xfs_inode.c 121 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include <linux/log2.h>
  19. #include "xfs.h"
  20. #include "xfs_fs.h"
  21. #include "xfs_types.h"
  22. #include "xfs_bit.h"
  23. #include "xfs_log.h"
  24. #include "xfs_inum.h"
  25. #include "xfs_trans.h"
  26. #include "xfs_trans_priv.h"
  27. #include "xfs_sb.h"
  28. #include "xfs_ag.h"
  29. #include "xfs_mount.h"
  30. #include "xfs_bmap_btree.h"
  31. #include "xfs_alloc_btree.h"
  32. #include "xfs_ialloc_btree.h"
  33. #include "xfs_attr_sf.h"
  34. #include "xfs_dinode.h"
  35. #include "xfs_inode.h"
  36. #include "xfs_buf_item.h"
  37. #include "xfs_inode_item.h"
  38. #include "xfs_btree.h"
  39. #include "xfs_btree_trace.h"
  40. #include "xfs_alloc.h"
  41. #include "xfs_ialloc.h"
  42. #include "xfs_bmap.h"
  43. #include "xfs_error.h"
  44. #include "xfs_utils.h"
  45. #include "xfs_quota.h"
  46. #include "xfs_filestream.h"
  47. #include "xfs_vnodeops.h"
  48. #include "xfs_trace.h"
  49. kmem_zone_t *xfs_ifork_zone;
  50. kmem_zone_t *xfs_inode_zone;
  51. /*
  52. * Used in xfs_itruncate(). This is the maximum number of extents
  53. * freed from a file in a single transaction.
  54. */
  55. #define XFS_ITRUNC_MAX_EXTENTS 2
  56. STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
  57. STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
  58. STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
  59. STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
  60. #ifdef DEBUG
  61. /*
  62. * Make sure that the extents in the given memory buffer
  63. * are valid.
  64. */
  65. STATIC void
  66. xfs_validate_extents(
  67. xfs_ifork_t *ifp,
  68. int nrecs,
  69. xfs_exntfmt_t fmt)
  70. {
  71. xfs_bmbt_irec_t irec;
  72. xfs_bmbt_rec_host_t rec;
  73. int i;
  74. for (i = 0; i < nrecs; i++) {
  75. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  76. rec.l0 = get_unaligned(&ep->l0);
  77. rec.l1 = get_unaligned(&ep->l1);
  78. xfs_bmbt_get_all(&rec, &irec);
  79. if (fmt == XFS_EXTFMT_NOSTATE)
  80. ASSERT(irec.br_state == XFS_EXT_NORM);
  81. }
  82. }
  83. #else /* DEBUG */
  84. #define xfs_validate_extents(ifp, nrecs, fmt)
  85. #endif /* DEBUG */
  86. /*
  87. * Check that none of the inode's in the buffer have a next
  88. * unlinked field of 0.
  89. */
  90. #if defined(DEBUG)
  91. void
  92. xfs_inobp_check(
  93. xfs_mount_t *mp,
  94. xfs_buf_t *bp)
  95. {
  96. int i;
  97. int j;
  98. xfs_dinode_t *dip;
  99. j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
  100. for (i = 0; i < j; i++) {
  101. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  102. i * mp->m_sb.sb_inodesize);
  103. if (!dip->di_next_unlinked) {
  104. xfs_alert(mp,
  105. "Detected bogus zero next_unlinked field in incore inode buffer 0x%p.",
  106. bp);
  107. ASSERT(dip->di_next_unlinked);
  108. }
  109. }
  110. }
  111. #endif
  112. /*
  113. * Find the buffer associated with the given inode map
  114. * We do basic validation checks on the buffer once it has been
  115. * retrieved from disk.
  116. */
  117. STATIC int
  118. xfs_imap_to_bp(
  119. xfs_mount_t *mp,
  120. xfs_trans_t *tp,
  121. struct xfs_imap *imap,
  122. xfs_buf_t **bpp,
  123. uint buf_flags,
  124. uint iget_flags)
  125. {
  126. int error;
  127. int i;
  128. int ni;
  129. xfs_buf_t *bp;
  130. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
  131. (int)imap->im_len, buf_flags, &bp);
  132. if (error) {
  133. if (error != EAGAIN) {
  134. xfs_warn(mp,
  135. "%s: xfs_trans_read_buf() returned error %d.",
  136. __func__, error);
  137. } else {
  138. ASSERT(buf_flags & XBF_TRYLOCK);
  139. }
  140. return error;
  141. }
  142. /*
  143. * Validate the magic number and version of every inode in the buffer
  144. * (if DEBUG kernel) or the first inode in the buffer, otherwise.
  145. */
  146. #ifdef DEBUG
  147. ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
  148. #else /* usual case */
  149. ni = 1;
  150. #endif
  151. for (i = 0; i < ni; i++) {
  152. int di_ok;
  153. xfs_dinode_t *dip;
  154. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  155. (i << mp->m_sb.sb_inodelog));
  156. di_ok = be16_to_cpu(dip->di_magic) == XFS_DINODE_MAGIC &&
  157. XFS_DINODE_GOOD_VERSION(dip->di_version);
  158. if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
  159. XFS_ERRTAG_ITOBP_INOTOBP,
  160. XFS_RANDOM_ITOBP_INOTOBP))) {
  161. if (iget_flags & XFS_IGET_UNTRUSTED) {
  162. xfs_trans_brelse(tp, bp);
  163. return XFS_ERROR(EINVAL);
  164. }
  165. XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
  166. XFS_ERRLEVEL_HIGH, mp, dip);
  167. #ifdef DEBUG
  168. xfs_emerg(mp,
  169. "bad inode magic/vsn daddr %lld #%d (magic=%x)",
  170. (unsigned long long)imap->im_blkno, i,
  171. be16_to_cpu(dip->di_magic));
  172. ASSERT(0);
  173. #endif
  174. xfs_trans_brelse(tp, bp);
  175. return XFS_ERROR(EFSCORRUPTED);
  176. }
  177. }
  178. xfs_inobp_check(mp, bp);
  179. /*
  180. * Mark the buffer as an inode buffer now that it looks good
  181. */
  182. XFS_BUF_SET_VTYPE(bp, B_FS_INO);
  183. *bpp = bp;
  184. return 0;
  185. }
  186. /*
  187. * This routine is called to map an inode number within a file
  188. * system to the buffer containing the on-disk version of the
  189. * inode. It returns a pointer to the buffer containing the
  190. * on-disk inode in the bpp parameter, and in the dip parameter
  191. * it returns a pointer to the on-disk inode within that buffer.
  192. *
  193. * If a non-zero error is returned, then the contents of bpp and
  194. * dipp are undefined.
  195. *
  196. * Use xfs_imap() to determine the size and location of the
  197. * buffer to read from disk.
  198. */
  199. int
  200. xfs_inotobp(
  201. xfs_mount_t *mp,
  202. xfs_trans_t *tp,
  203. xfs_ino_t ino,
  204. xfs_dinode_t **dipp,
  205. xfs_buf_t **bpp,
  206. int *offset,
  207. uint imap_flags)
  208. {
  209. struct xfs_imap imap;
  210. xfs_buf_t *bp;
  211. int error;
  212. imap.im_blkno = 0;
  213. error = xfs_imap(mp, tp, ino, &imap, imap_flags);
  214. if (error)
  215. return error;
  216. error = xfs_imap_to_bp(mp, tp, &imap, &bp, XBF_LOCK, imap_flags);
  217. if (error)
  218. return error;
  219. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  220. *bpp = bp;
  221. *offset = imap.im_boffset;
  222. return 0;
  223. }
  224. /*
  225. * This routine is called to map an inode to the buffer containing
  226. * the on-disk version of the inode. It returns a pointer to the
  227. * buffer containing the on-disk inode in the bpp parameter, and in
  228. * the dip parameter it returns a pointer to the on-disk inode within
  229. * that buffer.
  230. *
  231. * If a non-zero error is returned, then the contents of bpp and
  232. * dipp are undefined.
  233. *
  234. * The inode is expected to already been mapped to its buffer and read
  235. * in once, thus we can use the mapping information stored in the inode
  236. * rather than calling xfs_imap(). This allows us to avoid the overhead
  237. * of looking at the inode btree for small block file systems
  238. * (see xfs_imap()).
  239. */
  240. int
  241. xfs_itobp(
  242. xfs_mount_t *mp,
  243. xfs_trans_t *tp,
  244. xfs_inode_t *ip,
  245. xfs_dinode_t **dipp,
  246. xfs_buf_t **bpp,
  247. uint buf_flags)
  248. {
  249. xfs_buf_t *bp;
  250. int error;
  251. ASSERT(ip->i_imap.im_blkno != 0);
  252. error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
  253. if (error)
  254. return error;
  255. if (!bp) {
  256. ASSERT(buf_flags & XBF_TRYLOCK);
  257. ASSERT(tp == NULL);
  258. *bpp = NULL;
  259. return EAGAIN;
  260. }
  261. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
  262. *bpp = bp;
  263. return 0;
  264. }
  265. /*
  266. * Move inode type and inode format specific information from the
  267. * on-disk inode to the in-core inode. For fifos, devs, and sockets
  268. * this means set if_rdev to the proper value. For files, directories,
  269. * and symlinks this means to bring in the in-line data or extent
  270. * pointers. For a file in B-tree format, only the root is immediately
  271. * brought in-core. The rest will be in-lined in if_extents when it
  272. * is first referenced (see xfs_iread_extents()).
  273. */
  274. STATIC int
  275. xfs_iformat(
  276. xfs_inode_t *ip,
  277. xfs_dinode_t *dip)
  278. {
  279. xfs_attr_shortform_t *atp;
  280. int size;
  281. int error;
  282. xfs_fsize_t di_size;
  283. ip->i_df.if_ext_max =
  284. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  285. error = 0;
  286. if (unlikely(be32_to_cpu(dip->di_nextents) +
  287. be16_to_cpu(dip->di_anextents) >
  288. be64_to_cpu(dip->di_nblocks))) {
  289. xfs_warn(ip->i_mount,
  290. "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
  291. (unsigned long long)ip->i_ino,
  292. (int)(be32_to_cpu(dip->di_nextents) +
  293. be16_to_cpu(dip->di_anextents)),
  294. (unsigned long long)
  295. be64_to_cpu(dip->di_nblocks));
  296. XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
  297. ip->i_mount, dip);
  298. return XFS_ERROR(EFSCORRUPTED);
  299. }
  300. if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
  301. xfs_warn(ip->i_mount, "corrupt dinode %Lu, forkoff = 0x%x.",
  302. (unsigned long long)ip->i_ino,
  303. dip->di_forkoff);
  304. XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
  305. ip->i_mount, dip);
  306. return XFS_ERROR(EFSCORRUPTED);
  307. }
  308. if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
  309. !ip->i_mount->m_rtdev_targp)) {
  310. xfs_warn(ip->i_mount,
  311. "corrupt dinode %Lu, has realtime flag set.",
  312. ip->i_ino);
  313. XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
  314. XFS_ERRLEVEL_LOW, ip->i_mount, dip);
  315. return XFS_ERROR(EFSCORRUPTED);
  316. }
  317. switch (ip->i_d.di_mode & S_IFMT) {
  318. case S_IFIFO:
  319. case S_IFCHR:
  320. case S_IFBLK:
  321. case S_IFSOCK:
  322. if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
  323. XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
  324. ip->i_mount, dip);
  325. return XFS_ERROR(EFSCORRUPTED);
  326. }
  327. ip->i_d.di_size = 0;
  328. ip->i_size = 0;
  329. ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
  330. break;
  331. case S_IFREG:
  332. case S_IFLNK:
  333. case S_IFDIR:
  334. switch (dip->di_format) {
  335. case XFS_DINODE_FMT_LOCAL:
  336. /*
  337. * no local regular files yet
  338. */
  339. if (unlikely((be16_to_cpu(dip->di_mode) & S_IFMT) == S_IFREG)) {
  340. xfs_warn(ip->i_mount,
  341. "corrupt inode %Lu (local format for regular file).",
  342. (unsigned long long) ip->i_ino);
  343. XFS_CORRUPTION_ERROR("xfs_iformat(4)",
  344. XFS_ERRLEVEL_LOW,
  345. ip->i_mount, dip);
  346. return XFS_ERROR(EFSCORRUPTED);
  347. }
  348. di_size = be64_to_cpu(dip->di_size);
  349. if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
  350. xfs_warn(ip->i_mount,
  351. "corrupt inode %Lu (bad size %Ld for local inode).",
  352. (unsigned long long) ip->i_ino,
  353. (long long) di_size);
  354. XFS_CORRUPTION_ERROR("xfs_iformat(5)",
  355. XFS_ERRLEVEL_LOW,
  356. ip->i_mount, dip);
  357. return XFS_ERROR(EFSCORRUPTED);
  358. }
  359. size = (int)di_size;
  360. error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
  361. break;
  362. case XFS_DINODE_FMT_EXTENTS:
  363. error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
  364. break;
  365. case XFS_DINODE_FMT_BTREE:
  366. error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
  367. break;
  368. default:
  369. XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
  370. ip->i_mount);
  371. return XFS_ERROR(EFSCORRUPTED);
  372. }
  373. break;
  374. default:
  375. XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
  376. return XFS_ERROR(EFSCORRUPTED);
  377. }
  378. if (error) {
  379. return error;
  380. }
  381. if (!XFS_DFORK_Q(dip))
  382. return 0;
  383. ASSERT(ip->i_afp == NULL);
  384. ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS);
  385. ip->i_afp->if_ext_max =
  386. XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  387. switch (dip->di_aformat) {
  388. case XFS_DINODE_FMT_LOCAL:
  389. atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
  390. size = be16_to_cpu(atp->hdr.totsize);
  391. if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
  392. xfs_warn(ip->i_mount,
  393. "corrupt inode %Lu (bad attr fork size %Ld).",
  394. (unsigned long long) ip->i_ino,
  395. (long long) size);
  396. XFS_CORRUPTION_ERROR("xfs_iformat(8)",
  397. XFS_ERRLEVEL_LOW,
  398. ip->i_mount, dip);
  399. return XFS_ERROR(EFSCORRUPTED);
  400. }
  401. error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
  402. break;
  403. case XFS_DINODE_FMT_EXTENTS:
  404. error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
  405. break;
  406. case XFS_DINODE_FMT_BTREE:
  407. error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
  408. break;
  409. default:
  410. error = XFS_ERROR(EFSCORRUPTED);
  411. break;
  412. }
  413. if (error) {
  414. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  415. ip->i_afp = NULL;
  416. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  417. }
  418. return error;
  419. }
  420. /*
  421. * The file is in-lined in the on-disk inode.
  422. * If it fits into if_inline_data, then copy
  423. * it there, otherwise allocate a buffer for it
  424. * and copy the data there. Either way, set
  425. * if_data to point at the data.
  426. * If we allocate a buffer for the data, make
  427. * sure that its size is a multiple of 4 and
  428. * record the real size in i_real_bytes.
  429. */
  430. STATIC int
  431. xfs_iformat_local(
  432. xfs_inode_t *ip,
  433. xfs_dinode_t *dip,
  434. int whichfork,
  435. int size)
  436. {
  437. xfs_ifork_t *ifp;
  438. int real_size;
  439. /*
  440. * If the size is unreasonable, then something
  441. * is wrong and we just bail out rather than crash in
  442. * kmem_alloc() or memcpy() below.
  443. */
  444. if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  445. xfs_warn(ip->i_mount,
  446. "corrupt inode %Lu (bad size %d for local fork, size = %d).",
  447. (unsigned long long) ip->i_ino, size,
  448. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
  449. XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
  450. ip->i_mount, dip);
  451. return XFS_ERROR(EFSCORRUPTED);
  452. }
  453. ifp = XFS_IFORK_PTR(ip, whichfork);
  454. real_size = 0;
  455. if (size == 0)
  456. ifp->if_u1.if_data = NULL;
  457. else if (size <= sizeof(ifp->if_u2.if_inline_data))
  458. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  459. else {
  460. real_size = roundup(size, 4);
  461. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS);
  462. }
  463. ifp->if_bytes = size;
  464. ifp->if_real_bytes = real_size;
  465. if (size)
  466. memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
  467. ifp->if_flags &= ~XFS_IFEXTENTS;
  468. ifp->if_flags |= XFS_IFINLINE;
  469. return 0;
  470. }
  471. /*
  472. * The file consists of a set of extents all
  473. * of which fit into the on-disk inode.
  474. * If there are few enough extents to fit into
  475. * the if_inline_ext, then copy them there.
  476. * Otherwise allocate a buffer for them and copy
  477. * them into it. Either way, set if_extents
  478. * to point at the extents.
  479. */
  480. STATIC int
  481. xfs_iformat_extents(
  482. xfs_inode_t *ip,
  483. xfs_dinode_t *dip,
  484. int whichfork)
  485. {
  486. xfs_bmbt_rec_t *dp;
  487. xfs_ifork_t *ifp;
  488. int nex;
  489. int size;
  490. int i;
  491. ifp = XFS_IFORK_PTR(ip, whichfork);
  492. nex = XFS_DFORK_NEXTENTS(dip, whichfork);
  493. size = nex * (uint)sizeof(xfs_bmbt_rec_t);
  494. /*
  495. * If the number of extents is unreasonable, then something
  496. * is wrong and we just bail out rather than crash in
  497. * kmem_alloc() or memcpy() below.
  498. */
  499. if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  500. xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).",
  501. (unsigned long long) ip->i_ino, nex);
  502. XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
  503. ip->i_mount, dip);
  504. return XFS_ERROR(EFSCORRUPTED);
  505. }
  506. ifp->if_real_bytes = 0;
  507. if (nex == 0)
  508. ifp->if_u1.if_extents = NULL;
  509. else if (nex <= XFS_INLINE_EXTS)
  510. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  511. else
  512. xfs_iext_add(ifp, 0, nex);
  513. ifp->if_bytes = size;
  514. if (size) {
  515. dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
  516. xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
  517. for (i = 0; i < nex; i++, dp++) {
  518. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  519. ep->l0 = get_unaligned_be64(&dp->l0);
  520. ep->l1 = get_unaligned_be64(&dp->l1);
  521. }
  522. XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
  523. if (whichfork != XFS_DATA_FORK ||
  524. XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
  525. if (unlikely(xfs_check_nostate_extents(
  526. ifp, 0, nex))) {
  527. XFS_ERROR_REPORT("xfs_iformat_extents(2)",
  528. XFS_ERRLEVEL_LOW,
  529. ip->i_mount);
  530. return XFS_ERROR(EFSCORRUPTED);
  531. }
  532. }
  533. ifp->if_flags |= XFS_IFEXTENTS;
  534. return 0;
  535. }
  536. /*
  537. * The file has too many extents to fit into
  538. * the inode, so they are in B-tree format.
