private *dev_priv = dev->dev_private;
  4544. struct intel_encoder *intel_encoder;
  4545. uint32_t dpll;
  4546. int factor, pixel_multiplier, num_connectors = 0;
  4547. bool is_lvds = false, is_sdvo = false, is_tv = false;
  4548. bool is_dp = false, is_cpu_edp = false;
  4549. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4550. switch (intel_encoder->type) {
  4551. case INTEL_OUTPUT_LVDS:
  4552. is_lvds = true;
  4553. break;
  4554. case INTEL_OUTPUT_SDVO:
  4555. case INTEL_OUTPUT_HDMI:
  4556. is_sdvo = true;
  4557. if (intel_encoder->needs_tv_clock)
  4558. is_tv = true;
  4559. break;
  4560. case INTEL_OUTPUT_TVOUT:
  4561. is_tv = true;
  4562. break;
  4563. case INTEL_OUTPUT_DISPLAYPORT:
  4564. is_dp = true;
  4565. break;
  4566. case INTEL_OUTPUT_EDP:
  4567. is_dp = true;
  4568. if (!intel_encoder_is_pch_edp(&intel_encoder->base))
  4569. is_cpu_edp = true;
  4570. break;
  4571. }
  4572. num_connectors++;
  4573. }
  4574. /* Enable autotuning of the PLL clock (if permissible) */
  4575. factor = 21;
  4576. if (is_lvds) {
  4577. if ((intel_panel_use_ssc(dev_priv) &&
  4578. dev_priv->lvds_ssc_freq == 100) ||
  4579. (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
  4580. factor = 25;
  4581. } else if (is_sdvo && is_tv)
  4582. factor = 20;
  4583. if (clock->m < factor * clock->n)
  4584. fp |= FP_CB_TUNE;
  4585. dpll = 0;
  4586. if (is_lvds)
  4587. dpll |= DPLLB_MODE_LVDS;
  4588. else
  4589. dpll |= DPLLB_MODE_DAC_SERIAL;
  4590. if (is_sdvo) {
  4591. pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  4592. if (pixel_multiplier > 1) {
  4593. dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  4594. }
  4595. dpll |= DPLL_DVO_HIGH_SPEED;
  4596. }
  4597. if (is_dp && !is_cpu_edp)
  4598. dpll |= DPLL_DVO_HIGH_SPEED;
  4599. /* compute bitmask from p1 value */
  4600. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4601. /* also FPA1 */
  4602. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4603. switch (clock->p2) {
  4604. case 5:
  4605. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4606. break;
  4607. case 7:
  4608. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4609. break;
  4610. case 10:
  4611. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4612. break;
  4613. case 14:
  4614. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4615. break;
  4616. }
  4617. if (is_sdvo && is_tv)
  4618. dpll |= PLL_REF_INPUT_TVCLKINBC;
  4619. else if (is_tv)
  4620. /* XXX: just matching BIOS for now */
  4621. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  4622. dpll |= 3;
  4623. else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4624. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4625. else
  4626. dpll |= PLL_REF_INPUT_DREFCLK;
  4627. return dpll;
  4628. }
  4629. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  4630. struct drm_display_mode *mode,
  4631. struct drm_display_mode *adjusted_mode,
  4632. int x, int y,
  4633. struct drm_framebuffer *fb)
  4634. {
  4635. struct drm_device *dev = crtc->dev;
  4636. struct drm_i915_private *dev_priv = dev->dev_private;
  4637. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4638. int pipe = intel_crtc->pipe;
  4639. int plane = intel_crtc->plane;
  4640. int num_connectors = 0;
  4641. intel_clock_t clock, reduced_clock;
  4642. u32 dpll, fp = 0, fp2 = 0;
  4643. bool ok, has_reduced_clock = false;
  4644. bool is_lvds = false, is_dp = false, is_cpu_edp = false;
  4645. struct intel_encoder *encoder;
  4646. u32 temp;
  4647. int ret;
  4648. bool dither, fdi_config_ok;
  4649. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4650. switch (encoder->type) {
  4651. case INTEL_OUTPUT_LVDS:
  4652. is_lvds = true;
  4653. break;
  4654. case INTEL_OUTPUT_DISPLAYPORT:
  4655. is_dp = true;
  4656. break;
  4657. case INTEL_OUTPUT_EDP:
  4658. is_dp = true;
  4659. if (!intel_encoder_is_pch_edp(&encoder->base))
  4660. is_cpu_edp = true;
  4661. break;
  4662. }
  4663. num_connectors++;
  4664. }
  4665. WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
  4666. "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
  4667. ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
  4668. &has_reduced_clock, &reduced_clock);
  4669. if (!ok) {
  4670. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4671. return -EINVAL;
  4672. }
  4673. /* Ensure that the cursor is valid for the new mode before changing... */
  4674. intel_crtc_update_cursor(crtc, true);
  4675. /* determine panel color depth */
  4676. dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
  4677. adjusted_mode);
  4678. if (is_lvds && dev_priv->lvds_dither)
  4679. dither = true;
  4680. fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
  4681. if (has_reduced_clock)
  4682. fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
  4683. reduced_clock.m2;
  4684. dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp);
  4685. DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
  4686. drm_mode_debug_printmodeline(mode);
  4687. /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
  4688. if (!is_cpu_edp) {
  4689. struct intel_pch_pll *pll;
  4690. pll = intel_get_pch_pll(intel_crtc, dpll, fp);
  4691. if (pll == NULL) {
  4692. DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
  4693. pipe);
  4694. return -EINVAL;
  4695. }
  4696. } else
  4697. intel_put_pch_pll(intel_crtc);
  4698. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  4699. * This is an exception to the general rule that mode_set doesn't turn
  4700. * things on.
  4701. */
  4702. if (is_lvds) {
  4703. temp = I915_READ(PCH_LVDS);
  4704. temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  4705. if (HAS_PCH_CPT(dev)) {
  4706. temp &= ~PORT_TRANS_SEL_MASK;
  4707. temp |= PORT_TRANS_SEL_CPT(pipe);
  4708. } else {
  4709. if (pipe == 1)
  4710. temp |= LVDS_PIPEB_SELECT;
  4711. else
  4712. temp &= ~LVDS_PIPEB_SELECT;
  4713. }
  4714. /* set the corresponsding LVDS_BORDER bit */
  4715. temp |= dev_priv->lvds_border_bits;
  4716. /* Set the B0-B3 data pairs corresponding to whether we're going to
  4717. * set the DPLLs for dual-channel mode or not.
  4718. */
  4719. if (clock.p2 == 7)
  4720. temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  4721. else
  4722. temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
  4723. /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
  4724. * appropriately here, but we need to look more thoroughly into how
  4725. * panels behave in the two modes.
  4726. */
  4727. temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
  4728. if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
  4729. temp |= LVDS_HSYNC_POLARITY;
  4730. if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
  4731. temp |= LVDS_VSYNC_POLARITY;
  4732. I915_WRITE(PCH_LVDS, temp);
  4733. }
  4734. if (is_dp && !is_cpu_edp) {
  4735. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  4736. } else {
  4737. /* For non-DP output, clear any trans DP clock recovery setting.*/
  4738. I915_WRITE(TRANSDATA_M1(pipe), 0);
  4739. I915_WRITE(TRANSDATA_N1(pipe), 0);
  4740. I915_WRITE(TRANSDPLINK_M1(pipe), 0);
  4741. I915_WRITE(TRANSDPLINK_N1(pipe), 0);
  4742. }
  4743. if (intel_crtc->pch_pll) {
  4744. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4745. /* Wait for the clocks to stabilize. */
  4746. POSTING_READ(intel_crtc->pch_pll->pll_reg);
  4747. udelay(150);
  4748. /* The pixel multiplier can only be updated once the
  4749. * DPLL is enabled and the clocks are stable.
  4750. *
  4751. * So write it again.
  4752. */
  4753. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4754. }
  4755. intel_crtc->lowfreq_avail = false;
  4756. if (intel_crtc->pch_pll) {
  4757. if (is_lvds && has_reduced_clock && i915_powersave) {
  4758. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
  4759. intel_crtc->lowfreq_avail = true;
  4760. } else {
  4761. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
  4762. }
  4763. }
  4764. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  4765. /* Note, this also computes intel_crtc->fdi_lanes which is used below in
  4766. * ironlake_check_fdi_lanes. */
  4767. ironlake_set_m_n(crtc, mode, adjusted_mode);
  4768. fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc);
  4769. if (is_cpu_edp)
  4770. ironlake_set_pll_edp(crtc, adjusted_mode->clock);
  4771. ironlake_set_pipeconf(crtc, adjusted_mode, dither);
  4772. intel_wait_for_vblank(dev, pipe);
  4773. /* Set up the display plane register */
  4774. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
  4775. POSTING_READ(DSPCNTR(plane));
  4776. ret = intel_pipe_set_base(crtc, x, y, fb);
  4777. intel_update_watermarks(dev);
  4778. intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
  4779. return fdi_config_ok ? ret : -EINVAL;
  4780. }
  4781. static int haswell_crtc_mode_set(struct drm_crtc *crtc,
  4782. struct drm_display_mode *mode,
  4783. struct drm_display_mode *adjusted_mode,
  4784. int x, int y,
  4785. struct drm_framebuffer *fb)
  4786. {
  4787. struct drm_device *dev = crtc->dev;
  4788. struct drm_i915_private *dev_priv = dev->dev_private;
  4789. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4790. int pipe = intel_crtc->pipe;
  4791. int plane = intel_crtc->plane;
  4792. int num_connectors = 0;
  4793. intel_clock_t clock, reduced_clock;
  4794. u32 dpll = 0, fp = 0, fp2 = 0;
  4795. bool ok, has_reduced_clock = false;
  4796. bool is_lvds = false, is_dp = false, is_cpu_edp = false;
  4797. struct intel_encoder *encoder;
  4798. u32 temp;
  4799. int ret;
  4800. bool dither;
  4801. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4802. switch (encoder->type) {
  4803. case INTEL_OUTPUT_LVDS:
  4804. is_lvds = true;
  4805. break;
  4806. case INTEL_OUTPUT_DISPLAYPORT:
  4807. is_dp = true;
  4808. break;
  4809. case INTEL_OUTPUT_EDP:
  4810. is_dp = true;
  4811. if (!intel_encoder_is_pch_edp(&encoder->base))
  4812. is_cpu_edp = true;
  4813. break;
  4814. }
  4815. num_connectors++;
  4816. }
  4817. if (is_cpu_edp)
  4818. intel_crtc->cpu_transcoder = TRANSCODER_EDP;
  4819. else
  4820. intel_crtc->cpu_transcoder = pipe;
  4821. /* We are not sure yet this won't happen. */
  4822. WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
  4823. INTEL_PCH_TYPE(dev));
  4824. WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
  4825. num_connectors, pipe_name(pipe));
  4826. WARN_ON(I915_READ(PIPECONF(intel_crtc->cpu_transcoder)) &
  4827. (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
  4828. WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
  4829. if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
  4830. return -EINVAL;
  4831. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
  4832. ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
  4833. &has_reduced_clock,
  4834. &reduced_clock);
  4835. if (!ok) {
  4836. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4837. return -EINVAL;
  4838. }
  4839. }
  4840. /* Ensure that the cursor is valid for the new mode before changing... */
  4841. intel_crtc_update_cursor(crtc, true);
  4842. /* determine panel color depth */
  4843. dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
  4844. adjusted_mode);
  4845. if (is_lvds && dev_priv->lvds_dither)
  4846. dither = true;
  4847. DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
  4848. drm_mode_debug_printmodeline(mode);
  4849. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
  4850. fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
  4851. if (has_reduced_clock)
  4852. fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
  4853. reduced_clock.m2;
  4854. dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock,
  4855. fp);
  4856. /* CPU eDP is the only output that doesn't need a PCH PLL of its
  4857. * own on pre-Haswell/LPT generation */
  4858. if (!is_cpu_edp) {
  4859. struct intel_pch_pll *pll;
  4860. pll = intel_get_pch_pll(intel_crtc, dpll, fp);
  4861. if (pll == NULL) {
  4862. DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
  4863. pipe);
  4864. return -EINVAL;
  4865. }
  4866. } else
  4867. intel_put_pch_pll(intel_crtc);
  4868. /* The LVDS pin pair needs to be on before the DPLLs are
  4869. * enabled. This is an exception to the general rule that
  4870. * mode_set doesn't turn things on.
  4871. */
  4872. if (is_lvds) {
  4873. temp = I915_READ(PCH_LVDS);
  4874. temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  4875. if (HAS_PCH_CPT(dev)) {
  4876. temp &= ~PORT_TRANS_SEL_MASK;
  4877. temp |= PORT_TRANS_SEL_CPT(pipe);
  4878. } else {
  4879. if (pipe == 1)
  4880. temp |= LVDS_PIPEB_SELECT;
  4881. else
  4882. temp &= ~LVDS_PIPEB_SELECT;
  4883. }
  4884. /* set the corresponsding LVDS_BORDER bit */
  4885. temp |= dev_priv->lvds_border_bits;
  4886. /* Set the B0-B3 data pairs corresponding to whether
  4887. * we're going to set the DPLLs for dual-channel mode or
  4888. * not.
  4889. */
  4890. if (clock.p2 == 7)
  4891. temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  4892. else
  4893. temp &= ~(LVDS_B0B3_POWER_UP |
  4894. LVDS_CLKB_POWER_UP);
  4895. /* It would be nice to set 24 vs 18-bit mode
  4896. * (LVDS_A3_POWER_UP) appropriately here, but we need to
  4897. * look more thoroughly into how panels behave in the
  4898. * two modes.
  4899. */
  4900. temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
  4901. if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
  4902. temp |= LVDS_HSYNC_POLARITY;
  4903. if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
  4904. temp |= LVDS_VSYNC_POLARITY;
  4905. I915_WRITE(PCH_LVDS, temp);
  4906. }
  4907. }
  4908. if (is_dp && !is_cpu_edp) {
  4909. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  4910. } else {
  4911. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
  4912. /* For non-DP output, clear any trans DP clock recovery
  4913. * setting.*/
  4914. I915_WRITE(TRANSDATA_M1(pipe), 0);
  4915. I915_WRITE(TRANSDATA_N1(pipe), 0);
  4916. I915_WRITE(TRANSDPLINK_M1(pipe), 0);
  4917. I915_WRITE(TRANSDPLINK_N1(pipe), 0);
  4918. }
  4919. }
  4920. intel_crtc->lowfreq_avail = false;
  4921. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
  4922. if (intel_crtc->pch_pll) {
  4923. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4924. /* Wait for the clocks to stabilize. */
  4925. POSTING_READ(intel_crtc->pch_pll->pll_reg);
  4926. udelay(150);
  4927. /* The pixel multiplier can only be updated once the
  4928. * DPLL is enabled and the clocks are stable.
  4929. *
  4930. * So write it again.
