encrypted.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927
  1. /*
  2. * Copyright (C) 2010 IBM Corporation
  3. *
  4. * Author:
  5. * Mimi Zohar <zohar@us.ibm.com>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation, version 2 of the License.
  10. *
  11. * See Documentation/security/keys-trusted-encrypted.txt
  12. */
  13. #include <linux/uaccess.h>
  14. #include <linux/module.h>
  15. #include <linux/init.h>
  16. #include <linux/slab.h>
  17. #include <linux/parser.h>
  18. #include <linux/string.h>
  19. #include <linux/err.h>
  20. #include <keys/user-type.h>
  21. #include <keys/trusted-type.h>
  22. #include <keys/encrypted-type.h>
  23. #include <linux/key-type.h>
  24. #include <linux/random.h>
  25. #include <linux/rcupdate.h>
  26. #include <linux/scatterlist.h>
  27. #include <linux/crypto.h>
  28. #include <crypto/hash.h>
  29. #include <crypto/sha.h>
  30. #include <crypto/aes.h>
  31. #include "encrypted.h"
  32. static const char KEY_TRUSTED_PREFIX[] = "trusted:";
  33. static const char KEY_USER_PREFIX[] = "user:";
  34. static const char hash_alg[] = "sha256";
  35. static const char hmac_alg[] = "hmac(sha256)";
  36. static const char blkcipher_alg[] = "cbc(aes)";
  37. static unsigned int ivsize;
  38. static int blksize;
  39. #define KEY_TRUSTED_PREFIX_LEN (sizeof (KEY_TRUSTED_PREFIX) - 1)
  40. #define KEY_USER_PREFIX_LEN (sizeof (KEY_USER_PREFIX) - 1)
  41. #define HASH_SIZE SHA256_DIGEST_SIZE
  42. #define MAX_DATA_SIZE 4096
  43. #define MIN_DATA_SIZE 20
  44. struct sdesc {
  45. struct shash_desc shash;
  46. char ctx[];
  47. };
  48. static struct crypto_shash *hashalg;
  49. static struct crypto_shash *hmacalg;
  50. enum {
  51. Opt_err = -1, Opt_new, Opt_load, Opt_update
  52. };
  53. static const match_table_t key_tokens = {
  54. {Opt_new, "new"},
  55. {Opt_load, "load"},
  56. {Opt_update, "update"},
  57. {Opt_err, NULL}
  58. };
  59. static int aes_get_sizes(void)
  60. {
  61. struct crypto_blkcipher *tfm;
  62. tfm = crypto_alloc_blkcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
  63. if (IS_ERR(tfm)) {
  64. pr_err("encrypted_key: failed to alloc_cipher (%ld)\n",
  65. PTR_ERR(tfm));
  66. return PTR_ERR(tfm);
  67. }
  68. ivsize = crypto_blkcipher_ivsize(tfm);
  69. blksize = crypto_blkcipher_blocksize(tfm);
  70. crypto_free_blkcipher(tfm);
  71. return 0;
  72. }
  73. /*
  74. * valid_master_desc - verify the 'key-type:desc' of a new/updated master-key
  75. *
  76. * key-type:= "trusted:" | "user:"
  77. * desc:= master-key description
  78. *
  79. * Verify that 'key-type' is valid and that 'desc' exists. On key update,
  80. * only the master key description is permitted to change, not the key-type.
  81. * The key-type remains constant.
  82. *
  83. * On success returns 0, otherwise -EINVAL.
  84. */
  85. static int valid_master_desc(const char *new_desc, const char *orig_desc)
  86. {
  87. if (!memcmp(new_desc, KEY_TRUSTED_PREFIX, KEY_TRUSTED_PREFIX_LEN)) {
  88. if (strlen(new_desc) == KEY_TRUSTED_PREFIX_LEN)
  89. goto out;
  90. if (orig_desc)
  91. if (memcmp(new_desc, orig_desc, KEY_TRUSTED_PREFIX_LEN))
  92. goto out;
  93. } else if (!memcmp(new_desc, KEY_USER_PREFIX, KEY_USER_PREFIX_LEN)) {
  94. if (strlen(new_desc) == KEY_USER_PREFIX_LEN)
  95. goto out;
  96. if (orig_desc)
  97. if (memcmp(new_desc, orig_desc, KEY_USER_PREFIX_LEN))
  98. goto out;
  99. } else
  100. goto out;
  101. return 0;
  102. out:
  103. return -EINVAL;
  104. }
  105. /*
  106. * datablob_parse - parse the keyctl data
  107. *
  108. * datablob format:
  109. * new <master-key name> <decrypted data length>
  110. * load <master-key name> <decrypted data length> <encrypted iv + data>
  111. * update <new-master-key name>
  112. *
  113. * Tokenizes a copy of the keyctl data, returning a pointer to each token,
  114. * which is null terminated.