  539. * Allocate a buffer for the root of the B-tree
  540. * and copy the root into it. The i_extents
  541. * field will remain NULL until all of the
  542. * extents are read in (when they are needed).
  543. */
  544. STATIC int
  545. xfs_iformat_btree(
  546. xfs_inode_t *ip,
  547. xfs_dinode_t *dip,
  548. int whichfork)
  549. {
  550. xfs_bmdr_block_t *dfp;
  551. xfs_ifork_t *ifp;
  552. /* REFERENCED */
  553. int nrecs;
  554. int size;
  555. ifp = XFS_IFORK_PTR(ip, whichfork);
  556. dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
  557. size = XFS_BMAP_BROOT_SPACE(dfp);
  558. nrecs = be16_to_cpu(dfp->bb_numrecs);
  559. /*
  560. * blow out if -- fork has less extents than can fit in
  561. * fork (fork shouldn't be a btree format), root btree
  562. * block has more records than can fit into the fork,
  563. * or the number of extents is greater than the number of
  564. * blocks.
  565. */
  566. if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
  567. || XFS_BMDR_SPACE_CALC(nrecs) >
  568. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
  569. || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
  570. xfs_warn(ip->i_mount, "corrupt inode %Lu (btree).",
  571. (unsigned long long) ip->i_ino);
  572. XFS_CORRUPTION_ERROR("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
  573. ip->i_mount, dip);
  574. return XFS_ERROR(EFSCORRUPTED);
  575. }
  576. ifp->if_broot_bytes = size;
  577. ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS);
  578. ASSERT(ifp->if_broot != NULL);
  579. /*
  580. * Copy and convert from the on-disk structure
  581. * to the in-memory structure.
  582. */
  583. xfs_bmdr_to_bmbt(ip->i_mount, dfp,
  584. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
  585. ifp->if_broot, size);
  586. ifp->if_flags &= ~XFS_IFEXTENTS;
  587. ifp->if_flags |= XFS_IFBROOT;
  588. return 0;
  589. }
  590. STATIC void
  591. xfs_dinode_from_disk(
  592. xfs_icdinode_t *to,
  593. xfs_dinode_t *from)
  594. {
  595. to->di_magic = be16_to_cpu(from->di_magic);
  596. to->di_mode = be16_to_cpu(from->di_mode);
  597. to->di_version = from ->di_version;
  598. to->di_format = from->di_format;
  599. to->di_onlink = be16_to_cpu(from->di_onlink);
  600. to->di_uid = be32_to_cpu(from->di_uid);
  601. to->di_gid = be32_to_cpu(from->di_gid);
  602. to->di_nlink = be32_to_cpu(from->di_nlink);
  603. to->di_projid_lo = be16_to_cpu(from->di_projid_lo);
  604. to->di_projid_hi = be16_to_cpu(from->di_projid_hi);
  605. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  606. to->di_flushiter = be16_to_cpu(from->di_flushiter);
  607. to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
  608. to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
  609. to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
  610. to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
  611. to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
  612. to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
  613. to->di_size = be64_to_cpu(from->di_size);
  614. to->di_nblocks = be64_to_cpu(from->di_nblocks);
  615. to->di_extsize = be32_to_cpu(from->di_extsize);
  616. to->di_nextents = be32_to_cpu(from->di_nextents);
  617. to->di_anextents = be16_to_cpu(from->di_anextents);
  618. to->di_forkoff = from->di_forkoff;
  619. to->di_aformat = from->di_aformat;
  620. to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
  621. to->di_dmstate = be16_to_cpu(from->di_dmstate);
  622. to->di_flags = be16_to_cpu(from->di_flags);
  623. to->di_gen = be32_to_cpu(from->di_gen);
  624. }
  625. void
  626. xfs_dinode_to_disk(
  627. xfs_dinode_t *to,
  628. xfs_icdinode_t *from)
  629. {
  630. to->di_magic = cpu_to_be16(from->di_magic);
  631. to->di_mode = cpu_to_be16(from->di_mode);
  632. to->di_version = from ->di_version;
  633. to->di_format = from->di_format;
  634. to->di_onlink = cpu_to_be16(from->di_onlink);
  635. to->di_uid = cpu_to_be32(from->di_uid);
  636. to->di_gid = cpu_to_be32(from->di_gid);
  637. to->di_nlink = cpu_to_be32(from->di_nlink);
  638. to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
  639. to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
  640. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  641. to->di_flushiter = cpu_to_be16(from->di_flushiter);
  642. to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
  643. to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
  644. to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
  645. to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
  646. to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
  647. to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
  648. to->di_size = cpu_to_be64(from->di_size);
  649. to->di_nblocks = cpu_to_be64(from->di_nblocks);
  650. to->di_extsize = cpu_to_be32(from->di_extsize);
  651. to->di_nextents = cpu_to_be32(from->di_nextents);
  652. to->di_anextents = cpu_to_be16(from->di_anextents);
  653. to->di_forkoff = from->di_forkoff;
  654. to->di_aformat = from->di_aformat;
  655. to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
  656. to->di_dmstate = cpu_to_be16(from->di_dmstate);
  657. to->di_flags = cpu_to_be16(from->di_flags);
  658. to->di_gen = cpu_to_be32(from->di_gen);
  659. }
  660. STATIC uint
  661. _xfs_dic2xflags(
  662. __uint16_t di_flags)
  663. {
  664. uint flags = 0;
  665. if (di_flags & XFS_DIFLAG_ANY) {
  666. if (di_flags & XFS_DIFLAG_REALTIME)
  667. flags |= XFS_XFLAG_REALTIME;
  668. if (di_flags & XFS_DIFLAG_PREALLOC)
  669. flags |= XFS_XFLAG_PREALLOC;
  670. if (di_flags & XFS_DIFLAG_IMMUTABLE)
  671. flags |= XFS_XFLAG_IMMUTABLE;
  672. if (di_flags & XFS_DIFLAG_APPEND)
  673. flags |= XFS_XFLAG_APPEND;
  674. if (di_flags & XFS_DIFLAG_SYNC)
  675. flags |= XFS_XFLAG_SYNC;
  676. if (di_flags & XFS_DIFLAG_NOATIME)
  677. flags |= XFS_XFLAG_NOATIME;
  678. if (di_flags & XFS_DIFLAG_NODUMP)
  679. flags |= XFS_XFLAG_NODUMP;
  680. if (di_flags & XFS_DIFLAG_RTINHERIT)
  681. flags |= XFS_XFLAG_RTINHERIT;
  682. if (di_flags & XFS_DIFLAG_PROJINHERIT)
  683. flags |= XFS_XFLAG_PROJINHERIT;
  684. if (di_flags & XFS_DIFLAG_NOSYMLINKS)
  685. flags |= XFS_XFLAG_NOSYMLINKS;
  686. if (di_flags & XFS_DIFLAG_EXTSIZE)
  687. flags |= XFS_XFLAG_EXTSIZE;
  688. if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
  689. flags |= XFS_XFLAG_EXTSZINHERIT;
  690. if (di_flags & XFS_DIFLAG_NODEFRAG)
  691. flags |= XFS_XFLAG_NODEFRAG;
  692. if (di_flags & XFS_DIFLAG_FILESTREAM)
  693. flags |= XFS_XFLAG_FILESTREAM;
  694. }
  695. return flags;
  696. }
  697. uint
  698. xfs_ip2xflags(
  699. xfs_inode_t *ip)
  700. {
  701. xfs_icdinode_t *dic = &ip->i_d;
  702. return _xfs_dic2xflags(dic->di_flags) |
  703. (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
  704. }
  705. uint
  706. xfs_dic2xflags(
  707. xfs_dinode_t *dip)
  708. {
  709. return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
  710. (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
  711. }
  712. /*
  713. * Read the disk inode attributes into the in-core inode structure.
  714. */
  715. int
  716. xfs_iread(
  717. xfs_mount_t *mp,
  718. xfs_trans_t *tp,
  719. xfs_inode_t *ip,
  720. uint iget_flags)
  721. {
  722. xfs_buf_t *bp;
  723. xfs_dinode_t *dip;
  724. int error;
  725. /*
  726. * Fill in the location information in the in-core inode.
  727. */
  728. error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
  729. if (error)
  730. return error;
  731. /*
  732. * Get pointers to the on-disk inode and the buffer containing it.
  733. */
  734. error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp,
  735. XBF_LOCK, iget_flags);
  736. if (error)
  737. return error;
  738. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
  739. /*
  740. * If we got something that isn't an inode it means someone
  741. * (nfs or dmi) has a stale handle.
  742. */
  743. if (be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC) {
  744. #ifdef DEBUG
  745. xfs_alert(mp,
  746. "%s: dip->di_magic (0x%x) != XFS_DINODE_MAGIC (0x%x)",
  747. __func__, be16_to_cpu(dip->di_magic), XFS_DINODE_MAGIC);
  748. #endif /* DEBUG */
  749. error = XFS_ERROR(EINVAL);
  750. goto out_brelse;
  751. }
  752. /*
  753. * If the on-disk inode is already linked to a directory
  754. * entry, copy all of the inode into the in-core inode.
  755. * xfs_iformat() handles copying in the inode format
  756. * specific information.
  757. * Otherwise, just get the truly permanent information.
  758. */
  759. if (dip->di_mode) {
  760. xfs_dinode_from_disk(&ip->i_d, dip);
  761. error = xfs_iformat(ip, dip);
  762. if (error) {
  763. #ifdef DEBUG
  764. xfs_alert(mp, "%s: xfs_iformat() returned error %d",
  765. __func__, error);
  766. #endif /* DEBUG */
  767. goto out_brelse;
  768. }
  769. } else {
  770. ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
  771. ip->i_d.di_version = dip->di_version;
  772. ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
  773. ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
  774. /*
  775. * Make sure to pull in the mode here as well in
  776. * case the inode is released without being used.
  777. * This ensures that xfs_inactive() will see that
  778. * the inode is already free and not try to mess
  779. * with the uninitialized part of it.
  780. */
  781. ip->i_d.di_mode = 0;
  782. /*
  783. * Initialize the per-fork minima and maxima for a new
  784. * inode here. xfs_iformat will do it for old inodes.
  785. */
  786. ip->i_df.if_ext_max =
  787. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  788. }
  789. /*
  790. * The inode format changed when we moved the link count and
  791. * made it 32 bits long. If this is an old format inode,
  792. * convert it in memory to look like a new one. If it gets
  793. * flushed to disk we will convert back before flushing or
  794. * logging it. We zero out the new projid field and the old link
  795. * count field. We'll handle clearing the pad field (the remains
  796. * of the old uuid field) when we actually convert the inode to
  797. * the new format. We don't change the version number so that we
  798. * can distinguish this from a real new format inode.
  799. */
  800. if (ip->i_d.di_version == 1) {
  801. ip->i_d.di_nlink = ip->i_d.di_onlink;
  802. ip->i_d.di_onlink = 0;
  803. xfs_set_projid(ip, 0);
  804. }
  805. ip->i_delayed_blks = 0;
  806. ip->i_size = ip->i_d.di_size;
  807. /*
  808. * Mark the buffer containing the inode as something to keep
  809. * around for a while. This helps to keep recently accessed
  810. * meta-data in-core longer.
  811. */
  812. xfs_buf_set_ref(bp, XFS_INO_REF);
  813. /*
  814. * Use xfs_trans_brelse() to release the buffer containing the
  815. * on-disk inode, because it was acquired with xfs_trans_read_buf()
  816. * in xfs_itobp() above. If tp is NULL, this is just a normal
  817. * brelse(). If we're within a transaction, then xfs_trans_brelse()
  818. * will only release the buffer if it is not dirty within the
  819. * transaction. It will be OK to release the buffer in this case,
  820. * because inodes on disk are never destroyed and we will be
  821. * locking the new in-core inode before putting it in the hash
  822. * table where other processes can find it. Thus we don't have
  823. * to worry about the inode being changed just because we released
  824. * the buffer.
  825. */
  826. out_brelse:
  827. xfs_trans_brelse(tp, bp);
  828. return error;
  829. }
  830. /*
  831. * Read in extents from a btree-format inode.
  832. * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
  833. */
  834. int
  835. xfs_iread_extents(
  836. xfs_trans_t *tp,
  837. xfs_inode_t *ip,
  838. int whichfork)
  839. {
  840. int error;
  841. xfs_ifork_t *ifp;
  842. xfs_extnum_t nextents;
  843. if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
  844. XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
  845. ip->i_mount);
  846. return XFS_ERROR(EFSCORRUPTED);
  847. }
  848. nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
  849. ifp = XFS_IFORK_PTR(ip, whichfork);
  850. /*
  851. * We know that the size is valid (it's checked in iformat_btree)
  852. */
  853. ifp->if_lastex = NULLEXTNUM;
  854. ifp->if_bytes = ifp->if_real_bytes = 0;
  855. ifp->if_flags |= XFS_IFEXTENTS;
  856. xfs_iext_add(ifp, 0, nextents);
  857. error = xfs_bmap_read_extents(tp, ip, whichfork);
  858. if (error) {
  859. xfs_iext_destroy(ifp);
  860. ifp->if_flags &= ~XFS_IFEXTENTS;
  861. return error;
  862. }
  863. xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
  864. return 0;
  865. }
  866. /*
  867. * Allocate an inode on disk and return a copy of its in-core version.
  868. * The in-core inode is locked exclusively. Set mode, nlink, and rdev
  869. * appropriately within the inode. The uid and gid for the inode are
  870. * set according to the contents of the given cred structure.
  871. *
  872. * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
  873. * has a free inode available, call xfs_iget()
  874. * to obtain the in-core version of the allocated inode. Finally,
  875. * fill in the inode and log its initial contents. In this case,
  876. * ialloc_context would be set to NULL and call_again set to false.
  877. *
  878. * If xfs_dialloc() does not have an available inode,
  879. * it will replenish its supply by doing an allocation. Since we can
  880. * only do one allocation within a transaction without deadlocks, we
  881. * must commit the current transaction before returning the inode itself.
  882. * In this case, therefore, we will set call_again to true and return.
  883. * The caller should then commit the current transaction, start a new
  884. * transaction, and call xfs_ialloc() again to actually get the inode.
  885. *
  886. * To ensure that some other process does not grab the inode that
  887. * was allocated during the first call to xfs_ialloc(), this routine
  888. * also returns the [locked] bp pointing to the head of the freelist
  889. * as ialloc_context. The caller should hold this buffer across
  890. * the commit and pass it back into this routine on the second call.
  891. *
  892. * If we are allocating quota inodes, we do not have a parent inode
  893. * to attach to or associate with (i.e. pip == NULL) because they
  894. * are not linked into the directory structure - they are attached
  895. * directly to the superblock - and so have no parent.
  896. */
  897. int
  898. xfs_ialloc(
  899. xfs_trans_t *tp,
  900. xfs_inode_t *pip,
  901. mode_t mode,
  902. xfs_nlink_t nlink,
  903. xfs_dev_t rdev,
  904. prid_t prid,
  905. int okalloc,
  906. xfs_buf_t **ialloc_context,
  907. boolean_t *call_again,
  908. xfs_inode_t **ipp)
  909. {
  910. xfs_ino_t ino;
  911. xfs_inode_t *ip;
  912. uint flags;
  913. int error;
  914. timespec_t tv;
  915. int filestreams = 0;
  916. /*
  917. * Call the space management code to pick
  918. * the on-disk inode to be allocated.
  919. */
  920. error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
  921. ialloc_context, call_again, &ino);
  922. if (error)
  923. return error;
  924. if (*call_again || ino == NULLFSINO) {
  925. *ipp = NULL;
  926. return 0;
  927. }
  928. ASSERT(*ialloc_context == NULL);
  929. /*
  930. * Get the in-core inode with the lock held exclusively.
  931. * This is because we're setting fields here we need
  932. * to prevent others from looking at until we're done.
  933. */
  934. error = xfs_iget(tp->t_mountp, tp, ino, XFS_IGET_CREATE,
  935. XFS_ILOCK_EXCL, &ip);
  936. if (error)
  937. return error;
  938. ASSERT(ip != NULL);
  939. ip->i_d.di_mode = (__uint16_t)mode;
  940. ip->i_d.di_onlink = 0;
  941. ip->i_d.di_nlink = nlink;
  942. ASSERT(ip->i_d.di_nlink == nlink);
  943. ip->i_d.di_uid = current_fsuid();
  944. ip->i_d.di_gid = current_fsgid();
  945. xfs_set_projid(ip, prid);
  946. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  947. /*
  948. * If the superblock version is up to where we support new format
  949. * inodes and this is currently an old format inode, then change
  950. * the inode version number now. This way we only do the conversion
  951. * here rather than here and in the flush/logging code.
  952. */
  953. if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
  954. ip->i_d.di_version == 1) {
  955. ip->i_d.di_version = 2;
  956. /*
  957. * We've already zeroed the old link count, the projid field,
  958. * and the pad field.
  959. */
  960. }
  961. /*
  962. * Project ids won't be stored on disk if we are using a version 1 inode.
  963. */
  964. if ((prid != 0) && (ip->i_d.di_version == 1))
  965. xfs_bump_ino_vers2(tp, ip);
  966. if (pip && XFS_INHERIT_GID(pip)) {
  967. ip->i_d.di_gid = pip->i_d.di_gid;
  968. if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
  969. ip->i_d.di_mode |= S_ISGID;
  970. }
  971. }
  972. /*
  973. * If the group ID of the new file does not match the effective group
  974. * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
  975. * (and only if the irix_sgid_inherit compatibility variable is set).
