s3c-hsotg.c 91 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493
  1. /* linux/drivers/usb/gadget/s3c-hsotg.c
  2. *
  3. * Copyright (c) 2011 Samsung Electronics Co., Ltd.
  4. * http://www.samsung.com
  5. *
  6. * Copyright 2008 Openmoko, Inc.
  7. * Copyright 2008 Simtec Electronics
  8. * Ben Dooks <ben@simtec.co.uk>
  9. * http://armlinux.simtec.co.uk/
  10. *
  11. * S3C USB2.0 High-speed / OtG driver
  12. *
  13. * This program is free software; you can redistribute it and/or modify
  14. * it under the terms of the GNU General Public License version 2 as
  15. * published by the Free Software Foundation.
  16. */
  17. #include <linux/kernel.h>
  18. #include <linux/module.h>
  19. #include <linux/spinlock.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/platform_device.h>
  22. #include <linux/dma-mapping.h>
  23. #include <linux/debugfs.h>
  24. #include <linux/seq_file.h>
  25. #include <linux/delay.h>
  26. #include <linux/io.h>
  27. #include <linux/slab.h>
  28. #include <linux/clk.h>
  29. #include <linux/regulator/consumer.h>
  30. #include <linux/usb/ch9.h>
  31. #include <linux/usb/gadget.h>
  32. #include <mach/map.h>
  33. #include "s3c-hsotg.h"
  34. #include <linux/platform_data/s3c-hsotg.h>
  35. #define DMA_ADDR_INVALID (~((dma_addr_t)0))
  36. static const char * const s3c_hsotg_supply_names[] = {
  37. "vusb_d", /* digital USB supply, 1.2V */
  38. "vusb_a", /* analog USB supply, 1.1V */
  39. };
  40. /* EP0_MPS_LIMIT
  41. *
  42. * Unfortunately there seems to be a limit of the amount of data that can
  43. * be transferred by IN transactions on EP0. This is either 127 bytes or 3
  44. * packets (which practically means 1 packet and 63 bytes of data) when the
  45. * MPS is set to 64.
  46. *
  47. * This means if we are wanting to move >127 bytes of data, we need to
  48. * split the transactions up, but just doing one packet at a time does
  49. * not work (this may be an implicit DATA0 PID on first packet of the
  50. * transaction) and doing 2 packets is outside the controller's limits.
  51. *
  52. * If we try to lower the MPS size for EP0, then no transfers work properly
  53. * for EP0, and the system will fail basic enumeration. As no cause for this
  54. * has currently been found, we cannot support any large IN transfers for
  55. * EP0.
  56. */
  57. #define EP0_MPS_LIMIT 64
  58. struct s3c_hsotg;
  59. struct s3c_hsotg_req;
  60. /**
  61. * struct s3c_hsotg_ep - driver endpoint definition.
  62. * @ep: The gadget layer representation of the endpoint.
  63. * @name: The driver generated name for the endpoint.
  64. * @queue: Queue of requests for this endpoint.
  65. * @parent: Reference back to the parent device structure.
  66. * @req: The current request that the endpoint is processing. This is
  67. * used to indicate an request has been loaded onto the endpoint
  68. * and has yet to be completed (maybe due to data move, or simply
  69. * awaiting an ack from the core all the data has been completed).
  70. * @debugfs: File entry for debugfs file for this endpoint.
  71. * @lock: State lock to protect contents of endpoint.
  72. * @dir_in: Set to true if this endpoint is of the IN direction, which
  73. * means that it is sending data to the Host.
  74. * @index: The index for the endpoint registers.
  75. * @name: The name array passed to the USB core.
  76. * @halted: Set if the endpoint has been halted.
  77. * @periodic: Set if this is a periodic ep, such as Interrupt
  78. * @sent_zlp: Set if we've sent a zero-length packet.
  79. * @total_data: The total number of data bytes done.
  80. * @fifo_size: The size of the FIFO (for periodic IN endpoints)
  81. * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
  82. * @last_load: The offset of data for the last start of request.
  83. * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
  84. *
  85. * This is the driver's state for each registered enpoint, allowing it
  86. * to keep track of transactions that need doing. Each endpoint has a
  87. * lock to protect the state, to try and avoid using an overall lock
  88. * for the host controller as much as possible.
  89. *
  90. * For periodic IN endpoints, we have fifo_size and fifo_load to try
  91. * and keep track of the amount of data in the periodic FIFO for each
  92. * of these as we don't have a status register that tells us how much
  93. * is in each of them. (note, this may actually be useless information
  94. * as in shared-fifo mode periodic in acts like a single-frame packet
  95. * buffer than a fifo)
  96. */
  97. struct s3c_hsotg_ep {
  98. struct usb_ep ep;
  99. struct list_head queue;
  100. struct s3c_hsotg *parent;
  101. struct s3c_hsotg_req *req;
  102. struct dentry *debugfs;
  103. spinlock_t lock;
  104. unsigned long total_data;
  105. unsigned int size_loaded;
  106. unsigned int last_load;
  107. unsigned int fifo_load;
  108. unsigned short fifo_size;
  109. unsigned char dir_in;
  110. unsigned char index;
  111. unsigned int halted:1;
  112. unsigned int periodic:1;
  113. unsigned int sent_zlp:1;
  114. char name[10];
  115. };
  116. #define S3C_HSOTG_EPS (8+1) /* limit to 9 for the moment */
  117. /**
  118. * struct s3c_hsotg - driver state.
  119. * @dev: The parent device supplied to the probe function
  120. * @driver: USB gadget driver
  121. * @plat: The platform specific configuration data.
  122. * @regs: The memory area mapped for accessing registers.
  123. * @regs_res: The resource that was allocated when claiming register space.
  124. * @irq: The IRQ number we are using
  125. * @supplies: Definition of USB power supplies
  126. * @dedicated_fifos: Set if the hardware has dedicated IN-EP fifos.
  127. * @debug_root: root directrory for debugfs.
  128. * @debug_file: main status file for debugfs.
  129. * @debug_fifo: FIFO status file for debugfs.
  130. * @ep0_reply: Request used for ep0 reply.
  131. * @ep0_buff: Buffer for EP0 reply data, if needed.
  132. * @ctrl_buff: Buffer for EP0 control requests.
  133. * @ctrl_req: Request for EP0 control packets.
  134. * @setup: NAK management for EP0 SETUP
  135. * @eps: The endpoints being supplied to the gadget framework
  136. */
  137. struct s3c_hsotg {
  138. struct device *dev;
  139. struct usb_gadget_driver *driver;
  140. struct s3c_hsotg_plat *plat;
  141. void __iomem *regs;
  142. struct resource *regs_res;
  143. int irq;
  144. struct clk *clk;
  145. struct regulator_bulk_data supplies[ARRAY_SIZE(s3c_hsotg_supply_names)];
  146. unsigned int dedicated_fifos:1;
  147. struct dentry *debug_root;
  148. struct dentry *debug_file;
  149. struct dentry *debug_fifo;
  150. struct usb_request *ep0_reply;
  151. struct usb_request *ctrl_req;
  152. u8 ep0_buff[8];
  153. u8 ctrl_buff[8];
  154. struct usb_gadget gadget;
  155. unsigned int setup;
  156. struct s3c_hsotg_ep eps[];
  157. };
  158. /**
  159. * struct s3c_hsotg_req - data transfer request
  160. * @req: The USB gadget request
  161. * @queue: The list of requests for the endpoint this is queued for.
  162. * @in_progress: Has already had size/packets written to core
  163. * @mapped: DMA buffer for this request has been mapped via dma_map_single().
  164. */
  165. struct s3c_hsotg_req {
  166. struct usb_request req;
  167. struct list_head queue;
  168. unsigned char in_progress;
  169. unsigned char mapped;
  170. };
  171. /* conversion functions */
  172. static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
  173. {
  174. return container_of(req, struct s3c_hsotg_req, req);
  175. }
  176. static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
  177. {
  178. return container_of(ep, struct s3c_hsotg_ep, ep);
  179. }
  180. static inline struct s3c_hsotg *to_hsotg(struct usb_gadget *gadget)
  181. {
  182. return container_of(gadget, struct s3c_hsotg, gadget);
  183. }
  184. static inline void __orr32(void __iomem *ptr, u32 val)
  185. {
  186. writel(readl(ptr) | val, ptr);
  187. }
  188. static inline void __bic32(void __iomem *ptr, u32 val)
  189. {
  190. writel(readl(ptr) & ~val, ptr);
  191. }
  192. /* forward decleration of functions */
  193. static void s3c_hsotg_dump(struct s3c_hsotg *hsotg);
  194. /**
  195. * using_dma - return the DMA status of the driver.
  196. * @hsotg: The driver state.
  197. *
  198. * Return true if we're using DMA.
  199. *
  200. * Currently, we have the DMA support code worked into everywhere
  201. * that needs it, but the AMBA DMA implementation in the hardware can
  202. * only DMA from 32bit aligned addresses. This means that gadgets such
  203. * as the CDC Ethernet cannot work as they often pass packets which are
  204. * not 32bit aligned.
  205. *
  206. * Unfortunately the choice to use DMA or not is global to the controller
  207. * and seems to be only settable when the controller is being put through
  208. * a core reset. This means we either need to fix the gadgets to take
  209. * account of DMA alignment, or add bounce buffers (yuerk).
  210. *
  211. * Until this issue is sorted out, we always return 'false'.
  212. */
  213. static inline bool using_dma(struct s3c_hsotg *hsotg)
  214. {
  215. return false; /* support is not complete */
  216. }
  217. /**
  218. * s3c_hsotg_en_gsint - enable one or more of the general interrupt
  219. * @hsotg: The device state
  220. * @ints: A bitmask of the interrupts to enable
  221. */
  222. static void s3c_hsotg_en_gsint(struct s3c_hsotg *hsotg, u32 ints)
  223. {
  224. u32 gsintmsk = readl(hsotg->regs + S3C_GINTMSK);
  225. u32 new_gsintmsk;
  226. new_gsintmsk = gsintmsk | ints;
  227. if (new_gsintmsk != gsintmsk) {
  228. dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
  229. writel(new_gsintmsk, hsotg->regs + S3C_GINTMSK);
  230. }
  231. }
  232. /**
  233. * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
  234. * @hsotg: The device state
  235. * @ints: A bitmask of the interrupts to enable
  236. */
  237. static void s3c_hsotg_disable_gsint(struct s3c_hsotg *hsotg, u32 ints)
  238. {
  239. u32 gsintmsk = readl(hsotg->regs + S3C_GINTMSK);
  240. u32 new_gsintmsk;
  241. new_gsintmsk = gsintmsk & ~ints;
  242. if (new_gsintmsk != gsintmsk)
  243. writel(new_gsintmsk, hsotg->regs + S3C_GINTMSK);
  244. }
  245. /**
  246. * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
  247. * @hsotg: The device state
  248. * @ep: The endpoint index
  249. * @dir_in: True if direction is in.
  250. * @en: The enable value, true to enable
  251. *
  252. * Set or clear the mask for an individual endpoint's interrupt
  253. * request.
  254. */
  255. static void s3c_hsotg_ctrl_epint(struct s3c_hsotg *hsotg,
  256. unsigned int ep, unsigned int dir_in,
  257. unsigned int en)
  258. {
  259. unsigned long flags;
  260. u32 bit = 1 << ep;
  261. u32 daint;
  262. if (!dir_in)
  263. bit <<= 16;
  264. local_irq_save(flags);
  265. daint = readl(hsotg->regs + S3C_DAINTMSK);
  266. if (en)
  267. daint |= bit;
  268. else
  269. daint &= ~bit;
  270. writel(daint, hsotg->regs + S3C_DAINTMSK);
  271. local_irq_restore(flags);
  272. }
  273. /**
  274. * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
  275. * @hsotg: The device instance.
  276. */
  277. static void s3c_hsotg_init_fifo(struct s3c_hsotg *hsotg)
  278. {
  279. unsigned int ep;
  280. unsigned int addr;
  281. unsigned int size;
  282. int timeout;
  283. u32 val;
  284. /* the ryu 2.6.24 release ahs
  285. writel(0x1C0, hsotg->regs + S3C_GRXFSIZ);
  286. writel(S3C_GNPTXFSIZ_NPTxFStAddr(0x200) |
  287. S3C_GNPTXFSIZ_NPTxFDep(0x1C0),
  288. hsotg->regs + S3C_GNPTXFSIZ);
  289. */
  290. /* set FIFO sizes to 2048/1024 */
  291. writel(2048, hsotg->regs + S3C_GRXFSIZ);
  292. writel(S3C_GNPTXFSIZ_NPTxFStAddr(2048) |
  293. S3C_GNPTXFSIZ_NPTxFDep(1024),
  294. hsotg->regs + S3C_GNPTXFSIZ);
  295. /* arange all the rest of the TX FIFOs, as some versions of this
  296. * block have overlapping default addresses. This also ensures
  297. * that if the settings have been changed, then they are set to
  298. * known values. */
  299. /* start at the end of the GNPTXFSIZ, rounded up */
  300. addr = 2048 + 1024;
  301. size = 768;
  302. /* currently we allocate TX FIFOs for all possible endpoints,
  303. * and assume that they are all the same size. */
  304. for (ep = 1; ep <= 15; ep++) {
  305. val = addr;
  306. val |= size << S3C_DPTXFSIZn_DPTxFSize_SHIFT;
  307. addr += size;
  308. writel(val, hsotg->regs + S3C_DPTXFSIZn(ep));
  309. }
  310. /* according to p428 of the design guide, we need to ensure that
  311. * all fifos are flushed before continuing */
  312. writel(S3C_GRSTCTL_TxFNum(0x10) | S3C_GRSTCTL_TxFFlsh |
  313. S3C_GRSTCTL_RxFFlsh, hsotg->regs + S3C_GRSTCTL);
  314. /* wait until the fifos are both flushed */
  315. timeout = 100;
  316. while (1) {
  317. val = readl(hsotg->regs + S3C_GRSTCTL);
  318. if ((val & (S3C_GRSTCTL_TxFFlsh | S3C_GRSTCTL_RxFFlsh)) == 0)
  319. break;
  320. if (--timeout == 0) {
  321. dev_err(hsotg->dev,
  322. "%s: timeout flushing fifos (GRSTCTL=%08x)\n",
  323. __func__, val);
  324. }
  325. udelay(1);
  326. }
  327. dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
  328. }
  329. /**
  330. * @ep: USB endpoint to allocate request for.
  331. * @flags: Allocation flags
  332. *
  333. * Allocate a new USB request structure appropriate for the specified endpoint
  334. */
  335. static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
  336. gfp_t flags)
  337. {
  338. struct s3c_hsotg_req *req;
  339. req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
  340. if (!req)
  341. return NULL;
  342. INIT_LIST_HEAD(&req->queue);
  343. req->req.dma = DMA_ADDR_INVALID;
  344. return &req->req;
  345. }
  346. /**
  347. * is_ep_periodic - return true if the endpoint is in periodic mode.
  348. * @hs_ep: The endpoint to query.
  349. *
  350. * Returns true if the endpoint is in periodic mode, meaning it is being
  351. * used for an Interrupt or ISO transfer.
  352. */
  353. static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
  354. {
  355. return hs_ep->periodic;
  356. }
  357. /**
  358. * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
  359. * @hsotg: The device state.
  360. * @hs_ep: The endpoint for the request
  361. * @hs_req: The request being processed.
  362. *
  363. * This is the reverse of s3c_hsotg_map_dma(), called for the completion
  364. * of a request to ensure the buffer is ready for access by the caller.