  115. *
  116. * On success returns 0, otherwise -EINVAL.
  117. */
  118. static int datablob_parse(char *datablob, char **master_desc,
  119. char **decrypted_datalen, char **hex_encoded_iv)
  120. {
  121. substring_t args[MAX_OPT_ARGS];
  122. int ret = -EINVAL;
  123. int key_cmd;
  124. char *keyword;
  125. keyword = strsep(&datablob, " \t");
  126. if (!keyword) {
  127. pr_info("encrypted_key: insufficient parameters specified\n");
  128. return ret;
  129. }
  130. key_cmd = match_token(keyword, key_tokens, args);
  131. *master_desc = strsep(&datablob, " \t");
  132. if (!*master_desc) {
  133. pr_info("encrypted_key: master key parameter is missing\n");
  134. goto out;
  135. }
  136. if (valid_master_desc(*master_desc, NULL) < 0) {
  137. pr_info("encrypted_key: master key parameter \'%s\' "
  138. "is invalid\n", *master_desc);
  139. goto out;
  140. }
  141. if (decrypted_datalen) {
  142. *decrypted_datalen = strsep(&datablob, " \t");
  143. if (!*decrypted_datalen) {
  144. pr_info("encrypted_key: keylen parameter is missing\n");
  145. goto out;
  146. }
  147. }
  148. switch (key_cmd) {
  149. case Opt_new:
  150. if (!decrypted_datalen) {
  151. pr_info("encrypted_key: keyword \'%s\' not allowed "
  152. "when called from .update method\n", keyword);
  153. break;
  154. }
  155. ret = 0;
  156. break;
  157. case Opt_load:
  158. if (!decrypted_datalen) {
  159. pr_info("encrypted_key: keyword \'%s\' not allowed "
  160. "when called from .update method\n", keyword);
  161. break;
  162. }
  163. *hex_encoded_iv = strsep(&datablob, " \t");
  164. if (!*hex_encoded_iv) {
  165. pr_info("encrypted_key: hex blob is missing\n");
  166. break;
  167. }
  168. ret = 0;
  169. break;
  170. case Opt_update:
  171. if (decrypted_datalen) {
  172. pr_info("encrypted_key: keyword \'%s\' not allowed "
  173. "when called from .instantiate method\n",
  174. keyword);
  175. break;
  176. }
  177. ret = 0;
  178. break;
  179. case Opt_err:
  180. pr_info("encrypted_key: keyword \'%s\' not recognized\n",
  181. keyword);
  182. break;
  183. }
  184. out:
  185. return ret;
  186. }
  187. /*
  188. * datablob_format - format as an ascii string, before copying to userspace
  189. */
  190. static char *datablob_format(struct encrypted_key_payload *epayload,
  191. size_t asciiblob_len)
  192. {
  193. char *ascii_buf, *bufp;
  194. u8 *iv = epayload->iv;
  195. int len;
  196. int i;
  197. ascii_buf = kmalloc(asciiblob_len + 1, GFP_KERNEL);
  198. if (!ascii_buf)
  199. goto out;
  200. ascii_buf[asciiblob_len] = '\0';
  201. /* copy datablob master_desc and datalen strings */
  202. len = sprintf(ascii_buf, "%s %s ", epayload->master_desc,
  203. epayload->datalen);
  204. /* convert the hex encoded iv, encrypted-data and HMAC to ascii */
  205. bufp = &ascii_buf[len];
  206. for (i = 0; i < (asciiblob_len - len) / 2; i++)
  207. bufp = pack_hex_byte(bufp, iv[i]);
  208. out:
  209. return ascii_buf;
  210. }
  211. /*
  212. * request_trusted_key - request the trusted key
  213. *
  214. * Trusted keys are sealed to PCRs and other metadata. Although userspace
  215. * manages both trusted/encrypted key-types, like the encrypted key type
  216. * data, trusted key type data is not visible decrypted from userspace.