  976. */
  977. if ((irix_sgid_inherit) &&
  978. (ip->i_d.di_mode & S_ISGID) &&
  979. (!in_group_p((gid_t)ip->i_d.di_gid))) {
  980. ip->i_d.di_mode &= ~S_ISGID;
  981. }
  982. ip->i_d.di_size = 0;
  983. ip->i_size = 0;
  984. ip->i_d.di_nextents = 0;
  985. ASSERT(ip->i_d.di_nblocks == 0);
  986. nanotime(&tv);
  987. ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
  988. ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
  989. ip->i_d.di_atime = ip->i_d.di_mtime;
  990. ip->i_d.di_ctime = ip->i_d.di_mtime;
  991. /*
  992. * di_gen will have been taken care of in xfs_iread.
  993. */
  994. ip->i_d.di_extsize = 0;
  995. ip->i_d.di_dmevmask = 0;
  996. ip->i_d.di_dmstate = 0;
  997. ip->i_d.di_flags = 0;
  998. flags = XFS_ILOG_CORE;
  999. switch (mode & S_IFMT) {
  1000. case S_IFIFO:
  1001. case S_IFCHR:
  1002. case S_IFBLK:
  1003. case S_IFSOCK:
  1004. ip->i_d.di_format = XFS_DINODE_FMT_DEV;
  1005. ip->i_df.if_u2.if_rdev = rdev;
  1006. ip->i_df.if_flags = 0;
  1007. flags |= XFS_ILOG_DEV;
  1008. break;
  1009. case S_IFREG:
  1010. /*
  1011. * we can't set up filestreams until after the VFS inode
  1012. * is set up properly.
  1013. */
  1014. if (pip && xfs_inode_is_filestream(pip))
  1015. filestreams = 1;
  1016. /* fall through */
  1017. case S_IFDIR:
  1018. if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
  1019. uint di_flags = 0;
  1020. if ((mode & S_IFMT) == S_IFDIR) {
  1021. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1022. di_flags |= XFS_DIFLAG_RTINHERIT;
  1023. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1024. di_flags |= XFS_DIFLAG_EXTSZINHERIT;
  1025. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1026. }
  1027. } else if ((mode & S_IFMT) == S_IFREG) {
  1028. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1029. di_flags |= XFS_DIFLAG_REALTIME;
  1030. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1031. di_flags |= XFS_DIFLAG_EXTSIZE;
  1032. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1033. }
  1034. }
  1035. if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
  1036. xfs_inherit_noatime)
  1037. di_flags |= XFS_DIFLAG_NOATIME;
  1038. if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
  1039. xfs_inherit_nodump)
  1040. di_flags |= XFS_DIFLAG_NODUMP;
  1041. if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
  1042. xfs_inherit_sync)
  1043. di_flags |= XFS_DIFLAG_SYNC;
  1044. if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
  1045. xfs_inherit_nosymlinks)
  1046. di_flags |= XFS_DIFLAG_NOSYMLINKS;
  1047. if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
  1048. di_flags |= XFS_DIFLAG_PROJINHERIT;
  1049. if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
  1050. xfs_inherit_nodefrag)
  1051. di_flags |= XFS_DIFLAG_NODEFRAG;
  1052. if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
  1053. di_flags |= XFS_DIFLAG_FILESTREAM;
  1054. ip->i_d.di_flags |= di_flags;
  1055. }
  1056. /* FALLTHROUGH */
  1057. case S_IFLNK:
  1058. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  1059. ip->i_df.if_flags = XFS_IFEXTENTS;
  1060. ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
  1061. ip->i_df.if_u1.if_extents = NULL;
  1062. break;
  1063. default:
  1064. ASSERT(0);
  1065. }
  1066. /*
  1067. * Attribute fork settings for new inode.
  1068. */
  1069. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  1070. ip->i_d.di_anextents = 0;
  1071. /*
  1072. * Log the new values stuffed into the inode.
  1073. */
  1074. xfs_trans_ijoin_ref(tp, ip, XFS_ILOCK_EXCL);
  1075. xfs_trans_log_inode(tp, ip, flags);
  1076. /* now that we have an i_mode we can setup inode ops and unlock */
  1077. xfs_setup_inode(ip);
  1078. /* now we have set up the vfs inode we can associate the filestream */
  1079. if (filestreams) {
  1080. error = xfs_filestream_associate(pip, ip);
  1081. if (error < 0)
  1082. return -error;
  1083. if (!error)
  1084. xfs_iflags_set(ip, XFS_IFILESTREAM);
  1085. }
  1086. *ipp = ip;
  1087. return 0;
  1088. }
  1089. /*
  1090. * Check to make sure that there are no blocks allocated to the
  1091. * file beyond the size of the file. We don't check this for
  1092. * files with fixed size extents or real time extents, but we
  1093. * at least do it for regular files.
  1094. */
  1095. #ifdef DEBUG
  1096. void
  1097. xfs_isize_check(
  1098. xfs_mount_t *mp,
  1099. xfs_inode_t *ip,
  1100. xfs_fsize_t isize)
  1101. {
  1102. xfs_fileoff_t map_first;
  1103. int nimaps;
  1104. xfs_bmbt_irec_t imaps[2];
  1105. if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
  1106. return;
  1107. if (XFS_IS_REALTIME_INODE(ip))
  1108. return;
  1109. if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
  1110. return;
  1111. nimaps = 2;
  1112. map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
  1113. /*
  1114. * The filesystem could be shutting down, so bmapi may return
  1115. * an error.
  1116. */
  1117. if (xfs_bmapi(NULL, ip, map_first,
  1118. (XFS_B_TO_FSB(mp,
  1119. (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
  1120. map_first),
  1121. XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
  1122. NULL))
  1123. return;
  1124. ASSERT(nimaps == 1);
  1125. ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
  1126. }
  1127. #endif /* DEBUG */
  1128. /*
  1129. * Calculate the last possible buffered byte in a file. This must
  1130. * include data that was buffered beyond the EOF by the write code.
  1131. * This also needs to deal with overflowing the xfs_fsize_t type
  1132. * which can happen for sizes near the limit.
  1133. *
  1134. * We also need to take into account any blocks beyond the EOF. It
  1135. * may be the case that they were buffered by a write which failed.
  1136. * In that case the pages will still be in memory, but the inode size
  1137. * will never have been updated.
  1138. */
  1139. STATIC xfs_fsize_t
  1140. xfs_file_last_byte(
  1141. xfs_inode_t *ip)
  1142. {
  1143. xfs_mount_t *mp;
  1144. xfs_fsize_t last_byte;
  1145. xfs_fileoff_t last_block;
  1146. xfs_fileoff_t size_last_block;
  1147. int error;
  1148. ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED));
  1149. mp = ip->i_mount;
  1150. /*
  1151. * Only check for blocks beyond the EOF if the extents have
  1152. * been read in. This eliminates the need for the inode lock,
  1153. * and it also saves us from looking when it really isn't
  1154. * necessary.
  1155. */
  1156. if (ip->i_df.if_flags & XFS_IFEXTENTS) {
  1157. xfs_ilock(ip, XFS_ILOCK_SHARED);
  1158. error = xfs_bmap_last_offset(NULL, ip, &last_block,
  1159. XFS_DATA_FORK);
  1160. xfs_iunlock(ip, XFS_ILOCK_SHARED);
  1161. if (error) {
  1162. last_block = 0;
  1163. }
  1164. } else {
  1165. last_block = 0;
  1166. }
  1167. size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
  1168. last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
  1169. last_byte = XFS_FSB_TO_B(mp, last_block);
  1170. if (last_byte < 0) {
  1171. return XFS_MAXIOFFSET(mp);
  1172. }
  1173. last_byte += (1 << mp->m_writeio_log);
  1174. if (last_byte < 0) {
  1175. return XFS_MAXIOFFSET(mp);
  1176. }
  1177. return last_byte;
  1178. }
  1179. /*
  1180. * Start the truncation of the file to new_size. The new size
  1181. * must be smaller than the current size. This routine will
  1182. * clear the buffer and page caches of file data in the removed
  1183. * range, and xfs_itruncate_finish() will remove the underlying
  1184. * disk blocks.
  1185. *
  1186. * The inode must have its I/O lock locked EXCLUSIVELY, and it
  1187. * must NOT have the inode lock held at all. This is because we're
  1188. * calling into the buffer/page cache code and we can't hold the
  1189. * inode lock when we do so.
  1190. *
  1191. * We need to wait for any direct I/Os in flight to complete before we
  1192. * proceed with the truncate. This is needed to prevent the extents
  1193. * being read or written by the direct I/Os from being removed while the
  1194. * I/O is in flight as there is no other method of synchronising
  1195. * direct I/O with the truncate operation. Also, because we hold
  1196. * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
  1197. * started until the truncate completes and drops the lock. Essentially,
  1198. * the xfs_ioend_wait() call forms an I/O barrier that provides strict
  1199. * ordering between direct I/Os and the truncate operation.
  1200. *
  1201. * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
  1202. * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
  1203. * in the case that the caller is locking things out of order and
  1204. * may not be able to call xfs_itruncate_finish() with the inode lock
  1205. * held without dropping the I/O lock. If the caller must drop the
  1206. * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
  1207. * must be called again with all the same restrictions as the initial
  1208. * call.
  1209. */
  1210. int
  1211. xfs_itruncate_start(
  1212. xfs_inode_t *ip,
  1213. uint flags,
  1214. xfs_fsize_t new_size)
  1215. {
  1216. xfs_fsize_t last_byte;
  1217. xfs_off_t toss_start;
  1218. xfs_mount_t *mp;
  1219. int error = 0;
  1220. ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
  1221. ASSERT((new_size == 0) || (new_size <= ip->i_size));
  1222. ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
  1223. (flags == XFS_ITRUNC_MAYBE));
  1224. mp = ip->i_mount;
  1225. /* wait for the completion of any pending DIOs */
  1226. if (new_size == 0 || new_size < ip->i_size)
  1227. xfs_ioend_wait(ip);
  1228. /*
  1229. * Call toss_pages or flushinval_pages to get rid of pages
  1230. * overlapping the region being removed. We have to use
  1231. * the less efficient flushinval_pages in the case that the
  1232. * caller may not be able to finish the truncate without
  1233. * dropping the inode's I/O lock. Make sure
  1234. * to catch any pages brought in by buffers overlapping
  1235. * the EOF by searching out beyond the isize by our
  1236. * block size. We round new_size up to a block boundary
  1237. * so that we don't toss things on the same block as
  1238. * new_size but before it.
  1239. *
  1240. * Before calling toss_page or flushinval_pages, make sure to
  1241. * call remapf() over the same region if the file is mapped.
  1242. * This frees up mapped file references to the pages in the
  1243. * given range and for the flushinval_pages case it ensures
  1244. * that we get the latest mapped changes flushed out.
  1245. */
  1246. toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1247. toss_start = XFS_FSB_TO_B(mp, toss_start);
  1248. if (toss_start < 0) {
  1249. /*
  1250. * The place to start tossing is beyond our maximum
  1251. * file size, so there is no way that the data extended
  1252. * out there.
  1253. */
  1254. return 0;
  1255. }
  1256. last_byte = xfs_file_last_byte(ip);
  1257. trace_xfs_itruncate_start(ip, flags, new_size, toss_start, last_byte);
  1258. if (last_byte > toss_start) {
  1259. if (flags & XFS_ITRUNC_DEFINITE) {
  1260. xfs_tosspages(ip, toss_start,
  1261. -1, FI_REMAPF_LOCKED);
  1262. } else {
  1263. error = xfs_flushinval_pages(ip, toss_start,
  1264. -1, FI_REMAPF_LOCKED);
  1265. }
  1266. }
  1267. #ifdef DEBUG
  1268. if (new_size == 0) {
  1269. ASSERT(VN_CACHED(VFS_I(ip)) == 0);
  1270. }
  1271. #endif
  1272. return error;
  1273. }
  1274. /*
  1275. * Shrink the file to the given new_size. The new size must be smaller than
  1276. * the current size. This will free up the underlying blocks in the removed
  1277. * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
  1278. *
  1279. * The transaction passed to this routine must have made a permanent log
  1280. * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
  1281. * given transaction and start new ones, so make sure everything involved in
  1282. * the transaction is tidy before calling here. Some transaction will be
  1283. * returned to the caller to be committed. The incoming transaction must
  1284. * already include the inode, and both inode locks must be held exclusively.
  1285. * The inode must also be "held" within the transaction. On return the inode
  1286. * will be "held" within the returned transaction. This routine does NOT
  1287. * require any disk space to be reserved for it within the transaction.
  1288. *
  1289. * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
  1290. * indicates the fork which is to be truncated. For the attribute fork we only
  1291. * support truncation to size 0.
  1292. *
  1293. * We use the sync parameter to indicate whether or not the first transaction
  1294. * we perform might have to be synchronous. For the attr fork, it needs to be
  1295. * so if the unlink of the inode is not yet known to be permanent in the log.
  1296. * This keeps us from freeing and reusing the blocks of the attribute fork
  1297. * before the unlink of the inode becomes permanent.
  1298. *
  1299. * For the data fork, we normally have to run synchronously if we're being
  1300. * called out of the inactive path or we're being called out of the create path
  1301. * where we're truncating an existing file. Either way, the truncate needs to
  1302. * be sync so blocks don't reappear in the file with altered data in case of a
  1303. * crash. wsync filesystems can run the first case async because anything that
  1304. * shrinks the inode has to run sync so by the time we're called here from
  1305. * inactive, the inode size is permanently set to 0.
  1306. *
  1307. * Calls from the truncate path always need to be sync unless we're in a wsync
  1308. * filesystem and the file has already been unlinked.
  1309. *
  1310. * The caller is responsible for correctly setting the sync parameter. It gets
  1311. * too hard for us to guess here which path we're being called out of just
  1312. * based on inode state.
  1313. *
  1314. * If we get an error, we must return with the inode locked and linked into the
  1315. * current transaction. This keeps things simple for the higher level code,
  1316. * because it always knows that the inode is locked and held in the transaction
  1317. * that returns to it whether errors occur or not. We don't mark the inode
  1318. * dirty on error so that transactions can be easily aborted if possible.
  1319. */
  1320. int
  1321. xfs_itruncate_finish(
  1322. xfs_trans_t **tp,
  1323. xfs_inode_t *ip,
  1324. xfs_fsize_t new_size,
  1325. int fork,
  1326. int sync)
  1327. {
  1328. xfs_fsblock_t first_block;
  1329. xfs_fileoff_t first_unmap_block;
  1330. xfs_fileoff_t last_block;
  1331. xfs_filblks_t unmap_len=0;
  1332. xfs_mount_t *mp;
  1333. xfs_trans_t *ntp;
  1334. int done;
  1335. int committed;
  1336. xfs_bmap_free_t free_list;
  1337. int error;
  1338. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
  1339. ASSERT((new_size == 0) || (new_size <= ip->i_size));
  1340. ASSERT(*tp != NULL);
  1341. ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
  1342. ASSERT(ip->i_transp == *tp);
  1343. ASSERT(ip->i_itemp != NULL);
  1344. ASSERT(ip->i_itemp->ili_lock_flags == 0);
  1345. ntp = *tp;
  1346. mp = (ntp)->t_mountp;
  1347. ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
  1348. /*
  1349. * We only support truncating the entire attribute fork.
  1350. */
  1351. if (fork == XFS_ATTR_FORK) {
  1352. new_size = 0LL;
  1353. }
  1354. first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1355. trace_xfs_itruncate_finish_start(ip, new_size);
  1356. /*
  1357. * The first thing we do is set the size to new_size permanently
  1358. * on disk. This way we don't have to worry about anyone ever
  1359. * being able to look at the data being freed even in the face
  1360. * of a crash. What we're getting around here is the case where
  1361. * we free a block, it is allocated to another file, it is written
  1362. * to, and then we crash. If the new data gets written to the
  1363. * file but the log buffers containing the free and reallocation
  1364. * don't, then we'd end up with garbage in the blocks being freed.
  1365. * As long as we make the new_size permanent before actually
  1366. * freeing any blocks it doesn't matter if they get written to.
  1367. *
  1368. * The callers must signal into us whether or not the size
  1369. * setting here must be synchronous. There are a few cases
  1370. * where it doesn't have to be synchronous. Those cases
  1371. * occur if the file is unlinked and we know the unlink is
  1372. * permanent or if the blocks being truncated are guaranteed
  1373. * to be beyond the inode eof (regardless of the link count)
  1374. * and the eof value is permanent. Both of these cases occur
  1375. * only on wsync-mounted filesystems. In those cases, we're
  1376. * guaranteed that no user will ever see the data in the blocks
  1377. * that are being truncated so the truncate can run async.
  1378. * In the free beyond eof case, the file may wind up with
  1379. * more blocks allocated to it than it needs if we crash
  1380. * and that won't get fixed until the next time the file
  1381. * is re-opened and closed but that's ok as that shouldn't
  1382. * be too many blocks.
  1383. *
  1384. * However, we can't just make all wsync xactions run async
  1385. * because there's one call out of the create path that needs
  1386. * to run sync where it's truncating an existing file to size
  1387. * 0 whose size is > 0.
  1388. *
  1389. * It's probably possible to come up with a test in this
  1390. * routine that would correctly distinguish all the above
  1391. * cases from the values of the function parameters and the
  1392. * inode state but for sanity's sake, I've decided to let the
  1393. * layers above just tell us. It's simpler to correctly figure
  1394. * out in the layer above exactly under what conditions we
  1395. * can run async and I think it's easier for others read and
  1396. * follow the logic in case something has to be changed.
  1397. * cscope is your friend -- rcc.
  1398. *
  1399. * The attribute fork is much simpler.
  1400. *
  1401. * For the attribute fork we allow the caller to tell us whether
  1402. * the unlink of the inode that led to this call is yet permanent
  1403. * in the on disk log. If it is not and we will be freeing extents
  1404. * in this inode then we make the first transaction synchronous
  1405. * to make sure that the unlink is permanent by the time we free
  1406. * the blocks.
  1407. */
  1408. if (fork == XFS_DATA_FORK) {
  1409. if (ip->i_d.di_nextents > 0) {
  1410. /*
  1411. * If we are not changing the file size then do
  1412. * not update the on-disk file size - we may be
  1413. * called from xfs_inactive_free_eofblocks(). If we
  1414. * update the on-disk file size and then the system
  1415. * crashes before the contents of the file are
  1416. * flushed to disk then the files may be full of
  1417. * holes (ie NULL files bug).