  365. */
  366. static void s3c_hsotg_unmap_dma(struct s3c_hsotg *hsotg,
  367. struct s3c_hsotg_ep *hs_ep,
  368. struct s3c_hsotg_req *hs_req)
  369. {
  370. struct usb_request *req = &hs_req->req;
  371. enum dma_data_direction dir;
  372. dir = hs_ep->dir_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
  373. /* ignore this if we're not moving any data */
  374. if (hs_req->req.length == 0)
  375. return;
  376. if (hs_req->mapped) {
  377. /* we mapped this, so unmap and remove the dma */
  378. dma_unmap_single(hsotg->dev, req->dma, req->length, dir);
  379. req->dma = DMA_ADDR_INVALID;
  380. hs_req->mapped = 0;
  381. } else {
  382. dma_sync_single_for_cpu(hsotg->dev, req->dma, req->length, dir);
  383. }
  384. }
  385. /**
  386. * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
  387. * @hsotg: The controller state.
  388. * @hs_ep: The endpoint we're going to write for.
  389. * @hs_req: The request to write data for.
  390. *
  391. * This is called when the TxFIFO has some space in it to hold a new
  392. * transmission and we have something to give it. The actual setup of
  393. * the data size is done elsewhere, so all we have to do is to actually
  394. * write the data.
  395. *
  396. * The return value is zero if there is more space (or nothing was done)
  397. * otherwise -ENOSPC is returned if the FIFO space was used up.
  398. *
  399. * This routine is only needed for PIO
  400. */
  401. static int s3c_hsotg_write_fifo(struct s3c_hsotg *hsotg,
  402. struct s3c_hsotg_ep *hs_ep,
  403. struct s3c_hsotg_req *hs_req)
  404. {
  405. bool periodic = is_ep_periodic(hs_ep);
  406. u32 gnptxsts = readl(hsotg->regs + S3C_GNPTXSTS);
  407. int buf_pos = hs_req->req.actual;
  408. int to_write = hs_ep->size_loaded;
  409. void *data;
  410. int can_write;
  411. int pkt_round;
  412. to_write -= (buf_pos - hs_ep->last_load);
  413. /* if there's nothing to write, get out early */
  414. if (to_write == 0)
  415. return 0;
  416. if (periodic && !hsotg->dedicated_fifos) {
  417. u32 epsize = readl(hsotg->regs + S3C_DIEPTSIZ(hs_ep->index));
  418. int size_left;
  419. int size_done;
  420. /* work out how much data was loaded so we can calculate
  421. * how much data is left in the fifo. */
  422. size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
  423. /* if shared fifo, we cannot write anything until the
  424. * previous data has been completely sent.
  425. */
  426. if (hs_ep->fifo_load != 0) {
  427. s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
  428. return -ENOSPC;
  429. }
  430. dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
  431. __func__, size_left,
  432. hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
  433. /* how much of the data has moved */
  434. size_done = hs_ep->size_loaded - size_left;
  435. /* how much data is left in the fifo */
  436. can_write = hs_ep->fifo_load - size_done;
  437. dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
  438. __func__, can_write);
  439. can_write = hs_ep->fifo_size - can_write;
  440. dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
  441. __func__, can_write);
  442. if (can_write <= 0) {
  443. s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
  444. return -ENOSPC;
  445. }
  446. } else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
  447. can_write = readl(hsotg->regs + S3C_DTXFSTS(hs_ep->index));
  448. can_write &= 0xffff;
  449. can_write *= 4;
  450. } else {
  451. if (S3C_GNPTXSTS_NPTxQSpcAvail_GET(gnptxsts) == 0) {
  452. dev_dbg(hsotg->dev,
  453. "%s: no queue slots available (0x%08x)\n",
  454. __func__, gnptxsts);
  455. s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_NPTxFEmp);
  456. return -ENOSPC;
  457. }
  458. can_write = S3C_GNPTXSTS_NPTxFSpcAvail_GET(gnptxsts);
  459. can_write *= 4; /* fifo size is in 32bit quantities. */
  460. }
  461. dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, mps %d\n",
  462. __func__, gnptxsts, can_write, to_write, hs_ep->ep.maxpacket);
  463. /* limit to 512 bytes of data, it seems at least on the non-periodic
  464. * FIFO, requests of >512 cause the endpoint to get stuck with a
  465. * fragment of the end of the transfer in it.
  466. */
  467. if (can_write > 512)
  468. can_write = 512;
  469. /* limit the write to one max-packet size worth of data, but allow
  470. * the transfer to return that it did not run out of fifo space
  471. * doing it. */
  472. if (to_write > hs_ep->ep.maxpacket) {
  473. to_write = hs_ep->ep.maxpacket;
  474. s3c_hsotg_en_gsint(hsotg,
  475. periodic ? S3C_GINTSTS_PTxFEmp :
  476. S3C_GINTSTS_NPTxFEmp);
  477. }
  478. /* see if we can write data */
  479. if (to_write > can_write) {
  480. to_write = can_write;
  481. pkt_round = to_write % hs_ep->ep.maxpacket;
  482. /* Not sure, but we probably shouldn't be writing partial
  483. * packets into the FIFO, so round the write down to an
  484. * exact number of packets.
  485. *
  486. * Note, we do not currently check to see if we can ever
  487. * write a full packet or not to the FIFO.
  488. */
  489. if (pkt_round)
  490. to_write -= pkt_round;
  491. /* enable correct FIFO interrupt to alert us when there
  492. * is more room left. */
  493. s3c_hsotg_en_gsint(hsotg,
  494. periodic ? S3C_GINTSTS_PTxFEmp :
  495. S3C_GINTSTS_NPTxFEmp);
  496. }
  497. dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
  498. to_write, hs_req->req.length, can_write, buf_pos);
  499. if (to_write <= 0)
  500. return -ENOSPC;
  501. hs_req->req.actual = buf_pos + to_write;
  502. hs_ep->total_data += to_write;
  503. if (periodic)
  504. hs_ep->fifo_load += to_write;
  505. to_write = DIV_ROUND_UP(to_write, 4);
  506. data = hs_req->req.buf + buf_pos;
  507. writesl(hsotg->regs + S3C_EPFIFO(hs_ep->index), data, to_write);
  508. return (to_write >= can_write) ? -ENOSPC : 0;
  509. }
  510. /**
  511. * get_ep_limit - get the maximum data legnth for this endpoint
  512. * @hs_ep: The endpoint
  513. *
  514. * Return the maximum data that can be queued in one go on a given endpoint
  515. * so that transfers that are too long can be split.
  516. */
  517. static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
  518. {
  519. int index = hs_ep->index;
  520. unsigned maxsize;
  521. unsigned maxpkt;
  522. if (index != 0) {
  523. maxsize = S3C_DxEPTSIZ_XferSize_LIMIT + 1;
  524. maxpkt = S3C_DxEPTSIZ_PktCnt_LIMIT + 1;
  525. } else {
  526. maxsize = 64+64;
  527. if (hs_ep->dir_in)
  528. maxpkt = S3C_DIEPTSIZ0_PktCnt_LIMIT + 1;
  529. else
  530. maxpkt = 2;
  531. }
  532. /* we made the constant loading easier above by using +1 */
  533. maxpkt--;
  534. maxsize--;
  535. /* constrain by packet count if maxpkts*pktsize is greater
  536. * than the length register size. */
  537. if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
  538. maxsize = maxpkt * hs_ep->ep.maxpacket;
  539. return maxsize;
  540. }
  541. /**
  542. * s3c_hsotg_start_req - start a USB request from an endpoint's queue
  543. * @hsotg: The controller state.
  544. * @hs_ep: The endpoint to process a request for
  545. * @hs_req: The request to start.
  546. * @continuing: True if we are doing more for the current request.
  547. *
  548. * Start the given request running by setting the endpoint registers
  549. * appropriately, and writing any data to the FIFOs.
  550. */
  551. static void s3c_hsotg_start_req(struct s3c_hsotg *hsotg,
  552. struct s3c_hsotg_ep *hs_ep,
  553. struct s3c_hsotg_req *hs_req,
  554. bool continuing)
  555. {
  556. struct usb_request *ureq = &hs_req->req;
  557. int index = hs_ep->index;
  558. int dir_in = hs_ep->dir_in;
  559. u32 epctrl_reg;
  560. u32 epsize_reg;
  561. u32 epsize;
  562. u32 ctrl;
  563. unsigned length;
  564. unsigned packets;
  565. unsigned maxreq;
  566. if (index != 0) {
  567. if (hs_ep->req && !continuing) {
  568. dev_err(hsotg->dev, "%s: active request\n", __func__);
  569. WARN_ON(1);
  570. return;
  571. } else if (hs_ep->req != hs_req && continuing) {
  572. dev_err(hsotg->dev,
  573. "%s: continue different req\n", __func__);
  574. WARN_ON(1);
  575. return;
  576. }
  577. }
  578. epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
  579. epsize_reg = dir_in ? S3C_DIEPTSIZ(index) : S3C_DOEPTSIZ(index);
  580. dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
  581. __func__, readl(hsotg->regs + epctrl_reg), index,
  582. hs_ep->dir_in ? "in" : "out");
  583. /* If endpoint is stalled, we will restart request later */
  584. ctrl = readl(hsotg->regs + epctrl_reg);
  585. if (ctrl & S3C_DxEPCTL_Stall) {
  586. dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
  587. return;
  588. }
  589. length = ureq->length - ureq->actual;
  590. dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
  591. ureq->length, ureq->actual);
  592. if (0)
  593. dev_dbg(hsotg->dev,
  594. "REQ buf %p len %d dma 0x%08x noi=%d zp=%d snok=%d\n",
  595. ureq->buf, length, ureq->dma,
  596. ureq->no_interrupt, ureq->zero, ureq->short_not_ok);
  597. maxreq = get_ep_limit(hs_ep);
  598. if (length > maxreq) {
  599. int round = maxreq % hs_ep->ep.maxpacket;
  600. dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
  601. __func__, length, maxreq, round);
  602. /* round down to multiple of packets */
  603. if (round)
  604. maxreq -= round;
  605. length = maxreq;
  606. }
  607. if (length)
  608. packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
  609. else
  610. packets = 1; /* send one packet if length is zero. */
  611. if (dir_in && index != 0)
  612. epsize = S3C_DxEPTSIZ_MC(1);
  613. else
  614. epsize = 0;
  615. if (index != 0 && ureq->zero) {
  616. /* test for the packets being exactly right for the
  617. * transfer */
  618. if (length == (packets * hs_ep->ep.maxpacket))
  619. packets++;
  620. }
  621. epsize |= S3C_DxEPTSIZ_PktCnt(packets);
  622. epsize |= S3C_DxEPTSIZ_XferSize(length);
  623. dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
  624. __func__, packets, length, ureq->length, epsize, epsize_reg);
  625. /* store the request as the current one we're doing */
  626. hs_ep->req = hs_req;
  627. /* write size / packets */
  628. writel(epsize, hsotg->regs + epsize_reg);
  629. if (using_dma(hsotg) && !continuing) {
  630. unsigned int dma_reg;
  631. /* write DMA address to control register, buffer already
  632. * synced by s3c_hsotg_ep_queue(). */
  633. dma_reg = dir_in ? S3C_DIEPDMA(index) : S3C_DOEPDMA(index);
  634. writel(ureq->dma, hsotg->regs + dma_reg);
  635. dev_dbg(hsotg->dev, "%s: 0x%08x => 0x%08x\n",
  636. __func__, ureq->dma, dma_reg);
  637. }
  638. ctrl |= S3C_DxEPCTL_EPEna; /* ensure ep enabled */
  639. ctrl |= S3C_DxEPCTL_USBActEp;
  640. dev_dbg(hsotg->dev, "setup req:%d\n", hsotg->setup);
  641. /* For Setup request do not clear NAK */
  642. if (hsotg->setup && index == 0)
  643. hsotg->setup = 0;
  644. else
  645. ctrl |= S3C_DxEPCTL_CNAK; /* clear NAK set by core */
  646. dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
  647. writel(ctrl, hsotg->regs + epctrl_reg);
  648. /* set these, it seems that DMA support increments past the end
  649. * of the packet buffer so we need to calculate the length from
  650. * this information. */
  651. hs_ep->size_loaded = length;
  652. hs_ep->last_load = ureq->actual;
  653. if (dir_in && !using_dma(hsotg)) {
  654. /* set these anyway, we may need them for non-periodic in */
  655. hs_ep->fifo_load = 0;
  656. s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
  657. }
  658. /* clear the INTknTXFEmpMsk when we start request, more as a aide
  659. * to debugging to see what is going on. */
  660. if (dir_in)
  661. writel(S3C_DIEPMSK_INTknTXFEmpMsk,
  662. hsotg->regs + S3C_DIEPINT(index));
  663. /* Note, trying to clear the NAK here causes problems with transmit
  664. * on the S3C6400 ending up with the TXFIFO becoming full. */
  665. /* check ep is enabled */
  666. if (!(readl(hsotg->regs + epctrl_reg) & S3C_DxEPCTL_EPEna))
  667. dev_warn(hsotg->dev,
  668. "ep%d: failed to become enabled (DxEPCTL=0x%08x)?\n",
  669. index, readl(hsotg->regs + epctrl_reg));
  670. dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n",
  671. __func__, readl(hsotg->regs + epctrl_reg));
  672. }
  673. /**
  674. * s3c_hsotg_map_dma - map the DMA memory being used for the request
  675. * @hsotg: The device state.
  676. * @hs_ep: The endpoint the request is on.
  677. * @req: The request being processed.
  678. *
  679. * We've been asked to queue a request, so ensure that the memory buffer
  680. * is correctly setup for DMA. If we've been passed an extant DMA address
  681. * then ensure the buffer has been synced to memory. If our buffer has no
  682. * DMA memory, then we map the memory and mark our request to allow us to
  683. * cleanup on completion.
  684. */
  685. static int s3c_hsotg_map_dma(struct s3c_hsotg *hsotg,
  686. struct s3c_hsotg_ep *hs_ep,
  687. struct usb_request *req)
  688. {
  689. enum dma_data_direction dir;
  690. struct s3c_hsotg_req *hs_req = our_req(req);
  691. dir = hs_ep->dir_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
  692. /* if the length is zero, ignore the DMA data */
  693. if (hs_req->req.length == 0)
  694. return 0;
  695. if (req->dma == DMA_ADDR_INVALID) {
  696. dma_addr_t dma;
  697. dma = dma_map_single(hsotg->dev, req->buf, req->length, dir);
  698. if (unlikely(dma_mapping_error(hsotg->dev, dma)))
  699. goto dma_error;
  700. if (dma & 3) {
  701. dev_err(hsotg->dev, "%s: unaligned dma buffer\n",
  702. __func__);
  703. dma_unmap_single(hsotg->dev, dma, req->length, dir);
  704. return -EINVAL;
  705. }
  706. hs_req->mapped = 1;
  707. req->dma = dma;
  708. } else {
  709. dma_sync_single_for_cpu(hsotg->dev, req->dma, req->length, dir);
  710. hs_req->mapped = 0;
  711. }
  712. return 0;
  713. dma_error:
  714. dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
  715. __func__, req->buf, req->length);
  716. return -EIO;
  717. }
  718. static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
  719. gfp_t gfp_flags)
  720. {
  721. struct s3c_hsotg_req *hs_req = our_req(req);
  722. struct s3c_hsotg_ep *hs_ep = our_ep(ep);
  723. struct s3c_hsotg *hs = hs_ep->parent;
  724. unsigned long irqflags;
  725. bool first;
  726. dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
  727. ep->name, req, req->length, req->buf, req->no_interrupt,
  728. req->zero, req->short_not_ok);
  729. /* initialise status of the request */
  730. INIT_LIST_HEAD(&hs_req->queue);
  731. req->actual = 0;
  732. req->status = -EINPROGRESS;
  733. /* if we're using DMA, sync the buffers as necessary */
  734. if (using_dma(hs)) {
  735. int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
  736. if (ret)
  737. return ret;
  738. }
  739. spin_lock_irqsave(&hs_ep->lock, irqflags);
  740. first = list_empty(&hs_ep->queue);
  741. list_add_tail(&hs_req->queue, &hs_ep->queue);
  742. if (first)
  743. s3c_hsotg_start_req(hs, hs_ep, hs_req, false);
  744. spin_unlock_irqrestore(&hs_ep->lock, irqflags);
  745. return 0;
  746. }
  747. static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
  748. struct usb_request *req)
  749. {
  750. struct s3c_hsotg_req *hs_req = our_req(req);
  751. kfree(hs_req);
  752. }
  753. /**
  754. * s3c_hsotg_complete_oursetup - setup completion callback
  755. * @ep: The endpoint the request was on.