  4931. */
  4932. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4933. }
  4934. if (intel_crtc->pch_pll) {
  4935. if (is_lvds && has_reduced_clock && i915_powersave) {
  4936. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
  4937. intel_crtc->lowfreq_avail = true;
  4938. } else {
  4939. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
  4940. }
  4941. }
  4942. }
  4943. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  4944. if (!is_dp || is_cpu_edp)
  4945. ironlake_set_m_n(crtc, mode, adjusted_mode);
  4946. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  4947. if (is_cpu_edp)
  4948. ironlake_set_pll_edp(crtc, adjusted_mode->clock);
  4949. haswell_set_pipeconf(crtc, adjusted_mode, dither);
  4950. /* Set up the display plane register */
  4951. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
  4952. POSTING_READ(DSPCNTR(plane));
  4953. ret = intel_pipe_set_base(crtc, x, y, fb);
  4954. intel_update_watermarks(dev);
  4955. intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
  4956. return ret;
  4957. }
  4958. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  4959. struct drm_display_mode *mode,
  4960. struct drm_display_mode *adjusted_mode,
  4961. int x, int y,
  4962. struct drm_framebuffer *fb)
  4963. {
  4964. struct drm_device *dev = crtc->dev;
  4965. struct drm_i915_private *dev_priv = dev->dev_private;
  4966. struct drm_encoder_helper_funcs *encoder_funcs;
  4967. struct intel_encoder *encoder;
  4968. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4969. int pipe = intel_crtc->pipe;
  4970. int ret;
  4971. drm_vblank_pre_modeset(dev, pipe);
  4972. ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
  4973. x, y, fb);
  4974. drm_vblank_post_modeset(dev, pipe);
  4975. if (ret != 0)
  4976. return ret;
  4977. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4978. DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
  4979. encoder->base.base.id,
  4980. drm_get_encoder_name(&encoder->base),
  4981. mode->base.id, mode->name);
  4982. encoder_funcs = encoder->base.helper_private;
  4983. encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
  4984. }
  4985. return 0;
  4986. }
  4987. static bool intel_eld_uptodate(struct drm_connector *connector,
  4988. int reg_eldv, uint32_t bits_eldv,
  4989. int reg_elda, uint32_t bits_elda,
  4990. int reg_edid)
  4991. {
  4992. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  4993. uint8_t *eld = connector->eld;
  4994. uint32_t i;
  4995. i = I915_READ(reg_eldv);
  4996. i &= bits_eldv;
  4997. if (!eld[0])
  4998. return !i;
  4999. if (!i)
  5000. return false;
  5001. i = I915_READ(reg_elda);
  5002. i &= ~bits_elda;
  5003. I915_WRITE(reg_elda, i);
  5004. for (i = 0; i < eld[2]; i++)
  5005. if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
  5006. return false;
  5007. return true;
  5008. }
  5009. static void g4x_write_eld(struct drm_connector *connector,
  5010. struct drm_crtc *crtc)
  5011. {
  5012. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5013. uint8_t *eld = connector->eld;
  5014. uint32_t eldv;
  5015. uint32_t len;
  5016. uint32_t i;
  5017. i = I915_READ(G4X_AUD_VID_DID);
  5018. if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  5019. eldv = G4X_ELDV_DEVCL_DEVBLC;
  5020. else
  5021. eldv = G4X_ELDV_DEVCTG;
  5022. if (intel_eld_uptodate(connector,
  5023. G4X_AUD_CNTL_ST, eldv,
  5024. G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
  5025. G4X_HDMIW_HDMIEDID))
  5026. return;
  5027. i = I915_READ(G4X_AUD_CNTL_ST);
  5028. i &= ~(eldv | G4X_ELD_ADDR);
  5029. len = (i >> 9) & 0x1f; /* ELD buffer size */
  5030. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5031. if (!eld[0])
  5032. return;
  5033. len = min_t(uint8_t, eld[2], len);
  5034. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5035. for (i = 0; i < len; i++)
  5036. I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  5037. i = I915_READ(G4X_AUD_CNTL_ST);
  5038. i |= eldv;
  5039. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5040. }
  5041. static void haswell_write_eld(struct drm_connector *connector,
  5042. struct drm_crtc *crtc)
  5043. {
  5044. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5045. uint8_t *eld = connector->eld;
  5046. struct drm_device *dev = crtc->dev;
  5047. uint32_t eldv;
  5048. uint32_t i;
  5049. int len;
  5050. int pipe = to_intel_crtc(crtc)->pipe;
  5051. int tmp;
  5052. int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
  5053. int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
  5054. int aud_config = HSW_AUD_CFG(pipe);
  5055. int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
  5056. DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
  5057. /* Audio output enable */
  5058. DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
  5059. tmp = I915_READ(aud_cntrl_st2);
  5060. tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
  5061. I915_WRITE(aud_cntrl_st2, tmp);
  5062. /* Wait for 1 vertical blank */
  5063. intel_wait_for_vblank(dev, pipe);
  5064. /* Set ELD valid state */
  5065. tmp = I915_READ(aud_cntrl_st2);
  5066. DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
  5067. tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
  5068. I915_WRITE(aud_cntrl_st2, tmp);
  5069. tmp = I915_READ(aud_cntrl_st2);
  5070. DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
  5071. /* Enable HDMI mode */
  5072. tmp = I915_READ(aud_config);
  5073. DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
  5074. /* clear N_programing_enable and N_value_index */
  5075. tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
  5076. I915_WRITE(aud_config, tmp);
  5077. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5078. eldv = AUDIO_ELD_VALID_A << (pipe * 4);
  5079. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5080. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5081. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5082. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5083. } else
  5084. I915_WRITE(aud_config, 0);
  5085. if (intel_eld_uptodate(connector,
  5086. aud_cntrl_st2, eldv,
  5087. aud_cntl_st, IBX_ELD_ADDRESS,
  5088. hdmiw_hdmiedid))
  5089. return;
  5090. i = I915_READ(aud_cntrl_st2);
  5091. i &= ~eldv;
  5092. I915_WRITE(aud_cntrl_st2, i);
  5093. if (!eld[0])
  5094. return;
  5095. i = I915_READ(aud_cntl_st);
  5096. i &= ~IBX_ELD_ADDRESS;
  5097. I915_WRITE(aud_cntl_st, i);
  5098. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5099. DRM_DEBUG_DRIVER("port num:%d\n", i);
  5100. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5101. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5102. for (i = 0; i < len; i++)
  5103. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5104. i = I915_READ(aud_cntrl_st2);
  5105. i |= eldv;
  5106. I915_WRITE(aud_cntrl_st2, i);
  5107. }
  5108. static void ironlake_write_eld(struct drm_connector *connector,
  5109. struct drm_crtc *crtc)
  5110. {
  5111. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5112. uint8_t *eld = connector->eld;
  5113. uint32_t eldv;
  5114. uint32_t i;
  5115. int len;
  5116. int hdmiw_hdmiedid;
  5117. int aud_config;
  5118. int aud_cntl_st;
  5119. int aud_cntrl_st2;
  5120. int pipe = to_intel_crtc(crtc)->pipe;
  5121. if (HAS_PCH_IBX(connector->dev)) {
  5122. hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
  5123. aud_config = IBX_AUD_CFG(pipe);
  5124. aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
  5125. aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
  5126. } else {
  5127. hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
  5128. aud_config = CPT_AUD_CFG(pipe);
  5129. aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
  5130. aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
  5131. }
  5132. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5133. i = I915_READ(aud_cntl_st);
  5134. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5135. if (!i) {
  5136. DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  5137. /* operate blindly on all ports */
  5138. eldv = IBX_ELD_VALIDB;
  5139. eldv |= IBX_ELD_VALIDB << 4;
  5140. eldv |= IBX_ELD_VALIDB << 8;
  5141. } else {
  5142. DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
  5143. eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
  5144. }
  5145. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5146. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5147. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5148. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5149. } else
  5150. I915_WRITE(aud_config, 0);
  5151. if (intel_eld_uptodate(connector,
  5152. aud_cntrl_st2, eldv,
  5153. aud_cntl_st, IBX_ELD_ADDRESS,
  5154. hdmiw_hdmiedid))
  5155. return;
  5156. i = I915_READ(aud_cntrl_st2);
  5157. i &= ~eldv;
  5158. I915_WRITE(aud_cntrl_st2, i);
  5159. if (!eld[0])
  5160. return;
  5161. i = I915_READ(aud_cntl_st);
  5162. i &= ~IBX_ELD_ADDRESS;
  5163. I915_WRITE(aud_cntl_st, i);
  5164. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5165. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5166. for (i = 0; i < len; i++)
  5167. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5168. i = I915_READ(aud_cntrl_st2);
  5169. i |= eldv;
  5170. I915_WRITE(aud_cntrl_st2, i);
  5171. }
  5172. void intel_write_eld(struct drm_encoder *encoder,
  5173. struct drm_display_mode *mode)
  5174. {
  5175. struct drm_crtc *crtc = encoder->crtc;
  5176. struct drm_connector *connector;
  5177. struct drm_device *dev = encoder->dev;
  5178. struct drm_i915_private *dev_priv = dev->dev_private;
  5179. connector = drm_select_eld(encoder, mode);
  5180. if (!connector)
  5181. return;
  5182. DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5183. connector->base.id,
  5184. drm_get_connector_name(connector),
  5185. connector->encoder->base.id,
  5186. drm_get_encoder_name(connector->encoder));
  5187. connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  5188. if (dev_priv->display.write_eld)
  5189. dev_priv->display.write_eld(connector, crtc);
  5190. }
  5191. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  5192. void intel_crtc_load_lut(struct drm_crtc *crtc)
  5193. {
  5194. struct drm_device *dev = crtc->dev;
  5195. struct drm_i915_private *dev_priv = dev->dev_private;
  5196. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5197. int palreg = PALETTE(intel_crtc->pipe);
  5198. int i;
  5199. /* The clocks have to be on to load the palette. */
  5200. if (!crtc->enabled || !intel_crtc->active)
  5201. return;
  5202. /* use legacy palette for Ironlake */
  5203. if (HAS_PCH_SPLIT(dev))
  5204. palreg = LGC_PALETTE(intel_crtc->pipe);
  5205. for (i = 0; i < 256; i++) {
  5206. I915_WRITE(palreg + 4 * i,
  5207. (intel_crtc->lut_r[i] << 16) |
  5208. (intel_crtc->lut_g[i] << 8) |
  5209. intel_crtc->lut_b[i]);
  5210. }
  5211. }
  5212. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  5213. {
  5214. struct drm_device *dev = crtc->dev;
  5215. struct drm_i915_private *dev_priv = dev->dev_private;
  5216. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5217. bool visible = base != 0;
  5218. u32 cntl;
  5219. if (intel_crtc->cursor_visible == visible)
  5220. return;
  5221. cntl = I915_READ(_CURACNTR);
  5222. if (visible) {
  5223. /* On these chipsets we can only modify the base whilst
  5224. * the cursor is disabled.
  5225. */
  5226. I915_WRITE(_CURABASE, base);
  5227. cntl &= ~(CURSOR_FORMAT_MASK);
  5228. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  5229. cntl |= CURSOR_ENABLE |
  5230. CURSOR_GAMMA_ENABLE |
  5231. CURSOR_FORMAT_ARGB;
  5232. } else
  5233. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  5234. I915_WRITE(_CURACNTR, cntl);
  5235. intel_crtc->cursor_visible = visible;
  5236. }
  5237. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  5238. {
  5239. struct drm_device *dev = crtc->dev;
  5240. struct drm_i915_private *dev_priv = dev->dev_private;
  5241. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5242. int pipe = intel_crtc->pipe;
  5243. bool visible = base != 0;
  5244. if (intel_crtc->cursor_visible != visible) {
  5245. uint32_t cntl = I915_READ(CURCNTR(pipe));
  5246. if (base) {
  5247. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  5248. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5249. cntl |= pipe << 28; /* Connect to correct pipe */
  5250. } else {
  5251. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5252. cntl |= CURSOR_MODE_DISABLE;
  5253. }
  5254. I915_WRITE(CURCNTR(pipe), cntl);
  5255. intel_crtc->cursor_visible = visible;
  5256. }
  5257. /* and commit changes on next vblank */
  5258. I915_WRITE(CURBASE(pipe), base);
  5259. }
  5260. static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
  5261. {
  5262. struct drm_device *dev = crtc->dev;
  5263. struct drm_i915_private *dev_priv = dev->dev_private;
  5264. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5265. int pipe = intel_crtc->pipe;
  5266. bool visible = base != 0;
  5267. if (intel_crtc->cursor_visible != visible) {
  5268. uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
  5269. if (base) {
  5270. cntl &= ~CURSOR_MODE;
  5271. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5272. } else {
  5273. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5274. cntl |= CURSOR_MODE_DISABLE;
  5275. }
  5276. I915_WRITE(CURCNTR_IVB(pipe), cntl);
  5277. intel_crtc->cursor_visible = visible;
  5278. }
  5279. /* and commit changes on next vblank */
  5280. I915_WRITE(CURBASE_IVB(pipe), base);
  5281. }
  5282. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  5283. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  5284. bool on)
  5285. {
  5286. struct drm_device *dev = crtc->dev;
  5287. struct drm_i915_private *dev_priv = dev->dev_private;
  5288. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5289. int pipe = intel_crtc->pipe;
  5290. int x = intel_crtc->cursor_x;
  5291. int y = intel_crtc->cursor_y;
  5292. u32 base, pos;
  5293. bool visible;
  5294. pos = 0;
  5295. if (on && crtc->enabled && crtc->fb) {
  5296. base = intel_crtc->cursor_addr;
  5297. if (x > (int) crtc->fb->width)
  5298. base = 0;
  5299. if (y > (int) crtc->fb->height)
  5300. base = 0;
  5301. } else
  5302. base = 0;
  5303. if (x < 0) {
  5304. if (x + intel_crtc->cursor_width < 0)
  5305. base = 0;
  5306. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  5307. x = -x;
  5308. }
  5309. pos |= x << CURSOR_X_SHIFT;
  5310. if (y < 0) {
  5311. if (y + intel_crtc->cursor_height < 0)
  5312. base = 0;
  5313. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  5314. y = -y;
  5315. }
  5316. pos |= y << CURSOR_Y_SHIFT;
  5317. visible = base != 0;
  5318. if (!visible && !intel_crtc->cursor_visible)
  5319. return;
  5320. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  5321. I915_WRITE(CURPOS_IVB(pipe), pos);
  5322. ivb_update_cursor(crtc, base);
  5323. } else {
  5324. I915_WRITE(CURPOS(pipe), pos);
  5325. if (IS_845G(dev) || IS_I865G(dev))
  5326. i845_update_cursor(crtc, base);
  5327. else
  5328. i9xx_update_cursor(crtc, base);
  5329. }
  5330. }
  5331. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  5332. struct drm_file *file,
  5333. uint32_t handle,
  5334. uint32_t width, uint32_t height)
  5335. {
  5336. struct drm_device *dev = crtc->dev;
  5337. struct drm_i915_private *dev_priv = dev->dev_private;
  5338. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5339. struct drm_i915_gem_object *obj;
  5340. uint32_t addr;
  5341. int ret;
  5342. /* if we want to turn off the cursor ignore width and height */
  5343. if (!handle) {
  5344. DRM_DEBUG_KMS("cursor off\n");
  5345. addr = 0;
  5346. obj = NULL;
  5347. mutex_lock(&dev->struct_mutex);
  5348. goto finish;
  5349. }
  5350. /* Currently we only support 64x64 cursors */
  5351. if (width != 64 || height != 64) {
  5352. DRM_ERROR("we currently only support 64x64 cursors\n");
  5353. return -EINVAL;
  5354. }
  5355. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  5356. if (&obj->base == NULL)
  5357. return -ENOENT;
  5358. if (obj->base.size < width * height * 4) {
  5359. DRM_ERROR("buffer is to small\n");
  5360. ret = -ENOMEM;
  5361. goto fail;
  5362. }
  5363. /* we only need to pin inside GTT if cursor is non-phy */
  5364. mutex_lock(&dev->struct_mutex);
  5365. if (!dev_priv->info->cursor_needs_physical) {
  5366. if (obj->tiling_mode) {
  5367. DRM_ERROR("cursor cannot be tiled\n");
  5368. ret = -EINVAL;
  5369. goto fail_locked;
  5370. }
  5371. ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
  5372. if (ret) {
  5373. DRM_ERROR("failed to move cursor bo into the GTT\n");
  5374. goto fail_locked;
  5375. }
  5376. ret = i915_gem_object_put_fence(obj);
  5377. if (ret) {
  5378. DRM_ERROR("failed to release fence for cursor");
  5379. goto fail_unpin;
  5380. }
  5381. addr = obj->gtt_offset;
  5382. } else {
  5383. int align = IS_I830(dev) ? 16 * 1024 : 256;
  5384. ret = i915_gem_attach_phys_object(dev, obj,
  5385. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  5386. align);
  5387. if (ret) {
  5388. DRM_ERROR("failed to attach phys object\n");
  5389. goto fail_locked;
  5390. }
  5391. addr = obj->phys_obj->handle->busaddr;
  5392. }
  5393. if (IS_GEN2(dev))
  5394. I915_WRITE(CURSIZE, (height << 12) | width);
  5395. finish:
  5396. if (intel_crtc->cursor_bo) {
  5397. if (dev_priv->info->cursor_needs_physical) {
  5398. if (intel_crtc->cursor_bo != obj)
  5399. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  5400. } else
  5401. i915_gem_object_unpin(intel_crtc->cursor_bo);
  5402. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  5403. }
  5404. mutex_unlock(&dev->struct_mutex);
  5405. intel_crtc->cursor_addr = addr;
  5406. intel_crtc->cursor_bo = obj;
  5407. intel_crtc->cursor_width = width;
  5408. intel_crtc->cursor_height = height;
  5409. intel_crtc_update_cursor(crtc, true);
  5410. return 0;
  5411. fail_unpin:
  5412. i915_gem_object_unpin(obj);
  5413. fail_locked:
  5414. mutex_unlock(&dev->struct_mutex);
  5415. fail:
  5416. drm_gem_object_unreference_unlocked(&obj->base);
  5417. return ret;
  5418. }
  5419. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  5420. {
  5421. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5422. intel_crtc->cursor_x = x;
  5423. intel_crtc->cursor_y = y;
  5424. intel_crtc_update_cursor(crtc, true);
  5425. return 0;
  5426. }
  5427. /** Sets the color ramps on behalf of RandR */
  5428. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  5429. u16 blue, int regno)
  5430. {
  5431. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5432. intel_crtc->lut_r[regno] = red >> 8;
  5433. intel_crtc->lut_g[regno] = green >> 8;
  5434. intel_crtc->lut_b[regno] = blue >> 8;
  5435. }
  5436. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  5437. u16 *blue, int regno)
  5438. {
  5439. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5440. *red = intel_crtc->lut_r[regno] << 8;
  5441. *green = intel_crtc->lut_g[regno] << 8;
  5442. *blue = intel_crtc->lut_b[regno] << 8;
  5443. }
  5444. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  5445. u16 *blue, uint32_t start, uint32_t size)
  5446. {
  5447. int end = (start + size > 256) ? 256 : start + size, i;
  5448. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5449. for (i = start; i < end; i++) {
  5450. intel_crtc->lut_r[i] = red[i] >> 8;
  5451. intel_crtc->lut_g[i] = green[i] >> 8;
  5452. intel_crtc->lut_b[i] = blue[i] >> 8;
  5453. }
  5454. intel_crtc_load_lut(crtc);
  5455. }
  5456. /**
  5457. * Get a pipe with a simple mode set on it for doing load-based monitor
  5458. * detection.