  1418. */
  1419. if (ip->i_size != new_size) {
  1420. ip->i_d.di_size = new_size;
  1421. ip->i_size = new_size;
  1422. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1423. }
  1424. }
  1425. } else if (sync) {
  1426. ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
  1427. if (ip->i_d.di_anextents > 0)
  1428. xfs_trans_set_sync(ntp);
  1429. }
  1430. ASSERT(fork == XFS_DATA_FORK ||
  1431. (fork == XFS_ATTR_FORK &&
  1432. ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
  1433. (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
  1434. /*
  1435. * Since it is possible for space to become allocated beyond
  1436. * the end of the file (in a crash where the space is allocated
  1437. * but the inode size is not yet updated), simply remove any
  1438. * blocks which show up between the new EOF and the maximum
  1439. * possible file size. If the first block to be removed is
  1440. * beyond the maximum file size (ie it is the same as last_block),
  1441. * then there is nothing to do.
  1442. */
  1443. last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
  1444. ASSERT(first_unmap_block <= last_block);
  1445. done = 0;
  1446. if (last_block == first_unmap_block) {
  1447. done = 1;
  1448. } else {
  1449. unmap_len = last_block - first_unmap_block + 1;
  1450. }
  1451. while (!done) {
  1452. /*
  1453. * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
  1454. * will tell us whether it freed the entire range or
  1455. * not. If this is a synchronous mount (wsync),
  1456. * then we can tell bunmapi to keep all the
  1457. * transactions asynchronous since the unlink
  1458. * transaction that made this inode inactive has
  1459. * already hit the disk. There's no danger of
  1460. * the freed blocks being reused, there being a
  1461. * crash, and the reused blocks suddenly reappearing
  1462. * in this file with garbage in them once recovery
  1463. * runs.
  1464. */
  1465. xfs_bmap_init(&free_list, &first_block);
  1466. error = xfs_bunmapi(ntp, ip,
  1467. first_unmap_block, unmap_len,
  1468. xfs_bmapi_aflag(fork),
  1469. XFS_ITRUNC_MAX_EXTENTS,
  1470. &first_block, &free_list,
  1471. &done);
  1472. if (error) {
  1473. /*
  1474. * If the bunmapi call encounters an error,
  1475. * return to the caller where the transaction
  1476. * can be properly aborted. We just need to
  1477. * make sure we're not holding any resources
  1478. * that we were not when we came in.
  1479. */
  1480. xfs_bmap_cancel(&free_list);
  1481. return error;
  1482. }
  1483. /*
  1484. * Duplicate the transaction that has the permanent
  1485. * reservation and commit the old transaction.
  1486. */
  1487. error = xfs_bmap_finish(tp, &free_list, &committed);
  1488. ntp = *tp;
  1489. if (committed)
  1490. xfs_trans_ijoin(ntp, ip);
  1491. if (error) {
  1492. /*
  1493. * If the bmap finish call encounters an error, return
  1494. * to the caller where the transaction can be properly
  1495. * aborted. We just need to make sure we're not
  1496. * holding any resources that we were not when we came
  1497. * in.
  1498. *
  1499. * Aborting from this point might lose some blocks in
  1500. * the file system, but oh well.
  1501. */
  1502. xfs_bmap_cancel(&free_list);
  1503. return error;
  1504. }
  1505. if (committed) {
  1506. /*
  1507. * Mark the inode dirty so it will be logged and
  1508. * moved forward in the log as part of every commit.
  1509. */
  1510. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1511. }
  1512. ntp = xfs_trans_dup(ntp);
  1513. error = xfs_trans_commit(*tp, 0);
  1514. *tp = ntp;
  1515. xfs_trans_ijoin(ntp, ip);
  1516. if (error)
  1517. return error;
  1518. /*
  1519. * transaction commit worked ok so we can drop the extra ticket
  1520. * reference that we gained in xfs_trans_dup()
  1521. */
  1522. xfs_log_ticket_put(ntp->t_ticket);
  1523. error = xfs_trans_reserve(ntp, 0,
  1524. XFS_ITRUNCATE_LOG_RES(mp), 0,
  1525. XFS_TRANS_PERM_LOG_RES,
  1526. XFS_ITRUNCATE_LOG_COUNT);
  1527. if (error)
  1528. return error;
  1529. }
  1530. /*
  1531. * Only update the size in the case of the data fork, but
  1532. * always re-log the inode so that our permanent transaction
  1533. * can keep on rolling it forward in the log.
  1534. */
  1535. if (fork == XFS_DATA_FORK) {
  1536. xfs_isize_check(mp, ip, new_size);
  1537. /*
  1538. * If we are not changing the file size then do
  1539. * not update the on-disk file size - we may be
  1540. * called from xfs_inactive_free_eofblocks(). If we
  1541. * update the on-disk file size and then the system
  1542. * crashes before the contents of the file are
  1543. * flushed to disk then the files may be full of
  1544. * holes (ie NULL files bug).
  1545. */
  1546. if (ip->i_size != new_size) {
  1547. ip->i_d.di_size = new_size;
  1548. ip->i_size = new_size;
  1549. }
  1550. }
  1551. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1552. ASSERT((new_size != 0) ||
  1553. (fork == XFS_ATTR_FORK) ||
  1554. (ip->i_delayed_blks == 0));
  1555. ASSERT((new_size != 0) ||
  1556. (fork == XFS_ATTR_FORK) ||
  1557. (ip->i_d.di_nextents == 0));
  1558. trace_xfs_itruncate_finish_end(ip, new_size);
  1559. return 0;
  1560. }
  1561. /*
  1562. * This is called when the inode's link count goes to 0.
  1563. * We place the on-disk inode on a list in the AGI. It
  1564. * will be pulled from this list when the inode is freed.
  1565. */
  1566. int
  1567. xfs_iunlink(
  1568. xfs_trans_t *tp,
  1569. xfs_inode_t *ip)
  1570. {
  1571. xfs_mount_t *mp;
  1572. xfs_agi_t *agi;
  1573. xfs_dinode_t *dip;
  1574. xfs_buf_t *agibp;
  1575. xfs_buf_t *ibp;
  1576. xfs_agino_t agino;
  1577. short bucket_index;
  1578. int offset;
  1579. int error;
  1580. ASSERT(ip->i_d.di_nlink == 0);
  1581. ASSERT(ip->i_d.di_mode != 0);
  1582. ASSERT(ip->i_transp == tp);
  1583. mp = tp->t_mountp;
  1584. /*
  1585. * Get the agi buffer first. It ensures lock ordering
  1586. * on the list.
  1587. */
  1588. error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
  1589. if (error)
  1590. return error;
  1591. agi = XFS_BUF_TO_AGI(agibp);
  1592. /*
  1593. * Get the index into the agi hash table for the
  1594. * list this inode will go on.
  1595. */
  1596. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1597. ASSERT(agino != 0);
  1598. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1599. ASSERT(agi->agi_unlinked[bucket_index]);
  1600. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
  1601. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
  1602. /*
  1603. * There is already another inode in the bucket we need
  1604. * to add ourselves to. Add us at the front of the list.
  1605. * Here we put the head pointer into our next pointer,
  1606. * and then we fall through to point the head at us.
  1607. */
  1608. error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
  1609. if (error)
  1610. return error;
  1611. ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
  1612. /* both on-disk, don't endian flip twice */
  1613. dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
  1614. offset = ip->i_imap.im_boffset +
  1615. offsetof(xfs_dinode_t, di_next_unlinked);
  1616. xfs_trans_inode_buf(tp, ibp);
  1617. xfs_trans_log_buf(tp, ibp, offset,
  1618. (offset + sizeof(xfs_agino_t) - 1));
  1619. xfs_inobp_check(mp, ibp);
  1620. }
  1621. /*
  1622. * Point the bucket head pointer at the inode being inserted.
  1623. */
  1624. ASSERT(agino != 0);
  1625. agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
  1626. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1627. (sizeof(xfs_agino_t) * bucket_index);
  1628. xfs_trans_log_buf(tp, agibp, offset,
  1629. (offset + sizeof(xfs_agino_t) - 1));
  1630. return 0;
  1631. }
  1632. /*
  1633. * Pull the on-disk inode from the AGI unlinked list.
  1634. */
  1635. STATIC int
  1636. xfs_iunlink_remove(
  1637. xfs_trans_t *tp,
  1638. xfs_inode_t *ip)
  1639. {
  1640. xfs_ino_t next_ino;
  1641. xfs_mount_t *mp;
  1642. xfs_agi_t *agi;
  1643. xfs_dinode_t *dip;
  1644. xfs_buf_t *agibp;
  1645. xfs_buf_t *ibp;
  1646. xfs_agnumber_t agno;
  1647. xfs_agino_t agino;
  1648. xfs_agino_t next_agino;
  1649. xfs_buf_t *last_ibp;
  1650. xfs_dinode_t *last_dip = NULL;
  1651. short bucket_index;
  1652. int offset, last_offset = 0;
  1653. int error;
  1654. mp = tp->t_mountp;
  1655. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1656. /*
  1657. * Get the agi buffer first. It ensures lock ordering
  1658. * on the list.
  1659. */
  1660. error = xfs_read_agi(mp, tp, agno, &agibp);
  1661. if (error)
  1662. return error;
  1663. agi = XFS_BUF_TO_AGI(agibp);
  1664. /*
  1665. * Get the index into the agi hash table for the
  1666. * list this inode will go on.
  1667. */
  1668. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1669. ASSERT(agino != 0);
  1670. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1671. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
  1672. ASSERT(agi->agi_unlinked[bucket_index]);
  1673. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
  1674. /*
  1675. * We're at the head of the list. Get the inode's
  1676. * on-disk buffer to see if there is anyone after us
  1677. * on the list. Only modify our next pointer if it
  1678. * is not already NULLAGINO. This saves us the overhead
  1679. * of dealing with the buffer when there is no need to
  1680. * change it.
  1681. */
  1682. error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
  1683. if (error) {
  1684. xfs_warn(mp, "%s: xfs_itobp() returned error %d.",
  1685. __func__, error);
  1686. return error;
  1687. }
  1688. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1689. ASSERT(next_agino != 0);
  1690. if (next_agino != NULLAGINO) {
  1691. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1692. offset = ip->i_imap.im_boffset +
  1693. offsetof(xfs_dinode_t, di_next_unlinked);
  1694. xfs_trans_inode_buf(tp, ibp);
  1695. xfs_trans_log_buf(tp, ibp, offset,
  1696. (offset + sizeof(xfs_agino_t) - 1));
  1697. xfs_inobp_check(mp, ibp);
  1698. } else {
  1699. xfs_trans_brelse(tp, ibp);
  1700. }
  1701. /*
  1702. * Point the bucket head pointer at the next inode.
  1703. */
  1704. ASSERT(next_agino != 0);
  1705. ASSERT(next_agino != agino);
  1706. agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
  1707. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1708. (sizeof(xfs_agino_t) * bucket_index);
  1709. xfs_trans_log_buf(tp, agibp, offset,
  1710. (offset + sizeof(xfs_agino_t) - 1));
  1711. } else {
  1712. /*
  1713. * We need to search the list for the inode being freed.
  1714. */
  1715. next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
  1716. last_ibp = NULL;
  1717. while (next_agino != agino) {
  1718. /*
  1719. * If the last inode wasn't the one pointing to
  1720. * us, then release its buffer since we're not
  1721. * going to do anything with it.
  1722. */
  1723. if (last_ibp != NULL) {
  1724. xfs_trans_brelse(tp, last_ibp);
  1725. }
  1726. next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
  1727. error = xfs_inotobp(mp, tp, next_ino, &last_dip,
  1728. &last_ibp, &last_offset, 0);
  1729. if (error) {
  1730. xfs_warn(mp,
  1731. "%s: xfs_inotobp() returned error %d.",
  1732. __func__, error);
  1733. return error;
  1734. }
  1735. next_agino = be32_to_cpu(last_dip->di_next_unlinked);
  1736. ASSERT(next_agino != NULLAGINO);
  1737. ASSERT(next_agino != 0);
  1738. }
  1739. /*
  1740. * Now last_ibp points to the buffer previous to us on
  1741. * the unlinked list. Pull us from the list.
  1742. */
  1743. error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
  1744. if (error) {
  1745. xfs_warn(mp, "%s: xfs_itobp(2) returned error %d.",
  1746. __func__, error);
  1747. return error;
  1748. }
  1749. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1750. ASSERT(next_agino != 0);
  1751. ASSERT(next_agino != agino);
  1752. if (next_agino != NULLAGINO) {
  1753. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1754. offset = ip->i_imap.im_boffset +
  1755. offsetof(xfs_dinode_t, di_next_unlinked);
  1756. xfs_trans_inode_buf(tp, ibp);
  1757. xfs_trans_log_buf(tp, ibp, offset,
  1758. (offset + sizeof(xfs_agino_t) - 1));
  1759. xfs_inobp_check(mp, ibp);
  1760. } else {
  1761. xfs_trans_brelse(tp, ibp);
  1762. }
  1763. /*
  1764. * Point the previous inode on the list to the next inode.
  1765. */
  1766. last_dip->di_next_unlinked = cpu_to_be32(next_agino);
  1767. ASSERT(next_agino != 0);
  1768. offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
  1769. xfs_trans_inode_buf(tp, last_ibp);
  1770. xfs_trans_log_buf(tp, last_ibp, offset,
  1771. (offset + sizeof(xfs_agino_t) - 1));
  1772. xfs_inobp_check(mp, last_ibp);
  1773. }
  1774. return 0;
  1775. }
  1776. /*
  1777. * A big issue when freeing the inode cluster is is that we _cannot_ skip any
  1778. * inodes that are in memory - they all must be marked stale and attached to
  1779. * the cluster buffer.
  1780. */
  1781. STATIC void
  1782. xfs_ifree_cluster(
  1783. xfs_inode_t *free_ip,
  1784. xfs_trans_t *tp,
  1785. xfs_ino_t inum)
  1786. {
  1787. xfs_mount_t *mp = free_ip->i_mount;
  1788. int blks_per_cluster;
  1789. int nbufs;
  1790. int ninodes;
  1791. int i, j;
  1792. xfs_daddr_t blkno;
  1793. xfs_buf_t *bp;
  1794. xfs_inode_t *ip;
  1795. xfs_inode_log_item_t *iip;
  1796. xfs_log_item_t *lip;
  1797. struct xfs_perag *pag;
  1798. pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
  1799. if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
  1800. blks_per_cluster = 1;
  1801. ninodes = mp->m_sb.sb_inopblock;
  1802. nbufs = XFS_IALLOC_BLOCKS(mp);
  1803. } else {
  1804. blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
  1805. mp->m_sb.sb_blocksize;
  1806. ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
  1807. nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
  1808. }
  1809. for (j = 0; j < nbufs; j++, inum += ninodes) {
  1810. blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
  1811. XFS_INO_TO_AGBNO(mp, inum));
  1812. /*
  1813. * We obtain and lock the backing buffer first in the process
  1814. * here, as we have to ensure that any dirty inode that we
  1815. * can't get the flush lock on is attached to the buffer.
  1816. * If we scan the in-memory inodes first, then buffer IO can
  1817. * complete before we get a lock on it, and hence we may fail
  1818. * to mark all the active inodes on the buffer stale.
  1819. */
  1820. bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
  1821. mp->m_bsize * blks_per_cluster,
  1822. XBF_LOCK);
  1823. /*
  1824. * Walk the inodes already attached to the buffer and mark them
  1825. * stale. These will all have the flush locks held, so an
  1826. * in-memory inode walk can't lock them. By marking them all
  1827. * stale first, we will not attempt to lock them in the loop
  1828. * below as the XFS_ISTALE flag will be set.
  1829. */
  1830. lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
  1831. while (lip) {
  1832. if (lip->li_type == XFS_LI_INODE) {
  1833. iip = (xfs_inode_log_item_t *)lip;
  1834. ASSERT(iip->ili_logged == 1);
  1835. lip->li_cb = xfs_istale_done;
  1836. xfs_trans_ail_copy_lsn(mp->m_ail,
  1837. &iip->ili_flush_lsn,
  1838. &iip->ili_item.li_lsn);
  1839. xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
  1840. }
  1841. lip = lip->li_bio_list;
  1842. }
  1843. /*
  1844. * For each inode in memory attempt to add it to the inode
  1845. * buffer and set it up for being staled on buffer IO
  1846. * completion. This is safe as we've locked out tail pushing
  1847. * and flushing by locking the buffer.
  1848. *
  1849. * We have already marked every inode that was part of a
  1850. * transaction stale above, which means there is no point in
  1851. * even trying to lock them.
  1852. */
  1853. for (i = 0; i < ninodes; i++) {
  1854. retry:
  1855. rcu_read_lock();
  1856. ip = radix_tree_lookup(&pag->pag_ici_root,
  1857. XFS_INO_TO_AGINO(mp, (inum + i)));
  1858. /* Inode not in memory, nothing to do */
  1859. if (!ip) {
  1860. rcu_read_unlock();
  1861. continue;
  1862. }
  1863. /*
  1864. * because this is an RCU protected lookup, we could
  1865. * find a recently freed or even reallocated inode
  1866. * during the lookup. We need to check under the
  1867. * i_flags_lock for a valid inode here. Skip it if it
  1868. * is not valid, the wrong inode or stale.
  1869. */
  1870. spin_lock(&ip->i_flags_lock);
  1871. if (ip->i_ino != inum + i ||
  1872. __xfs_iflags_test(ip, XFS_ISTALE)) {
  1873. spin_unlock(&ip->i_flags_lock);
  1874. rcu_read_unlock();
  1875. continue;
  1876. }
  1877. spin_unlock(&ip->i_flags_lock);
  1878. /*
  1879. * Don't try to lock/unlock the current inode, but we
  1880. * _cannot_ skip the other inodes that we did not find
  1881. * in the list attached to the buffer and are not
  1882. * already marked stale. If we can't lock it, back off
  1883. * and retry.
