sched.c 266 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/perf_event.h>
  42. #include <linux/security.h>
  43. #include <linux/notifier.h>
  44. #include <linux/profile.h>
  45. #include <linux/freezer.h>
  46. #include <linux/vmalloc.h>
  47. #include <linux/blkdev.h>
  48. #include <linux/delay.h>
  49. #include <linux/pid_namespace.h>
  50. #include <linux/smp.h>
  51. #include <linux/threads.h>
  52. #include <linux/timer.h>
  53. #include <linux/rcupdate.h>
  54. #include <linux/cpu.h>
  55. #include <linux/cpuset.h>
  56. #include <linux/percpu.h>
  57. #include <linux/kthread.h>
  58. #include <linux/proc_fs.h>
  59. #include <linux/seq_file.h>
  60. #include <linux/sysctl.h>
  61. #include <linux/syscalls.h>
  62. #include <linux/times.h>
  63. #include <linux/tsacct_kern.h>
  64. #include <linux/kprobes.h>
  65. #include <linux/delayacct.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <linux/ftrace.h>
  73. #include <asm/tlb.h>
  74. #include <asm/irq_regs.h>
  75. #include "sched_cpupri.h"
  76. #define CREATE_TRACE_POINTS
  77. #include <trace/events/sched.h>
  78. /*
  79. * Convert user-nice values [ -20 ... 0 ... 19 ]
  80. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  81. * and back.
  82. */
  83. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  84. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  85. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  86. /*
  87. * 'User priority' is the nice value converted to something we
  88. * can work with better when scaling various scheduler parameters,
  89. * it's a [ 0 ... 39 ] range.
  90. */
  91. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  92. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  93. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  94. /*
  95. * Helpers for converting nanosecond timing to jiffy resolution
  96. */
  97. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  98. #define NICE_0_LOAD SCHED_LOAD_SCALE
  99. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  100. /*
  101. * These are the 'tuning knobs' of the scheduler:
  102. *
  103. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  104. * Timeslices get refilled after they expire.
  105. */
  106. #define DEF_TIMESLICE (100 * HZ / 1000)
  107. /*
  108. * single value that denotes runtime == period, ie unlimited time.
  109. */
  110. #define RUNTIME_INF ((u64)~0ULL)
  111. static inline int rt_policy(int policy)
  112. {
  113. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  114. return 1;
  115. return 0;
  116. }
  117. static inline int task_has_rt_policy(struct task_struct *p)
  118. {
  119. return rt_policy(p->policy);
  120. }
  121. /*
  122. * This is the priority-queue data structure of the RT scheduling class:
  123. */
  124. struct rt_prio_array {
  125. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  126. struct list_head queue[MAX_RT_PRIO];
  127. };
  128. struct rt_bandwidth {
  129. /* nests inside the rq lock: */
  130. spinlock_t rt_runtime_lock;
  131. ktime_t rt_period;
  132. u64 rt_runtime;
  133. struct hrtimer rt_period_timer;
  134. };
  135. static struct rt_bandwidth def_rt_bandwidth;
  136. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  137. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  138. {
  139. struct rt_bandwidth *rt_b =
  140. container_of(timer, struct rt_bandwidth, rt_period_timer);
  141. ktime_t now;
  142. int overrun;
  143. int idle = 0;
  144. for (;;) {
  145. now = hrtimer_cb_get_time(timer);
  146. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  147. if (!overrun)
  148. break;
  149. idle = do_sched_rt_period_timer(rt_b, overrun);
  150. }
  151. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  152. }
  153. static
  154. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  155. {
  156. rt_b->rt_period = ns_to_ktime(period);
  157. rt_b->rt_runtime = runtime;
  158. spin_lock_init(&rt_b->rt_runtime_lock);
  159. hrtimer_init(&rt_b->rt_period_timer,
  160. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  161. rt_b->rt_period_timer.function = sched_rt_period_timer;
  162. }
  163. static inline int rt_bandwidth_enabled(void)
  164. {
  165. return sysctl_sched_rt_runtime >= 0;
  166. }
  167. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  168. {
  169. ktime_t now;
  170. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  171. return;
  172. if (hrtimer_active(&rt_b->rt_period_timer))
  173. return;
  174. spin_lock(&rt_b->rt_runtime_lock);
  175. for (;;) {
  176. unsigned long delta;
  177. ktime_t soft, hard;
  178. if (hrtimer_active(&rt_b->rt_period_timer))
  179. break;
  180. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  181. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  182. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  183. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  184. delta = ktime_to_ns(ktime_sub(hard, soft));
  185. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  186. HRTIMER_MODE_ABS_PINNED, 0);
  187. }
  188. spin_unlock(&rt_b->rt_runtime_lock);
  189. }
  190. #ifdef CONFIG_RT_GROUP_SCHED
  191. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  192. {
  193. hrtimer_cancel(&rt_b->rt_period_timer);
  194. }
  195. #endif
  196. /*
  197. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  198. * detach_destroy_domains and partition_sched_domains.
  199. */
  200. static DEFINE_MUTEX(sched_domains_mutex);
  201. #ifdef CONFIG_GROUP_SCHED
  202. #include <linux/cgroup.h>
  203. struct cfs_rq;
  204. static LIST_HEAD(task_groups);
  205. /* task group related information */
  206. struct task_group {
  207. #ifdef CONFIG_CGROUP_SCHED
  208. struct cgroup_subsys_state css;
  209. #endif
  210. #ifdef CONFIG_USER_SCHED
  211. uid_t uid;
  212. #endif
  213. #ifdef CONFIG_FAIR_GROUP_SCHED
  214. /* schedulable entities of this group on each cpu */
  215. struct sched_entity **se;
  216. /* runqueue "owned" by this group on each cpu */
  217. struct cfs_rq **cfs_rq;
  218. unsigned long shares;
  219. #endif
  220. #ifdef CONFIG_RT_GROUP_SCHED
  221. struct sched_rt_entity **rt_se;
  222. struct rt_rq **rt_rq;
  223. struct rt_bandwidth rt_bandwidth;
  224. #endif
  225. struct rcu_head rcu;
  226. struct list_head list;
  227. struct task_group *parent;
  228. struct list_head siblings;
  229. struct list_head children;
  230. };
  231. #ifdef CONFIG_USER_SCHED
  232. /* Helper function to pass uid information to create_sched_user() */
  233. void set_tg_uid(struct user_struct *user)
  234. {
  235. user->tg->uid = user->uid;
  236. }
  237. /*
  238. * Root task group.
  239. * Every UID task group (including init_task_group aka UID-0) will
  240. * be a child to this group.
  241. */
  242. struct task_group root_task_group;
  243. #ifdef CONFIG_FAIR_GROUP_SCHED
  244. /* Default task group's sched entity on each cpu */
  245. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  246. /* Default task group's cfs_rq on each cpu */
  247. static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
  248. #endif /* CONFIG_FAIR_GROUP_SCHED */
  249. #ifdef CONFIG_RT_GROUP_SCHED
  250. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  251. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq);
  252. #endif /* CONFIG_RT_GROUP_SCHED */
  253. #else /* !CONFIG_USER_SCHED */
  254. #define root_task_group init_task_group
  255. #endif /* CONFIG_USER_SCHED */
  256. /* task_group_lock serializes add/remove of task groups and also changes to
  257. * a task group's cpu shares.
  258. */
  259. static DEFINE_SPINLOCK(task_group_lock);
  260. #ifdef CONFIG_SMP
  261. static int root_task_group_empty(void)
  262. {
  263. return list_empty(&root_task_group.children);
  264. }
  265. #endif
  266. #ifdef CONFIG_FAIR_GROUP_SCHED
  267. #ifdef CONFIG_USER_SCHED
  268. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  269. #else /* !CONFIG_USER_SCHED */
  270. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  271. #endif /* CONFIG_USER_SCHED */
  272. /*
  273. * A weight of 0 or 1 can cause arithmetics problems.
  274. * A weight of a cfs_rq is the sum of weights of which entities
  275. * are queued on this cfs_rq, so a weight of a entity should not be
  276. * too large, so as the shares value of a task group.
  277. * (The default weight is 1024 - so there's no practical
  278. * limitation from this.)
  279. */
  280. #define MIN_SHARES 2
  281. #define MAX_SHARES (1UL << 18)
  282. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  283. #endif
  284. /* Default task group.
  285. * Every task in system belong to this group at bootup.
  286. */
  287. struct task_group init_task_group;
  288. /* return group to which a task belongs */
  289. static inline struct task_group *task_group(struct task_struct *p)
  290. {
  291. struct task_group *tg;
  292. #ifdef CONFIG_USER_SCHED
  293. rcu_read_lock();
  294. tg = __task_cred(p)->user->tg;
  295. rcu_read_unlock();
  296. #elif defined(CONFIG_CGROUP_SCHED)
  297. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  298. struct task_group, css);
  299. #else
  300. tg = &init_task_group;
  301. #endif
  302. return tg;
  303. }
  304. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  305. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  306. {
  307. #ifdef CONFIG_FAIR_GROUP_SCHED
  308. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  309. p->se.parent = task_group(p)->se[cpu];
  310. #endif
  311. #ifdef CONFIG_RT_GROUP_SCHED
  312. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  313. p->rt.parent = task_group(p)->rt_se[cpu];
  314. #endif
  315. }
  316. #else
  317. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  318. static inline struct task_group *task_group(struct task_struct *p)
  319. {
  320. return NULL;
  321. }
  322. #endif /* CONFIG_GROUP_SCHED */
  323. /* CFS-related fields in a runqueue */
  324. struct cfs_rq {
  325. struct load_weight load;
  326. unsigned long nr_running;
  327. u64 exec_clock;
  328. u64 min_vruntime;
  329. struct rb_root tasks_timeline;
  330. struct rb_node *rb_leftmost;
  331. struct list_head tasks;
  332. struct list_head *balance_iterator;
  333. /*
  334. * 'curr' points to currently running entity on this cfs_rq.
  335. * It is set to NULL otherwise (i.e when none are currently running).
  336. */
  337. struct sched_entity *curr, *next, *last;
  338. unsigned int nr_spread_over;
  339. #ifdef CONFIG_FAIR_GROUP_SCHED
  340. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  341. /*
  342. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  343. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  344. * (like users, containers etc.)
  345. *
  346. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  347. * list is used during load balance.
  348. */
  349. struct list_head leaf_cfs_rq_list;
  350. struct task_group *tg; /* group that "owns" this runqueue */
  351. #ifdef CONFIG_SMP
  352. /*
  353. * the part of load.weight contributed by tasks
  354. */
  355. unsigned long task_weight;
  356. /*
  357. * h_load = weight * f(tg)
  358. *
  359. * Where f(tg) is the recursive weight fraction assigned to
  360. * this group.
  361. */
  362. unsigned long h_load;
  363. /*
  364. * this cpu's part of tg->shares
  365. */
  366. unsigned long shares;
  367. /*
  368. * load.weight at the time we set shares
  369. */
  370. unsigned long rq_weight;
  371. #endif
  372. #endif
  373. };
  374. /* Real-Time classes' related field in a runqueue: */
  375. struct rt_rq {
  376. struct rt_prio_array active;
  377. unsigned long rt_nr_running;
  378. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  379. struct {
  380. int curr; /* highest queued rt task prio */
  381. #ifdef CONFIG_SMP
  382. int next; /* next highest */
  383. #endif
  384. } highest_prio;
  385. #endif
  386. #ifdef CONFIG_SMP
  387. unsigned long rt_nr_migratory;
  388. unsigned long rt_nr_total;
  389. int overloaded;
  390. struct plist_head pushable_tasks;
  391. #endif
  392. int rt_throttled;
  393. u64 rt_time;
  394. u64 rt_runtime;
  395. /* Nests inside the rq lock: */
  396. spinlock_t rt_runtime_lock;
  397. #ifdef CONFIG_RT_GROUP_SCHED
  398. unsigned long rt_nr_boosted;
  399. struct rq *rq;
  400. struct list_head leaf_rt_rq_list;
  401. struct task_group *tg;
  402. struct sched_rt_entity *rt_se;
  403. #endif
  404. };
  405. #ifdef CONFIG_SMP
  406. /*
  407. * We add the notion of a root-domain which will be used to define per-domain
  408. * variables. Each exclusive cpuset essentially defines an island domain by
  409. * fully partitioning the member cpus from any other cpuset. Whenever a new
  410. * exclusive cpuset is created, we also create and attach a new root-domain
  411. * object.
  412. *
  413. */
  414. struct root_domain {
  415. atomic_t refcount;
  416. cpumask_var_t span;
  417. cpumask_var_t online;
  418. /*
  419. * The "RT overload" flag: it gets set if a CPU has more than
  420. * one runnable RT task.
  421. */
  422. cpumask_var_t rto_mask;
  423. atomic_t rto_count;
  424. #ifdef CONFIG_SMP
  425. struct cpupri cpupri;
  426. #endif
  427. };
  428. /*
  429. * By default the system creates a single root-domain with all cpus as
  430. * members (mimicking the global state we have today).
  431. */
  432. static struct root_domain def_root_domain;
  433. #endif
  434. /*
  435. * This is the main, per-CPU runqueue data structure.
  436. *
  437. * Locking rule: those places that want to lock multiple runqueues
  438. * (such as the load balancing or the thread migration code), lock
  439. * acquire operations must be ordered by ascending &runqueue.
  440. */
  441. struct rq {
  442. /* runqueue lock: */
  443. spinlock_t lock;
  444. /*
  445. * nr_running and cpu_load should be in the same cacheline because
  446. * remote CPUs use both these fields when doing load calculation.
  447. */
  448. unsigned long nr_running;
  449. #define CPU_LOAD_IDX_MAX 5
  450. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  451. #ifdef CONFIG_NO_HZ
  452. unsigned long last_tick_seen;
  453. unsigned char in_nohz_recently;
  454. #endif
  455. /* capture load from *all* tasks on this cpu: */
  456. struct load_weight load;
  457. unsigned long nr_load_updates;
  458. u64 nr_switches;
  459. u64 nr_migrations_in;
  460. struct cfs_rq cfs;
  461. struct rt_rq rt;
  462. #ifdef CONFIG_FAIR_GROUP_SCHED
  463. /* list of leaf cfs_rq on this cpu: */
  464. struct list_head leaf_cfs_rq_list;
  465. #endif
  466. #ifdef CONFIG_RT_GROUP_SCHED
  467. struct list_head leaf_rt_rq_list;
  468. #endif
  469. /*
  470. * This is part of a global counter where only the total sum
  471. * over all CPUs matters. A task can increase this counter on
  472. * one CPU and if it got migrated afterwards it may decrease
  473. * it on another CPU. Always updated under the runqueue lock:
  474. */
  475. unsigned long nr_uninterruptible;
  476. struct task_struct *curr, *idle;
  477. unsigned long next_balance;
  478. struct mm_struct *prev_mm;
  479. u64 clock;
  480. atomic_t nr_iowait;
  481. #ifdef CONFIG_SMP
  482. struct root_domain *rd;
  483. struct sched_domain *sd;
  484. unsigned char idle_at_tick;
  485. /* For active balancing */
  486. int post_schedule;
  487. int active_balance;
  488. int push_cpu;
  489. /* cpu of this runqueue: */
  490. int cpu;
  491. int online;
  492. unsigned long avg_load_per_task;
  493. struct task_struct *migration_thread;
  494. struct list_head migration_queue;
  495. u64 rt_avg;
  496. u64 age_stamp;
  497. #endif
  498. /* calc_load related fields */
  499. unsigned long calc_load_update;
  500. long calc_load_active;
  501. #ifdef CONFIG_SCHED_HRTICK
  502. #ifdef CONFIG_SMP
  503. int hrtick_csd_pending;
  504. struct call_single_data hrtick_csd;
  505. #endif
  506. struct hrtimer hrtick_timer;
  507. #endif
  508. #ifdef CONFIG_SCHEDSTATS
  509. /* latency stats */
  510. struct sched_info rq_sched_info;
  511. unsigned long long rq_cpu_time;
  512. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  513. /* sys_sched_yield() stats */
  514. unsigned int yld_count;
  515. /* schedule() stats */
  516. unsigned int sched_switch;
  517. unsigned int sched_count;
  518. unsigned int sched_goidle;
  519. /* try_to_wake_up() stats */
  520. unsigned int ttwu_count;
  521. unsigned int ttwu_local;
  522. /* BKL stats */
  523. unsigned int bkl_count;
  524. #endif
  525. };
  526. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  527. static inline
  528. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  529. {
  530. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  531. }
  532. static inline int cpu_of(struct rq *rq)
  533. {
  534. #ifdef CONFIG_SMP
  535. return rq->cpu;
  536. #else
  537. return 0;
  538. #endif
  539. }
  540. /*
  541. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  542. * See detach_destroy_domains: synchronize_sched for details.
  543. *
  544. * The domain tree of any CPU may only be accessed from within
  545. * preempt-disabled sections.
  546. */
  547. #define for_each_domain(cpu, __sd) \
  548. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  549. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  550. #define this_rq() (&__get_cpu_var(runqueues))
  551. #define task_rq(p) cpu_rq(task_cpu(p))
  552. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  553. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  554. inline void update_rq_clock(struct rq *rq)
  555. {
  556. rq->clock = sched_clock_cpu(cpu_of(rq));
  557. }
  558. /*
  559. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  560. */
  561. #ifdef CONFIG_SCHED_DEBUG
  562. # define const_debug __read_mostly
  563. #else
  564. # define const_debug static const
  565. #endif
  566. /**
  567. * runqueue_is_locked
  568. * @cpu: the processor in question.
  569. *
  570. * Returns true if the current cpu runqueue is locked.
  571. * This interface allows printk to be called with the runqueue lock
  572. * held and know whether or not it is OK to wake up the klogd.
  573. */
  574. int runqueue_is_locked(int cpu)
  575. {
  576. return spin_is_locked(&cpu_rq(cpu)->lock);
  577. }
  578. /*
  579. * Debugging: various feature bits
  580. */
  581. #define SCHED_FEAT(name, enabled) \
  582. __SCHED_FEAT_##name ,
  583. enum {
  584. #include "sched_features.h"
  585. };
  586. #undef SCHED_FEAT
  587. #define SCHED_FEAT(name, enabled) \
  588. (1UL << __SCHED_FEAT_##name) * enabled |
  589. const_debug unsigned int sysctl_sched_features =
  590. #include "sched_features.h"
  591. 0;
  592. #undef SCHED_FEAT
  593. #ifdef CONFIG_SCHED_DEBUG
  594. #define SCHED_FEAT(name, enabled) \
  595. #name ,
  596. static __read_mostly char *sched_feat_names[] = {
  597. #include "sched_features.h"
  598. NULL
  599. };
  600. #undef SCHED_FEAT
  601. static int sched_feat_show(struct seq_file *m, void *v)
  602. {
  603. int i;
  604. for (i = 0; sched_feat_names[i]; i++) {
  605. if (!(sysctl_sched_features & (1UL << i)))
  606. seq_puts(m, "NO_");
  607. seq_printf(m, "%s ", sched_feat_names[i]);
  608. }
  609. seq_puts(m, "\n");
  610. return 0;
  611. }
  612. static ssize_t
  613. sched_feat_write(struct file *filp, const char __user *ubuf,
  614. size_t cnt, loff_t *ppos)
  615. {
  616. char buf[64];
  617. char *cmp = buf;
  618. int neg = 0;
  619. int i;
  620. if (cnt > 63)
  621. cnt = 63;
  622. if (copy_from_user(&buf, ubuf, cnt))
  623. return -EFAULT;
  624. buf[cnt] = 0;
  625. if (strncmp(buf, "NO_", 3) == 0) {
  626. neg = 1;
  627. cmp += 3;
  628. }
  629. for (i = 0; sched_feat_names[i]; i++) {
  630. int len = strlen(sched_feat_names[i]);
  631. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  632. if (neg)
  633. sysctl_sched_features &= ~(1UL << i);
  634. else
  635. sysctl_sched_features |= (1UL << i);
  636. break;
  637. }
  638. }
  639. if (!sched_feat_names[i])
  640. return -EINVAL;
  641. filp->f_pos += cnt;
  642. return cnt;
  643. }
  644. static int sched_feat_open(struct inode *inode, struct file *filp)
  645. {
  646. return single_open(filp, sched_feat_show, NULL);
  647. }
  648. static const struct file_operations sched_feat_fops = {
  649. .open = sched_feat_open,
  650. .write = sched_feat_write,
  651. .read = seq_read,
  652. .llseek = seq_lseek,
  653. .release = single_release,
  654. };
  655. static __init int sched_init_debug(void)
  656. {
  657. debugfs_create_file("sched_features", 0644, NULL, NULL,
  658. &sched_feat_fops);
  659. return 0;
  660. }
  661. late_initcall(sched_init_debug);
  662. #endif
  663. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  664. /*
  665. * Number of tasks to iterate in a single balance run.
  666. * Limited because this is done with IRQs disabled.
  667. */
  668. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  669. /*
  670. * ratelimit for updating the group shares.
  671. * default: 0.25ms
  672. */
  673. unsigned int sysctl_sched_shares_ratelimit = 250000;
  674. /*
  675. * Inject some fuzzyness into changing the per-cpu group shares
  676. * this avoids remote rq-locks at the expense of fairness.
  677. * default: 4
  678. */
  679. unsigned int sysctl_sched_shares_thresh = 4;
  680. /*
  681. * period over which we average the RT time consumption, measured
  682. * in ms.
  683. *
  684. * default: 1s
  685. */
  686. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  687. /*
  688. * period over which we measure -rt task cpu usage in us.
  689. * default: 1s
  690. */
  691. unsigned int sysctl_sched_rt_period = 1000000;
  692. static __read_mostly int scheduler_running;
  693. /*
  694. * part of the period that we allow rt tasks to run in us.
  695. * default: 0.95s
  696. */
  697. int sysctl_sched_rt_runtime = 950000;
  698. static inline u64 global_rt_period(void)
  699. {
  700. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  701. }
  702. static inline u64 global_rt_runtime(void)
  703. {
  704. if (sysctl_sched_rt_runtime < 0)
  705. return RUNTIME_INF;
  706. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  707. }
  708. #ifndef prepare_arch_switch
  709. # define prepare_arch_switch(next) do { } while (0)
  710. #endif
  711. #ifndef finish_arch_switch
  712. # define finish_arch_switch(prev) do { } while (0)
  713. #endif
  714. static inline int task_current(struct rq *rq, struct task_struct *p)
  715. {
  716. return rq->curr == p;
  717. }
  718. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  719. static inline int task_running(struct rq *rq, struct task_struct *p)
  720. {
  721. return task_current(rq, p);
  722. }
  723. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  724. {
  725. }
  726. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  727. {
  728. #ifdef CONFIG_DEBUG_SPINLOCK
  729. /* this is a valid case when another task releases the spinlock */
  730. rq->lock.owner = current;
  731. #endif
  732. /*
  733. * If we are tracking spinlock dependencies then we have to
  734. * fix up the runqueue lock - which gets 'carried over' from
  735. * prev into current:
  736. */
  737. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  738. spin_unlock_irq(&rq->lock);
  739. }
  740. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  741. static inline int task_running(struct rq *rq, struct task_struct *p)
  742. {
  743. #ifdef CONFIG_SMP
  744. return p->oncpu;
  745. #else
  746. return task_current(rq, p);
  747. #endif
  748. }
  749. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  750. {
  751. #ifdef CONFIG_SMP
  752. /*
  753. * We can optimise this out completely for !SMP, because the
  754. * SMP rebalancing from interrupt is the only thing that cares
  755. * here.
  756. */
  757. next->oncpu = 1;
  758. #endif
  759. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  760. spin_unlock_irq(&rq->lock);
  761. #else
  762. spin_unlock(&rq->lock);
  763. #endif
  764. }
  765. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  766. {
  767. #ifdef CONFIG_SMP
  768. /*
  769. * After ->oncpu is cleared, the task can be moved to a different CPU.
  770. * We must ensure this doesn't happen until the switch is completely
  771. * finished.
  772. */
  773. smp_wmb();
  774. prev->oncpu = 0;
  775. #endif
  776. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  777. local_irq_enable();
  778. #endif
  779. }
  780. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  781. /*
  782. * __task_rq_lock - lock the runqueue a given task resides on.
  783. * Must be called interrupts disabled.
  784. */
  785. static inline struct rq *__task_rq_lock(struct task_struct *p)
  786. __acquires(rq->lock)
  787. {
  788. for (;;) {
  789. struct rq *rq = task_rq(p);
  790. spin_lock(&rq->lock);
  791. if (likely(rq == task_rq(p)))
  792. return rq;
  793. spin_unlock(&rq->lock);
  794. }
  795. }
  796. /*
  797. * task_rq_lock - lock the runqueue a given task resides on and disable
  798. * interrupts. Note the ordering: we can safely lookup the task_rq without
  799. * explicitly disabling preemption.
  800. */
  801. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  802. __acquires(rq->lock)
  803. {
  804. struct rq *rq;
  805. for (;;) {
  806. local_irq_save(*flags);
  807. rq = task_rq(p);
  808. spin_lock(&rq->lock);
  809. if (likely(rq == task_rq(p)))
  810. return rq;
  811. spin_unlock_irqrestore(&rq->lock, *flags);
  812. }
  813. }
  814. void task_rq_unlock_wait(struct task_struct *p)
  815. {
  816. struct rq *rq = task_rq(p);
  817. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  818. spin_unlock_wait(&rq->lock);
  819. }
  820. static void __task_rq_unlock(struct rq *rq)
  821. __releases(rq->lock)
  822. {
  823. spin_unlock(&rq->lock);
  824. }
  825. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  826. __releases(rq->lock)
  827. {
  828. spin_unlock_irqrestore(&rq->lock, *flags);
  829. }
  830. /*
  831. * this_rq_lock - lock this runqueue and disable interrupts.
  832. */
  833. static struct rq *this_rq_lock(void)
  834. __acquires(rq->lock)
  835. {
  836. struct rq *rq;
  837. local_irq_disable();
  838. rq = this_rq();
  839. spin_lock(&rq->lock);
  840. return rq;
  841. }
  842. #ifdef CONFIG_SCHED_HRTICK
  843. /*
  844. * Use HR-timers to deliver accurate preemption points.
  845. *
  846. * Its all a bit involved since we cannot program an hrt while holding the
  847. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  848. * reschedule event.