  5459. *
  5460. * It will be up to the load-detect code to adjust the pipe as appropriate for
  5461. * its requirements. The pipe will be connected to no other encoders.
  5462. *
  5463. * Currently this code will only succeed if there is a pipe with no encoders
  5464. * configured for it. In the future, it could choose to temporarily disable
  5465. * some outputs to free up a pipe for its use.
  5466. *
  5467. * \return crtc, or NULL if no pipes are available.
  5468. */
  5469. /* VESA 640x480x72Hz mode to set on the pipe */
  5470. static struct drm_display_mode load_detect_mode = {
  5471. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  5472. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  5473. };
  5474. static struct drm_framebuffer *
  5475. intel_framebuffer_create(struct drm_device *dev,
  5476. struct drm_mode_fb_cmd2 *mode_cmd,
  5477. struct drm_i915_gem_object *obj)
  5478. {
  5479. struct intel_framebuffer *intel_fb;
  5480. int ret;
  5481. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  5482. if (!intel_fb) {
  5483. drm_gem_object_unreference_unlocked(&obj->base);
  5484. return ERR_PTR(-ENOMEM);
  5485. }
  5486. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  5487. if (ret) {
  5488. drm_gem_object_unreference_unlocked(&obj->base);
  5489. kfree(intel_fb);
  5490. return ERR_PTR(ret);
  5491. }
  5492. return &intel_fb->base;
  5493. }
  5494. static u32
  5495. intel_framebuffer_pitch_for_width(int width, int bpp)
  5496. {
  5497. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  5498. return ALIGN(pitch, 64);
  5499. }
  5500. static u32
  5501. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  5502. {
  5503. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  5504. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  5505. }
  5506. static struct drm_framebuffer *
  5507. intel_framebuffer_create_for_mode(struct drm_device *dev,
  5508. struct drm_display_mode *mode,
  5509. int depth, int bpp)
  5510. {
  5511. struct drm_i915_gem_object *obj;
  5512. struct drm_mode_fb_cmd2 mode_cmd = { 0 };
  5513. obj = i915_gem_alloc_object(dev,
  5514. intel_framebuffer_size_for_mode(mode, bpp));
  5515. if (obj == NULL)
  5516. return ERR_PTR(-ENOMEM);
  5517. mode_cmd.width = mode->hdisplay;
  5518. mode_cmd.height = mode->vdisplay;
  5519. mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  5520. bpp);
  5521. mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
  5522. return intel_framebuffer_create(dev, &mode_cmd, obj);
  5523. }
  5524. static struct drm_framebuffer *
  5525. mode_fits_in_fbdev(struct drm_device *dev,
  5526. struct drm_display_mode *mode)
  5527. {
  5528. struct drm_i915_private *dev_priv = dev->dev_private;
  5529. struct drm_i915_gem_object *obj;
  5530. struct drm_framebuffer *fb;
  5531. if (dev_priv->fbdev == NULL)
  5532. return NULL;
  5533. obj = dev_priv->fbdev->ifb.obj;
  5534. if (obj == NULL)
  5535. return NULL;
  5536. fb = &dev_priv->fbdev->ifb.base;
  5537. if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  5538. fb->bits_per_pixel))
  5539. return NULL;
  5540. if (obj->base.size < mode->vdisplay * fb->pitches[0])
  5541. return NULL;
  5542. return fb;
  5543. }
  5544. bool intel_get_load_detect_pipe(struct drm_connector *connector,
  5545. struct drm_display_mode *mode,
  5546. struct intel_load_detect_pipe *old)
  5547. {
  5548. struct intel_crtc *intel_crtc;
  5549. struct intel_encoder *intel_encoder =
  5550. intel_attached_encoder(connector);
  5551. struct drm_crtc *possible_crtc;
  5552. struct drm_encoder *encoder = &intel_encoder->base;
  5553. struct drm_crtc *crtc = NULL;
  5554. struct drm_device *dev = encoder->dev;
  5555. struct drm_framebuffer *fb;
  5556. int i = -1;
  5557. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5558. connector->base.id, drm_get_connector_name(connector),
  5559. encoder->base.id, drm_get_encoder_name(encoder));
  5560. /*
  5561. * Algorithm gets a little messy:
  5562. *
  5563. * - if the connector already has an assigned crtc, use it (but make
  5564. * sure it's on first)
  5565. *
  5566. * - try to find the first unused crtc that can drive this connector,
  5567. * and use that if we find one
  5568. */
  5569. /* See if we already have a CRTC for this connector */
  5570. if (encoder->crtc) {
  5571. crtc = encoder->crtc;
  5572. old->dpms_mode = connector->dpms;
  5573. old->load_detect_temp = false;
  5574. /* Make sure the crtc and connector are running */
  5575. if (connector->dpms != DRM_MODE_DPMS_ON)
  5576. connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
  5577. return true;
  5578. }
  5579. /* Find an unused one (if possible) */
  5580. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  5581. i++;
  5582. if (!(encoder->possible_crtcs & (1 << i)))
  5583. continue;
  5584. if (!possible_crtc->enabled) {
  5585. crtc = possible_crtc;
  5586. break;
  5587. }
  5588. }
  5589. /*
  5590. * If we didn't find an unused CRTC, don't use any.
  5591. */
  5592. if (!crtc) {
  5593. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  5594. return false;
  5595. }
  5596. intel_encoder->new_crtc = to_intel_crtc(crtc);
  5597. to_intel_connector(connector)->new_encoder = intel_encoder;
  5598. intel_crtc = to_intel_crtc(crtc);
  5599. old->dpms_mode = connector->dpms;
  5600. old->load_detect_temp = true;
  5601. old->release_fb = NULL;
  5602. if (!mode)
  5603. mode = &load_detect_mode;
  5604. /* We need a framebuffer large enough to accommodate all accesses
  5605. * that the plane may generate whilst we perform load detection.
  5606. * We can not rely on the fbcon either being present (we get called
  5607. * during its initialisation to detect all boot displays, or it may
  5608. * not even exist) or that it is large enough to satisfy the
  5609. * requested mode.
  5610. */
  5611. fb = mode_fits_in_fbdev(dev, mode);
  5612. if (fb == NULL) {
  5613. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  5614. fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  5615. old->release_fb = fb;
  5616. } else
  5617. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  5618. if (IS_ERR(fb)) {
  5619. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  5620. return false;
  5621. }
  5622. if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
  5623. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  5624. if (old->release_fb)
  5625. old->release_fb->funcs->destroy(old->release_fb);
  5626. return false;
  5627. }
  5628. /* let the connector get through one full cycle before testing */
  5629. intel_wait_for_vblank(dev, intel_crtc->pipe);
  5630. return true;
  5631. }
  5632. void intel_release_load_detect_pipe(struct drm_connector *connector,
  5633. struct intel_load_detect_pipe *old)
  5634. {
  5635. struct intel_encoder *intel_encoder =
  5636. intel_attached_encoder(connector);
  5637. struct drm_encoder *encoder = &intel_encoder->base;
  5638. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5639. connector->base.id, drm_get_connector_name(connector),
  5640. encoder->base.id, drm_get_encoder_name(encoder));
  5641. if (old->load_detect_temp) {
  5642. struct drm_crtc *crtc = encoder->crtc;
  5643. to_intel_connector(connector)->new_encoder = NULL;
  5644. intel_encoder->new_crtc = NULL;
  5645. intel_set_mode(crtc, NULL, 0, 0, NULL);
  5646. if (old->release_fb)
  5647. old->release_fb->funcs->destroy(old->release_fb);
  5648. return;
  5649. }
  5650. /* Switch crtc and encoder back off if necessary */
  5651. if (old->dpms_mode != DRM_MODE_DPMS_ON)
  5652. connector->funcs->dpms(connector, old->dpms_mode);
  5653. }
  5654. /* Returns the clock of the currently programmed mode of the given pipe. */
  5655. static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
  5656. {
  5657. struct drm_i915_private *dev_priv = dev->dev_private;
  5658. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5659. int pipe = intel_crtc->pipe;
  5660. u32 dpll = I915_READ(DPLL(pipe));
  5661. u32 fp;
  5662. intel_clock_t clock;
  5663. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  5664. fp = I915_READ(FP0(pipe));
  5665. else
  5666. fp = I915_READ(FP1(pipe));
  5667. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  5668. if (IS_PINEVIEW(dev)) {
  5669. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  5670. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5671. } else {
  5672. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  5673. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5674. }
  5675. if (!IS_GEN2(dev)) {
  5676. if (IS_PINEVIEW(dev))
  5677. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  5678. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  5679. else
  5680. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  5681. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5682. switch (dpll & DPLL_MODE_MASK) {
  5683. case DPLLB_MODE_DAC_SERIAL:
  5684. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  5685. 5 : 10;
  5686. break;
  5687. case DPLLB_MODE_LVDS:
  5688. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  5689. 7 : 14;
  5690. break;
  5691. default:
  5692. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  5693. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  5694. return 0;
  5695. }
  5696. /* XXX: Handle the 100Mhz refclk */
  5697. intel_clock(dev, 96000, &clock);
  5698. } else {
  5699. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  5700. if (is_lvds) {
  5701. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  5702. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5703. clock.p2 = 14;
  5704. if ((dpll & PLL_REF_INPUT_MASK) ==
  5705. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  5706. /* XXX: might not be 66MHz */
  5707. intel_clock(dev, 66000, &clock);
  5708. } else
  5709. intel_clock(dev, 48000, &clock);
  5710. } else {
  5711. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  5712. clock.p1 = 2;
  5713. else {
  5714. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  5715. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  5716. }
  5717. if (dpll & PLL_P2_DIVIDE_BY_4)
  5718. clock.p2 = 4;
  5719. else
  5720. clock.p2 = 2;
  5721. intel_clock(dev, 48000, &clock);
  5722. }
  5723. }
  5724. /* XXX: It would be nice to validate the clocks, but we can't reuse
  5725. * i830PllIsValid() because it relies on the xf86_config connector
  5726. * configuration being accurate, which it isn't necessarily.
  5727. */
  5728. return clock.dot;
  5729. }
  5730. /** Returns the currently programmed mode of the given pipe. */
  5731. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  5732. struct drm_crtc *crtc)
  5733. {
  5734. struct drm_i915_private *dev_priv = dev->dev_private;
  5735. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5736. enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
  5737. struct drm_display_mode *mode;
  5738. int htot = I915_READ(HTOTAL(cpu_transcoder));
  5739. int hsync = I915_READ(HSYNC(cpu_transcoder));
  5740. int vtot = I915_READ(VTOTAL(cpu_transcoder));
  5741. int vsync = I915_READ(VSYNC(cpu_transcoder));
  5742. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  5743. if (!mode)
  5744. return NULL;
  5745. mode->clock = intel_crtc_clock_get(dev, crtc);
  5746. mode->hdisplay = (htot & 0xffff) + 1;
  5747. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  5748. mode->hsync_start = (hsync & 0xffff) + 1;
  5749. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  5750. mode->vdisplay = (vtot & 0xffff) + 1;
  5751. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  5752. mode->vsync_start = (vsync & 0xffff) + 1;
  5753. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  5754. drm_mode_set_name(mode);
  5755. return mode;
  5756. }
  5757. static void intel_increase_pllclock(struct drm_crtc *crtc)
  5758. {
  5759. struct drm_device *dev = crtc->dev;
  5760. drm_i915_private_t *dev_priv = dev->dev_private;
  5761. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5762. int pipe = intel_crtc->pipe;
  5763. int dpll_reg = DPLL(pipe);
  5764. int dpll;
  5765. if (HAS_PCH_SPLIT(dev))
  5766. return;
  5767. if (!dev_priv->lvds_downclock_avail)
  5768. return;
  5769. dpll = I915_READ(dpll_reg);
  5770. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  5771. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  5772. assert_panel_unlocked(dev_priv, pipe);
  5773. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  5774. I915_WRITE(dpll_reg, dpll);
  5775. intel_wait_for_vblank(dev, pipe);
  5776. dpll = I915_READ(dpll_reg);
  5777. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  5778. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  5779. }
  5780. }
  5781. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  5782. {
  5783. struct drm_device *dev = crtc->dev;
  5784. drm_i915_private_t *dev_priv = dev->dev_private;
  5785. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5786. if (HAS_PCH_SPLIT(dev))
  5787. return;
  5788. if (!dev_priv->lvds_downclock_avail)
  5789. return;
  5790. /*
  5791. * Since this is called by a timer, we should never get here in
  5792. * the manual case.
