wl.c 56 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131
  1. /*
  2. * @ubi: UBI device description object
  3. * Copyright (c) International Business Machines Corp., 2006
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
  13. * the GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. *
  19. * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
  20. */
  21. /*
  22. * UBI wear-leveling sub-system.
  23. *
  24. * This sub-system is responsible for wear-leveling. It works in terms of
  25. * physical eraseblocks and erase counters and knows nothing about logical
  26. * eraseblocks, volumes, etc. From this sub-system's perspective all physical
  27. * eraseblocks are of two types - used and free. Used physical eraseblocks are
  28. * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
  29. * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
  30. *
  31. * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
  32. * header. The rest of the physical eraseblock contains only %0xFF bytes.
  33. *
  34. * When physical eraseblocks are returned to the WL sub-system by means of the
  35. * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
  36. * done asynchronously in context of the per-UBI device background thread,
  37. * which is also managed by the WL sub-system.
  38. *
  39. * The wear-leveling is ensured by means of moving the contents of used
  40. * physical eraseblocks with low erase counter to free physical eraseblocks
  41. * with high erase counter.
  42. *
  43. * If the WL sub-system fails to erase a physical eraseblock, it marks it as
  44. * bad.
  45. *
  46. * This sub-system is also responsible for scrubbing. If a bit-flip is detected
  47. * in a physical eraseblock, it has to be moved. Technically this is the same
  48. * as moving it for wear-leveling reasons.
  49. *
  50. * As it was said, for the UBI sub-system all physical eraseblocks are either
  51. * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
  52. * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
  53. * RB-trees, as well as (temporarily) in the @wl->pq queue.
  54. *
  55. * When the WL sub-system returns a physical eraseblock, the physical
  56. * eraseblock is protected from being moved for some "time". For this reason,
  57. * the physical eraseblock is not directly moved from the @wl->free tree to the
  58. * @wl->used tree. There is a protection queue in between where this
  59. * physical eraseblock is temporarily stored (@wl->pq).
  60. *
  61. * All this protection stuff is needed because:
  62. * o we don't want to move physical eraseblocks just after we have given them
  63. * to the user; instead, we first want to let users fill them up with data;
  64. *
  65. * o there is a chance that the user will put the physical eraseblock very
  66. * soon, so it makes sense not to move it for some time, but wait.
  67. *
  68. * Physical eraseblocks stay protected only for limited time. But the "time" is
  69. * measured in erase cycles in this case. This is implemented with help of the
  70. * protection queue. Eraseblocks are put to the tail of this queue when they
  71. * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
  72. * head of the queue on each erase operation (for any eraseblock). So the
  73. * length of the queue defines how may (global) erase cycles PEBs are protected.
  74. *
  75. * To put it differently, each physical eraseblock has 2 main states: free and
  76. * used. The former state corresponds to the @wl->free tree. The latter state
  77. * is split up on several sub-states:
  78. * o the WL movement is allowed (@wl->used tree);
  79. * o the WL movement is disallowed (@wl->erroneous) because the PEB is
  80. * erroneous - e.g., there was a read error;
  81. * o the WL movement is temporarily prohibited (@wl->pq queue);
  82. * o scrubbing is needed (@wl->scrub tree).
  83. *
  84. * Depending on the sub-state, wear-leveling entries of the used physical
  85. * eraseblocks may be kept in one of those structures.
  86. *
  87. * Note, in this implementation, we keep a small in-RAM object for each physical
  88. * eraseblock. This is surely not a scalable solution. But it appears to be good
  89. * enough for moderately large flashes and it is simple. In future, one may
  90. * re-work this sub-system and make it more scalable.
  91. *
  92. * At the moment this sub-system does not utilize the sequence number, which
  93. * was introduced relatively recently. But it would be wise to do this because
  94. * the sequence number of a logical eraseblock characterizes how old is it. For
  95. * example, when we move a PEB with low erase counter, and we need to pick the
  96. * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
  97. * pick target PEB with an average EC if our PEB is not very "old". This is a
  98. * room for future re-works of the WL sub-system.
  99. */
  100. #include <linux/slab.h>
  101. #include <linux/crc32.h>
  102. #include <linux/freezer.h>
  103. #include <linux/kthread.h>
  104. #include "ubi.h"
  105. /* Number of physical eraseblocks reserved for wear-leveling purposes */
  106. #define WL_RESERVED_PEBS 1
  107. /*
  108. * Maximum difference between two erase counters. If this threshold is
  109. * exceeded, the WL sub-system starts moving data from used physical
  110. * eraseblocks with low erase counter to free physical eraseblocks with high
  111. * erase counter.
  112. */
  113. #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
  114. /*
  115. * When a physical eraseblock is moved, the WL sub-system has to pick the target
  116. * physical eraseblock to move to. The simplest way would be just to pick the
  117. * one with the highest erase counter. But in certain workloads this could lead
  118. * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
  119. * situation when the picked physical eraseblock is constantly erased after the
  120. * data is written to it. So, we have a constant which limits the highest erase
  121. * counter of the free physical eraseblock to pick. Namely, the WL sub-system
  122. * does not pick eraseblocks with erase counter greater than the lowest erase
  123. * counter plus %WL_FREE_MAX_DIFF.
  124. */
  125. #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
  126. /*
  127. * Maximum number of consecutive background thread failures which is enough to
  128. * switch to read-only mode.
  129. */
  130. #define WL_MAX_FAILURES 32
  131. static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
  132. static int self_check_in_wl_tree(const struct ubi_device *ubi,
  133. struct ubi_wl_entry *e, struct rb_root *root);
  134. static int self_check_in_pq(const struct ubi_device *ubi,
  135. struct ubi_wl_entry *e);
  136. #ifdef CONFIG_MTD_UBI_FASTMAP
  137. /**
  138. * update_fastmap_work_fn - calls ubi_update_fastmap from a work queue
  139. * @wrk: the work description object
  140. */
  141. static void update_fastmap_work_fn(struct work_struct *wrk)
  142. {
  143. struct ubi_device *ubi = container_of(wrk, struct ubi_device, fm_work);
  144. ubi_update_fastmap(ubi);
  145. }
  146. /**
  147. * ubi_ubi_is_fm_block - returns 1 if a PEB is currently used in a fastmap.
  148. * @ubi: UBI device description object
  149. * @pnum: the to be checked PEB
  150. */
  151. static int ubi_is_fm_block(struct ubi_device *ubi, int pnum)
  152. {
  153. int i;
  154. if (!ubi->fm)
  155. return 0;
  156. for (i = 0; i < ubi->fm->used_blocks; i++)
  157. if (ubi->fm->e[i]->pnum == pnum)
  158. return 1;
  159. return 0;
  160. }
  161. #else
  162. static int ubi_is_fm_block(struct ubi_device *ubi, int pnum)
  163. {
  164. return 0;
  165. }
  166. #endif
  167. /**
  168. * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
  169. * @e: the wear-leveling entry to add
  170. * @root: the root of the tree
  171. *
  172. * Note, we use (erase counter, physical eraseblock number) pairs as keys in
  173. * the @ubi->used and @ubi->free RB-trees.
  174. */
  175. static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
  176. {
  177. struct rb_node **p, *parent = NULL;
  178. p = &root->rb_node;
  179. while (*p) {
  180. struct ubi_wl_entry *e1;
  181. parent = *p;
  182. e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
  183. if (e->ec < e1->ec)
  184. p = &(*p)->rb_left;
  185. else if (e->ec > e1->ec)
  186. p = &(*p)->rb_right;
  187. else {
  188. ubi_assert(e->pnum != e1->pnum);
  189. if (e->pnum < e1->pnum)
  190. p = &(*p)->rb_left;
  191. else
  192. p = &(*p)->rb_right;
  193. }
  194. }
  195. rb_link_node(&e->u.rb, parent, p);
  196. rb_insert_color(&e->u.rb, root);
  197. }
  198. /**
  199. * do_work - do one pending work.
  200. * @ubi: UBI device description object
  201. *
  202. * This function returns zero in case of success and a negative error code in
  203. * case of failure.
  204. */
  205. static int do_work(struct ubi_device *ubi)
  206. {
  207. int err;
  208. struct ubi_work *wrk;
  209. cond_resched();
  210. /*
  211. * @ubi->work_sem is used to synchronize with the workers. Workers take
  212. * it in read mode, so many of them may be doing works at a time. But
  213. * the queue flush code has to be sure the whole queue of works is
  214. * done, and it takes the mutex in write mode.
  215. */
  216. down_read(&ubi->work_sem);
  217. spin_lock(&ubi->wl_lock);
  218. if (list_empty(&ubi->works)) {
  219. spin_unlock(&ubi->wl_lock);
  220. up_read(&ubi->work_sem);
  221. return 0;
  222. }
  223. wrk = list_entry(ubi->works.next, struct ubi_work, list);
  224. list_del(&wrk->list);
  225. ubi->works_count -= 1;
  226. ubi_assert(ubi->works_count >= 0);
  227. spin_unlock(&ubi->wl_lock);
  228. /*
  229. * Call the worker function. Do not touch the work structure
  230. * after this call as it will have been freed or reused by that
  231. * time by the worker function.