  849. *
  850. * When we get rescheduled we reprogram the hrtick_timer outside of the
  851. * rq->lock.
  852. */
  853. /*
  854. * Use hrtick when:
  855. * - enabled by features
  856. * - hrtimer is actually high res
  857. */
  858. static inline int hrtick_enabled(struct rq *rq)
  859. {
  860. if (!sched_feat(HRTICK))
  861. return 0;
  862. if (!cpu_active(cpu_of(rq)))
  863. return 0;
  864. return hrtimer_is_hres_active(&rq->hrtick_timer);
  865. }
  866. static void hrtick_clear(struct rq *rq)
  867. {
  868. if (hrtimer_active(&rq->hrtick_timer))
  869. hrtimer_cancel(&rq->hrtick_timer);
  870. }
  871. /*
  872. * High-resolution timer tick.
  873. * Runs from hardirq context with interrupts disabled.
  874. */
  875. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  876. {
  877. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  878. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  879. spin_lock(&rq->lock);
  880. update_rq_clock(rq);
  881. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  882. spin_unlock(&rq->lock);
  883. return HRTIMER_NORESTART;
  884. }
  885. #ifdef CONFIG_SMP
  886. /*
  887. * called from hardirq (IPI) context
  888. */
  889. static void __hrtick_start(void *arg)
  890. {
  891. struct rq *rq = arg;
  892. spin_lock(&rq->lock);
  893. hrtimer_restart(&rq->hrtick_timer);
  894. rq->hrtick_csd_pending = 0;
  895. spin_unlock(&rq->lock);
  896. }
  897. /*
  898. * Called to set the hrtick timer state.
  899. *
  900. * called with rq->lock held and irqs disabled
  901. */
  902. static void hrtick_start(struct rq *rq, u64 delay)
  903. {
  904. struct hrtimer *timer = &rq->hrtick_timer;
  905. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  906. hrtimer_set_expires(timer, time);
  907. if (rq == this_rq()) {
  908. hrtimer_restart(timer);
  909. } else if (!rq->hrtick_csd_pending) {
  910. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  911. rq->hrtick_csd_pending = 1;
  912. }
  913. }
  914. static int
  915. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  916. {
  917. int cpu = (int)(long)hcpu;
  918. switch (action) {
  919. case CPU_UP_CANCELED:
  920. case CPU_UP_CANCELED_FROZEN:
  921. case CPU_DOWN_PREPARE:
  922. case CPU_DOWN_PREPARE_FROZEN:
  923. case CPU_DEAD:
  924. case CPU_DEAD_FROZEN:
  925. hrtick_clear(cpu_rq(cpu));
  926. return NOTIFY_OK;
  927. }
  928. return NOTIFY_DONE;
  929. }
  930. static __init void init_hrtick(void)
  931. {
  932. hotcpu_notifier(hotplug_hrtick, 0);
  933. }
  934. #else
  935. /*
  936. * Called to set the hrtick timer state.
  937. *
  938. * called with rq->lock held and irqs disabled
  939. */
  940. static void hrtick_start(struct rq *rq, u64 delay)
  941. {
  942. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  943. HRTIMER_MODE_REL_PINNED, 0);
  944. }
  945. static inline void init_hrtick(void)
  946. {
  947. }
  948. #endif /* CONFIG_SMP */
  949. static void init_rq_hrtick(struct rq *rq)
  950. {
  951. #ifdef CONFIG_SMP
  952. rq->hrtick_csd_pending = 0;
  953. rq->hrtick_csd.flags = 0;
  954. rq->hrtick_csd.func = __hrtick_start;
  955. rq->hrtick_csd.info = rq;
  956. #endif
  957. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  958. rq->hrtick_timer.function = hrtick;
  959. }
  960. #else /* CONFIG_SCHED_HRTICK */
  961. static inline void hrtick_clear(struct rq *rq)
  962. {
  963. }
  964. static inline void init_rq_hrtick(struct rq *rq)
  965. {
  966. }
  967. static inline void init_hrtick(void)
  968. {
  969. }
  970. #endif /* CONFIG_SCHED_HRTICK */
  971. /*
  972. * resched_task - mark a task 'to be rescheduled now'.
  973. *
  974. * On UP this means the setting of the need_resched flag, on SMP it
  975. * might also involve a cross-CPU call to trigger the scheduler on
  976. * the target CPU.
  977. */
  978. #ifdef CONFIG_SMP
  979. #ifndef tsk_is_polling
  980. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  981. #endif
  982. static void resched_task(struct task_struct *p)
  983. {
  984. int cpu;
  985. assert_spin_locked(&task_rq(p)->lock);
  986. if (test_tsk_need_resched(p))
  987. return;
  988. set_tsk_need_resched(p);
  989. cpu = task_cpu(p);
  990. if (cpu == smp_processor_id())
  991. return;
  992. /* NEED_RESCHED must be visible before we test polling */
  993. smp_mb();
  994. if (!tsk_is_polling(p))
  995. smp_send_reschedule(cpu);
  996. }
  997. static void resched_cpu(int cpu)
  998. {
  999. struct rq *rq = cpu_rq(cpu);
  1000. unsigned long flags;
  1001. if (!spin_trylock_irqsave(&rq->lock, flags))
  1002. return;
  1003. resched_task(cpu_curr(cpu));
  1004. spin_unlock_irqrestore(&rq->lock, flags);
  1005. }
  1006. #ifdef CONFIG_NO_HZ
  1007. /*
  1008. * When add_timer_on() enqueues a timer into the timer wheel of an
  1009. * idle CPU then this timer might expire before the next timer event
  1010. * which is scheduled to wake up that CPU. In case of a completely
  1011. * idle system the next event might even be infinite time into the
  1012. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1013. * leaves the inner idle loop so the newly added timer is taken into
  1014. * account when the CPU goes back to idle and evaluates the timer
  1015. * wheel for the next timer event.
  1016. */
  1017. void wake_up_idle_cpu(int cpu)
  1018. {
  1019. struct rq *rq = cpu_rq(cpu);
  1020. if (cpu == smp_processor_id())
  1021. return;
  1022. /*
  1023. * This is safe, as this function is called with the timer
  1024. * wheel base lock of (cpu) held. When the CPU is on the way
  1025. * to idle and has not yet set rq->curr to idle then it will
  1026. * be serialized on the timer wheel base lock and take the new
  1027. * timer into account automatically.
  1028. */
  1029. if (rq->curr != rq->idle)
  1030. return;
  1031. /*
  1032. * We can set TIF_RESCHED on the idle task of the other CPU
  1033. * lockless. The worst case is that the other CPU runs the
  1034. * idle task through an additional NOOP schedule()
  1035. */
  1036. set_tsk_need_resched(rq->idle);
  1037. /* NEED_RESCHED must be visible before we test polling */
  1038. smp_mb();
  1039. if (!tsk_is_polling(rq->idle))
  1040. smp_send_reschedule(cpu);
  1041. }
  1042. #endif /* CONFIG_NO_HZ */
  1043. static u64 sched_avg_period(void)
  1044. {
  1045. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1046. }
  1047. static void sched_avg_update(struct rq *rq)
  1048. {
  1049. s64 period = sched_avg_period();
  1050. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1051. rq->age_stamp += period;
  1052. rq->rt_avg /= 2;
  1053. }
  1054. }
  1055. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1056. {
  1057. rq->rt_avg += rt_delta;
  1058. sched_avg_update(rq);
  1059. }
  1060. #else /* !CONFIG_SMP */
  1061. static void resched_task(struct task_struct *p)
  1062. {
  1063. assert_spin_locked(&task_rq(p)->lock);
  1064. set_tsk_need_resched(p);
  1065. }
  1066. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1067. {
  1068. }
  1069. #endif /* CONFIG_SMP */
  1070. #if BITS_PER_LONG == 32
  1071. # define WMULT_CONST (~0UL)
  1072. #else
  1073. # define WMULT_CONST (1UL << 32)
  1074. #endif
  1075. #define WMULT_SHIFT 32
  1076. /*
  1077. * Shift right and round:
  1078. */
  1079. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1080. /*
  1081. * delta *= weight / lw
  1082. */
  1083. static unsigned long
  1084. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1085. struct load_weight *lw)
  1086. {
  1087. u64 tmp;
  1088. if (!lw->inv_weight) {
  1089. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1090. lw->inv_weight = 1;
  1091. else
  1092. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1093. / (lw->weight+1);
  1094. }
  1095. tmp = (u64)delta_exec * weight;
  1096. /*
  1097. * Check whether we'd overflow the 64-bit multiplication:
  1098. */
  1099. if (unlikely(tmp > WMULT_CONST))
  1100. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1101. WMULT_SHIFT/2);
  1102. else
  1103. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1104. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1105. }
  1106. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1107. {
  1108. lw->weight += inc;
  1109. lw->inv_weight = 0;
  1110. }
  1111. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1112. {
  1113. lw->weight -= dec;
  1114. lw->inv_weight = 0;
  1115. }
  1116. /*
  1117. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1118. * of tasks with abnormal "nice" values across CPUs the contribution that
  1119. * each task makes to its run queue's load is weighted according to its
  1120. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1121. * scaled version of the new time slice allocation that they receive on time
  1122. * slice expiry etc.
  1123. */
  1124. #define WEIGHT_IDLEPRIO 3
  1125. #define WMULT_IDLEPRIO 1431655765
  1126. /*
  1127. * Nice levels are multiplicative, with a gentle 10% change for every
  1128. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1129. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1130. * that remained on nice 0.
  1131. *
  1132. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1133. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1134. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1135. * If a task goes up by ~10% and another task goes down by ~10% then
  1136. * the relative distance between them is ~25%.)
  1137. */
  1138. static const int prio_to_weight[40] = {
  1139. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1140. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1141. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1142. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1143. /* 0 */ 1024, 820, 655, 526, 423,
  1144. /* 5 */ 335, 272, 215, 172, 137,
  1145. /* 10 */ 110, 87, 70, 56, 45,
  1146. /* 15 */ 36, 29, 23, 18, 15,
  1147. };
  1148. /*
  1149. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1150. *
  1151. * In cases where the weight does not change often, we can use the
  1152. * precalculated inverse to speed up arithmetics by turning divisions
  1153. * into multiplications:
  1154. */
  1155. static const u32 prio_to_wmult[40] = {
  1156. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1157. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1158. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1159. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1160. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1161. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1162. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1163. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1164. };
  1165. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1166. /*
  1167. * runqueue iterator, to support SMP load-balancing between different
  1168. * scheduling classes, without having to expose their internal data
  1169. * structures to the load-balancing proper:
  1170. */
  1171. struct rq_iterator {
  1172. void *arg;
  1173. struct task_struct *(*start)(void *);
  1174. struct task_struct *(*next)(void *);
  1175. };
  1176. #ifdef CONFIG_SMP
  1177. static unsigned long
  1178. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1179. unsigned long max_load_move, struct sched_domain *sd,
  1180. enum cpu_idle_type idle, int *all_pinned,
  1181. int *this_best_prio, struct rq_iterator *iterator);
  1182. static int
  1183. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1184. struct sched_domain *sd, enum cpu_idle_type idle,
  1185. struct rq_iterator *iterator);
  1186. #endif
  1187. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1188. enum cpuacct_stat_index {
  1189. CPUACCT_STAT_USER, /* ... user mode */
  1190. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1191. CPUACCT_STAT_NSTATS,
  1192. };
  1193. #ifdef CONFIG_CGROUP_CPUACCT
  1194. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1195. static void cpuacct_update_stats(struct task_struct *tsk,
  1196. enum cpuacct_stat_index idx, cputime_t val);
  1197. #else
  1198. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1199. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1200. enum cpuacct_stat_index idx, cputime_t val) {}
  1201. #endif
  1202. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1203. {
  1204. update_load_add(&rq->load, load);
  1205. }
  1206. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1207. {
  1208. update_load_sub(&rq->load, load);
  1209. }
  1210. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1211. typedef int (*tg_visitor)(struct task_group *, void *);
  1212. /*
  1213. * Iterate the full tree, calling @down when first entering a node and @up when
  1214. * leaving it for the final time.
  1215. */
  1216. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1217. {
  1218. struct task_group *parent, *child;
  1219. int ret;
  1220. rcu_read_lock();
  1221. parent = &root_task_group;
  1222. down:
  1223. ret = (*down)(parent, data);
  1224. if (ret)
  1225. goto out_unlock;
  1226. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1227. parent = child;
  1228. goto down;
  1229. up:
  1230. continue;
  1231. }
  1232. ret = (*up)(parent, data);
  1233. if (ret)
  1234. goto out_unlock;
  1235. child = parent;
  1236. parent = parent->parent;
  1237. if (parent)
  1238. goto up;
  1239. out_unlock:
  1240. rcu_read_unlock();
  1241. return ret;
  1242. }
  1243. static int tg_nop(struct task_group *tg, void *data)
  1244. {
  1245. return 0;
  1246. }
  1247. #endif
  1248. #ifdef CONFIG_SMP
  1249. /* Used instead of source_load when we know the type == 0 */
  1250. static unsigned long weighted_cpuload(const int cpu)
  1251. {
  1252. return cpu_rq(cpu)->load.weight;
  1253. }
  1254. /*
  1255. * Return a low guess at the load of a migration-source cpu weighted
  1256. * according to the scheduling class and "nice" value.
  1257. *
  1258. * We want to under-estimate the load of migration sources, to
  1259. * balance conservatively.
  1260. */
  1261. static unsigned long source_load(int cpu, int type)
  1262. {
  1263. struct rq *rq = cpu_rq(cpu);
  1264. unsigned long total = weighted_cpuload(cpu);
  1265. if (type == 0 || !sched_feat(LB_BIAS))
  1266. return total;
  1267. return min(rq->cpu_load[type-1], total);
  1268. }
  1269. /*
  1270. * Return a high guess at the load of a migration-target cpu weighted
  1271. * according to the scheduling class and "nice" value.
  1272. */
  1273. static unsigned long target_load(int cpu, int type)
  1274. {
  1275. struct rq *rq = cpu_rq(cpu);
  1276. unsigned long total = weighted_cpuload(cpu);
  1277. if (type == 0 || !sched_feat(LB_BIAS))
  1278. return total;
  1279. return max(rq->cpu_load[type-1], total);
  1280. }
  1281. static struct sched_group *group_of(int cpu)
  1282. {
  1283. struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
  1284. if (!sd)
  1285. return NULL;
  1286. return sd->groups;
  1287. }
  1288. static unsigned long power_of(int cpu)
  1289. {
  1290. struct sched_group *group = group_of(cpu);
  1291. if (!group)
  1292. return SCHED_LOAD_SCALE;
  1293. return group->cpu_power;
  1294. }
  1295. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1296. static unsigned long cpu_avg_load_per_task(int cpu)
  1297. {
  1298. struct rq *rq = cpu_rq(cpu);
  1299. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1300. if (nr_running)
  1301. rq->avg_load_per_task = rq->load.weight / nr_running;
  1302. else
  1303. rq->avg_load_per_task = 0;
  1304. return rq->avg_load_per_task;
  1305. }
  1306. #ifdef CONFIG_FAIR_GROUP_SCHED
  1307. static __read_mostly unsigned long *update_shares_data;
  1308. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1309. /*
  1310. * Calculate and set the cpu's group shares.
  1311. */
  1312. static void update_group_shares_cpu(struct task_group *tg, int cpu,
  1313. unsigned long sd_shares,
  1314. unsigned long sd_rq_weight,
  1315. unsigned long *usd_rq_weight)
  1316. {
  1317. unsigned long shares, rq_weight;
  1318. int boost = 0;
  1319. rq_weight = usd_rq_weight[cpu];
  1320. if (!rq_weight) {
  1321. boost = 1;
  1322. rq_weight = NICE_0_LOAD;
  1323. }
  1324. /*
  1325. * \Sum_j shares_j * rq_weight_i
  1326. * shares_i = -----------------------------
  1327. * \Sum_j rq_weight_j
  1328. */
  1329. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1330. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1331. if (abs(shares - tg->se[cpu]->load.weight) >
  1332. sysctl_sched_shares_thresh) {
  1333. struct rq *rq = cpu_rq(cpu);
  1334. unsigned long flags;
  1335. spin_lock_irqsave(&rq->lock, flags);
  1336. tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
  1337. tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
  1338. __set_se_shares(tg->se[cpu], shares);
  1339. spin_unlock_irqrestore(&rq->lock, flags);
  1340. }
  1341. }
  1342. /*
  1343. * Re-compute the task group their per cpu shares over the given domain.
  1344. * This needs to be done in a bottom-up fashion because the rq weight of a
  1345. * parent group depends on the shares of its child groups.
  1346. */
  1347. static int tg_shares_up(struct task_group *tg, void *data)
  1348. {
  1349. unsigned long weight, rq_weight = 0, shares = 0;
  1350. unsigned long *usd_rq_weight;
  1351. struct sched_domain *sd = data;
  1352. unsigned long flags;
  1353. int i;
  1354. if (!tg->se[0])
  1355. return 0;
  1356. local_irq_save(flags);
  1357. usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
  1358. for_each_cpu(i, sched_domain_span(sd)) {
  1359. weight = tg->cfs_rq[i]->load.weight;
  1360. usd_rq_weight[i] = weight;
  1361. /*
  1362. * If there are currently no tasks on the cpu pretend there
  1363. * is one of average load so that when a new task gets to
  1364. * run here it will not get delayed by group starvation.
  1365. */
  1366. if (!weight)
  1367. weight = NICE_0_LOAD;
  1368. rq_weight += weight;
  1369. shares += tg->cfs_rq[i]->shares;
  1370. }
  1371. if ((!shares && rq_weight) || shares > tg->shares)
  1372. shares = tg->shares;
  1373. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1374. shares = tg->shares;
  1375. for_each_cpu(i, sched_domain_span(sd))
  1376. update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
  1377. local_irq_restore(flags);
  1378. return 0;
  1379. }
  1380. /*
  1381. * Compute the cpu's hierarchical load factor for each task group.
  1382. * This needs to be done in a top-down fashion because the load of a child
  1383. * group is a fraction of its parents load.
  1384. */
  1385. static int tg_load_down(struct task_group *tg, void *data)
  1386. {
  1387. unsigned long load;
  1388. long cpu = (long)data;
  1389. if (!tg->parent) {
  1390. load = cpu_rq(cpu)->load.weight;
  1391. } else {
  1392. load = tg->parent->cfs_rq[cpu]->h_load;
  1393. load *= tg->cfs_rq[cpu]->shares;
  1394. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1395. }
  1396. tg->cfs_rq[cpu]->h_load = load;
  1397. return 0;
  1398. }
  1399. static void update_shares(struct sched_domain *sd)
  1400. {
  1401. s64 elapsed;
  1402. u64 now;
  1403. if (root_task_group_empty())
  1404. return;
  1405. now = cpu_clock(raw_smp_processor_id());
  1406. elapsed = now - sd->last_update;
  1407. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1408. sd->last_update = now;
  1409. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1410. }
  1411. }
  1412. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1413. {
  1414. if (root_task_group_empty())
  1415. return;
  1416. spin_unlock(&rq->lock);
  1417. update_shares(sd);
  1418. spin_lock(&rq->lock);
  1419. }
  1420. static void update_h_load(long cpu)
  1421. {
  1422. if (root_task_group_empty())
  1423. return;
  1424. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1425. }
  1426. #else
  1427. static inline void update_shares(struct sched_domain *sd)
  1428. {
  1429. }
  1430. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1431. {
  1432. }
  1433. #endif
  1434. #ifdef CONFIG_PREEMPT
  1435. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1436. /*
  1437. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1438. * way at the expense of forcing extra atomic operations in all
  1439. * invocations. This assures that the double_lock is acquired using the
  1440. * same underlying policy as the spinlock_t on this architecture, which
  1441. * reduces latency compared to the unfair variant below. However, it
  1442. * also adds more overhead and therefore may reduce throughput.
  1443. */
  1444. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1445. __releases(this_rq->lock)
  1446. __acquires(busiest->lock)
  1447. __acquires(this_rq->lock)
  1448. {
  1449. spin_unlock(&this_rq->lock);
  1450. double_rq_lock(this_rq, busiest);
  1451. return 1;
  1452. }
  1453. #else
  1454. /*
  1455. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1456. * latency by eliminating extra atomic operations when the locks are
  1457. * already in proper order on entry. This favors lower cpu-ids and will
  1458. * grant the double lock to lower cpus over higher ids under contention,
  1459. * regardless of entry order into the function.
  1460. */
  1461. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1462. __releases(this_rq->lock)
  1463. __acquires(busiest->lock)
  1464. __acquires(this_rq->lock)
  1465. {
  1466. int ret = 0;
  1467. if (unlikely(!spin_trylock(&busiest->lock))) {
  1468. if (busiest < this_rq) {
  1469. spin_unlock(&this_rq->lock);
  1470. spin_lock(&busiest->lock);
  1471. spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
  1472. ret = 1;
  1473. } else
  1474. spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
  1475. }
  1476. return ret;
  1477. }
  1478. #endif /* CONFIG_PREEMPT */
  1479. /*
  1480. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1481. */
  1482. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1483. {
  1484. if (unlikely(!irqs_disabled())) {
  1485. /* printk() doesn't work good under rq->lock */
  1486. spin_unlock(&this_rq->lock);
  1487. BUG_ON(1);
  1488. }
  1489. return _double_lock_balance(this_rq, busiest);
  1490. }
  1491. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1492. __releases(busiest->lock)
  1493. {
  1494. spin_unlock(&busiest->lock);
  1495. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1496. }
  1497. #endif
  1498. #ifdef CONFIG_FAIR_GROUP_SCHED
  1499. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1500. {
  1501. #ifdef CONFIG_SMP
  1502. cfs_rq->shares = shares;
  1503. #endif
  1504. }
  1505. #endif
  1506. static void calc_load_account_active(struct rq *this_rq);
  1507. #include "sched_stats.h"
  1508. #include "sched_idletask.c"
  1509. #include "sched_fair.c"
  1510. #include "sched_rt.c"
  1511. #ifdef CONFIG_SCHED_DEBUG
  1512. # include "sched_debug.c"
  1513. #endif
  1514. #define sched_class_highest (&rt_sched_class)
  1515. #define for_each_class(class) \
  1516. for (class = sched_class_highest; class; class = class->next)
  1517. static void inc_nr_running(struct rq *rq)
  1518. {
  1519. rq->nr_running++;
  1520. }
  1521. static void dec_nr_running(struct rq *rq)
  1522. {
  1523. rq->nr_running--;
  1524. }
  1525. static void set_load_weight(struct task_struct *p)
  1526. {
  1527. if (task_has_rt_policy(p)) {
  1528. p->se.load.weight = prio_to_weight[0] * 2;
  1529. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1530. return;
  1531. }
  1532. /*
  1533. * SCHED_IDLE tasks get minimal weight:
  1534. */
  1535. if (p->policy == SCHED_IDLE) {
  1536. p->se.load.weight = WEIGHT_IDLEPRIO;
  1537. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1538. return;
  1539. }
  1540. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1541. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1542. }
  1543. static void update_avg(u64 *avg, u64 sample)
  1544. {
  1545. s64 diff = sample - *avg;
  1546. *avg += diff >> 3;
  1547. }
  1548. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1549. {
  1550. if (wakeup)
  1551. p->se.start_runtime = p->se.sum_exec_runtime;
  1552. sched_info_queued(p);
  1553. p->sched_class->enqueue_task(rq, p, wakeup);
  1554. p->se.on_rq = 1;
  1555. }
  1556. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1557. {
  1558. if (sleep) {
  1559. if (p->se.last_wakeup) {
  1560. update_avg(&p->se.avg_overlap,
  1561. p->se.sum_exec_runtime - p->se.last_wakeup);
  1562. p->se.last_wakeup = 0;
  1563. } else {
  1564. update_avg(&p->se.avg_wakeup,
  1565. sysctl_sched_wakeup_granularity);
  1566. }
  1567. }
  1568. sched_info_dequeued(p);
  1569. p->sched_class->dequeue_task(rq, p, sleep);
  1570. p->se.on_rq = 0;
  1571. }
  1572. /*
  1573. * __normal_prio - return the priority that is based on the static prio
  1574. */
  1575. static inline int __normal_prio(struct task_struct *p)
  1576. {
  1577. return p->static_prio;
  1578. }
  1579. /*
  1580. * Calculate the expected normal priority: i.e. priority
  1581. * without taking RT-inheritance into account. Might be
  1582. * boosted by interactivity modifiers. Changes upon fork,
  1583. * setprio syscalls, and whenever the interactivity
  1584. * estimator recalculates.
  1585. */
  1586. static inline int normal_prio(struct task_struct *p)
  1587. {
  1588. int prio;
  1589. if (task_has_rt_policy(p))
  1590. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1591. else
  1592. prio = __normal_prio(p);
  1593. return prio;
  1594. }
  1595. /*
  1596. * Calculate the current priority, i.e. the priority
  1597. * taken into account by the scheduler. This value might
  1598. * be boosted by RT tasks, or might be boosted by
  1599. * interactivity modifiers. Will be RT if the task got
  1600. * RT-boosted. If not then it returns p->normal_prio.
  1601. */
  1602. static int effective_prio(struct task_struct *p)
  1603. {
  1604. p->normal_prio = normal_prio(p);
  1605. /*
  1606. * If we are RT tasks or we were boosted to RT priority,
  1607. * keep the priority unchanged. Otherwise, update priority
  1608. * to the normal priority:
  1609. */
  1610. if (!rt_prio(p->prio))
  1611. return p->normal_prio;
  1612. return p->prio;
  1613. }
  1614. /*
  1615. * activate_task - move a task to the runqueue.
  1616. */
  1617. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1618. {
  1619. if (task_contributes_to_load(p))
  1620. rq->nr_uninterruptible--;
  1621. enqueue_task(rq, p, wakeup);
  1622. inc_nr_running(rq);
  1623. }
  1624. /*
  1625. * deactivate_task - remove a task from the runqueue.
  1626. */
  1627. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1628. {
  1629. if (task_contributes_to_load(p))
  1630. rq->nr_uninterruptible++;
  1631. dequeue_task(rq, p, sleep);
  1632. dec_nr_running(rq);
  1633. }
  1634. /**
  1635. * task_curr - is this task currently executing on a CPU?
  1636. * @p: the task in question.