  5793. */
  5794. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  5795. int pipe = intel_crtc->pipe;
  5796. int dpll_reg = DPLL(pipe);
  5797. int dpll;
  5798. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  5799. assert_panel_unlocked(dev_priv, pipe);
  5800. dpll = I915_READ(dpll_reg);
  5801. dpll |= DISPLAY_RATE_SELECT_FPA1;
  5802. I915_WRITE(dpll_reg, dpll);
  5803. intel_wait_for_vblank(dev, pipe);
  5804. dpll = I915_READ(dpll_reg);
  5805. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  5806. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  5807. }
  5808. }
  5809. void intel_mark_busy(struct drm_device *dev)
  5810. {
  5811. i915_update_gfx_val(dev->dev_private);
  5812. }
  5813. void intel_mark_idle(struct drm_device *dev)
  5814. {
  5815. }
  5816. void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
  5817. {
  5818. struct drm_device *dev = obj->base.dev;
  5819. struct drm_crtc *crtc;
  5820. if (!i915_powersave)
  5821. return;
  5822. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5823. if (!crtc->fb)
  5824. continue;
  5825. if (to_intel_framebuffer(crtc->fb)->obj == obj)
  5826. intel_increase_pllclock(crtc);
  5827. }
  5828. }
  5829. void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
  5830. {
  5831. struct drm_device *dev = obj->base.dev;
  5832. struct drm_crtc *crtc;
  5833. if (!i915_powersave)
  5834. return;
  5835. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5836. if (!crtc->fb)
  5837. continue;
  5838. if (to_intel_framebuffer(crtc->fb)->obj == obj)
  5839. intel_decrease_pllclock(crtc);
  5840. }
  5841. }
  5842. static void intel_crtc_destroy(struct drm_crtc *crtc)
  5843. {
  5844. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5845. struct drm_device *dev = crtc->dev;
  5846. struct intel_unpin_work *work;
  5847. unsigned long flags;
  5848. spin_lock_irqsave(&dev->event_lock, flags);
  5849. work = intel_crtc->unpin_work;
  5850. intel_crtc->unpin_work = NULL;
  5851. spin_unlock_irqrestore(&dev->event_lock, flags);
  5852. if (work) {
  5853. cancel_work_sync(&work->work);
  5854. kfree(work);
  5855. }
  5856. drm_crtc_cleanup(crtc);
  5857. kfree(intel_crtc);
  5858. }
  5859. static void intel_unpin_work_fn(struct work_struct *__work)
  5860. {
  5861. struct intel_unpin_work *work =
  5862. container_of(__work, struct intel_unpin_work, work);
  5863. struct drm_device *dev = work->crtc->dev;
  5864. mutex_lock(&dev->struct_mutex);
  5865. intel_unpin_fb_obj(work->old_fb_obj);
  5866. drm_gem_object_unreference(&work->pending_flip_obj->base);
  5867. drm_gem_object_unreference(&work->old_fb_obj->base);
  5868. intel_update_fbc(dev);
  5869. mutex_unlock(&dev->struct_mutex);
  5870. BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
  5871. atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
  5872. kfree(work);
  5873. }
  5874. static void do_intel_finish_page_flip(struct drm_device *dev,
  5875. struct drm_crtc *crtc)
  5876. {
  5877. drm_i915_private_t *dev_priv = dev->dev_private;
  5878. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5879. struct intel_unpin_work *work;
  5880. struct drm_i915_gem_object *obj;
  5881. unsigned long flags;
  5882. /* Ignore early vblank irqs */
  5883. if (intel_crtc == NULL)
  5884. return;
  5885. spin_lock_irqsave(&dev->event_lock, flags);
  5886. work = intel_crtc->unpin_work;
  5887. if (work == NULL || !work->pending) {
  5888. spin_unlock_irqrestore(&dev->event_lock, flags);
  5889. return;
  5890. }
  5891. intel_crtc->unpin_work = NULL;
  5892. if (work->event)
  5893. drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
  5894. drm_vblank_put(dev, intel_crtc->pipe);
  5895. spin_unlock_irqrestore(&dev->event_lock, flags);
  5896. obj = work->old_fb_obj;
  5897. atomic_clear_mask(1 << intel_crtc->plane,
  5898. &obj->pending_flip.counter);
  5899. wake_up(&dev_priv->pending_flip_queue);
  5900. queue_work(dev_priv->wq, &work->work);
  5901. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  5902. }
  5903. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  5904. {
  5905. drm_i915_private_t *dev_priv = dev->dev_private;
  5906. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  5907. do_intel_finish_page_flip(dev, crtc);
  5908. }
  5909. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  5910. {
  5911. drm_i915_private_t *dev_priv = dev->dev_private;
  5912. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  5913. do_intel_finish_page_flip(dev, crtc);
  5914. }
  5915. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  5916. {
  5917. drm_i915_private_t *dev_priv = dev->dev_private;
  5918. struct intel_crtc *intel_crtc =
  5919. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  5920. unsigned long flags;
  5921. spin_lock_irqsave(&dev->event_lock, flags);
  5922. if (intel_crtc->unpin_work) {
  5923. if ((++intel_crtc->unpin_work->pending) > 1)
  5924. DRM_ERROR("Prepared flip multiple times\n");
  5925. } else {
  5926. DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
  5927. }
  5928. spin_unlock_irqrestore(&dev->event_lock, flags);
  5929. }
  5930. static int intel_gen2_queue_flip(struct drm_device *dev,
  5931. struct drm_crtc *crtc,
  5932. struct drm_framebuffer *fb,
  5933. struct drm_i915_gem_object *obj)
  5934. {
  5935. struct drm_i915_private *dev_priv = dev->dev_private;
  5936. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5937. u32 flip_mask;
  5938. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  5939. int ret;
  5940. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  5941. if (ret)
  5942. goto err;
  5943. ret = intel_ring_begin(ring, 6);
  5944. if (ret)
  5945. goto err_unpin;
  5946. /* Can't queue multiple flips, so wait for the previous
  5947. * one to finish before executing the next.
  5948. */
  5949. if (intel_crtc->plane)
  5950. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  5951. else
  5952. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  5953. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  5954. intel_ring_emit(ring, MI_NOOP);
  5955. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  5956. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  5957. intel_ring_emit(ring, fb->pitches[0]);
  5958. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  5959. intel_ring_emit(ring, 0); /* aux display base address, unused */
  5960. intel_ring_advance(ring);
  5961. return 0;
  5962. err_unpin:
  5963. intel_unpin_fb_obj(obj);
  5964. err:
  5965. return ret;
  5966. }
  5967. static int intel_gen3_queue_flip(struct drm_device *dev,
  5968. struct drm_crtc *crtc,
  5969. struct drm_framebuffer *fb,
  5970. struct drm_i915_gem_object *obj)
  5971. {
  5972. struct drm_i915_private *dev_priv = dev->dev_private;
  5973. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5974. u32 flip_mask;
  5975. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  5976. int ret;
  5977. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  5978. if (ret)
  5979. goto err;
  5980. ret = intel_ring_begin(ring, 6);
  5981. if (ret)
  5982. goto err_unpin;
  5983. if (intel_crtc->plane)
  5984. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  5985. else
  5986. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  5987. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  5988. intel_ring_emit(ring, MI_NOOP);
  5989. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
  5990. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  5991. intel_ring_emit(ring, fb->pitches[0]);
  5992. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  5993. intel_ring_emit(ring, MI_NOOP);
  5994. intel_ring_advance(ring);
  5995. return 0;
  5996. err_unpin:
  5997. intel_unpin_fb_obj(obj);
  5998. err:
  5999. return ret;
  6000. }
  6001. static int intel_gen4_queue_flip(struct drm_device *dev,
  6002. struct drm_crtc *crtc,
  6003. struct drm_framebuffer *fb,
  6004. struct drm_i915_gem_object *obj)
  6005. {
  6006. struct drm_i915_private *dev_priv = dev->dev_private;
  6007. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6008. uint32_t pf, pipesrc;
  6009. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6010. int ret;
  6011. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6012. if (ret)
  6013. goto err;
  6014. ret = intel_ring_begin(ring, 4);
  6015. if (ret)
  6016. goto err_unpin;
  6017. /* i965+ uses the linear or tiled offsets from the
  6018. * Display Registers (which do not change across a page-flip)
  6019. * so we need only reprogram the base address.
  6020. */
  6021. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6022. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6023. intel_ring_emit(ring, fb->pitches[0]);
  6024. intel_ring_emit(ring,
  6025. (obj->gtt_offset + intel_crtc->dspaddr_offset) |
  6026. obj->tiling_mode);
  6027. /* XXX Enabling the panel-fitter across page-flip is so far
  6028. * untested on non-native modes, so ignore it for now.
  6029. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  6030. */
  6031. pf = 0;
  6032. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6033. intel_ring_emit(ring, pf | pipesrc);
  6034. intel_ring_advance(ring);
  6035. return 0;
  6036. err_unpin:
  6037. intel_unpin_fb_obj(obj);
  6038. err:
  6039. return ret;
  6040. }
  6041. static int intel_gen6_queue_flip(struct drm_device *dev,
  6042. struct drm_crtc *crtc,
  6043. struct drm_framebuffer *fb,
  6044. struct drm_i915_gem_object *obj)
  6045. {
  6046. struct drm_i915_private *dev_priv = dev->dev_private;
  6047. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6048. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6049. uint32_t pf, pipesrc;
  6050. int ret;
  6051. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6052. if (ret)
  6053. goto err;
  6054. ret = intel_ring_begin(ring, 4);
  6055. if (ret)
  6056. goto err_unpin;
  6057. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6058. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6059. intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
  6060. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6061. /* Contrary to the suggestions in the documentation,
  6062. * "Enable Panel Fitter" does not seem to be required when page
  6063. * flipping with a non-native mode, and worse causes a normal
  6064. * modeset to fail.
  6065. * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  6066. */
  6067. pf = 0;
  6068. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6069. intel_ring_emit(ring, pf | pipesrc);
  6070. intel_ring_advance(ring);
  6071. return 0;
  6072. err_unpin:
  6073. intel_unpin_fb_obj(obj);
  6074. err:
  6075. return ret;
  6076. }
  6077. /*
  6078. * On gen7 we currently use the blit ring because (in early silicon at least)
  6079. * the render ring doesn't give us interrpts for page flip completion, which
  6080. * means clients will hang after the first flip is queued. Fortunately the
  6081. * blit ring generates interrupts properly, so use it instead.
  6082. */
  6083. static int intel_gen7_queue_flip(struct drm_device *dev,
  6084. struct drm_crtc *crtc,
  6085. struct drm_framebuffer *fb,
  6086. struct drm_i915_gem_object *obj)
  6087. {
  6088. struct drm_i915_private *dev_priv = dev->dev_private;
  6089. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6090. struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
  6091. uint32_t plane_bit = 0;
  6092. int ret;
  6093. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6094. if (ret)
  6095. goto err;
  6096. switch(intel_crtc->plane) {
  6097. case PLANE_A:
  6098. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
  6099. break;
  6100. case PLANE_B:
  6101. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
  6102. break;
  6103. case PLANE_C:
  6104. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
  6105. break;
  6106. default:
  6107. WARN_ONCE(1, "unknown plane in flip command\n");
  6108. ret = -ENODEV;
  6109. goto err_unpin;
  6110. }
  6111. ret = intel_ring_begin(ring, 4);
  6112. if (ret)
  6113. goto err_unpin;
  6114. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
  6115. intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  6116. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6117. intel_ring_emit(ring, (MI_NOOP));
  6118. intel_ring_advance(ring);
  6119. return 0;
  6120. err_unpin:
  6121. intel_unpin_fb_obj(obj);
  6122. err:
  6123. return ret;
  6124. }
  6125. static int intel_default_queue_flip(struct drm_device *dev,
  6126. struct drm_crtc *crtc,
  6127. struct drm_framebuffer *fb,
  6128. struct drm_i915_gem_object *obj)
  6129. {
  6130. return -ENODEV;
  6131. }
  6132. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  6133. struct drm_framebuffer *fb,
  6134. struct drm_pending_vblank_event *event)
  6135. {
  6136. struct drm_device *dev = crtc->dev;
  6137. struct drm_i915_private *dev_priv = dev->dev_private;
  6138. struct intel_framebuffer *intel_fb;
  6139. struct drm_i915_gem_object *obj;
  6140. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6141. struct intel_unpin_work *work;
  6142. unsigned long flags;
  6143. int ret;
  6144. /* Can't change pixel format via MI display flips. */
  6145. if (fb->pixel_format != crtc->fb->pixel_format)
  6146. return -EINVAL;
  6147. /*
  6148. * TILEOFF/LINOFF registers can't be changed via MI display flips.
  6149. * Note that pitch changes could also affect these register.
  6150. */
  6151. if (INTEL_INFO(dev)->gen > 3 &&
  6152. (fb->offsets[0] != crtc->fb->offsets[0] ||
  6153. fb->pitches[0] != crtc->fb->pitches[0]))
  6154. return -EINVAL;
  6155. work = kzalloc(sizeof *work, GFP_KERNEL);
  6156. if (work == NULL)
  6157. return -ENOMEM;
  6158. work->event = event;
  6159. work->crtc = crtc;
  6160. intel_fb = to_intel_framebuffer(crtc->fb);
  6161. work->old_fb_obj = intel_fb->obj;
  6162. INIT_WORK(&work->work, intel_unpin_work_fn);
  6163. ret = drm_vblank_get(dev, intel_crtc->pipe);
  6164. if (ret)
  6165. goto free_work;
  6166. /* We borrow the event spin lock for protecting unpin_work */
  6167. spin_lock_irqsave(&dev->event_lock, flags);
  6168. if (intel_crtc->unpin_work) {
  6169. spin_unlock_irqrestore(&dev->event_lock, flags);
  6170. kfree(work);
  6171. drm_vblank_put(dev, intel_crtc->pipe);
  6172. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  6173. return -EBUSY;
  6174. }
  6175. intel_crtc->unpin_work = work;
  6176. spin_unlock_irqrestore(&dev->event_lock, flags);
  6177. intel_fb = to_intel_framebuffer(fb);
  6178. obj = intel_fb->obj;
  6179. if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
  6180. flush_workqueue(dev_priv->wq);
  6181. ret = i915_mutex_lock_interruptible(dev);
  6182. if (ret)
  6183. goto cleanup;
  6184. /* Reference the objects for the scheduled work. */
  6185. drm_gem_object_reference(&work->old_fb_obj->base);
  6186. drm_gem_object_reference(&obj->base);
  6187. crtc->fb = fb;
  6188. work->pending_flip_obj = obj;
  6189. work->enable_stall_check = true;
  6190. /* Block clients from rendering to the new back buffer until
  6191. * the flip occurs and the object is no longer visible.
  6192. */
  6193. atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
  6194. atomic_inc(&intel_crtc->unpin_work_count);
  6195. ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
  6196. if (ret)
  6197. goto cleanup_pending;
  6198. intel_disable_fbc(dev);
  6199. intel_mark_fb_busy(obj);
  6200. mutex_unlock(&dev->struct_mutex);
  6201. trace_i915_flip_request(intel_crtc->plane, obj);
  6202. return 0;
  6203. cleanup_pending:
  6204. atomic_dec(&intel_crtc->unpin_work_count);
  6205. atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
  6206. drm_gem_object_unreference(&work->old_fb_obj->base);
  6207. drm_gem_object_unreference(&obj->base);
  6208. mutex_unlock(&dev->struct_mutex);
  6209. cleanup:
  6210. spin_lock_irqsave(&dev->event_lock, flags);
  6211. intel_crtc->unpin_work = NULL;
  6212. spin_unlock_irqrestore(&dev->event_lock, flags);
  6213. drm_vblank_put(dev, intel_crtc->pipe);
  6214. free_work:
  6215. kfree(work);
  6216. return ret;
  6217. }
  6218. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  6219. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  6220. .load_lut = intel_crtc_load_lut,
  6221. .disable = intel_crtc_noop,
  6222. };
  6223. bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
  6224. {
  6225. struct intel_encoder *other_encoder;
  6226. struct drm_crtc *crtc = &encoder->new_crtc->base;
  6227. if (WARN_ON(!crtc))
  6228. return false;
  6229. list_for_each_entry(other_encoder,
  6230. &crtc->dev->mode_config.encoder_list,
  6231. base.head) {
  6232. if (&other_encoder->new_crtc->base != crtc ||
  6233. encoder == other_encoder)
  6234. continue;
  6235. else
  6236. return true;
  6237. }
  6238. return false;
  6239. }
  6240. static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
  6241. struct drm_crtc *crtc)
  6242. {
  6243. struct drm_device *dev;
  6244. struct drm_crtc *tmp;
  6245. int crtc_mask = 1;
  6246. WARN(!crtc, "checking null crtc?\n");
  6247. dev = crtc->dev;
  6248. list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
  6249. if (tmp == crtc)
  6250. break;
  6251. crtc_mask <<= 1;
  6252. }
  6253. if (encoder->possible_crtcs & crtc_mask)
  6254. return true;
  6255. return false;
  6256. }
  6257. /**
  6258. * intel_modeset_update_staged_output_state
  6259. *
  6260. * Updates the staged output configuration state, e.g. after we've read out the
  6261. * current hw state.