  756. * @req: The request completed.
  757. *
  758. * Called on completion of any requests the driver itself
  759. * submitted that need cleaning up.
  760. */
  761. static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
  762. struct usb_request *req)
  763. {
  764. struct s3c_hsotg_ep *hs_ep = our_ep(ep);
  765. struct s3c_hsotg *hsotg = hs_ep->parent;
  766. dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
  767. s3c_hsotg_ep_free_request(ep, req);
  768. }
  769. /**
  770. * ep_from_windex - convert control wIndex value to endpoint
  771. * @hsotg: The driver state.
  772. * @windex: The control request wIndex field (in host order).
  773. *
  774. * Convert the given wIndex into a pointer to an driver endpoint
  775. * structure, or return NULL if it is not a valid endpoint.
  776. */
  777. static struct s3c_hsotg_ep *ep_from_windex(struct s3c_hsotg *hsotg,
  778. u32 windex)
  779. {
  780. struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F];
  781. int dir = (windex & USB_DIR_IN) ? 1 : 0;
  782. int idx = windex & 0x7F;
  783. if (windex >= 0x100)
  784. return NULL;
  785. if (idx > S3C_HSOTG_EPS)
  786. return NULL;
  787. if (idx && ep->dir_in != dir)
  788. return NULL;
  789. return ep;
  790. }
  791. /**
  792. * s3c_hsotg_send_reply - send reply to control request
  793. * @hsotg: The device state
  794. * @ep: Endpoint 0
  795. * @buff: Buffer for request
  796. * @length: Length of reply.
  797. *
  798. * Create a request and queue it on the given endpoint. This is useful as
  799. * an internal method of sending replies to certain control requests, etc.
  800. */
  801. static int s3c_hsotg_send_reply(struct s3c_hsotg *hsotg,
  802. struct s3c_hsotg_ep *ep,
  803. void *buff,
  804. int length)
  805. {
  806. struct usb_request *req;
  807. int ret;
  808. dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
  809. req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
  810. hsotg->ep0_reply = req;
  811. if (!req) {
  812. dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
  813. return -ENOMEM;
  814. }
  815. req->buf = hsotg->ep0_buff;
  816. req->length = length;
  817. req->zero = 1; /* always do zero-length final transfer */
  818. req->complete = s3c_hsotg_complete_oursetup;
  819. if (length)
  820. memcpy(req->buf, buff, length);
  821. else
  822. ep->sent_zlp = 1;
  823. ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
  824. if (ret) {
  825. dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
  826. return ret;
  827. }
  828. return 0;
  829. }
  830. /**
  831. * s3c_hsotg_process_req_status - process request GET_STATUS
  832. * @hsotg: The device state
  833. * @ctrl: USB control request
  834. */
  835. static int s3c_hsotg_process_req_status(struct s3c_hsotg *hsotg,
  836. struct usb_ctrlrequest *ctrl)
  837. {
  838. struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
  839. struct s3c_hsotg_ep *ep;
  840. __le16 reply;
  841. int ret;
  842. dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
  843. if (!ep0->dir_in) {
  844. dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
  845. return -EINVAL;
  846. }
  847. switch (ctrl->bRequestType & USB_RECIP_MASK) {
  848. case USB_RECIP_DEVICE:
  849. reply = cpu_to_le16(0); /* bit 0 => self powered,
  850. * bit 1 => remote wakeup */
  851. break;
  852. case USB_RECIP_INTERFACE:
  853. /* currently, the data result should be zero */
  854. reply = cpu_to_le16(0);
  855. break;
  856. case USB_RECIP_ENDPOINT:
  857. ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
  858. if (!ep)
  859. return -ENOENT;
  860. reply = cpu_to_le16(ep->halted ? 1 : 0);
  861. break;
  862. default:
  863. return 0;
  864. }
  865. if (le16_to_cpu(ctrl->wLength) != 2)
  866. return -EINVAL;
  867. ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
  868. if (ret) {
  869. dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
  870. return ret;
  871. }
  872. return 1;
  873. }
  874. static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);
  875. /**
  876. * get_ep_head - return the first request on the endpoint
  877. * @hs_ep: The controller endpoint to get
  878. *
  879. * Get the first request on the endpoint.
  880. */
  881. static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
  882. {
  883. if (list_empty(&hs_ep->queue))
  884. return NULL;
  885. return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
  886. }
  887. /**
  888. * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
  889. * @hsotg: The device state
  890. * @ctrl: USB control request
  891. */
  892. static int s3c_hsotg_process_req_feature(struct s3c_hsotg *hsotg,
  893. struct usb_ctrlrequest *ctrl)
  894. {
  895. struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
  896. struct s3c_hsotg_req *hs_req;
  897. bool restart;
  898. bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
  899. struct s3c_hsotg_ep *ep;
  900. int ret;
  901. dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
  902. __func__, set ? "SET" : "CLEAR");
  903. if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
  904. ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
  905. if (!ep) {
  906. dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
  907. __func__, le16_to_cpu(ctrl->wIndex));
  908. return -ENOENT;
  909. }
  910. switch (le16_to_cpu(ctrl->wValue)) {
  911. case USB_ENDPOINT_HALT:
  912. s3c_hsotg_ep_sethalt(&ep->ep, set);
  913. ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
  914. if (ret) {
  915. dev_err(hsotg->dev,
  916. "%s: failed to send reply\n", __func__);
  917. return ret;
  918. }
  919. if (!set) {
  920. /*
  921. * If we have request in progress,
  922. * then complete it
  923. */
  924. if (ep->req) {
  925. hs_req = ep->req;
  926. ep->req = NULL;
  927. list_del_init(&hs_req->queue);
  928. hs_req->req.complete(&ep->ep,
  929. &hs_req->req);
  930. }
  931. /* If we have pending request, then start it */
  932. restart = !list_empty(&ep->queue);
  933. if (restart) {
  934. hs_req = get_ep_head(ep);
  935. s3c_hsotg_start_req(hsotg, ep,
  936. hs_req, false);
  937. }
  938. }
  939. break;
  940. default:
  941. return -ENOENT;
  942. }
  943. } else
  944. return -ENOENT; /* currently only deal with endpoint */
  945. return 1;
  946. }
  947. /**
  948. * s3c_hsotg_process_control - process a control request
  949. * @hsotg: The device state
  950. * @ctrl: The control request received
  951. *
  952. * The controller has received the SETUP phase of a control request, and
  953. * needs to work out what to do next (and whether to pass it on to the
  954. * gadget driver).
  955. */
  956. static void s3c_hsotg_process_control(struct s3c_hsotg *hsotg,
  957. struct usb_ctrlrequest *ctrl)
  958. {
  959. struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
  960. int ret = 0;
  961. u32 dcfg;
  962. ep0->sent_zlp = 0;
  963. dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
  964. ctrl->bRequest, ctrl->bRequestType,
  965. ctrl->wValue, ctrl->wLength);
  966. /* record the direction of the request, for later use when enquing
  967. * packets onto EP0. */
  968. ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0;
  969. dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in);
  970. /* if we've no data with this request, then the last part of the
  971. * transaction is going to implicitly be IN. */
  972. if (ctrl->wLength == 0)
  973. ep0->dir_in = 1;
  974. if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
  975. switch (ctrl->bRequest) {
  976. case USB_REQ_SET_ADDRESS:
  977. dcfg = readl(hsotg->regs + S3C_DCFG);
  978. dcfg &= ~S3C_DCFG_DevAddr_MASK;
  979. dcfg |= ctrl->wValue << S3C_DCFG_DevAddr_SHIFT;
  980. writel(dcfg, hsotg->regs + S3C_DCFG);
  981. dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
  982. ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
  983. return;
  984. case USB_REQ_GET_STATUS:
  985. ret = s3c_hsotg_process_req_status(hsotg, ctrl);
  986. break;
  987. case USB_REQ_CLEAR_FEATURE:
  988. case USB_REQ_SET_FEATURE:
  989. ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
  990. break;
  991. }
  992. }
  993. /* as a fallback, try delivering it to the driver to deal with */
  994. if (ret == 0 && hsotg->driver) {
  995. ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
  996. if (ret < 0)
  997. dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
  998. }
  999. /* the request is either unhandlable, or is not formatted correctly
  1000. * so respond with a STALL for the status stage to indicate failure.
  1001. */
  1002. if (ret < 0) {
  1003. u32 reg;
  1004. u32 ctrl;
  1005. dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
  1006. reg = (ep0->dir_in) ? S3C_DIEPCTL0 : S3C_DOEPCTL0;
  1007. /* S3C_DxEPCTL_Stall will be cleared by EP once it has
  1008. * taken effect, so no need to clear later. */
  1009. ctrl = readl(hsotg->regs + reg);
  1010. ctrl |= S3C_DxEPCTL_Stall;
  1011. ctrl |= S3C_DxEPCTL_CNAK;
  1012. writel(ctrl, hsotg->regs + reg);
  1013. dev_dbg(hsotg->dev,
  1014. "written DxEPCTL=0x%08x to %08x (DxEPCTL=0x%08x)\n",
  1015. ctrl, reg, readl(hsotg->regs + reg));
  1016. /* don't believe we need to anything more to get the EP
  1017. * to reply with a STALL packet */
  1018. }
  1019. }
  1020. static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg);
  1021. /**
  1022. * s3c_hsotg_complete_setup - completion of a setup transfer
  1023. * @ep: The endpoint the request was on.
  1024. * @req: The request completed.
  1025. *
  1026. * Called on completion of any requests the driver itself submitted for
  1027. * EP0 setup packets
  1028. */
  1029. static void s3c_hsotg_complete_setup(struct usb_ep *ep,
  1030. struct usb_request *req)
  1031. {
  1032. struct s3c_hsotg_ep *hs_ep = our_ep(ep);
  1033. struct s3c_hsotg *hsotg = hs_ep->parent;
  1034. if (req->status < 0) {
  1035. dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
  1036. return;
  1037. }
  1038. if (req->actual == 0)
  1039. s3c_hsotg_enqueue_setup(hsotg);
  1040. else
  1041. s3c_hsotg_process_control(hsotg, req->buf);
  1042. }
  1043. /**
  1044. * s3c_hsotg_enqueue_setup - start a request for EP0 packets
  1045. * @hsotg: The device state.
  1046. *
  1047. * Enqueue a request on EP0 if necessary to received any SETUP packets
  1048. * received from the host.
  1049. */
  1050. static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg)
  1051. {
  1052. struct usb_request *req = hsotg->ctrl_req;
  1053. struct s3c_hsotg_req *hs_req = our_req(req);
  1054. int ret;
  1055. dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
  1056. req->zero = 0;
  1057. req->length = 8;
  1058. req->buf = hsotg->ctrl_buff;
  1059. req->complete = s3c_hsotg_complete_setup;
  1060. if (!list_empty(&hs_req->queue)) {
  1061. dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
  1062. return;
  1063. }
  1064. hsotg->eps[0].dir_in = 0;
  1065. ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC);
  1066. if (ret < 0) {
  1067. dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
  1068. /* Don't think there's much we can do other than watch the
  1069. * driver fail. */
  1070. }
  1071. }
  1072. /**
  1073. * s3c_hsotg_complete_request - complete a request given to us
  1074. * @hsotg: The device state.
  1075. * @hs_ep: The endpoint the request was on.
  1076. * @hs_req: The request to complete.
  1077. * @result: The result code (0 => Ok, otherwise errno)
  1078. *
  1079. * The given request has finished, so call the necessary completion
  1080. * if it has one and then look to see if we can start a new request
  1081. * on the endpoint.
  1082. *
  1083. * Note, expects the ep to already be locked as appropriate.
  1084. */
  1085. static void s3c_hsotg_complete_request(struct s3c_hsotg *hsotg,
  1086. struct s3c_hsotg_ep *hs_ep,
  1087. struct s3c_hsotg_req *hs_req,
  1088. int result)
  1089. {
  1090. bool restart;
  1091. if (!hs_req) {
  1092. dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
  1093. return;
  1094. }
  1095. dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
  1096. hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
  1097. /* only replace the status if we've not already set an error
  1098. * from a previous transaction */
  1099. if (hs_req->req.status == -EINPROGRESS)
  1100. hs_req->req.status = result;
  1101. hs_ep->req = NULL;
  1102. list_del_init(&hs_req->queue);
  1103. if (using_dma(hsotg))
  1104. s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
  1105. /* call the complete request with the locks off, just in case the
  1106. * request tries to queue more work for this endpoint. */
  1107. if (hs_req->req.complete) {
  1108. spin_unlock(&hs_ep->lock);
  1109. hs_req->req.complete(&hs_ep->ep, &hs_req->req);
  1110. spin_lock(&hs_ep->lock);
  1111. }
  1112. /* Look to see if there is anything else to do. Note, the completion
  1113. * of the previous request may have caused a new request to be started
  1114. * so be careful when doing this. */
  1115. if (!hs_ep->req && result >= 0) {
  1116. restart = !list_empty(&hs_ep->queue);
  1117. if (restart) {
  1118. hs_req = get_ep_head(hs_ep);
  1119. s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
  1120. }
  1121. }
  1122. }
  1123. /**
  1124. * s3c_hsotg_complete_request_lock - complete a request given to us (locked)
  1125. * @hsotg: The device state.
  1126. * @hs_ep: The endpoint the request was on.
  1127. * @hs_req: The request to complete.
  1128. * @result: The result code (0 => Ok, otherwise errno)
  1129. *
  1130. * See s3c_hsotg_complete_request(), but called with the endpoint's
  1131. * lock held.
  1132. */
  1133. static void s3c_hsotg_complete_request_lock(struct s3c_hsotg *hsotg,
  1134. struct s3c_hsotg_ep *hs_ep,
  1135. struct s3c_hsotg_req *hs_req,
  1136. int result)
  1137. {
  1138. unsigned long flags;
  1139. spin_lock_irqsave(&hs_ep->lock, flags);
  1140. s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
  1141. spin_unlock_irqrestore(&hs_ep->lock, flags);
  1142. }
  1143. /**
  1144. * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
  1145. * @hsotg: The device state.
  1146. * @ep_idx: The endpoint index for the data
  1147. * @size: The size of data in the fifo, in bytes
  1148. *
  1149. * The FIFO status shows there is data to read from the FIFO for a given
  1150. * endpoint, so sort out whether we need to read the data into a request
  1151. * that has been made for that endpoint.