  1884. */
  1885. if (ip != free_ip &&
  1886. !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
  1887. rcu_read_unlock();
  1888. delay(1);
  1889. goto retry;
  1890. }
  1891. rcu_read_unlock();
  1892. xfs_iflock(ip);
  1893. xfs_iflags_set(ip, XFS_ISTALE);
  1894. /*
  1895. * we don't need to attach clean inodes or those only
  1896. * with unlogged changes (which we throw away, anyway).
  1897. */
  1898. iip = ip->i_itemp;
  1899. if (!iip || xfs_inode_clean(ip)) {
  1900. ASSERT(ip != free_ip);
  1901. ip->i_update_core = 0;
  1902. xfs_ifunlock(ip);
  1903. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1904. continue;
  1905. }
  1906. iip->ili_last_fields = iip->ili_format.ilf_fields;
  1907. iip->ili_format.ilf_fields = 0;
  1908. iip->ili_logged = 1;
  1909. xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
  1910. &iip->ili_item.li_lsn);
  1911. xfs_buf_attach_iodone(bp, xfs_istale_done,
  1912. &iip->ili_item);
  1913. if (ip != free_ip)
  1914. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1915. }
  1916. xfs_trans_stale_inode_buf(tp, bp);
  1917. xfs_trans_binval(tp, bp);
  1918. }
  1919. xfs_perag_put(pag);
  1920. }
  1921. /*
  1922. * This is called to return an inode to the inode free list.
  1923. * The inode should already be truncated to 0 length and have
  1924. * no pages associated with it. This routine also assumes that
  1925. * the inode is already a part of the transaction.
  1926. *
  1927. * The on-disk copy of the inode will have been added to the list
  1928. * of unlinked inodes in the AGI. We need to remove the inode from
  1929. * that list atomically with respect to freeing it here.
  1930. */
  1931. int
  1932. xfs_ifree(
  1933. xfs_trans_t *tp,
  1934. xfs_inode_t *ip,
  1935. xfs_bmap_free_t *flist)
  1936. {
  1937. int error;
  1938. int delete;
  1939. xfs_ino_t first_ino;
  1940. xfs_dinode_t *dip;
  1941. xfs_buf_t *ibp;
  1942. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
  1943. ASSERT(ip->i_transp == tp);
  1944. ASSERT(ip->i_d.di_nlink == 0);
  1945. ASSERT(ip->i_d.di_nextents == 0);
  1946. ASSERT(ip->i_d.di_anextents == 0);
  1947. ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
  1948. ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
  1949. ASSERT(ip->i_d.di_nblocks == 0);
  1950. /*
  1951. * Pull the on-disk inode from the AGI unlinked list.
  1952. */
  1953. error = xfs_iunlink_remove(tp, ip);
  1954. if (error != 0) {
  1955. return error;
  1956. }
  1957. error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
  1958. if (error != 0) {
  1959. return error;
  1960. }
  1961. ip->i_d.di_mode = 0; /* mark incore inode as free */
  1962. ip->i_d.di_flags = 0;
  1963. ip->i_d.di_dmevmask = 0;
  1964. ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
  1965. ip->i_df.if_ext_max =
  1966. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  1967. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  1968. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  1969. /*
  1970. * Bump the generation count so no one will be confused
  1971. * by reincarnations of this inode.
  1972. */
  1973. ip->i_d.di_gen++;
  1974. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  1975. error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XBF_LOCK);
  1976. if (error)
  1977. return error;
  1978. /*
  1979. * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
  1980. * from picking up this inode when it is reclaimed (its incore state
  1981. * initialzed but not flushed to disk yet). The in-core di_mode is
  1982. * already cleared and a corresponding transaction logged.
  1983. * The hack here just synchronizes the in-core to on-disk
  1984. * di_mode value in advance before the actual inode sync to disk.
  1985. * This is OK because the inode is already unlinked and would never
  1986. * change its di_mode again for this inode generation.
  1987. * This is a temporary hack that would require a proper fix
  1988. * in the future.
  1989. */
  1990. dip->di_mode = 0;
  1991. if (delete) {
  1992. xfs_ifree_cluster(ip, tp, first_ino);
  1993. }
  1994. return 0;
  1995. }
  1996. /*
  1997. * Reallocate the space for if_broot based on the number of records
  1998. * being added or deleted as indicated in rec_diff. Move the records
  1999. * and pointers in if_broot to fit the new size. When shrinking this
  2000. * will eliminate holes between the records and pointers created by
  2001. * the caller. When growing this will create holes to be filled in
  2002. * by the caller.
  2003. *
  2004. * The caller must not request to add more records than would fit in
  2005. * the on-disk inode root. If the if_broot is currently NULL, then
  2006. * if we adding records one will be allocated. The caller must also
  2007. * not request that the number of records go below zero, although
  2008. * it can go to zero.
  2009. *
  2010. * ip -- the inode whose if_broot area is changing
  2011. * ext_diff -- the change in the number of records, positive or negative,
  2012. * requested for the if_broot array.
  2013. */
  2014. void
  2015. xfs_iroot_realloc(
  2016. xfs_inode_t *ip,
  2017. int rec_diff,
  2018. int whichfork)
  2019. {
  2020. struct xfs_mount *mp = ip->i_mount;
  2021. int cur_max;
  2022. xfs_ifork_t *ifp;
  2023. struct xfs_btree_block *new_broot;
  2024. int new_max;
  2025. size_t new_size;
  2026. char *np;
  2027. char *op;
  2028. /*
  2029. * Handle the degenerate case quietly.
  2030. */
  2031. if (rec_diff == 0) {
  2032. return;
  2033. }
  2034. ifp = XFS_IFORK_PTR(ip, whichfork);
  2035. if (rec_diff > 0) {
  2036. /*
  2037. * If there wasn't any memory allocated before, just
  2038. * allocate it now and get out.
  2039. */
  2040. if (ifp->if_broot_bytes == 0) {
  2041. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
  2042. ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
  2043. ifp->if_broot_bytes = (int)new_size;
  2044. return;
  2045. }
  2046. /*
  2047. * If there is already an existing if_broot, then we need
  2048. * to realloc() it and shift the pointers to their new
  2049. * location. The records don't change location because
  2050. * they are kept butted up against the btree block header.
  2051. */
  2052. cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
  2053. new_max = cur_max + rec_diff;
  2054. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2055. ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
  2056. (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
  2057. KM_SLEEP | KM_NOFS);
  2058. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  2059. ifp->if_broot_bytes);
  2060. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  2061. (int)new_size);
  2062. ifp->if_broot_bytes = (int)new_size;
  2063. ASSERT(ifp->if_broot_bytes <=
  2064. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2065. memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
  2066. return;
  2067. }
  2068. /*
  2069. * rec_diff is less than 0. In this case, we are shrinking the
  2070. * if_broot buffer. It must already exist. If we go to zero
  2071. * records, just get rid of the root and clear the status bit.
  2072. */
  2073. ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
  2074. cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
  2075. new_max = cur_max + rec_diff;
  2076. ASSERT(new_max >= 0);
  2077. if (new_max > 0)
  2078. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2079. else
  2080. new_size = 0;
  2081. if (new_size > 0) {
  2082. new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
  2083. /*
  2084. * First copy over the btree block header.
  2085. */
  2086. memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
  2087. } else {
  2088. new_broot = NULL;
  2089. ifp->if_flags &= ~XFS_IFBROOT;
  2090. }
  2091. /*
  2092. * Only copy the records and pointers if there are any.
  2093. */
  2094. if (new_max > 0) {
  2095. /*
  2096. * First copy the records.
  2097. */
  2098. op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
  2099. np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
  2100. memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
  2101. /*
  2102. * Then copy the pointers.
  2103. */
  2104. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  2105. ifp->if_broot_bytes);
  2106. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
  2107. (int)new_size);
  2108. memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
  2109. }
  2110. kmem_free(ifp->if_broot);
  2111. ifp->if_broot = new_broot;
  2112. ifp->if_broot_bytes = (int)new_size;
  2113. ASSERT(ifp->if_broot_bytes <=
  2114. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2115. return;
  2116. }
  2117. /*
  2118. * This is called when the amount of space needed for if_data
  2119. * is increased or decreased. The change in size is indicated by
  2120. * the number of bytes that need to be added or deleted in the
  2121. * byte_diff parameter.
  2122. *
  2123. * If the amount of space needed has decreased below the size of the
  2124. * inline buffer, then switch to using the inline buffer. Otherwise,
  2125. * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
  2126. * to what is needed.
  2127. *
  2128. * ip -- the inode whose if_data area is changing
  2129. * byte_diff -- the change in the number of bytes, positive or negative,
  2130. * requested for the if_data array.
  2131. */
  2132. void
  2133. xfs_idata_realloc(
  2134. xfs_inode_t *ip,
  2135. int byte_diff,
  2136. int whichfork)
  2137. {
  2138. xfs_ifork_t *ifp;
  2139. int new_size;
  2140. int real_size;
  2141. if (byte_diff == 0) {
  2142. return;
  2143. }
  2144. ifp = XFS_IFORK_PTR(ip, whichfork);
  2145. new_size = (int)ifp->if_bytes + byte_diff;
  2146. ASSERT(new_size >= 0);
  2147. if (new_size == 0) {
  2148. if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2149. kmem_free(ifp->if_u1.if_data);
  2150. }
  2151. ifp->if_u1.if_data = NULL;
  2152. real_size = 0;
  2153. } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
  2154. /*
  2155. * If the valid extents/data can fit in if_inline_ext/data,
  2156. * copy them from the malloc'd vector and free it.
  2157. */
  2158. if (ifp->if_u1.if_data == NULL) {
  2159. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2160. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2161. ASSERT(ifp->if_real_bytes != 0);
  2162. memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
  2163. new_size);
  2164. kmem_free(ifp->if_u1.if_data);
  2165. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2166. }
  2167. real_size = 0;
  2168. } else {
  2169. /*
  2170. * Stuck with malloc/realloc.
  2171. * For inline data, the underlying buffer must be
  2172. * a multiple of 4 bytes in size so that it can be
  2173. * logged and stay on word boundaries. We enforce
  2174. * that here.
  2175. */
  2176. real_size = roundup(new_size, 4);
  2177. if (ifp->if_u1.if_data == NULL) {
  2178. ASSERT(ifp->if_real_bytes == 0);
  2179. ifp->if_u1.if_data = kmem_alloc(real_size,
  2180. KM_SLEEP | KM_NOFS);
  2181. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2182. /*
  2183. * Only do the realloc if the underlying size
  2184. * is really changing.
  2185. */
  2186. if (ifp->if_real_bytes != real_size) {
  2187. ifp->if_u1.if_data =
  2188. kmem_realloc(ifp->if_u1.if_data,
  2189. real_size,
  2190. ifp->if_real_bytes,
  2191. KM_SLEEP | KM_NOFS);
  2192. }
  2193. } else {
  2194. ASSERT(ifp->if_real_bytes == 0);
  2195. ifp->if_u1.if_data = kmem_alloc(real_size,
  2196. KM_SLEEP | KM_NOFS);
  2197. memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
  2198. ifp->if_bytes);
  2199. }
  2200. }
  2201. ifp->if_real_bytes = real_size;
  2202. ifp->if_bytes = new_size;
  2203. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2204. }
  2205. void
  2206. xfs_idestroy_fork(
  2207. xfs_inode_t *ip,
  2208. int whichfork)
  2209. {
  2210. xfs_ifork_t *ifp;
  2211. ifp = XFS_IFORK_PTR(ip, whichfork);
  2212. if (ifp->if_broot != NULL) {
  2213. kmem_free(ifp->if_broot);
  2214. ifp->if_broot = NULL;
  2215. }
  2216. /*
  2217. * If the format is local, then we can't have an extents
  2218. * array so just look for an inline data array. If we're
  2219. * not local then we may or may not have an extents list,
  2220. * so check and free it up if we do.
  2221. */
  2222. if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
  2223. if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
  2224. (ifp->if_u1.if_data != NULL)) {
  2225. ASSERT(ifp->if_real_bytes != 0);
  2226. kmem_free(ifp->if_u1.if_data);
  2227. ifp->if_u1.if_data = NULL;
  2228. ifp->if_real_bytes = 0;
  2229. }
  2230. } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
  2231. ((ifp->if_flags & XFS_IFEXTIREC) ||
  2232. ((ifp->if_u1.if_extents != NULL) &&
  2233. (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
  2234. ASSERT(ifp->if_real_bytes != 0);
  2235. xfs_iext_destroy(ifp);
  2236. }
  2237. ASSERT(ifp->if_u1.if_extents == NULL ||
  2238. ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
  2239. ASSERT(ifp->if_real_bytes == 0);
  2240. if (whichfork == XFS_ATTR_FORK) {
  2241. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  2242. ip->i_afp = NULL;
  2243. }
  2244. }
  2245. /*
  2246. * This is called to unpin an inode. The caller must have the inode locked
  2247. * in at least shared mode so that the buffer cannot be subsequently pinned
  2248. * once someone is waiting for it to be unpinned.
  2249. */
  2250. static void
  2251. xfs_iunpin_nowait(
  2252. struct xfs_inode *ip)
  2253. {
  2254. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2255. trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
  2256. /* Give the log a push to start the unpinning I/O */
  2257. xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
  2258. }
  2259. void
  2260. xfs_iunpin_wait(
  2261. struct xfs_inode *ip)
  2262. {
  2263. if (xfs_ipincount(ip)) {
  2264. xfs_iunpin_nowait(ip);
  2265. wait_event(ip->i_ipin_wait, (xfs_ipincount(ip) == 0));
  2266. }
  2267. }
  2268. /*
  2269. * xfs_iextents_copy()
  2270. *
  2271. * This is called to copy the REAL extents (as opposed to the delayed
  2272. * allocation extents) from the inode into the given buffer. It
  2273. * returns the number of bytes copied into the buffer.
  2274. *
  2275. * If there are no delayed allocation extents, then we can just
  2276. * memcpy() the extents into the buffer. Otherwise, we need to
  2277. * examine each extent in turn and skip those which are delayed.
  2278. */
  2279. int
  2280. xfs_iextents_copy(
  2281. xfs_inode_t *ip,
  2282. xfs_bmbt_rec_t *dp,
  2283. int whichfork)
  2284. {
  2285. int copied;
  2286. int i;
  2287. xfs_ifork_t *ifp;
  2288. int nrecs;
  2289. xfs_fsblock_t start_block;
  2290. ifp = XFS_IFORK_PTR(ip, whichfork);
  2291. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2292. ASSERT(ifp->if_bytes > 0);
  2293. nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2294. XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
  2295. ASSERT(nrecs > 0);
  2296. /*
  2297. * There are some delayed allocation extents in the
  2298. * inode, so copy the extents one at a time and skip
  2299. * the delayed ones. There must be at least one
  2300. * non-delayed extent.
  2301. */
  2302. copied = 0;
  2303. for (i = 0; i < nrecs; i++) {
  2304. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  2305. start_block = xfs_bmbt_get_startblock(ep);
  2306. if (isnullstartblock(start_block)) {
  2307. /*
  2308. * It's a delayed allocation extent, so skip it.
  2309. */
  2310. continue;
  2311. }
  2312. /* Translate to on disk format */
  2313. put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
  2314. put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
  2315. dp++;
  2316. copied++;
  2317. }
  2318. ASSERT(copied != 0);
  2319. xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
  2320. return (copied * (uint)sizeof(xfs_bmbt_rec_t));
  2321. }
  2322. /*
  2323. * Each of the following cases stores data into the same region
  2324. * of the on-disk inode, so only one of them can be valid at
  2325. * any given time. While it is possible to have conflicting formats
  2326. * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
  2327. * in EXTENTS format, this can only happen when the fork has
  2328. * changed formats after being modified but before being flushed.
  2329. * In these cases, the format always takes precedence, because the
  2330. * format indicates the current state of the fork.
  2331. */
  2332. /*ARGSUSED*/
  2333. STATIC void
  2334. xfs_iflush_fork(
  2335. xfs_inode_t *ip,
  2336. xfs_dinode_t *dip,
  2337. xfs_inode_log_item_t *iip,
  2338. int whichfork,
  2339. xfs_buf_t *bp)
  2340. {
  2341. char *cp;
  2342. xfs_ifork_t *ifp;
  2343. xfs_mount_t *mp;
  2344. #ifdef XFS_TRANS_DEBUG
  2345. int first;
  2346. #endif
  2347. static const short brootflag[2] =
  2348. { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
  2349. static const short dataflag[2] =
  2350. { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
  2351. static const short extflag[2] =
  2352. { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
  2353. if (!iip)
  2354. return;
  2355. ifp = XFS_IFORK_PTR(ip, whichfork);
  2356. /*
  2357. * This can happen if we gave up in iformat in an error path,
  2358. * for the attribute fork.