  6262. */
  6263. static void intel_modeset_update_staged_output_state(struct drm_device *dev)
  6264. {
  6265. struct intel_encoder *encoder;
  6266. struct intel_connector *connector;
  6267. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6268. base.head) {
  6269. connector->new_encoder =
  6270. to_intel_encoder(connector->base.encoder);
  6271. }
  6272. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6273. base.head) {
  6274. encoder->new_crtc =
  6275. to_intel_crtc(encoder->base.crtc);
  6276. }
  6277. }
  6278. /**
  6279. * intel_modeset_commit_output_state
  6280. *
  6281. * This function copies the stage display pipe configuration to the real one.
  6282. */
  6283. static void intel_modeset_commit_output_state(struct drm_device *dev)
  6284. {
  6285. struct intel_encoder *encoder;
  6286. struct intel_connector *connector;
  6287. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6288. base.head) {
  6289. connector->base.encoder = &connector->new_encoder->base;
  6290. }
  6291. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6292. base.head) {
  6293. encoder->base.crtc = &encoder->new_crtc->base;
  6294. }
  6295. }
  6296. static struct drm_display_mode *
  6297. intel_modeset_adjusted_mode(struct drm_crtc *crtc,
  6298. struct drm_display_mode *mode)
  6299. {
  6300. struct drm_device *dev = crtc->dev;
  6301. struct drm_display_mode *adjusted_mode;
  6302. struct drm_encoder_helper_funcs *encoder_funcs;
  6303. struct intel_encoder *encoder;
  6304. adjusted_mode = drm_mode_duplicate(dev, mode);
  6305. if (!adjusted_mode)
  6306. return ERR_PTR(-ENOMEM);
  6307. /* Pass our mode to the connectors and the CRTC to give them a chance to
  6308. * adjust it according to limitations or connector properties, and also
  6309. * a chance to reject the mode entirely.
  6310. */
  6311. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6312. base.head) {
  6313. if (&encoder->new_crtc->base != crtc)
  6314. continue;
  6315. encoder_funcs = encoder->base.helper_private;
  6316. if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
  6317. adjusted_mode))) {
  6318. DRM_DEBUG_KMS("Encoder fixup failed\n");
  6319. goto fail;
  6320. }
  6321. }
  6322. if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
  6323. DRM_DEBUG_KMS("CRTC fixup failed\n");
  6324. goto fail;
  6325. }
  6326. DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
  6327. return adjusted_mode;
  6328. fail:
  6329. drm_mode_destroy(dev, adjusted_mode);
  6330. return ERR_PTR(-EINVAL);
  6331. }
  6332. /* Computes which crtcs are affected and sets the relevant bits in the mask. For
  6333. * simplicity we use the crtc's pipe number (because it's easier to obtain). */
  6334. static void
  6335. intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
  6336. unsigned *prepare_pipes, unsigned *disable_pipes)
  6337. {
  6338. struct intel_crtc *intel_crtc;
  6339. struct drm_device *dev = crtc->dev;
  6340. struct intel_encoder *encoder;
  6341. struct intel_connector *connector;
  6342. struct drm_crtc *tmp_crtc;
  6343. *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
  6344. /* Check which crtcs have changed outputs connected to them, these need
  6345. * to be part of the prepare_pipes mask. We don't (yet) support global
  6346. * modeset across multiple crtcs, so modeset_pipes will only have one
  6347. * bit set at most. */
  6348. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6349. base.head) {
  6350. if (connector->base.encoder == &connector->new_encoder->base)
  6351. continue;
  6352. if (connector->base.encoder) {
  6353. tmp_crtc = connector->base.encoder->crtc;
  6354. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6355. }
  6356. if (connector->new_encoder)
  6357. *prepare_pipes |=
  6358. 1 << connector->new_encoder->new_crtc->pipe;
  6359. }
  6360. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6361. base.head) {
  6362. if (encoder->base.crtc == &encoder->new_crtc->base)
  6363. continue;
  6364. if (encoder->base.crtc) {
  6365. tmp_crtc = encoder->base.crtc;
  6366. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6367. }
  6368. if (encoder->new_crtc)
  6369. *prepare_pipes |= 1 << encoder->new_crtc->pipe;
  6370. }
  6371. /* Check for any pipes that will be fully disabled ... */
  6372. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6373. base.head) {
  6374. bool used = false;
  6375. /* Don't try to disable disabled crtcs. */
  6376. if (!intel_crtc->base.enabled)
  6377. continue;
  6378. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6379. base.head) {
  6380. if (encoder->new_crtc == intel_crtc)
  6381. used = true;
  6382. }
  6383. if (!used)
  6384. *disable_pipes |= 1 << intel_crtc->pipe;
  6385. }
  6386. /* set_mode is also used to update properties on life display pipes. */
  6387. intel_crtc = to_intel_crtc(crtc);
  6388. if (crtc->enabled)
  6389. *prepare_pipes |= 1 << intel_crtc->pipe;
  6390. /* We only support modeset on one single crtc, hence we need to do that
  6391. * only for the passed in crtc iff we change anything else than just
  6392. * disable crtcs.
  6393. *
  6394. * This is actually not true, to be fully compatible with the old crtc
  6395. * helper we automatically disable _any_ output (i.e. doesn't need to be
  6396. * connected to the crtc we're modesetting on) if it's disconnected.
  6397. * Which is a rather nutty api (since changed the output configuration
  6398. * without userspace's explicit request can lead to confusion), but
  6399. * alas. Hence we currently need to modeset on all pipes we prepare. */
  6400. if (*prepare_pipes)
  6401. *modeset_pipes = *prepare_pipes;
  6402. /* ... and mask these out. */
  6403. *modeset_pipes &= ~(*disable_pipes);
  6404. *prepare_pipes &= ~(*disable_pipes);
  6405. }
  6406. static bool intel_crtc_in_use(struct drm_crtc *crtc)
  6407. {
  6408. struct drm_encoder *encoder;
  6409. struct drm_device *dev = crtc->dev;
  6410. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
  6411. if (encoder->crtc == crtc)
  6412. return true;
  6413. return false;
  6414. }
  6415. static void
  6416. intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
  6417. {
  6418. struct intel_encoder *intel_encoder;
  6419. struct intel_crtc *intel_crtc;
  6420. struct drm_connector *connector;
  6421. list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
  6422. base.head) {
  6423. if (!intel_encoder->base.crtc)
  6424. continue;
  6425. intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
  6426. if (prepare_pipes & (1 << intel_crtc->pipe))
  6427. intel_encoder->connectors_active = false;
  6428. }
  6429. intel_modeset_commit_output_state(dev);
  6430. /* Update computed state. */
  6431. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6432. base.head) {
  6433. intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
  6434. }
  6435. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  6436. if (!connector->encoder || !connector->encoder->crtc)
  6437. continue;
  6438. intel_crtc = to_intel_crtc(connector->encoder->crtc);
  6439. if (prepare_pipes & (1 << intel_crtc->pipe)) {
  6440. struct drm_property *dpms_property =
  6441. dev->mode_config.dpms_property;
  6442. connector->dpms = DRM_MODE_DPMS_ON;
  6443. drm_object_property_set_value(&connector->base,
  6444. dpms_property,
  6445. DRM_MODE_DPMS_ON);
  6446. intel_encoder = to_intel_encoder(connector->encoder);
  6447. intel_encoder->connectors_active = true;
  6448. }
  6449. }
  6450. }
  6451. #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
  6452. list_for_each_entry((intel_crtc), \
  6453. &(dev)->mode_config.crtc_list, \
  6454. base.head) \
  6455. if (mask & (1 <<(intel_crtc)->pipe)) \
  6456. void
  6457. intel_modeset_check_state(struct drm_device *dev)
  6458. {
  6459. struct intel_crtc *crtc;
  6460. struct intel_encoder *encoder;
  6461. struct intel_connector *connector;
  6462. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6463. base.head) {
  6464. /* This also checks the encoder/connector hw state with the
  6465. * ->get_hw_state callbacks. */
  6466. intel_connector_check_state(connector);
  6467. WARN(&connector->new_encoder->base != connector->base.encoder,
  6468. "connector's staged encoder doesn't match current encoder\n");
  6469. }
  6470. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6471. base.head) {
  6472. bool enabled = false;
  6473. bool active = false;
  6474. enum pipe pipe, tracked_pipe;
  6475. DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
  6476. encoder->base.base.id,
  6477. drm_get_encoder_name(&encoder->base));
  6478. WARN(&encoder->new_crtc->base != encoder->base.crtc,
  6479. "encoder's stage crtc doesn't match current crtc\n");
  6480. WARN(encoder->connectors_active && !encoder->base.crtc,
  6481. "encoder's active_connectors set, but no crtc\n");
  6482. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6483. base.head) {
  6484. if (connector->base.encoder != &encoder->base)
  6485. continue;
  6486. enabled = true;
  6487. if (connector->base.dpms != DRM_MODE_DPMS_OFF)
  6488. active = true;
  6489. }
  6490. WARN(!!encoder->base.crtc != enabled,
  6491. "encoder's enabled state mismatch "
  6492. "(expected %i, found %i)\n",
  6493. !!encoder->base.crtc, enabled);
  6494. WARN(active && !encoder->base.crtc,
  6495. "active encoder with no crtc\n");
  6496. WARN(encoder->connectors_active != active,
  6497. "encoder's computed active state doesn't match tracked active state "
  6498. "(expected %i, found %i)\n", active, encoder->connectors_active);
  6499. active = encoder->get_hw_state(encoder, &pipe);
  6500. WARN(active != encoder->connectors_active,
  6501. "encoder's hw state doesn't match sw tracking "
  6502. "(expected %i, found %i)\n",
  6503. encoder->connectors_active, active);
  6504. if (!encoder->base.crtc)
  6505. continue;
  6506. tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
  6507. WARN(active && pipe != tracked_pipe,
  6508. "active encoder's pipe doesn't match"
  6509. "(expected %i, found %i)\n",
  6510. tracked_pipe, pipe);
  6511. }
  6512. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  6513. base.head) {
  6514. bool enabled = false;
  6515. bool active = false;
  6516. DRM_DEBUG_KMS("[CRTC:%d]\n",
  6517. crtc->base.base.id);
  6518. WARN(crtc->active && !crtc->base.enabled,
  6519. "active crtc, but not enabled in sw tracking\n");
  6520. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6521. base.head) {
  6522. if (encoder->base.crtc != &crtc->base)
  6523. continue;
  6524. enabled = true;
  6525. if (encoder->connectors_active)
  6526. active = true;
  6527. }
  6528. WARN(active != crtc->active,
  6529. "crtc's computed active state doesn't match tracked active state "
  6530. "(expected %i, found %i)\n", active, crtc->active);
  6531. WARN(enabled != crtc->base.enabled,
  6532. "crtc's computed enabled state doesn't match tracked enabled state "
  6533. "(expected %i, found %i)\n", enabled, crtc->base.enabled);
  6534. assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
  6535. }
  6536. }
  6537. bool intel_set_mode(struct drm_crtc *crtc,
  6538. struct drm_display_mode *mode,
  6539. int x, int y, struct drm_framebuffer *fb)
  6540. {
  6541. struct drm_device *dev = crtc->dev;
  6542. drm_i915_private_t *dev_priv = dev->dev_private;
  6543. struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
  6544. struct intel_crtc *intel_crtc;
  6545. unsigned disable_pipes, prepare_pipes, modeset_pipes;
  6546. bool ret = true;
  6547. intel_modeset_affected_pipes(crtc, &modeset_pipes,
  6548. &prepare_pipes, &disable_pipes);
  6549. DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
  6550. modeset_pipes, prepare_pipes, disable_pipes);
  6551. for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
  6552. intel_crtc_disable(&intel_crtc->base);
  6553. saved_hwmode = crtc->hwmode;
  6554. saved_mode = crtc->mode;
  6555. /* Hack: Because we don't (yet) support global modeset on multiple
  6556. * crtcs, we don't keep track of the new mode for more than one crtc.
  6557. * Hence simply check whether any bit is set in modeset_pipes in all the
  6558. * pieces of code that are not yet converted to deal with mutliple crtcs
  6559. * changing their mode at the same time. */
  6560. adjusted_mode = NULL;
  6561. if (modeset_pipes) {
  6562. adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
  6563. if (IS_ERR(adjusted_mode)) {
  6564. return false;
  6565. }
  6566. }
  6567. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
  6568. if (intel_crtc->base.enabled)
  6569. dev_priv->display.crtc_disable(&intel_crtc->base);
  6570. }
  6571. /* crtc->mode is already used by the ->mode_set callbacks, hence we need
  6572. * to set it here already despite that we pass it down the callchain.
  6573. */
  6574. if (modeset_pipes)
  6575. crtc->mode = *mode;
  6576. /* Only after disabling all output pipelines that will be changed can we
  6577. * update the the output configuration. */
  6578. intel_modeset_update_state(dev, prepare_pipes);
  6579. if (dev_priv->display.modeset_global_resources)
  6580. dev_priv->display.modeset_global_resources(dev);
  6581. /* Set up the DPLL and any encoders state that needs to adjust or depend
  6582. * on the DPLL.
  6583. */
  6584. for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
  6585. ret = !intel_crtc_mode_set(&intel_crtc->base,
  6586. mode, adjusted_mode,
  6587. x, y, fb);
  6588. if (!ret)
  6589. goto done;
  6590. }
  6591. /* Now enable the clocks, plane, pipe, and connectors that we set up. */
  6592. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
  6593. dev_priv->display.crtc_enable(&intel_crtc->base);
  6594. if (modeset_pipes) {
  6595. /* Store real post-adjustment hardware mode. */
  6596. crtc->hwmode = *adjusted_mode;
  6597. /* Calculate and store various constants which
  6598. * are later needed by vblank and swap-completion
  6599. * timestamping. They are derived from true hwmode.
  6600. */
  6601. drm_calc_timestamping_constants(crtc);
  6602. }
  6603. /* FIXME: add subpixel order */
  6604. done:
  6605. drm_mode_destroy(dev, adjusted_mode);
  6606. if (!ret && crtc->enabled) {
  6607. crtc->hwmode = saved_hwmode;
  6608. crtc->mode = saved_mode;
  6609. } else {
  6610. intel_modeset_check_state(dev);
  6611. }
  6612. return ret;
  6613. }
  6614. #undef for_each_intel_crtc_masked
  6615. static void intel_set_config_free(struct intel_set_config *config)
  6616. {
  6617. if (!config)
  6618. return;
  6619. kfree(config->save_connector_encoders);
  6620. kfree(config->save_encoder_crtcs);
  6621. kfree(config);
  6622. }
  6623. static int intel_set_config_save_state(struct drm_device *dev,
  6624. struct intel_set_config *config)
  6625. {
  6626. struct drm_encoder *encoder;
  6627. struct drm_connector *connector;
  6628. int count;
  6629. config->save_encoder_crtcs =
  6630. kcalloc(dev->mode_config.num_encoder,
  6631. sizeof(struct drm_crtc *), GFP_KERNEL);
  6632. if (!config->save_encoder_crtcs)
  6633. return -ENOMEM;
  6634. config->save_connector_encoders =
  6635. kcalloc(dev->mode_config.num_connector,
  6636. sizeof(struct drm_encoder *), GFP_KERNEL);
  6637. if (!config->save_connector_encoders)
  6638. return -ENOMEM;
  6639. /* Copy data. Note that driver private data is not affected.