  217. */
  218. static struct key *request_trusted_key(const char *trusted_desc,
  219. u8 **master_key, size_t *master_keylen)
  220. {
  221. struct trusted_key_payload *tpayload;
  222. struct key *tkey;
  223. tkey = request_key(&key_type_trusted, trusted_desc, NULL);
  224. if (IS_ERR(tkey))
  225. goto error;
  226. down_read(&tkey->sem);
  227. tpayload = rcu_dereference(tkey->payload.data);
  228. *master_key = tpayload->key;
  229. *master_keylen = tpayload->key_len;
  230. error:
  231. return tkey;
  232. }
  233. /*
  234. * request_user_key - request the user key
  235. *
  236. * Use a user provided key to encrypt/decrypt an encrypted-key.
  237. */
  238. static struct key *request_user_key(const char *master_desc, u8 **master_key,
  239. size_t *master_keylen)
  240. {
  241. struct user_key_payload *upayload;
  242. struct key *ukey;
  243. ukey = request_key(&key_type_user, master_desc, NULL);
  244. if (IS_ERR(ukey))
  245. goto error;
  246. down_read(&ukey->sem);
  247. upayload = rcu_dereference(ukey->payload.data);
  248. *master_key = upayload->data;
  249. *master_keylen = upayload->datalen;
  250. error:
  251. return ukey;
  252. }
  253. static struct sdesc *alloc_sdesc(struct crypto_shash *alg)
  254. {
  255. struct sdesc *sdesc;
  256. int size;
  257. size = sizeof(struct shash_desc) + crypto_shash_descsize(alg);
  258. sdesc = kmalloc(size, GFP_KERNEL);
  259. if (!sdesc)
  260. return ERR_PTR(-ENOMEM);
  261. sdesc->shash.tfm = alg;
  262. sdesc->shash.flags = 0x0;
  263. return sdesc;
  264. }
  265. static int calc_hmac(u8 *digest, const u8 *key, unsigned int keylen,
  266. const u8 *buf, unsigned int buflen)
  267. {
  268. struct sdesc *sdesc;
  269. int ret;
  270. sdesc = alloc_sdesc(hmacalg);
  271. if (IS_ERR(sdesc)) {
  272. pr_info("encrypted_key: can't alloc %s\n", hmac_alg);
  273. return PTR_ERR(sdesc);
  274. }
  275. ret = crypto_shash_setkey(hmacalg, key, keylen);
  276. if (!ret)
  277. ret = crypto_shash_digest(&sdesc->shash, buf, buflen, digest);
  278. kfree(sdesc);
  279. return ret;
  280. }
  281. static int calc_hash(u8 *digest, const u8 *buf, unsigned int buflen)
  282. {
  283. struct sdesc *sdesc;
  284. int ret;
  285. sdesc = alloc_sdesc(hashalg);
  286. if (IS_ERR(sdesc)) {
  287. pr_info("encrypted_key: can't alloc %s\n", hash_alg);
  288. return PTR_ERR(sdesc);
  289. }
  290. ret = crypto_shash_digest(&sdesc->shash, buf, buflen, digest);
  291. kfree(sdesc);
  292. return ret;
  293. }
  294. enum derived_key_type { ENC_KEY, AUTH_KEY };
  295. /* Derive authentication/encryption key from trusted key */
  296. static int get_derived_key(u8 *derived_key, enum derived_key_type key_type,
  297. const u8 *master_key, size_t master_keylen)
  298. {
  299. u8 *derived_buf;
  300. unsigned int derived_buf_len;
  301. int ret;
  302. derived_buf_len = strlen("AUTH_KEY") + 1 + master_keylen;
  303. if (derived_buf_len < HASH_SIZE)
  304. derived_buf_len = HASH_SIZE;
  305. derived_buf = kzalloc(derived_buf_len, GFP_KERNEL);
  306. if (!derived_buf) {
  307. pr_err("encrypted_key: out of memory\n");
  308. return -ENOMEM;
  309. }
  310. if (key_type)
  311. strcpy(derived_buf, "AUTH_KEY");
  312. else
  313. strcpy(derived_buf, "ENC_KEY");
  314. memcpy(derived_buf + strlen(derived_buf) + 1, master_key,
  315. master_keylen);