  2359. */
  2360. if (!ifp) {
  2361. ASSERT(whichfork == XFS_ATTR_FORK);
  2362. return;
  2363. }
  2364. cp = XFS_DFORK_PTR(dip, whichfork);
  2365. mp = ip->i_mount;
  2366. switch (XFS_IFORK_FORMAT(ip, whichfork)) {
  2367. case XFS_DINODE_FMT_LOCAL:
  2368. if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
  2369. (ifp->if_bytes > 0)) {
  2370. ASSERT(ifp->if_u1.if_data != NULL);
  2371. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2372. memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
  2373. }
  2374. break;
  2375. case XFS_DINODE_FMT_EXTENTS:
  2376. ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
  2377. !(iip->ili_format.ilf_fields & extflag[whichfork]));
  2378. ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
  2379. (ifp->if_bytes == 0));
  2380. ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
  2381. (ifp->if_bytes > 0));
  2382. if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
  2383. (ifp->if_bytes > 0)) {
  2384. ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
  2385. (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
  2386. whichfork);
  2387. }
  2388. break;
  2389. case XFS_DINODE_FMT_BTREE:
  2390. if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
  2391. (ifp->if_broot_bytes > 0)) {
  2392. ASSERT(ifp->if_broot != NULL);
  2393. ASSERT(ifp->if_broot_bytes <=
  2394. (XFS_IFORK_SIZE(ip, whichfork) +
  2395. XFS_BROOT_SIZE_ADJ));
  2396. xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
  2397. (xfs_bmdr_block_t *)cp,
  2398. XFS_DFORK_SIZE(dip, mp, whichfork));
  2399. }
  2400. break;
  2401. case XFS_DINODE_FMT_DEV:
  2402. if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
  2403. ASSERT(whichfork == XFS_DATA_FORK);
  2404. xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
  2405. }
  2406. break;
  2407. case XFS_DINODE_FMT_UUID:
  2408. if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
  2409. ASSERT(whichfork == XFS_DATA_FORK);
  2410. memcpy(XFS_DFORK_DPTR(dip),
  2411. &ip->i_df.if_u2.if_uuid,
  2412. sizeof(uuid_t));
  2413. }
  2414. break;
  2415. default:
  2416. ASSERT(0);
  2417. break;
  2418. }
  2419. }
  2420. STATIC int
  2421. xfs_iflush_cluster(
  2422. xfs_inode_t *ip,
  2423. xfs_buf_t *bp)
  2424. {
  2425. xfs_mount_t *mp = ip->i_mount;
  2426. struct xfs_perag *pag;
  2427. unsigned long first_index, mask;
  2428. unsigned long inodes_per_cluster;
  2429. int ilist_size;
  2430. xfs_inode_t **ilist;
  2431. xfs_inode_t *iq;
  2432. int nr_found;
  2433. int clcount = 0;
  2434. int bufwasdelwri;
  2435. int i;
  2436. pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
  2437. inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
  2438. ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
  2439. ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
  2440. if (!ilist)
  2441. goto out_put;
  2442. mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
  2443. first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
  2444. rcu_read_lock();
  2445. /* really need a gang lookup range call here */
  2446. nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
  2447. first_index, inodes_per_cluster);
  2448. if (nr_found == 0)
  2449. goto out_free;
  2450. for (i = 0; i < nr_found; i++) {
  2451. iq = ilist[i];
  2452. if (iq == ip)
  2453. continue;
  2454. /*
  2455. * because this is an RCU protected lookup, we could find a
  2456. * recently freed or even reallocated inode during the lookup.
  2457. * We need to check under the i_flags_lock for a valid inode
  2458. * here. Skip it if it is not valid or the wrong inode.
  2459. */
  2460. spin_lock(&ip->i_flags_lock);
  2461. if (!ip->i_ino ||
  2462. (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
  2463. spin_unlock(&ip->i_flags_lock);
  2464. continue;
  2465. }
  2466. spin_unlock(&ip->i_flags_lock);
  2467. /*
  2468. * Do an un-protected check to see if the inode is dirty and
  2469. * is a candidate for flushing. These checks will be repeated
  2470. * later after the appropriate locks are acquired.
  2471. */
  2472. if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
  2473. continue;
  2474. /*
  2475. * Try to get locks. If any are unavailable or it is pinned,
  2476. * then this inode cannot be flushed and is skipped.
  2477. */
  2478. if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
  2479. continue;
  2480. if (!xfs_iflock_nowait(iq)) {
  2481. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2482. continue;
  2483. }
  2484. if (xfs_ipincount(iq)) {
  2485. xfs_ifunlock(iq);
  2486. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2487. continue;
  2488. }
  2489. /*
  2490. * arriving here means that this inode can be flushed. First
  2491. * re-check that it's dirty before flushing.
  2492. */
  2493. if (!xfs_inode_clean(iq)) {
  2494. int error;
  2495. error = xfs_iflush_int(iq, bp);
  2496. if (error) {
  2497. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2498. goto cluster_corrupt_out;
  2499. }
  2500. clcount++;
  2501. } else {
  2502. xfs_ifunlock(iq);
  2503. }
  2504. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2505. }
  2506. if (clcount) {
  2507. XFS_STATS_INC(xs_icluster_flushcnt);
  2508. XFS_STATS_ADD(xs_icluster_flushinode, clcount);
  2509. }
  2510. out_free:
  2511. rcu_read_unlock();
  2512. kmem_free(ilist);
  2513. out_put:
  2514. xfs_perag_put(pag);
  2515. return 0;
  2516. cluster_corrupt_out:
  2517. /*
  2518. * Corruption detected in the clustering loop. Invalidate the
  2519. * inode buffer and shut down the filesystem.
  2520. */
  2521. rcu_read_unlock();
  2522. /*
  2523. * Clean up the buffer. If it was B_DELWRI, just release it --
  2524. * brelse can handle it with no problems. If not, shut down the
  2525. * filesystem before releasing the buffer.
  2526. */
  2527. bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
  2528. if (bufwasdelwri)
  2529. xfs_buf_relse(bp);
  2530. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  2531. if (!bufwasdelwri) {
  2532. /*
  2533. * Just like incore_relse: if we have b_iodone functions,
  2534. * mark the buffer as an error and call them. Otherwise
  2535. * mark it as stale and brelse.
  2536. */
  2537. if (XFS_BUF_IODONE_FUNC(bp)) {
  2538. XFS_BUF_UNDONE(bp);
  2539. XFS_BUF_STALE(bp);
  2540. XFS_BUF_ERROR(bp,EIO);
  2541. xfs_buf_ioend(bp, 0);
  2542. } else {
  2543. XFS_BUF_STALE(bp);
  2544. xfs_buf_relse(bp);
  2545. }
  2546. }
  2547. /*
  2548. * Unlocks the flush lock
  2549. */
  2550. xfs_iflush_abort(iq);
  2551. kmem_free(ilist);
  2552. xfs_perag_put(pag);
  2553. return XFS_ERROR(EFSCORRUPTED);
  2554. }
  2555. /*
  2556. * xfs_iflush() will write a modified inode's changes out to the
  2557. * inode's on disk home. The caller must have the inode lock held
  2558. * in at least shared mode and the inode flush completion must be
  2559. * active as well. The inode lock will still be held upon return from
  2560. * the call and the caller is free to unlock it.
  2561. * The inode flush will be completed when the inode reaches the disk.
  2562. * The flags indicate how the inode's buffer should be written out.
  2563. */
  2564. int
  2565. xfs_iflush(
  2566. xfs_inode_t *ip,
  2567. uint flags)
  2568. {
  2569. xfs_inode_log_item_t *iip;
  2570. xfs_buf_t *bp;
  2571. xfs_dinode_t *dip;
  2572. xfs_mount_t *mp;
  2573. int error;
  2574. XFS_STATS_INC(xs_iflush_count);
  2575. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2576. ASSERT(!completion_done(&ip->i_flush));
  2577. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2578. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  2579. iip = ip->i_itemp;
  2580. mp = ip->i_mount;
  2581. /*
  2582. * We can't flush the inode until it is unpinned, so wait for it if we
  2583. * are allowed to block. We know no one new can pin it, because we are
  2584. * holding the inode lock shared and you need to hold it exclusively to
  2585. * pin the inode.
  2586. *
  2587. * If we are not allowed to block, force the log out asynchronously so
  2588. * that when we come back the inode will be unpinned. If other inodes
  2589. * in the same cluster are dirty, they will probably write the inode
  2590. * out for us if they occur after the log force completes.
  2591. */
  2592. if (!(flags & SYNC_WAIT) && xfs_ipincount(ip)) {
  2593. xfs_iunpin_nowait(ip);
  2594. xfs_ifunlock(ip);
  2595. return EAGAIN;
  2596. }
  2597. xfs_iunpin_wait(ip);
  2598. /*
  2599. * For stale inodes we cannot rely on the backing buffer remaining
  2600. * stale in cache for the remaining life of the stale inode and so
  2601. * xfs_itobp() below may give us a buffer that no longer contains
  2602. * inodes below. We have to check this after ensuring the inode is
  2603. * unpinned so that it is safe to reclaim the stale inode after the
  2604. * flush call.
  2605. */
  2606. if (xfs_iflags_test(ip, XFS_ISTALE)) {
  2607. xfs_ifunlock(ip);
  2608. return 0;
  2609. }
  2610. /*
  2611. * This may have been unpinned because the filesystem is shutting
  2612. * down forcibly. If that's the case we must not write this inode
  2613. * to disk, because the log record didn't make it to disk!
  2614. */
  2615. if (XFS_FORCED_SHUTDOWN(mp)) {
  2616. ip->i_update_core = 0;
  2617. if (iip)
  2618. iip->ili_format.ilf_fields = 0;
  2619. xfs_ifunlock(ip);
  2620. return XFS_ERROR(EIO);
  2621. }
  2622. /*
  2623. * Get the buffer containing the on-disk inode.
  2624. */
  2625. error = xfs_itobp(mp, NULL, ip, &dip, &bp,
  2626. (flags & SYNC_TRYLOCK) ? XBF_TRYLOCK : XBF_LOCK);
  2627. if (error || !bp) {
  2628. xfs_ifunlock(ip);
  2629. return error;
  2630. }
  2631. /*
  2632. * First flush out the inode that xfs_iflush was called with.
  2633. */
  2634. error = xfs_iflush_int(ip, bp);
  2635. if (error)
  2636. goto corrupt_out;
  2637. /*
  2638. * If the buffer is pinned then push on the log now so we won't
  2639. * get stuck waiting in the write for too long.
  2640. */
  2641. if (XFS_BUF_ISPINNED(bp))
  2642. xfs_log_force(mp, 0);
  2643. /*
  2644. * inode clustering:
  2645. * see if other inodes can be gathered into this write
  2646. */
  2647. error = xfs_iflush_cluster(ip, bp);
  2648. if (error)
  2649. goto cluster_corrupt_out;
  2650. if (flags & SYNC_WAIT)
  2651. error = xfs_bwrite(mp, bp);
  2652. else
  2653. xfs_bdwrite(mp, bp);
  2654. return error;
  2655. corrupt_out:
  2656. xfs_buf_relse(bp);
  2657. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  2658. cluster_corrupt_out:
  2659. /*
  2660. * Unlocks the flush lock
  2661. */
  2662. xfs_iflush_abort(ip);
  2663. return XFS_ERROR(EFSCORRUPTED);
  2664. }
  2665. STATIC int
  2666. xfs_iflush_int(
  2667. xfs_inode_t *ip,
  2668. xfs_buf_t *bp)
  2669. {
  2670. xfs_inode_log_item_t *iip;
  2671. xfs_dinode_t *dip;
  2672. xfs_mount_t *mp;
  2673. #ifdef XFS_TRANS_DEBUG
  2674. int first;
  2675. #endif
  2676. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2677. ASSERT(!completion_done(&ip->i_flush));
  2678. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2679. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  2680. iip = ip->i_itemp;
  2681. mp = ip->i_mount;
  2682. /* set *dip = inode's place in the buffer */
  2683. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
  2684. /*
  2685. * Clear i_update_core before copying out the data.
  2686. * This is for coordination with our timestamp updates
  2687. * that don't hold the inode lock. They will always
  2688. * update the timestamps BEFORE setting i_update_core,
  2689. * so if we clear i_update_core after they set it we
  2690. * are guaranteed to see their updates to the timestamps.
  2691. * I believe that this depends on strongly ordered memory
  2692. * semantics, but we have that. We use the SYNCHRONIZE
  2693. * macro to make sure that the compiler does not reorder
  2694. * the i_update_core access below the data copy below.
  2695. */
  2696. ip->i_update_core = 0;
  2697. SYNCHRONIZE();
  2698. /*
  2699. * Make sure to get the latest timestamps from the Linux inode.
  2700. */
  2701. xfs_synchronize_times(ip);
  2702. if (XFS_TEST_ERROR(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC,
  2703. mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
  2704. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2705. "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
  2706. __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
  2707. goto corrupt_out;
  2708. }
  2709. if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
  2710. mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
  2711. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2712. "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
  2713. __func__, ip->i_ino, ip, ip->i_d.di_magic);
  2714. goto corrupt_out;
  2715. }
  2716. if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
  2717. if (XFS_TEST_ERROR(
  2718. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  2719. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
  2720. mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
  2721. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2722. "%s: Bad regular inode %Lu, ptr 0x%p",
  2723. __func__, ip->i_ino, ip);
  2724. goto corrupt_out;
  2725. }
  2726. } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
  2727. if (XFS_TEST_ERROR(
  2728. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  2729. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
  2730. (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
  2731. mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
  2732. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2733. "%s: Bad directory inode %Lu, ptr 0x%p",
  2734. __func__, ip->i_ino, ip);
  2735. goto corrupt_out;
  2736. }
  2737. }
  2738. if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
  2739. ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
  2740. XFS_RANDOM_IFLUSH_5)) {
  2741. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2742. "%s: detected corrupt incore inode %Lu, "
  2743. "total extents = %d, nblocks = %Ld, ptr 0x%p",
  2744. __func__, ip->i_ino,
  2745. ip->i_d.di_nextents + ip->i_d.di_anextents,
  2746. ip->i_d.di_nblocks, ip);
  2747. goto corrupt_out;
  2748. }
  2749. if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
  2750. mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
  2751. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2752. "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
  2753. __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
  2754. goto corrupt_out;
  2755. }
  2756. /*
  2757. * bump the flush iteration count, used to detect flushes which
  2758. * postdate a log record during recovery.
  2759. */
  2760. ip->i_d.di_flushiter++;
  2761. /*
  2762. * Copy the dirty parts of the inode into the on-disk
  2763. * inode. We always copy out the core of the inode,
  2764. * because if the inode is dirty at all the core must
  2765. * be.
  2766. */
  2767. xfs_dinode_to_disk(dip, &ip->i_d);
  2768. /* Wrap, we never let the log put out DI_MAX_FLUSH */
  2769. if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
  2770. ip->i_d.di_flushiter = 0;
  2771. /*
  2772. * If this is really an old format inode and the superblock version
  2773. * has not been updated to support only new format inodes, then
  2774. * convert back to the old inode format. If the superblock version
  2775. * has been updated, then make the conversion permanent.
  2776. */
  2777. ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
  2778. if (ip->i_d.di_version == 1) {
  2779. if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
  2780. /*
  2781. * Convert it back.
  2782. */
  2783. ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
  2784. dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
  2785. } else {
  2786. /*
  2787. * The superblock version has already been bumped,
  2788. * so just make the conversion to the new inode
  2789. * format permanent.
  2790. */
  2791. ip->i_d.di_version = 2;
  2792. dip->di_version = 2;
  2793. ip->i_d.di_onlink = 0;
  2794. dip->di_onlink = 0;
  2795. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  2796. memset(&(dip->di_pad[0]), 0,
  2797. sizeof(dip->di_pad));
  2798. ASSERT(xfs_get_projid(ip) == 0);
  2799. }
  2800. }
  2801. xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
  2802. if (XFS_IFORK_Q(ip))
  2803. xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
  2804. xfs_inobp_check(mp, bp);
  2805. /*
  2806. * We've recorded everything logged in the inode, so we'd
  2807. * like to clear the ilf_fields bits so we don't log and
  2808. * flush things unnecessarily. However, we can't stop
  2809. * logging all this information until the data we've copied
  2810. * into the disk buffer is written to disk. If we did we might
  2811. * overwrite the copy of the inode in the log with all the
  2812. * data after re-logging only part of it, and in the face of
  2813. * a crash we wouldn't have all the data we need to recover.
  2814. *
  2815. * What we do is move the bits to the ili_last_fields field.
  2816. * When logging the inode, these bits are moved back to the
  2817. * ilf_fields field. In the xfs_iflush_done() routine we
  2818. * clear ili_last_fields, since we know that the information
  2819. * those bits represent is permanently on disk. As long as
  2820. * the flush completes before the inode is logged again, then
  2821. * both ilf_fields and ili_last_fields will be cleared.
  2822. *
  2823. * We can play with the ilf_fields bits here, because the inode
  2824. * lock must be held exclusively in order to set bits there
  2825. * and the flush lock protects the ili_last_fields bits.
  2826. * Set ili_logged so the flush done
  2827. * routine can tell whether or not to look in the AIL.
  2828. * Also, store the current LSN of the inode so that we can tell
  2829. * whether the item has moved in the AIL from xfs_iflush_done().
  2830. * In order to read the lsn we need the AIL lock, because
  2831. * it is a 64 bit value that cannot be read atomically.
  2832. */
  2833. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  2834. iip->ili_last_fields = iip->ili_format.ilf_fields;
  2835. iip->ili_format.ilf_fields = 0;
  2836. iip->ili_logged = 1;
  2837. xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
  2838. &iip->ili_item.li_lsn);
  2839. /*
  2840. * Attach the function xfs_iflush_done to the inode's
  2841. * buffer. This will remove the inode from the AIL
  2842. * and unlock the inode's flush lock when the inode is
  2843. * completely written to disk.
  2844. */
  2845. xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
  2846. ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
  2847. ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
  2848. } else {
  2849. /*
  2850. * We're flushing an inode which is not in the AIL and has
  2851. * not been logged but has i_update_core set. For this
  2852. * case we can use a B_DELWRI flush and immediately drop
  2853. * the inode flush lock because we can avoid the whole
  2854. * AIL state thing. It's OK to drop the flush lock now,
  2855. * because we've already locked the buffer and to do anything
  2856. * you really need both.
  2857. */
  2858. if (iip != NULL) {
  2859. ASSERT(iip->ili_logged == 0);
  2860. ASSERT(iip->ili_last_fields == 0);
  2861. ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
  2862. }
  2863. xfs_ifunlock(ip);
  2864. }
  2865. return 0;
  2866. corrupt_out:
  2867. return XFS_ERROR(EFSCORRUPTED);
  2868. }
  2869. /*
  2870. * Return a pointer to the extent record at file index idx.
  2871. */
  2872. xfs_bmbt_rec_host_t *
  2873. xfs_iext_get_ext(
  2874. xfs_ifork_t *ifp, /* inode fork pointer */
  2875. xfs_extnum_t idx) /* index of target extent */
  2876. {
  2877. ASSERT(idx >= 0);
  2878. if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
  2879. return ifp->if_u1.if_ext_irec->er_extbuf;
  2880. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  2881. xfs_ext_irec_t *erp; /* irec pointer */
  2882. int erp_idx = 0; /* irec index */
  2883. xfs_extnum_t page_idx = idx; /* ext index in target list */
  2884. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  2885. return &erp->er_extbuf[page_idx];
  2886. } else if (ifp->if_bytes) {
  2887. return &ifp->if_u1.if_extents[idx];
  2888. } else {
  2889. return NULL;
  2890. }
  2891. }
  2892. /*
  2893. * Insert new item(s) into the extent records for incore inode
  2894. * fork 'ifp'. 'count' new items are inserted at index 'idx'.