  6640. * Should anything bad happen only the expected state is
  6641. * restored, not the drivers personal bookkeeping.
  6642. */
  6643. count = 0;
  6644. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  6645. config->save_encoder_crtcs[count++] = encoder->crtc;
  6646. }
  6647. count = 0;
  6648. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  6649. config->save_connector_encoders[count++] = connector->encoder;
  6650. }
  6651. return 0;
  6652. }
  6653. static void intel_set_config_restore_state(struct drm_device *dev,
  6654. struct intel_set_config *config)
  6655. {
  6656. struct intel_encoder *encoder;
  6657. struct intel_connector *connector;
  6658. int count;
  6659. count = 0;
  6660. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  6661. encoder->new_crtc =
  6662. to_intel_crtc(config->save_encoder_crtcs[count++]);
  6663. }
  6664. count = 0;
  6665. list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
  6666. connector->new_encoder =
  6667. to_intel_encoder(config->save_connector_encoders[count++]);
  6668. }
  6669. }
  6670. static void
  6671. intel_set_config_compute_mode_changes(struct drm_mode_set *set,
  6672. struct intel_set_config *config)
  6673. {
  6674. /* We should be able to check here if the fb has the same properties
  6675. * and then just flip_or_move it */
  6676. if (set->crtc->fb != set->fb) {
  6677. /* If we have no fb then treat it as a full mode set */
  6678. if (set->crtc->fb == NULL) {
  6679. DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
  6680. config->mode_changed = true;
  6681. } else if (set->fb == NULL) {
  6682. config->mode_changed = true;
  6683. } else if (set->fb->depth != set->crtc->fb->depth) {
  6684. config->mode_changed = true;
  6685. } else if (set->fb->bits_per_pixel !=
  6686. set->crtc->fb->bits_per_pixel) {
  6687. config->mode_changed = true;
  6688. } else
  6689. config->fb_changed = true;
  6690. }
  6691. if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
  6692. config->fb_changed = true;
  6693. if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
  6694. DRM_DEBUG_KMS("modes are different, full mode set\n");
  6695. drm_mode_debug_printmodeline(&set->crtc->mode);
  6696. drm_mode_debug_printmodeline(set->mode);
  6697. config->mode_changed = true;
  6698. }
  6699. }
  6700. static int
  6701. intel_modeset_stage_output_state(struct drm_device *dev,
  6702. struct drm_mode_set *set,
  6703. struct intel_set_config *config)
  6704. {
  6705. struct drm_crtc *new_crtc;
  6706. struct intel_connector *connector;
  6707. struct intel_encoder *encoder;
  6708. int count, ro;
  6709. /* The upper layers ensure that we either disabl a crtc or have a list
  6710. * of connectors. For paranoia, double-check this. */
  6711. WARN_ON(!set->fb && (set->num_connectors != 0));
  6712. WARN_ON(set->fb && (set->num_connectors == 0));
  6713. count = 0;
  6714. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6715. base.head) {
  6716. /* Otherwise traverse passed in connector list and get encoders
  6717. * for them. */
  6718. for (ro = 0; ro < set->num_connectors; ro++) {
  6719. if (set->connectors[ro] == &connector->base) {
  6720. connector->new_encoder = connector->encoder;
  6721. break;
  6722. }
  6723. }
  6724. /* If we disable the crtc, disable all its connectors. Also, if
  6725. * the connector is on the changing crtc but not on the new
  6726. * connector list, disable it. */
  6727. if ((!set->fb || ro == set->num_connectors) &&
  6728. connector->base.encoder &&
  6729. connector->base.encoder->crtc == set->crtc) {
  6730. connector->new_encoder = NULL;
  6731. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
  6732. connector->base.base.id,
  6733. drm_get_connector_name(&connector->base));
  6734. }
  6735. if (&connector->new_encoder->base != connector->base.encoder) {
  6736. DRM_DEBUG_KMS("encoder changed, full mode switch\n");
  6737. config->mode_changed = true;
  6738. }
  6739. /* Disable all disconnected encoders. */
  6740. if (connector->base.status == connector_status_disconnected)
  6741. connector->new_encoder = NULL;
  6742. }
  6743. /* connector->new_encoder is now updated for all connectors. */
  6744. /* Update crtc of enabled connectors. */
  6745. count = 0;
  6746. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6747. base.head) {
  6748. if (!connector->new_encoder)
  6749. continue;
  6750. new_crtc = connector->new_encoder->base.crtc;
  6751. for (ro = 0; ro < set->num_connectors; ro++) {
  6752. if (set->connectors[ro] == &connector->base)
  6753. new_crtc = set->crtc;
  6754. }
  6755. /* Make sure the new CRTC will work with the encoder */
  6756. if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
  6757. new_crtc)) {
  6758. return -EINVAL;
  6759. }
  6760. connector->encoder->new_crtc = to_intel_crtc(new_crtc);
  6761. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
  6762. connector->base.base.id,
  6763. drm_get_connector_name(&connector->base),
  6764. new_crtc->base.id);
  6765. }
  6766. /* Check for any encoders that needs to be disabled. */
  6767. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6768. base.head) {
  6769. list_for_each_entry(connector,
  6770. &dev->mode_config.connector_list,
  6771. base.head) {
  6772. if (connector->new_encoder == encoder) {
  6773. WARN_ON(!connector->new_encoder->new_crtc);
  6774. goto next_encoder;
  6775. }
  6776. }
  6777. encoder->new_crtc = NULL;
  6778. next_encoder:
  6779. /* Only now check for crtc changes so we don't miss encoders
  6780. * that will be disabled. */
  6781. if (&encoder->new_crtc->base != encoder->base.crtc) {
  6782. DRM_DEBUG_KMS("crtc changed, full mode switch\n");
  6783. config->mode_changed = true;
  6784. }
  6785. }
  6786. /* Now we've also updated encoder->new_crtc for all encoders. */
  6787. return 0;
  6788. }
  6789. static int intel_crtc_set_config(struct drm_mode_set *set)
  6790. {
  6791. struct drm_device *dev;
  6792. struct drm_mode_set save_set;
  6793. struct intel_set_config *config;
  6794. int ret;
  6795. BUG_ON(!set);
  6796. BUG_ON(!set->crtc);
  6797. BUG_ON(!set->crtc->helper_private);
  6798. if (!set->mode)
  6799. set->fb = NULL;
  6800. /* The fb helper likes to play gross jokes with ->mode_set_config.
  6801. * Unfortunately the crtc helper doesn't do much at all for this case,
  6802. * so we have to cope with this madness until the fb helper is fixed up. */
  6803. if (set->fb && set->num_connectors == 0)
  6804. return 0;
  6805. if (set->fb) {
  6806. DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
  6807. set->crtc->base.id, set->fb->base.id,
  6808. (int)set->num_connectors, set->x, set->y);
  6809. } else {
  6810. DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
  6811. }
  6812. dev = set->crtc->dev;
  6813. ret = -ENOMEM;
  6814. config = kzalloc(sizeof(*config), GFP_KERNEL);
  6815. if (!config)
  6816. goto out_config;
  6817. ret = intel_set_config_save_state(dev, config);
  6818. if (ret)
  6819. goto out_config;
  6820. save_set.crtc = set->crtc;
  6821. save_set.mode = &set->crtc->mode;
  6822. save_set.x = set->crtc->x;
  6823. save_set.y = set->crtc->y;
  6824. save_set.fb = set->crtc->fb;
  6825. /* Compute whether we need a full modeset, only an fb base update or no
  6826. * change at all. In the future we might also check whether only the
  6827. * mode changed, e.g. for LVDS where we only change the panel fitter in
  6828. * such cases. */
  6829. intel_set_config_compute_mode_changes(set, config);
  6830. ret = intel_modeset_stage_output_state(dev, set, config);
  6831. if (ret)
  6832. goto fail;
  6833. if (config->mode_changed) {
  6834. if (set->mode) {
  6835. DRM_DEBUG_KMS("attempting to set mode from"
  6836. " userspace\n");
  6837. drm_mode_debug_printmodeline(set->mode);
  6838. }
  6839. if (!intel_set_mode(set->crtc, set->mode,
  6840. set->x, set->y, set->fb)) {
  6841. DRM_ERROR("failed to set mode on [CRTC:%d]\n",
  6842. set->crtc->base.id);
  6843. ret = -EINVAL;
  6844. goto fail;
  6845. }
  6846. } else if (config->fb_changed) {
  6847. ret = intel_pipe_set_base(set->crtc,
  6848. set->x, set->y, set->fb);
  6849. }
  6850. intel_set_config_free(config);
  6851. return 0;
  6852. fail:
  6853. intel_set_config_restore_state(dev, config);
  6854. /* Try to restore the config */
  6855. if (config->mode_changed &&
  6856. !intel_set_mode(save_set.crtc, save_set.mode,
  6857. save_set.x, save_set.y, save_set.fb))
  6858. DRM_ERROR("failed to restore config after modeset failure\n");
  6859. out_config:
  6860. intel_set_config_free(config);
  6861. return ret;
  6862. }
  6863. static const struct drm_crtc_funcs intel_crtc_funcs = {
  6864. .cursor_set = intel_crtc_cursor_set,
  6865. .cursor_move = intel_crtc_cursor_move,
  6866. .gamma_set = intel_crtc_gamma_set,
  6867. .set_config = intel_crtc_set_config,
  6868. .destroy = intel_crtc_destroy,
  6869. .page_flip = intel_crtc_page_flip,
  6870. };
  6871. static void intel_cpu_pll_init(struct drm_device *dev)
  6872. {
  6873. if (IS_HASWELL(dev))
  6874. intel_ddi_pll_init(dev);
  6875. }
  6876. static void intel_pch_pll_init(struct drm_device *dev)
  6877. {
  6878. drm_i915_private_t *dev_priv = dev->dev_private;
  6879. int i;
  6880. if (dev_priv->num_pch_pll == 0) {
  6881. DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
  6882. return;
  6883. }
  6884. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  6885. dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
  6886. dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
  6887. dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
  6888. }
  6889. }
  6890. static void intel_crtc_init(struct drm_device *dev, int pipe)
  6891. {
  6892. drm_i915_private_t *dev_priv = dev->dev_private;
  6893. struct intel_crtc *intel_crtc;
  6894. int i;
  6895. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  6896. if (intel_crtc == NULL)
  6897. return;
  6898. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  6899. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  6900. for (i = 0; i < 256; i++) {
  6901. intel_crtc->lut_r[i] = i;
  6902. intel_crtc->lut_g[i] = i;
  6903. intel_crtc->lut_b[i] = i;
  6904. }
  6905. /* Swap pipes & planes for FBC on pre-965 */
  6906. intel_crtc->pipe = pipe;
  6907. intel_crtc->plane = pipe;
  6908. intel_crtc->cpu_transcoder = pipe;
  6909. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  6910. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  6911. intel_crtc->plane = !pipe;
  6912. }
  6913. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  6914. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  6915. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  6916. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  6917. intel_crtc->bpp = 24; /* default for pre-Ironlake */
  6918. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  6919. }
  6920. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  6921. struct drm_file *file)
  6922. {
  6923. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  6924. struct drm_mode_object *drmmode_obj;
  6925. struct intel_crtc *crtc;
  6926. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  6927. return -ENODEV;
  6928. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  6929. DRM_MODE_OBJECT_CRTC);
  6930. if (!drmmode_obj) {
  6931. DRM_ERROR("no such CRTC id\n");
  6932. return -EINVAL;
  6933. }
  6934. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  6935. pipe_from_crtc_id->pipe = crtc->pipe;
  6936. return 0;
  6937. }
  6938. static int intel_encoder_clones(struct intel_encoder *encoder)
  6939. {
  6940. struct drm_device *dev = encoder->base.dev;
  6941. struct intel_encoder *source_encoder;
  6942. int index_mask = 0;
  6943. int entry = 0;
  6944. list_for_each_entry(source_encoder,
  6945. &dev->mode_config.encoder_list, base.head) {
  6946. if (encoder == source_encoder)
  6947. index_mask |= (1 << entry);
  6948. /* Intel hw has only one MUX where enocoders could be cloned. */
  6949. if (encoder->cloneable && source_encoder->cloneable)
  6950. index_mask |= (1 << entry);
  6951. entry++;
  6952. }
  6953. return index_mask;
  6954. }
  6955. static bool has_edp_a(struct drm_device *dev)
  6956. {
  6957. struct drm_i915_private *dev_priv = dev->dev_private;
  6958. if (!IS_MOBILE(dev))
  6959. return false;
  6960. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  6961. return false;
  6962. if (IS_GEN5(dev) &&
  6963. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  6964. return false;
  6965. return true;
  6966. }
  6967. static void intel_setup_outputs(struct drm_device *dev)
  6968. {
  6969. struct drm_i915_private *dev_priv = dev->dev_private;
  6970. struct intel_encoder *encoder;
  6971. bool dpd_is_edp = false;
  6972. bool has_lvds;
  6973. has_lvds = intel_lvds_init(dev);
  6974. if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
  6975. /* disable the panel fitter on everything but LVDS */
  6976. I915_WRITE(PFIT_CONTROL, 0);
  6977. }
  6978. if (!(IS_HASWELL(dev) &&
  6979. (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)))
  6980. intel_crt_init(dev);
  6981. if (IS_HASWELL(dev)) {
  6982. int found;
  6983. /* Haswell uses DDI functions to detect digital outputs */
  6984. found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
  6985. /* DDI A only supports eDP */
  6986. if (found)
  6987. intel_ddi_init(dev, PORT_A);
  6988. /* DDI B, C and D detection is indicated by the SFUSE_STRAP
  6989. * register */
  6990. found = I915_READ(SFUSE_STRAP);
  6991. if (found & SFUSE_STRAP_DDIB_DETECTED)
  6992. intel_ddi_init(dev, PORT_B);
  6993. if (found & SFUSE_STRAP_DDIC_DETECTED)
  6994. intel_ddi_init(dev, PORT_C);
  6995. if (found & SFUSE_STRAP_DDID_DETECTED)
  6996. intel_ddi_init(dev, PORT_D);
  6997. } else if (HAS_PCH_SPLIT(dev)) {
  6998. int found;
  6999. dpd_is_edp = intel_dpd_is_edp(dev);
  7000. if (has_edp_a(dev))
  7001. intel_dp_init(dev, DP_A, PORT_A);
  7002. if (I915_READ(HDMIB) & PORT_DETECTED) {
  7003. /* PCH SDVOB multiplex with HDMIB */
  7004. found = intel_sdvo_init(dev, PCH_SDVOB, true);
  7005. if (!found)
  7006. intel_hdmi_init(dev, HDMIB, PORT_B);
  7007. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  7008. intel_dp_init(dev, PCH_DP_B, PORT_B);
  7009. }
  7010. if (I915_READ(HDMIC) & PORT_DETECTED)
  7011. intel_hdmi_init(dev, HDMIC, PORT_C);
  7012. if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
  7013. intel_hdmi_init(dev, HDMID, PORT_D);
  7014. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  7015. intel_dp_init(dev, PCH_DP_C, PORT_C);