  232. */
  233. err = wrk->func(ubi, wrk, 0);
  234. if (err)
  235. ubi_err("work failed with error code %d", err);
  236. up_read(&ubi->work_sem);
  237. return err;
  238. }
  239. /**
  240. * produce_free_peb - produce a free physical eraseblock.
  241. * @ubi: UBI device description object
  242. *
  243. * This function tries to make a free PEB by means of synchronous execution of
  244. * pending works. This may be needed if, for example the background thread is
  245. * disabled. Returns zero in case of success and a negative error code in case
  246. * of failure.
  247. */
  248. static int produce_free_peb(struct ubi_device *ubi)
  249. {
  250. int err;
  251. while (!ubi->free.rb_node) {
  252. spin_unlock(&ubi->wl_lock);
  253. dbg_wl("do one work synchronously");
  254. err = do_work(ubi);
  255. spin_lock(&ubi->wl_lock);
  256. if (err)
  257. return err;
  258. }
  259. return 0;
  260. }
  261. /**
  262. * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
  263. * @e: the wear-leveling entry to check
  264. * @root: the root of the tree
  265. *
  266. * This function returns non-zero if @e is in the @root RB-tree and zero if it
  267. * is not.
  268. */
  269. static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
  270. {
  271. struct rb_node *p;
  272. p = root->rb_node;
  273. while (p) {
  274. struct ubi_wl_entry *e1;
  275. e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
  276. if (e->pnum == e1->pnum) {
  277. ubi_assert(e == e1);
  278. return 1;
  279. }
  280. if (e->ec < e1->ec)
  281. p = p->rb_left;
  282. else if (e->ec > e1->ec)
  283. p = p->rb_right;
  284. else {
  285. ubi_assert(e->pnum != e1->pnum);
  286. if (e->pnum < e1->pnum)
  287. p = p->rb_left;
  288. else
  289. p = p->rb_right;
  290. }
  291. }
  292. return 0;
  293. }
  294. /**
  295. * prot_queue_add - add physical eraseblock to the protection queue.
  296. * @ubi: UBI device description object
  297. * @e: the physical eraseblock to add
  298. *
  299. * This function adds @e to the tail of the protection queue @ubi->pq, where
  300. * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
  301. * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
  302. * be locked.
  303. */
  304. static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
  305. {
  306. int pq_tail = ubi->pq_head - 1;
  307. if (pq_tail < 0)
  308. pq_tail = UBI_PROT_QUEUE_LEN - 1;
  309. ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
  310. list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
  311. dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
  312. }
  313. /**
  314. * find_wl_entry - find wear-leveling entry closest to certain erase counter.
  315. * @ubi: UBI device description object
  316. * @root: the RB-tree where to look for
  317. * @diff: maximum possible difference from the smallest erase counter
  318. *
  319. * This function looks for a wear leveling entry with erase counter closest to
  320. * min + @diff, where min is the smallest erase counter.
  321. */
  322. static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
  323. struct rb_root *root, int diff)
  324. {
  325. struct rb_node *p;
  326. struct ubi_wl_entry *e, *prev_e = NULL;
  327. int max;
  328. e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
  329. max = e->ec + diff;
  330. p = root->rb_node;
  331. while (p) {
  332. struct ubi_wl_entry *e1;
  333. e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
  334. if (e1->ec >= max)
  335. p = p->rb_left;
  336. else {
  337. p = p->rb_right;
  338. prev_e = e;
  339. e = e1;
  340. }
  341. }
  342. /* If no fastmap has been written and this WL entry can be used
  343. * as anchor PEB, hold it back and return the second best WL entry
  344. * such that fastmap can use the anchor PEB later. */
  345. if (prev_e && !ubi->fm_disabled &&
  346. !ubi->fm && e->pnum < UBI_FM_MAX_START)
  347. return prev_e;
  348. return e;
  349. }
  350. /**
  351. * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
  352. * @ubi: UBI device description object
  353. * @root: the RB-tree where to look for
  354. *
  355. * This function looks for a wear leveling entry with medium erase counter,
  356. * but not greater or equivalent than the lowest erase counter plus
  357. * %WL_FREE_MAX_DIFF/2.
  358. */
  359. static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
  360. struct rb_root *root)
  361. {
  362. struct ubi_wl_entry *e, *first, *last;
  363. first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
  364. last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
  365. if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
  366. e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
  367. #ifdef CONFIG_MTD_UBI_FASTMAP
  368. /* If no fastmap has been written and this WL entry can be used
  369. * as anchor PEB, hold it back and return the second best
  370. * WL entry such that fastmap can use the anchor PEB later. */
  371. if (e && !ubi->fm_disabled && !ubi->fm &&
  372. e->pnum < UBI_FM_MAX_START)
  373. e = rb_entry(rb_next(root->rb_node),
  374. struct ubi_wl_entry, u.rb);
  375. #endif
  376. } else
  377. e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
  378. return e;
  379. }
  380. #ifdef CONFIG_MTD_UBI_FASTMAP
  381. /**
  382. * find_anchor_wl_entry - find wear-leveling entry to used as anchor PEB.
  383. * @root: the RB-tree where to look for
  384. */
  385. static struct ubi_wl_entry *find_anchor_wl_entry(struct rb_root *root)
  386. {
  387. struct rb_node *p;
  388. struct ubi_wl_entry *e, *victim = NULL;
  389. int max_ec = UBI_MAX_ERASECOUNTER;
  390. ubi_rb_for_each_entry(p, e, root, u.rb) {
  391. if (e->pnum < UBI_FM_MAX_START && e->ec < max_ec) {
  392. victim = e;
  393. max_ec = e->ec;
  394. }
  395. }
  396. return victim;
  397. }
  398. static int anchor_pebs_avalible(struct rb_root *root)
  399. {
  400. struct rb_node *p;
  401. struct ubi_wl_entry *e;
  402. ubi_rb_for_each_entry(p, e, root, u.rb)
  403. if (e->pnum < UBI_FM_MAX_START)
  404. return 1;
  405. return 0;
  406. }
  407. /**
  408. * ubi_wl_get_fm_peb - find a physical erase block with a given maximal number.
  409. * @ubi: UBI device description object
  410. * @anchor: This PEB will be used as anchor PEB by fastmap
  411. *
  412. * The function returns a physical erase block with a given maximal number
  413. * and removes it from the wl subsystem.
  414. * Must be called with wl_lock held!
  415. */
  416. struct ubi_wl_entry *ubi_wl_get_fm_peb(struct ubi_device *ubi, int anchor)
  417. {
  418. struct ubi_wl_entry *e = NULL;
  419. if (!ubi->free.rb_node || (ubi->free_count - ubi->beb_rsvd_pebs < 1))
  420. goto out;
  421. if (anchor)
  422. e = find_anchor_wl_entry(&ubi->free);
  423. else
  424. e = find_mean_wl_entry(ubi, &ubi->free);
  425. if (!e)
  426. goto out;
  427. self_check_in_wl_tree(ubi, e, &ubi->free);
  428. /* remove it from the free list,
  429. * the wl subsystem does no longer know this erase block */
  430. rb_erase(&e->u.rb, &ubi->free);
  431. ubi->free_count--;
  432. out:
  433. return e;
  434. }
  435. #endif
  436. /**
  437. * __wl_get_peb - get a physical eraseblock.
  438. * @ubi: UBI device description object
  439. *
  440. * This function returns a physical eraseblock in case of success and a
  441. * negative error code in case of failure.
  442. */
  443. static int __wl_get_peb(struct ubi_device *ubi)
  444. {
  445. int err;
  446. struct ubi_wl_entry *e;
  447. retry:
  448. if (!ubi->free.rb_node) {
  449. if (ubi->works_count == 0) {
  450. ubi_err("no free eraseblocks");
  451. ubi_assert(list_empty(&ubi->works));
  452. return -ENOSPC;
  453. }
  454. err = produce_free_peb(ubi);
  455. if (err < 0)
  456. return err;
  457. goto retry;
  458. }
  459. e = find_mean_wl_entry(ubi, &ubi->free);
  460. if (!e) {
  461. ubi_err("no free eraseblocks");
  462. return -ENOSPC;
  463. }
  464. self_check_in_wl_tree(ubi, e, &ubi->free);
  465. /*
  466. * Move the physical eraseblock to the protection queue where it will
  467. * be protected from being moved for some time.
  468. */
  469. rb_erase(&e->u.rb, &ubi->free);
  470. ubi->free_count--;
  471. dbg_wl("PEB %d EC %d", e->pnum, e->ec);
  472. #ifndef CONFIG_MTD_UBI_FASTMAP
  473. /* We have to enqueue e only if fastmap is disabled,
  474. * is fastmap enabled prot_queue_add() will be called by
  475. * ubi_wl_get_peb() after removing e from the pool. */
  476. prot_queue_add(ubi, e);
  477. #endif
  478. return e->pnum;
  479. }
  480. #ifdef CONFIG_MTD_UBI_FASTMAP
  481. /**
  482. * return_unused_pool_pebs - returns unused PEB to the free tree.