  316. ret = calc_hash(derived_key, derived_buf, derived_buf_len);
  317. kfree(derived_buf);
  318. return ret;
  319. }
  320. static int init_blkcipher_desc(struct blkcipher_desc *desc, const u8 *key,
  321. unsigned int key_len, const u8 *iv,
  322. unsigned int ivsize)
  323. {
  324. int ret;
  325. desc->tfm = crypto_alloc_blkcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
  326. if (IS_ERR(desc->tfm)) {
  327. pr_err("encrypted_key: failed to load %s transform (%ld)\n",
  328. blkcipher_alg, PTR_ERR(desc->tfm));
  329. return PTR_ERR(desc->tfm);
  330. }
  331. desc->flags = 0;
  332. ret = crypto_blkcipher_setkey(desc->tfm, key, key_len);
  333. if (ret < 0) {
  334. pr_err("encrypted_key: failed to setkey (%d)\n", ret);
  335. crypto_free_blkcipher(desc->tfm);
  336. return ret;
  337. }
  338. crypto_blkcipher_set_iv(desc->tfm, iv, ivsize);
  339. return 0;
  340. }
  341. static struct key *request_master_key(struct encrypted_key_payload *epayload,
  342. u8 **master_key, size_t *master_keylen)
  343. {
  344. struct key *mkey = NULL;
  345. if (!strncmp(epayload->master_desc, KEY_TRUSTED_PREFIX,
  346. KEY_TRUSTED_PREFIX_LEN)) {
  347. mkey = request_trusted_key(epayload->master_desc +
  348. KEY_TRUSTED_PREFIX_LEN,
  349. master_key, master_keylen);
  350. } else if (!strncmp(epayload->master_desc, KEY_USER_PREFIX,
  351. KEY_USER_PREFIX_LEN)) {
  352. mkey = request_user_key(epayload->master_desc +
  353. KEY_USER_PREFIX_LEN,
  354. master_key, master_keylen);
  355. } else
  356. goto out;
  357. if (IS_ERR(mkey)) {
  358. pr_info("encrypted_key: key %s not found",
  359. epayload->master_desc);
  360. goto out;
  361. }
  362. dump_master_key(*master_key, *master_keylen);
  363. out:
  364. return mkey;
  365. }
  366. /* Before returning data to userspace, encrypt decrypted data. */
  367. static int derived_key_encrypt(struct encrypted_key_payload *epayload,
  368. const u8 *derived_key,
  369. unsigned int derived_keylen)
  370. {
  371. struct scatterlist sg_in[2];
  372. struct scatterlist sg_out[1];
  373. struct blkcipher_desc desc;
  374. unsigned int encrypted_datalen;
  375. unsigned int padlen;
  376. char pad[16];
  377. int ret;
  378. encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
  379. padlen = encrypted_datalen - epayload->decrypted_datalen;
  380. ret = init_blkcipher_desc(&desc, derived_key, derived_keylen,
  381. epayload->iv, ivsize);
  382. if (ret < 0)
  383. goto out;
  384. dump_decrypted_data(epayload);
  385. memset(pad, 0, sizeof pad);
  386. sg_init_table(sg_in, 2);
  387. sg_set_buf(&sg_in[0], epayload->decrypted_data,
  388. epayload->decrypted_datalen);
  389. sg_set_buf(&sg_in[1], pad, padlen);
  390. sg_init_table(sg_out, 1);
  391. sg_set_buf(sg_out, epayload->encrypted_data, encrypted_datalen);
  392. ret = crypto_blkcipher_encrypt(&desc, sg_out, sg_in, encrypted_datalen);
  393. crypto_free_blkcipher(desc.tfm);
  394. if (ret < 0)
  395. pr_err("encrypted_key: failed to encrypt (%d)\n", ret);
  396. else
  397. dump_encrypted_data(epayload, encrypted_datalen);
  398. out:
  399. return ret;
  400. }
  401. static int datablob_hmac_append(struct encrypted_key_payload *epayload,
  402. const u8 *master_key, size_t master_keylen)
  403. {
  404. u8 derived_key[HASH_SIZE];
  405. u8 *digest;
  406. int ret;