  1152. */
  1153. static void s3c_hsotg_rx_data(struct s3c_hsotg *hsotg, int ep_idx, int size)
  1154. {
  1155. struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx];
  1156. struct s3c_hsotg_req *hs_req = hs_ep->req;
  1157. void __iomem *fifo = hsotg->regs + S3C_EPFIFO(ep_idx);
  1158. int to_read;
  1159. int max_req;
  1160. int read_ptr;
  1161. if (!hs_req) {
  1162. u32 epctl = readl(hsotg->regs + S3C_DOEPCTL(ep_idx));
  1163. int ptr;
  1164. dev_warn(hsotg->dev,
  1165. "%s: FIFO %d bytes on ep%d but no req (DxEPCTl=0x%08x)\n",
  1166. __func__, size, ep_idx, epctl);
  1167. /* dump the data from the FIFO, we've nothing we can do */
  1168. for (ptr = 0; ptr < size; ptr += 4)
  1169. (void)readl(fifo);
  1170. return;
  1171. }
  1172. spin_lock(&hs_ep->lock);
  1173. to_read = size;
  1174. read_ptr = hs_req->req.actual;
  1175. max_req = hs_req->req.length - read_ptr;
  1176. dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
  1177. __func__, to_read, max_req, read_ptr, hs_req->req.length);
  1178. if (to_read > max_req) {
  1179. /* more data appeared than we where willing
  1180. * to deal with in this request.
  1181. */
  1182. /* currently we don't deal this */
  1183. WARN_ON_ONCE(1);
  1184. }
  1185. hs_ep->total_data += to_read;
  1186. hs_req->req.actual += to_read;
  1187. to_read = DIV_ROUND_UP(to_read, 4);
  1188. /* note, we might over-write the buffer end by 3 bytes depending on
  1189. * alignment of the data. */
  1190. readsl(fifo, hs_req->req.buf + read_ptr, to_read);
  1191. spin_unlock(&hs_ep->lock);
  1192. }
  1193. /**
  1194. * s3c_hsotg_send_zlp - send zero-length packet on control endpoint
  1195. * @hsotg: The device instance
  1196. * @req: The request currently on this endpoint
  1197. *
  1198. * Generate a zero-length IN packet request for terminating a SETUP
  1199. * transaction.
  1200. *
  1201. * Note, since we don't write any data to the TxFIFO, then it is
  1202. * currently believed that we do not need to wait for any space in
  1203. * the TxFIFO.
  1204. */
  1205. static void s3c_hsotg_send_zlp(struct s3c_hsotg *hsotg,
  1206. struct s3c_hsotg_req *req)
  1207. {
  1208. u32 ctrl;
  1209. if (!req) {
  1210. dev_warn(hsotg->dev, "%s: no request?\n", __func__);
  1211. return;
  1212. }
  1213. if (req->req.length == 0) {
  1214. hsotg->eps[0].sent_zlp = 1;
  1215. s3c_hsotg_enqueue_setup(hsotg);
  1216. return;
  1217. }
  1218. hsotg->eps[0].dir_in = 1;
  1219. hsotg->eps[0].sent_zlp = 1;
  1220. dev_dbg(hsotg->dev, "sending zero-length packet\n");
  1221. /* issue a zero-sized packet to terminate this */
  1222. writel(S3C_DxEPTSIZ_MC(1) | S3C_DxEPTSIZ_PktCnt(1) |
  1223. S3C_DxEPTSIZ_XferSize(0), hsotg->regs + S3C_DIEPTSIZ(0));
  1224. ctrl = readl(hsotg->regs + S3C_DIEPCTL0);
  1225. ctrl |= S3C_DxEPCTL_CNAK; /* clear NAK set by core */
  1226. ctrl |= S3C_DxEPCTL_EPEna; /* ensure ep enabled */
  1227. ctrl |= S3C_DxEPCTL_USBActEp;
  1228. writel(ctrl, hsotg->regs + S3C_DIEPCTL0);
  1229. }
  1230. /**
  1231. * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
  1232. * @hsotg: The device instance
  1233. * @epnum: The endpoint received from
  1234. * @was_setup: Set if processing a SetupDone event.
  1235. *
  1236. * The RXFIFO has delivered an OutDone event, which means that the data
  1237. * transfer for an OUT endpoint has been completed, either by a short
  1238. * packet or by the finish of a transfer.
  1239. */
  1240. static void s3c_hsotg_handle_outdone(struct s3c_hsotg *hsotg,
  1241. int epnum, bool was_setup)
  1242. {
  1243. u32 epsize = readl(hsotg->regs + S3C_DOEPTSIZ(epnum));
  1244. struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum];
  1245. struct s3c_hsotg_req *hs_req = hs_ep->req;
  1246. struct usb_request *req = &hs_req->req;
  1247. unsigned size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
  1248. int result = 0;
  1249. if (!hs_req) {
  1250. dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
  1251. return;
  1252. }
  1253. if (using_dma(hsotg)) {
  1254. unsigned size_done;
  1255. /* Calculate the size of the transfer by checking how much
  1256. * is left in the endpoint size register and then working it
  1257. * out from the amount we loaded for the transfer.
  1258. *
  1259. * We need to do this as DMA pointers are always 32bit aligned
  1260. * so may overshoot/undershoot the transfer.
  1261. */
  1262. size_done = hs_ep->size_loaded - size_left;
  1263. size_done += hs_ep->last_load;
  1264. req->actual = size_done;
  1265. }
  1266. /* if there is more request to do, schedule new transfer */
  1267. if (req->actual < req->length && size_left == 0) {
  1268. s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
  1269. return;
  1270. } else if (epnum == 0) {
  1271. /*
  1272. * After was_setup = 1 =>
  1273. * set CNAK for non Setup requests
  1274. */
  1275. hsotg->setup = was_setup ? 0 : 1;
  1276. }
  1277. if (req->actual < req->length && req->short_not_ok) {
  1278. dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
  1279. __func__, req->actual, req->length);
  1280. /* todo - what should we return here? there's no one else
  1281. * even bothering to check the status. */
  1282. }
  1283. if (epnum == 0) {
  1284. if (!was_setup && req->complete != s3c_hsotg_complete_setup)
  1285. s3c_hsotg_send_zlp(hsotg, hs_req);
  1286. }
  1287. s3c_hsotg_complete_request_lock(hsotg, hs_ep, hs_req, result);
  1288. }
  1289. /**
  1290. * s3c_hsotg_read_frameno - read current frame number
  1291. * @hsotg: The device instance
  1292. *
  1293. * Return the current frame number
  1294. */
  1295. static u32 s3c_hsotg_read_frameno(struct s3c_hsotg *hsotg)
  1296. {
  1297. u32 dsts;
  1298. dsts = readl(hsotg->regs + S3C_DSTS);
  1299. dsts &= S3C_DSTS_SOFFN_MASK;
  1300. dsts >>= S3C_DSTS_SOFFN_SHIFT;
  1301. return dsts;
  1302. }
  1303. /**
  1304. * s3c_hsotg_handle_rx - RX FIFO has data
  1305. * @hsotg: The device instance
  1306. *
  1307. * The IRQ handler has detected that the RX FIFO has some data in it
  1308. * that requires processing, so find out what is in there and do the
  1309. * appropriate read.
  1310. *
  1311. * The RXFIFO is a true FIFO, the packets coming out are still in packet
  1312. * chunks, so if you have x packets received on an endpoint you'll get x
  1313. * FIFO events delivered, each with a packet's worth of data in it.
  1314. *
  1315. * When using DMA, we should not be processing events from the RXFIFO
  1316. * as the actual data should be sent to the memory directly and we turn
  1317. * on the completion interrupts to get notifications of transfer completion.
  1318. */
  1319. static void s3c_hsotg_handle_rx(struct s3c_hsotg *hsotg)
  1320. {
  1321. u32 grxstsr = readl(hsotg->regs + S3C_GRXSTSP);
  1322. u32 epnum, status, size;
  1323. WARN_ON(using_dma(hsotg));
  1324. epnum = grxstsr & S3C_GRXSTS_EPNum_MASK;
  1325. status = grxstsr & S3C_GRXSTS_PktSts_MASK;
  1326. size = grxstsr & S3C_GRXSTS_ByteCnt_MASK;
  1327. size >>= S3C_GRXSTS_ByteCnt_SHIFT;
  1328. if (1)
  1329. dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
  1330. __func__, grxstsr, size, epnum);
  1331. #define __status(x) ((x) >> S3C_GRXSTS_PktSts_SHIFT)
  1332. switch (status >> S3C_GRXSTS_PktSts_SHIFT) {
  1333. case __status(S3C_GRXSTS_PktSts_GlobalOutNAK):
  1334. dev_dbg(hsotg->dev, "GlobalOutNAK\n");
  1335. break;
  1336. case __status(S3C_GRXSTS_PktSts_OutDone):
  1337. dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
  1338. s3c_hsotg_read_frameno(hsotg));
  1339. if (!using_dma(hsotg))
  1340. s3c_hsotg_handle_outdone(hsotg, epnum, false);
  1341. break;
  1342. case __status(S3C_GRXSTS_PktSts_SetupDone):
  1343. dev_dbg(hsotg->dev,
  1344. "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
  1345. s3c_hsotg_read_frameno(hsotg),
  1346. readl(hsotg->regs + S3C_DOEPCTL(0)));
  1347. s3c_hsotg_handle_outdone(hsotg, epnum, true);
  1348. break;
  1349. case __status(S3C_GRXSTS_PktSts_OutRX):
  1350. s3c_hsotg_rx_data(hsotg, epnum, size);
  1351. break;
  1352. case __status(S3C_GRXSTS_PktSts_SetupRX):
  1353. dev_dbg(hsotg->dev,
  1354. "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
  1355. s3c_hsotg_read_frameno(hsotg),
  1356. readl(hsotg->regs + S3C_DOEPCTL(0)));
  1357. s3c_hsotg_rx_data(hsotg, epnum, size);
  1358. break;
  1359. default:
  1360. dev_warn(hsotg->dev, "%s: unknown status %08x\n",
  1361. __func__, grxstsr);
  1362. s3c_hsotg_dump(hsotg);
  1363. break;
  1364. }
  1365. }
  1366. /**
  1367. * s3c_hsotg_ep0_mps - turn max packet size into register setting
  1368. * @mps: The maximum packet size in bytes.
  1369. */
  1370. static u32 s3c_hsotg_ep0_mps(unsigned int mps)
  1371. {
  1372. switch (mps) {
  1373. case 64:
  1374. return S3C_D0EPCTL_MPS_64;
  1375. case 32:
  1376. return S3C_D0EPCTL_MPS_32;
  1377. case 16:
  1378. return S3C_D0EPCTL_MPS_16;
  1379. case 8:
  1380. return S3C_D0EPCTL_MPS_8;
  1381. }
  1382. /* bad max packet size, warn and return invalid result */
  1383. WARN_ON(1);
  1384. return (u32)-1;
  1385. }
  1386. /**
  1387. * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
  1388. * @hsotg: The driver state.
  1389. * @ep: The index number of the endpoint
  1390. * @mps: The maximum packet size in bytes
  1391. *
  1392. * Configure the maximum packet size for the given endpoint, updating
  1393. * the hardware control registers to reflect this.
  1394. */
  1395. static void s3c_hsotg_set_ep_maxpacket(struct s3c_hsotg *hsotg,
  1396. unsigned int ep, unsigned int mps)
  1397. {
  1398. struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep];
  1399. void __iomem *regs = hsotg->regs;
  1400. u32 mpsval;
  1401. u32 reg;
  1402. if (ep == 0) {
  1403. /* EP0 is a special case */
  1404. mpsval = s3c_hsotg_ep0_mps(mps);
  1405. if (mpsval > 3)
  1406. goto bad_mps;
  1407. } else {
  1408. if (mps >= S3C_DxEPCTL_MPS_LIMIT+1)
  1409. goto bad_mps;
  1410. mpsval = mps;
  1411. }
  1412. hs_ep->ep.maxpacket = mps;
  1413. /* update both the in and out endpoint controldir_ registers, even
  1414. * if one of the directions may not be in use. */
  1415. reg = readl(regs + S3C_DIEPCTL(ep));
  1416. reg &= ~S3C_DxEPCTL_MPS_MASK;
  1417. reg |= mpsval;
  1418. writel(reg, regs + S3C_DIEPCTL(ep));
  1419. if (ep) {
  1420. reg = readl(regs + S3C_DOEPCTL(ep));
  1421. reg &= ~S3C_DxEPCTL_MPS_MASK;
  1422. reg |= mpsval;
  1423. writel(reg, regs + S3C_DOEPCTL(ep));
  1424. }
  1425. return;
  1426. bad_mps:
  1427. dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
  1428. }
  1429. /**
  1430. * s3c_hsotg_txfifo_flush - flush Tx FIFO
  1431. * @hsotg: The driver state
  1432. * @idx: The index for the endpoint (0..15)
  1433. */
  1434. static void s3c_hsotg_txfifo_flush(struct s3c_hsotg *hsotg, unsigned int idx)
  1435. {
  1436. int timeout;
  1437. int val;
  1438. writel(S3C_GRSTCTL_TxFNum(idx) | S3C_GRSTCTL_TxFFlsh,
  1439. hsotg->regs + S3C_GRSTCTL);
  1440. /* wait until the fifo is flushed */
  1441. timeout = 100;
  1442. while (1) {
  1443. val = readl(hsotg->regs + S3C_GRSTCTL);
  1444. if ((val & (S3C_GRSTCTL_TxFFlsh)) == 0)
  1445. break;
  1446. if (--timeout == 0) {
  1447. dev_err(hsotg->dev,
  1448. "%s: timeout flushing fifo (GRSTCTL=%08x)\n",
  1449. __func__, val);
  1450. }
  1451. udelay(1);
  1452. }
  1453. }
  1454. /**
  1455. * s3c_hsotg_trytx - check to see if anything needs transmitting
  1456. * @hsotg: The driver state
  1457. * @hs_ep: The driver endpoint to check.
  1458. *
  1459. * Check to see if there is a request that has data to send, and if so
  1460. * make an attempt to write data into the FIFO.
  1461. */
  1462. static int s3c_hsotg_trytx(struct s3c_hsotg *hsotg,
  1463. struct s3c_hsotg_ep *hs_ep)
  1464. {
  1465. struct s3c_hsotg_req *hs_req = hs_ep->req;
  1466. if (!hs_ep->dir_in || !hs_req)
  1467. return 0;
  1468. if (hs_req->req.actual < hs_req->req.length) {
  1469. dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
  1470. hs_ep->index);
  1471. return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
  1472. }
  1473. return 0;
  1474. }
  1475. /**
  1476. * s3c_hsotg_complete_in - complete IN transfer
  1477. * @hsotg: The device state.
  1478. * @hs_ep: The endpoint that has just completed.
  1479. *
  1480. * An IN transfer has been completed, update the transfer's state and then
  1481. * call the relevant completion routines.
  1482. */
  1483. static void s3c_hsotg_complete_in(struct s3c_hsotg *hsotg,
  1484. struct s3c_hsotg_ep *hs_ep)
  1485. {
  1486. struct s3c_hsotg_req *hs_req = hs_ep->req;
  1487. u32 epsize = readl(hsotg->regs + S3C_DIEPTSIZ(hs_ep->index));
  1488. int size_left, size_done;
  1489. if (!hs_req) {
  1490. dev_dbg(hsotg->dev, "XferCompl but no req\n");
  1491. return;
  1492. }
  1493. /* Calculate the size of the transfer by checking how much is left
  1494. * in the endpoint size register and then working it out from
  1495. * the amount we loaded for the transfer.