  483. * @ubi: UBI device description object
  484. * @pool: fastmap pool description object
  485. */
  486. static void return_unused_pool_pebs(struct ubi_device *ubi,
  487. struct ubi_fm_pool *pool)
  488. {
  489. int i;
  490. struct ubi_wl_entry *e;
  491. for (i = pool->used; i < pool->size; i++) {
  492. e = ubi->lookuptbl[pool->pebs[i]];
  493. wl_tree_add(e, &ubi->free);
  494. ubi->free_count++;
  495. }
  496. }
  497. /**
  498. * refill_wl_pool - refills all the fastmap pool used by the
  499. * WL sub-system.
  500. * @ubi: UBI device description object
  501. */
  502. static void refill_wl_pool(struct ubi_device *ubi)
  503. {
  504. struct ubi_wl_entry *e;
  505. struct ubi_fm_pool *pool = &ubi->fm_wl_pool;
  506. return_unused_pool_pebs(ubi, pool);
  507. for (pool->size = 0; pool->size < pool->max_size; pool->size++) {
  508. if (!ubi->free.rb_node ||
  509. (ubi->free_count - ubi->beb_rsvd_pebs < 5))
  510. break;
  511. e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
  512. self_check_in_wl_tree(ubi, e, &ubi->free);
  513. rb_erase(&e->u.rb, &ubi->free);
  514. ubi->free_count--;
  515. pool->pebs[pool->size] = e->pnum;
  516. }
  517. pool->used = 0;
  518. }
  519. /**
  520. * refill_wl_user_pool - refills all the fastmap pool used by ubi_wl_get_peb.
  521. * @ubi: UBI device description object
  522. */
  523. static void refill_wl_user_pool(struct ubi_device *ubi)
  524. {
  525. struct ubi_fm_pool *pool = &ubi->fm_pool;
  526. return_unused_pool_pebs(ubi, pool);
  527. for (pool->size = 0; pool->size < pool->max_size; pool->size++) {
  528. if (!ubi->free.rb_node ||
  529. (ubi->free_count - ubi->beb_rsvd_pebs < 1))
  530. break;
  531. pool->pebs[pool->size] = __wl_get_peb(ubi);
  532. if (pool->pebs[pool->size] < 0)
  533. break;
  534. }
  535. pool->used = 0;
  536. }
  537. /**
  538. * ubi_refill_pools - refills all fastmap PEB pools.
  539. * @ubi: UBI device description object
  540. */
  541. void ubi_refill_pools(struct ubi_device *ubi)
  542. {
  543. spin_lock(&ubi->wl_lock);
  544. refill_wl_pool(ubi);
  545. refill_wl_user_pool(ubi);
  546. spin_unlock(&ubi->wl_lock);
  547. }
  548. /* ubi_wl_get_peb - works exaclty like __wl_get_peb but keeps track of
  549. * the fastmap pool.
  550. */
  551. int ubi_wl_get_peb(struct ubi_device *ubi)
  552. {
  553. int ret;
  554. struct ubi_fm_pool *pool = &ubi->fm_pool;
  555. struct ubi_fm_pool *wl_pool = &ubi->fm_wl_pool;
  556. if (!pool->size || !wl_pool->size || pool->used == pool->size ||
  557. wl_pool->used == wl_pool->size)
  558. ubi_update_fastmap(ubi);
  559. /* we got not a single free PEB */
  560. if (!pool->size)
  561. ret = -ENOSPC;
  562. else {
  563. spin_lock(&ubi->wl_lock);
  564. ret = pool->pebs[pool->used++];
  565. prot_queue_add(ubi, ubi->lookuptbl[ret]);
  566. spin_unlock(&ubi->wl_lock);
  567. }
  568. return ret;
  569. }
  570. /* get_peb_for_wl - returns a PEB to be used internally by the WL sub-system.
  571. *
  572. * @ubi: UBI device description object
  573. */
  574. static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
  575. {
  576. struct ubi_fm_pool *pool = &ubi->fm_wl_pool;
  577. int pnum;
  578. if (pool->used == pool->size || !pool->size) {
  579. /* We cannot update the fastmap here because this
  580. * function is called in atomic context.
  581. * Let's fail here and refill/update it as soon as possible. */
  582. schedule_work(&ubi->fm_work);
  583. return NULL;
  584. } else {
  585. pnum = pool->pebs[pool->used++];
  586. return ubi->lookuptbl[pnum];
  587. }
  588. }
  589. #else
  590. static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
  591. {
  592. struct ubi_wl_entry *e;
  593. e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
  594. self_check_in_wl_tree(ubi, e, &ubi->free);
  595. rb_erase(&e->u.rb, &ubi->free);
  596. return e;
  597. }
  598. int ubi_wl_get_peb(struct ubi_device *ubi)
  599. {
  600. int peb, err;
  601. spin_lock(&ubi->wl_lock);
  602. peb = __wl_get_peb(ubi);
  603. spin_unlock(&ubi->wl_lock);
  604. err = ubi_self_check_all_ff(ubi, peb, ubi->vid_hdr_aloffset,
  605. ubi->peb_size - ubi->vid_hdr_aloffset);
  606. if (err) {
  607. ubi_err("new PEB %d does not contain all 0xFF bytes", peb);
  608. return err;
  609. }
  610. return peb;
  611. }
  612. #endif
  613. /**
  614. * prot_queue_del - remove a physical eraseblock from the protection queue.
  615. * @ubi: UBI device description object
  616. * @pnum: the physical eraseblock to remove
  617. *
  618. * This function deletes PEB @pnum from the protection queue and returns zero
  619. * in case of success and %-ENODEV if the PEB was not found.
  620. */
  621. static int prot_queue_del(struct ubi_device *ubi, int pnum)
  622. {
  623. struct ubi_wl_entry *e;
  624. e = ubi->lookuptbl[pnum];
  625. if (!e)
  626. return -ENODEV;
  627. if (self_check_in_pq(ubi, e))
  628. return -ENODEV;
  629. list_del(&e->u.list);
  630. dbg_wl("deleted PEB %d from the protection queue", e->pnum);
  631. return 0;
  632. }
  633. /**
  634. * sync_erase - synchronously erase a physical eraseblock.
  635. * @ubi: UBI device description object
  636. * @e: the the physical eraseblock to erase
  637. * @torture: if the physical eraseblock has to be tortured
  638. *
  639. * This function returns zero in case of success and a negative error code in
  640. * case of failure.
  641. */
  642. static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
  643. int torture)
  644. {
  645. int err;
  646. struct ubi_ec_hdr *ec_hdr;
  647. unsigned long long ec = e->ec;
  648. dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
  649. err = self_check_ec(ubi, e->pnum, e->ec);
  650. if (err)
  651. return -EINVAL;
  652. ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
  653. if (!ec_hdr)
  654. return -ENOMEM;
  655. err = ubi_io_sync_erase(ubi, e->pnum, torture);
  656. if (err < 0)
  657. goto out_free;
  658. ec += err;
  659. if (ec > UBI_MAX_ERASECOUNTER) {
  660. /*
  661. * Erase counter overflow. Upgrade UBI and use 64-bit
  662. * erase counters internally.
  663. */
  664. ubi_err("erase counter overflow at PEB %d, EC %llu",
  665. e->pnum, ec);
  666. err = -EINVAL;
  667. goto out_free;
  668. }
  669. dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
  670. ec_hdr->ec = cpu_to_be64(ec);
  671. err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
  672. if (err)
  673. goto out_free;
  674. e->ec = ec;
  675. spin_lock(&ubi->wl_lock);
  676. if (e->ec > ubi->max_ec)
  677. ubi->max_ec = e->ec;
  678. spin_unlock(&ubi->wl_lock);
  679. out_free:
  680. kfree(ec_hdr);
  681. return err;
  682. }
  683. /**
  684. * serve_prot_queue - check if it is time to stop protecting PEBs.
  685. * @ubi: UBI device description object
  686. *
  687. * This function is called after each erase operation and removes PEBs from the
  688. * tail of the protection queue. These PEBs have been protected for long enough
  689. * and should be moved to the used tree.
  690. */
  691. static void serve_prot_queue(struct ubi_device *ubi)
  692. {
  693. struct ubi_wl_entry *e, *tmp;
  694. int count;
  695. /*
  696. * There may be several protected physical eraseblock to remove,
  697. * process them all.
  698. */
  699. repeat:
  700. count = 0;
  701. spin_lock(&ubi->wl_lock);
  702. list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
  703. dbg_wl("PEB %d EC %d protection over, move to used tree",
  704. e->pnum, e->ec);
  705. list_del(&e->u.list);
  706. wl_tree_add(e, &ubi->used);
  707. if (count++ > 32) {
  708. /*
  709. * Let's be nice and avoid holding the spinlock for
  710. * too long.
  711. */
  712. spin_unlock(&ubi->wl_lock);
  713. cond_resched();
  714. goto repeat;
  715. }
  716. }
  717. ubi->pq_head += 1;
  718. if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
  719. ubi->pq_head = 0;
  720. ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
  721. spin_unlock(&ubi->wl_lock);
  722. }
  723. /**
  724. * __schedule_ubi_work - schedule a work.