  407. ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
  408. if (ret < 0)
  409. goto out;
  410. digest = epayload->master_desc + epayload->datablob_len;
  411. ret = calc_hmac(digest, derived_key, sizeof derived_key,
  412. epayload->master_desc, epayload->datablob_len);
  413. if (!ret)
  414. dump_hmac(NULL, digest, HASH_SIZE);
  415. out:
  416. return ret;
  417. }
  418. /* verify HMAC before decrypting encrypted key */
  419. static int datablob_hmac_verify(struct encrypted_key_payload *epayload,
  420. const u8 *master_key, size_t master_keylen)
  421. {
  422. u8 derived_key[HASH_SIZE];
  423. u8 digest[HASH_SIZE];
  424. int ret;
  425. ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
  426. if (ret < 0)
  427. goto out;
  428. ret = calc_hmac(digest, derived_key, sizeof derived_key,
  429. epayload->master_desc, epayload->datablob_len);
  430. if (ret < 0)
  431. goto out;
  432. ret = memcmp(digest, epayload->master_desc + epayload->datablob_len,
  433. sizeof digest);
  434. if (ret) {
  435. ret = -EINVAL;
  436. dump_hmac("datablob",
  437. epayload->master_desc + epayload->datablob_len,
  438. HASH_SIZE);
  439. dump_hmac("calc", digest, HASH_SIZE);
  440. }
  441. out:
  442. return ret;
  443. }
  444. static int derived_key_decrypt(struct encrypted_key_payload *epayload,
  445. const u8 *derived_key,
  446. unsigned int derived_keylen)
  447. {
  448. struct scatterlist sg_in[1];
  449. struct scatterlist sg_out[2];
  450. struct blkcipher_desc desc;
  451. unsigned int encrypted_datalen;
  452. char pad[16];
  453. int ret;
  454. encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
  455. ret = init_blkcipher_desc(&desc, derived_key, derived_keylen,
  456. epayload->iv, ivsize);
  457. if (ret < 0)
  458. goto out;
  459. dump_encrypted_data(epayload, encrypted_datalen);
  460. memset(pad, 0, sizeof pad);
  461. sg_init_table(sg_in, 1);
  462. sg_init_table(sg_out, 2);
  463. sg_set_buf(sg_in, epayload->encrypted_data, encrypted_datalen);
  464. sg_set_buf(&sg_out[0], epayload->decrypted_data,
  465. epayload->decrypted_datalen);
  466. sg_set_buf(&sg_out[1], pad, sizeof pad);
  467. ret = crypto_blkcipher_decrypt(&desc, sg_out, sg_in, encrypted_datalen);
  468. crypto_free_blkcipher(desc.tfm);
  469. if (ret < 0)
  470. goto out;
  471. dump_decrypted_data(epayload);
  472. out:
  473. return ret;
  474. }
  475. /* Allocate memory for decrypted key and datablob. */
  476. static struct encrypted_key_payload *encrypted_key_alloc(struct key *key,
  477. const char *master_desc,
  478. const char *datalen)
  479. {
  480. struct encrypted_key_payload *epayload = NULL;
  481. unsigned short datablob_len;
  482. unsigned short decrypted_datalen;
  483. unsigned int encrypted_datalen;
  484. long dlen;
  485. int ret;
  486. ret = strict_strtol(datalen, 10, &dlen);
  487. if (ret < 0 || dlen < MIN_DATA_SIZE || dlen > MAX_DATA_SIZE)
  488. return ERR_PTR(-EINVAL);
  489. decrypted_datalen = dlen;
  490. encrypted_datalen = roundup(decrypted_datalen, blksize);
  491. datablob_len = strlen(master_desc) + 1 + strlen(datalen) + 1
  492. + ivsize + 1 + encrypted_datalen;
  493. ret = key_payload_reserve(key, decrypted_datalen + datablob_len
  494. + HASH_SIZE + 1);
  495. if (ret < 0)
  496. return ERR_PTR(ret);
  497. epayload = kzalloc(sizeof(*epayload) + decrypted_datalen +