  1496. *
  1497. * We do this even for DMA, as the transfer may have incremented
  1498. * past the end of the buffer (DMA transfers are always 32bit
  1499. * aligned).
  1500. */
  1501. size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
  1502. size_done = hs_ep->size_loaded - size_left;
  1503. size_done += hs_ep->last_load;
  1504. if (hs_req->req.actual != size_done)
  1505. dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
  1506. __func__, hs_req->req.actual, size_done);
  1507. hs_req->req.actual = size_done;
  1508. /* if we did all of the transfer, and there is more data left
  1509. * around, then try restarting the rest of the request */
  1510. if (!size_left && hs_req->req.actual < hs_req->req.length) {
  1511. dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
  1512. s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
  1513. } else
  1514. s3c_hsotg_complete_request_lock(hsotg, hs_ep, hs_req, 0);
  1515. }
  1516. /**
  1517. * s3c_hsotg_epint - handle an in/out endpoint interrupt
  1518. * @hsotg: The driver state
  1519. * @idx: The index for the endpoint (0..15)
  1520. * @dir_in: Set if this is an IN endpoint
  1521. *
  1522. * Process and clear any interrupt pending for an individual endpoint
  1523. */
  1524. static void s3c_hsotg_epint(struct s3c_hsotg *hsotg, unsigned int idx,
  1525. int dir_in)
  1526. {
  1527. struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx];
  1528. u32 epint_reg = dir_in ? S3C_DIEPINT(idx) : S3C_DOEPINT(idx);
  1529. u32 epctl_reg = dir_in ? S3C_DIEPCTL(idx) : S3C_DOEPCTL(idx);
  1530. u32 epsiz_reg = dir_in ? S3C_DIEPTSIZ(idx) : S3C_DOEPTSIZ(idx);
  1531. u32 ints;
  1532. ints = readl(hsotg->regs + epint_reg);
  1533. /* Clear endpoint interrupts */
  1534. writel(ints, hsotg->regs + epint_reg);
  1535. dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
  1536. __func__, idx, dir_in ? "in" : "out", ints);
  1537. if (ints & S3C_DxEPINT_XferCompl) {
  1538. dev_dbg(hsotg->dev,
  1539. "%s: XferCompl: DxEPCTL=0x%08x, DxEPTSIZ=%08x\n",
  1540. __func__, readl(hsotg->regs + epctl_reg),
  1541. readl(hsotg->regs + epsiz_reg));
  1542. /* we get OutDone from the FIFO, so we only need to look
  1543. * at completing IN requests here */
  1544. if (dir_in) {
  1545. s3c_hsotg_complete_in(hsotg, hs_ep);
  1546. if (idx == 0 && !hs_ep->req)
  1547. s3c_hsotg_enqueue_setup(hsotg);
  1548. } else if (using_dma(hsotg)) {
  1549. /* We're using DMA, we need to fire an OutDone here
  1550. * as we ignore the RXFIFO. */
  1551. s3c_hsotg_handle_outdone(hsotg, idx, false);
  1552. }
  1553. }
  1554. if (ints & S3C_DxEPINT_EPDisbld) {
  1555. dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
  1556. if (dir_in) {
  1557. int epctl = readl(hsotg->regs + epctl_reg);
  1558. s3c_hsotg_txfifo_flush(hsotg, idx);
  1559. if ((epctl & S3C_DxEPCTL_Stall) &&
  1560. (epctl & S3C_DxEPCTL_EPType_Bulk)) {
  1561. int dctl = readl(hsotg->regs + S3C_DCTL);
  1562. dctl |= S3C_DCTL_CGNPInNAK;
  1563. writel(dctl, hsotg->regs + S3C_DCTL);
  1564. }
  1565. }
  1566. }
  1567. if (ints & S3C_DxEPINT_AHBErr)
  1568. dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
  1569. if (ints & S3C_DxEPINT_Setup) { /* Setup or Timeout */
  1570. dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__);
  1571. if (using_dma(hsotg) && idx == 0) {
  1572. /* this is the notification we've received a
  1573. * setup packet. In non-DMA mode we'd get this
  1574. * from the RXFIFO, instead we need to process
  1575. * the setup here. */
  1576. if (dir_in)
  1577. WARN_ON_ONCE(1);
  1578. else
  1579. s3c_hsotg_handle_outdone(hsotg, 0, true);
  1580. }
  1581. }
  1582. if (ints & S3C_DxEPINT_Back2BackSetup)
  1583. dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
  1584. if (dir_in) {
  1585. /* not sure if this is important, but we'll clear it anyway
  1586. */
  1587. if (ints & S3C_DIEPMSK_INTknTXFEmpMsk) {
  1588. dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
  1589. __func__, idx);
  1590. }
  1591. /* this probably means something bad is happening */
  1592. if (ints & S3C_DIEPMSK_INTknEPMisMsk) {
  1593. dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
  1594. __func__, idx);
  1595. }
  1596. /* FIFO has space or is empty (see GAHBCFG) */
  1597. if (hsotg->dedicated_fifos &&
  1598. ints & S3C_DIEPMSK_TxFIFOEmpty) {
  1599. dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
  1600. __func__, idx);
  1601. if (!using_dma(hsotg))
  1602. s3c_hsotg_trytx(hsotg, hs_ep);
  1603. }
  1604. }
  1605. }
  1606. /**
  1607. * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
  1608. * @hsotg: The device state.
  1609. *
  1610. * Handle updating the device settings after the enumeration phase has
  1611. * been completed.
  1612. */
  1613. static void s3c_hsotg_irq_enumdone(struct s3c_hsotg *hsotg)
  1614. {
  1615. u32 dsts = readl(hsotg->regs + S3C_DSTS);
  1616. int ep0_mps = 0, ep_mps;
  1617. /* This should signal the finish of the enumeration phase
  1618. * of the USB handshaking, so we should now know what rate
  1619. * we connected at. */
  1620. dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
  1621. /* note, since we're limited by the size of transfer on EP0, and
  1622. * it seems IN transfers must be a even number of packets we do
  1623. * not advertise a 64byte MPS on EP0. */
  1624. /* catch both EnumSpd_FS and EnumSpd_FS48 */
  1625. switch (dsts & S3C_DSTS_EnumSpd_MASK) {
  1626. case S3C_DSTS_EnumSpd_FS:
  1627. case S3C_DSTS_EnumSpd_FS48:
  1628. hsotg->gadget.speed = USB_SPEED_FULL;
  1629. ep0_mps = EP0_MPS_LIMIT;
  1630. ep_mps = 64;
  1631. break;
  1632. case S3C_DSTS_EnumSpd_HS:
  1633. hsotg->gadget.speed = USB_SPEED_HIGH;
  1634. ep0_mps = EP0_MPS_LIMIT;
  1635. ep_mps = 512;
  1636. break;
  1637. case S3C_DSTS_EnumSpd_LS:
  1638. hsotg->gadget.speed = USB_SPEED_LOW;
  1639. /* note, we don't actually support LS in this driver at the
  1640. * moment, and the documentation seems to imply that it isn't
  1641. * supported by the PHYs on some of the devices.
  1642. */
  1643. break;
  1644. }
  1645. dev_info(hsotg->dev, "new device is %s\n",
  1646. usb_speed_string(hsotg->gadget.speed));
  1647. /* we should now know the maximum packet size for an
  1648. * endpoint, so set the endpoints to a default value. */
  1649. if (ep0_mps) {
  1650. int i;
  1651. s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps);
  1652. for (i = 1; i < S3C_HSOTG_EPS; i++)
  1653. s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps);
  1654. }
  1655. /* ensure after enumeration our EP0 is active */
  1656. s3c_hsotg_enqueue_setup(hsotg);
  1657. dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
  1658. readl(hsotg->regs + S3C_DIEPCTL0),
  1659. readl(hsotg->regs + S3C_DOEPCTL0));
  1660. }
  1661. /**
  1662. * kill_all_requests - remove all requests from the endpoint's queue
  1663. * @hsotg: The device state.
  1664. * @ep: The endpoint the requests may be on.
  1665. * @result: The result code to use.
  1666. * @force: Force removal of any current requests
  1667. *
  1668. * Go through the requests on the given endpoint and mark them
  1669. * completed with the given result code.
  1670. */
  1671. static void kill_all_requests(struct s3c_hsotg *hsotg,
  1672. struct s3c_hsotg_ep *ep,
  1673. int result, bool force)
  1674. {
  1675. struct s3c_hsotg_req *req, *treq;
  1676. unsigned long flags;
  1677. spin_lock_irqsave(&ep->lock, flags);
  1678. list_for_each_entry_safe(req, treq, &ep->queue, queue) {
  1679. /* currently, we can't do much about an already
  1680. * running request on an in endpoint */
  1681. if (ep->req == req && ep->dir_in && !force)
  1682. continue;
  1683. s3c_hsotg_complete_request(hsotg, ep, req,
  1684. result);
  1685. }
  1686. spin_unlock_irqrestore(&ep->lock, flags);
  1687. }
  1688. #define call_gadget(_hs, _entry) \
  1689. if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
  1690. (_hs)->driver && (_hs)->driver->_entry) \
  1691. (_hs)->driver->_entry(&(_hs)->gadget);
  1692. /**
  1693. * s3c_hsotg_disconnect_irq - disconnect irq service
  1694. * @hsotg: The device state.
  1695. *
  1696. * A disconnect IRQ has been received, meaning that the host has
  1697. * lost contact with the bus. Remove all current transactions
  1698. * and signal the gadget driver that this has happened.
  1699. */
  1700. static void s3c_hsotg_disconnect_irq(struct s3c_hsotg *hsotg)
  1701. {
  1702. unsigned ep;
  1703. for (ep = 0; ep < S3C_HSOTG_EPS; ep++)
  1704. kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN, true);
  1705. call_gadget(hsotg, disconnect);
  1706. }
  1707. /**
  1708. * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
  1709. * @hsotg: The device state:
  1710. * @periodic: True if this is a periodic FIFO interrupt
  1711. */
  1712. static void s3c_hsotg_irq_fifoempty(struct s3c_hsotg *hsotg, bool periodic)
  1713. {
  1714. struct s3c_hsotg_ep *ep;
  1715. int epno, ret;
  1716. /* look through for any more data to transmit */
  1717. for (epno = 0; epno < S3C_HSOTG_EPS; epno++) {
  1718. ep = &hsotg->eps[epno];
  1719. if (!ep->dir_in)
  1720. continue;
  1721. if ((periodic && !ep->periodic) ||
  1722. (!periodic && ep->periodic))
  1723. continue;
  1724. ret = s3c_hsotg_trytx(hsotg, ep);
  1725. if (ret < 0)
  1726. break;
  1727. }
  1728. }
  1729. static struct s3c_hsotg *our_hsotg;
  1730. /* IRQ flags which will trigger a retry around the IRQ loop */
  1731. #define IRQ_RETRY_MASK (S3C_GINTSTS_NPTxFEmp | \
  1732. S3C_GINTSTS_PTxFEmp | \
  1733. S3C_GINTSTS_RxFLvl)
  1734. /**
  1735. * s3c_hsotg_irq - handle device interrupt
  1736. * @irq: The IRQ number triggered
  1737. * @pw: The pw value when registered the handler.
  1738. */
  1739. static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
  1740. {
  1741. struct s3c_hsotg *hsotg = pw;
  1742. int retry_count = 8;
  1743. u32 gintsts;
  1744. u32 gintmsk;
  1745. irq_retry:
  1746. gintsts = readl(hsotg->regs + S3C_GINTSTS);
  1747. gintmsk = readl(hsotg->regs + S3C_GINTMSK);
  1748. dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
  1749. __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
  1750. gintsts &= gintmsk;
  1751. if (gintsts & S3C_GINTSTS_OTGInt) {
  1752. u32 otgint = readl(hsotg->regs + S3C_GOTGINT);
  1753. dev_info(hsotg->dev, "OTGInt: %08x\n", otgint);
  1754. writel(otgint, hsotg->regs + S3C_GOTGINT);
  1755. }
  1756. if (gintsts & S3C_GINTSTS_DisconnInt) {
  1757. dev_dbg(hsotg->dev, "%s: DisconnInt\n", __func__);
  1758. writel(S3C_GINTSTS_DisconnInt, hsotg->regs + S3C_GINTSTS);
  1759. s3c_hsotg_disconnect_irq(hsotg);
  1760. }
  1761. if (gintsts & S3C_GINTSTS_SessReqInt) {
  1762. dev_dbg(hsotg->dev, "%s: SessReqInt\n", __func__);
  1763. writel(S3C_GINTSTS_SessReqInt, hsotg->regs + S3C_GINTSTS);
  1764. }
  1765. if (gintsts & S3C_GINTSTS_EnumDone) {
  1766. writel(S3C_GINTSTS_EnumDone, hsotg->regs + S3C_GINTSTS);
  1767. s3c_hsotg_irq_enumdone(hsotg);
  1768. }
  1769. if (gintsts & S3C_GINTSTS_ConIDStsChng) {
  1770. dev_dbg(hsotg->dev, "ConIDStsChg (DSTS=0x%08x, GOTCTL=%08x)\n",
  1771. readl(hsotg->regs + S3C_DSTS),
  1772. readl(hsotg->regs + S3C_GOTGCTL));
  1773. writel(S3C_GINTSTS_ConIDStsChng, hsotg->regs + S3C_GINTSTS);
  1774. }
  1775. if (gintsts & (S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt)) {
  1776. u32 daint = readl(hsotg->regs + S3C_DAINT);
  1777. u32 daint_out = daint >> S3C_DAINT_OutEP_SHIFT;
  1778. u32 daint_in = daint & ~(daint_out << S3C_DAINT_OutEP_SHIFT);
  1779. int ep;
  1780. dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
  1781. for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) {
  1782. if (daint_out & 1)
  1783. s3c_hsotg_epint(hsotg, ep, 0);
  1784. }
  1785. for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) {
  1786. if (daint_in & 1)
  1787. s3c_hsotg_epint(hsotg, ep, 1);
  1788. }
  1789. }
  1790. if (gintsts & S3C_GINTSTS_USBRst) {
  1791. dev_info(hsotg->dev, "%s: USBRst\n", __func__);
  1792. dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
  1793. readl(hsotg->regs + S3C_GNPTXSTS));
  1794. writel(S3C_GINTSTS_USBRst, hsotg->regs + S3C_GINTSTS);
  1795. kill_all_requests(hsotg, &hsotg->eps[0], -ECONNRESET, true);
  1796. /* it seems after a reset we can end up with a situation
  1797. * where the TXFIFO still has data in it... the docs
  1798. * suggest resetting all the fifos, so use the init_fifo
  1799. * code to relayout and flush the fifos.