  1637. */
  1638. inline int task_curr(const struct task_struct *p)
  1639. {
  1640. return cpu_curr(task_cpu(p)) == p;
  1641. }
  1642. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1643. {
  1644. set_task_rq(p, cpu);
  1645. #ifdef CONFIG_SMP
  1646. /*
  1647. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1648. * successfuly executed on another CPU. We must ensure that updates of
  1649. * per-task data have been completed by this moment.
  1650. */
  1651. smp_wmb();
  1652. task_thread_info(p)->cpu = cpu;
  1653. #endif
  1654. }
  1655. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1656. const struct sched_class *prev_class,
  1657. int oldprio, int running)
  1658. {
  1659. if (prev_class != p->sched_class) {
  1660. if (prev_class->switched_from)
  1661. prev_class->switched_from(rq, p, running);
  1662. p->sched_class->switched_to(rq, p, running);
  1663. } else
  1664. p->sched_class->prio_changed(rq, p, oldprio, running);
  1665. }
  1666. #ifdef CONFIG_SMP
  1667. /*
  1668. * Is this task likely cache-hot:
  1669. */
  1670. static int
  1671. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1672. {
  1673. s64 delta;
  1674. /*
  1675. * Buddy candidates are cache hot:
  1676. */
  1677. if (sched_feat(CACHE_HOT_BUDDY) &&
  1678. (&p->se == cfs_rq_of(&p->se)->next ||
  1679. &p->se == cfs_rq_of(&p->se)->last))
  1680. return 1;
  1681. if (p->sched_class != &fair_sched_class)
  1682. return 0;
  1683. if (sysctl_sched_migration_cost == -1)
  1684. return 1;
  1685. if (sysctl_sched_migration_cost == 0)
  1686. return 0;
  1687. delta = now - p->se.exec_start;
  1688. return delta < (s64)sysctl_sched_migration_cost;
  1689. }
  1690. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1691. {
  1692. int old_cpu = task_cpu(p);
  1693. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1694. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1695. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1696. u64 clock_offset;
  1697. clock_offset = old_rq->clock - new_rq->clock;
  1698. trace_sched_migrate_task(p, new_cpu);
  1699. #ifdef CONFIG_SCHEDSTATS
  1700. if (p->se.wait_start)
  1701. p->se.wait_start -= clock_offset;
  1702. if (p->se.sleep_start)
  1703. p->se.sleep_start -= clock_offset;
  1704. if (p->se.block_start)
  1705. p->se.block_start -= clock_offset;
  1706. #endif
  1707. if (old_cpu != new_cpu) {
  1708. p->se.nr_migrations++;
  1709. new_rq->nr_migrations_in++;
  1710. #ifdef CONFIG_SCHEDSTATS
  1711. if (task_hot(p, old_rq->clock, NULL))
  1712. schedstat_inc(p, se.nr_forced2_migrations);
  1713. #endif
  1714. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
  1715. 1, 1, NULL, 0);
  1716. }
  1717. p->se.vruntime -= old_cfsrq->min_vruntime -
  1718. new_cfsrq->min_vruntime;
  1719. __set_task_cpu(p, new_cpu);
  1720. }
  1721. struct migration_req {
  1722. struct list_head list;
  1723. struct task_struct *task;
  1724. int dest_cpu;
  1725. struct completion done;
  1726. };
  1727. /*
  1728. * The task's runqueue lock must be held.
  1729. * Returns true if you have to wait for migration thread.
  1730. */
  1731. static int
  1732. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1733. {
  1734. struct rq *rq = task_rq(p);
  1735. /*
  1736. * If the task is not on a runqueue (and not running), then
  1737. * it is sufficient to simply update the task's cpu field.
  1738. */
  1739. if (!p->se.on_rq && !task_running(rq, p)) {
  1740. set_task_cpu(p, dest_cpu);
  1741. return 0;
  1742. }
  1743. init_completion(&req->done);
  1744. req->task = p;
  1745. req->dest_cpu = dest_cpu;
  1746. list_add(&req->list, &rq->migration_queue);
  1747. return 1;
  1748. }
  1749. /*
  1750. * wait_task_context_switch - wait for a thread to complete at least one
  1751. * context switch.
  1752. *
  1753. * @p must not be current.
  1754. */
  1755. void wait_task_context_switch(struct task_struct *p)
  1756. {
  1757. unsigned long nvcsw, nivcsw, flags;
  1758. int running;
  1759. struct rq *rq;
  1760. nvcsw = p->nvcsw;
  1761. nivcsw = p->nivcsw;
  1762. for (;;) {
  1763. /*
  1764. * The runqueue is assigned before the actual context
  1765. * switch. We need to take the runqueue lock.
  1766. *
  1767. * We could check initially without the lock but it is
  1768. * very likely that we need to take the lock in every
  1769. * iteration.
  1770. */
  1771. rq = task_rq_lock(p, &flags);
  1772. running = task_running(rq, p);
  1773. task_rq_unlock(rq, &flags);
  1774. if (likely(!running))
  1775. break;
  1776. /*
  1777. * The switch count is incremented before the actual
  1778. * context switch. We thus wait for two switches to be
  1779. * sure at least one completed.
  1780. */
  1781. if ((p->nvcsw - nvcsw) > 1)
  1782. break;
  1783. if ((p->nivcsw - nivcsw) > 1)
  1784. break;
  1785. cpu_relax();
  1786. }
  1787. }
  1788. /*
  1789. * wait_task_inactive - wait for a thread to unschedule.
  1790. *
  1791. * If @match_state is nonzero, it's the @p->state value just checked and
  1792. * not expected to change. If it changes, i.e. @p might have woken up,
  1793. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1794. * we return a positive number (its total switch count). If a second call
  1795. * a short while later returns the same number, the caller can be sure that
  1796. * @p has remained unscheduled the whole time.
  1797. *
  1798. * The caller must ensure that the task *will* unschedule sometime soon,
  1799. * else this function might spin for a *long* time. This function can't
  1800. * be called with interrupts off, or it may introduce deadlock with
  1801. * smp_call_function() if an IPI is sent by the same process we are
  1802. * waiting to become inactive.
  1803. */
  1804. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1805. {
  1806. unsigned long flags;
  1807. int running, on_rq;
  1808. unsigned long ncsw;
  1809. struct rq *rq;
  1810. for (;;) {
  1811. /*
  1812. * We do the initial early heuristics without holding
  1813. * any task-queue locks at all. We'll only try to get
  1814. * the runqueue lock when things look like they will
  1815. * work out!
  1816. */
  1817. rq = task_rq(p);
  1818. /*
  1819. * If the task is actively running on another CPU
  1820. * still, just relax and busy-wait without holding
  1821. * any locks.
  1822. *
  1823. * NOTE! Since we don't hold any locks, it's not
  1824. * even sure that "rq" stays as the right runqueue!
  1825. * But we don't care, since "task_running()" will
  1826. * return false if the runqueue has changed and p
  1827. * is actually now running somewhere else!
  1828. */
  1829. while (task_running(rq, p)) {
  1830. if (match_state && unlikely(p->state != match_state))
  1831. return 0;
  1832. cpu_relax();
  1833. }
  1834. /*
  1835. * Ok, time to look more closely! We need the rq
  1836. * lock now, to be *sure*. If we're wrong, we'll
  1837. * just go back and repeat.
  1838. */
  1839. rq = task_rq_lock(p, &flags);
  1840. trace_sched_wait_task(rq, p);
  1841. running = task_running(rq, p);
  1842. on_rq = p->se.on_rq;
  1843. ncsw = 0;
  1844. if (!match_state || p->state == match_state)
  1845. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1846. task_rq_unlock(rq, &flags);
  1847. /*
  1848. * If it changed from the expected state, bail out now.
  1849. */
  1850. if (unlikely(!ncsw))
  1851. break;
  1852. /*
  1853. * Was it really running after all now that we
  1854. * checked with the proper locks actually held?
  1855. *
  1856. * Oops. Go back and try again..
  1857. */
  1858. if (unlikely(running)) {
  1859. cpu_relax();
  1860. continue;
  1861. }
  1862. /*
  1863. * It's not enough that it's not actively running,
  1864. * it must be off the runqueue _entirely_, and not
  1865. * preempted!
  1866. *
  1867. * So if it was still runnable (but just not actively
  1868. * running right now), it's preempted, and we should
  1869. * yield - it could be a while.
  1870. */
  1871. if (unlikely(on_rq)) {
  1872. schedule_timeout_uninterruptible(1);
  1873. continue;
  1874. }
  1875. /*
  1876. * Ahh, all good. It wasn't running, and it wasn't
  1877. * runnable, which means that it will never become
  1878. * running in the future either. We're all done!
  1879. */
  1880. break;
  1881. }
  1882. return ncsw;
  1883. }
  1884. /***
  1885. * kick_process - kick a running thread to enter/exit the kernel
  1886. * @p: the to-be-kicked thread
  1887. *
  1888. * Cause a process which is running on another CPU to enter
  1889. * kernel-mode, without any delay. (to get signals handled.)
  1890. *
  1891. * NOTE: this function doesnt have to take the runqueue lock,
  1892. * because all it wants to ensure is that the remote task enters
  1893. * the kernel. If the IPI races and the task has been migrated
  1894. * to another CPU then no harm is done and the purpose has been
  1895. * achieved as well.
  1896. */
  1897. void kick_process(struct task_struct *p)
  1898. {
  1899. int cpu;
  1900. preempt_disable();
  1901. cpu = task_cpu(p);
  1902. if ((cpu != smp_processor_id()) && task_curr(p))
  1903. smp_send_reschedule(cpu);
  1904. preempt_enable();
  1905. }
  1906. EXPORT_SYMBOL_GPL(kick_process);
  1907. #endif /* CONFIG_SMP */
  1908. /**
  1909. * task_oncpu_function_call - call a function on the cpu on which a task runs
  1910. * @p: the task to evaluate
  1911. * @func: the function to be called
  1912. * @info: the function call argument
  1913. *
  1914. * Calls the function @func when the task is currently running. This might
  1915. * be on the current CPU, which just calls the function directly
  1916. */
  1917. void task_oncpu_function_call(struct task_struct *p,
  1918. void (*func) (void *info), void *info)
  1919. {
  1920. int cpu;
  1921. preempt_disable();
  1922. cpu = task_cpu(p);
  1923. if (task_curr(p))
  1924. smp_call_function_single(cpu, func, info, 1);
  1925. preempt_enable();
  1926. }
  1927. /***
  1928. * try_to_wake_up - wake up a thread
  1929. * @p: the to-be-woken-up thread
  1930. * @state: the mask of task states that can be woken
  1931. * @sync: do a synchronous wakeup?
  1932. *
  1933. * Put it on the run-queue if it's not already there. The "current"
  1934. * thread is always on the run-queue (except when the actual
  1935. * re-schedule is in progress), and as such you're allowed to do
  1936. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1937. * runnable without the overhead of this.
  1938. *
  1939. * returns failure only if the task is already active.
  1940. */
  1941. static int try_to_wake_up(struct task_struct *p, unsigned int state,
  1942. int wake_flags)
  1943. {
  1944. int cpu, orig_cpu, this_cpu, success = 0;
  1945. unsigned long flags;
  1946. struct rq *rq, *orig_rq;
  1947. if (!sched_feat(SYNC_WAKEUPS))
  1948. wake_flags &= ~WF_SYNC;
  1949. this_cpu = get_cpu();
  1950. smp_wmb();
  1951. rq = orig_rq = task_rq_lock(p, &flags);
  1952. update_rq_clock(rq);
  1953. if (!(p->state & state))
  1954. goto out;
  1955. if (p->se.on_rq)
  1956. goto out_running;
  1957. cpu = task_cpu(p);
  1958. orig_cpu = cpu;
  1959. #ifdef CONFIG_SMP
  1960. if (unlikely(task_running(rq, p)))
  1961. goto out_activate;
  1962. /*
  1963. * In order to handle concurrent wakeups and release the rq->lock
  1964. * we put the task in TASK_WAKING state.
  1965. *
  1966. * First fix up the nr_uninterruptible count:
  1967. */
  1968. if (task_contributes_to_load(p))
  1969. rq->nr_uninterruptible--;
  1970. p->state = TASK_WAKING;
  1971. task_rq_unlock(rq, &flags);
  1972. cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  1973. if (cpu != orig_cpu)
  1974. set_task_cpu(p, cpu);
  1975. rq = task_rq_lock(p, &flags);
  1976. if (rq != orig_rq)
  1977. update_rq_clock(rq);
  1978. WARN_ON(p->state != TASK_WAKING);
  1979. cpu = task_cpu(p);
  1980. #ifdef CONFIG_SCHEDSTATS
  1981. schedstat_inc(rq, ttwu_count);
  1982. if (cpu == this_cpu)
  1983. schedstat_inc(rq, ttwu_local);
  1984. else {
  1985. struct sched_domain *sd;
  1986. for_each_domain(this_cpu, sd) {
  1987. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1988. schedstat_inc(sd, ttwu_wake_remote);
  1989. break;
  1990. }
  1991. }
  1992. }
  1993. #endif /* CONFIG_SCHEDSTATS */
  1994. out_activate:
  1995. #endif /* CONFIG_SMP */
  1996. schedstat_inc(p, se.nr_wakeups);
  1997. if (wake_flags & WF_SYNC)
  1998. schedstat_inc(p, se.nr_wakeups_sync);
  1999. if (orig_cpu != cpu)
  2000. schedstat_inc(p, se.nr_wakeups_migrate);
  2001. if (cpu == this_cpu)
  2002. schedstat_inc(p, se.nr_wakeups_local);
  2003. else
  2004. schedstat_inc(p, se.nr_wakeups_remote);
  2005. activate_task(rq, p, 1);
  2006. success = 1;
  2007. /*
  2008. * Only attribute actual wakeups done by this task.
  2009. */
  2010. if (!in_interrupt()) {
  2011. struct sched_entity *se = &current->se;
  2012. u64 sample = se->sum_exec_runtime;
  2013. if (se->last_wakeup)
  2014. sample -= se->last_wakeup;
  2015. else
  2016. sample -= se->start_runtime;
  2017. update_avg(&se->avg_wakeup, sample);
  2018. se->last_wakeup = se->sum_exec_runtime;
  2019. }
  2020. out_running:
  2021. trace_sched_wakeup(rq, p, success);
  2022. check_preempt_curr(rq, p, wake_flags);
  2023. p->state = TASK_RUNNING;
  2024. #ifdef CONFIG_SMP
  2025. if (p->sched_class->task_wake_up)
  2026. p->sched_class->task_wake_up(rq, p);
  2027. #endif
  2028. out:
  2029. task_rq_unlock(rq, &flags);
  2030. put_cpu();
  2031. return success;
  2032. }
  2033. /**
  2034. * wake_up_process - Wake up a specific process
  2035. * @p: The process to be woken up.
  2036. *
  2037. * Attempt to wake up the nominated process and move it to the set of runnable
  2038. * processes. Returns 1 if the process was woken up, 0 if it was already
  2039. * running.
  2040. *
  2041. * It may be assumed that this function implies a write memory barrier before
  2042. * changing the task state if and only if any tasks are woken up.
  2043. */
  2044. int wake_up_process(struct task_struct *p)
  2045. {
  2046. return try_to_wake_up(p, TASK_ALL, 0);
  2047. }
  2048. EXPORT_SYMBOL(wake_up_process);
  2049. int wake_up_state(struct task_struct *p, unsigned int state)
  2050. {
  2051. return try_to_wake_up(p, state, 0);
  2052. }
  2053. /*
  2054. * Perform scheduler related setup for a newly forked process p.
  2055. * p is forked by current.
  2056. *
  2057. * __sched_fork() is basic setup used by init_idle() too:
  2058. */
  2059. static void __sched_fork(struct task_struct *p)
  2060. {
  2061. p->se.exec_start = 0;
  2062. p->se.sum_exec_runtime = 0;
  2063. p->se.prev_sum_exec_runtime = 0;
  2064. p->se.nr_migrations = 0;
  2065. p->se.last_wakeup = 0;
  2066. p->se.avg_overlap = 0;
  2067. p->se.start_runtime = 0;
  2068. p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
  2069. p->se.avg_running = 0;
  2070. #ifdef CONFIG_SCHEDSTATS
  2071. p->se.wait_start = 0;
  2072. p->se.wait_max = 0;
  2073. p->se.wait_count = 0;
  2074. p->se.wait_sum = 0;
  2075. p->se.sleep_start = 0;
  2076. p->se.sleep_max = 0;
  2077. p->se.sum_sleep_runtime = 0;
  2078. p->se.block_start = 0;
  2079. p->se.block_max = 0;
  2080. p->se.exec_max = 0;
  2081. p->se.slice_max = 0;
  2082. p->se.nr_migrations_cold = 0;
  2083. p->se.nr_failed_migrations_affine = 0;
  2084. p->se.nr_failed_migrations_running = 0;
  2085. p->se.nr_failed_migrations_hot = 0;
  2086. p->se.nr_forced_migrations = 0;
  2087. p->se.nr_forced2_migrations = 0;
  2088. p->se.nr_wakeups = 0;
  2089. p->se.nr_wakeups_sync = 0;
  2090. p->se.nr_wakeups_migrate = 0;
  2091. p->se.nr_wakeups_local = 0;
  2092. p->se.nr_wakeups_remote = 0;
  2093. p->se.nr_wakeups_affine = 0;
  2094. p->se.nr_wakeups_affine_attempts = 0;
  2095. p->se.nr_wakeups_passive = 0;
  2096. p->se.nr_wakeups_idle = 0;
  2097. #endif
  2098. INIT_LIST_HEAD(&p->rt.run_list);
  2099. p->se.on_rq = 0;
  2100. INIT_LIST_HEAD(&p->se.group_node);
  2101. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2102. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2103. #endif
  2104. /*
  2105. * We mark the process as running here, but have not actually
  2106. * inserted it onto the runqueue yet. This guarantees that
  2107. * nobody will actually run it, and a signal or other external
  2108. * event cannot wake it up and insert it on the runqueue either.
  2109. */
  2110. p->state = TASK_RUNNING;
  2111. }
  2112. /*
  2113. * fork()/clone()-time setup:
  2114. */
  2115. void sched_fork(struct task_struct *p, int clone_flags)
  2116. {
  2117. int cpu = get_cpu();
  2118. __sched_fork(p);
  2119. /*
  2120. * Revert to default priority/policy on fork if requested.
  2121. */
  2122. if (unlikely(p->sched_reset_on_fork)) {
  2123. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
  2124. p->policy = SCHED_NORMAL;
  2125. p->normal_prio = p->static_prio;
  2126. }
  2127. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2128. p->static_prio = NICE_TO_PRIO(0);
  2129. p->normal_prio = p->static_prio;
  2130. set_load_weight(p);
  2131. }
  2132. /*
  2133. * We don't need the reset flag anymore after the fork. It has
  2134. * fulfilled its duty:
  2135. */
  2136. p->sched_reset_on_fork = 0;
  2137. }
  2138. /*
  2139. * Make sure we do not leak PI boosting priority to the child.
  2140. */
  2141. p->prio = current->normal_prio;
  2142. if (!rt_prio(p->prio))
  2143. p->sched_class = &fair_sched_class;
  2144. #ifdef CONFIG_SMP
  2145. cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0);
  2146. #endif
  2147. set_task_cpu(p, cpu);
  2148. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2149. if (likely(sched_info_on()))
  2150. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2151. #endif
  2152. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2153. p->oncpu = 0;
  2154. #endif
  2155. #ifdef CONFIG_PREEMPT
  2156. /* Want to start with kernel preemption disabled. */
  2157. task_thread_info(p)->preempt_count = 1;
  2158. #endif
  2159. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2160. put_cpu();
  2161. }
  2162. /*
  2163. * wake_up_new_task - wake up a newly created task for the first time.
  2164. *
  2165. * This function will do some initial scheduler statistics housekeeping
  2166. * that must be done for every newly created context, then puts the task
  2167. * on the runqueue and wakes it.
  2168. */
  2169. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2170. {
  2171. unsigned long flags;
  2172. struct rq *rq;
  2173. rq = task_rq_lock(p, &flags);
  2174. BUG_ON(p->state != TASK_RUNNING);
  2175. update_rq_clock(rq);
  2176. if (!p->sched_class->task_new || !current->se.on_rq) {
  2177. activate_task(rq, p, 0);
  2178. } else {
  2179. /*
  2180. * Let the scheduling class do new task startup
  2181. * management (if any):
  2182. */
  2183. p->sched_class->task_new(rq, p);
  2184. inc_nr_running(rq);
  2185. }
  2186. trace_sched_wakeup_new(rq, p, 1);
  2187. check_preempt_curr(rq, p, WF_FORK);
  2188. #ifdef CONFIG_SMP
  2189. if (p->sched_class->task_wake_up)
  2190. p->sched_class->task_wake_up(rq, p);
  2191. #endif
  2192. task_rq_unlock(rq, &flags);
  2193. }
  2194. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2195. /**
  2196. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2197. * @notifier: notifier struct to register
  2198. */
  2199. void preempt_notifier_register(struct preempt_notifier *notifier)
  2200. {
  2201. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2202. }
  2203. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2204. /**
  2205. * preempt_notifier_unregister - no longer interested in preemption notifications
  2206. * @notifier: notifier struct to unregister
  2207. *
  2208. * This is safe to call from within a preemption notifier.
  2209. */
  2210. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2211. {
  2212. hlist_del(&notifier->link);
  2213. }
  2214. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2215. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2216. {
  2217. struct preempt_notifier *notifier;
  2218. struct hlist_node *node;
  2219. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2220. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2221. }
  2222. static void
  2223. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2224. struct task_struct *next)
  2225. {
  2226. struct preempt_notifier *notifier;
  2227. struct hlist_node *node;
  2228. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2229. notifier->ops->sched_out(notifier, next);
  2230. }
  2231. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2232. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2233. {
  2234. }
  2235. static void
  2236. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2237. struct task_struct *next)
  2238. {
  2239. }
  2240. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2241. /**
  2242. * prepare_task_switch - prepare to switch tasks
  2243. * @rq: the runqueue preparing to switch
  2244. * @prev: the current task that is being switched out
  2245. * @next: the task we are going to switch to.
  2246. *
  2247. * This is called with the rq lock held and interrupts off. It must
  2248. * be paired with a subsequent finish_task_switch after the context
  2249. * switch.
  2250. *
  2251. * prepare_task_switch sets up locking and calls architecture specific
  2252. * hooks.
  2253. */
  2254. static inline void
  2255. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2256. struct task_struct *next)
  2257. {
  2258. fire_sched_out_preempt_notifiers(prev, next);
  2259. prepare_lock_switch(rq, next);
  2260. prepare_arch_switch(next);
  2261. }
  2262. /**
  2263. * finish_task_switch - clean up after a task-switch
  2264. * @rq: runqueue associated with task-switch
  2265. * @prev: the thread we just switched away from.
  2266. *
  2267. * finish_task_switch must be called after the context switch, paired
  2268. * with a prepare_task_switch call before the context switch.
  2269. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2270. * and do any other architecture-specific cleanup actions.
  2271. *
  2272. * Note that we may have delayed dropping an mm in context_switch(). If
  2273. * so, we finish that here outside of the runqueue lock. (Doing it
  2274. * with the lock held can cause deadlocks; see schedule() for
  2275. * details.)
  2276. */
  2277. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2278. __releases(rq->lock)
  2279. {
  2280. struct mm_struct *mm = rq->prev_mm;
  2281. long prev_state;
  2282. rq->prev_mm = NULL;
  2283. /*
  2284. * A task struct has one reference for the use as "current".
  2285. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2286. * schedule one last time. The schedule call will never return, and
  2287. * the scheduled task must drop that reference.
  2288. * The test for TASK_DEAD must occur while the runqueue locks are
  2289. * still held, otherwise prev could be scheduled on another cpu, die
  2290. * there before we look at prev->state, and then the reference would
  2291. * be dropped twice.
  2292. * Manfred Spraul <manfred@colorfullife.com>
  2293. */
  2294. prev_state = prev->state;
  2295. finish_arch_switch(prev);
  2296. perf_event_task_sched_in(current, cpu_of(rq));
  2297. finish_lock_switch(rq, prev);
  2298. fire_sched_in_preempt_notifiers(current);
  2299. if (mm)
  2300. mmdrop(mm);
  2301. if (unlikely(prev_state == TASK_DEAD)) {
  2302. /*
  2303. * Remove function-return probe instances associated with this
  2304. * task and put them back on the free list.
  2305. */
  2306. kprobe_flush_task(prev);
  2307. put_task_struct(prev);
  2308. }
  2309. }
  2310. #ifdef CONFIG_SMP
  2311. /* assumes rq->lock is held */
  2312. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2313. {
  2314. if (prev->sched_class->pre_schedule)
  2315. prev->sched_class->pre_schedule(rq, prev);
  2316. }
  2317. /* rq->lock is NOT held, but preemption is disabled */
  2318. static inline void post_schedule(struct rq *rq)
  2319. {
  2320. if (rq->post_schedule) {
  2321. unsigned long flags;
  2322. spin_lock_irqsave(&rq->lock, flags);
  2323. if (rq->curr->sched_class->post_schedule)
  2324. rq->curr->sched_class->post_schedule(rq);
  2325. spin_unlock_irqrestore(&rq->lock, flags);
  2326. rq->post_schedule = 0;
  2327. }
  2328. }
  2329. #else
  2330. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2331. {
  2332. }
  2333. static inline void post_schedule(struct rq *rq)
  2334. {
  2335. }
  2336. #endif
  2337. /**
  2338. * schedule_tail - first thing a freshly forked thread must call.
  2339. * @prev: the thread we just switched away from.
  2340. */
  2341. asmlinkage void schedule_tail(struct task_struct *prev)
  2342. __releases(rq->lock)
  2343. {
  2344. struct rq *rq = this_rq();
  2345. finish_task_switch(rq, prev);
  2346. /*
  2347. * FIXME: do we need to worry about rq being invalidated by the
  2348. * task_switch?
  2349. */
  2350. post_schedule(rq);
  2351. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2352. /* In this case, finish_task_switch does not reenable preemption */
  2353. preempt_enable();
  2354. #endif
  2355. if (current->set_child_tid)
  2356. put_user(task_pid_vnr(current), current->set_child_tid);
  2357. }
  2358. /*
  2359. * context_switch - switch to the new MM and the new
  2360. * thread's register state.