  498. datablob_len + HASH_SIZE + 1, GFP_KERNEL);
  499. if (!epayload)
  500. return ERR_PTR(-ENOMEM);
  501. epayload->decrypted_datalen = decrypted_datalen;
  502. epayload->datablob_len = datablob_len;
  503. return epayload;
  504. }
  505. static int encrypted_key_decrypt(struct encrypted_key_payload *epayload,
  506. const char *hex_encoded_iv)
  507. {
  508. struct key *mkey;
  509. u8 derived_key[HASH_SIZE];
  510. u8 *master_key;
  511. u8 *hmac;
  512. const char *hex_encoded_data;
  513. unsigned int encrypted_datalen;
  514. size_t master_keylen;
  515. size_t asciilen;
  516. int ret;
  517. encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
  518. asciilen = (ivsize + 1 + encrypted_datalen + HASH_SIZE) * 2;
  519. if (strlen(hex_encoded_iv) != asciilen)
  520. return -EINVAL;
  521. hex_encoded_data = hex_encoded_iv + (2 * ivsize) + 2;
  522. hex2bin(epayload->iv, hex_encoded_iv, ivsize);
  523. hex2bin(epayload->encrypted_data, hex_encoded_data, encrypted_datalen);
  524. hmac = epayload->master_desc + epayload->datablob_len;
  525. hex2bin(hmac, hex_encoded_data + (encrypted_datalen * 2), HASH_SIZE);
  526. mkey = request_master_key(epayload, &master_key, &master_keylen);
  527. if (IS_ERR(mkey))
  528. return PTR_ERR(mkey);
  529. ret = datablob_hmac_verify(epayload, master_key, master_keylen);
  530. if (ret < 0) {
  531. pr_err("encrypted_key: bad hmac (%d)\n", ret);
  532. goto out;
  533. }
  534. ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
  535. if (ret < 0)
  536. goto out;
  537. ret = derived_key_decrypt(epayload, derived_key, sizeof derived_key);
  538. if (ret < 0)
  539. pr_err("encrypted_key: failed to decrypt key (%d)\n", ret);
  540. out:
  541. up_read(&mkey->sem);
  542. key_put(mkey);
  543. return ret;
  544. }
  545. static void __ekey_init(struct encrypted_key_payload *epayload,
  546. const char *master_desc, const char *datalen)
  547. {
  548. epayload->master_desc = epayload->decrypted_data
  549. + epayload->decrypted_datalen;
  550. epayload->datalen = epayload->master_desc + strlen(master_desc) + 1;
  551. epayload->iv = epayload->datalen + strlen(datalen) + 1;
  552. epayload->encrypted_data = epayload->iv + ivsize + 1;
  553. memcpy(epayload->master_desc, master_desc, strlen(master_desc));
  554. memcpy(epayload->datalen, datalen, strlen(datalen));
  555. }
  556. /*
  557. * encrypted_init - initialize an encrypted key
  558. *
  559. * For a new key, use a random number for both the iv and data
  560. * itself. For an old key, decrypt the hex encoded data.
  561. */
  562. static int encrypted_init(struct encrypted_key_payload *epayload,
  563. const char *master_desc, const char *datalen,
  564. const char *hex_encoded_iv)
  565. {
  566. int ret = 0;
  567. __ekey_init(epayload, master_desc, datalen);
  568. if (!hex_encoded_iv) {
  569. get_random_bytes(epayload->iv, ivsize);
  570. get_random_bytes(epayload->decrypted_data,
  571. epayload->decrypted_datalen);
  572. } else
  573. ret = encrypted_key_decrypt(epayload, hex_encoded_iv);
  574. return ret;
  575. }
  576. /*
  577. * encrypted_instantiate - instantiate an encrypted key
  578. *
  579. * Decrypt an existing encrypted datablob or create a new encrypted key
  580. * based on a kernel random number.
  581. *
  582. * On success, return 0. Otherwise return errno.