  1800. */
  1801. s3c_hsotg_init_fifo(hsotg);
  1802. s3c_hsotg_enqueue_setup(hsotg);
  1803. }
  1804. /* check both FIFOs */
  1805. if (gintsts & S3C_GINTSTS_NPTxFEmp) {
  1806. dev_dbg(hsotg->dev, "NPTxFEmp\n");
  1807. /* Disable the interrupt to stop it happening again
  1808. * unless one of these endpoint routines decides that
  1809. * it needs re-enabling */
  1810. s3c_hsotg_disable_gsint(hsotg, S3C_GINTSTS_NPTxFEmp);
  1811. s3c_hsotg_irq_fifoempty(hsotg, false);
  1812. }
  1813. if (gintsts & S3C_GINTSTS_PTxFEmp) {
  1814. dev_dbg(hsotg->dev, "PTxFEmp\n");
  1815. /* See note in S3C_GINTSTS_NPTxFEmp */
  1816. s3c_hsotg_disable_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
  1817. s3c_hsotg_irq_fifoempty(hsotg, true);
  1818. }
  1819. if (gintsts & S3C_GINTSTS_RxFLvl) {
  1820. /* note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
  1821. * we need to retry s3c_hsotg_handle_rx if this is still
  1822. * set. */
  1823. s3c_hsotg_handle_rx(hsotg);
  1824. }
  1825. if (gintsts & S3C_GINTSTS_ModeMis) {
  1826. dev_warn(hsotg->dev, "warning, mode mismatch triggered\n");
  1827. writel(S3C_GINTSTS_ModeMis, hsotg->regs + S3C_GINTSTS);
  1828. }
  1829. if (gintsts & S3C_GINTSTS_USBSusp) {
  1830. dev_info(hsotg->dev, "S3C_GINTSTS_USBSusp\n");
  1831. writel(S3C_GINTSTS_USBSusp, hsotg->regs + S3C_GINTSTS);
  1832. call_gadget(hsotg, suspend);
  1833. }
  1834. if (gintsts & S3C_GINTSTS_WkUpInt) {
  1835. dev_info(hsotg->dev, "S3C_GINTSTS_WkUpIn\n");
  1836. writel(S3C_GINTSTS_WkUpInt, hsotg->regs + S3C_GINTSTS);
  1837. call_gadget(hsotg, resume);
  1838. }
  1839. if (gintsts & S3C_GINTSTS_ErlySusp) {
  1840. dev_dbg(hsotg->dev, "S3C_GINTSTS_ErlySusp\n");
  1841. writel(S3C_GINTSTS_ErlySusp, hsotg->regs + S3C_GINTSTS);
  1842. }
  1843. /* these next two seem to crop-up occasionally causing the core
  1844. * to shutdown the USB transfer, so try clearing them and logging
  1845. * the occurrence. */
  1846. if (gintsts & S3C_GINTSTS_GOUTNakEff) {
  1847. dev_info(hsotg->dev, "GOUTNakEff triggered\n");
  1848. writel(S3C_DCTL_CGOUTNak, hsotg->regs + S3C_DCTL);
  1849. s3c_hsotg_dump(hsotg);
  1850. }
  1851. if (gintsts & S3C_GINTSTS_GINNakEff) {
  1852. dev_info(hsotg->dev, "GINNakEff triggered\n");
  1853. writel(S3C_DCTL_CGNPInNAK, hsotg->regs + S3C_DCTL);
  1854. s3c_hsotg_dump(hsotg);
  1855. }
  1856. /* if we've had fifo events, we should try and go around the
  1857. * loop again to see if there's any point in returning yet. */
  1858. if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
  1859. goto irq_retry;
  1860. return IRQ_HANDLED;
  1861. }
  1862. /**
  1863. * s3c_hsotg_ep_enable - enable the given endpoint
  1864. * @ep: The USB endpint to configure
  1865. * @desc: The USB endpoint descriptor to configure with.
  1866. *
  1867. * This is called from the USB gadget code's usb_ep_enable().
  1868. */
  1869. static int s3c_hsotg_ep_enable(struct usb_ep *ep,
  1870. const struct usb_endpoint_descriptor *desc)
  1871. {
  1872. struct s3c_hsotg_ep *hs_ep = our_ep(ep);
  1873. struct s3c_hsotg *hsotg = hs_ep->parent;
  1874. unsigned long flags;
  1875. int index = hs_ep->index;
  1876. u32 epctrl_reg;
  1877. u32 epctrl;
  1878. u32 mps;
  1879. int dir_in;
  1880. int ret = 0;
  1881. dev_dbg(hsotg->dev,
  1882. "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
  1883. __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
  1884. desc->wMaxPacketSize, desc->bInterval);
  1885. /* not to be called for EP0 */
  1886. WARN_ON(index == 0);
  1887. dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
  1888. if (dir_in != hs_ep->dir_in) {
  1889. dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
  1890. return -EINVAL;
  1891. }
  1892. mps = usb_endpoint_maxp(desc);
  1893. /* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */
  1894. epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
  1895. epctrl = readl(hsotg->regs + epctrl_reg);
  1896. dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
  1897. __func__, epctrl, epctrl_reg);
  1898. spin_lock_irqsave(&hs_ep->lock, flags);
  1899. epctrl &= ~(S3C_DxEPCTL_EPType_MASK | S3C_DxEPCTL_MPS_MASK);
  1900. epctrl |= S3C_DxEPCTL_MPS(mps);
  1901. /* mark the endpoint as active, otherwise the core may ignore
  1902. * transactions entirely for this endpoint */
  1903. epctrl |= S3C_DxEPCTL_USBActEp;
  1904. /* set the NAK status on the endpoint, otherwise we might try and
  1905. * do something with data that we've yet got a request to process
  1906. * since the RXFIFO will take data for an endpoint even if the
  1907. * size register hasn't been set.
  1908. */
  1909. epctrl |= S3C_DxEPCTL_SNAK;
  1910. /* update the endpoint state */
  1911. hs_ep->ep.maxpacket = mps;
  1912. /* default, set to non-periodic */
  1913. hs_ep->periodic = 0;
  1914. switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
  1915. case USB_ENDPOINT_XFER_ISOC:
  1916. dev_err(hsotg->dev, "no current ISOC support\n");
  1917. ret = -EINVAL;
  1918. goto out;
  1919. case USB_ENDPOINT_XFER_BULK:
  1920. epctrl |= S3C_DxEPCTL_EPType_Bulk;
  1921. break;
  1922. case USB_ENDPOINT_XFER_INT:
  1923. if (dir_in) {
  1924. /* Allocate our TxFNum by simply using the index
  1925. * of the endpoint for the moment. We could do
  1926. * something better if the host indicates how
  1927. * many FIFOs we are expecting to use. */
  1928. hs_ep->periodic = 1;
  1929. epctrl |= S3C_DxEPCTL_TxFNum(index);
  1930. }
  1931. epctrl |= S3C_DxEPCTL_EPType_Intterupt;
  1932. break;
  1933. case USB_ENDPOINT_XFER_CONTROL:
  1934. epctrl |= S3C_DxEPCTL_EPType_Control;
  1935. break;
  1936. }
  1937. /* if the hardware has dedicated fifos, we must give each IN EP
  1938. * a unique tx-fifo even if it is non-periodic.
  1939. */
  1940. if (dir_in && hsotg->dedicated_fifos)
  1941. epctrl |= S3C_DxEPCTL_TxFNum(index);
  1942. /* for non control endpoints, set PID to D0 */
  1943. if (index)
  1944. epctrl |= S3C_DxEPCTL_SetD0PID;
  1945. dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
  1946. __func__, epctrl);
  1947. writel(epctrl, hsotg->regs + epctrl_reg);
  1948. dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
  1949. __func__, readl(hsotg->regs + epctrl_reg));
  1950. /* enable the endpoint interrupt */
  1951. s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
  1952. out:
  1953. spin_unlock_irqrestore(&hs_ep->lock, flags);
  1954. return ret;
  1955. }
  1956. static int s3c_hsotg_ep_disable(struct usb_ep *ep)
  1957. {
  1958. struct s3c_hsotg_ep *hs_ep = our_ep(ep);
  1959. struct s3c_hsotg *hsotg = hs_ep->parent;
  1960. int dir_in = hs_ep->dir_in;
  1961. int index = hs_ep->index;
  1962. unsigned long flags;
  1963. u32 epctrl_reg;
  1964. u32 ctrl;
  1965. dev_info(hsotg->dev, "%s(ep %p)\n", __func__, ep);
  1966. if (ep == &hsotg->eps[0].ep) {
  1967. dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
  1968. return -EINVAL;
  1969. }
  1970. epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
  1971. /* terminate all requests with shutdown */
  1972. kill_all_requests(hsotg, hs_ep, -ESHUTDOWN, false);
  1973. spin_lock_irqsave(&hs_ep->lock, flags);
  1974. ctrl = readl(hsotg->regs + epctrl_reg);
  1975. ctrl &= ~S3C_DxEPCTL_EPEna;
  1976. ctrl &= ~S3C_DxEPCTL_USBActEp;
  1977. ctrl |= S3C_DxEPCTL_SNAK;
  1978. dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
  1979. writel(ctrl, hsotg->regs + epctrl_reg);
  1980. /* disable endpoint interrupts */
  1981. s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
  1982. spin_unlock_irqrestore(&hs_ep->lock, flags);
  1983. return 0;
  1984. }
  1985. /**
  1986. * on_list - check request is on the given endpoint
  1987. * @ep: The endpoint to check.
  1988. * @test: The request to test if it is on the endpoint.
  1989. */
  1990. static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
  1991. {
  1992. struct s3c_hsotg_req *req, *treq;
  1993. list_for_each_entry_safe(req, treq, &ep->queue, queue) {
  1994. if (req == test)
  1995. return true;
  1996. }
  1997. return false;
  1998. }
  1999. static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
  2000. {
  2001. struct s3c_hsotg_req *hs_req = our_req(req);
  2002. struct s3c_hsotg_ep *hs_ep = our_ep(ep);
  2003. struct s3c_hsotg *hs = hs_ep->parent;
  2004. unsigned long flags;
  2005. dev_info(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
  2006. spin_lock_irqsave(&hs_ep->lock, flags);
  2007. if (!on_list(hs_ep, hs_req)) {
  2008. spin_unlock_irqrestore(&hs_ep->lock, flags);
  2009. return -EINVAL;
  2010. }
  2011. s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
  2012. spin_unlock_irqrestore(&hs_ep->lock, flags);
  2013. return 0;
  2014. }
  2015. static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
  2016. {
  2017. struct s3c_hsotg_ep *hs_ep = our_ep(ep);
  2018. struct s3c_hsotg *hs = hs_ep->parent;
  2019. int index = hs_ep->index;
  2020. unsigned long irqflags;
  2021. u32 epreg;
  2022. u32 epctl;
  2023. u32 xfertype;
  2024. dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
  2025. spin_lock_irqsave(&hs_ep->lock, irqflags);
  2026. /* write both IN and OUT control registers */
  2027. epreg = S3C_DIEPCTL(index);
  2028. epctl = readl(hs->regs + epreg);
  2029. if (value) {
  2030. epctl |= S3C_DxEPCTL_Stall + S3C_DxEPCTL_SNAK;
  2031. if (epctl & S3C_DxEPCTL_EPEna)
  2032. epctl |= S3C_DxEPCTL_EPDis;
  2033. } else {
  2034. epctl &= ~S3C_DxEPCTL_Stall;
  2035. xfertype = epctl & S3C_DxEPCTL_EPType_MASK;
  2036. if (xfertype == S3C_DxEPCTL_EPType_Bulk ||
  2037. xfertype == S3C_DxEPCTL_EPType_Intterupt)
  2038. epctl |= S3C_DxEPCTL_SetD0PID;
  2039. }
  2040. writel(epctl, hs->regs + epreg);
  2041. epreg = S3C_DOEPCTL(index);
  2042. epctl = readl(hs->regs + epreg);
  2043. if (value)
  2044. epctl |= S3C_DxEPCTL_Stall;
  2045. else {
  2046. epctl &= ~S3C_DxEPCTL_Stall;
  2047. xfertype = epctl & S3C_DxEPCTL_EPType_MASK;
  2048. if (xfertype == S3C_DxEPCTL_EPType_Bulk ||
  2049. xfertype == S3C_DxEPCTL_EPType_Intterupt)
  2050. epctl |= S3C_DxEPCTL_SetD0PID;
  2051. }
  2052. writel(epctl, hs->regs + epreg);
  2053. spin_unlock_irqrestore(&hs_ep->lock, irqflags);
  2054. return 0;
  2055. }
  2056. static struct usb_ep_ops s3c_hsotg_ep_ops = {
  2057. .enable = s3c_hsotg_ep_enable,
  2058. .disable = s3c_hsotg_ep_disable,
  2059. .alloc_request = s3c_hsotg_ep_alloc_request,
  2060. .free_request = s3c_hsotg_ep_free_request,
  2061. .queue = s3c_hsotg_ep_queue,
  2062. .dequeue = s3c_hsotg_ep_dequeue,
  2063. .set_halt = s3c_hsotg_ep_sethalt,
  2064. /* note, don't believe we have any call for the fifo routines */
  2065. };
  2066. /**
  2067. * s3c_hsotg_corereset - issue softreset to the core
  2068. * @hsotg: The device state
  2069. *
  2070. * Issue a soft reset to the core, and await the core finishing it.