  7016. if (I915_READ(PCH_DP_D) & DP_DETECTED)
  7017. intel_dp_init(dev, PCH_DP_D, PORT_D);
  7018. } else if (IS_VALLEYVIEW(dev)) {
  7019. int found;
  7020. /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
  7021. if (I915_READ(DP_C) & DP_DETECTED)
  7022. intel_dp_init(dev, DP_C, PORT_C);
  7023. if (I915_READ(SDVOB) & PORT_DETECTED) {
  7024. /* SDVOB multiplex with HDMIB */
  7025. found = intel_sdvo_init(dev, SDVOB, true);
  7026. if (!found)
  7027. intel_hdmi_init(dev, SDVOB, PORT_B);
  7028. if (!found && (I915_READ(DP_B) & DP_DETECTED))
  7029. intel_dp_init(dev, DP_B, PORT_B);
  7030. }
  7031. if (I915_READ(SDVOC) & PORT_DETECTED)
  7032. intel_hdmi_init(dev, SDVOC, PORT_C);
  7033. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  7034. bool found = false;
  7035. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  7036. DRM_DEBUG_KMS("probing SDVOB\n");
  7037. found = intel_sdvo_init(dev, SDVOB, true);
  7038. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  7039. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  7040. intel_hdmi_init(dev, SDVOB, PORT_B);
  7041. }
  7042. if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
  7043. DRM_DEBUG_KMS("probing DP_B\n");
  7044. intel_dp_init(dev, DP_B, PORT_B);
  7045. }
  7046. }
  7047. /* Before G4X SDVOC doesn't have its own detect register */
  7048. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  7049. DRM_DEBUG_KMS("probing SDVOC\n");
  7050. found = intel_sdvo_init(dev, SDVOC, false);
  7051. }
  7052. if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
  7053. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  7054. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  7055. intel_hdmi_init(dev, SDVOC, PORT_C);
  7056. }
  7057. if (SUPPORTS_INTEGRATED_DP(dev)) {
  7058. DRM_DEBUG_KMS("probing DP_C\n");
  7059. intel_dp_init(dev, DP_C, PORT_C);
  7060. }
  7061. }
  7062. if (SUPPORTS_INTEGRATED_DP(dev) &&
  7063. (I915_READ(DP_D) & DP_DETECTED)) {
  7064. DRM_DEBUG_KMS("probing DP_D\n");
  7065. intel_dp_init(dev, DP_D, PORT_D);
  7066. }
  7067. } else if (IS_GEN2(dev))
  7068. intel_dvo_init(dev);
  7069. if (SUPPORTS_TV(dev))
  7070. intel_tv_init(dev);
  7071. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7072. encoder->base.possible_crtcs = encoder->crtc_mask;
  7073. encoder->base.possible_clones =
  7074. intel_encoder_clones(encoder);
  7075. }
  7076. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  7077. ironlake_init_pch_refclk(dev);
  7078. drm_helper_move_panel_connectors_to_head(dev);
  7079. }
  7080. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  7081. {
  7082. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  7083. drm_framebuffer_cleanup(fb);
  7084. drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
  7085. kfree(intel_fb);
  7086. }
  7087. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  7088. struct drm_file *file,
  7089. unsigned int *handle)
  7090. {
  7091. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  7092. struct drm_i915_gem_object *obj = intel_fb->obj;
  7093. return drm_gem_handle_create(file, &obj->base, handle);
  7094. }
  7095. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  7096. .destroy = intel_user_framebuffer_destroy,
  7097. .create_handle = intel_user_framebuffer_create_handle,
  7098. };
  7099. int intel_framebuffer_init(struct drm_device *dev,
  7100. struct intel_framebuffer *intel_fb,
  7101. struct drm_mode_fb_cmd2 *mode_cmd,
  7102. struct drm_i915_gem_object *obj)
  7103. {
  7104. int ret;
  7105. if (obj->tiling_mode == I915_TILING_Y)
  7106. return -EINVAL;
  7107. if (mode_cmd->pitches[0] & 63)
  7108. return -EINVAL;
  7109. /* FIXME <= Gen4 stride limits are bit unclear */
  7110. if (mode_cmd->pitches[0] > 32768)
  7111. return -EINVAL;
  7112. if (obj->tiling_mode != I915_TILING_NONE &&
  7113. mode_cmd->pitches[0] != obj->stride)
  7114. return -EINVAL;
  7115. /* Reject formats not supported by any plane early. */
  7116. switch (mode_cmd->pixel_format) {
  7117. case DRM_FORMAT_C8:
  7118. case DRM_FORMAT_RGB565:
  7119. case DRM_FORMAT_XRGB8888:
  7120. case DRM_FORMAT_ARGB8888:
  7121. break;
  7122. case DRM_FORMAT_XRGB1555:
  7123. case DRM_FORMAT_ARGB1555:
  7124. if (INTEL_INFO(dev)->gen > 3)
  7125. return -EINVAL;
  7126. break;
  7127. case DRM_FORMAT_XBGR8888:
  7128. case DRM_FORMAT_ABGR8888:
  7129. case DRM_FORMAT_XRGB2101010:
  7130. case DRM_FORMAT_ARGB2101010:
  7131. case DRM_FORMAT_XBGR2101010:
  7132. case DRM_FORMAT_ABGR2101010:
  7133. if (INTEL_INFO(dev)->gen < 4)
  7134. return -EINVAL;
  7135. break;
  7136. case DRM_FORMAT_YUYV:
  7137. case DRM_FORMAT_UYVY:
  7138. case DRM_FORMAT_YVYU:
  7139. case DRM_FORMAT_VYUY:
  7140. if (INTEL_INFO(dev)->gen < 6)
  7141. return -EINVAL;
  7142. break;
  7143. default:
  7144. DRM_DEBUG_KMS("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
  7145. return -EINVAL;
  7146. }
  7147. /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
  7148. if (mode_cmd->offsets[0] != 0)
  7149. return -EINVAL;
  7150. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  7151. if (ret) {
  7152. DRM_ERROR("framebuffer init failed %d\n", ret);
  7153. return ret;
  7154. }
  7155. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  7156. intel_fb->obj = obj;
  7157. return 0;
  7158. }
  7159. static struct drm_framebuffer *
  7160. intel_user_framebuffer_create(struct drm_device *dev,
  7161. struct drm_file *filp,
  7162. struct drm_mode_fb_cmd2 *mode_cmd)
  7163. {
  7164. struct drm_i915_gem_object *obj;
  7165. obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  7166. mode_cmd->handles[0]));
  7167. if (&obj->base == NULL)
  7168. return ERR_PTR(-ENOENT);
  7169. return intel_framebuffer_create(dev, mode_cmd, obj);
  7170. }
  7171. static const struct drm_mode_config_funcs intel_mode_funcs = {
  7172. .fb_create = intel_user_framebuffer_create,
  7173. .output_poll_changed = intel_fb_output_poll_changed,
  7174. };
  7175. /* Set up chip specific display functions */
  7176. static void intel_init_display(struct drm_device *dev)
  7177. {
  7178. struct drm_i915_private *dev_priv = dev->dev_private;
  7179. /* We always want a DPMS function */
  7180. if (IS_HASWELL(dev)) {
  7181. dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
  7182. dev_priv->display.crtc_enable = haswell_crtc_enable;
  7183. dev_priv->display.crtc_disable = haswell_crtc_disable;
  7184. dev_priv->display.off = haswell_crtc_off;
  7185. dev_priv->display.update_plane = ironlake_update_plane;
  7186. } else if (HAS_PCH_SPLIT(dev)) {
  7187. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  7188. dev_priv->display.crtc_enable = ironlake_crtc_enable;
  7189. dev_priv->display.crtc_disable = ironlake_crtc_disable;
  7190. dev_priv->display.off = ironlake_crtc_off;
  7191. dev_priv->display.update_plane = ironlake_update_plane;
  7192. } else {
  7193. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  7194. dev_priv->display.crtc_enable = i9xx_crtc_enable;
  7195. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  7196. dev_priv->display.off = i9xx_crtc_off;
  7197. dev_priv->display.update_plane = i9xx_update_plane;
  7198. }
  7199. /* Returns the core display clock speed */
  7200. if (IS_VALLEYVIEW(dev))
  7201. dev_priv->display.get_display_clock_speed =
  7202. valleyview_get_display_clock_speed;
  7203. else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  7204. dev_priv->display.get_display_clock_speed =
  7205. i945_get_display_clock_speed;
  7206. else if (IS_I915G(dev))
  7207. dev_priv->display.get_display_clock_speed =
  7208. i915_get_display_clock_speed;
  7209. else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
  7210. dev_priv->display.get_display_clock_speed =
  7211. i9xx_misc_get_display_clock_speed;
  7212. else if (IS_I915GM(dev))
  7213. dev_priv->display.get_display_clock_speed =
  7214. i915gm_get_display_clock_speed;
  7215. else if (IS_I865G(dev))
  7216. dev_priv->display.get_display_clock_speed =
  7217. i865_get_display_clock_speed;
  7218. else if (IS_I85X(dev))
  7219. dev_priv->display.get_display_clock_speed =
  7220. i855_get_display_clock_speed;
  7221. else /* 852, 830 */
  7222. dev_priv->display.get_display_clock_speed =
  7223. i830_get_display_clock_speed;
  7224. if (HAS_PCH_SPLIT(dev)) {
  7225. if (IS_GEN5(dev)) {
  7226. dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  7227. dev_priv->display.write_eld = ironlake_write_eld;
  7228. } else if (IS_GEN6(dev)) {
  7229. dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  7230. dev_priv->display.write_eld = ironlake_write_eld;
  7231. } else if (IS_IVYBRIDGE(dev)) {
  7232. /* FIXME: detect B0+ stepping and use auto training */
  7233. dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  7234. dev_priv->display.write_eld = ironlake_write_eld;
  7235. dev_priv->display.modeset_global_resources =
  7236. ivb_modeset_global_resources;
  7237. } else if (IS_HASWELL(dev)) {
  7238. dev_priv->display.fdi_link_train = hsw_fdi_link_train;
  7239. dev_priv->display.write_eld = haswell_write_eld;
  7240. } else
  7241. dev_priv->display.update_wm = NULL;
  7242. } else if (IS_G4X(dev)) {
  7243. dev_priv->display.write_eld = g4x_write_eld;
  7244. }
  7245. /* Default just returns -ENODEV to indicate unsupported */
  7246. dev_priv->display.queue_flip = intel_default_queue_flip;
  7247. switch (INTEL_INFO(dev)->gen) {
  7248. case 2:
  7249. dev_priv->display.queue_flip = intel_gen2_queue_flip;
  7250. break;
  7251. case 3:
  7252. dev_priv->display.queue_flip = intel_gen3_queue_flip;
  7253. break;
  7254. case 4:
  7255. case 5:
  7256. dev_priv->display.queue_flip = intel_gen4_queue_flip;
  7257. break;
  7258. case 6:
  7259. dev_priv->display.queue_flip = intel_gen6_queue_flip;
  7260. break;
  7261. case 7:
  7262. dev_priv->display.queue_flip = intel_gen7_queue_flip;
  7263. break;
  7264. }
  7265. }
  7266. /*
  7267. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  7268. * resume, or other times. This quirk makes sure that's the case for
  7269. * affected systems.
  7270. */
  7271. static void quirk_pipea_force(struct drm_device *dev)
  7272. {
  7273. struct drm_i915_private *dev_priv = dev->dev_private;
  7274. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  7275. DRM_INFO("applying pipe a force quirk\n");
  7276. }
  7277. /*
  7278. * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  7279. */
  7280. static void quirk_ssc_force_disable(struct drm_device *dev)
  7281. {
  7282. struct drm_i915_private *dev_priv = dev->dev_private;
  7283. dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  7284. DRM_INFO("applying lvds SSC disable quirk\n");
  7285. }
  7286. /*
  7287. * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
  7288. * brightness value
  7289. */
  7290. static void quirk_invert_brightness(struct drm_device *dev)
  7291. {
  7292. struct drm_i915_private *dev_priv = dev->dev_private;
  7293. dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
  7294. DRM_INFO("applying inverted panel brightness quirk\n");
  7295. }
  7296. struct intel_quirk {
  7297. int device;
  7298. int subsystem_vendor;
  7299. int subsystem_device;
  7300. void (*hook)(struct drm_device *dev);
  7301. };
  7302. /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
  7303. struct intel_dmi_quirk {
  7304. void (*hook)(struct drm_device *dev);
  7305. const struct dmi_system_id (*dmi_id_list)[];
  7306. };
  7307. static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
  7308. {
  7309. DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
  7310. return 1;
  7311. }
  7312. static const struct intel_dmi_quirk intel_dmi_quirks[] = {
  7313. {
  7314. .dmi_id_list = &(const struct dmi_system_id[]) {
  7315. {
  7316. .callback = intel_dmi_reverse_brightness,
  7317. .ident = "NCR Corporation",
  7318. .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
  7319. DMI_MATCH(DMI_PRODUCT_NAME, ""),
  7320. },
  7321. },
  7322. { } /* terminating entry */
  7323. },
  7324. .hook = quirk_invert_brightness,
  7325. },
  7326. };
  7327. static struct intel_quirk intel_quirks[] = {
  7328. /* HP Mini needs pipe A force quirk (LP: #322104) */
  7329. { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  7330. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  7331. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  7332. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  7333. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  7334. /* 830/845 need to leave pipe A & dpll A up */
  7335. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7336. { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7337. /* Lenovo U160 cannot use SSC on LVDS */
  7338. { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  7339. /* Sony Vaio Y cannot use SSC on LVDS */
  7340. { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  7341. /* Acer Aspire 5734Z must invert backlight brightness */
  7342. { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
  7343. };
  7344. static void intel_init_quirks(struct drm_device *dev)
  7345. {
  7346. struct pci_dev *d = dev->pdev;
  7347. int i;
  7348. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  7349. struct intel_quirk *q = &intel_quirks[i];
  7350. if (d->device == q->device &&
  7351. (d->subsystem_vendor == q->subsystem_vendor ||
  7352. q->subsystem_vendor == PCI_ANY_ID) &&
  7353. (d->subsystem_device == q->subsystem_device ||
  7354. q->subsystem_device == PCI_ANY_ID))
  7355. q->hook(dev);
  7356. }
  7357. for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
  7358. if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
  7359. intel_dmi_quirks[i].hook(dev);
  7360. }
  7361. }
  7362. /* Disable the VGA plane that we never use */
  7363. static void i915_disable_vga(struct drm_device *dev)
  7364. {
  7365. struct drm_i915_private *dev_priv = dev->dev_private;
  7366. u8 sr1;
  7367. u32 vga_reg;
  7368. if (HAS_PCH_SPLIT(dev))
  7369. vga_reg = CPU_VGACNTRL;
  7370. else
  7371. vga_reg = VGACNTRL;
  7372. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  7373. outb(SR01, VGA_SR_INDEX);
  7374. sr1 = inb(VGA_SR_DATA);
  7375. outb(sr1 | 1<<5, VGA_SR_DATA);
  7376. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  7377. udelay(300);
  7378. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  7379. POSTING_READ(vga_reg);
  7380. }
  7381. void intel_modeset_init_hw(struct drm_device *dev)
  7382. {
  7383. /* We attempt to init the necessary power wells early in the initialization
  7384. * time, so the subsystems that expect power to be enabled can work.