  2361. */
  2362. static inline void
  2363. context_switch(struct rq *rq, struct task_struct *prev,
  2364. struct task_struct *next)
  2365. {
  2366. struct mm_struct *mm, *oldmm;
  2367. prepare_task_switch(rq, prev, next);
  2368. trace_sched_switch(rq, prev, next);
  2369. mm = next->mm;
  2370. oldmm = prev->active_mm;
  2371. /*
  2372. * For paravirt, this is coupled with an exit in switch_to to
  2373. * combine the page table reload and the switch backend into
  2374. * one hypercall.
  2375. */
  2376. arch_start_context_switch(prev);
  2377. if (unlikely(!mm)) {
  2378. next->active_mm = oldmm;
  2379. atomic_inc(&oldmm->mm_count);
  2380. enter_lazy_tlb(oldmm, next);
  2381. } else
  2382. switch_mm(oldmm, mm, next);
  2383. if (unlikely(!prev->mm)) {
  2384. prev->active_mm = NULL;
  2385. rq->prev_mm = oldmm;
  2386. }
  2387. /*
  2388. * Since the runqueue lock will be released by the next
  2389. * task (which is an invalid locking op but in the case
  2390. * of the scheduler it's an obvious special-case), so we
  2391. * do an early lockdep release here:
  2392. */
  2393. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2394. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2395. #endif
  2396. /* Here we just switch the register state and the stack. */
  2397. switch_to(prev, next, prev);
  2398. barrier();
  2399. /*
  2400. * this_rq must be evaluated again because prev may have moved
  2401. * CPUs since it called schedule(), thus the 'rq' on its stack
  2402. * frame will be invalid.
  2403. */
  2404. finish_task_switch(this_rq(), prev);
  2405. }
  2406. /*
  2407. * nr_running, nr_uninterruptible and nr_context_switches:
  2408. *
  2409. * externally visible scheduler statistics: current number of runnable
  2410. * threads, current number of uninterruptible-sleeping threads, total
  2411. * number of context switches performed since bootup.
  2412. */
  2413. unsigned long nr_running(void)
  2414. {
  2415. unsigned long i, sum = 0;
  2416. for_each_online_cpu(i)
  2417. sum += cpu_rq(i)->nr_running;
  2418. return sum;
  2419. }
  2420. unsigned long nr_uninterruptible(void)
  2421. {
  2422. unsigned long i, sum = 0;
  2423. for_each_possible_cpu(i)
  2424. sum += cpu_rq(i)->nr_uninterruptible;
  2425. /*
  2426. * Since we read the counters lockless, it might be slightly
  2427. * inaccurate. Do not allow it to go below zero though:
  2428. */
  2429. if (unlikely((long)sum < 0))
  2430. sum = 0;
  2431. return sum;
  2432. }
  2433. unsigned long long nr_context_switches(void)
  2434. {
  2435. int i;
  2436. unsigned long long sum = 0;
  2437. for_each_possible_cpu(i)
  2438. sum += cpu_rq(i)->nr_switches;
  2439. return sum;
  2440. }
  2441. unsigned long nr_iowait(void)
  2442. {
  2443. unsigned long i, sum = 0;
  2444. for_each_possible_cpu(i)
  2445. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2446. return sum;
  2447. }
  2448. unsigned long nr_iowait_cpu(void)
  2449. {
  2450. struct rq *this = this_rq();
  2451. return atomic_read(&this->nr_iowait);
  2452. }
  2453. unsigned long this_cpu_load(void)
  2454. {
  2455. struct rq *this = this_rq();
  2456. return this->cpu_load[0];
  2457. }
  2458. /* Variables and functions for calc_load */
  2459. static atomic_long_t calc_load_tasks;
  2460. static unsigned long calc_load_update;
  2461. unsigned long avenrun[3];
  2462. EXPORT_SYMBOL(avenrun);
  2463. /**
  2464. * get_avenrun - get the load average array
  2465. * @loads: pointer to dest load array
  2466. * @offset: offset to add
  2467. * @shift: shift count to shift the result left
  2468. *
  2469. * These values are estimates at best, so no need for locking.
  2470. */
  2471. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2472. {
  2473. loads[0] = (avenrun[0] + offset) << shift;
  2474. loads[1] = (avenrun[1] + offset) << shift;
  2475. loads[2] = (avenrun[2] + offset) << shift;
  2476. }
  2477. static unsigned long
  2478. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2479. {
  2480. load *= exp;
  2481. load += active * (FIXED_1 - exp);
  2482. return load >> FSHIFT;
  2483. }
  2484. /*
  2485. * calc_load - update the avenrun load estimates 10 ticks after the
  2486. * CPUs have updated calc_load_tasks.
  2487. */
  2488. void calc_global_load(void)
  2489. {
  2490. unsigned long upd = calc_load_update + 10;
  2491. long active;
  2492. if (time_before(jiffies, upd))
  2493. return;
  2494. active = atomic_long_read(&calc_load_tasks);
  2495. active = active > 0 ? active * FIXED_1 : 0;
  2496. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2497. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2498. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2499. calc_load_update += LOAD_FREQ;
  2500. }
  2501. /*
  2502. * Either called from update_cpu_load() or from a cpu going idle
  2503. */
  2504. static void calc_load_account_active(struct rq *this_rq)
  2505. {
  2506. long nr_active, delta;
  2507. nr_active = this_rq->nr_running;
  2508. nr_active += (long) this_rq->nr_uninterruptible;
  2509. if (nr_active != this_rq->calc_load_active) {
  2510. delta = nr_active - this_rq->calc_load_active;
  2511. this_rq->calc_load_active = nr_active;
  2512. atomic_long_add(delta, &calc_load_tasks);
  2513. }
  2514. }
  2515. /*
  2516. * Externally visible per-cpu scheduler statistics:
  2517. * cpu_nr_migrations(cpu) - number of migrations into that cpu
  2518. */
  2519. u64 cpu_nr_migrations(int cpu)
  2520. {
  2521. return cpu_rq(cpu)->nr_migrations_in;
  2522. }
  2523. /*
  2524. * Update rq->cpu_load[] statistics. This function is usually called every
  2525. * scheduler tick (TICK_NSEC).
  2526. */
  2527. static void update_cpu_load(struct rq *this_rq)
  2528. {
  2529. unsigned long this_load = this_rq->load.weight;
  2530. int i, scale;
  2531. this_rq->nr_load_updates++;
  2532. /* Update our load: */
  2533. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2534. unsigned long old_load, new_load;
  2535. /* scale is effectively 1 << i now, and >> i divides by scale */
  2536. old_load = this_rq->cpu_load[i];
  2537. new_load = this_load;
  2538. /*
  2539. * Round up the averaging division if load is increasing. This
  2540. * prevents us from getting stuck on 9 if the load is 10, for
  2541. * example.
  2542. */
  2543. if (new_load > old_load)
  2544. new_load += scale-1;
  2545. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2546. }
  2547. if (time_after_eq(jiffies, this_rq->calc_load_update)) {
  2548. this_rq->calc_load_update += LOAD_FREQ;
  2549. calc_load_account_active(this_rq);
  2550. }
  2551. }
  2552. #ifdef CONFIG_SMP
  2553. /*
  2554. * double_rq_lock - safely lock two runqueues
  2555. *
  2556. * Note this does not disable interrupts like task_rq_lock,
  2557. * you need to do so manually before calling.
  2558. */
  2559. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2560. __acquires(rq1->lock)
  2561. __acquires(rq2->lock)
  2562. {
  2563. BUG_ON(!irqs_disabled());
  2564. if (rq1 == rq2) {
  2565. spin_lock(&rq1->lock);
  2566. __acquire(rq2->lock); /* Fake it out ;) */
  2567. } else {
  2568. if (rq1 < rq2) {
  2569. spin_lock(&rq1->lock);
  2570. spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2571. } else {
  2572. spin_lock(&rq2->lock);
  2573. spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2574. }
  2575. }
  2576. update_rq_clock(rq1);
  2577. update_rq_clock(rq2);
  2578. }
  2579. /*
  2580. * double_rq_unlock - safely unlock two runqueues
  2581. *
  2582. * Note this does not restore interrupts like task_rq_unlock,
  2583. * you need to do so manually after calling.
  2584. */
  2585. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2586. __releases(rq1->lock)
  2587. __releases(rq2->lock)
  2588. {
  2589. spin_unlock(&rq1->lock);
  2590. if (rq1 != rq2)
  2591. spin_unlock(&rq2->lock);
  2592. else
  2593. __release(rq2->lock);
  2594. }
  2595. /*
  2596. * If dest_cpu is allowed for this process, migrate the task to it.
  2597. * This is accomplished by forcing the cpu_allowed mask to only
  2598. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2599. * the cpu_allowed mask is restored.
  2600. */
  2601. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2602. {
  2603. struct migration_req req;
  2604. unsigned long flags;
  2605. struct rq *rq;
  2606. rq = task_rq_lock(p, &flags);
  2607. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
  2608. || unlikely(!cpu_active(dest_cpu)))
  2609. goto out;
  2610. /* force the process onto the specified CPU */
  2611. if (migrate_task(p, dest_cpu, &req)) {
  2612. /* Need to wait for migration thread (might exit: take ref). */
  2613. struct task_struct *mt = rq->migration_thread;
  2614. get_task_struct(mt);
  2615. task_rq_unlock(rq, &flags);
  2616. wake_up_process(mt);
  2617. put_task_struct(mt);
  2618. wait_for_completion(&req.done);
  2619. return;
  2620. }
  2621. out:
  2622. task_rq_unlock(rq, &flags);
  2623. }
  2624. /*
  2625. * sched_exec - execve() is a valuable balancing opportunity, because at
  2626. * this point the task has the smallest effective memory and cache footprint.
  2627. */
  2628. void sched_exec(void)
  2629. {
  2630. int new_cpu, this_cpu = get_cpu();
  2631. new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0);
  2632. put_cpu();
  2633. if (new_cpu != this_cpu)
  2634. sched_migrate_task(current, new_cpu);
  2635. }
  2636. /*
  2637. * pull_task - move a task from a remote runqueue to the local runqueue.
  2638. * Both runqueues must be locked.
  2639. */
  2640. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2641. struct rq *this_rq, int this_cpu)
  2642. {
  2643. deactivate_task(src_rq, p, 0);
  2644. set_task_cpu(p, this_cpu);
  2645. activate_task(this_rq, p, 0);
  2646. /*
  2647. * Note that idle threads have a prio of MAX_PRIO, for this test
  2648. * to be always true for them.
  2649. */
  2650. check_preempt_curr(this_rq, p, 0);
  2651. }
  2652. /*
  2653. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2654. */
  2655. static
  2656. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2657. struct sched_domain *sd, enum cpu_idle_type idle,
  2658. int *all_pinned)
  2659. {
  2660. int tsk_cache_hot = 0;
  2661. /*
  2662. * We do not migrate tasks that are:
  2663. * 1) running (obviously), or
  2664. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2665. * 3) are cache-hot on their current CPU.
  2666. */
  2667. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  2668. schedstat_inc(p, se.nr_failed_migrations_affine);
  2669. return 0;
  2670. }
  2671. *all_pinned = 0;
  2672. if (task_running(rq, p)) {
  2673. schedstat_inc(p, se.nr_failed_migrations_running);
  2674. return 0;
  2675. }
  2676. /*
  2677. * Aggressive migration if:
  2678. * 1) task is cache cold, or
  2679. * 2) too many balance attempts have failed.
  2680. */
  2681. tsk_cache_hot = task_hot(p, rq->clock, sd);
  2682. if (!tsk_cache_hot ||
  2683. sd->nr_balance_failed > sd->cache_nice_tries) {
  2684. #ifdef CONFIG_SCHEDSTATS
  2685. if (tsk_cache_hot) {
  2686. schedstat_inc(sd, lb_hot_gained[idle]);
  2687. schedstat_inc(p, se.nr_forced_migrations);
  2688. }
  2689. #endif
  2690. return 1;
  2691. }
  2692. if (tsk_cache_hot) {
  2693. schedstat_inc(p, se.nr_failed_migrations_hot);
  2694. return 0;
  2695. }
  2696. return 1;
  2697. }
  2698. static unsigned long
  2699. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2700. unsigned long max_load_move, struct sched_domain *sd,
  2701. enum cpu_idle_type idle, int *all_pinned,
  2702. int *this_best_prio, struct rq_iterator *iterator)
  2703. {
  2704. int loops = 0, pulled = 0, pinned = 0;
  2705. struct task_struct *p;
  2706. long rem_load_move = max_load_move;
  2707. if (max_load_move == 0)
  2708. goto out;
  2709. pinned = 1;
  2710. /*
  2711. * Start the load-balancing iterator:
  2712. */
  2713. p = iterator->start(iterator->arg);
  2714. next:
  2715. if (!p || loops++ > sysctl_sched_nr_migrate)
  2716. goto out;
  2717. if ((p->se.load.weight >> 1) > rem_load_move ||
  2718. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2719. p = iterator->next(iterator->arg);
  2720. goto next;
  2721. }
  2722. pull_task(busiest, p, this_rq, this_cpu);
  2723. pulled++;
  2724. rem_load_move -= p->se.load.weight;
  2725. #ifdef CONFIG_PREEMPT
  2726. /*
  2727. * NEWIDLE balancing is a source of latency, so preemptible kernels
  2728. * will stop after the first task is pulled to minimize the critical
  2729. * section.
  2730. */
  2731. if (idle == CPU_NEWLY_IDLE)
  2732. goto out;
  2733. #endif
  2734. /*
  2735. * We only want to steal up to the prescribed amount of weighted load.
  2736. */
  2737. if (rem_load_move > 0) {
  2738. if (p->prio < *this_best_prio)
  2739. *this_best_prio = p->prio;
  2740. p = iterator->next(iterator->arg);
  2741. goto next;
  2742. }
  2743. out:
  2744. /*
  2745. * Right now, this is one of only two places pull_task() is called,
  2746. * so we can safely collect pull_task() stats here rather than
  2747. * inside pull_task().
  2748. */
  2749. schedstat_add(sd, lb_gained[idle], pulled);
  2750. if (all_pinned)
  2751. *all_pinned = pinned;
  2752. return max_load_move - rem_load_move;
  2753. }
  2754. /*
  2755. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2756. * this_rq, as part of a balancing operation within domain "sd".
  2757. * Returns 1 if successful and 0 otherwise.
  2758. *
  2759. * Called with both runqueues locked.
  2760. */
  2761. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2762. unsigned long max_load_move,
  2763. struct sched_domain *sd, enum cpu_idle_type idle,
  2764. int *all_pinned)
  2765. {
  2766. const struct sched_class *class = sched_class_highest;
  2767. unsigned long total_load_moved = 0;
  2768. int this_best_prio = this_rq->curr->prio;
  2769. do {
  2770. total_load_moved +=
  2771. class->load_balance(this_rq, this_cpu, busiest,
  2772. max_load_move - total_load_moved,
  2773. sd, idle, all_pinned, &this_best_prio);
  2774. class = class->next;
  2775. #ifdef CONFIG_PREEMPT
  2776. /*
  2777. * NEWIDLE balancing is a source of latency, so preemptible
  2778. * kernels will stop after the first task is pulled to minimize
  2779. * the critical section.
  2780. */
  2781. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2782. break;
  2783. #endif
  2784. } while (class && max_load_move > total_load_moved);
  2785. return total_load_moved > 0;
  2786. }
  2787. static int
  2788. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2789. struct sched_domain *sd, enum cpu_idle_type idle,
  2790. struct rq_iterator *iterator)
  2791. {
  2792. struct task_struct *p = iterator->start(iterator->arg);
  2793. int pinned = 0;
  2794. while (p) {
  2795. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2796. pull_task(busiest, p, this_rq, this_cpu);
  2797. /*
  2798. * Right now, this is only the second place pull_task()
  2799. * is called, so we can safely collect pull_task()
  2800. * stats here rather than inside pull_task().
  2801. */
  2802. schedstat_inc(sd, lb_gained[idle]);
  2803. return 1;
  2804. }
  2805. p = iterator->next(iterator->arg);
  2806. }
  2807. return 0;
  2808. }
  2809. /*
  2810. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2811. * part of active balancing operations within "domain".
  2812. * Returns 1 if successful and 0 otherwise.
  2813. *
  2814. * Called with both runqueues locked.
  2815. */
  2816. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2817. struct sched_domain *sd, enum cpu_idle_type idle)
  2818. {
  2819. const struct sched_class *class;
  2820. for_each_class(class) {
  2821. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2822. return 1;
  2823. }
  2824. return 0;
  2825. }
  2826. /********** Helpers for find_busiest_group ************************/
  2827. /*
  2828. * sd_lb_stats - Structure to store the statistics of a sched_domain
  2829. * during load balancing.
  2830. */
  2831. struct sd_lb_stats {
  2832. struct sched_group *busiest; /* Busiest group in this sd */
  2833. struct sched_group *this; /* Local group in this sd */
  2834. unsigned long total_load; /* Total load of all groups in sd */
  2835. unsigned long total_pwr; /* Total power of all groups in sd */
  2836. unsigned long avg_load; /* Average load across all groups in sd */
  2837. /** Statistics of this group */
  2838. unsigned long this_load;
  2839. unsigned long this_load_per_task;
  2840. unsigned long this_nr_running;
  2841. /* Statistics of the busiest group */
  2842. unsigned long max_load;
  2843. unsigned long busiest_load_per_task;
  2844. unsigned long busiest_nr_running;
  2845. int group_imb; /* Is there imbalance in this sd */
  2846. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2847. int power_savings_balance; /* Is powersave balance needed for this sd */
  2848. struct sched_group *group_min; /* Least loaded group in sd */
  2849. struct sched_group *group_leader; /* Group which relieves group_min */
  2850. unsigned long min_load_per_task; /* load_per_task in group_min */
  2851. unsigned long leader_nr_running; /* Nr running of group_leader */
  2852. unsigned long min_nr_running; /* Nr running of group_min */
  2853. #endif
  2854. };
  2855. /*
  2856. * sg_lb_stats - stats of a sched_group required for load_balancing
  2857. */
  2858. struct sg_lb_stats {
  2859. unsigned long avg_load; /*Avg load across the CPUs of the group */
  2860. unsigned long group_load; /* Total load over the CPUs of the group */
  2861. unsigned long sum_nr_running; /* Nr tasks running in the group */
  2862. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  2863. unsigned long group_capacity;
  2864. int group_imb; /* Is there an imbalance in the group ? */
  2865. };
  2866. /**
  2867. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  2868. * @group: The group whose first cpu is to be returned.
  2869. */
  2870. static inline unsigned int group_first_cpu(struct sched_group *group)
  2871. {
  2872. return cpumask_first(sched_group_cpus(group));
  2873. }
  2874. /**
  2875. * get_sd_load_idx - Obtain the load index for a given sched domain.
  2876. * @sd: The sched_domain whose load_idx is to be obtained.
  2877. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  2878. */
  2879. static inline int get_sd_load_idx(struct sched_domain *sd,
  2880. enum cpu_idle_type idle)
  2881. {
  2882. int load_idx;
  2883. switch (idle) {
  2884. case CPU_NOT_IDLE:
  2885. load_idx = sd->busy_idx;
  2886. break;
  2887. case CPU_NEWLY_IDLE:
  2888. load_idx = sd->newidle_idx;
  2889. break;
  2890. default:
  2891. load_idx = sd->idle_idx;
  2892. break;
  2893. }
  2894. return load_idx;
  2895. }
  2896. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2897. /**
  2898. * init_sd_power_savings_stats - Initialize power savings statistics for
  2899. * the given sched_domain, during load balancing.
  2900. *
  2901. * @sd: Sched domain whose power-savings statistics are to be initialized.
  2902. * @sds: Variable containing the statistics for sd.
  2903. * @idle: Idle status of the CPU at which we're performing load-balancing.
  2904. */
  2905. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2906. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2907. {
  2908. /*
  2909. * Busy processors will not participate in power savings
  2910. * balance.
  2911. */
  2912. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2913. sds->power_savings_balance = 0;
  2914. else {
  2915. sds->power_savings_balance = 1;
  2916. sds->min_nr_running = ULONG_MAX;
  2917. sds->leader_nr_running = 0;
  2918. }
  2919. }
  2920. /**
  2921. * update_sd_power_savings_stats - Update the power saving stats for a
  2922. * sched_domain while performing load balancing.
  2923. *
  2924. * @group: sched_group belonging to the sched_domain under consideration.
  2925. * @sds: Variable containing the statistics of the sched_domain
  2926. * @local_group: Does group contain the CPU for which we're performing
  2927. * load balancing ?
  2928. * @sgs: Variable containing the statistics of the group.
  2929. */
  2930. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2931. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2932. {
  2933. if (!sds->power_savings_balance)
  2934. return;
  2935. /*
  2936. * If the local group is idle or completely loaded
  2937. * no need to do power savings balance at this domain
  2938. */
  2939. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  2940. !sds->this_nr_running))
  2941. sds->power_savings_balance = 0;
  2942. /*
  2943. * If a group is already running at full capacity or idle,
  2944. * don't include that group in power savings calculations
  2945. */
  2946. if (!sds->power_savings_balance ||
  2947. sgs->sum_nr_running >= sgs->group_capacity ||
  2948. !sgs->sum_nr_running)
  2949. return;
  2950. /*
  2951. * Calculate the group which has the least non-idle load.
  2952. * This is the group from where we need to pick up the load
  2953. * for saving power
  2954. */
  2955. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  2956. (sgs->sum_nr_running == sds->min_nr_running &&
  2957. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  2958. sds->group_min = group;
  2959. sds->min_nr_running = sgs->sum_nr_running;
  2960. sds->min_load_per_task = sgs->sum_weighted_load /
  2961. sgs->sum_nr_running;
  2962. }
  2963. /*
  2964. * Calculate the group which is almost near its
  2965. * capacity but still has some space to pick up some load
  2966. * from other group and save more power
  2967. */
  2968. if (sgs->sum_nr_running + 1 > sgs->group_capacity)
  2969. return;
  2970. if (sgs->sum_nr_running > sds->leader_nr_running ||
  2971. (sgs->sum_nr_running == sds->leader_nr_running &&
  2972. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  2973. sds->group_leader = group;
  2974. sds->leader_nr_running = sgs->sum_nr_running;
  2975. }
  2976. }
  2977. /**
  2978. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  2979. * @sds: Variable containing the statistics of the sched_domain
  2980. * under consideration.
  2981. * @this_cpu: Cpu at which we're currently performing load-balancing.
  2982. * @imbalance: Variable to store the imbalance.
  2983. *
  2984. * Description:
  2985. * Check if we have potential to perform some power-savings balance.
  2986. * If yes, set the busiest group to be the least loaded group in the
  2987. * sched_domain, so that it's CPUs can be put to idle.
  2988. *
  2989. * Returns 1 if there is potential to perform power-savings balance.
  2990. * Else returns 0.
  2991. */
  2992. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2993. int this_cpu, unsigned long *imbalance)
  2994. {
  2995. if (!sds->power_savings_balance)
  2996. return 0;
  2997. if (sds->this != sds->group_leader ||
  2998. sds->group_leader == sds->group_min)
  2999. return 0;
  3000. *imbalance = sds->min_load_per_task;
  3001. sds->busiest = sds->group_min;
  3002. return 1;
  3003. }
  3004. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3005. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  3006. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  3007. {
  3008. return;
  3009. }
  3010. static inline void update_sd_power_savings_stats(struct sched_group *group,
  3011. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  3012. {
  3013. return;
  3014. }
  3015. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  3016. int this_cpu, unsigned long *imbalance)
  3017. {
  3018. return 0;
  3019. }
  3020. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3021. unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
  3022. {
  3023. return SCHED_LOAD_SCALE;
  3024. }
  3025. unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
  3026. {
  3027. return default_scale_freq_power(sd, cpu);
  3028. }
  3029. unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
  3030. {
  3031. unsigned long weight = cpumask_weight(sched_domain_span(sd));
  3032. unsigned long smt_gain = sd->smt_gain;
  3033. smt_gain /= weight;
  3034. return smt_gain;
  3035. }
  3036. unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
  3037. {
  3038. return default_scale_smt_power(sd, cpu);
  3039. }
  3040. unsigned long scale_rt_power(int cpu)
  3041. {
  3042. struct rq *rq = cpu_rq(cpu);
  3043. u64 total, available;
  3044. sched_avg_update(rq);
  3045. total = sched_avg_period() + (rq->clock - rq->age_stamp);
  3046. available = total - rq->rt_avg;
  3047. if (unlikely((s64)total < SCHED_LOAD_SCALE))
  3048. total = SCHED_LOAD_SCALE;
  3049. total >>= SCHED_LOAD_SHIFT;
  3050. return div_u64(available, total);
  3051. }
  3052. static void update_cpu_power(struct sched_domain *sd, int cpu)
  3053. {
  3054. unsigned long weight = cpumask_weight(sched_domain_span(sd));
  3055. unsigned long power = SCHED_LOAD_SCALE;
  3056. struct sched_group *sdg = sd->groups;
  3057. if (sched_feat(ARCH_POWER))
  3058. power *= arch_scale_freq_power(sd, cpu);
  3059. else
  3060. power *= default_scale_freq_power(sd, cpu);
  3061. power >>= SCHED_LOAD_SHIFT;
  3062. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  3063. if (sched_feat(ARCH_POWER))
  3064. power *= arch_scale_smt_power(sd, cpu);
  3065. else
  3066. power *= default_scale_smt_power(sd, cpu);
  3067. power >>= SCHED_LOAD_SHIFT;
  3068. }
  3069. power *= scale_rt_power(cpu);
  3070. power >>= SCHED_LOAD_SHIFT;
  3071. if (!power)
  3072. power = 1;
  3073. sdg->cpu_power = power;
  3074. }
  3075. static void update_group_power(struct sched_domain *sd, int cpu)
  3076. {
  3077. struct sched_domain *child = sd->child;
  3078. struct sched_group *group, *sdg = sd->groups;
  3079. unsigned long power;
  3080. if (!child) {
  3081. update_cpu_power(sd, cpu);
  3082. return;
  3083. }
  3084. power = 0;
  3085. group = child->groups;
  3086. do {
  3087. power += group->cpu_power;
  3088. group = group->next;
  3089. } while (group != child->groups);
  3090. sdg->cpu_power = power;
  3091. }
  3092. /**
  3093. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  3094. * @sd: The sched_domain whose statistics are to be updated.