  725. * @ubi: UBI device description object
  726. * @wrk: the work to schedule
  727. *
  728. * This function adds a work defined by @wrk to the tail of the pending works
  729. * list. Can only be used of ubi->work_sem is already held in read mode!
  730. */
  731. static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
  732. {
  733. spin_lock(&ubi->wl_lock);
  734. list_add_tail(&wrk->list, &ubi->works);
  735. ubi_assert(ubi->works_count >= 0);
  736. ubi->works_count += 1;
  737. if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
  738. wake_up_process(ubi->bgt_thread);
  739. spin_unlock(&ubi->wl_lock);
  740. }
  741. /**
  742. * schedule_ubi_work - schedule a work.
  743. * @ubi: UBI device description object
  744. * @wrk: the work to schedule
  745. *
  746. * This function adds a work defined by @wrk to the tail of the pending works
  747. * list.
  748. */
  749. static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
  750. {
  751. down_read(&ubi->work_sem);
  752. __schedule_ubi_work(ubi, wrk);
  753. up_read(&ubi->work_sem);
  754. }
  755. static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
  756. int cancel);
  757. #ifdef CONFIG_MTD_UBI_FASTMAP
  758. /**
  759. * ubi_is_erase_work - checks whether a work is erase work.
  760. * @wrk: The work object to be checked
  761. */
  762. int ubi_is_erase_work(struct ubi_work *wrk)
  763. {
  764. return wrk->func == erase_worker;
  765. }
  766. #endif
  767. /**
  768. * schedule_erase - schedule an erase work.
  769. * @ubi: UBI device description object
  770. * @e: the WL entry of the physical eraseblock to erase
  771. * @vol_id: the volume ID that last used this PEB
  772. * @lnum: the last used logical eraseblock number for the PEB
  773. * @torture: if the physical eraseblock has to be tortured
  774. *
  775. * This function returns zero in case of success and a %-ENOMEM in case of
  776. * failure.
  777. */
  778. static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
  779. int vol_id, int lnum, int torture)
  780. {
  781. struct ubi_work *wl_wrk;
  782. ubi_assert(e);
  783. ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
  784. dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
  785. e->pnum, e->ec, torture);
  786. wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
  787. if (!wl_wrk)
  788. return -ENOMEM;
  789. wl_wrk->func = &erase_worker;
  790. wl_wrk->e = e;
  791. wl_wrk->vol_id = vol_id;
  792. wl_wrk->lnum = lnum;
  793. wl_wrk->torture = torture;
  794. schedule_ubi_work(ubi, wl_wrk);
  795. return 0;
  796. }
  797. /**
  798. * do_sync_erase - run the erase worker synchronously.
  799. * @ubi: UBI device description object
  800. * @e: the WL entry of the physical eraseblock to erase
  801. * @vol_id: the volume ID that last used this PEB
  802. * @lnum: the last used logical eraseblock number for the PEB
  803. * @torture: if the physical eraseblock has to be tortured
  804. *
  805. */
  806. static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
  807. int vol_id, int lnum, int torture)
  808. {
  809. struct ubi_work *wl_wrk;
  810. dbg_wl("sync erase of PEB %i", e->pnum);
  811. wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
  812. if (!wl_wrk)
  813. return -ENOMEM;
  814. wl_wrk->e = e;
  815. wl_wrk->vol_id = vol_id;
  816. wl_wrk->lnum = lnum;
  817. wl_wrk->torture = torture;
  818. return erase_worker(ubi, wl_wrk, 0);
  819. }
  820. #ifdef CONFIG_MTD_UBI_FASTMAP
  821. /**
  822. * ubi_wl_put_fm_peb - returns a PEB used in a fastmap to the wear-leveling
  823. * sub-system.
  824. * see: ubi_wl_put_peb()
  825. *
  826. * @ubi: UBI device description object
  827. * @fm_e: physical eraseblock to return
  828. * @lnum: the last used logical eraseblock number for the PEB
  829. * @torture: if this physical eraseblock has to be tortured
  830. */
  831. int ubi_wl_put_fm_peb(struct ubi_device *ubi, struct ubi_wl_entry *fm_e,
  832. int lnum, int torture)
  833. {
  834. struct ubi_wl_entry *e;
  835. int vol_id, pnum = fm_e->pnum;
  836. dbg_wl("PEB %d", pnum);
  837. ubi_assert(pnum >= 0);
  838. ubi_assert(pnum < ubi->peb_count);
  839. spin_lock(&ubi->wl_lock);
  840. e = ubi->lookuptbl[pnum];
  841. /* This can happen if we recovered from a fastmap the very
  842. * first time and writing now a new one. In this case the wl system
  843. * has never seen any PEB used by the original fastmap.
  844. */
  845. if (!e) {
  846. e = fm_e;
  847. ubi_assert(e->ec >= 0);
  848. ubi->lookuptbl[pnum] = e;
  849. } else {
  850. e->ec = fm_e->ec;
  851. kfree(fm_e);
  852. }
  853. spin_unlock(&ubi->wl_lock);
  854. vol_id = lnum ? UBI_FM_DATA_VOLUME_ID : UBI_FM_SB_VOLUME_ID;
  855. return schedule_erase(ubi, e, vol_id, lnum, torture);
  856. }
  857. #endif
  858. /**
  859. * wear_leveling_worker - wear-leveling worker function.
  860. * @ubi: UBI device description object
  861. * @wrk: the work object
  862. * @cancel: non-zero if the worker has to free memory and exit
  863. *
  864. * This function copies a more worn out physical eraseblock to a less worn out
  865. * one. Returns zero in case of success and a negative error code in case of
  866. * failure.
  867. */
  868. static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
  869. int cancel)
  870. {
  871. int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
  872. int vol_id = -1, uninitialized_var(lnum);
  873. #ifdef CONFIG_MTD_UBI_FASTMAP
  874. int anchor = wrk->anchor;
  875. #endif
  876. struct ubi_wl_entry *e1, *e2;
  877. struct ubi_vid_hdr *vid_hdr;
  878. kfree(wrk);
  879. if (cancel)
  880. return 0;
  881. vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
  882. if (!vid_hdr)
  883. return -ENOMEM;
  884. mutex_lock(&ubi->move_mutex);
  885. spin_lock(&ubi->wl_lock);
  886. ubi_assert(!ubi->move_from && !ubi->move_to);
  887. ubi_assert(!ubi->move_to_put);
  888. if (!ubi->free.rb_node ||
  889. (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
  890. /*
  891. * No free physical eraseblocks? Well, they must be waiting in
  892. * the queue to be erased. Cancel movement - it will be
  893. * triggered again when a free physical eraseblock appears.
  894. *
  895. * No used physical eraseblocks? They must be temporarily
  896. * protected from being moved. They will be moved to the
  897. * @ubi->used tree later and the wear-leveling will be
  898. * triggered again.
  899. */
  900. dbg_wl("cancel WL, a list is empty: free %d, used %d",
  901. !ubi->free.rb_node, !ubi->used.rb_node);
  902. goto out_cancel;
  903. }
  904. #ifdef CONFIG_MTD_UBI_FASTMAP
  905. /* Check whether we need to produce an anchor PEB */
  906. if (!anchor)
  907. anchor = !anchor_pebs_avalible(&ubi->free);
  908. if (anchor) {
  909. e1 = find_anchor_wl_entry(&ubi->used);
  910. if (!e1)
  911. goto out_cancel;
  912. e2 = get_peb_for_wl(ubi);
  913. if (!e2)
  914. goto out_cancel;
  915. self_check_in_wl_tree(ubi, e1, &ubi->used);
  916. rb_erase(&e1->u.rb, &ubi->used);
  917. dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
  918. } else if (!ubi->scrub.rb_node) {
  919. #else
  920. if (!ubi->scrub.rb_node) {
  921. #endif
  922. /*
  923. * Now pick the least worn-out used physical eraseblock and a
  924. * highly worn-out free physical eraseblock. If the erase
  925. * counters differ much enough, start wear-leveling.
  926. */
  927. e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
  928. e2 = get_peb_for_wl(ubi);
  929. if (!e2)
  930. goto out_cancel;
  931. if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
  932. dbg_wl("no WL needed: min used EC %d, max free EC %d",
  933. e1->ec, e2->ec);
  934. goto out_cancel;
  935. }
  936. self_check_in_wl_tree(ubi, e1, &ubi->used);
  937. rb_erase(&e1->u.rb, &ubi->used);
  938. dbg_wl("move PEB %d EC %d to PEB %d EC %d",
  939. e1->pnum, e1->ec, e2->pnum, e2->ec);
  940. } else {
  941. /* Perform scrubbing */
  942. scrubbing = 1;
  943. e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
  944. e2 = get_peb_for_wl(ubi);
  945. if (!e2)
  946. goto out_cancel;
  947. self_check_in_wl_tree(ubi, e1, &ubi->scrub);
  948. rb_erase(&e1->u.rb, &ubi->scrub);
  949. dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
  950. }
  951. ubi->move_from = e1;
  952. ubi->move_to = e2;
  953. spin_unlock(&ubi->wl_lock);
  954. /*
  955. * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
  956. * We so far do not know which logical eraseblock our physical
  957. * eraseblock (@e1) belongs to. We have to read the volume identifier
  958. * header first.