  7385. */
  7386. intel_init_power_wells(dev);
  7387. intel_prepare_ddi(dev);
  7388. intel_init_clock_gating(dev);
  7389. mutex_lock(&dev->struct_mutex);
  7390. intel_enable_gt_powersave(dev);
  7391. mutex_unlock(&dev->struct_mutex);
  7392. }
  7393. void intel_modeset_init(struct drm_device *dev)
  7394. {
  7395. struct drm_i915_private *dev_priv = dev->dev_private;
  7396. int i, ret;
  7397. drm_mode_config_init(dev);
  7398. dev->mode_config.min_width = 0;
  7399. dev->mode_config.min_height = 0;
  7400. dev->mode_config.preferred_depth = 24;
  7401. dev->mode_config.prefer_shadow = 1;
  7402. dev->mode_config.funcs = &intel_mode_funcs;
  7403. intel_init_quirks(dev);
  7404. intel_init_pm(dev);
  7405. intel_init_display(dev);
  7406. if (IS_GEN2(dev)) {
  7407. dev->mode_config.max_width = 2048;
  7408. dev->mode_config.max_height = 2048;
  7409. } else if (IS_GEN3(dev)) {
  7410. dev->mode_config.max_width = 4096;
  7411. dev->mode_config.max_height = 4096;
  7412. } else {
  7413. dev->mode_config.max_width = 8192;
  7414. dev->mode_config.max_height = 8192;
  7415. }
  7416. dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
  7417. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  7418. dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
  7419. for (i = 0; i < dev_priv->num_pipe; i++) {
  7420. intel_crtc_init(dev, i);
  7421. ret = intel_plane_init(dev, i);
  7422. if (ret)
  7423. DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
  7424. }
  7425. intel_cpu_pll_init(dev);
  7426. intel_pch_pll_init(dev);
  7427. /* Just disable it once at startup */
  7428. i915_disable_vga(dev);
  7429. intel_setup_outputs(dev);
  7430. }
  7431. static void
  7432. intel_connector_break_all_links(struct intel_connector *connector)
  7433. {
  7434. connector->base.dpms = DRM_MODE_DPMS_OFF;
  7435. connector->base.encoder = NULL;
  7436. connector->encoder->connectors_active = false;
  7437. connector->encoder->base.crtc = NULL;
  7438. }
  7439. static void intel_enable_pipe_a(struct drm_device *dev)
  7440. {
  7441. struct intel_connector *connector;
  7442. struct drm_connector *crt = NULL;
  7443. struct intel_load_detect_pipe load_detect_temp;
  7444. /* We can't just switch on the pipe A, we need to set things up with a
  7445. * proper mode and output configuration. As a gross hack, enable pipe A
  7446. * by enabling the load detect pipe once. */
  7447. list_for_each_entry(connector,
  7448. &dev->mode_config.connector_list,
  7449. base.head) {
  7450. if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
  7451. crt = &connector->base;
  7452. break;
  7453. }
  7454. }
  7455. if (!crt)
  7456. return;
  7457. if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
  7458. intel_release_load_detect_pipe(crt, &load_detect_temp);
  7459. }
  7460. static bool
  7461. intel_check_plane_mapping(struct intel_crtc *crtc)
  7462. {
  7463. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  7464. u32 reg, val;
  7465. if (dev_priv->num_pipe == 1)
  7466. return true;
  7467. reg = DSPCNTR(!crtc->plane);
  7468. val = I915_READ(reg);
  7469. if ((val & DISPLAY_PLANE_ENABLE) &&
  7470. (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
  7471. return false;
  7472. return true;
  7473. }
  7474. static void intel_sanitize_crtc(struct intel_crtc *crtc)
  7475. {
  7476. struct drm_device *dev = crtc->base.dev;
  7477. struct drm_i915_private *dev_priv = dev->dev_private;
  7478. u32 reg;
  7479. /* Clear any frame start delays used for debugging left by the BIOS */
  7480. reg = PIPECONF(crtc->cpu_transcoder);
  7481. I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
  7482. /* We need to sanitize the plane -> pipe mapping first because this will
  7483. * disable the crtc (and hence change the state) if it is wrong. Note
  7484. * that gen4+ has a fixed plane -> pipe mapping. */
  7485. if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
  7486. struct intel_connector *connector;
  7487. bool plane;
  7488. DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
  7489. crtc->base.base.id);
  7490. /* Pipe has the wrong plane attached and the plane is active.
  7491. * Temporarily change the plane mapping and disable everything
  7492. * ... */
  7493. plane = crtc->plane;
  7494. crtc->plane = !plane;
  7495. dev_priv->display.crtc_disable(&crtc->base);
  7496. crtc->plane = plane;
  7497. /* ... and break all links. */
  7498. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7499. base.head) {
  7500. if (connector->encoder->base.crtc != &crtc->base)
  7501. continue;
  7502. intel_connector_break_all_links(connector);
  7503. }
  7504. WARN_ON(crtc->active);
  7505. crtc->base.enabled = false;
  7506. }
  7507. if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  7508. crtc->pipe == PIPE_A && !crtc->active) {
  7509. /* BIOS forgot to enable pipe A, this mostly happens after
  7510. * resume. Force-enable the pipe to fix this, the update_dpms
  7511. * call below we restore the pipe to the right state, but leave
  7512. * the required bits on. */
  7513. intel_enable_pipe_a(dev);
  7514. }
  7515. /* Adjust the state of the output pipe according to whether we
  7516. * have active connectors/encoders. */
  7517. intel_crtc_update_dpms(&crtc->base);
  7518. if (crtc->active != crtc->base.enabled) {
  7519. struct intel_encoder *encoder;
  7520. /* This can happen either due to bugs in the get_hw_state
  7521. * functions or because the pipe is force-enabled due to the
  7522. * pipe A quirk. */
  7523. DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
  7524. crtc->base.base.id,
  7525. crtc->base.enabled ? "enabled" : "disabled",
  7526. crtc->active ? "enabled" : "disabled");
  7527. crtc->base.enabled = crtc->active;
  7528. /* Because we only establish the connector -> encoder ->
  7529. * crtc links if something is active, this means the
  7530. * crtc is now deactivated. Break the links. connector
  7531. * -> encoder links are only establish when things are
  7532. * actually up, hence no need to break them. */
  7533. WARN_ON(crtc->active);
  7534. for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
  7535. WARN_ON(encoder->connectors_active);
  7536. encoder->base.crtc = NULL;
  7537. }
  7538. }
  7539. }
  7540. static void intel_sanitize_encoder(struct intel_encoder *encoder)
  7541. {
  7542. struct intel_connector *connector;
  7543. struct drm_device *dev = encoder->base.dev;
  7544. /* We need to check both for a crtc link (meaning that the
  7545. * encoder is active and trying to read from a pipe) and the
  7546. * pipe itself being active. */
  7547. bool has_active_crtc = encoder->base.crtc &&
  7548. to_intel_crtc(encoder->base.crtc)->active;
  7549. if (encoder->connectors_active && !has_active_crtc) {
  7550. DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
  7551. encoder->base.base.id,
  7552. drm_get_encoder_name(&encoder->base));
  7553. /* Connector is active, but has no active pipe. This is
  7554. * fallout from our resume register restoring. Disable
  7555. * the encoder manually again. */
  7556. if (encoder->base.crtc) {
  7557. DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
  7558. encoder->base.base.id,
  7559. drm_get_encoder_name(&encoder->base));
  7560. encoder->disable(encoder);
  7561. }
  7562. /* Inconsistent output/port/pipe state happens presumably due to
  7563. * a bug in one of the get_hw_state functions. Or someplace else
  7564. * in our code, like the register restore mess on resume. Clamp
  7565. * things to off as a safer default. */
  7566. list_for_each_entry(connector,
  7567. &dev->mode_config.connector_list,
  7568. base.head) {
  7569. if (connector->encoder != encoder)
  7570. continue;
  7571. intel_connector_break_all_links(connector);
  7572. }
  7573. }
  7574. /* Enabled encoders without active connectors will be fixed in
  7575. * the crtc fixup. */
  7576. }
  7577. /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
  7578. * and i915 state tracking structures. */
  7579. void intel_modeset_setup_hw_state(struct drm_device *dev)
  7580. {
  7581. struct drm_i915_private *dev_priv = dev->dev_private;
  7582. enum pipe pipe;
  7583. u32 tmp;
  7584. struct intel_crtc *crtc;
  7585. struct intel_encoder *encoder;
  7586. struct intel_connector *connector;
  7587. if (IS_HASWELL(dev)) {
  7588. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  7589. if (tmp & TRANS_DDI_FUNC_ENABLE) {
  7590. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  7591. case TRANS_DDI_EDP_INPUT_A_ON:
  7592. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  7593. pipe = PIPE_A;
  7594. break;
  7595. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  7596. pipe = PIPE_B;
  7597. break;
  7598. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  7599. pipe = PIPE_C;
  7600. break;
  7601. }
  7602. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  7603. crtc->cpu_transcoder = TRANSCODER_EDP;
  7604. DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
  7605. pipe_name(pipe));
  7606. }
  7607. }
  7608. for_each_pipe(pipe) {
  7609. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  7610. tmp = I915_READ(PIPECONF(crtc->cpu_transcoder));
  7611. if (tmp & PIPECONF_ENABLE)
  7612. crtc->active = true;
  7613. else
  7614. crtc->active = false;
  7615. crtc->base.enabled = crtc->active;
  7616. DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
  7617. crtc->base.base.id,
  7618. crtc->active ? "enabled" : "disabled");
  7619. }
  7620. if (IS_HASWELL(dev))
  7621. intel_ddi_setup_hw_pll_state(dev);
  7622. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7623. base.head) {
  7624. pipe = 0;
  7625. if (encoder->get_hw_state(encoder, &pipe)) {
  7626. encoder->base.crtc =
  7627. dev_priv->pipe_to_crtc_mapping[pipe];
  7628. } else {
  7629. encoder->base.crtc = NULL;
  7630. }
  7631. encoder->connectors_active = false;
  7632. DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
  7633. encoder->base.base.id,
  7634. drm_get_encoder_name(&encoder->base),
  7635. encoder->base.crtc ? "enabled" : "disabled",
  7636. pipe);
  7637. }
  7638. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7639. base.head) {
  7640. if (connector->get_hw_state(connector)) {
  7641. connector->base.dpms = DRM_MODE_DPMS_ON;
  7642. connector->encoder->connectors_active = true;
  7643. connector->base.encoder = &connector->encoder->base;
  7644. } else {
  7645. connector->base.dpms = DRM_MODE_DPMS_OFF;
  7646. connector->base.encoder = NULL;
  7647. }
  7648. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
  7649. connector->base.base.id,
  7650. drm_get_connector_name(&connector->base),
  7651. connector->base.encoder ? "enabled" : "disabled");
  7652. }
  7653. /* HW state is read out, now we need to sanitize this mess. */
  7654. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7655. base.head) {
  7656. intel_sanitize_encoder(encoder);
  7657. }
  7658. for_each_pipe(pipe) {
  7659. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  7660. intel_sanitize_crtc(crtc);
  7661. }
  7662. intel_modeset_update_staged_output_state(dev);
  7663. intel_modeset_check_state(dev);
  7664. drm_mode_config_reset(dev);
  7665. }
  7666. void intel_modeset_gem_init(struct drm_device *dev)
  7667. {
  7668. intel_modeset_init_hw(dev);
  7669. intel_setup_overlay(dev);
  7670. intel_modeset_setup_hw_state(dev);
  7671. }
  7672. void intel_modeset_cleanup(struct drm_device *dev)
  7673. {
  7674. struct drm_i915_private *dev_priv = dev->dev_private;
  7675. struct drm_crtc *crtc;
  7676. struct intel_crtc *intel_crtc;
  7677. drm_kms_helper_poll_fini(dev);
  7678. mutex_lock(&dev->struct_mutex);
  7679. intel_unregister_dsm_handler();
  7680. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  7681. /* Skip inactive CRTCs */
  7682. if (!crtc->fb)
  7683. continue;
  7684. intel_crtc = to_intel_crtc(crtc);
  7685. intel_increase_pllclock(crtc);
  7686. }
  7687. intel_disable_fbc(dev);
  7688. intel_disable_gt_powersave(dev);
  7689. ironlake_teardown_rc6(dev);
  7690. if (IS_VALLEYVIEW(dev))
  7691. vlv_init_dpio(dev);
  7692. mutex_unlock(&dev->struct_mutex);
  7693. /* Disable the irq before mode object teardown, for the irq might
  7694. * enqueue unpin/hotplug work. */
  7695. drm_irq_uninstall(dev);
  7696. cancel_work_sync(&dev_priv->hotplug_work);
  7697. cancel_work_sync(&dev_priv->rps.work);
  7698. /* flush any delayed tasks or pending work */
  7699. flush_scheduled_work();
  7700. drm_mode_config_cleanup(dev);
  7701. }
  7702. /*
  7703. * Return which encoder is currently attached for connector.
  7704. */
  7705. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  7706. {
  7707. return &intel_attached_encoder(connector)->base;
  7708. }
  7709. void intel_connector_attach_encoder(struct intel_connector *connector,
  7710. struct intel_encoder *encoder)
  7711. {
  7712. connector->encoder = encoder;
  7713. drm_mode_connector_attach_encoder(&connector->base,
  7714. &encoder->base);
  7715. }
  7716. /*
  7717. * set vga decode state - true == enable VGA decode
  7718. */
  7719. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  7720. {
  7721. struct drm_i915_private *dev_priv = dev->dev_private;
  7722. u16 gmch_ctrl;
  7723. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  7724. if (state)
  7725. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  7726. else
  7727. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  7728. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  7729. return 0;
  7730. }
  7731. #ifdef CONFIG_DEBUG_FS
  7732. #include <linux/seq_file.h>
  7733. struct intel_display_error_state {
  7734. struct intel_cursor_error_state {
  7735. u32 control;
  7736. u32 position;
  7737. u32 base;
  7738. u32 size;
  7739. } cursor[I915_MAX_PIPES];
  7740. struct intel_pipe_error_state {
  7741. u32 conf;
  7742. u32 source;
  7743. u32 htotal;
  7744. u32 hblank;
  7745. u32 hsync;
  7746. u32 vtotal;
  7747. u32 vblank;
  7748. u32 vsync;
  7749. } pipe[I915_MAX_PIPES];
  7750. struct intel_plane_error_state {
  7751. u32 control;
  7752. u32 stride;
  7753. u32 size;
  7754. u32 pos;
  7755. u32 addr;
  7756. u32 surface;
  7757. u32 tile_offset;
  7758. } plane[I915_MAX_PIPES];
  7759. };
  7760. struct intel_display_error_state *
  7761. intel_display_capture_error_state(struct drm_device *dev)
  7762. {
  7763. drm_i915_private_t *dev_priv = dev->dev_private;
  7764. struct intel_display_error_state *error;
  7765. enum transcoder cpu_transcoder;
  7766. int i;
  7767. error = kmalloc(sizeof(*error), GFP_ATOMIC);
  7768. if (error == NULL)
  7769. return NULL;
  7770. for_each_pipe(i) {
  7771. cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
  7772. error->cursor[i].control = I915_READ(CURCNTR(i));
  7773. error->cursor[i].position = I915_READ(CURPOS(i));
  7774. error->cursor[i].base = I915_READ(CURBASE(i));
  7775. error->plane[i].control = I915_READ(DSPCNTR(i));
  7776. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  7777. error->plane[i].size = I915_READ(DSPSIZE(i));
  7778. error->plane[i].pos = I915_READ(DSPPOS(i));
  7779. error->plane[i].addr = I915_READ(DSPADDR(i));
  7780. if (INTEL_INFO(dev)->gen >= 4) {
  7781. error->plane[i].surface = I915_READ(DSPSURF(i));
  7782. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  7783. }
  7784. error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
  7785. error->pipe[i].source = I915_READ(PIPESRC(i));
  7786. error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
  7787. error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
  7788. error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
  7789. error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
  7790. error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
  7791. error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
  7792. }
  7793. return error;
  7794. }
  7795. void
  7796. intel_display_print_error_state(struct seq_file *m,
  7797. struct drm_device *dev,
  7798. struct intel_display_error_state *error)
  7799. {
  7800. drm_i915_private_t *dev_priv = dev->dev_private;
  7801. int i;
  7802. seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
  7803. for_each_pipe(i) {
  7804. seq_printf(m, "Pipe [%d]:\n", i);
  7805. seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
  7806. seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
  7807. seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
  7808. seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
  7809. seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
  7810. seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
  7811. seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
  7812. seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
  7813. seq_printf(m, "Plane [%d]:\n", i);
  7814. seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
  7815. seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  7816. seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
  7817. seq_printf(m, " POS: %08x\n", error->plane[i].pos);
  7818. seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  7819. if (INTEL_INFO(dev)->gen >= 4) {
  7820. seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
  7821. seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  7822. }
  7823. seq_printf(m, "Cursor [%d]:\n", i);
  7824. seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  7825. seq_printf(m, " POS: %08x\n", error->cursor[i].position);
  7826. seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
  7827. }
  7828. }
  7829. #endif