  2895. */
  2896. void
  2897. xfs_iext_insert(
  2898. xfs_inode_t *ip, /* incore inode pointer */
  2899. xfs_extnum_t idx, /* starting index of new items */
  2900. xfs_extnum_t count, /* number of inserted items */
  2901. xfs_bmbt_irec_t *new, /* items to insert */
  2902. int state) /* type of extent conversion */
  2903. {
  2904. xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
  2905. xfs_extnum_t i; /* extent record index */
  2906. trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_);
  2907. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  2908. xfs_iext_add(ifp, idx, count);
  2909. for (i = idx; i < idx + count; i++, new++)
  2910. xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
  2911. }
  2912. /*
  2913. * This is called when the amount of space required for incore file
  2914. * extents needs to be increased. The ext_diff parameter stores the
  2915. * number of new extents being added and the idx parameter contains
  2916. * the extent index where the new extents will be added. If the new
  2917. * extents are being appended, then we just need to (re)allocate and
  2918. * initialize the space. Otherwise, if the new extents are being
  2919. * inserted into the middle of the existing entries, a bit more work
  2920. * is required to make room for the new extents to be inserted. The
  2921. * caller is responsible for filling in the new extent entries upon
  2922. * return.
  2923. */
  2924. void
  2925. xfs_iext_add(
  2926. xfs_ifork_t *ifp, /* inode fork pointer */
  2927. xfs_extnum_t idx, /* index to begin adding exts */
  2928. int ext_diff) /* number of extents to add */
  2929. {
  2930. int byte_diff; /* new bytes being added */
  2931. int new_size; /* size of extents after adding */
  2932. xfs_extnum_t nextents; /* number of extents in file */
  2933. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2934. ASSERT((idx >= 0) && (idx <= nextents));
  2935. byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
  2936. new_size = ifp->if_bytes + byte_diff;
  2937. /*
  2938. * If the new number of extents (nextents + ext_diff)
  2939. * fits inside the inode, then continue to use the inline
  2940. * extent buffer.
  2941. */
  2942. if (nextents + ext_diff <= XFS_INLINE_EXTS) {
  2943. if (idx < nextents) {
  2944. memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
  2945. &ifp->if_u2.if_inline_ext[idx],
  2946. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  2947. memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
  2948. }
  2949. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  2950. ifp->if_real_bytes = 0;
  2951. ifp->if_lastex = nextents + ext_diff;
  2952. }
  2953. /*
  2954. * Otherwise use a linear (direct) extent list.
  2955. * If the extents are currently inside the inode,
  2956. * xfs_iext_realloc_direct will switch us from
  2957. * inline to direct extent allocation mode.
  2958. */
  2959. else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
  2960. xfs_iext_realloc_direct(ifp, new_size);
  2961. if (idx < nextents) {
  2962. memmove(&ifp->if_u1.if_extents[idx + ext_diff],
  2963. &ifp->if_u1.if_extents[idx],
  2964. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  2965. memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
  2966. }
  2967. }
  2968. /* Indirection array */
  2969. else {
  2970. xfs_ext_irec_t *erp;
  2971. int erp_idx = 0;
  2972. int page_idx = idx;
  2973. ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
  2974. if (ifp->if_flags & XFS_IFEXTIREC) {
  2975. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
  2976. } else {
  2977. xfs_iext_irec_init(ifp);
  2978. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  2979. erp = ifp->if_u1.if_ext_irec;
  2980. }
  2981. /* Extents fit in target extent page */
  2982. if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
  2983. if (page_idx < erp->er_extcount) {
  2984. memmove(&erp->er_extbuf[page_idx + ext_diff],
  2985. &erp->er_extbuf[page_idx],
  2986. (erp->er_extcount - page_idx) *
  2987. sizeof(xfs_bmbt_rec_t));
  2988. memset(&erp->er_extbuf[page_idx], 0, byte_diff);
  2989. }
  2990. erp->er_extcount += ext_diff;
  2991. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  2992. }
  2993. /* Insert a new extent page */
  2994. else if (erp) {
  2995. xfs_iext_add_indirect_multi(ifp,
  2996. erp_idx, page_idx, ext_diff);
  2997. }
  2998. /*
  2999. * If extent(s) are being appended to the last page in
  3000. * the indirection array and the new extent(s) don't fit
  3001. * in the page, then erp is NULL and erp_idx is set to
  3002. * the next index needed in the indirection array.
  3003. */
  3004. else {
  3005. int count = ext_diff;
  3006. while (count) {
  3007. erp = xfs_iext_irec_new(ifp, erp_idx);
  3008. erp->er_extcount = count;
  3009. count -= MIN(count, (int)XFS_LINEAR_EXTS);
  3010. if (count) {
  3011. erp_idx++;
  3012. }
  3013. }
  3014. }
  3015. }
  3016. ifp->if_bytes = new_size;
  3017. }
  3018. /*
  3019. * This is called when incore extents are being added to the indirection
  3020. * array and the new extents do not fit in the target extent list. The
  3021. * erp_idx parameter contains the irec index for the target extent list
  3022. * in the indirection array, and the idx parameter contains the extent
  3023. * index within the list. The number of extents being added is stored
  3024. * in the count parameter.
  3025. *
  3026. * |-------| |-------|
  3027. * | | | | idx - number of extents before idx
  3028. * | idx | | count |
  3029. * | | | | count - number of extents being inserted at idx
  3030. * |-------| |-------|
  3031. * | count | | nex2 | nex2 - number of extents after idx + count
  3032. * |-------| |-------|
  3033. */
  3034. void
  3035. xfs_iext_add_indirect_multi(
  3036. xfs_ifork_t *ifp, /* inode fork pointer */
  3037. int erp_idx, /* target extent irec index */
  3038. xfs_extnum_t idx, /* index within target list */
  3039. int count) /* new extents being added */
  3040. {
  3041. int byte_diff; /* new bytes being added */
  3042. xfs_ext_irec_t *erp; /* pointer to irec entry */
  3043. xfs_extnum_t ext_diff; /* number of extents to add */
  3044. xfs_extnum_t ext_cnt; /* new extents still needed */
  3045. xfs_extnum_t nex2; /* extents after idx + count */
  3046. xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
  3047. int nlists; /* number of irec's (lists) */
  3048. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3049. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3050. nex2 = erp->er_extcount - idx;
  3051. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3052. /*
  3053. * Save second part of target extent list
  3054. * (all extents past */
  3055. if (nex2) {
  3056. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3057. nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
  3058. memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
  3059. erp->er_extcount -= nex2;
  3060. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
  3061. memset(&erp->er_extbuf[idx], 0, byte_diff);
  3062. }
  3063. /*
  3064. * Add the new extents to the end of the target
  3065. * list, then allocate new irec record(s) and
  3066. * extent buffer(s) as needed to store the rest
  3067. * of the new extents.
  3068. */
  3069. ext_cnt = count;
  3070. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
  3071. if (ext_diff) {
  3072. erp->er_extcount += ext_diff;
  3073. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3074. ext_cnt -= ext_diff;
  3075. }
  3076. while (ext_cnt) {
  3077. erp_idx++;
  3078. erp = xfs_iext_irec_new(ifp, erp_idx);
  3079. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
  3080. erp->er_extcount = ext_diff;
  3081. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3082. ext_cnt -= ext_diff;
  3083. }
  3084. /* Add nex2 extents back to indirection array */
  3085. if (nex2) {
  3086. xfs_extnum_t ext_avail;
  3087. int i;
  3088. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3089. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  3090. i = 0;
  3091. /*
  3092. * If nex2 extents fit in the current page, append
  3093. * nex2_ep after the new extents.
  3094. */
  3095. if (nex2 <= ext_avail) {
  3096. i = erp->er_extcount;
  3097. }
  3098. /*
  3099. * Otherwise, check if space is available in the
  3100. * next page.
  3101. */
  3102. else if ((erp_idx < nlists - 1) &&
  3103. (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
  3104. ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
  3105. erp_idx++;
  3106. erp++;
  3107. /* Create a hole for nex2 extents */
  3108. memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
  3109. erp->er_extcount * sizeof(xfs_bmbt_rec_t));
  3110. }
  3111. /*
  3112. * Final choice, create a new extent page for
  3113. * nex2 extents.
  3114. */
  3115. else {
  3116. erp_idx++;
  3117. erp = xfs_iext_irec_new(ifp, erp_idx);
  3118. }
  3119. memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
  3120. kmem_free(nex2_ep);
  3121. erp->er_extcount += nex2;
  3122. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
  3123. }
  3124. }
  3125. /*
  3126. * This is called when the amount of space required for incore file
  3127. * extents needs to be decreased. The ext_diff parameter stores the
  3128. * number of extents to be removed and the idx parameter contains
  3129. * the extent index where the extents will be removed from.
  3130. *
  3131. * If the amount of space needed has decreased below the linear
  3132. * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
  3133. * extent array. Otherwise, use kmem_realloc() to adjust the
  3134. * size to what is needed.
  3135. */
  3136. void
  3137. xfs_iext_remove(
  3138. xfs_inode_t *ip, /* incore inode pointer */
  3139. xfs_extnum_t idx, /* index to begin removing exts */
  3140. int ext_diff, /* number of extents to remove */
  3141. int state) /* type of extent conversion */
  3142. {
  3143. xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
  3144. xfs_extnum_t nextents; /* number of extents in file */
  3145. int new_size; /* size of extents after removal */
  3146. trace_xfs_iext_remove(ip, idx, state, _RET_IP_);
  3147. ASSERT(ext_diff > 0);
  3148. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3149. new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
  3150. if (new_size == 0) {
  3151. xfs_iext_destroy(ifp);
  3152. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3153. xfs_iext_remove_indirect(ifp, idx, ext_diff);
  3154. } else if (ifp->if_real_bytes) {
  3155. xfs_iext_remove_direct(ifp, idx, ext_diff);
  3156. } else {
  3157. xfs_iext_remove_inline(ifp, idx, ext_diff);
  3158. }
  3159. ifp->if_bytes = new_size;
  3160. }
  3161. /*
  3162. * This removes ext_diff extents from the inline buffer, beginning
  3163. * at extent index idx.
  3164. */
  3165. void
  3166. xfs_iext_remove_inline(
  3167. xfs_ifork_t *ifp, /* inode fork pointer */
  3168. xfs_extnum_t idx, /* index to begin removing exts */
  3169. int ext_diff) /* number of extents to remove */
  3170. {
  3171. int nextents; /* number of extents in file */
  3172. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3173. ASSERT(idx < XFS_INLINE_EXTS);
  3174. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3175. ASSERT(((nextents - ext_diff) > 0) &&
  3176. (nextents - ext_diff) < XFS_INLINE_EXTS);
  3177. if (idx + ext_diff < nextents) {
  3178. memmove(&ifp->if_u2.if_inline_ext[idx],
  3179. &ifp->if_u2.if_inline_ext[idx + ext_diff],
  3180. (nextents - (idx + ext_diff)) *
  3181. sizeof(xfs_bmbt_rec_t));
  3182. memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
  3183. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3184. } else {
  3185. memset(&ifp->if_u2.if_inline_ext[idx], 0,
  3186. ext_diff * sizeof(xfs_bmbt_rec_t));
  3187. }
  3188. }
  3189. /*
  3190. * This removes ext_diff extents from a linear (direct) extent list,
  3191. * beginning at extent index idx. If the extents are being removed
  3192. * from the end of the list (ie. truncate) then we just need to re-
  3193. * allocate the list to remove the extra space. Otherwise, if the
  3194. * extents are being removed from the middle of the existing extent
  3195. * entries, then we first need to move the extent records beginning
  3196. * at idx + ext_diff up in the list to overwrite the records being
  3197. * removed, then remove the extra space via kmem_realloc.
  3198. */
  3199. void
  3200. xfs_iext_remove_direct(
  3201. xfs_ifork_t *ifp, /* inode fork pointer */
  3202. xfs_extnum_t idx, /* index to begin removing exts */
  3203. int ext_diff) /* number of extents to remove */
  3204. {
  3205. xfs_extnum_t nextents; /* number of extents in file */
  3206. int new_size; /* size of extents after removal */
  3207. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3208. new_size = ifp->if_bytes -
  3209. (ext_diff * sizeof(xfs_bmbt_rec_t));
  3210. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3211. if (new_size == 0) {
  3212. xfs_iext_destroy(ifp);
  3213. return;
  3214. }
  3215. /* Move extents up in the list (if needed) */
  3216. if (idx + ext_diff < nextents) {
  3217. memmove(&ifp->if_u1.if_extents[idx],
  3218. &ifp->if_u1.if_extents[idx + ext_diff],
  3219. (nextents - (idx + ext_diff)) *
  3220. sizeof(xfs_bmbt_rec_t));
  3221. }
  3222. memset(&ifp->if_u1.if_extents[nextents - ext_diff],
  3223. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3224. /*
  3225. * Reallocate the direct extent list. If the extents
  3226. * will fit inside the inode then xfs_iext_realloc_direct
  3227. * will switch from direct to inline extent allocation
  3228. * mode for us.
  3229. */
  3230. xfs_iext_realloc_direct(ifp, new_size);
  3231. ifp->if_bytes = new_size;
  3232. }
  3233. /*
  3234. * This is called when incore extents are being removed from the
  3235. * indirection array and the extents being removed span multiple extent
  3236. * buffers. The idx parameter contains the file extent index where we
  3237. * want to begin removing extents, and the count parameter contains
  3238. * how many extents need to be removed.
  3239. *
  3240. * |-------| |-------|
  3241. * | nex1 | | | nex1 - number of extents before idx
  3242. * |-------| | count |
  3243. * | | | | count - number of extents being removed at idx
  3244. * | count | |-------|
  3245. * | | | nex2 | nex2 - number of extents after idx + count
  3246. * |-------| |-------|
  3247. */
  3248. void
  3249. xfs_iext_remove_indirect(
  3250. xfs_ifork_t *ifp, /* inode fork pointer */
  3251. xfs_extnum_t idx, /* index to begin removing extents */
  3252. int count) /* number of extents to remove */
  3253. {
  3254. xfs_ext_irec_t *erp; /* indirection array pointer */
  3255. int erp_idx = 0; /* indirection array index */
  3256. xfs_extnum_t ext_cnt; /* extents left to remove */
  3257. xfs_extnum_t ext_diff; /* extents to remove in current list */
  3258. xfs_extnum_t nex1; /* number of extents before idx */
  3259. xfs_extnum_t nex2; /* extents after idx + count */
  3260. int page_idx = idx; /* index in target extent list */
  3261. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3262. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3263. ASSERT(erp != NULL);
  3264. nex1 = page_idx;
  3265. ext_cnt = count;
  3266. while (ext_cnt) {
  3267. nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
  3268. ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
  3269. /*
  3270. * Check for deletion of entire list;
  3271. * xfs_iext_irec_remove() updates extent offsets.
  3272. */
  3273. if (ext_diff == erp->er_extcount) {
  3274. xfs_iext_irec_remove(ifp, erp_idx);
  3275. ext_cnt -= ext_diff;
  3276. nex1 = 0;
  3277. if (ext_cnt) {
  3278. ASSERT(erp_idx < ifp->if_real_bytes /
  3279. XFS_IEXT_BUFSZ);
  3280. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3281. nex1 = 0;
  3282. continue;
  3283. } else {
  3284. break;
  3285. }
  3286. }
  3287. /* Move extents up (if needed) */
  3288. if (nex2) {
  3289. memmove(&erp->er_extbuf[nex1],
  3290. &erp->er_extbuf[nex1 + ext_diff],
  3291. nex2 * sizeof(xfs_bmbt_rec_t));
  3292. }
  3293. /* Zero out rest of page */
  3294. memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
  3295. ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
  3296. /* Update remaining counters */
  3297. erp->er_extcount -= ext_diff;
  3298. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
  3299. ext_cnt -= ext_diff;
  3300. nex1 = 0;
  3301. erp_idx++;
  3302. erp++;
  3303. }
  3304. ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
  3305. xfs_iext_irec_compact(ifp);
  3306. }
  3307. /*
  3308. * Create, destroy, or resize a linear (direct) block of extents.
  3309. */
  3310. void
  3311. xfs_iext_realloc_direct(
  3312. xfs_ifork_t *ifp, /* inode fork pointer */
  3313. int new_size) /* new size of extents */
  3314. {
  3315. int rnew_size; /* real new size of extents */
  3316. rnew_size = new_size;
  3317. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
  3318. ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
  3319. (new_size != ifp->if_real_bytes)));
  3320. /* Free extent records */
  3321. if (new_size == 0) {
  3322. xfs_iext_destroy(ifp);
  3323. }
  3324. /* Resize direct extent list and zero any new bytes */
  3325. else if (ifp->if_real_bytes) {
  3326. /* Check if extents will fit inside the inode */
  3327. if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
  3328. xfs_iext_direct_to_inline(ifp, new_size /
  3329. (uint)sizeof(xfs_bmbt_rec_t));
  3330. ifp->if_bytes = new_size;
  3331. return;
  3332. }
  3333. if (!is_power_of_2(new_size)){
  3334. rnew_size = roundup_pow_of_two(new_size);
  3335. }
  3336. if (rnew_size != ifp->if_real_bytes) {
  3337. ifp->if_u1.if_extents =
  3338. kmem_realloc(ifp->if_u1.if_extents,
  3339. rnew_size,
  3340. ifp->if_real_bytes, KM_NOFS);
  3341. }
  3342. if (rnew_size > ifp->if_real_bytes) {
  3343. memset(&ifp->if_u1.if_extents[ifp->if_bytes /
  3344. (uint)sizeof(xfs_bmbt_rec_t)], 0,
  3345. rnew_size - ifp->if_real_bytes);
  3346. }
  3347. }
  3348. /*
  3349. * Switch from the inline extent buffer to a direct
  3350. * extent list. Be sure to include the inline extent
  3351. * bytes in new_size.
  3352. */
  3353. else {
  3354. new_size += ifp->if_bytes;
  3355. if (!is_power_of_2(new_size)) {
  3356. rnew_size = roundup_pow_of_two(new_size);
  3357. }
  3358. xfs_iext_inline_to_direct(ifp, rnew_size);
  3359. }
  3360. ifp->if_real_bytes = rnew_size;
  3361. ifp->if_bytes = new_size;
  3362. }
  3363. /*
  3364. * Switch from linear (direct) extent records to inline buffer.