  583. */
  584. static int encrypted_instantiate(struct key *key, const void *data,
  585. size_t datalen)
  586. {
  587. struct encrypted_key_payload *epayload = NULL;
  588. char *datablob = NULL;
  589. char *master_desc = NULL;
  590. char *decrypted_datalen = NULL;
  591. char *hex_encoded_iv = NULL;
  592. int ret;
  593. if (datalen <= 0 || datalen > 32767 || !data)
  594. return -EINVAL;
  595. datablob = kmalloc(datalen + 1, GFP_KERNEL);
  596. if (!datablob)
  597. return -ENOMEM;
  598. datablob[datalen] = 0;
  599. memcpy(datablob, data, datalen);
  600. ret = datablob_parse(datablob, &master_desc, &decrypted_datalen,
  601. &hex_encoded_iv);
  602. if (ret < 0)
  603. goto out;
  604. epayload = encrypted_key_alloc(key, master_desc, decrypted_datalen);
  605. if (IS_ERR(epayload)) {
  606. ret = PTR_ERR(epayload);
  607. goto out;
  608. }
  609. ret = encrypted_init(epayload, master_desc, decrypted_datalen,
  610. hex_encoded_iv);
  611. if (ret < 0) {
  612. kfree(epayload);
  613. goto out;
  614. }
  615. rcu_assign_pointer(key->payload.data, epayload);
  616. out:
  617. kfree(datablob);
  618. return ret;
  619. }
  620. static void encrypted_rcu_free(struct rcu_head *rcu)
  621. {
  622. struct encrypted_key_payload *epayload;
  623. epayload = container_of(rcu, struct encrypted_key_payload, rcu);
  624. memset(epayload->decrypted_data, 0, epayload->decrypted_datalen);
  625. kfree(epayload);
  626. }
  627. /*
  628. * encrypted_update - update the master key description
  629. *
  630. * Change the master key description for an existing encrypted key.
  631. * The next read will return an encrypted datablob using the new
  632. * master key description.
  633. *
  634. * On success, return 0. Otherwise return errno.
  635. */
  636. static int encrypted_update(struct key *key, const void *data, size_t datalen)
  637. {
  638. struct encrypted_key_payload *epayload = key->payload.data;
  639. struct encrypted_key_payload *new_epayload;
  640. char *buf;
  641. char *new_master_desc = NULL;
  642. int ret = 0;
  643. if (datalen <= 0 || datalen > 32767 || !data)
  644. return -EINVAL;
  645. buf = kmalloc(datalen + 1, GFP_KERNEL);
  646. if (!buf)
  647. return -ENOMEM;
  648. buf[datalen] = 0;
  649. memcpy(buf, data, datalen);
  650. ret = datablob_parse(buf, &new_master_desc, NULL, NULL);
  651. if (ret < 0)
  652. goto out;
  653. ret = valid_master_desc(new_master_desc, epayload->master_desc);
  654. if (ret < 0)
  655. goto out;
  656. new_epayload = encrypted_key_alloc(key, new_master_desc,
  657. epayload->datalen);
  658. if (IS_ERR(new_epayload)) {
  659. ret = PTR_ERR(new_epayload);
  660. goto out;
  661. }
  662. __ekey_init(new_epayload, new_master_desc, epayload->datalen);
  663. memcpy(new_epayload->iv, epayload->iv, ivsize);
  664. memcpy(new_epayload->decrypted_data, epayload->decrypted_data,
  665. epayload->decrypted_datalen);
  666. rcu_assign_pointer(key->payload.data, new_epayload);
  667. call_rcu(&epayload->rcu, encrypted_rcu_free);
  668. out:
  669. kfree(buf);
  670. return ret;
  671. }
  672. /*
  673. * encrypted_read - format and copy the encrypted data to userspace
  674. *
  675. * The resulting datablob format is:
  676. * <master-key name> <decrypted data length> <encrypted iv> <encrypted data>
  677. *
  678. * On success, return to userspace the encrypted key datablob size.