  959. *
  960. * Note, we are protected from this PEB being unmapped and erased. The
  961. * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
  962. * which is being moved was unmapped.
  963. */
  964. err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
  965. if (err && err != UBI_IO_BITFLIPS) {
  966. if (err == UBI_IO_FF) {
  967. /*
  968. * We are trying to move PEB without a VID header. UBI
  969. * always write VID headers shortly after the PEB was
  970. * given, so we have a situation when it has not yet
  971. * had a chance to write it, because it was preempted.
  972. * So add this PEB to the protection queue so far,
  973. * because presumably more data will be written there
  974. * (including the missing VID header), and then we'll
  975. * move it.
  976. */
  977. dbg_wl("PEB %d has no VID header", e1->pnum);
  978. protect = 1;
  979. goto out_not_moved;
  980. } else if (err == UBI_IO_FF_BITFLIPS) {
  981. /*
  982. * The same situation as %UBI_IO_FF, but bit-flips were
  983. * detected. It is better to schedule this PEB for
  984. * scrubbing.
  985. */
  986. dbg_wl("PEB %d has no VID header but has bit-flips",
  987. e1->pnum);
  988. scrubbing = 1;
  989. goto out_not_moved;
  990. }
  991. ubi_err("error %d while reading VID header from PEB %d",
  992. err, e1->pnum);
  993. goto out_error;
  994. }
  995. vol_id = be32_to_cpu(vid_hdr->vol_id);
  996. lnum = be32_to_cpu(vid_hdr->lnum);
  997. err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
  998. if (err) {
  999. if (err == MOVE_CANCEL_RACE) {
  1000. /*
  1001. * The LEB has not been moved because the volume is
  1002. * being deleted or the PEB has been put meanwhile. We
  1003. * should prevent this PEB from being selected for
  1004. * wear-leveling movement again, so put it to the
  1005. * protection queue.
  1006. */
  1007. protect = 1;
  1008. goto out_not_moved;
  1009. }
  1010. if (err == MOVE_RETRY) {
  1011. scrubbing = 1;
  1012. goto out_not_moved;
  1013. }
  1014. if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
  1015. err == MOVE_TARGET_RD_ERR) {
  1016. /*
  1017. * Target PEB had bit-flips or write error - torture it.
  1018. */
  1019. torture = 1;
  1020. goto out_not_moved;
  1021. }
  1022. if (err == MOVE_SOURCE_RD_ERR) {
  1023. /*
  1024. * An error happened while reading the source PEB. Do
  1025. * not switch to R/O mode in this case, and give the
  1026. * upper layers a possibility to recover from this,
  1027. * e.g. by unmapping corresponding LEB. Instead, just
  1028. * put this PEB to the @ubi->erroneous list to prevent
  1029. * UBI from trying to move it over and over again.
  1030. */
  1031. if (ubi->erroneous_peb_count > ubi->max_erroneous) {
  1032. ubi_err("too many erroneous eraseblocks (%d)",
  1033. ubi->erroneous_peb_count);
  1034. goto out_error;
  1035. }
  1036. erroneous = 1;
  1037. goto out_not_moved;
  1038. }
  1039. if (err < 0)
  1040. goto out_error;
  1041. ubi_assert(0);
  1042. }
  1043. /* The PEB has been successfully moved */
  1044. if (scrubbing)
  1045. ubi_msg("scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
  1046. e1->pnum, vol_id, lnum, e2->pnum);
  1047. ubi_free_vid_hdr(ubi, vid_hdr);
  1048. spin_lock(&ubi->wl_lock);
  1049. if (!ubi->move_to_put) {
  1050. wl_tree_add(e2, &ubi->used);
  1051. e2 = NULL;
  1052. }
  1053. ubi->move_from = ubi->move_to = NULL;
  1054. ubi->move_to_put = ubi->wl_scheduled = 0;
  1055. spin_unlock(&ubi->wl_lock);
  1056. err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
  1057. if (err) {
  1058. kmem_cache_free(ubi_wl_entry_slab, e1);
  1059. if (e2)
  1060. kmem_cache_free(ubi_wl_entry_slab, e2);
  1061. goto out_ro;
  1062. }
  1063. if (e2) {
  1064. /*
  1065. * Well, the target PEB was put meanwhile, schedule it for
  1066. * erasure.
  1067. */
  1068. dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
  1069. e2->pnum, vol_id, lnum);
  1070. err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
  1071. if (err) {
  1072. kmem_cache_free(ubi_wl_entry_slab, e2);
  1073. goto out_ro;
  1074. }
  1075. }
  1076. dbg_wl("done");
  1077. mutex_unlock(&ubi->move_mutex);
  1078. return 0;
  1079. /*
  1080. * For some reasons the LEB was not moved, might be an error, might be
  1081. * something else. @e1 was not changed, so return it back. @e2 might
  1082. * have been changed, schedule it for erasure.
  1083. */
  1084. out_not_moved:
  1085. if (vol_id != -1)
  1086. dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
  1087. e1->pnum, vol_id, lnum, e2->pnum, err);
  1088. else
  1089. dbg_wl("cancel moving PEB %d to PEB %d (%d)",
  1090. e1->pnum, e2->pnum, err);
  1091. spin_lock(&ubi->wl_lock);
  1092. if (protect)
  1093. prot_queue_add(ubi, e1);
  1094. else if (erroneous) {
  1095. wl_tree_add(e1, &ubi->erroneous);
  1096. ubi->erroneous_peb_count += 1;
  1097. } else if (scrubbing)
  1098. wl_tree_add(e1, &ubi->scrub);
  1099. else
  1100. wl_tree_add(e1, &ubi->used);
  1101. ubi_assert(!ubi->move_to_put);
  1102. ubi->move_from = ubi->move_to = NULL;
  1103. ubi->wl_scheduled = 0;
  1104. spin_unlock(&ubi->wl_lock);
  1105. ubi_free_vid_hdr(ubi, vid_hdr);
  1106. err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
  1107. if (err) {
  1108. kmem_cache_free(ubi_wl_entry_slab, e2);
  1109. goto out_ro;
  1110. }
  1111. mutex_unlock(&ubi->move_mutex);
  1112. return 0;
  1113. out_error:
  1114. if (vol_id != -1)
  1115. ubi_err("error %d while moving PEB %d to PEB %d",
  1116. err, e1->pnum, e2->pnum);
  1117. else
  1118. ubi_err("error %d while moving PEB %d (LEB %d:%d) to PEB %d",
  1119. err, e1->pnum, vol_id, lnum, e2->pnum);
  1120. spin_lock(&ubi->wl_lock);
  1121. ubi->move_from = ubi->move_to = NULL;
  1122. ubi->move_to_put = ubi->wl_scheduled = 0;
  1123. spin_unlock(&ubi->wl_lock);
  1124. ubi_free_vid_hdr(ubi, vid_hdr);
  1125. kmem_cache_free(ubi_wl_entry_slab, e1);
  1126. kmem_cache_free(ubi_wl_entry_slab, e2);
  1127. out_ro:
  1128. ubi_ro_mode(ubi);
  1129. mutex_unlock(&ubi->move_mutex);
  1130. ubi_assert(err != 0);
  1131. return err < 0 ? err : -EIO;
  1132. out_cancel:
  1133. ubi->wl_scheduled = 0;
  1134. spin_unlock(&ubi->wl_lock);
  1135. mutex_unlock(&ubi->move_mutex);
  1136. ubi_free_vid_hdr(ubi, vid_hdr);
  1137. return 0;
  1138. }
  1139. /**
  1140. * ensure_wear_leveling - schedule wear-leveling if it is needed.
  1141. * @ubi: UBI device description object
  1142. * @nested: set to non-zero if this function is called from UBI worker
  1143. *
  1144. * This function checks if it is time to start wear-leveling and schedules it
  1145. * if yes. This function returns zero in case of success and a negative error
  1146. * code in case of failure.
  1147. */
  1148. static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
  1149. {
  1150. int err = 0;
  1151. struct ubi_wl_entry *e1;
  1152. struct ubi_wl_entry *e2;
  1153. struct ubi_work *wrk;
  1154. spin_lock(&ubi->wl_lock);
  1155. if (ubi->wl_scheduled)
  1156. /* Wear-leveling is already in the work queue */
  1157. goto out_unlock;
  1158. /*
  1159. * If the ubi->scrub tree is not empty, scrubbing is needed, and the
  1160. * the WL worker has to be scheduled anyway.
  1161. */
  1162. if (!ubi->scrub.rb_node) {
  1163. if (!ubi->used.rb_node || !ubi->free.rb_node)
  1164. /* No physical eraseblocks - no deal */
  1165. goto out_unlock;
  1166. /*
  1167. * We schedule wear-leveling only if the difference between the
  1168. * lowest erase counter of used physical eraseblocks and a high
  1169. * erase counter of free physical eraseblocks is greater than
  1170. * %UBI_WL_THRESHOLD.