  2071. */
  2072. static int s3c_hsotg_corereset(struct s3c_hsotg *hsotg)
  2073. {
  2074. int timeout;
  2075. u32 grstctl;
  2076. dev_dbg(hsotg->dev, "resetting core\n");
  2077. /* issue soft reset */
  2078. writel(S3C_GRSTCTL_CSftRst, hsotg->regs + S3C_GRSTCTL);
  2079. timeout = 1000;
  2080. do {
  2081. grstctl = readl(hsotg->regs + S3C_GRSTCTL);
  2082. } while ((grstctl & S3C_GRSTCTL_CSftRst) && timeout-- > 0);
  2083. if (grstctl & S3C_GRSTCTL_CSftRst) {
  2084. dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
  2085. return -EINVAL;
  2086. }
  2087. timeout = 1000;
  2088. while (1) {
  2089. u32 grstctl = readl(hsotg->regs + S3C_GRSTCTL);
  2090. if (timeout-- < 0) {
  2091. dev_info(hsotg->dev,
  2092. "%s: reset failed, GRSTCTL=%08x\n",
  2093. __func__, grstctl);
  2094. return -ETIMEDOUT;
  2095. }
  2096. if (!(grstctl & S3C_GRSTCTL_AHBIdle))
  2097. continue;
  2098. break; /* reset done */
  2099. }
  2100. dev_dbg(hsotg->dev, "reset successful\n");
  2101. return 0;
  2102. }
  2103. /**
  2104. * s3c_hsotg_phy_enable - enable platform phy dev
  2105. *
  2106. * @param: The driver state
  2107. *
  2108. * A wrapper for platform code responsible for controlling
  2109. * low-level USB code
  2110. */
  2111. static void s3c_hsotg_phy_enable(struct s3c_hsotg *hsotg)
  2112. {
  2113. struct platform_device *pdev = to_platform_device(hsotg->dev);
  2114. dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev);
  2115. if (hsotg->plat->phy_init)
  2116. hsotg->plat->phy_init(pdev, hsotg->plat->phy_type);
  2117. }
  2118. /**
  2119. * s3c_hsotg_phy_disable - disable platform phy dev
  2120. *
  2121. * @param: The driver state
  2122. *
  2123. * A wrapper for platform code responsible for controlling
  2124. * low-level USB code
  2125. */
  2126. static void s3c_hsotg_phy_disable(struct s3c_hsotg *hsotg)
  2127. {
  2128. struct platform_device *pdev = to_platform_device(hsotg->dev);
  2129. if (hsotg->plat->phy_exit)
  2130. hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type);
  2131. }
  2132. static int s3c_hsotg_start(struct usb_gadget_driver *driver,
  2133. int (*bind)(struct usb_gadget *))
  2134. {
  2135. struct s3c_hsotg *hsotg = our_hsotg;
  2136. int ret;
  2137. if (!hsotg) {
  2138. printk(KERN_ERR "%s: called with no device\n", __func__);
  2139. return -ENODEV;
  2140. }
  2141. if (!driver) {
  2142. dev_err(hsotg->dev, "%s: no driver\n", __func__);
  2143. return -EINVAL;
  2144. }
  2145. if (driver->max_speed < USB_SPEED_FULL)
  2146. dev_err(hsotg->dev, "%s: bad speed\n", __func__);
  2147. if (!bind || !driver->setup) {
  2148. dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
  2149. return -EINVAL;
  2150. }
  2151. WARN_ON(hsotg->driver);
  2152. driver->driver.bus = NULL;
  2153. hsotg->driver = driver;
  2154. hsotg->gadget.dev.driver = &driver->driver;
  2155. hsotg->gadget.dev.dma_mask = hsotg->dev->dma_mask;
  2156. hsotg->gadget.speed = USB_SPEED_UNKNOWN;
  2157. ret = device_add(&hsotg->gadget.dev);
  2158. if (ret) {
  2159. dev_err(hsotg->dev, "failed to register gadget device\n");
  2160. goto err;
  2161. }
  2162. ret = bind(&hsotg->gadget);
  2163. if (ret) {
  2164. dev_err(hsotg->dev, "failed bind %s\n", driver->driver.name);
  2165. hsotg->gadget.dev.driver = NULL;
  2166. hsotg->driver = NULL;
  2167. goto err;
  2168. }
  2169. /* we must now enable ep0 ready for host detection and then
  2170. * set configuration. */
  2171. s3c_hsotg_corereset(hsotg);
  2172. /* set the PLL on, remove the HNP/SRP and set the PHY */
  2173. writel(S3C_GUSBCFG_PHYIf16 | S3C_GUSBCFG_TOutCal(7) |
  2174. (0x5 << 10), hsotg->regs + S3C_GUSBCFG);
  2175. /* looks like soft-reset changes state of FIFOs */
  2176. s3c_hsotg_init_fifo(hsotg);
  2177. __orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);
  2178. writel(1 << 18 | S3C_DCFG_DevSpd_HS, hsotg->regs + S3C_DCFG);
  2179. /* Clear any pending OTG interrupts */
  2180. writel(0xffffffff, hsotg->regs + S3C_GOTGINT);
  2181. /* Clear any pending interrupts */
  2182. writel(0xffffffff, hsotg->regs + S3C_GINTSTS);
  2183. writel(S3C_GINTSTS_DisconnInt | S3C_GINTSTS_SessReqInt |
  2184. S3C_GINTSTS_ConIDStsChng | S3C_GINTSTS_USBRst |
  2185. S3C_GINTSTS_EnumDone | S3C_GINTSTS_OTGInt |
  2186. S3C_GINTSTS_USBSusp | S3C_GINTSTS_WkUpInt |
  2187. S3C_GINTSTS_GOUTNakEff | S3C_GINTSTS_GINNakEff |
  2188. S3C_GINTSTS_ErlySusp,
  2189. hsotg->regs + S3C_GINTMSK);
  2190. if (using_dma(hsotg))
  2191. writel(S3C_GAHBCFG_GlblIntrEn | S3C_GAHBCFG_DMAEn |
  2192. S3C_GAHBCFG_HBstLen_Incr4,
  2193. hsotg->regs + S3C_GAHBCFG);
  2194. else
  2195. writel(S3C_GAHBCFG_GlblIntrEn, hsotg->regs + S3C_GAHBCFG);
  2196. /* Enabling INTknTXFEmpMsk here seems to be a big mistake, we end
  2197. * up being flooded with interrupts if the host is polling the
  2198. * endpoint to try and read data. */
  2199. writel(S3C_DIEPMSK_TimeOUTMsk | S3C_DIEPMSK_AHBErrMsk |
  2200. S3C_DIEPMSK_INTknEPMisMsk |
  2201. S3C_DIEPMSK_EPDisbldMsk | S3C_DIEPMSK_XferComplMsk |
  2202. ((hsotg->dedicated_fifos) ? S3C_DIEPMSK_TxFIFOEmpty : 0),
  2203. hsotg->regs + S3C_DIEPMSK);
  2204. /* don't need XferCompl, we get that from RXFIFO in slave mode. In
  2205. * DMA mode we may need this. */
  2206. writel(S3C_DOEPMSK_SetupMsk | S3C_DOEPMSK_AHBErrMsk |
  2207. S3C_DOEPMSK_EPDisbldMsk |
  2208. (using_dma(hsotg) ? (S3C_DIEPMSK_XferComplMsk |
  2209. S3C_DIEPMSK_TimeOUTMsk) : 0),
  2210. hsotg->regs + S3C_DOEPMSK);
  2211. writel(0, hsotg->regs + S3C_DAINTMSK);
  2212. dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
  2213. readl(hsotg->regs + S3C_DIEPCTL0),
  2214. readl(hsotg->regs + S3C_DOEPCTL0));
  2215. /* enable in and out endpoint interrupts */
  2216. s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt);
  2217. /* Enable the RXFIFO when in slave mode, as this is how we collect
  2218. * the data. In DMA mode, we get events from the FIFO but also
  2219. * things we cannot process, so do not use it. */
  2220. if (!using_dma(hsotg))
  2221. s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_RxFLvl);
  2222. /* Enable interrupts for EP0 in and out */
  2223. s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
  2224. s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);
  2225. __orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_PWROnPrgDone);
  2226. udelay(10); /* see openiboot */
  2227. __bic32(hsotg->regs + S3C_DCTL, S3C_DCTL_PWROnPrgDone);
  2228. dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + S3C_DCTL));
  2229. /* S3C_DxEPCTL_USBActEp says RO in manual, but seems to be set by
  2230. writing to the EPCTL register.. */
  2231. /* set to read 1 8byte packet */
  2232. writel(S3C_DxEPTSIZ_MC(1) | S3C_DxEPTSIZ_PktCnt(1) |
  2233. S3C_DxEPTSIZ_XferSize(8), hsotg->regs + DOEPTSIZ0);
  2234. writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
  2235. S3C_DxEPCTL_CNAK | S3C_DxEPCTL_EPEna |
  2236. S3C_DxEPCTL_USBActEp,
  2237. hsotg->regs + S3C_DOEPCTL0);
  2238. /* enable, but don't activate EP0in */
  2239. writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
  2240. S3C_DxEPCTL_USBActEp, hsotg->regs + S3C_DIEPCTL0);
  2241. s3c_hsotg_enqueue_setup(hsotg);
  2242. dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
  2243. readl(hsotg->regs + S3C_DIEPCTL0),
  2244. readl(hsotg->regs + S3C_DOEPCTL0));
  2245. /* clear global NAKs */
  2246. writel(S3C_DCTL_CGOUTNak | S3C_DCTL_CGNPInNAK,
  2247. hsotg->regs + S3C_DCTL);
  2248. /* must be at-least 3ms to allow bus to see disconnect */
  2249. msleep(3);
  2250. /* remove the soft-disconnect and let's go */
  2251. __bic32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);
  2252. /* report to the user, and return */
  2253. dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
  2254. return 0;
  2255. err:
  2256. hsotg->driver = NULL;
  2257. hsotg->gadget.dev.driver = NULL;
  2258. return ret;
  2259. }
  2260. static int s3c_hsotg_stop(struct usb_gadget_driver *driver)
  2261. {
  2262. struct s3c_hsotg *hsotg = our_hsotg;
  2263. int ep;
  2264. if (!hsotg)
  2265. return -ENODEV;
  2266. if (!driver || driver != hsotg->driver || !driver->unbind)
  2267. return -EINVAL;
  2268. /* all endpoints should be shutdown */
  2269. for (ep = 0; ep < S3C_HSOTG_EPS; ep++)
  2270. s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);
  2271. call_gadget(hsotg, disconnect);
  2272. driver->unbind(&hsotg->gadget);
  2273. hsotg->driver = NULL;
  2274. hsotg->gadget.speed = USB_SPEED_UNKNOWN;
  2275. device_del(&hsotg->gadget.dev);
  2276. dev_info(hsotg->dev, "unregistered gadget driver '%s'\n",
  2277. driver->driver.name);
  2278. return 0;
  2279. }
  2280. static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
  2281. {
  2282. return s3c_hsotg_read_frameno(to_hsotg(gadget));
  2283. }
  2284. static struct usb_gadget_ops s3c_hsotg_gadget_ops = {
  2285. .get_frame = s3c_hsotg_gadget_getframe,
  2286. .start = s3c_hsotg_start,
  2287. .stop = s3c_hsotg_stop,
  2288. };
  2289. /**
  2290. * s3c_hsotg_initep - initialise a single endpoint
  2291. * @hsotg: The device state.
  2292. * @hs_ep: The endpoint to be initialised.
  2293. * @epnum: The endpoint number
  2294. *
  2295. * Initialise the given endpoint (as part of the probe and device state
  2296. * creation) to give to the gadget driver. Setup the endpoint name, any
  2297. * direction information and other state that may be required.
  2298. */
  2299. static void __devinit s3c_hsotg_initep(struct s3c_hsotg *hsotg,
  2300. struct s3c_hsotg_ep *hs_ep,
  2301. int epnum)
  2302. {
  2303. u32 ptxfifo;
  2304. char *dir;
  2305. if (epnum == 0)
  2306. dir = "";
  2307. else if ((epnum % 2) == 0) {
  2308. dir = "out";
  2309. } else {
  2310. dir = "in";
  2311. hs_ep->dir_in = 1;
  2312. }
  2313. hs_ep->index = epnum;
  2314. snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
  2315. INIT_LIST_HEAD(&hs_ep->queue);
  2316. INIT_LIST_HEAD(&hs_ep->ep.ep_list);
  2317. spin_lock_init(&hs_ep->lock);
  2318. /* add to the list of endpoints known by the gadget driver */
  2319. if (epnum)
  2320. list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
  2321. hs_ep->parent = hsotg;
  2322. hs_ep->ep.name = hs_ep->name;
  2323. hs_ep->ep.maxpacket = epnum ? 512 : EP0_MPS_LIMIT;
  2324. hs_ep->ep.ops = &s3c_hsotg_ep_ops;
  2325. /* Read the FIFO size for the Periodic TX FIFO, even if we're
  2326. * an OUT endpoint, we may as well do this if in future the
  2327. * code is changed to make each endpoint's direction changeable.
  2328. */
  2329. ptxfifo = readl(hsotg->regs + S3C_DPTXFSIZn(epnum));
  2330. hs_ep->fifo_size = S3C_DPTXFSIZn_DPTxFSize_GET(ptxfifo) * 4;
  2331. /* if we're using dma, we need to set the next-endpoint pointer
  2332. * to be something valid.
  2333. */
  2334. if (using_dma(hsotg)) {
  2335. u32 next = S3C_DxEPCTL_NextEp((epnum + 1) % 15);
  2336. writel(next, hsotg->regs + S3C_DIEPCTL(epnum));
  2337. writel(next, hsotg->regs + S3C_DOEPCTL(epnum));
  2338. }
  2339. }
  2340. static void s3c_hsotg_init(struct s3c_hsotg *hsotg)
  2341. {
  2342. u32 cfg4;
  2343. /* unmask subset of endpoint interrupts */
  2344. writel(S3C_DIEPMSK_TimeOUTMsk | S3C_DIEPMSK_AHBErrMsk |
  2345. S3C_DIEPMSK_EPDisbldMsk | S3C_DIEPMSK_XferComplMsk,
  2346. hsotg->regs + S3C_DIEPMSK);
  2347. writel(S3C_DOEPMSK_SetupMsk | S3C_DOEPMSK_AHBErrMsk |
  2348. S3C_DOEPMSK_EPDisbldMsk | S3C_DOEPMSK_XferComplMsk,
  2349. hsotg->regs + S3C_DOEPMSK);
  2350. writel(0, hsotg->regs + S3C_DAINTMSK);
  2351. /* Be in disconnected state until gadget is registered */
  2352. __orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);
  2353. if (0) {
  2354. /* post global nak until we're ready */
  2355. writel(S3C_DCTL_SGNPInNAK | S3C_DCTL_SGOUTNak,
  2356. hsotg->regs + S3C_DCTL);
  2357. }
  2358. /* setup fifos */
  2359. dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
  2360. readl(hsotg->regs + S3C_GRXFSIZ),
  2361. readl(hsotg->regs + S3C_GNPTXFSIZ));
  2362. s3c_hsotg_init_fifo(hsotg);
  2363. /* set the PLL on, remove the HNP/SRP and set the PHY */
  2364. writel(S3C_GUSBCFG_PHYIf16 | S3C_GUSBCFG_TOutCal(7) | (0x5 << 10),
  2365. hsotg->regs + S3C_GUSBCFG);
  2366. writel(using_dma(hsotg) ? S3C_GAHBCFG_DMAEn : 0x0,
  2367. hsotg->regs + S3C_GAHBCFG);
  2368. /* check hardware configuration */
  2369. cfg4 = readl(hsotg->regs + 0x50);
  2370. hsotg->dedicated_fifos = (cfg4 >> 25) & 1;
  2371. dev_info(hsotg->dev, "%s fifos\n",
  2372. hsotg->dedicated_fifos ? "dedicated" : "shared");
  2373. }
  2374. static void s3c_hsotg_dump(struct s3c_hsotg *hsotg)
  2375. {
  2376. #ifdef DEBUG
  2377. struct device *dev = hsotg->dev;
  2378. void __iomem *regs = hsotg->regs;
  2379. u32 val;
  2380. int idx;
  2381. dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
  2382. readl(regs + S3C_DCFG), readl(regs + S3C_DCTL),
  2383. readl(regs + S3C_DIEPMSK));
  2384. dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
  2385. readl(regs + S3C_GAHBCFG), readl(regs + 0x44));
  2386. dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
  2387. readl(regs + S3C_GRXFSIZ), readl(regs + S3C_GNPTXFSIZ));
  2388. /* show periodic fifo settings */
  2389. for (idx = 1; idx <= 15; idx++) {
  2390. val = readl(regs + S3C_DPTXFSIZn(idx));
  2391. dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
  2392. val >> S3C_DPTXFSIZn_DPTxFSize_SHIFT,
  2393. val & S3C_DPTXFSIZn_DPTxFStAddr_MASK);
  2394. }
  2395. for (idx = 0; idx < 15; idx++) {
  2396. dev_info(dev,
  2397. "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
  2398. readl(regs + S3C_DIEPCTL(idx)),
  2399. readl(regs + S3C_DIEPTSIZ(idx)),
  2400. readl(regs + S3C_DIEPDMA(idx)));
  2401. val = readl(regs + S3C_DOEPCTL(idx));
  2402. dev_info(dev,
  2403. "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
  2404. idx, readl(regs + S3C_DOEPCTL(idx)),
  2405. readl(regs + S3C_DOEPTSIZ(idx)),
  2406. readl(regs + S3C_DOEPDMA(idx)));
  2407. }
  2408. dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
  2409. readl(regs + S3C_DVBUSDIS), readl(regs + S3C_DVBUSPULSE));
  2410. #endif
  2411. }
  2412. /**
  2413. * state_show - debugfs: show overall driver and device state.
  2414. * @seq: The seq file to write to.
  2415. * @v: Unused parameter.
  2416. *
  2417. * This debugfs entry shows the overall state of the hardware and
  2418. * some general information about each of the endpoints available
  2419. * to the system.