  679. */
  680. static long encrypted_read(const struct key *key, char __user *buffer,
  681. size_t buflen)
  682. {
  683. struct encrypted_key_payload *epayload;
  684. struct key *mkey;
  685. u8 *master_key;
  686. size_t master_keylen;
  687. char derived_key[HASH_SIZE];
  688. char *ascii_buf;
  689. size_t asciiblob_len;
  690. int ret;
  691. epayload = rcu_dereference_key(key);
  692. /* returns the hex encoded iv, encrypted-data, and hmac as ascii */
  693. asciiblob_len = epayload->datablob_len + ivsize + 1
  694. + roundup(epayload->decrypted_datalen, blksize)
  695. + (HASH_SIZE * 2);
  696. if (!buffer || buflen < asciiblob_len)
  697. return asciiblob_len;
  698. mkey = request_master_key(epayload, &master_key, &master_keylen);
  699. if (IS_ERR(mkey))
  700. return PTR_ERR(mkey);
  701. ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
  702. if (ret < 0)
  703. goto out;
  704. ret = derived_key_encrypt(epayload, derived_key, sizeof derived_key);
  705. if (ret < 0)
  706. goto out;
  707. ret = datablob_hmac_append(epayload, master_key, master_keylen);
  708. if (ret < 0)
  709. goto out;
  710. ascii_buf = datablob_format(epayload, asciiblob_len);
  711. if (!ascii_buf) {
  712. ret = -ENOMEM;
  713. goto out;
  714. }
  715. up_read(&mkey->sem);
  716. key_put(mkey);
  717. if (copy_to_user(buffer, ascii_buf, asciiblob_len) != 0)
  718. ret = -EFAULT;
  719. kfree(ascii_buf);
  720. return asciiblob_len;
  721. out:
  722. up_read(&mkey->sem);
  723. key_put(mkey);
  724. return ret;
  725. }
  726. /*
  727. * encrypted_destroy - before freeing the key, clear the decrypted data
  728. *
  729. * Before freeing the key, clear the memory containing the decrypted
  730. * key data.
  731. */
  732. static void encrypted_destroy(struct key *key)
  733. {
  734. struct encrypted_key_payload *epayload = key->payload.data;
  735. if (!epayload)
  736. return;
  737. memset(epayload->decrypted_data, 0, epayload->decrypted_datalen);
  738. kfree(key->payload.data);
  739. }
  740. struct key_type key_type_encrypted = {
  741. .name = "encrypted",
  742. .instantiate = encrypted_instantiate,
  743. .update = encrypted_update,
  744. .match = user_match,
  745. .destroy = encrypted_destroy,
  746. .describe = user_describe,
  747. .read = encrypted_read,
  748. };
  749. EXPORT_SYMBOL_GPL(key_type_encrypted);
  750. static void encrypted_shash_release(void)
  751. {
  752. if (hashalg)
  753. crypto_free_shash(hashalg);
  754. if (hmacalg)
  755. crypto_free_shash(hmacalg);
  756. }
  757. static int __init encrypted_shash_alloc(void)
  758. {
  759. int ret;
  760. hmacalg = crypto_alloc_shash(hmac_alg, 0, CRYPTO_ALG_ASYNC);
  761. if (IS_ERR(hmacalg)) {
  762. pr_info("encrypted_key: could not allocate crypto %s\n",
  763. hmac_alg);
  764. return PTR_ERR(hmacalg);
  765. }
  766. hashalg = crypto_alloc_shash(hash_alg, 0, CRYPTO_ALG_ASYNC);
  767. if (IS_ERR(hashalg)) {
  768. pr_info("encrypted_key: could not allocate crypto %s\n",
  769. hash_alg);
  770. ret = PTR_ERR(hashalg);
  771. goto hashalg_fail;
  772. }
  773. return 0;
  774. hashalg_fail:
  775. crypto_free_shash(hmacalg);
  776. return ret;
  777. }
  778. static int __init init_encrypted(void)
  779. {
  780. int ret;
  781. ret = encrypted_shash_alloc();
  782. if (ret < 0)
  783. return ret;
  784. ret = register_key_type(&key_type_encrypted);
  785. if (ret < 0)
  786. goto out;
  787. return aes_get_sizes();
  788. out:
  789. encrypted_shash_release();
  790. return ret;
  791. }
  792. static void __exit cleanup_encrypted(void)
  793. {
  794. encrypted_shash_release();
  795. unregister_key_type(&key_type_encrypted);
  796. }
  797. late_initcall(init_encrypted);
  798. module_exit(cleanup_encrypted);
  799. MODULE_LICENSE("GPL");