  3365. */
  3366. void
  3367. xfs_iext_direct_to_inline(
  3368. xfs_ifork_t *ifp, /* inode fork pointer */
  3369. xfs_extnum_t nextents) /* number of extents in file */
  3370. {
  3371. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3372. ASSERT(nextents <= XFS_INLINE_EXTS);
  3373. /*
  3374. * The inline buffer was zeroed when we switched
  3375. * from inline to direct extent allocation mode,
  3376. * so we don't need to clear it here.
  3377. */
  3378. memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
  3379. nextents * sizeof(xfs_bmbt_rec_t));
  3380. kmem_free(ifp->if_u1.if_extents);
  3381. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3382. ifp->if_real_bytes = 0;
  3383. }
  3384. /*
  3385. * Switch from inline buffer to linear (direct) extent records.
  3386. * new_size should already be rounded up to the next power of 2
  3387. * by the caller (when appropriate), so use new_size as it is.
  3388. * However, since new_size may be rounded up, we can't update
  3389. * if_bytes here. It is the caller's responsibility to update
  3390. * if_bytes upon return.
  3391. */
  3392. void
  3393. xfs_iext_inline_to_direct(
  3394. xfs_ifork_t *ifp, /* inode fork pointer */
  3395. int new_size) /* number of extents in file */
  3396. {
  3397. ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
  3398. memset(ifp->if_u1.if_extents, 0, new_size);
  3399. if (ifp->if_bytes) {
  3400. memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
  3401. ifp->if_bytes);
  3402. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3403. sizeof(xfs_bmbt_rec_t));
  3404. }
  3405. ifp->if_real_bytes = new_size;
  3406. }
  3407. /*
  3408. * Resize an extent indirection array to new_size bytes.
  3409. */
  3410. STATIC void
  3411. xfs_iext_realloc_indirect(
  3412. xfs_ifork_t *ifp, /* inode fork pointer */
  3413. int new_size) /* new indirection array size */
  3414. {
  3415. int nlists; /* number of irec's (ex lists) */
  3416. int size; /* current indirection array size */
  3417. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3418. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3419. size = nlists * sizeof(xfs_ext_irec_t);
  3420. ASSERT(ifp->if_real_bytes);
  3421. ASSERT((new_size >= 0) && (new_size != size));
  3422. if (new_size == 0) {
  3423. xfs_iext_destroy(ifp);
  3424. } else {
  3425. ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
  3426. kmem_realloc(ifp->if_u1.if_ext_irec,
  3427. new_size, size, KM_NOFS);
  3428. }
  3429. }
  3430. /*
  3431. * Switch from indirection array to linear (direct) extent allocations.
  3432. */
  3433. STATIC void
  3434. xfs_iext_indirect_to_direct(
  3435. xfs_ifork_t *ifp) /* inode fork pointer */
  3436. {
  3437. xfs_bmbt_rec_host_t *ep; /* extent record pointer */
  3438. xfs_extnum_t nextents; /* number of extents in file */
  3439. int size; /* size of file extents */
  3440. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3441. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3442. ASSERT(nextents <= XFS_LINEAR_EXTS);
  3443. size = nextents * sizeof(xfs_bmbt_rec_t);
  3444. xfs_iext_irec_compact_pages(ifp);
  3445. ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
  3446. ep = ifp->if_u1.if_ext_irec->er_extbuf;
  3447. kmem_free(ifp->if_u1.if_ext_irec);
  3448. ifp->if_flags &= ~XFS_IFEXTIREC;
  3449. ifp->if_u1.if_extents = ep;
  3450. ifp->if_bytes = size;
  3451. if (nextents < XFS_LINEAR_EXTS) {
  3452. xfs_iext_realloc_direct(ifp, size);
  3453. }
  3454. }
  3455. /*
  3456. * Free incore file extents.
  3457. */
  3458. void
  3459. xfs_iext_destroy(
  3460. xfs_ifork_t *ifp) /* inode fork pointer */
  3461. {
  3462. if (ifp->if_flags & XFS_IFEXTIREC) {
  3463. int erp_idx;
  3464. int nlists;
  3465. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3466. for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
  3467. xfs_iext_irec_remove(ifp, erp_idx);
  3468. }
  3469. ifp->if_flags &= ~XFS_IFEXTIREC;
  3470. } else if (ifp->if_real_bytes) {
  3471. kmem_free(ifp->if_u1.if_extents);
  3472. } else if (ifp->if_bytes) {
  3473. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3474. sizeof(xfs_bmbt_rec_t));
  3475. }
  3476. ifp->if_u1.if_extents = NULL;
  3477. ifp->if_real_bytes = 0;
  3478. ifp->if_bytes = 0;
  3479. }
  3480. /*
  3481. * Return a pointer to the extent record for file system block bno.
  3482. */
  3483. xfs_bmbt_rec_host_t * /* pointer to found extent record */
  3484. xfs_iext_bno_to_ext(
  3485. xfs_ifork_t *ifp, /* inode fork pointer */
  3486. xfs_fileoff_t bno, /* block number to search for */
  3487. xfs_extnum_t *idxp) /* index of target extent */
  3488. {
  3489. xfs_bmbt_rec_host_t *base; /* pointer to first extent */
  3490. xfs_filblks_t blockcount = 0; /* number of blocks in extent */
  3491. xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
  3492. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  3493. int high; /* upper boundary in search */
  3494. xfs_extnum_t idx = 0; /* index of target extent */
  3495. int low; /* lower boundary in search */
  3496. xfs_extnum_t nextents; /* number of file extents */
  3497. xfs_fileoff_t startoff = 0; /* start offset of extent */
  3498. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3499. if (nextents == 0) {
  3500. *idxp = 0;
  3501. return NULL;
  3502. }
  3503. low = 0;
  3504. if (ifp->if_flags & XFS_IFEXTIREC) {
  3505. /* Find target extent list */
  3506. int erp_idx = 0;
  3507. erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
  3508. base = erp->er_extbuf;
  3509. high = erp->er_extcount - 1;
  3510. } else {
  3511. base = ifp->if_u1.if_extents;
  3512. high = nextents - 1;
  3513. }
  3514. /* Binary search extent records */
  3515. while (low <= high) {
  3516. idx = (low + high) >> 1;
  3517. ep = base + idx;
  3518. startoff = xfs_bmbt_get_startoff(ep);
  3519. blockcount = xfs_bmbt_get_blockcount(ep);
  3520. if (bno < startoff) {
  3521. high = idx - 1;
  3522. } else if (bno >= startoff + blockcount) {
  3523. low = idx + 1;
  3524. } else {
  3525. /* Convert back to file-based extent index */
  3526. if (ifp->if_flags & XFS_IFEXTIREC) {
  3527. idx += erp->er_extoff;
  3528. }
  3529. *idxp = idx;
  3530. return ep;
  3531. }
  3532. }
  3533. /* Convert back to file-based extent index */
  3534. if (ifp->if_flags & XFS_IFEXTIREC) {
  3535. idx += erp->er_extoff;
  3536. }
  3537. if (bno >= startoff + blockcount) {
  3538. if (++idx == nextents) {
  3539. ep = NULL;
  3540. } else {
  3541. ep = xfs_iext_get_ext(ifp, idx);
  3542. }
  3543. }
  3544. *idxp = idx;
  3545. return ep;
  3546. }
  3547. /*
  3548. * Return a pointer to the indirection array entry containing the
  3549. * extent record for filesystem block bno. Store the index of the
  3550. * target irec in *erp_idxp.
  3551. */
  3552. xfs_ext_irec_t * /* pointer to found extent record */
  3553. xfs_iext_bno_to_irec(
  3554. xfs_ifork_t *ifp, /* inode fork pointer */
  3555. xfs_fileoff_t bno, /* block number to search for */
  3556. int *erp_idxp) /* irec index of target ext list */
  3557. {
  3558. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  3559. xfs_ext_irec_t *erp_next; /* next indirection array entry */
  3560. int erp_idx; /* indirection array index */
  3561. int nlists; /* number of extent irec's (lists) */
  3562. int high; /* binary search upper limit */
  3563. int low; /* binary search lower limit */
  3564. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3565. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3566. erp_idx = 0;
  3567. low = 0;
  3568. high = nlists - 1;
  3569. while (low <= high) {
  3570. erp_idx = (low + high) >> 1;
  3571. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3572. erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
  3573. if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
  3574. high = erp_idx - 1;
  3575. } else if (erp_next && bno >=
  3576. xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
  3577. low = erp_idx + 1;
  3578. } else {
  3579. break;
  3580. }
  3581. }
  3582. *erp_idxp = erp_idx;
  3583. return erp;
  3584. }
  3585. /*
  3586. * Return a pointer to the indirection array entry containing the
  3587. * extent record at file extent index *idxp. Store the index of the
  3588. * target irec in *erp_idxp and store the page index of the target
  3589. * extent record in *idxp.
  3590. */
  3591. xfs_ext_irec_t *
  3592. xfs_iext_idx_to_irec(
  3593. xfs_ifork_t *ifp, /* inode fork pointer */
  3594. xfs_extnum_t *idxp, /* extent index (file -> page) */
  3595. int *erp_idxp, /* pointer to target irec */
  3596. int realloc) /* new bytes were just added */
  3597. {
  3598. xfs_ext_irec_t *prev; /* pointer to previous irec */
  3599. xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
  3600. int erp_idx; /* indirection array index */
  3601. int nlists; /* number of irec's (ex lists) */
  3602. int high; /* binary search upper limit */
  3603. int low; /* binary search lower limit */
  3604. xfs_extnum_t page_idx = *idxp; /* extent index in target list */
  3605. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3606. ASSERT(page_idx >= 0 && page_idx <=
  3607. ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
  3608. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3609. erp_idx = 0;
  3610. low = 0;
  3611. high = nlists - 1;
  3612. /* Binary search extent irec's */
  3613. while (low <= high) {
  3614. erp_idx = (low + high) >> 1;
  3615. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3616. prev = erp_idx > 0 ? erp - 1 : NULL;
  3617. if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
  3618. realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
  3619. high = erp_idx - 1;
  3620. } else if (page_idx > erp->er_extoff + erp->er_extcount ||
  3621. (page_idx == erp->er_extoff + erp->er_extcount &&
  3622. !realloc)) {
  3623. low = erp_idx + 1;
  3624. } else if (page_idx == erp->er_extoff + erp->er_extcount &&
  3625. erp->er_extcount == XFS_LINEAR_EXTS) {
  3626. ASSERT(realloc);
  3627. page_idx = 0;
  3628. erp_idx++;
  3629. erp = erp_idx < nlists ? erp + 1 : NULL;
  3630. break;
  3631. } else {
  3632. page_idx -= erp->er_extoff;
  3633. break;
  3634. }
  3635. }
  3636. *idxp = page_idx;
  3637. *erp_idxp = erp_idx;
  3638. return(erp);
  3639. }
  3640. /*
  3641. * Allocate and initialize an indirection array once the space needed
  3642. * for incore extents increases above XFS_IEXT_BUFSZ.
  3643. */
  3644. void
  3645. xfs_iext_irec_init(
  3646. xfs_ifork_t *ifp) /* inode fork pointer */
  3647. {
  3648. xfs_ext_irec_t *erp; /* indirection array pointer */
  3649. xfs_extnum_t nextents; /* number of extents in file */
  3650. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3651. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3652. ASSERT(nextents <= XFS_LINEAR_EXTS);
  3653. erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
  3654. if (nextents == 0) {
  3655. ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
  3656. } else if (!ifp->if_real_bytes) {
  3657. xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
  3658. } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
  3659. xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
  3660. }
  3661. erp->er_extbuf = ifp->if_u1.if_extents;
  3662. erp->er_extcount = nextents;
  3663. erp->er_extoff = 0;
  3664. ifp->if_flags |= XFS_IFEXTIREC;
  3665. ifp->if_real_bytes = XFS_IEXT_BUFSZ;
  3666. ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
  3667. ifp->if_u1.if_ext_irec = erp;
  3668. return;
  3669. }
  3670. /*
  3671. * Allocate and initialize a new entry in the indirection array.
  3672. */
  3673. xfs_ext_irec_t *
  3674. xfs_iext_irec_new(
  3675. xfs_ifork_t *ifp, /* inode fork pointer */
  3676. int erp_idx) /* index for new irec */
  3677. {
  3678. xfs_ext_irec_t *erp; /* indirection array pointer */
  3679. int i; /* loop counter */
  3680. int nlists; /* number of irec's (ex lists) */
  3681. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3682. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3683. /* Resize indirection array */
  3684. xfs_iext_realloc_indirect(ifp, ++nlists *
  3685. sizeof(xfs_ext_irec_t));
  3686. /*
  3687. * Move records down in the array so the
  3688. * new page can use erp_idx.
  3689. */
  3690. erp = ifp->if_u1.if_ext_irec;
  3691. for (i = nlists - 1; i > erp_idx; i--) {
  3692. memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
  3693. }
  3694. ASSERT(i == erp_idx);
  3695. /* Initialize new extent record */
  3696. erp = ifp->if_u1.if_ext_irec;
  3697. erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
  3698. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  3699. memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
  3700. erp[erp_idx].er_extcount = 0;
  3701. erp[erp_idx].er_extoff = erp_idx > 0 ?
  3702. erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
  3703. return (&erp[erp_idx]);
  3704. }
  3705. /*
  3706. * Remove a record from the indirection array.
  3707. */
  3708. void
  3709. xfs_iext_irec_remove(
  3710. xfs_ifork_t *ifp, /* inode fork pointer */
  3711. int erp_idx) /* irec index to remove */
  3712. {
  3713. xfs_ext_irec_t *erp; /* indirection array pointer */
  3714. int i; /* loop counter */
  3715. int nlists; /* number of irec's (ex lists) */
  3716. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3717. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3718. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3719. if (erp->er_extbuf) {
  3720. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
  3721. -erp->er_extcount);
  3722. kmem_free(erp->er_extbuf);
  3723. }
  3724. /* Compact extent records */
  3725. erp = ifp->if_u1.if_ext_irec;
  3726. for (i = erp_idx; i < nlists - 1; i++) {
  3727. memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
  3728. }
  3729. /*
  3730. * Manually free the last extent record from the indirection
  3731. * array. A call to xfs_iext_realloc_indirect() with a size
  3732. * of zero would result in a call to xfs_iext_destroy() which
  3733. * would in turn call this function again, creating a nasty
  3734. * infinite loop.
  3735. */
  3736. if (--nlists) {
  3737. xfs_iext_realloc_indirect(ifp,
  3738. nlists * sizeof(xfs_ext_irec_t));
  3739. } else {
  3740. kmem_free(ifp->if_u1.if_ext_irec);
  3741. }
  3742. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  3743. }
  3744. /*
  3745. * This is called to clean up large amounts of unused memory allocated
  3746. * by the indirection array. Before compacting anything though, verify
  3747. * that the indirection array is still needed and switch back to the
  3748. * linear extent list (or even the inline buffer) if possible. The
  3749. * compaction policy is as follows:
  3750. *
  3751. * Full Compaction: Extents fit into a single page (or inline buffer)
  3752. * Partial Compaction: Extents occupy less than 50% of allocated space
  3753. * No Compaction: Extents occupy at least 50% of allocated space
  3754. */
  3755. void
  3756. xfs_iext_irec_compact(
  3757. xfs_ifork_t *ifp) /* inode fork pointer */
  3758. {
  3759. xfs_extnum_t nextents; /* number of extents in file */
  3760. int nlists; /* number of irec's (ex lists) */
  3761. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3762. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3763. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3764. if (nextents == 0) {
  3765. xfs_iext_destroy(ifp);
  3766. } else if (nextents <= XFS_INLINE_EXTS) {
  3767. xfs_iext_indirect_to_direct(ifp);
  3768. xfs_iext_direct_to_inline(ifp, nextents);
  3769. } else if (nextents <= XFS_LINEAR_EXTS) {
  3770. xfs_iext_indirect_to_direct(ifp);
  3771. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
  3772. xfs_iext_irec_compact_pages(ifp);
  3773. }
  3774. }
  3775. /*
  3776. * Combine extents from neighboring extent pages.
  3777. */
  3778. void
  3779. xfs_iext_irec_compact_pages(
  3780. xfs_ifork_t *ifp) /* inode fork pointer */
  3781. {
  3782. xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
  3783. int erp_idx = 0; /* indirection array index */
  3784. int nlists; /* number of irec's (ex lists) */
  3785. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3786. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3787. while (erp_idx < nlists - 1) {
  3788. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3789. erp_next = erp + 1;
  3790. if (erp_next->er_extcount <=
  3791. (XFS_LINEAR_EXTS - erp->er_extcount)) {
  3792. memcpy(&erp->er_extbuf[erp->er_extcount],
  3793. erp_next->er_extbuf, erp_next->er_extcount *
  3794. sizeof(xfs_bmbt_rec_t));
  3795. erp->er_extcount += erp_next->er_extcount;
  3796. /*
  3797. * Free page before removing extent record
  3798. * so er_extoffs don't get modified in
  3799. * xfs_iext_irec_remove.
  3800. */
  3801. kmem_free(erp_next->er_extbuf);
  3802. erp_next->er_extbuf = NULL;
  3803. xfs_iext_irec_remove(ifp, erp_idx + 1);
  3804. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3805. } else {
  3806. erp_idx++;
  3807. }
  3808. }
  3809. }
  3810. /*
  3811. * This is called to update the er_extoff field in the indirection
  3812. * array when extents have been added or removed from one of the
  3813. * extent lists. erp_idx contains the irec index to begin updating
  3814. * at and ext_diff contains the number of extents that were added
  3815. * or removed.
  3816. */
  3817. void
  3818. xfs_iext_irec_update_extoffs(
  3819. xfs_ifork_t *ifp, /* inode fork pointer */
  3820. int erp_idx, /* irec index to update */
  3821. int ext_diff) /* number of new extents */
  3822. {
  3823. int i; /* loop counter */
  3824. int nlists; /* number of irec's (ex lists */
  3825. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3826. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3827. for (i = erp_idx; i < nlists; i++) {
  3828. ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
  3829. }
  3830. }