  3095. * @group: sched_group whose statistics are to be updated.
  3096. * @this_cpu: Cpu for which load balance is currently performed.
  3097. * @idle: Idle status of this_cpu
  3098. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  3099. * @sd_idle: Idle status of the sched_domain containing group.
  3100. * @local_group: Does group contain this_cpu.
  3101. * @cpus: Set of cpus considered for load balancing.
  3102. * @balance: Should we balance.
  3103. * @sgs: variable to hold the statistics for this group.
  3104. */
  3105. static inline void update_sg_lb_stats(struct sched_domain *sd,
  3106. struct sched_group *group, int this_cpu,
  3107. enum cpu_idle_type idle, int load_idx, int *sd_idle,
  3108. int local_group, const struct cpumask *cpus,
  3109. int *balance, struct sg_lb_stats *sgs)
  3110. {
  3111. unsigned long load, max_cpu_load, min_cpu_load;
  3112. int i;
  3113. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  3114. unsigned long sum_avg_load_per_task;
  3115. unsigned long avg_load_per_task;
  3116. if (local_group) {
  3117. balance_cpu = group_first_cpu(group);
  3118. if (balance_cpu == this_cpu)
  3119. update_group_power(sd, this_cpu);
  3120. }
  3121. /* Tally up the load of all CPUs in the group */
  3122. sum_avg_load_per_task = avg_load_per_task = 0;
  3123. max_cpu_load = 0;
  3124. min_cpu_load = ~0UL;
  3125. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  3126. struct rq *rq = cpu_rq(i);
  3127. if (*sd_idle && rq->nr_running)
  3128. *sd_idle = 0;
  3129. /* Bias balancing toward cpus of our domain */
  3130. if (local_group) {
  3131. if (idle_cpu(i) && !first_idle_cpu) {
  3132. first_idle_cpu = 1;
  3133. balance_cpu = i;
  3134. }
  3135. load = target_load(i, load_idx);
  3136. } else {
  3137. load = source_load(i, load_idx);
  3138. if (load > max_cpu_load)
  3139. max_cpu_load = load;
  3140. if (min_cpu_load > load)
  3141. min_cpu_load = load;
  3142. }
  3143. sgs->group_load += load;
  3144. sgs->sum_nr_running += rq->nr_running;
  3145. sgs->sum_weighted_load += weighted_cpuload(i);
  3146. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  3147. }
  3148. /*
  3149. * First idle cpu or the first cpu(busiest) in this sched group
  3150. * is eligible for doing load balancing at this and above
  3151. * domains. In the newly idle case, we will allow all the cpu's
  3152. * to do the newly idle load balance.
  3153. */
  3154. if (idle != CPU_NEWLY_IDLE && local_group &&
  3155. balance_cpu != this_cpu && balance) {
  3156. *balance = 0;
  3157. return;
  3158. }
  3159. /* Adjust by relative CPU power of the group */
  3160. sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
  3161. /*
  3162. * Consider the group unbalanced when the imbalance is larger
  3163. * than the average weight of two tasks.
  3164. *
  3165. * APZ: with cgroup the avg task weight can vary wildly and
  3166. * might not be a suitable number - should we keep a
  3167. * normalized nr_running number somewhere that negates
  3168. * the hierarchy?
  3169. */
  3170. avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
  3171. group->cpu_power;
  3172. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  3173. sgs->group_imb = 1;
  3174. sgs->group_capacity =
  3175. DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
  3176. }
  3177. /**
  3178. * update_sd_lb_stats - Update sched_group's statistics for load balancing.
  3179. * @sd: sched_domain whose statistics are to be updated.
  3180. * @this_cpu: Cpu for which load balance is currently performed.
  3181. * @idle: Idle status of this_cpu
  3182. * @sd_idle: Idle status of the sched_domain containing group.
  3183. * @cpus: Set of cpus considered for load balancing.
  3184. * @balance: Should we balance.
  3185. * @sds: variable to hold the statistics for this sched_domain.
  3186. */
  3187. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  3188. enum cpu_idle_type idle, int *sd_idle,
  3189. const struct cpumask *cpus, int *balance,
  3190. struct sd_lb_stats *sds)
  3191. {
  3192. struct sched_domain *child = sd->child;
  3193. struct sched_group *group = sd->groups;
  3194. struct sg_lb_stats sgs;
  3195. int load_idx, prefer_sibling = 0;
  3196. if (child && child->flags & SD_PREFER_SIBLING)
  3197. prefer_sibling = 1;
  3198. init_sd_power_savings_stats(sd, sds, idle);
  3199. load_idx = get_sd_load_idx(sd, idle);
  3200. do {
  3201. int local_group;
  3202. local_group = cpumask_test_cpu(this_cpu,
  3203. sched_group_cpus(group));
  3204. memset(&sgs, 0, sizeof(sgs));
  3205. update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
  3206. local_group, cpus, balance, &sgs);
  3207. if (local_group && balance && !(*balance))
  3208. return;
  3209. sds->total_load += sgs.group_load;
  3210. sds->total_pwr += group->cpu_power;
  3211. /*
  3212. * In case the child domain prefers tasks go to siblings
  3213. * first, lower the group capacity to one so that we'll try
  3214. * and move all the excess tasks away.
  3215. */
  3216. if (prefer_sibling)
  3217. sgs.group_capacity = min(sgs.group_capacity, 1UL);
  3218. if (local_group) {
  3219. sds->this_load = sgs.avg_load;
  3220. sds->this = group;
  3221. sds->this_nr_running = sgs.sum_nr_running;
  3222. sds->this_load_per_task = sgs.sum_weighted_load;
  3223. } else if (sgs.avg_load > sds->max_load &&
  3224. (sgs.sum_nr_running > sgs.group_capacity ||
  3225. sgs.group_imb)) {
  3226. sds->max_load = sgs.avg_load;
  3227. sds->busiest = group;
  3228. sds->busiest_nr_running = sgs.sum_nr_running;
  3229. sds->busiest_load_per_task = sgs.sum_weighted_load;
  3230. sds->group_imb = sgs.group_imb;
  3231. }
  3232. update_sd_power_savings_stats(group, sds, local_group, &sgs);
  3233. group = group->next;
  3234. } while (group != sd->groups);
  3235. }
  3236. /**
  3237. * fix_small_imbalance - Calculate the minor imbalance that exists
  3238. * amongst the groups of a sched_domain, during
  3239. * load balancing.
  3240. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  3241. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  3242. * @imbalance: Variable to store the imbalance.
  3243. */
  3244. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  3245. int this_cpu, unsigned long *imbalance)
  3246. {
  3247. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  3248. unsigned int imbn = 2;
  3249. if (sds->this_nr_running) {
  3250. sds->this_load_per_task /= sds->this_nr_running;
  3251. if (sds->busiest_load_per_task >
  3252. sds->this_load_per_task)
  3253. imbn = 1;
  3254. } else
  3255. sds->this_load_per_task =
  3256. cpu_avg_load_per_task(this_cpu);
  3257. if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
  3258. sds->busiest_load_per_task * imbn) {
  3259. *imbalance = sds->busiest_load_per_task;
  3260. return;
  3261. }
  3262. /*
  3263. * OK, we don't have enough imbalance to justify moving tasks,
  3264. * however we may be able to increase total CPU power used by
  3265. * moving them.
  3266. */
  3267. pwr_now += sds->busiest->cpu_power *
  3268. min(sds->busiest_load_per_task, sds->max_load);
  3269. pwr_now += sds->this->cpu_power *
  3270. min(sds->this_load_per_task, sds->this_load);
  3271. pwr_now /= SCHED_LOAD_SCALE;
  3272. /* Amount of load we'd subtract */
  3273. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  3274. sds->busiest->cpu_power;
  3275. if (sds->max_load > tmp)
  3276. pwr_move += sds->busiest->cpu_power *
  3277. min(sds->busiest_load_per_task, sds->max_load - tmp);
  3278. /* Amount of load we'd add */
  3279. if (sds->max_load * sds->busiest->cpu_power <
  3280. sds->busiest_load_per_task * SCHED_LOAD_SCALE)
  3281. tmp = (sds->max_load * sds->busiest->cpu_power) /
  3282. sds->this->cpu_power;
  3283. else
  3284. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  3285. sds->this->cpu_power;
  3286. pwr_move += sds->this->cpu_power *
  3287. min(sds->this_load_per_task, sds->this_load + tmp);
  3288. pwr_move /= SCHED_LOAD_SCALE;
  3289. /* Move if we gain throughput */
  3290. if (pwr_move > pwr_now)
  3291. *imbalance = sds->busiest_load_per_task;
  3292. }
  3293. /**
  3294. * calculate_imbalance - Calculate the amount of imbalance present within the
  3295. * groups of a given sched_domain during load balance.
  3296. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  3297. * @this_cpu: Cpu for which currently load balance is being performed.
  3298. * @imbalance: The variable to store the imbalance.
  3299. */
  3300. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  3301. unsigned long *imbalance)
  3302. {
  3303. unsigned long max_pull;
  3304. /*
  3305. * In the presence of smp nice balancing, certain scenarios can have
  3306. * max load less than avg load(as we skip the groups at or below
  3307. * its cpu_power, while calculating max_load..)
  3308. */
  3309. if (sds->max_load < sds->avg_load) {
  3310. *imbalance = 0;
  3311. return fix_small_imbalance(sds, this_cpu, imbalance);
  3312. }
  3313. /* Don't want to pull so many tasks that a group would go idle */
  3314. max_pull = min(sds->max_load - sds->avg_load,
  3315. sds->max_load - sds->busiest_load_per_task);
  3316. /* How much load to actually move to equalise the imbalance */
  3317. *imbalance = min(max_pull * sds->busiest->cpu_power,
  3318. (sds->avg_load - sds->this_load) * sds->this->cpu_power)
  3319. / SCHED_LOAD_SCALE;
  3320. /*
  3321. * if *imbalance is less than the average load per runnable task
  3322. * there is no gaurantee that any tasks will be moved so we'll have
  3323. * a think about bumping its value to force at least one task to be
  3324. * moved
  3325. */
  3326. if (*imbalance < sds->busiest_load_per_task)
  3327. return fix_small_imbalance(sds, this_cpu, imbalance);
  3328. }
  3329. /******* find_busiest_group() helpers end here *********************/
  3330. /**
  3331. * find_busiest_group - Returns the busiest group within the sched_domain
  3332. * if there is an imbalance. If there isn't an imbalance, and
  3333. * the user has opted for power-savings, it returns a group whose
  3334. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  3335. * such a group exists.
  3336. *
  3337. * Also calculates the amount of weighted load which should be moved
  3338. * to restore balance.
  3339. *
  3340. * @sd: The sched_domain whose busiest group is to be returned.
  3341. * @this_cpu: The cpu for which load balancing is currently being performed.
  3342. * @imbalance: Variable which stores amount of weighted load which should
  3343. * be moved to restore balance/put a group to idle.
  3344. * @idle: The idle status of this_cpu.
  3345. * @sd_idle: The idleness of sd
  3346. * @cpus: The set of CPUs under consideration for load-balancing.
  3347. * @balance: Pointer to a variable indicating if this_cpu
  3348. * is the appropriate cpu to perform load balancing at this_level.
  3349. *
  3350. * Returns: - the busiest group if imbalance exists.
  3351. * - If no imbalance and user has opted for power-savings balance,
  3352. * return the least loaded group whose CPUs can be
  3353. * put to idle by rebalancing its tasks onto our group.
  3354. */
  3355. static struct sched_group *
  3356. find_busiest_group(struct sched_domain *sd, int this_cpu,
  3357. unsigned long *imbalance, enum cpu_idle_type idle,
  3358. int *sd_idle, const struct cpumask *cpus, int *balance)
  3359. {
  3360. struct sd_lb_stats sds;
  3361. memset(&sds, 0, sizeof(sds));
  3362. /*
  3363. * Compute the various statistics relavent for load balancing at
  3364. * this level.
  3365. */
  3366. update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
  3367. balance, &sds);
  3368. /* Cases where imbalance does not exist from POV of this_cpu */
  3369. /* 1) this_cpu is not the appropriate cpu to perform load balancing
  3370. * at this level.
  3371. * 2) There is no busy sibling group to pull from.
  3372. * 3) This group is the busiest group.
  3373. * 4) This group is more busy than the avg busieness at this
  3374. * sched_domain.
  3375. * 5) The imbalance is within the specified limit.
  3376. * 6) Any rebalance would lead to ping-pong
  3377. */
  3378. if (balance && !(*balance))
  3379. goto ret;
  3380. if (!sds.busiest || sds.busiest_nr_running == 0)
  3381. goto out_balanced;
  3382. if (sds.this_load >= sds.max_load)
  3383. goto out_balanced;
  3384. sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
  3385. if (sds.this_load >= sds.avg_load)
  3386. goto out_balanced;
  3387. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  3388. goto out_balanced;
  3389. sds.busiest_load_per_task /= sds.busiest_nr_running;
  3390. if (sds.group_imb)
  3391. sds.busiest_load_per_task =
  3392. min(sds.busiest_load_per_task, sds.avg_load);
  3393. /*
  3394. * We're trying to get all the cpus to the average_load, so we don't
  3395. * want to push ourselves above the average load, nor do we wish to
  3396. * reduce the max loaded cpu below the average load, as either of these
  3397. * actions would just result in more rebalancing later, and ping-pong
  3398. * tasks around. Thus we look for the minimum possible imbalance.
  3399. * Negative imbalances (*we* are more loaded than anyone else) will
  3400. * be counted as no imbalance for these purposes -- we can't fix that
  3401. * by pulling tasks to us. Be careful of negative numbers as they'll
  3402. * appear as very large values with unsigned longs.
  3403. */
  3404. if (sds.max_load <= sds.busiest_load_per_task)
  3405. goto out_balanced;
  3406. /* Looks like there is an imbalance. Compute it */
  3407. calculate_imbalance(&sds, this_cpu, imbalance);
  3408. return sds.busiest;
  3409. out_balanced:
  3410. /*
  3411. * There is no obvious imbalance. But check if we can do some balancing
  3412. * to save power.
  3413. */
  3414. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  3415. return sds.busiest;
  3416. ret:
  3417. *imbalance = 0;
  3418. return NULL;
  3419. }
  3420. /*
  3421. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  3422. */
  3423. static struct rq *
  3424. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  3425. unsigned long imbalance, const struct cpumask *cpus)
  3426. {
  3427. struct rq *busiest = NULL, *rq;
  3428. unsigned long max_load = 0;
  3429. int i;
  3430. for_each_cpu(i, sched_group_cpus(group)) {
  3431. unsigned long power = power_of(i);
  3432. unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
  3433. unsigned long wl;
  3434. if (!cpumask_test_cpu(i, cpus))
  3435. continue;
  3436. rq = cpu_rq(i);
  3437. wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
  3438. wl /= power;
  3439. if (capacity && rq->nr_running == 1 && wl > imbalance)
  3440. continue;
  3441. if (wl > max_load) {
  3442. max_load = wl;
  3443. busiest = rq;
  3444. }
  3445. }
  3446. return busiest;
  3447. }
  3448. /*
  3449. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  3450. * so long as it is large enough.
  3451. */
  3452. #define MAX_PINNED_INTERVAL 512
  3453. /* Working cpumask for load_balance and load_balance_newidle. */
  3454. static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  3455. /*
  3456. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3457. * tasks if there is an imbalance.
  3458. */
  3459. static int load_balance(int this_cpu, struct rq *this_rq,
  3460. struct sched_domain *sd, enum cpu_idle_type idle,
  3461. int *balance)
  3462. {
  3463. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  3464. struct sched_group *group;
  3465. unsigned long imbalance;
  3466. struct rq *busiest;
  3467. unsigned long flags;
  3468. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3469. cpumask_setall(cpus);
  3470. /*
  3471. * When power savings policy is enabled for the parent domain, idle
  3472. * sibling can pick up load irrespective of busy siblings. In this case,
  3473. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  3474. * portraying it as CPU_NOT_IDLE.
  3475. */
  3476. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  3477. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3478. sd_idle = 1;
  3479. schedstat_inc(sd, lb_count[idle]);
  3480. redo:
  3481. update_shares(sd);
  3482. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  3483. cpus, balance);
  3484. if (*balance == 0)
  3485. goto out_balanced;
  3486. if (!group) {
  3487. schedstat_inc(sd, lb_nobusyg[idle]);
  3488. goto out_balanced;
  3489. }
  3490. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  3491. if (!busiest) {
  3492. schedstat_inc(sd, lb_nobusyq[idle]);
  3493. goto out_balanced;
  3494. }
  3495. BUG_ON(busiest == this_rq);
  3496. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3497. ld_moved = 0;
  3498. if (busiest->nr_running > 1) {
  3499. /*
  3500. * Attempt to move tasks. If find_busiest_group has found
  3501. * an imbalance but busiest->nr_running <= 1, the group is
  3502. * still unbalanced. ld_moved simply stays zero, so it is
  3503. * correctly treated as an imbalance.
  3504. */
  3505. local_irq_save(flags);
  3506. double_rq_lock(this_rq, busiest);
  3507. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3508. imbalance, sd, idle, &all_pinned);
  3509. double_rq_unlock(this_rq, busiest);
  3510. local_irq_restore(flags);
  3511. /*
  3512. * some other cpu did the load balance for us.
  3513. */
  3514. if (ld_moved && this_cpu != smp_processor_id())
  3515. resched_cpu(this_cpu);
  3516. /* All tasks on this runqueue were pinned by CPU affinity */
  3517. if (unlikely(all_pinned)) {
  3518. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3519. if (!cpumask_empty(cpus))
  3520. goto redo;
  3521. goto out_balanced;
  3522. }
  3523. }
  3524. if (!ld_moved) {
  3525. schedstat_inc(sd, lb_failed[idle]);
  3526. sd->nr_balance_failed++;
  3527. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  3528. spin_lock_irqsave(&busiest->lock, flags);
  3529. /* don't kick the migration_thread, if the curr
  3530. * task on busiest cpu can't be moved to this_cpu
  3531. */
  3532. if (!cpumask_test_cpu(this_cpu,
  3533. &busiest->curr->cpus_allowed)) {
  3534. spin_unlock_irqrestore(&busiest->lock, flags);
  3535. all_pinned = 1;
  3536. goto out_one_pinned;
  3537. }
  3538. if (!busiest->active_balance) {
  3539. busiest->active_balance = 1;
  3540. busiest->push_cpu = this_cpu;
  3541. active_balance = 1;
  3542. }
  3543. spin_unlock_irqrestore(&busiest->lock, flags);
  3544. if (active_balance)
  3545. wake_up_process(busiest->migration_thread);
  3546. /*
  3547. * We've kicked active balancing, reset the failure
  3548. * counter.
  3549. */
  3550. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3551. }
  3552. } else
  3553. sd->nr_balance_failed = 0;
  3554. if (likely(!active_balance)) {
  3555. /* We were unbalanced, so reset the balancing interval */
  3556. sd->balance_interval = sd->min_interval;
  3557. } else {
  3558. /*
  3559. * If we've begun active balancing, start to back off. This
  3560. * case may not be covered by the all_pinned logic if there
  3561. * is only 1 task on the busy runqueue (because we don't call
  3562. * move_tasks).
  3563. */
  3564. if (sd->balance_interval < sd->max_interval)
  3565. sd->balance_interval *= 2;
  3566. }
  3567. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3568. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3569. ld_moved = -1;
  3570. goto out;
  3571. out_balanced:
  3572. schedstat_inc(sd, lb_balanced[idle]);
  3573. sd->nr_balance_failed = 0;
  3574. out_one_pinned:
  3575. /* tune up the balancing interval */
  3576. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3577. (sd->balance_interval < sd->max_interval))
  3578. sd->balance_interval *= 2;
  3579. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3580. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3581. ld_moved = -1;
  3582. else
  3583. ld_moved = 0;
  3584. out:
  3585. if (ld_moved)
  3586. update_shares(sd);
  3587. return ld_moved;
  3588. }
  3589. /*
  3590. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3591. * tasks if there is an imbalance.
  3592. *
  3593. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3594. * this_rq is locked.
  3595. */
  3596. static int
  3597. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  3598. {
  3599. struct sched_group *group;
  3600. struct rq *busiest = NULL;
  3601. unsigned long imbalance;
  3602. int ld_moved = 0;
  3603. int sd_idle = 0;
  3604. int all_pinned = 0;
  3605. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3606. cpumask_setall(cpus);
  3607. /*
  3608. * When power savings policy is enabled for the parent domain, idle
  3609. * sibling can pick up load irrespective of busy siblings. In this case,
  3610. * let the state of idle sibling percolate up as IDLE, instead of
  3611. * portraying it as CPU_NOT_IDLE.
  3612. */
  3613. if (sd->flags & SD_SHARE_CPUPOWER &&
  3614. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3615. sd_idle = 1;
  3616. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3617. redo:
  3618. update_shares_locked(this_rq, sd);
  3619. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3620. &sd_idle, cpus, NULL);
  3621. if (!group) {
  3622. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3623. goto out_balanced;
  3624. }
  3625. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3626. if (!busiest) {
  3627. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3628. goto out_balanced;
  3629. }
  3630. BUG_ON(busiest == this_rq);
  3631. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3632. ld_moved = 0;
  3633. if (busiest->nr_running > 1) {
  3634. /* Attempt to move tasks */
  3635. double_lock_balance(this_rq, busiest);
  3636. /* this_rq->clock is already updated */
  3637. update_rq_clock(busiest);
  3638. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3639. imbalance, sd, CPU_NEWLY_IDLE,
  3640. &all_pinned);
  3641. double_unlock_balance(this_rq, busiest);
  3642. if (unlikely(all_pinned)) {
  3643. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3644. if (!cpumask_empty(cpus))
  3645. goto redo;
  3646. }
  3647. }
  3648. if (!ld_moved) {
  3649. int active_balance = 0;
  3650. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3651. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3652. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3653. return -1;
  3654. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  3655. return -1;
  3656. if (sd->nr_balance_failed++ < 2)
  3657. return -1;
  3658. /*
  3659. * The only task running in a non-idle cpu can be moved to this
  3660. * cpu in an attempt to completely freeup the other CPU
  3661. * package. The same method used to move task in load_balance()
  3662. * have been extended for load_balance_newidle() to speedup
  3663. * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
  3664. *
  3665. * The package power saving logic comes from
  3666. * find_busiest_group(). If there are no imbalance, then
  3667. * f_b_g() will return NULL. However when sched_mc={1,2} then
  3668. * f_b_g() will select a group from which a running task may be
  3669. * pulled to this cpu in order to make the other package idle.
  3670. * If there is no opportunity to make a package idle and if
  3671. * there are no imbalance, then f_b_g() will return NULL and no
  3672. * action will be taken in load_balance_newidle().
  3673. *
  3674. * Under normal task pull operation due to imbalance, there
  3675. * will be more than one task in the source run queue and
  3676. * move_tasks() will succeed. ld_moved will be true and this
  3677. * active balance code will not be triggered.
  3678. */
  3679. /* Lock busiest in correct order while this_rq is held */
  3680. double_lock_balance(this_rq, busiest);
  3681. /*
  3682. * don't kick the migration_thread, if the curr
  3683. * task on busiest cpu can't be moved to this_cpu
  3684. */
  3685. if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
  3686. double_unlock_balance(this_rq, busiest);
  3687. all_pinned = 1;
  3688. return ld_moved;
  3689. }
  3690. if (!busiest->active_balance) {
  3691. busiest->active_balance = 1;
  3692. busiest->push_cpu = this_cpu;
  3693. active_balance = 1;
  3694. }
  3695. double_unlock_balance(this_rq, busiest);
  3696. /*
  3697. * Should not call ttwu while holding a rq->lock
  3698. */
  3699. spin_unlock(&this_rq->lock);
  3700. if (active_balance)
  3701. wake_up_process(busiest->migration_thread);
  3702. spin_lock(&this_rq->lock);
  3703. } else
  3704. sd->nr_balance_failed = 0;
  3705. update_shares_locked(this_rq, sd);
  3706. return ld_moved;
  3707. out_balanced:
  3708. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3709. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3710. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3711. return -1;
  3712. sd->nr_balance_failed = 0;
  3713. return 0;
  3714. }
  3715. /*
  3716. * idle_balance is called by schedule() if this_cpu is about to become
  3717. * idle. Attempts to pull tasks from other CPUs.
  3718. */
  3719. static void idle_balance(int this_cpu, struct rq *this_rq)
  3720. {
  3721. struct sched_domain *sd;
  3722. int pulled_task = 0;
  3723. unsigned long next_balance = jiffies + HZ;
  3724. for_each_domain(this_cpu, sd) {
  3725. unsigned long interval;
  3726. if (!(sd->flags & SD_LOAD_BALANCE))
  3727. continue;
  3728. if (sd->flags & SD_BALANCE_NEWIDLE)
  3729. /* If we've pulled tasks over stop searching: */
  3730. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3731. sd);
  3732. interval = msecs_to_jiffies(sd->balance_interval);
  3733. if (time_after(next_balance, sd->last_balance + interval))
  3734. next_balance = sd->last_balance + interval;
  3735. if (pulled_task)
  3736. break;
  3737. }
  3738. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3739. /*
  3740. * We are going idle. next_balance may be set based on
  3741. * a busy processor. So reset next_balance.
  3742. */
  3743. this_rq->next_balance = next_balance;
  3744. }
  3745. }
  3746. /*
  3747. * active_load_balance is run by migration threads. It pushes running tasks
  3748. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3749. * running on each physical CPU where possible, and avoids physical /
  3750. * logical imbalances.
  3751. *
  3752. * Called with busiest_rq locked.
  3753. */
  3754. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3755. {
  3756. int target_cpu = busiest_rq->push_cpu;
  3757. struct sched_domain *sd;
  3758. struct rq *target_rq;
  3759. /* Is there any task to move? */
  3760. if (busiest_rq->nr_running <= 1)
  3761. return;
  3762. target_rq = cpu_rq(target_cpu);
  3763. /*
  3764. * This condition is "impossible", if it occurs
  3765. * we need to fix it. Originally reported by
  3766. * Bjorn Helgaas on a 128-cpu setup.