  1171. */
  1172. e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
  1173. e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
  1174. if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
  1175. goto out_unlock;
  1176. dbg_wl("schedule wear-leveling");
  1177. } else
  1178. dbg_wl("schedule scrubbing");
  1179. ubi->wl_scheduled = 1;
  1180. spin_unlock(&ubi->wl_lock);
  1181. wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
  1182. if (!wrk) {
  1183. err = -ENOMEM;
  1184. goto out_cancel;
  1185. }
  1186. wrk->anchor = 0;
  1187. wrk->func = &wear_leveling_worker;
  1188. if (nested)
  1189. __schedule_ubi_work(ubi, wrk);
  1190. else
  1191. schedule_ubi_work(ubi, wrk);
  1192. return err;
  1193. out_cancel:
  1194. spin_lock(&ubi->wl_lock);
  1195. ubi->wl_scheduled = 0;
  1196. out_unlock:
  1197. spin_unlock(&ubi->wl_lock);
  1198. return err;
  1199. }
  1200. #ifdef CONFIG_MTD_UBI_FASTMAP
  1201. /**
  1202. * ubi_ensure_anchor_pebs - schedule wear-leveling to produce an anchor PEB.
  1203. * @ubi: UBI device description object
  1204. */
  1205. int ubi_ensure_anchor_pebs(struct ubi_device *ubi)
  1206. {
  1207. struct ubi_work *wrk;
  1208. spin_lock(&ubi->wl_lock);
  1209. if (ubi->wl_scheduled) {
  1210. spin_unlock(&ubi->wl_lock);
  1211. return 0;
  1212. }
  1213. ubi->wl_scheduled = 1;
  1214. spin_unlock(&ubi->wl_lock);
  1215. wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
  1216. if (!wrk) {
  1217. spin_lock(&ubi->wl_lock);
  1218. ubi->wl_scheduled = 0;
  1219. spin_unlock(&ubi->wl_lock);
  1220. return -ENOMEM;
  1221. }
  1222. wrk->anchor = 1;
  1223. wrk->func = &wear_leveling_worker;
  1224. schedule_ubi_work(ubi, wrk);
  1225. return 0;
  1226. }
  1227. #endif
  1228. /**
  1229. * erase_worker - physical eraseblock erase worker function.
  1230. * @ubi: UBI device description object
  1231. * @wl_wrk: the work object
  1232. * @cancel: non-zero if the worker has to free memory and exit
  1233. *
  1234. * This function erases a physical eraseblock and perform torture testing if
  1235. * needed. It also takes care about marking the physical eraseblock bad if
  1236. * needed. Returns zero in case of success and a negative error code in case of
  1237. * failure.
  1238. */
  1239. static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
  1240. int cancel)
  1241. {
  1242. struct ubi_wl_entry *e = wl_wrk->e;
  1243. int pnum = e->pnum;
  1244. int vol_id = wl_wrk->vol_id;
  1245. int lnum = wl_wrk->lnum;
  1246. int err, available_consumed = 0;
  1247. if (cancel) {
  1248. dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
  1249. kfree(wl_wrk);
  1250. kmem_cache_free(ubi_wl_entry_slab, e);
  1251. return 0;
  1252. }
  1253. dbg_wl("erase PEB %d EC %d LEB %d:%d",
  1254. pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
  1255. ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
  1256. err = sync_erase(ubi, e, wl_wrk->torture);
  1257. if (!err) {
  1258. /* Fine, we've erased it successfully */
  1259. kfree(wl_wrk);
  1260. spin_lock(&ubi->wl_lock);
  1261. wl_tree_add(e, &ubi->free);
  1262. ubi->free_count++;
  1263. spin_unlock(&ubi->wl_lock);
  1264. /*
  1265. * One more erase operation has happened, take care about
  1266. * protected physical eraseblocks.
  1267. */
  1268. serve_prot_queue(ubi);
  1269. /* And take care about wear-leveling */
  1270. err = ensure_wear_leveling(ubi, 1);
  1271. return err;
  1272. }
  1273. ubi_err("failed to erase PEB %d, error %d", pnum, err);
  1274. kfree(wl_wrk);
  1275. if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
  1276. err == -EBUSY) {
  1277. int err1;
  1278. /* Re-schedule the LEB for erasure */
  1279. err1 = schedule_erase(ubi, e, vol_id, lnum, 0);
  1280. if (err1) {
  1281. err = err1;
  1282. goto out_ro;
  1283. }
  1284. return err;
  1285. }
  1286. kmem_cache_free(ubi_wl_entry_slab, e);
  1287. if (err != -EIO)
  1288. /*
  1289. * If this is not %-EIO, we have no idea what to do. Scheduling
  1290. * this physical eraseblock for erasure again would cause
  1291. * errors again and again. Well, lets switch to R/O mode.
  1292. */
  1293. goto out_ro;
  1294. /* It is %-EIO, the PEB went bad */
  1295. if (!ubi->bad_allowed) {
  1296. ubi_err("bad physical eraseblock %d detected", pnum);
  1297. goto out_ro;
  1298. }
  1299. spin_lock(&ubi->volumes_lock);
  1300. if (ubi->beb_rsvd_pebs == 0) {
  1301. if (ubi->avail_pebs == 0) {
  1302. spin_unlock(&ubi->volumes_lock);
  1303. ubi_err("no reserved/available physical eraseblocks");
  1304. goto out_ro;
  1305. }
  1306. ubi->avail_pebs -= 1;
  1307. available_consumed = 1;
  1308. }
  1309. spin_unlock(&ubi->volumes_lock);
  1310. ubi_msg("mark PEB %d as bad", pnum);
  1311. err = ubi_io_mark_bad(ubi, pnum);
  1312. if (err)
  1313. goto out_ro;
  1314. spin_lock(&ubi->volumes_lock);
  1315. if (ubi->beb_rsvd_pebs > 0) {
  1316. if (available_consumed) {
  1317. /*
  1318. * The amount of reserved PEBs increased since we last
  1319. * checked.
  1320. */
  1321. ubi->avail_pebs += 1;
  1322. available_consumed = 0;
  1323. }
  1324. ubi->beb_rsvd_pebs -= 1;
  1325. }
  1326. ubi->bad_peb_count += 1;
  1327. ubi->good_peb_count -= 1;
  1328. ubi_calculate_reserved(ubi);
  1329. if (available_consumed)
  1330. ubi_warn("no PEBs in the reserved pool, used an available PEB");
  1331. else if (ubi->beb_rsvd_pebs)
  1332. ubi_msg("%d PEBs left in the reserve", ubi->beb_rsvd_pebs);
  1333. else
  1334. ubi_warn("last PEB from the reserve was used");
  1335. spin_unlock(&ubi->volumes_lock);
  1336. return err;
  1337. out_ro:
  1338. if (available_consumed) {
  1339. spin_lock(&ubi->volumes_lock);
  1340. ubi->avail_pebs += 1;
  1341. spin_unlock(&ubi->volumes_lock);
  1342. }
  1343. ubi_ro_mode(ubi);
  1344. return err;
  1345. }
  1346. /**
  1347. * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
  1348. * @ubi: UBI device description object
  1349. * @vol_id: the volume ID that last used this PEB
  1350. * @lnum: the last used logical eraseblock number for the PEB
  1351. * @pnum: physical eraseblock to return
  1352. * @torture: if this physical eraseblock has to be tortured
  1353. *
  1354. * This function is called to return physical eraseblock @pnum to the pool of
  1355. * free physical eraseblocks. The @torture flag has to be set if an I/O error
  1356. * occurred to this @pnum and it has to be tested. This function returns zero
  1357. * in case of success, and a negative error code in case of failure.
  1358. */
  1359. int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
  1360. int pnum, int torture)
  1361. {
  1362. int err;
  1363. struct ubi_wl_entry *e;
  1364. dbg_wl("PEB %d", pnum);
  1365. ubi_assert(pnum >= 0);
  1366. ubi_assert(pnum < ubi->peb_count);
  1367. retry:
  1368. spin_lock(&ubi->wl_lock);
  1369. e = ubi->lookuptbl[pnum];
  1370. if (e == ubi->move_from) {
  1371. /*
  1372. * User is putting the physical eraseblock which was selected to
  1373. * be moved. It will be scheduled for erasure in the
  1374. * wear-leveling worker.
  1375. */
  1376. dbg_wl("PEB %d is being moved, wait", pnum);
  1377. spin_unlock(&ubi->wl_lock);
  1378. /* Wait for the WL worker by taking the @ubi->move_mutex */
  1379. mutex_lock(&ubi->move_mutex);
  1380. mutex_unlock(&ubi->move_mutex);
  1381. goto retry;
  1382. } else if (e == ubi->move_to) {
  1383. /*
  1384. * User is putting the physical eraseblock which was selected
  1385. * as the target the data is moved to. It may happen if the EBA
  1386. * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
  1387. * but the WL sub-system has not put the PEB to the "used" tree
  1388. * yet, but it is about to do this. So we just set a flag which
  1389. * will tell the WL worker that the PEB is not needed anymore
  1390. * and should be scheduled for erasure.