  2420. */
  2421. static int state_show(struct seq_file *seq, void *v)
  2422. {
  2423. struct s3c_hsotg *hsotg = seq->private;
  2424. void __iomem *regs = hsotg->regs;
  2425. int idx;
  2426. seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
  2427. readl(regs + S3C_DCFG),
  2428. readl(regs + S3C_DCTL),
  2429. readl(regs + S3C_DSTS));
  2430. seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
  2431. readl(regs + S3C_DIEPMSK), readl(regs + S3C_DOEPMSK));
  2432. seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
  2433. readl(regs + S3C_GINTMSK),
  2434. readl(regs + S3C_GINTSTS));
  2435. seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
  2436. readl(regs + S3C_DAINTMSK),
  2437. readl(regs + S3C_DAINT));
  2438. seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
  2439. readl(regs + S3C_GNPTXSTS),
  2440. readl(regs + S3C_GRXSTSR));
  2441. seq_printf(seq, "\nEndpoint status:\n");
  2442. for (idx = 0; idx < 15; idx++) {
  2443. u32 in, out;
  2444. in = readl(regs + S3C_DIEPCTL(idx));
  2445. out = readl(regs + S3C_DOEPCTL(idx));
  2446. seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
  2447. idx, in, out);
  2448. in = readl(regs + S3C_DIEPTSIZ(idx));
  2449. out = readl(regs + S3C_DOEPTSIZ(idx));
  2450. seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
  2451. in, out);
  2452. seq_printf(seq, "\n");
  2453. }
  2454. return 0;
  2455. }
  2456. static int state_open(struct inode *inode, struct file *file)
  2457. {
  2458. return single_open(file, state_show, inode->i_private);
  2459. }
  2460. static const struct file_operations state_fops = {
  2461. .owner = THIS_MODULE,
  2462. .open = state_open,
  2463. .read = seq_read,
  2464. .llseek = seq_lseek,
  2465. .release = single_release,
  2466. };
  2467. /**
  2468. * fifo_show - debugfs: show the fifo information
  2469. * @seq: The seq_file to write data to.
  2470. * @v: Unused parameter.
  2471. *
  2472. * Show the FIFO information for the overall fifo and all the
  2473. * periodic transmission FIFOs.
  2474. */
  2475. static int fifo_show(struct seq_file *seq, void *v)
  2476. {
  2477. struct s3c_hsotg *hsotg = seq->private;
  2478. void __iomem *regs = hsotg->regs;
  2479. u32 val;
  2480. int idx;
  2481. seq_printf(seq, "Non-periodic FIFOs:\n");
  2482. seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + S3C_GRXFSIZ));
  2483. val = readl(regs + S3C_GNPTXFSIZ);
  2484. seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
  2485. val >> S3C_GNPTXFSIZ_NPTxFDep_SHIFT,
  2486. val & S3C_GNPTXFSIZ_NPTxFStAddr_MASK);
  2487. seq_printf(seq, "\nPeriodic TXFIFOs:\n");
  2488. for (idx = 1; idx <= 15; idx++) {
  2489. val = readl(regs + S3C_DPTXFSIZn(idx));
  2490. seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
  2491. val >> S3C_DPTXFSIZn_DPTxFSize_SHIFT,
  2492. val & S3C_DPTXFSIZn_DPTxFStAddr_MASK);
  2493. }
  2494. return 0;
  2495. }
  2496. static int fifo_open(struct inode *inode, struct file *file)
  2497. {
  2498. return single_open(file, fifo_show, inode->i_private);
  2499. }
  2500. static const struct file_operations fifo_fops = {
  2501. .owner = THIS_MODULE,
  2502. .open = fifo_open,
  2503. .read = seq_read,
  2504. .llseek = seq_lseek,
  2505. .release = single_release,
  2506. };
  2507. static const char *decode_direction(int is_in)
  2508. {
  2509. return is_in ? "in" : "out";
  2510. }
  2511. /**
  2512. * ep_show - debugfs: show the state of an endpoint.
  2513. * @seq: The seq_file to write data to.
  2514. * @v: Unused parameter.
  2515. *
  2516. * This debugfs entry shows the state of the given endpoint (one is
  2517. * registered for each available).
  2518. */
  2519. static int ep_show(struct seq_file *seq, void *v)
  2520. {
  2521. struct s3c_hsotg_ep *ep = seq->private;
  2522. struct s3c_hsotg *hsotg = ep->parent;
  2523. struct s3c_hsotg_req *req;
  2524. void __iomem *regs = hsotg->regs;
  2525. int index = ep->index;
  2526. int show_limit = 15;
  2527. unsigned long flags;
  2528. seq_printf(seq, "Endpoint index %d, named %s, dir %s:\n",
  2529. ep->index, ep->ep.name, decode_direction(ep->dir_in));
  2530. /* first show the register state */
  2531. seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
  2532. readl(regs + S3C_DIEPCTL(index)),
  2533. readl(regs + S3C_DOEPCTL(index)));
  2534. seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
  2535. readl(regs + S3C_DIEPDMA(index)),
  2536. readl(regs + S3C_DOEPDMA(index)));
  2537. seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
  2538. readl(regs + S3C_DIEPINT(index)),
  2539. readl(regs + S3C_DOEPINT(index)));
  2540. seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
  2541. readl(regs + S3C_DIEPTSIZ(index)),
  2542. readl(regs + S3C_DOEPTSIZ(index)));
  2543. seq_printf(seq, "\n");
  2544. seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
  2545. seq_printf(seq, "total_data=%ld\n", ep->total_data);
  2546. seq_printf(seq, "request list (%p,%p):\n",
  2547. ep->queue.next, ep->queue.prev);
  2548. spin_lock_irqsave(&ep->lock, flags);
  2549. list_for_each_entry(req, &ep->queue, queue) {
  2550. if (--show_limit < 0) {
  2551. seq_printf(seq, "not showing more requests...\n");
  2552. break;
  2553. }
  2554. seq_printf(seq, "%c req %p: %d bytes @%p, ",
  2555. req == ep->req ? '*' : ' ',
  2556. req, req->req.length, req->req.buf);
  2557. seq_printf(seq, "%d done, res %d\n",
  2558. req->req.actual, req->req.status);
  2559. }
  2560. spin_unlock_irqrestore(&ep->lock, flags);
  2561. return 0;
  2562. }
  2563. static int ep_open(struct inode *inode, struct file *file)
  2564. {
  2565. return single_open(file, ep_show, inode->i_private);
  2566. }
  2567. static const struct file_operations ep_fops = {
  2568. .owner = THIS_MODULE,
  2569. .open = ep_open,
  2570. .read = seq_read,
  2571. .llseek = seq_lseek,
  2572. .release = single_release,
  2573. };
  2574. /**
  2575. * s3c_hsotg_create_debug - create debugfs directory and files
  2576. * @hsotg: The driver state
  2577. *
  2578. * Create the debugfs files to allow the user to get information
  2579. * about the state of the system. The directory name is created
  2580. * with the same name as the device itself, in case we end up
  2581. * with multiple blocks in future systems.
  2582. */
  2583. static void __devinit s3c_hsotg_create_debug(struct s3c_hsotg *hsotg)
  2584. {
  2585. struct dentry *root;
  2586. unsigned epidx;
  2587. root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
  2588. hsotg->debug_root = root;
  2589. if (IS_ERR(root)) {
  2590. dev_err(hsotg->dev, "cannot create debug root\n");
  2591. return;
  2592. }
  2593. /* create general state file */
  2594. hsotg->debug_file = debugfs_create_file("state", 0444, root,
  2595. hsotg, &state_fops);
  2596. if (IS_ERR(hsotg->debug_file))
  2597. dev_err(hsotg->dev, "%s: failed to create state\n", __func__);
  2598. hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
  2599. hsotg, &fifo_fops);
  2600. if (IS_ERR(hsotg->debug_fifo))
  2601. dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);
  2602. /* create one file for each endpoint */
  2603. for (epidx = 0; epidx < S3C_HSOTG_EPS; epidx++) {
  2604. struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
  2605. ep->debugfs = debugfs_create_file(ep->name, 0444,
  2606. root, ep, &ep_fops);
  2607. if (IS_ERR(ep->debugfs))
  2608. dev_err(hsotg->dev, "failed to create %s debug file\n",
  2609. ep->name);
  2610. }
  2611. }
  2612. /**
  2613. * s3c_hsotg_delete_debug - cleanup debugfs entries
  2614. * @hsotg: The driver state
  2615. *
  2616. * Cleanup (remove) the debugfs files for use on module exit.
  2617. */
  2618. static void __devexit s3c_hsotg_delete_debug(struct s3c_hsotg *hsotg)
  2619. {
  2620. unsigned epidx;
  2621. for (epidx = 0; epidx < S3C_HSOTG_EPS; epidx++) {
  2622. struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
  2623. debugfs_remove(ep->debugfs);
  2624. }
  2625. debugfs_remove(hsotg->debug_file);
  2626. debugfs_remove(hsotg->debug_fifo);
  2627. debugfs_remove(hsotg->debug_root);
  2628. }
  2629. static int __devinit s3c_hsotg_probe(struct platform_device *pdev)
  2630. {
  2631. struct s3c_hsotg_plat *plat = pdev->dev.platform_data;
  2632. struct device *dev = &pdev->dev;
  2633. struct s3c_hsotg *hsotg;
  2634. struct resource *res;
  2635. int epnum;
  2636. int ret;
  2637. int i;
  2638. plat = pdev->dev.platform_data;
  2639. if (!plat) {
  2640. dev_err(&pdev->dev, "no platform data defined\n");
  2641. return -EINVAL;
  2642. }
  2643. hsotg = kzalloc(sizeof(struct s3c_hsotg) +
  2644. sizeof(struct s3c_hsotg_ep) * S3C_HSOTG_EPS,
  2645. GFP_KERNEL);
  2646. if (!hsotg) {
  2647. dev_err(dev, "cannot get memory\n");
  2648. return -ENOMEM;
  2649. }
  2650. hsotg->dev = dev;
  2651. hsotg->plat = plat;
  2652. hsotg->clk = clk_get(&pdev->dev, "otg");
  2653. if (IS_ERR(hsotg->clk)) {
  2654. dev_err(dev, "cannot get otg clock\n");
  2655. ret = PTR_ERR(hsotg->clk);
  2656. goto err_mem;
  2657. }
  2658. platform_set_drvdata(pdev, hsotg);
  2659. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  2660. if (!res) {
  2661. dev_err(dev, "cannot find register resource 0\n");
  2662. ret = -EINVAL;
  2663. goto err_clk;
  2664. }
  2665. hsotg->regs_res = request_mem_region(res->start, resource_size(res),
  2666. dev_name(dev));
  2667. if (!hsotg->regs_res) {
  2668. dev_err(dev, "cannot reserve registers\n");
  2669. ret = -ENOENT;
  2670. goto err_clk;
  2671. }
  2672. hsotg->regs = ioremap(res->start, resource_size(res));
  2673. if (!hsotg->regs) {
  2674. dev_err(dev, "cannot map registers\n");
  2675. ret = -ENXIO;
  2676. goto err_regs_res;
  2677. }
  2678. ret = platform_get_irq(pdev, 0);
  2679. if (ret < 0) {
  2680. dev_err(dev, "cannot find IRQ\n");
  2681. goto err_regs;
  2682. }
  2683. hsotg->irq = ret;
  2684. ret = request_irq(ret, s3c_hsotg_irq, 0, dev_name(dev), hsotg);
  2685. if (ret < 0) {
  2686. dev_err(dev, "cannot claim IRQ\n");
  2687. goto err_regs;
  2688. }
  2689. dev_info(dev, "regs %p, irq %d\n", hsotg->regs, hsotg->irq);
  2690. device_initialize(&hsotg->gadget.dev);
  2691. dev_set_name(&hsotg->gadget.dev, "gadget");
  2692. hsotg->gadget.max_speed = USB_SPEED_HIGH;
  2693. hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
  2694. hsotg->gadget.name = dev_name(dev);
  2695. hsotg->gadget.dev.parent = dev;
  2696. hsotg->gadget.dev.dma_mask = dev->dma_mask;
  2697. /* setup endpoint information */
  2698. INIT_LIST_HEAD(&hsotg->gadget.ep_list);
  2699. hsotg->gadget.ep0 = &hsotg->eps[0].ep;
  2700. /* allocate EP0 request */
  2701. hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep,
  2702. GFP_KERNEL);
  2703. if (!hsotg->ctrl_req) {
  2704. dev_err(dev, "failed to allocate ctrl req\n");
  2705. goto err_regs;
  2706. }
  2707. /* reset the system */
  2708. clk_enable(hsotg->clk);
  2709. /* regulators */
  2710. for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++)
  2711. hsotg->supplies[i].supply = s3c_hsotg_supply_names[i];
  2712. ret = regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies),
  2713. hsotg->supplies);
  2714. if (ret) {
  2715. dev_err(dev, "failed to request supplies: %d\n", ret);
  2716. goto err_supplies;
  2717. }
  2718. ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
  2719. hsotg->supplies);
  2720. if (ret) {
  2721. dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
  2722. goto err_supplies;
  2723. }
  2724. /* usb phy enable */
  2725. s3c_hsotg_phy_enable(hsotg);
  2726. s3c_hsotg_corereset(hsotg);
  2727. s3c_hsotg_init(hsotg);
  2728. /* initialise the endpoints now the core has been initialised */
  2729. for (epnum = 0; epnum < S3C_HSOTG_EPS; epnum++)
  2730. s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum);
  2731. ret = usb_add_gadget_udc(&pdev->dev, &hsotg->gadget);
  2732. if (ret)
  2733. goto err_supplies;
  2734. s3c_hsotg_create_debug(hsotg);
  2735. s3c_hsotg_dump(hsotg);
  2736. our_hsotg = hsotg;
  2737. return 0;
  2738. err_supplies:
  2739. s3c_hsotg_phy_disable(hsotg);
  2740. regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
  2741. regulator_bulk_free(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
  2742. clk_disable(hsotg->clk);
  2743. clk_put(hsotg->clk);
  2744. err_regs:
  2745. iounmap(hsotg->regs);
  2746. err_regs_res:
  2747. release_resource(hsotg->regs_res);
  2748. kfree(hsotg->regs_res);
  2749. err_clk:
  2750. clk_put(hsotg->clk);
  2751. err_mem:
  2752. kfree(hsotg);
  2753. return ret;
  2754. }
  2755. static int __devexit s3c_hsotg_remove(struct platform_device *pdev)
  2756. {
  2757. struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);
  2758. usb_del_gadget_udc(&hsotg->gadget);
  2759. s3c_hsotg_delete_debug(hsotg);
  2760. usb_gadget_unregister_driver(hsotg->driver);
  2761. free_irq(hsotg->irq, hsotg);
  2762. iounmap(hsotg->regs);
  2763. release_resource(hsotg->regs_res);
  2764. kfree(hsotg->regs_res);
  2765. s3c_hsotg_phy_disable(hsotg);
  2766. regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
  2767. regulator_bulk_free(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
  2768. clk_disable(hsotg->clk);
  2769. clk_put(hsotg->clk);
  2770. kfree(hsotg);
  2771. return 0;
  2772. }
  2773. #if 1
  2774. #define s3c_hsotg_suspend NULL
  2775. #define s3c_hsotg_resume NULL
  2776. #endif
  2777. static struct platform_driver s3c_hsotg_driver = {
  2778. .driver = {
  2779. .name = "s3c-hsotg",
  2780. .owner = THIS_MODULE,
  2781. },
  2782. .probe = s3c_hsotg_probe,
  2783. .remove = __devexit_p(s3c_hsotg_remove),
  2784. .suspend = s3c_hsotg_suspend,
  2785. .resume = s3c_hsotg_resume,
  2786. };
  2787. module_platform_driver(s3c_hsotg_driver);
  2788. MODULE_DESCRIPTION("Samsung S3C USB High-speed/OtG device");
  2789. MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
  2790. MODULE_LICENSE("GPL");
  2791. MODULE_ALIAS("platform:s3c-hsotg");