  3767. */
  3768. BUG_ON(busiest_rq == target_rq);
  3769. /* move a task from busiest_rq to target_rq */
  3770. double_lock_balance(busiest_rq, target_rq);
  3771. update_rq_clock(busiest_rq);
  3772. update_rq_clock(target_rq);
  3773. /* Search for an sd spanning us and the target CPU. */
  3774. for_each_domain(target_cpu, sd) {
  3775. if ((sd->flags & SD_LOAD_BALANCE) &&
  3776. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  3777. break;
  3778. }
  3779. if (likely(sd)) {
  3780. schedstat_inc(sd, alb_count);
  3781. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3782. sd, CPU_IDLE))
  3783. schedstat_inc(sd, alb_pushed);
  3784. else
  3785. schedstat_inc(sd, alb_failed);
  3786. }
  3787. double_unlock_balance(busiest_rq, target_rq);
  3788. }
  3789. #ifdef CONFIG_NO_HZ
  3790. static struct {
  3791. atomic_t load_balancer;
  3792. cpumask_var_t cpu_mask;
  3793. cpumask_var_t ilb_grp_nohz_mask;
  3794. } nohz ____cacheline_aligned = {
  3795. .load_balancer = ATOMIC_INIT(-1),
  3796. };
  3797. int get_nohz_load_balancer(void)
  3798. {
  3799. return atomic_read(&nohz.load_balancer);
  3800. }
  3801. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  3802. /**
  3803. * lowest_flag_domain - Return lowest sched_domain containing flag.
  3804. * @cpu: The cpu whose lowest level of sched domain is to
  3805. * be returned.
  3806. * @flag: The flag to check for the lowest sched_domain
  3807. * for the given cpu.
  3808. *
  3809. * Returns the lowest sched_domain of a cpu which contains the given flag.
  3810. */
  3811. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  3812. {
  3813. struct sched_domain *sd;
  3814. for_each_domain(cpu, sd)
  3815. if (sd && (sd->flags & flag))
  3816. break;
  3817. return sd;
  3818. }
  3819. /**
  3820. * for_each_flag_domain - Iterates over sched_domains containing the flag.
  3821. * @cpu: The cpu whose domains we're iterating over.
  3822. * @sd: variable holding the value of the power_savings_sd
  3823. * for cpu.
  3824. * @flag: The flag to filter the sched_domains to be iterated.
  3825. *
  3826. * Iterates over all the scheduler domains for a given cpu that has the 'flag'
  3827. * set, starting from the lowest sched_domain to the highest.
  3828. */
  3829. #define for_each_flag_domain(cpu, sd, flag) \
  3830. for (sd = lowest_flag_domain(cpu, flag); \
  3831. (sd && (sd->flags & flag)); sd = sd->parent)
  3832. /**
  3833. * is_semi_idle_group - Checks if the given sched_group is semi-idle.
  3834. * @ilb_group: group to be checked for semi-idleness
  3835. *
  3836. * Returns: 1 if the group is semi-idle. 0 otherwise.
  3837. *
  3838. * We define a sched_group to be semi idle if it has atleast one idle-CPU
  3839. * and atleast one non-idle CPU. This helper function checks if the given
  3840. * sched_group is semi-idle or not.
  3841. */
  3842. static inline int is_semi_idle_group(struct sched_group *ilb_group)
  3843. {
  3844. cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
  3845. sched_group_cpus(ilb_group));
  3846. /*
  3847. * A sched_group is semi-idle when it has atleast one busy cpu
  3848. * and atleast one idle cpu.
  3849. */
  3850. if (cpumask_empty(nohz.ilb_grp_nohz_mask))
  3851. return 0;
  3852. if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
  3853. return 0;
  3854. return 1;
  3855. }
  3856. /**
  3857. * find_new_ilb - Finds the optimum idle load balancer for nomination.
  3858. * @cpu: The cpu which is nominating a new idle_load_balancer.
  3859. *
  3860. * Returns: Returns the id of the idle load balancer if it exists,
  3861. * Else, returns >= nr_cpu_ids.
  3862. *
  3863. * This algorithm picks the idle load balancer such that it belongs to a
  3864. * semi-idle powersavings sched_domain. The idea is to try and avoid
  3865. * completely idle packages/cores just for the purpose of idle load balancing
  3866. * when there are other idle cpu's which are better suited for that job.
  3867. */
  3868. static int find_new_ilb(int cpu)
  3869. {
  3870. struct sched_domain *sd;
  3871. struct sched_group *ilb_group;
  3872. /*
  3873. * Have idle load balancer selection from semi-idle packages only
  3874. * when power-aware load balancing is enabled
  3875. */
  3876. if (!(sched_smt_power_savings || sched_mc_power_savings))
  3877. goto out_done;
  3878. /*
  3879. * Optimize for the case when we have no idle CPUs or only one
  3880. * idle CPU. Don't walk the sched_domain hierarchy in such cases
  3881. */
  3882. if (cpumask_weight(nohz.cpu_mask) < 2)
  3883. goto out_done;
  3884. for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
  3885. ilb_group = sd->groups;
  3886. do {
  3887. if (is_semi_idle_group(ilb_group))
  3888. return cpumask_first(nohz.ilb_grp_nohz_mask);
  3889. ilb_group = ilb_group->next;
  3890. } while (ilb_group != sd->groups);
  3891. }
  3892. out_done:
  3893. return cpumask_first(nohz.cpu_mask);
  3894. }
  3895. #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
  3896. static inline int find_new_ilb(int call_cpu)
  3897. {
  3898. return cpumask_first(nohz.cpu_mask);
  3899. }
  3900. #endif
  3901. /*
  3902. * This routine will try to nominate the ilb (idle load balancing)
  3903. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3904. * load balancing on behalf of all those cpus. If all the cpus in the system
  3905. * go into this tickless mode, then there will be no ilb owner (as there is
  3906. * no need for one) and all the cpus will sleep till the next wakeup event
  3907. * arrives...
  3908. *
  3909. * For the ilb owner, tick is not stopped. And this tick will be used
  3910. * for idle load balancing. ilb owner will still be part of
  3911. * nohz.cpu_mask..
  3912. *
  3913. * While stopping the tick, this cpu will become the ilb owner if there
  3914. * is no other owner. And will be the owner till that cpu becomes busy
  3915. * or if all cpus in the system stop their ticks at which point
  3916. * there is no need for ilb owner.
  3917. *
  3918. * When the ilb owner becomes busy, it nominates another owner, during the
  3919. * next busy scheduler_tick()
  3920. */
  3921. int select_nohz_load_balancer(int stop_tick)
  3922. {
  3923. int cpu = smp_processor_id();
  3924. if (stop_tick) {
  3925. cpu_rq(cpu)->in_nohz_recently = 1;
  3926. if (!cpu_active(cpu)) {
  3927. if (atomic_read(&nohz.load_balancer) != cpu)
  3928. return 0;
  3929. /*
  3930. * If we are going offline and still the leader,
  3931. * give up!
  3932. */
  3933. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3934. BUG();
  3935. return 0;
  3936. }
  3937. cpumask_set_cpu(cpu, nohz.cpu_mask);
  3938. /* time for ilb owner also to sleep */
  3939. if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  3940. if (atomic_read(&nohz.load_balancer) == cpu)
  3941. atomic_set(&nohz.load_balancer, -1);
  3942. return 0;
  3943. }
  3944. if (atomic_read(&nohz.load_balancer) == -1) {
  3945. /* make me the ilb owner */
  3946. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3947. return 1;
  3948. } else if (atomic_read(&nohz.load_balancer) == cpu) {
  3949. int new_ilb;
  3950. if (!(sched_smt_power_savings ||
  3951. sched_mc_power_savings))
  3952. return 1;
  3953. /*
  3954. * Check to see if there is a more power-efficient
  3955. * ilb.
  3956. */
  3957. new_ilb = find_new_ilb(cpu);
  3958. if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
  3959. atomic_set(&nohz.load_balancer, -1);
  3960. resched_cpu(new_ilb);
  3961. return 0;
  3962. }
  3963. return 1;
  3964. }
  3965. } else {
  3966. if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
  3967. return 0;
  3968. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  3969. if (atomic_read(&nohz.load_balancer) == cpu)
  3970. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3971. BUG();
  3972. }
  3973. return 0;
  3974. }
  3975. #endif
  3976. static DEFINE_SPINLOCK(balancing);
  3977. /*
  3978. * It checks each scheduling domain to see if it is due to be balanced,
  3979. * and initiates a balancing operation if so.
  3980. *
  3981. * Balancing parameters are set up in arch_init_sched_domains.
  3982. */
  3983. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3984. {
  3985. int balance = 1;
  3986. struct rq *rq = cpu_rq(cpu);
  3987. unsigned long interval;
  3988. struct sched_domain *sd;
  3989. /* Earliest time when we have to do rebalance again */
  3990. unsigned long next_balance = jiffies + 60*HZ;
  3991. int update_next_balance = 0;
  3992. int need_serialize;
  3993. for_each_domain(cpu, sd) {
  3994. if (!(sd->flags & SD_LOAD_BALANCE))
  3995. continue;
  3996. interval = sd->balance_interval;
  3997. if (idle != CPU_IDLE)
  3998. interval *= sd->busy_factor;
  3999. /* scale ms to jiffies */
  4000. interval = msecs_to_jiffies(interval);
  4001. if (unlikely(!interval))
  4002. interval = 1;
  4003. if (interval > HZ*NR_CPUS/10)
  4004. interval = HZ*NR_CPUS/10;
  4005. need_serialize = sd->flags & SD_SERIALIZE;
  4006. if (need_serialize) {
  4007. if (!spin_trylock(&balancing))
  4008. goto out;
  4009. }
  4010. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  4011. if (load_balance(cpu, rq, sd, idle, &balance)) {
  4012. /*
  4013. * We've pulled tasks over so either we're no
  4014. * longer idle, or one of our SMT siblings is
  4015. * not idle.
  4016. */
  4017. idle = CPU_NOT_IDLE;
  4018. }
  4019. sd->last_balance = jiffies;
  4020. }
  4021. if (need_serialize)
  4022. spin_unlock(&balancing);
  4023. out:
  4024. if (time_after(next_balance, sd->last_balance + interval)) {
  4025. next_balance = sd->last_balance + interval;
  4026. update_next_balance = 1;
  4027. }
  4028. /*
  4029. * Stop the load balance at this level. There is another
  4030. * CPU in our sched group which is doing load balancing more
  4031. * actively.
  4032. */
  4033. if (!balance)
  4034. break;
  4035. }
  4036. /*
  4037. * next_balance will be updated only when there is a need.
  4038. * When the cpu is attached to null domain for ex, it will not be
  4039. * updated.
  4040. */
  4041. if (likely(update_next_balance))
  4042. rq->next_balance = next_balance;
  4043. }
  4044. /*
  4045. * run_rebalance_domains is triggered when needed from the scheduler tick.
  4046. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  4047. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  4048. */
  4049. static void run_rebalance_domains(struct softirq_action *h)
  4050. {
  4051. int this_cpu = smp_processor_id();
  4052. struct rq *this_rq = cpu_rq(this_cpu);
  4053. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  4054. CPU_IDLE : CPU_NOT_IDLE;
  4055. rebalance_domains(this_cpu, idle);
  4056. #ifdef CONFIG_NO_HZ
  4057. /*
  4058. * If this cpu is the owner for idle load balancing, then do the
  4059. * balancing on behalf of the other idle cpus whose ticks are
  4060. * stopped.
  4061. */
  4062. if (this_rq->idle_at_tick &&
  4063. atomic_read(&nohz.load_balancer) == this_cpu) {
  4064. struct rq *rq;
  4065. int balance_cpu;
  4066. for_each_cpu(balance_cpu, nohz.cpu_mask) {
  4067. if (balance_cpu == this_cpu)
  4068. continue;
  4069. /*
  4070. * If this cpu gets work to do, stop the load balancing
  4071. * work being done for other cpus. Next load
  4072. * balancing owner will pick it up.
  4073. */
  4074. if (need_resched())
  4075. break;
  4076. rebalance_domains(balance_cpu, CPU_IDLE);
  4077. rq = cpu_rq(balance_cpu);
  4078. if (time_after(this_rq->next_balance, rq->next_balance))
  4079. this_rq->next_balance = rq->next_balance;
  4080. }
  4081. }
  4082. #endif
  4083. }
  4084. static inline int on_null_domain(int cpu)
  4085. {
  4086. return !rcu_dereference(cpu_rq(cpu)->sd);
  4087. }
  4088. /*
  4089. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  4090. *
  4091. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  4092. * idle load balancing owner or decide to stop the periodic load balancing,
  4093. * if the whole system is idle.
  4094. */
  4095. static inline void trigger_load_balance(struct rq *rq, int cpu)
  4096. {
  4097. #ifdef CONFIG_NO_HZ
  4098. /*
  4099. * If we were in the nohz mode recently and busy at the current
  4100. * scheduler tick, then check if we need to nominate new idle
  4101. * load balancer.
  4102. */
  4103. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  4104. rq->in_nohz_recently = 0;
  4105. if (atomic_read(&nohz.load_balancer) == cpu) {
  4106. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  4107. atomic_set(&nohz.load_balancer, -1);
  4108. }
  4109. if (atomic_read(&nohz.load_balancer) == -1) {
  4110. int ilb = find_new_ilb(cpu);
  4111. if (ilb < nr_cpu_ids)
  4112. resched_cpu(ilb);
  4113. }
  4114. }
  4115. /*
  4116. * If this cpu is idle and doing idle load balancing for all the
  4117. * cpus with ticks stopped, is it time for that to stop?
  4118. */
  4119. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  4120. cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  4121. resched_cpu(cpu);
  4122. return;
  4123. }
  4124. /*
  4125. * If this cpu is idle and the idle load balancing is done by
  4126. * someone else, then no need raise the SCHED_SOFTIRQ
  4127. */
  4128. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  4129. cpumask_test_cpu(cpu, nohz.cpu_mask))
  4130. return;
  4131. #endif
  4132. /* Don't need to rebalance while attached to NULL domain */
  4133. if (time_after_eq(jiffies, rq->next_balance) &&
  4134. likely(!on_null_domain(cpu)))
  4135. raise_softirq(SCHED_SOFTIRQ);
  4136. }
  4137. #else /* CONFIG_SMP */
  4138. /*
  4139. * on UP we do not need to balance between CPUs:
  4140. */
  4141. static inline void idle_balance(int cpu, struct rq *rq)
  4142. {
  4143. }
  4144. #endif
  4145. DEFINE_PER_CPU(struct kernel_stat, kstat);
  4146. EXPORT_PER_CPU_SYMBOL(kstat);
  4147. /*
  4148. * Return any ns on the sched_clock that have not yet been accounted in
  4149. * @p in case that task is currently running.
  4150. *
  4151. * Called with task_rq_lock() held on @rq.
  4152. */
  4153. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  4154. {
  4155. u64 ns = 0;
  4156. if (task_current(rq, p)) {
  4157. update_rq_clock(rq);
  4158. ns = rq->clock - p->se.exec_start;
  4159. if ((s64)ns < 0)
  4160. ns = 0;
  4161. }
  4162. return ns;
  4163. }
  4164. unsigned long long task_delta_exec(struct task_struct *p)
  4165. {
  4166. unsigned long flags;
  4167. struct rq *rq;
  4168. u64 ns = 0;
  4169. rq = task_rq_lock(p, &flags);
  4170. ns = do_task_delta_exec(p, rq);
  4171. task_rq_unlock(rq, &flags);
  4172. return ns;
  4173. }
  4174. /*
  4175. * Return accounted runtime for the task.
  4176. * In case the task is currently running, return the runtime plus current's
  4177. * pending runtime that have not been accounted yet.
  4178. */
  4179. unsigned long long task_sched_runtime(struct task_struct *p)
  4180. {
  4181. unsigned long flags;
  4182. struct rq *rq;
  4183. u64 ns = 0;
  4184. rq = task_rq_lock(p, &flags);
  4185. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  4186. task_rq_unlock(rq, &flags);
  4187. return ns;
  4188. }
  4189. /*
  4190. * Return sum_exec_runtime for the thread group.
  4191. * In case the task is currently running, return the sum plus current's
  4192. * pending runtime that have not been accounted yet.
  4193. *
  4194. * Note that the thread group might have other running tasks as well,
  4195. * so the return value not includes other pending runtime that other
  4196. * running tasks might have.
  4197. */
  4198. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  4199. {
  4200. struct task_cputime totals;
  4201. unsigned long flags;
  4202. struct rq *rq;
  4203. u64 ns;
  4204. rq = task_rq_lock(p, &flags);
  4205. thread_group_cputime(p, &totals);
  4206. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  4207. task_rq_unlock(rq, &flags);
  4208. return ns;
  4209. }
  4210. /*
  4211. * Account user cpu time to a process.
  4212. * @p: the process that the cpu time gets accounted to
  4213. * @cputime: the cpu time spent in user space since the last update
  4214. * @cputime_scaled: cputime scaled by cpu frequency
  4215. */
  4216. void account_user_time(struct task_struct *p, cputime_t cputime,
  4217. cputime_t cputime_scaled)
  4218. {
  4219. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4220. cputime64_t tmp;
  4221. /* Add user time to process. */
  4222. p->utime = cputime_add(p->utime, cputime);
  4223. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  4224. account_group_user_time(p, cputime);
  4225. /* Add user time to cpustat. */
  4226. tmp = cputime_to_cputime64(cputime);
  4227. if (TASK_NICE(p) > 0)
  4228. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  4229. else
  4230. cpustat->user = cputime64_add(cpustat->user, tmp);
  4231. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  4232. /* Account for user time used */
  4233. acct_update_integrals(p);
  4234. }
  4235. /*
  4236. * Account guest cpu time to a process.
  4237. * @p: the process that the cpu time gets accounted to
  4238. * @cputime: the cpu time spent in virtual machine since the last update
  4239. * @cputime_scaled: cputime scaled by cpu frequency
  4240. */
  4241. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  4242. cputime_t cputime_scaled)
  4243. {
  4244. cputime64_t tmp;
  4245. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4246. tmp = cputime_to_cputime64(cputime);
  4247. /* Add guest time to process. */
  4248. p->utime = cputime_add(p->utime, cputime);
  4249. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  4250. account_group_user_time(p, cputime);
  4251. p->gtime = cputime_add(p->gtime, cputime);
  4252. /* Add guest time to cpustat. */
  4253. cpustat->user = cputime64_add(cpustat->user, tmp);
  4254. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  4255. }
  4256. /*
  4257. * Account system cpu time to a process.
  4258. * @p: the process that the cpu time gets accounted to
  4259. * @hardirq_offset: the offset to subtract from hardirq_count()
  4260. * @cputime: the cpu time spent in kernel space since the last update
  4261. * @cputime_scaled: cputime scaled by cpu frequency
  4262. */
  4263. void account_system_time(struct task_struct *p, int hardirq_offset,
  4264. cputime_t cputime, cputime_t cputime_scaled)
  4265. {
  4266. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4267. cputime64_t tmp;
  4268. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  4269. account_guest_time(p, cputime, cputime_scaled);
  4270. return;
  4271. }
  4272. /* Add system time to process. */
  4273. p->stime = cputime_add(p->stime, cputime);
  4274. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  4275. account_group_system_time(p, cputime);
  4276. /* Add system time to cpustat. */
  4277. tmp = cputime_to_cputime64(cputime);
  4278. if (hardirq_count() - hardirq_offset)
  4279. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  4280. else if (softirq_count())
  4281. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  4282. else
  4283. cpustat->system = cputime64_add(cpustat->system, tmp);
  4284. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  4285. /* Account for system time used */
  4286. acct_update_integrals(p);
  4287. }
  4288. /*
  4289. * Account for involuntary wait time.
  4290. * @steal: the cpu time spent in involuntary wait
  4291. */
  4292. void account_steal_time(cputime_t cputime)
  4293. {
  4294. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4295. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4296. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  4297. }
  4298. /*
  4299. * Account for idle time.
  4300. * @cputime: the cpu time spent in idle wait
  4301. */
  4302. void account_idle_time(cputime_t cputime)
  4303. {
  4304. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4305. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4306. struct rq *rq = this_rq();
  4307. if (atomic_read(&rq->nr_iowait) > 0)
  4308. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  4309. else
  4310. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  4311. }
  4312. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  4313. /*
  4314. * Account a single tick of cpu time.
  4315. * @p: the process that the cpu time gets accounted to
  4316. * @user_tick: indicates if the tick is a user or a system tick
  4317. */
  4318. void account_process_tick(struct task_struct *p, int user_tick)
  4319. {
  4320. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  4321. struct rq *rq = this_rq();
  4322. if (user_tick)
  4323. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  4324. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  4325. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  4326. one_jiffy_scaled);
  4327. else
  4328. account_idle_time(cputime_one_jiffy);
  4329. }
  4330. /*
  4331. * Account multiple ticks of steal time.
  4332. * @p: the process from which the cpu time has been stolen
  4333. * @ticks: number of stolen ticks
  4334. */
  4335. void account_steal_ticks(unsigned long ticks)
  4336. {
  4337. account_steal_time(jiffies_to_cputime(ticks));
  4338. }
  4339. /*
  4340. * Account multiple ticks of idle time.
  4341. * @ticks: number of stolen ticks
  4342. */
  4343. void account_idle_ticks(unsigned long ticks)
  4344. {
  4345. account_idle_time(jiffies_to_cputime(ticks));
  4346. }
  4347. #endif
  4348. /*
  4349. * Use precise platform statistics if available:
  4350. */
  4351. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  4352. cputime_t task_utime(struct task_struct *p)
  4353. {
  4354. return p->utime;
  4355. }
  4356. cputime_t task_stime(struct task_struct *p)
  4357. {
  4358. return p->stime;
  4359. }
  4360. #else
  4361. cputime_t task_utime(struct task_struct *p)
  4362. {
  4363. clock_t utime = cputime_to_clock_t(p->utime),
  4364. total = utime + cputime_to_clock_t(p->stime);
  4365. u64 temp;
  4366. /*
  4367. * Use CFS's precise accounting:
  4368. */
  4369. temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
  4370. if (total) {
  4371. temp *= utime;
  4372. do_div(temp, total);
  4373. }
  4374. utime = (clock_t)temp;
  4375. p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
  4376. return p->prev_utime;
  4377. }
  4378. cputime_t task_stime(struct task_struct *p)
  4379. {
  4380. clock_t stime;
  4381. /*
  4382. * Use CFS's precise accounting. (we subtract utime from
  4383. * the total, to make sure the total observed by userspace
  4384. * grows monotonically - apps rely on that):
  4385. */
  4386. stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
  4387. cputime_to_clock_t(task_utime(p));
  4388. if (stime >= 0)
  4389. p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
  4390. return p->prev_stime;
  4391. }
  4392. #endif
  4393. inline cputime_t task_gtime(struct task_struct *p)
  4394. {
  4395. return p->gtime;
  4396. }
  4397. /*
  4398. * This function gets called by the timer code, with HZ frequency.
  4399. * We call it with interrupts disabled.
  4400. *
  4401. * It also gets called by the fork code, when changing the parent's
  4402. * timeslices.
  4403. */
  4404. void scheduler_tick(void)
  4405. {
  4406. int cpu = smp_processor_id();
  4407. struct rq *rq = cpu_rq(cpu);
  4408. struct task_struct *curr = rq->curr;
  4409. sched_clock_tick();
  4410. spin_lock(&rq->lock);
  4411. update_rq_clock(rq);
  4412. update_cpu_load(rq);
  4413. curr->sched_class->task_tick(rq, curr, 0);
  4414. spin_unlock(&rq->lock);
  4415. perf_event_task_tick(curr, cpu);
  4416. #ifdef CONFIG_SMP
  4417. rq->idle_at_tick = idle_cpu(cpu);
  4418. trigger_load_balance(rq, cpu);
  4419. #endif
  4420. }
  4421. notrace unsigned long get_parent_ip(unsigned long addr)
  4422. {
  4423. if (in_lock_functions(addr)) {
  4424. addr = CALLER_ADDR2;
  4425. if (in_lock_functions(addr))
  4426. addr = CALLER_ADDR3;
  4427. }
  4428. return addr;
  4429. }
  4430. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  4431. defined(CONFIG_PREEMPT_TRACER))
  4432. void __kprobes add_preempt_count(int val)
  4433. {
  4434. #ifdef CONFIG_DEBUG_PREEMPT
  4435. /*
  4436. * Underflow?
  4437. */
  4438. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  4439. return;
  4440. #endif
  4441. preempt_count() += val;
  4442. #ifdef CONFIG_DEBUG_PREEMPT
  4443. /*
  4444. * Spinlock count overflowing soon?
  4445. */
  4446. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  4447. PREEMPT_MASK - 10);
  4448. #endif
  4449. if (preempt_count() == val)
  4450. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4451. }
  4452. EXPORT_SYMBOL(add_preempt_count);
  4453. void __kprobes sub_preempt_count(int val)
  4454. {
  4455. #ifdef CONFIG_DEBUG_PREEMPT
  4456. /*
  4457. * Underflow?
  4458. */
  4459. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  4460. return;
  4461. /*
  4462. * Is the spinlock portion underflowing?
  4463. */
  4464. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  4465. !(preempt_count() & PREEMPT_MASK)))
  4466. return;
  4467. #endif
  4468. if (preempt_count() == val)
  4469. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4470. preempt_count() -= val;
  4471. }
  4472. EXPORT_SYMBOL(sub_preempt_count);
  4473. #endif
  4474. /*
  4475. * Print scheduling while atomic bug:
  4476. */
  4477. static noinline void __schedule_bug(struct task_struct *prev)
  4478. {
  4479. struct pt_regs *regs = get_irq_regs();
  4480. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  4481. prev->comm, prev->pid, preempt_count());
  4482. debug_show_held_locks(prev);
  4483. print_modules();
  4484. if (irqs_disabled())
  4485. print_irqtrace_events(prev);
  4486. if (regs)
  4487. show_regs(regs);
  4488. else
  4489. dump_stack();
  4490. }
  4491. /*
  4492. * Various schedule()-time debugging checks and statistics:
  4493. */
  4494. static inline void schedule_debug(struct task_struct *prev)
  4495. {
  4496. /*
  4497. * Test if we are atomic. Since do_exit() needs to call into
  4498. * schedule() atomically, we ignore that path for now.
  4499. * Otherwise, whine if we are scheduling when we should not be.