  1391. */
  1392. dbg_wl("PEB %d is the target of data moving", pnum);
  1393. ubi_assert(!ubi->move_to_put);
  1394. ubi->move_to_put = 1;
  1395. spin_unlock(&ubi->wl_lock);
  1396. return 0;
  1397. } else {
  1398. if (in_wl_tree(e, &ubi->used)) {
  1399. self_check_in_wl_tree(ubi, e, &ubi->used);
  1400. rb_erase(&e->u.rb, &ubi->used);
  1401. } else if (in_wl_tree(e, &ubi->scrub)) {
  1402. self_check_in_wl_tree(ubi, e, &ubi->scrub);
  1403. rb_erase(&e->u.rb, &ubi->scrub);
  1404. } else if (in_wl_tree(e, &ubi->erroneous)) {
  1405. self_check_in_wl_tree(ubi, e, &ubi->erroneous);
  1406. rb_erase(&e->u.rb, &ubi->erroneous);
  1407. ubi->erroneous_peb_count -= 1;
  1408. ubi_assert(ubi->erroneous_peb_count >= 0);
  1409. /* Erroneous PEBs should be tortured */
  1410. torture = 1;
  1411. } else {
  1412. err = prot_queue_del(ubi, e->pnum);
  1413. if (err) {
  1414. ubi_err("PEB %d not found", pnum);
  1415. ubi_ro_mode(ubi);
  1416. spin_unlock(&ubi->wl_lock);
  1417. return err;
  1418. }
  1419. }
  1420. }
  1421. spin_unlock(&ubi->wl_lock);
  1422. err = schedule_erase(ubi, e, vol_id, lnum, torture);
  1423. if (err) {
  1424. spin_lock(&ubi->wl_lock);
  1425. wl_tree_add(e, &ubi->used);
  1426. spin_unlock(&ubi->wl_lock);
  1427. }
  1428. return err;
  1429. }
  1430. /**
  1431. * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
  1432. * @ubi: UBI device description object
  1433. * @pnum: the physical eraseblock to schedule
  1434. *
  1435. * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
  1436. * needs scrubbing. This function schedules a physical eraseblock for
  1437. * scrubbing which is done in background. This function returns zero in case of
  1438. * success and a negative error code in case of failure.
  1439. */
  1440. int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
  1441. {
  1442. struct ubi_wl_entry *e;
  1443. ubi_msg("schedule PEB %d for scrubbing", pnum);
  1444. retry:
  1445. spin_lock(&ubi->wl_lock);
  1446. e = ubi->lookuptbl[pnum];
  1447. if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
  1448. in_wl_tree(e, &ubi->erroneous)) {
  1449. spin_unlock(&ubi->wl_lock);
  1450. return 0;
  1451. }
  1452. if (e == ubi->move_to) {
  1453. /*
  1454. * This physical eraseblock was used to move data to. The data
  1455. * was moved but the PEB was not yet inserted to the proper
  1456. * tree. We should just wait a little and let the WL worker
  1457. * proceed.
  1458. */
  1459. spin_unlock(&ubi->wl_lock);
  1460. dbg_wl("the PEB %d is not in proper tree, retry", pnum);
  1461. yield();
  1462. goto retry;
  1463. }
  1464. if (in_wl_tree(e, &ubi->used)) {
  1465. self_check_in_wl_tree(ubi, e, &ubi->used);
  1466. rb_erase(&e->u.rb, &ubi->used);
  1467. } else {
  1468. int err;
  1469. err = prot_queue_del(ubi, e->pnum);
  1470. if (err) {
  1471. ubi_err("PEB %d not found", pnum);
  1472. ubi_ro_mode(ubi);
  1473. spin_unlock(&ubi->wl_lock);
  1474. return err;
  1475. }
  1476. }
  1477. wl_tree_add(e, &ubi->scrub);
  1478. spin_unlock(&ubi->wl_lock);
  1479. /*
  1480. * Technically scrubbing is the same as wear-leveling, so it is done
  1481. * by the WL worker.
  1482. */
  1483. return ensure_wear_leveling(ubi, 0);
  1484. }
  1485. /**
  1486. * ubi_wl_flush - flush all pending works.
  1487. * @ubi: UBI device description object
  1488. * @vol_id: the volume id to flush for
  1489. * @lnum: the logical eraseblock number to flush for
  1490. *
  1491. * This function executes all pending works for a particular volume id /
  1492. * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
  1493. * acts as a wildcard for all of the corresponding volume numbers or logical
  1494. * eraseblock numbers. It returns zero in case of success and a negative error
  1495. * code in case of failure.
  1496. */
  1497. int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
  1498. {
  1499. int err = 0;
  1500. int found = 1;
  1501. /*
  1502. * Erase while the pending works queue is not empty, but not more than
  1503. * the number of currently pending works.
  1504. */
  1505. dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
  1506. vol_id, lnum, ubi->works_count);
  1507. while (found) {
  1508. struct ubi_work *wrk;
  1509. found = 0;
  1510. down_read(&ubi->work_sem);
  1511. spin_lock(&ubi->wl_lock);
  1512. list_for_each_entry(wrk, &ubi->works, list) {
  1513. if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
  1514. (lnum == UBI_ALL || wrk->lnum == lnum)) {
  1515. list_del(&wrk->list);
  1516. ubi->works_count -= 1;
  1517. ubi_assert(ubi->works_count >= 0);
  1518. spin_unlock(&ubi->wl_lock);
  1519. err = wrk->func(ubi, wrk, 0);
  1520. if (err) {
  1521. up_read(&ubi->work_sem);
  1522. return err;
  1523. }
  1524. spin_lock(&ubi->wl_lock);
  1525. found = 1;
  1526. break;
  1527. }
  1528. }
  1529. spin_unlock(&ubi->wl_lock);
  1530. up_read(&ubi->work_sem);
  1531. }
  1532. /*
  1533. * Make sure all the works which have been done in parallel are
  1534. * finished.
  1535. */
  1536. down_write(&ubi->work_sem);
  1537. up_write(&ubi->work_sem);
  1538. return err;
  1539. }
  1540. /**
  1541. * tree_destroy - destroy an RB-tree.
  1542. * @root: the root of the tree to destroy
  1543. */
  1544. static void tree_destroy(struct rb_root *root)
  1545. {
  1546. struct rb_node *rb;
  1547. struct ubi_wl_entry *e;
  1548. rb = root->rb_node;
  1549. while (rb) {
  1550. if (rb->rb_left)
  1551. rb = rb->rb_left;
  1552. else if (rb->rb_right)
  1553. rb = rb->rb_right;
  1554. else {
  1555. e = rb_entry(rb, struct ubi_wl_entry, u.rb);
  1556. rb = rb_parent(rb);
  1557. if (rb) {
  1558. if (rb->rb_left == &e->u.rb)
  1559. rb->rb_left = NULL;
  1560. else
  1561. rb->rb_right = NULL;
  1562. }
  1563. kmem_cache_free(ubi_wl_entry_slab, e);
  1564. }
  1565. }
  1566. }
  1567. /**
  1568. * ubi_thread - UBI background thread.
  1569. * @u: the UBI device description object pointer
  1570. */
  1571. int ubi_thread(void *u)
  1572. {
  1573. int failures = 0;
  1574. struct ubi_device *ubi = u;
  1575. ubi_msg("background thread \"%s\" started, PID %d",
  1576. ubi->bgt_name, task_pid_nr(current));
  1577. set_freezable();
  1578. for (;;) {
  1579. int err;
  1580. if (kthread_should_stop())
  1581. break;
  1582. if (try_to_freeze())
  1583. continue;
  1584. spin_lock(&ubi->wl_lock);
  1585. if (list_empty(&ubi->works) || ubi->ro_mode ||
  1586. !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
  1587. set_current_state(TASK_INTERRUPTIBLE);
  1588. spin_unlock(&ubi->wl_lock);
  1589. schedule();
  1590. continue;
  1591. }
  1592. spin_unlock(&ubi->wl_lock);
  1593. err = do_work(ubi);
  1594. if (err) {
  1595. ubi_err("%s: work failed with error code %d",
  1596. ubi->bgt_name, err);
  1597. if (failures++ > WL_MAX_FAILURES) {
  1598. /*
  1599. * Too many failures, disable the thread and
  1600. * switch to read-only mode.
  1601. */
  1602. ubi_msg("%s: %d consecutive failures",
  1603. ubi->bgt_name, WL_MAX_FAILURES);
  1604. ubi_ro_mode(ubi);
  1605. ubi->thread_enabled = 0;
  1606. continue;
  1607. }
  1608. } else
  1609. failures = 0;
  1610. cond_resched();
  1611. }
  1612. dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
  1613. return 0;
  1614. }
  1615. /**
  1616. * cancel_pending - cancel all pending works.
  1617. * @ubi: UBI device description object
  1618. */
  1619. static void cancel_pending(struct ubi_device *ubi)
  1620. {
  1621. while (!list_empty(&ubi->works)) {
  1622. struct ubi_work *wrk;
  1623. wrk = list_entry(ubi->works.next, struct ubi_work, list);
  1624. list_del(&wrk->list);
  1625. wrk->func(ubi, wrk, 1);
  1626. ubi->works_count -= 1;
  1627. ubi_assert(ubi->works_count >= 0);
  1628. }
  1629. }
  1630. /**
  1631. * ubi_wl_init - initialize the WL sub-system using attaching information.