  4500. */
  4501. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  4502. __schedule_bug(prev);
  4503. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  4504. schedstat_inc(this_rq(), sched_count);
  4505. #ifdef CONFIG_SCHEDSTATS
  4506. if (unlikely(prev->lock_depth >= 0)) {
  4507. schedstat_inc(this_rq(), bkl_count);
  4508. schedstat_inc(prev, sched_info.bkl_count);
  4509. }
  4510. #endif
  4511. }
  4512. static void put_prev_task(struct rq *rq, struct task_struct *p)
  4513. {
  4514. u64 runtime = p->se.sum_exec_runtime - p->se.prev_sum_exec_runtime;
  4515. update_avg(&p->se.avg_running, runtime);
  4516. if (p->state == TASK_RUNNING) {
  4517. /*
  4518. * In order to avoid avg_overlap growing stale when we are
  4519. * indeed overlapping and hence not getting put to sleep, grow
  4520. * the avg_overlap on preemption.
  4521. *
  4522. * We use the average preemption runtime because that
  4523. * correlates to the amount of cache footprint a task can
  4524. * build up.
  4525. */
  4526. runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
  4527. update_avg(&p->se.avg_overlap, runtime);
  4528. } else {
  4529. update_avg(&p->se.avg_running, 0);
  4530. }
  4531. p->sched_class->put_prev_task(rq, p);
  4532. }
  4533. /*
  4534. * Pick up the highest-prio task:
  4535. */
  4536. static inline struct task_struct *
  4537. pick_next_task(struct rq *rq)
  4538. {
  4539. const struct sched_class *class;
  4540. struct task_struct *p;
  4541. /*
  4542. * Optimization: we know that if all tasks are in
  4543. * the fair class we can call that function directly:
  4544. */
  4545. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  4546. p = fair_sched_class.pick_next_task(rq);
  4547. if (likely(p))
  4548. return p;
  4549. }
  4550. class = sched_class_highest;
  4551. for ( ; ; ) {
  4552. p = class->pick_next_task(rq);
  4553. if (p)
  4554. return p;
  4555. /*
  4556. * Will never be NULL as the idle class always
  4557. * returns a non-NULL p:
  4558. */
  4559. class = class->next;
  4560. }
  4561. }
  4562. /*
  4563. * schedule() is the main scheduler function.
  4564. */
  4565. asmlinkage void __sched schedule(void)
  4566. {
  4567. struct task_struct *prev, *next;
  4568. unsigned long *switch_count;
  4569. struct rq *rq;
  4570. int cpu;
  4571. need_resched:
  4572. preempt_disable();
  4573. cpu = smp_processor_id();
  4574. rq = cpu_rq(cpu);
  4575. rcu_sched_qs(cpu);
  4576. prev = rq->curr;
  4577. switch_count = &prev->nivcsw;
  4578. release_kernel_lock(prev);
  4579. need_resched_nonpreemptible:
  4580. schedule_debug(prev);
  4581. if (sched_feat(HRTICK))
  4582. hrtick_clear(rq);
  4583. spin_lock_irq(&rq->lock);
  4584. update_rq_clock(rq);
  4585. clear_tsk_need_resched(prev);
  4586. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  4587. if (unlikely(signal_pending_state(prev->state, prev)))
  4588. prev->state = TASK_RUNNING;
  4589. else
  4590. deactivate_task(rq, prev, 1);
  4591. switch_count = &prev->nvcsw;
  4592. }
  4593. pre_schedule(rq, prev);
  4594. if (unlikely(!rq->nr_running))
  4595. idle_balance(cpu, rq);
  4596. put_prev_task(rq, prev);
  4597. next = pick_next_task(rq);
  4598. if (likely(prev != next)) {
  4599. sched_info_switch(prev, next);
  4600. perf_event_task_sched_out(prev, next, cpu);
  4601. rq->nr_switches++;
  4602. rq->curr = next;
  4603. ++*switch_count;
  4604. context_switch(rq, prev, next); /* unlocks the rq */
  4605. /*
  4606. * the context switch might have flipped the stack from under
  4607. * us, hence refresh the local variables.
  4608. */
  4609. cpu = smp_processor_id();
  4610. rq = cpu_rq(cpu);
  4611. } else
  4612. spin_unlock_irq(&rq->lock);
  4613. post_schedule(rq);
  4614. if (unlikely(reacquire_kernel_lock(current) < 0))
  4615. goto need_resched_nonpreemptible;
  4616. preempt_enable_no_resched();
  4617. if (need_resched())
  4618. goto need_resched;
  4619. }
  4620. EXPORT_SYMBOL(schedule);
  4621. #ifdef CONFIG_SMP
  4622. /*
  4623. * Look out! "owner" is an entirely speculative pointer
  4624. * access and not reliable.
  4625. */
  4626. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  4627. {
  4628. unsigned int cpu;
  4629. struct rq *rq;
  4630. if (!sched_feat(OWNER_SPIN))
  4631. return 0;
  4632. #ifdef CONFIG_DEBUG_PAGEALLOC
  4633. /*
  4634. * Need to access the cpu field knowing that
  4635. * DEBUG_PAGEALLOC could have unmapped it if
  4636. * the mutex owner just released it and exited.
  4637. */
  4638. if (probe_kernel_address(&owner->cpu, cpu))
  4639. goto out;
  4640. #else
  4641. cpu = owner->cpu;
  4642. #endif
  4643. /*
  4644. * Even if the access succeeded (likely case),
  4645. * the cpu field may no longer be valid.
  4646. */
  4647. if (cpu >= nr_cpumask_bits)
  4648. goto out;
  4649. /*
  4650. * We need to validate that we can do a
  4651. * get_cpu() and that we have the percpu area.
  4652. */
  4653. if (!cpu_online(cpu))
  4654. goto out;
  4655. rq = cpu_rq(cpu);
  4656. for (;;) {
  4657. /*
  4658. * Owner changed, break to re-assess state.
  4659. */
  4660. if (lock->owner != owner)
  4661. break;
  4662. /*
  4663. * Is that owner really running on that cpu?
  4664. */
  4665. if (task_thread_info(rq->curr) != owner || need_resched())
  4666. return 0;
  4667. cpu_relax();
  4668. }
  4669. out:
  4670. return 1;
  4671. }
  4672. #endif
  4673. #ifdef CONFIG_PREEMPT
  4674. /*
  4675. * this is the entry point to schedule() from in-kernel preemption
  4676. * off of preempt_enable. Kernel preemptions off return from interrupt
  4677. * occur there and call schedule directly.
  4678. */
  4679. asmlinkage void __sched preempt_schedule(void)
  4680. {
  4681. struct thread_info *ti = current_thread_info();
  4682. /*
  4683. * If there is a non-zero preempt_count or interrupts are disabled,
  4684. * we do not want to preempt the current task. Just return..
  4685. */
  4686. if (likely(ti->preempt_count || irqs_disabled()))
  4687. return;
  4688. do {
  4689. add_preempt_count(PREEMPT_ACTIVE);
  4690. schedule();
  4691. sub_preempt_count(PREEMPT_ACTIVE);
  4692. /*
  4693. * Check again in case we missed a preemption opportunity
  4694. * between schedule and now.
  4695. */
  4696. barrier();
  4697. } while (need_resched());
  4698. }
  4699. EXPORT_SYMBOL(preempt_schedule);
  4700. /*
  4701. * this is the entry point to schedule() from kernel preemption
  4702. * off of irq context.
  4703. * Note, that this is called and return with irqs disabled. This will
  4704. * protect us against recursive calling from irq.
  4705. */
  4706. asmlinkage void __sched preempt_schedule_irq(void)
  4707. {
  4708. struct thread_info *ti = current_thread_info();
  4709. /* Catch callers which need to be fixed */
  4710. BUG_ON(ti->preempt_count || !irqs_disabled());
  4711. do {
  4712. add_preempt_count(PREEMPT_ACTIVE);
  4713. local_irq_enable();
  4714. schedule();
  4715. local_irq_disable();
  4716. sub_preempt_count(PREEMPT_ACTIVE);
  4717. /*
  4718. * Check again in case we missed a preemption opportunity
  4719. * between schedule and now.
  4720. */
  4721. barrier();
  4722. } while (need_resched());
  4723. }
  4724. #endif /* CONFIG_PREEMPT */
  4725. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  4726. void *key)
  4727. {
  4728. return try_to_wake_up(curr->private, mode, wake_flags);
  4729. }
  4730. EXPORT_SYMBOL(default_wake_function);
  4731. /*
  4732. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  4733. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  4734. * number) then we wake all the non-exclusive tasks and one exclusive task.
  4735. *
  4736. * There are circumstances in which we can try to wake a task which has already
  4737. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  4738. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  4739. */
  4740. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  4741. int nr_exclusive, int wake_flags, void *key)
  4742. {
  4743. wait_queue_t *curr, *next;
  4744. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  4745. unsigned flags = curr->flags;
  4746. if (curr->func(curr, mode, wake_flags, key) &&
  4747. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  4748. break;
  4749. }
  4750. }
  4751. /**
  4752. * __wake_up - wake up threads blocked on a waitqueue.
  4753. * @q: the waitqueue
  4754. * @mode: which threads
  4755. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4756. * @key: is directly passed to the wakeup function
  4757. *
  4758. * It may be assumed that this function implies a write memory barrier before
  4759. * changing the task state if and only if any tasks are woken up.
  4760. */
  4761. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  4762. int nr_exclusive, void *key)
  4763. {
  4764. unsigned long flags;
  4765. spin_lock_irqsave(&q->lock, flags);
  4766. __wake_up_common(q, mode, nr_exclusive, 0, key);
  4767. spin_unlock_irqrestore(&q->lock, flags);
  4768. }
  4769. EXPORT_SYMBOL(__wake_up);
  4770. /*
  4771. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  4772. */
  4773. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  4774. {
  4775. __wake_up_common(q, mode, 1, 0, NULL);
  4776. }
  4777. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  4778. {
  4779. __wake_up_common(q, mode, 1, 0, key);
  4780. }
  4781. /**
  4782. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  4783. * @q: the waitqueue
  4784. * @mode: which threads
  4785. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4786. * @key: opaque value to be passed to wakeup targets
  4787. *
  4788. * The sync wakeup differs that the waker knows that it will schedule
  4789. * away soon, so while the target thread will be woken up, it will not
  4790. * be migrated to another CPU - ie. the two threads are 'synchronized'
  4791. * with each other. This can prevent needless bouncing between CPUs.
  4792. *
  4793. * On UP it can prevent extra preemption.
  4794. *
  4795. * It may be assumed that this function implies a write memory barrier before
  4796. * changing the task state if and only if any tasks are woken up.
  4797. */
  4798. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  4799. int nr_exclusive, void *key)
  4800. {
  4801. unsigned long flags;
  4802. int wake_flags = WF_SYNC;
  4803. if (unlikely(!q))
  4804. return;
  4805. if (unlikely(!nr_exclusive))
  4806. wake_flags = 0;
  4807. spin_lock_irqsave(&q->lock, flags);
  4808. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  4809. spin_unlock_irqrestore(&q->lock, flags);
  4810. }
  4811. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  4812. /*
  4813. * __wake_up_sync - see __wake_up_sync_key()
  4814. */
  4815. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  4816. {
  4817. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  4818. }
  4819. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  4820. /**
  4821. * complete: - signals a single thread waiting on this completion
  4822. * @x: holds the state of this particular completion
  4823. *
  4824. * This will wake up a single thread waiting on this completion. Threads will be
  4825. * awakened in the same order in which they were queued.
  4826. *
  4827. * See also complete_all(), wait_for_completion() and related routines.
  4828. *
  4829. * It may be assumed that this function implies a write memory barrier before
  4830. * changing the task state if and only if any tasks are woken up.
  4831. */
  4832. void complete(struct completion *x)
  4833. {
  4834. unsigned long flags;
  4835. spin_lock_irqsave(&x->wait.lock, flags);
  4836. x->done++;
  4837. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  4838. spin_unlock_irqrestore(&x->wait.lock, flags);
  4839. }
  4840. EXPORT_SYMBOL(complete);
  4841. /**
  4842. * complete_all: - signals all threads waiting on this completion
  4843. * @x: holds the state of this particular completion
  4844. *
  4845. * This will wake up all threads waiting on this particular completion event.
  4846. *
  4847. * It may be assumed that this function implies a write memory barrier before
  4848. * changing the task state if and only if any tasks are woken up.
  4849. */
  4850. void complete_all(struct completion *x)
  4851. {
  4852. unsigned long flags;
  4853. spin_lock_irqsave(&x->wait.lock, flags);
  4854. x->done += UINT_MAX/2;
  4855. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  4856. spin_unlock_irqrestore(&x->wait.lock, flags);
  4857. }
  4858. EXPORT_SYMBOL(complete_all);
  4859. static inline long __sched
  4860. do_wait_for_common(struct completion *x, long timeout, int state)
  4861. {
  4862. if (!x->done) {
  4863. DECLARE_WAITQUEUE(wait, current);
  4864. wait.flags |= WQ_FLAG_EXCLUSIVE;
  4865. __add_wait_queue_tail(&x->wait, &wait);
  4866. do {
  4867. if (signal_pending_state(state, current)) {
  4868. timeout = -ERESTARTSYS;
  4869. break;
  4870. }
  4871. __set_current_state(state);
  4872. spin_unlock_irq(&x->wait.lock);
  4873. timeout = schedule_timeout(timeout);
  4874. spin_lock_irq(&x->wait.lock);
  4875. } while (!x->done && timeout);
  4876. __remove_wait_queue(&x->wait, &wait);
  4877. if (!x->done)
  4878. return timeout;
  4879. }
  4880. x->done--;
  4881. return timeout ?: 1;
  4882. }
  4883. static long __sched
  4884. wait_for_common(struct completion *x, long timeout, int state)
  4885. {
  4886. might_sleep();
  4887. spin_lock_irq(&x->wait.lock);
  4888. timeout = do_wait_for_common(x, timeout, state);
  4889. spin_unlock_irq(&x->wait.lock);
  4890. return timeout;
  4891. }
  4892. /**
  4893. * wait_for_completion: - waits for completion of a task
  4894. * @x: holds the state of this particular completion
  4895. *
  4896. * This waits to be signaled for completion of a specific task. It is NOT
  4897. * interruptible and there is no timeout.
  4898. *
  4899. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4900. * and interrupt capability. Also see complete().
  4901. */
  4902. void __sched wait_for_completion(struct completion *x)
  4903. {
  4904. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4905. }
  4906. EXPORT_SYMBOL(wait_for_completion);
  4907. /**
  4908. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4909. * @x: holds the state of this particular completion
  4910. * @timeout: timeout value in jiffies
  4911. *
  4912. * This waits for either a completion of a specific task to be signaled or for a
  4913. * specified timeout to expire. The timeout is in jiffies. It is not
  4914. * interruptible.
  4915. */
  4916. unsigned long __sched
  4917. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4918. {
  4919. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4920. }
  4921. EXPORT_SYMBOL(wait_for_completion_timeout);
  4922. /**
  4923. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  4924. * @x: holds the state of this particular completion
  4925. *
  4926. * This waits for completion of a specific task to be signaled. It is
  4927. * interruptible.
  4928. */
  4929. int __sched wait_for_completion_interruptible(struct completion *x)
  4930. {
  4931. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4932. if (t == -ERESTARTSYS)
  4933. return t;
  4934. return 0;
  4935. }
  4936. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4937. /**
  4938. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  4939. * @x: holds the state of this particular completion
  4940. * @timeout: timeout value in jiffies
  4941. *
  4942. * This waits for either a completion of a specific task to be signaled or for a
  4943. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  4944. */
  4945. unsigned long __sched
  4946. wait_for_completion_interruptible_timeout(struct completion *x,
  4947. unsigned long timeout)
  4948. {
  4949. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4950. }
  4951. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4952. /**
  4953. * wait_for_completion_killable: - waits for completion of a task (killable)
  4954. * @x: holds the state of this particular completion
  4955. *
  4956. * This waits to be signaled for completion of a specific task. It can be
  4957. * interrupted by a kill signal.
  4958. */
  4959. int __sched wait_for_completion_killable(struct completion *x)
  4960. {
  4961. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4962. if (t == -ERESTARTSYS)
  4963. return t;
  4964. return 0;
  4965. }
  4966. EXPORT_SYMBOL(wait_for_completion_killable);
  4967. /**
  4968. * try_wait_for_completion - try to decrement a completion without blocking
  4969. * @x: completion structure
  4970. *
  4971. * Returns: 0 if a decrement cannot be done without blocking
  4972. * 1 if a decrement succeeded.
  4973. *
  4974. * If a completion is being used as a counting completion,
  4975. * attempt to decrement the counter without blocking. This
  4976. * enables us to avoid waiting if the resource the completion
  4977. * is protecting is not available.
  4978. */
  4979. bool try_wait_for_completion(struct completion *x)
  4980. {
  4981. int ret = 1;
  4982. spin_lock_irq(&x->wait.lock);
  4983. if (!x->done)
  4984. ret = 0;
  4985. else
  4986. x->done--;
  4987. spin_unlock_irq(&x->wait.lock);
  4988. return ret;
  4989. }
  4990. EXPORT_SYMBOL(try_wait_for_completion);
  4991. /**
  4992. * completion_done - Test to see if a completion has any waiters
  4993. * @x: completion structure
  4994. *
  4995. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  4996. * 1 if there are no waiters.
  4997. *
  4998. */
  4999. bool completion_done(struct completion *x)
  5000. {
  5001. int ret = 1;
  5002. spin_lock_irq(&x->wait.lock);
  5003. if (!x->done)
  5004. ret = 0;
  5005. spin_unlock_irq(&x->wait.lock);
  5006. return ret;
  5007. }
  5008. EXPORT_SYMBOL(completion_done);
  5009. static long __sched
  5010. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  5011. {
  5012. unsigned long flags;
  5013. wait_queue_t wait;
  5014. init_waitqueue_entry(&wait, current);
  5015. __set_current_state(state);
  5016. spin_lock_irqsave(&q->lock, flags);
  5017. __add_wait_queue(q, &wait);
  5018. spin_unlock(&q->lock);
  5019. timeout = schedule_timeout(timeout);
  5020. spin_lock_irq(&q->lock);
  5021. __remove_wait_queue(q, &wait);
  5022. spin_unlock_irqrestore(&q->lock, flags);
  5023. return timeout;
  5024. }
  5025. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  5026. {
  5027. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  5028. }
  5029. EXPORT_SYMBOL(interruptible_sleep_on);
  5030. long __sched
  5031. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  5032. {
  5033. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  5034. }
  5035. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  5036. void __sched sleep_on(wait_queue_head_t *q)
  5037. {
  5038. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  5039. }
  5040. EXPORT_SYMBOL(sleep_on);
  5041. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  5042. {
  5043. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  5044. }
  5045. EXPORT_SYMBOL(sleep_on_timeout);
  5046. #ifdef CONFIG_RT_MUTEXES
  5047. /*
  5048. * rt_mutex_setprio - set the current priority of a task
  5049. * @p: task
  5050. * @prio: prio value (kernel-internal form)
  5051. *
  5052. * This function changes the 'effective' priority of a task. It does
  5053. * not touch ->normal_prio like __setscheduler().
  5054. *
  5055. * Used by the rt_mutex code to implement priority inheritance logic.
  5056. */
  5057. void rt_mutex_setprio(struct task_struct *p, int prio)
  5058. {
  5059. unsigned long flags;
  5060. int oldprio, on_rq, running;
  5061. struct rq *rq;
  5062. const struct sched_class *prev_class = p->sched_class;
  5063. BUG_ON(prio < 0 || prio > MAX_PRIO);
  5064. rq = task_rq_lock(p, &flags);
  5065. update_rq_clock(rq);
  5066. oldprio = p->prio;
  5067. on_rq = p->se.on_rq;
  5068. running = task_current(rq, p);
  5069. if (on_rq)
  5070. dequeue_task(rq, p, 0);
  5071. if (running)
  5072. p->sched_class->put_prev_task(rq, p);
  5073. if (rt_prio(prio))
  5074. p->sched_class = &rt_sched_class;
  5075. else
  5076. p->sched_class = &fair_sched_class;
  5077. p->prio = prio;
  5078. if (running)
  5079. p->sched_class->set_curr_task(rq);
  5080. if (on_rq) {
  5081. enqueue_task(rq, p, 0);
  5082. check_class_changed(rq, p, prev_class, oldprio, running);
  5083. }
  5084. task_rq_unlock(rq, &flags);
  5085. }
  5086. #endif
  5087. void set_user_nice(struct task_struct *p, long nice)
  5088. {
  5089. int old_prio, delta, on_rq;
  5090. unsigned long flags;
  5091. struct rq *rq;
  5092. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  5093. return;
  5094. /*
  5095. * We have to be careful, if called from sys_setpriority(),
  5096. * the task might be in the middle of scheduling on another CPU.
  5097. */
  5098. rq = task_rq_lock(p, &flags);
  5099. update_rq_clock(rq);
  5100. /*
  5101. * The RT priorities are set via sched_setscheduler(), but we still
  5102. * allow the 'normal' nice value to be set - but as expected
  5103. * it wont have any effect on scheduling until the task is
  5104. * SCHED_FIFO/SCHED_RR:
  5105. */
  5106. if (task_has_rt_policy(p)) {
  5107. p->static_prio = NICE_TO_PRIO(nice);
  5108. goto out_unlock;
  5109. }
  5110. on_rq = p->se.on_rq;
  5111. if (on_rq)
  5112. dequeue_task(rq, p, 0);
  5113. p->static_prio = NICE_TO_PRIO(nice);
  5114. set_load_weight(p);
  5115. old_prio = p->prio;
  5116. p->prio = effective_prio(p);
  5117. delta = p->prio - old_prio;
  5118. if (on_rq) {
  5119. enqueue_task(rq, p, 0);
  5120. /*
  5121. * If the task increased its priority or is running and
  5122. * lowered its priority, then reschedule its CPU:
  5123. */
  5124. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  5125. resched_task(rq->curr);
  5126. }
  5127. out_unlock:
  5128. task_rq_unlock(rq, &flags);
  5129. }
  5130. EXPORT_SYMBOL(set_user_nice);
  5131. /*
  5132. * can_nice - check if a task can reduce its nice value
  5133. * @p: task
  5134. * @nice: nice value
  5135. */
  5136. int can_nice(const struct task_struct *p, const int nice)
  5137. {
  5138. /* convert nice value [19,-20] to rlimit style value [1,40] */
  5139. int nice_rlim = 20 - nice;
  5140. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  5141. capable(CAP_SYS_NICE));
  5142. }
  5143. #ifdef __ARCH_WANT_SYS_NICE
  5144. /*
  5145. * sys_nice - change the priority of the current process.
  5146. * @increment: priority increment
  5147. *
  5148. * sys_setpriority is a more generic, but much slower function that
  5149. * does similar things.
  5150. */
  5151. SYSCALL_DEFINE1(nice, int, increment)
  5152. {
  5153. long nice, retval;
  5154. /*
  5155. * Setpriority might change our priority at the same moment.
  5156. * We don't have to worry. Conceptually one call occurs first
  5157. * and we have a single winner.
  5158. */
  5159. if (increment < -40)
  5160. increment = -40;
  5161. if (increment > 40)
  5162. increment = 40;
  5163. nice = TASK_NICE(current) + increment;
  5164. if (nice < -20)
  5165. nice = -20;
  5166. if (nice > 19)
  5167. nice = 19;
  5168. if (increment < 0 && !can_nice(current, nice))
  5169. return -EPERM;
  5170. retval = security_task_setnice(current, nice);
  5171. if (retval)
  5172. return retval;
  5173. set_user_nice(current, nice);
  5174. return 0;
  5175. }
  5176. #endif
  5177. /**
  5178. * task_prio - return the priority value of a given task.
  5179. * @p: the task in question.
  5180. *
  5181. * This is the priority value as seen by users in /proc.
  5182. * RT tasks are offset by -200. Normal tasks are centered
  5183. * around 0, value goes from -16 to +15.
  5184. */
  5185. int task_prio(const struct task_struct *p)
  5186. {
  5187. return p->prio - MAX_RT_PRIO;
  5188. }
  5189. /**
  5190. * task_nice - return the nice value of a given task.
  5191. * @p: the task in question.
  5192. */
  5193. int task_nice(const struct task_struct *p)
  5194. {
  5195. return TASK_NICE(p);
  5196. }
  5197. EXPORT_SYMBOL(task_nice);
  5198. /**
  5199. * idle_cpu - is a given cpu idle currently?
  5200. * @cpu: the processor in question.
  5201. */
  5202. int idle_cpu(int cpu)
  5203. {
  5204. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  5205. }
  5206. /**
  5207. * idle_task - return the idle task for a given cpu.
  5208. * @cpu: the processor in question.
  5209. */
  5210. struct task_struct *idle_task(int cpu)
  5211. {
  5212. return cpu_rq(cpu)->idle;
  5213. }
  5214. /**
  5215. * find_process_by_pid - find a process with a matching PID value.
  5216. * @pid: the pid in question.
  5217. */
  5218. static struct task_struct *find_process_by_pid(pid_t pid)
  5219. {
  5220. return pid ? find_task_by_vpid(pid) : current;
  5221. }
  5222. /* Actually do priority change: must hold rq lock. */
  5223. static void
  5224. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  5225. {
  5226. BUG_ON(p->se.on_rq);
  5227. p->policy = policy;
  5228. switch (p->policy) {
  5229. case SCHED_NORMAL:
  5230. case SCHED_BATCH:
  5231. case SCHED_IDLE:
  5232. p->sched_class = &fair_sched_class;
  5233. break;
  5234. case SCHED_FIFO:
  5235. case SCHED_RR:
  5236. p->sched_class = &rt_sched_class;
  5237. break;
  5238. }
  5239. p->rt_priority = prio;
  5240. p->normal_prio = normal_prio(p);
  5241. /* we are holding p->pi_lock already */
  5242. p->prio = rt_mutex_getprio(p);
  5243. set_load_weight(p);
  5244. }
  5245. /*
  5246. * check the target process has a UID that matches the current process's
  5247. */
  5248. static bool check_same_owner(struct task_struct *p)
  5249. {
  5250. const struct cred *cred = current_cred(), *pcred;
  5251. bool match;
  5252. rcu_read_lock();
  5253. pcred = __task_cred(p);
  5254. match = (cred->euid == pcred->euid ||
  5255. cred->euid == pcred->uid);
  5256. rcu_read_unlock();
  5257. return match;
  5258. }
  5259. static int __sched_setscheduler(struct task_struct *p, int policy,
  5260. struct sched_param *param, bool user)
  5261. {
  5262. int retval, oldprio, oldpolicy = -1, on_rq, running;
  5263. unsigned long flags;
  5264. const struct sched_class *prev_class = p->sched_class;
  5265. struct rq *rq;
  5266. int reset_on_fork;
  5267. /* may grab non-irq protected spin_locks */
  5268. BUG_ON(in_interrupt());
  5269. recheck:
  5270. /* double check policy once rq lock held */
  5271. if (policy < 0) {
  5272. reset_on_fork = p->sched_reset_on_fork;
  5273. policy = oldpolicy = p->policy;
  5274. } else {
  5275. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  5276. policy &= ~SCHED_RESET_ON_FORK;
  5277. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  5278. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  5279. policy != SCHED_IDLE)
  5280. return -EINVAL;
  5281. }
  5282. /*
  5283. * Valid priorities for SCHED_FIFO and SCHED_RR are
  5284. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  5285. * SCHED_BATCH and SCHED_IDLE is 0.