  1632. * @ubi: UBI device description object
  1633. * @ai: attaching information
  1634. *
  1635. * This function returns zero in case of success, and a negative error code in
  1636. * case of failure.
  1637. */
  1638. int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
  1639. {
  1640. int err, i, reserved_pebs, found_pebs = 0;
  1641. struct rb_node *rb1, *rb2;
  1642. struct ubi_ainf_volume *av;
  1643. struct ubi_ainf_peb *aeb, *tmp;
  1644. struct ubi_wl_entry *e;
  1645. ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
  1646. spin_lock_init(&ubi->wl_lock);
  1647. mutex_init(&ubi->move_mutex);
  1648. init_rwsem(&ubi->work_sem);
  1649. ubi->max_ec = ai->max_ec;
  1650. INIT_LIST_HEAD(&ubi->works);
  1651. #ifdef CONFIG_MTD_UBI_FASTMAP
  1652. INIT_WORK(&ubi->fm_work, update_fastmap_work_fn);
  1653. #endif
  1654. sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
  1655. err = -ENOMEM;
  1656. ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
  1657. if (!ubi->lookuptbl)
  1658. return err;
  1659. for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
  1660. INIT_LIST_HEAD(&ubi->pq[i]);
  1661. ubi->pq_head = 0;
  1662. list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
  1663. cond_resched();
  1664. e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
  1665. if (!e)
  1666. goto out_free;
  1667. e->pnum = aeb->pnum;
  1668. e->ec = aeb->ec;
  1669. ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
  1670. ubi->lookuptbl[e->pnum] = e;
  1671. if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) {
  1672. kmem_cache_free(ubi_wl_entry_slab, e);
  1673. goto out_free;
  1674. }
  1675. found_pebs++;
  1676. }
  1677. ubi->free_count = 0;
  1678. list_for_each_entry(aeb, &ai->free, u.list) {
  1679. cond_resched();
  1680. e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
  1681. if (!e)
  1682. goto out_free;
  1683. e->pnum = aeb->pnum;
  1684. e->ec = aeb->ec;
  1685. ubi_assert(e->ec >= 0);
  1686. ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
  1687. wl_tree_add(e, &ubi->free);
  1688. ubi->free_count++;
  1689. ubi->lookuptbl[e->pnum] = e;
  1690. found_pebs++;
  1691. }
  1692. ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
  1693. ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
  1694. cond_resched();
  1695. e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
  1696. if (!e)
  1697. goto out_free;
  1698. e->pnum = aeb->pnum;
  1699. e->ec = aeb->ec;
  1700. ubi->lookuptbl[e->pnum] = e;
  1701. if (!aeb->scrub) {
  1702. dbg_wl("add PEB %d EC %d to the used tree",
  1703. e->pnum, e->ec);
  1704. wl_tree_add(e, &ubi->used);
  1705. } else {
  1706. dbg_wl("add PEB %d EC %d to the scrub tree",
  1707. e->pnum, e->ec);
  1708. wl_tree_add(e, &ubi->scrub);
  1709. }
  1710. found_pebs++;
  1711. }
  1712. }
  1713. dbg_wl("found %i PEBs", found_pebs);
  1714. if (ubi->fm)
  1715. ubi_assert(ubi->good_peb_count == \
  1716. found_pebs + ubi->fm->used_blocks);
  1717. else
  1718. ubi_assert(ubi->good_peb_count == found_pebs);
  1719. reserved_pebs = WL_RESERVED_PEBS;
  1720. #ifdef CONFIG_MTD_UBI_FASTMAP
  1721. /* Reserve enough LEBs to store two fastmaps. */
  1722. reserved_pebs += (ubi->fm_size / ubi->leb_size) * 2;
  1723. #endif
  1724. if (ubi->avail_pebs < reserved_pebs) {
  1725. ubi_err("no enough physical eraseblocks (%d, need %d)",
  1726. ubi->avail_pebs, reserved_pebs);
  1727. if (ubi->corr_peb_count)
  1728. ubi_err("%d PEBs are corrupted and not used",
  1729. ubi->corr_peb_count);
  1730. goto out_free;
  1731. }
  1732. ubi->avail_pebs -= reserved_pebs;
  1733. ubi->rsvd_pebs += reserved_pebs;
  1734. /* Schedule wear-leveling if needed */
  1735. err = ensure_wear_leveling(ubi, 0);
  1736. if (err)
  1737. goto out_free;
  1738. return 0;
  1739. out_free:
  1740. cancel_pending(ubi);
  1741. tree_destroy(&ubi->used);
  1742. tree_destroy(&ubi->free);
  1743. tree_destroy(&ubi->scrub);
  1744. kfree(ubi->lookuptbl);
  1745. return err;
  1746. }
  1747. /**
  1748. * protection_queue_destroy - destroy the protection queue.
  1749. * @ubi: UBI device description object
  1750. */
  1751. static void protection_queue_destroy(struct ubi_device *ubi)
  1752. {
  1753. int i;
  1754. struct ubi_wl_entry *e, *tmp;
  1755. for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
  1756. list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
  1757. list_del(&e->u.list);
  1758. kmem_cache_free(ubi_wl_entry_slab, e);
  1759. }
  1760. }
  1761. }
  1762. /**
  1763. * ubi_wl_close - close the wear-leveling sub-system.
  1764. * @ubi: UBI device description object
  1765. */
  1766. void ubi_wl_close(struct ubi_device *ubi)
  1767. {
  1768. dbg_wl("close the WL sub-system");
  1769. cancel_pending(ubi);
  1770. protection_queue_destroy(ubi);
  1771. tree_destroy(&ubi->used);
  1772. tree_destroy(&ubi->erroneous);
  1773. tree_destroy(&ubi->free);
  1774. tree_destroy(&ubi->scrub);
  1775. kfree(ubi->lookuptbl);
  1776. }
  1777. /**
  1778. * self_check_ec - make sure that the erase counter of a PEB is correct.
  1779. * @ubi: UBI device description object
  1780. * @pnum: the physical eraseblock number to check
  1781. * @ec: the erase counter to check
  1782. *
  1783. * This function returns zero if the erase counter of physical eraseblock @pnum
  1784. * is equivalent to @ec, and a negative error code if not or if an error
  1785. * occurred.
  1786. */
  1787. static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
  1788. {
  1789. int err;
  1790. long long read_ec;
  1791. struct ubi_ec_hdr *ec_hdr;
  1792. if (!ubi->dbg->chk_gen)
  1793. return 0;
  1794. ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
  1795. if (!ec_hdr)
  1796. return -ENOMEM;
  1797. err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
  1798. if (err && err != UBI_IO_BITFLIPS) {
  1799. /* The header does not have to exist */
  1800. err = 0;
  1801. goto out_free;
  1802. }
  1803. read_ec = be64_to_cpu(ec_hdr->ec);
  1804. if (ec != read_ec && read_ec - ec > 1) {
  1805. ubi_err("self-check failed for PEB %d", pnum);
  1806. ubi_err("read EC is %lld, should be %d", read_ec, ec);
  1807. dump_stack();
  1808. err = 1;
  1809. } else
  1810. err = 0;
  1811. out_free:
  1812. kfree(ec_hdr);
  1813. return err;
  1814. }
  1815. /**
  1816. * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
  1817. * @ubi: UBI device description object
  1818. * @e: the wear-leveling entry to check
  1819. * @root: the root of the tree
  1820. *
  1821. * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
  1822. * is not.
  1823. */
  1824. static int self_check_in_wl_tree(const struct ubi_device *ubi,
  1825. struct ubi_wl_entry *e, struct rb_root *root)
  1826. {
  1827. if (!ubi->dbg->chk_gen)
  1828. return 0;
  1829. if (in_wl_tree(e, root))
  1830. return 0;
  1831. ubi_err("self-check failed for PEB %d, EC %d, RB-tree %p ",
  1832. e->pnum, e->ec, root);
  1833. dump_stack();
  1834. return -EINVAL;
  1835. }
  1836. /**
  1837. * self_check_in_pq - check if wear-leveling entry is in the protection
  1838. * queue.
  1839. * @ubi: UBI device description object
  1840. * @e: the wear-leveling entry to check
  1841. *
  1842. * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
  1843. */
  1844. static int self_check_in_pq(const struct ubi_device *ubi,
  1845. struct ubi_wl_entry *e)
  1846. {
  1847. struct ubi_wl_entry *p;
  1848. int i;
  1849. if (!ubi->dbg->chk_gen)
  1850. return 0;
  1851. for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
  1852. list_for_each_entry(p, &ubi->pq[i], u.list)
  1853. if (p == e)
  1854. return 0;
  1855. ubi_err("self-check failed for PEB %d, EC %d, Protect queue",
  1856. e->pnum, e->ec);
  1857. dump_stack();
  1858. return -EINVAL;
  1859. }