  5286. */
  5287. if (param->sched_priority < 0 ||
  5288. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  5289. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  5290. return -EINVAL;
  5291. if (rt_policy(policy) != (param->sched_priority != 0))
  5292. return -EINVAL;
  5293. /*
  5294. * Allow unprivileged RT tasks to decrease priority:
  5295. */
  5296. if (user && !capable(CAP_SYS_NICE)) {
  5297. if (rt_policy(policy)) {
  5298. unsigned long rlim_rtprio;
  5299. if (!lock_task_sighand(p, &flags))
  5300. return -ESRCH;
  5301. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  5302. unlock_task_sighand(p, &flags);
  5303. /* can't set/change the rt policy */
  5304. if (policy != p->policy && !rlim_rtprio)
  5305. return -EPERM;
  5306. /* can't increase priority */
  5307. if (param->sched_priority > p->rt_priority &&
  5308. param->sched_priority > rlim_rtprio)
  5309. return -EPERM;
  5310. }
  5311. /*
  5312. * Like positive nice levels, dont allow tasks to
  5313. * move out of SCHED_IDLE either:
  5314. */
  5315. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  5316. return -EPERM;
  5317. /* can't change other user's priorities */
  5318. if (!check_same_owner(p))
  5319. return -EPERM;
  5320. /* Normal users shall not reset the sched_reset_on_fork flag */
  5321. if (p->sched_reset_on_fork && !reset_on_fork)
  5322. return -EPERM;
  5323. }
  5324. if (user) {
  5325. #ifdef CONFIG_RT_GROUP_SCHED
  5326. /*
  5327. * Do not allow realtime tasks into groups that have no runtime
  5328. * assigned.
  5329. */
  5330. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  5331. task_group(p)->rt_bandwidth.rt_runtime == 0)
  5332. return -EPERM;
  5333. #endif
  5334. retval = security_task_setscheduler(p, policy, param);
  5335. if (retval)
  5336. return retval;
  5337. }
  5338. /*
  5339. * make sure no PI-waiters arrive (or leave) while we are
  5340. * changing the priority of the task:
  5341. */
  5342. spin_lock_irqsave(&p->pi_lock, flags);
  5343. /*
  5344. * To be able to change p->policy safely, the apropriate
  5345. * runqueue lock must be held.
  5346. */
  5347. rq = __task_rq_lock(p);
  5348. /* recheck policy now with rq lock held */
  5349. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  5350. policy = oldpolicy = -1;
  5351. __task_rq_unlock(rq);
  5352. spin_unlock_irqrestore(&p->pi_lock, flags);
  5353. goto recheck;
  5354. }
  5355. update_rq_clock(rq);
  5356. on_rq = p->se.on_rq;
  5357. running = task_current(rq, p);
  5358. if (on_rq)
  5359. deactivate_task(rq, p, 0);
  5360. if (running)
  5361. p->sched_class->put_prev_task(rq, p);
  5362. p->sched_reset_on_fork = reset_on_fork;
  5363. oldprio = p->prio;
  5364. __setscheduler(rq, p, policy, param->sched_priority);
  5365. if (running)
  5366. p->sched_class->set_curr_task(rq);
  5367. if (on_rq) {
  5368. activate_task(rq, p, 0);
  5369. check_class_changed(rq, p, prev_class, oldprio, running);
  5370. }
  5371. __task_rq_unlock(rq);
  5372. spin_unlock_irqrestore(&p->pi_lock, flags);
  5373. rt_mutex_adjust_pi(p);
  5374. return 0;
  5375. }
  5376. /**
  5377. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  5378. * @p: the task in question.
  5379. * @policy: new policy.
  5380. * @param: structure containing the new RT priority.
  5381. *
  5382. * NOTE that the task may be already dead.
  5383. */
  5384. int sched_setscheduler(struct task_struct *p, int policy,
  5385. struct sched_param *param)
  5386. {
  5387. return __sched_setscheduler(p, policy, param, true);
  5388. }
  5389. EXPORT_SYMBOL_GPL(sched_setscheduler);
  5390. /**
  5391. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  5392. * @p: the task in question.
  5393. * @policy: new policy.
  5394. * @param: structure containing the new RT priority.
  5395. *
  5396. * Just like sched_setscheduler, only don't bother checking if the
  5397. * current context has permission. For example, this is needed in
  5398. * stop_machine(): we create temporary high priority worker threads,
  5399. * but our caller might not have that capability.
  5400. */
  5401. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  5402. struct sched_param *param)
  5403. {
  5404. return __sched_setscheduler(p, policy, param, false);
  5405. }
  5406. static int
  5407. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  5408. {
  5409. struct sched_param lparam;
  5410. struct task_struct *p;
  5411. int retval;
  5412. if (!param || pid < 0)
  5413. return -EINVAL;
  5414. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  5415. return -EFAULT;
  5416. rcu_read_lock();
  5417. retval = -ESRCH;
  5418. p = find_process_by_pid(pid);
  5419. if (p != NULL)
  5420. retval = sched_setscheduler(p, policy, &lparam);
  5421. rcu_read_unlock();
  5422. return retval;
  5423. }
  5424. /**
  5425. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  5426. * @pid: the pid in question.
  5427. * @policy: new policy.
  5428. * @param: structure containing the new RT priority.
  5429. */
  5430. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  5431. struct sched_param __user *, param)
  5432. {
  5433. /* negative values for policy are not valid */
  5434. if (policy < 0)
  5435. return -EINVAL;
  5436. return do_sched_setscheduler(pid, policy, param);
  5437. }
  5438. /**
  5439. * sys_sched_setparam - set/change the RT priority of a thread
  5440. * @pid: the pid in question.
  5441. * @param: structure containing the new RT priority.
  5442. */
  5443. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  5444. {
  5445. return do_sched_setscheduler(pid, -1, param);
  5446. }
  5447. /**
  5448. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  5449. * @pid: the pid in question.
  5450. */
  5451. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  5452. {
  5453. struct task_struct *p;
  5454. int retval;
  5455. if (pid < 0)
  5456. return -EINVAL;
  5457. retval = -ESRCH;
  5458. read_lock(&tasklist_lock);
  5459. p = find_process_by_pid(pid);
  5460. if (p) {
  5461. retval = security_task_getscheduler(p);
  5462. if (!retval)
  5463. retval = p->policy
  5464. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  5465. }
  5466. read_unlock(&tasklist_lock);
  5467. return retval;
  5468. }
  5469. /**
  5470. * sys_sched_getparam - get the RT priority of a thread
  5471. * @pid: the pid in question.
  5472. * @param: structure containing the RT priority.
  5473. */
  5474. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  5475. {
  5476. struct sched_param lp;
  5477. struct task_struct *p;
  5478. int retval;
  5479. if (!param || pid < 0)
  5480. return -EINVAL;
  5481. read_lock(&tasklist_lock);
  5482. p = find_process_by_pid(pid);
  5483. retval = -ESRCH;
  5484. if (!p)
  5485. goto out_unlock;
  5486. retval = security_task_getscheduler(p);
  5487. if (retval)
  5488. goto out_unlock;
  5489. lp.sched_priority = p->rt_priority;
  5490. read_unlock(&tasklist_lock);
  5491. /*
  5492. * This one might sleep, we cannot do it with a spinlock held ...
  5493. */
  5494. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  5495. return retval;
  5496. out_unlock:
  5497. read_unlock(&tasklist_lock);
  5498. return retval;
  5499. }
  5500. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  5501. {
  5502. cpumask_var_t cpus_allowed, new_mask;
  5503. struct task_struct *p;
  5504. int retval;
  5505. get_online_cpus();
  5506. read_lock(&tasklist_lock);
  5507. p = find_process_by_pid(pid);
  5508. if (!p) {
  5509. read_unlock(&tasklist_lock);
  5510. put_online_cpus();
  5511. return -ESRCH;
  5512. }
  5513. /*
  5514. * It is not safe to call set_cpus_allowed with the
  5515. * tasklist_lock held. We will bump the task_struct's
  5516. * usage count and then drop tasklist_lock.
  5517. */
  5518. get_task_struct(p);
  5519. read_unlock(&tasklist_lock);
  5520. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  5521. retval = -ENOMEM;
  5522. goto out_put_task;
  5523. }
  5524. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  5525. retval = -ENOMEM;
  5526. goto out_free_cpus_allowed;
  5527. }
  5528. retval = -EPERM;
  5529. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  5530. goto out_unlock;
  5531. retval = security_task_setscheduler(p, 0, NULL);
  5532. if (retval)
  5533. goto out_unlock;
  5534. cpuset_cpus_allowed(p, cpus_allowed);
  5535. cpumask_and(new_mask, in_mask, cpus_allowed);
  5536. again:
  5537. retval = set_cpus_allowed_ptr(p, new_mask);
  5538. if (!retval) {
  5539. cpuset_cpus_allowed(p, cpus_allowed);
  5540. if (!cpumask_subset(new_mask, cpus_allowed)) {
  5541. /*
  5542. * We must have raced with a concurrent cpuset
  5543. * update. Just reset the cpus_allowed to the
  5544. * cpuset's cpus_allowed
  5545. */
  5546. cpumask_copy(new_mask, cpus_allowed);
  5547. goto again;
  5548. }
  5549. }
  5550. out_unlock:
  5551. free_cpumask_var(new_mask);
  5552. out_free_cpus_allowed:
  5553. free_cpumask_var(cpus_allowed);
  5554. out_put_task:
  5555. put_task_struct(p);
  5556. put_online_cpus();
  5557. return retval;
  5558. }
  5559. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  5560. struct cpumask *new_mask)
  5561. {
  5562. if (len < cpumask_size())
  5563. cpumask_clear(new_mask);
  5564. else if (len > cpumask_size())
  5565. len = cpumask_size();
  5566. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  5567. }
  5568. /**
  5569. * sys_sched_setaffinity - set the cpu affinity of a process
  5570. * @pid: pid of the process
  5571. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5572. * @user_mask_ptr: user-space pointer to the new cpu mask
  5573. */
  5574. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  5575. unsigned long __user *, user_mask_ptr)
  5576. {
  5577. cpumask_var_t new_mask;
  5578. int retval;
  5579. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  5580. return -ENOMEM;
  5581. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  5582. if (retval == 0)
  5583. retval = sched_setaffinity(pid, new_mask);
  5584. free_cpumask_var(new_mask);
  5585. return retval;
  5586. }
  5587. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  5588. {
  5589. struct task_struct *p;
  5590. int retval;
  5591. get_online_cpus();
  5592. read_lock(&tasklist_lock);
  5593. retval = -ESRCH;
  5594. p = find_process_by_pid(pid);
  5595. if (!p)
  5596. goto out_unlock;
  5597. retval = security_task_getscheduler(p);
  5598. if (retval)
  5599. goto out_unlock;
  5600. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  5601. out_unlock:
  5602. read_unlock(&tasklist_lock);
  5603. put_online_cpus();
  5604. return retval;
  5605. }
  5606. /**
  5607. * sys_sched_getaffinity - get the cpu affinity of a process
  5608. * @pid: pid of the process
  5609. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5610. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  5611. */
  5612. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  5613. unsigned long __user *, user_mask_ptr)
  5614. {
  5615. int ret;
  5616. cpumask_var_t mask;
  5617. if (len < cpumask_size())
  5618. return -EINVAL;
  5619. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  5620. return -ENOMEM;
  5621. ret = sched_getaffinity(pid, mask);
  5622. if (ret == 0) {
  5623. if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
  5624. ret = -EFAULT;
  5625. else
  5626. ret = cpumask_size();
  5627. }
  5628. free_cpumask_var(mask);
  5629. return ret;
  5630. }
  5631. /**
  5632. * sys_sched_yield - yield the current processor to other threads.
  5633. *
  5634. * This function yields the current CPU to other tasks. If there are no
  5635. * other threads running on this CPU then this function will return.
  5636. */
  5637. SYSCALL_DEFINE0(sched_yield)
  5638. {
  5639. struct rq *rq = this_rq_lock();
  5640. schedstat_inc(rq, yld_count);
  5641. current->sched_class->yield_task(rq);
  5642. /*
  5643. * Since we are going to call schedule() anyway, there's
  5644. * no need to preempt or enable interrupts:
  5645. */
  5646. __release(rq->lock);
  5647. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  5648. _raw_spin_unlock(&rq->lock);
  5649. preempt_enable_no_resched();
  5650. schedule();
  5651. return 0;
  5652. }
  5653. static inline int should_resched(void)
  5654. {
  5655. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  5656. }
  5657. static void __cond_resched(void)
  5658. {
  5659. add_preempt_count(PREEMPT_ACTIVE);
  5660. schedule();
  5661. sub_preempt_count(PREEMPT_ACTIVE);
  5662. }
  5663. int __sched _cond_resched(void)
  5664. {
  5665. if (should_resched()) {
  5666. __cond_resched();
  5667. return 1;
  5668. }
  5669. return 0;
  5670. }
  5671. EXPORT_SYMBOL(_cond_resched);
  5672. /*
  5673. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  5674. * call schedule, and on return reacquire the lock.
  5675. *
  5676. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  5677. * operations here to prevent schedule() from being called twice (once via
  5678. * spin_unlock(), once by hand).
  5679. */
  5680. int __cond_resched_lock(spinlock_t *lock)
  5681. {
  5682. int resched = should_resched();
  5683. int ret = 0;
  5684. lockdep_assert_held(lock);
  5685. if (spin_needbreak(lock) || resched) {
  5686. spin_unlock(lock);
  5687. if (resched)
  5688. __cond_resched();
  5689. else
  5690. cpu_relax();
  5691. ret = 1;
  5692. spin_lock(lock);
  5693. }
  5694. return ret;
  5695. }
  5696. EXPORT_SYMBOL(__cond_resched_lock);
  5697. int __sched __cond_resched_softirq(void)
  5698. {
  5699. BUG_ON(!in_softirq());
  5700. if (should_resched()) {
  5701. local_bh_enable();
  5702. __cond_resched();
  5703. local_bh_disable();
  5704. return 1;
  5705. }
  5706. return 0;
  5707. }
  5708. EXPORT_SYMBOL(__cond_resched_softirq);
  5709. /**
  5710. * yield - yield the current processor to other threads.
  5711. *
  5712. * This is a shortcut for kernel-space yielding - it marks the
  5713. * thread runnable and calls sys_sched_yield().
  5714. */
  5715. void __sched yield(void)
  5716. {
  5717. set_current_state(TASK_RUNNING);
  5718. sys_sched_yield();
  5719. }
  5720. EXPORT_SYMBOL(yield);
  5721. /*
  5722. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  5723. * that process accounting knows that this is a task in IO wait state.
  5724. */
  5725. void __sched io_schedule(void)
  5726. {
  5727. struct rq *rq = raw_rq();
  5728. delayacct_blkio_start();
  5729. atomic_inc(&rq->nr_iowait);
  5730. current->in_iowait = 1;
  5731. schedule();
  5732. current->in_iowait = 0;
  5733. atomic_dec(&rq->nr_iowait);
  5734. delayacct_blkio_end();
  5735. }
  5736. EXPORT_SYMBOL(io_schedule);
  5737. long __sched io_schedule_timeout(long timeout)
  5738. {
  5739. struct rq *rq = raw_rq();
  5740. long ret;
  5741. delayacct_blkio_start();
  5742. atomic_inc(&rq->nr_iowait);
  5743. current->in_iowait = 1;
  5744. ret = schedule_timeout(timeout);
  5745. current->in_iowait = 0;
  5746. atomic_dec(&rq->nr_iowait);
  5747. delayacct_blkio_end();
  5748. return ret;
  5749. }
  5750. /**
  5751. * sys_sched_get_priority_max - return maximum RT priority.
  5752. * @policy: scheduling class.
  5753. *
  5754. * this syscall returns the maximum rt_priority that can be used
  5755. * by a given scheduling class.
  5756. */
  5757. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  5758. {
  5759. int ret = -EINVAL;
  5760. switch (policy) {
  5761. case SCHED_FIFO:
  5762. case SCHED_RR:
  5763. ret = MAX_USER_RT_PRIO-1;
  5764. break;
  5765. case SCHED_NORMAL:
  5766. case SCHED_BATCH:
  5767. case SCHED_IDLE:
  5768. ret = 0;
  5769. break;
  5770. }
  5771. return ret;
  5772. }
  5773. /**
  5774. * sys_sched_get_priority_min - return minimum RT priority.
  5775. * @policy: scheduling class.
  5776. *
  5777. * this syscall returns the minimum rt_priority that can be used
  5778. * by a given scheduling class.
  5779. */
  5780. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  5781. {
  5782. int ret = -EINVAL;
  5783. switch (policy) {
  5784. case SCHED_FIFO:
  5785. case SCHED_RR:
  5786. ret = 1;
  5787. break;
  5788. case SCHED_NORMAL:
  5789. case SCHED_BATCH:
  5790. case SCHED_IDLE:
  5791. ret = 0;
  5792. }
  5793. return ret;
  5794. }
  5795. /**
  5796. * sys_sched_rr_get_interval - return the default timeslice of a process.
  5797. * @pid: pid of the process.
  5798. * @interval: userspace pointer to the timeslice value.
  5799. *
  5800. * this syscall writes the default timeslice value of a given process
  5801. * into the user-space timespec buffer. A value of '0' means infinity.
  5802. */
  5803. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  5804. struct timespec __user *, interval)
  5805. {
  5806. struct task_struct *p;
  5807. unsigned int time_slice;
  5808. int retval;
  5809. struct timespec t;
  5810. if (pid < 0)
  5811. return -EINVAL;
  5812. retval = -ESRCH;
  5813. read_lock(&tasklist_lock);
  5814. p = find_process_by_pid(pid);
  5815. if (!p)
  5816. goto out_unlock;
  5817. retval = security_task_getscheduler(p);
  5818. if (retval)
  5819. goto out_unlock;
  5820. time_slice = p->sched_class->get_rr_interval(p);
  5821. read_unlock(&tasklist_lock);
  5822. jiffies_to_timespec(time_slice, &t);
  5823. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  5824. return retval;
  5825. out_unlock:
  5826. read_unlock(&tasklist_lock);
  5827. return retval;
  5828. }
  5829. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  5830. void sched_show_task(struct task_struct *p)
  5831. {
  5832. unsigned long free = 0;
  5833. unsigned state;
  5834. state = p->state ? __ffs(p->state) + 1 : 0;
  5835. printk(KERN_INFO "%-13.13s %c", p->comm,
  5836. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  5837. #if BITS_PER_LONG == 32
  5838. if (state == TASK_RUNNING)
  5839. printk(KERN_CONT " running ");
  5840. else
  5841. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  5842. #else
  5843. if (state == TASK_RUNNING)
  5844. printk(KERN_CONT " running task ");
  5845. else
  5846. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  5847. #endif
  5848. #ifdef CONFIG_DEBUG_STACK_USAGE
  5849. free = stack_not_used(p);
  5850. #endif
  5851. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  5852. task_pid_nr(p), task_pid_nr(p->real_parent),
  5853. (unsigned long)task_thread_info(p)->flags);
  5854. show_stack(p, NULL);
  5855. }
  5856. void show_state_filter(unsigned long state_filter)
  5857. {
  5858. struct task_struct *g, *p;
  5859. #if BITS_PER_LONG == 32
  5860. printk(KERN_INFO
  5861. " task PC stack pid father\n");
  5862. #else
  5863. printk(KERN_INFO
  5864. " task PC stack pid father\n");
  5865. #endif
  5866. read_lock(&tasklist_lock);
  5867. do_each_thread(g, p) {
  5868. /*
  5869. * reset the NMI-timeout, listing all files on a slow
  5870. * console might take alot of time:
  5871. */
  5872. touch_nmi_watchdog();
  5873. if (!state_filter || (p->state & state_filter))
  5874. sched_show_task(p);
  5875. } while_each_thread(g, p);
  5876. touch_all_softlockup_watchdogs();
  5877. #ifdef CONFIG_SCHED_DEBUG
  5878. sysrq_sched_debug_show();
  5879. #endif
  5880. read_unlock(&tasklist_lock);
  5881. /*
  5882. * Only show locks if all tasks are dumped:
  5883. */
  5884. if (state_filter == -1)
  5885. debug_show_all_locks();
  5886. }
  5887. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  5888. {
  5889. idle->sched_class = &idle_sched_class;
  5890. }
  5891. /**
  5892. * init_idle - set up an idle thread for a given CPU
  5893. * @idle: task in question
  5894. * @cpu: cpu the idle task belongs to
  5895. *
  5896. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5897. * flag, to make booting more robust.
  5898. */
  5899. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5900. {
  5901. struct rq *rq = cpu_rq(cpu);
  5902. unsigned long flags;
  5903. spin_lock_irqsave(&rq->lock, flags);
  5904. __sched_fork(idle);
  5905. idle->se.exec_start = sched_clock();
  5906. idle->prio = idle->normal_prio = MAX_PRIO;
  5907. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  5908. __set_task_cpu(idle, cpu);
  5909. rq->curr = rq->idle = idle;
  5910. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5911. idle->oncpu = 1;
  5912. #endif
  5913. spin_unlock_irqrestore(&rq->lock, flags);
  5914. /* Set the preempt count _outside_ the spinlocks! */
  5915. #if defined(CONFIG_PREEMPT)
  5916. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  5917. #else
  5918. task_thread_info(idle)->preempt_count = 0;
  5919. #endif
  5920. /*
  5921. * The idle tasks have their own, simple scheduling class:
  5922. */
  5923. idle->sched_class = &idle_sched_class;
  5924. ftrace_graph_init_task(idle);
  5925. }
  5926. /*
  5927. * In a system that switches off the HZ timer nohz_cpu_mask
  5928. * indicates which cpus entered this state. This is used
  5929. * in the rcu update to wait only for active cpus. For system
  5930. * which do not switch off the HZ timer nohz_cpu_mask should
  5931. * always be CPU_BITS_NONE.
  5932. */
  5933. cpumask_var_t nohz_cpu_mask;
  5934. /*
  5935. * Increase the granularity value when there are more CPUs,
  5936. * because with more CPUs the 'effective latency' as visible
  5937. * to users decreases. But the relationship is not linear,
  5938. * so pick a second-best guess by going with the log2 of the
  5939. * number of CPUs.
  5940. *
  5941. * This idea comes from the SD scheduler of Con Kolivas:
  5942. */
  5943. static inline void sched_init_granularity(void)
  5944. {
  5945. unsigned int factor = 1 + ilog2(num_online_cpus());
  5946. const unsigned long limit = 200000000;
  5947. sysctl_sched_min_granularity *= factor;
  5948. if (sysctl_sched_min_granularity > limit)
  5949. sysctl_sched_min_granularity = limit;
  5950. sysctl_sched_latency *= factor;
  5951. if (sysctl_sched_latency > limit)
  5952. sysctl_sched_latency = limit;
  5953. sysctl_sched_wakeup_granularity *= factor;
  5954. sysctl_sched_shares_ratelimit *= factor;
  5955. }
  5956. #ifdef CONFIG_SMP
  5957. /*
  5958. * This is how migration works:
  5959. *
  5960. * 1) we queue a struct migration_req structure in the source CPU's
  5961. * runqueue and wake up that CPU's migration thread.
  5962. * 2) we down() the locked semaphore => thread blocks.
  5963. * 3) migration thread wakes up (implicitly it forces the migrated
  5964. * thread off the CPU)
  5965. * 4) it gets the migration request and checks whether the migrated
  5966. * task is still in the wrong runqueue.
  5967. * 5) if it's in the wrong runqueue then the migration thread removes
  5968. * it and puts it into the right queue.
  5969. * 6) migration thread up()s the semaphore.
  5970. * 7) we wake up and the migration is done.
  5971. */
  5972. /*
  5973. * Change a given task's CPU affinity. Migrate the thread to a
  5974. * proper CPU and schedule it away if the CPU it's executing on
  5975. * is removed from the allowed bitmask.
  5976. *
  5977. * NOTE: the caller must have a valid reference to the task, the
  5978. * task must not exit() & deallocate itself prematurely. The
  5979. * call is not atomic; no spinlocks may be held.
  5980. */
  5981. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  5982. {
  5983. struct migration_req req;
  5984. unsigned long flags;
  5985. struct rq *rq;
  5986. int ret = 0;
  5987. rq = task_rq_lock(p, &flags);
  5988. if (!cpumask_intersects(new_mask, cpu_online_mask)) {
  5989. ret = -EINVAL;
  5990. goto out;
  5991. }
  5992. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  5993. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  5994. ret = -EINVAL;
  5995. goto out;
  5996. }
  5997. if (p->sched_class->set_cpus_allowed)
  5998. p->sched_class->set_cpus_allowed(p, new_mask);
  5999. else {
  6000. cpumask_copy(&p->cpus_allowed, new_mask);
  6001. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  6002. }
  6003. /* Can the task run on the task's current CPU? If so, we're done */
  6004. if (cpumask_test_cpu(task_cpu(p), new_mask))
  6005. goto out;
  6006. if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
  6007. /* Need help from migration thread: drop lock and wait. */
  6008. struct task_struct *mt = rq->migration_thread;
  6009. get_task_struct(mt);
  6010. task_rq_unlock(rq, &flags);
  6011. wake_up_process(rq->migration_thread);
  6012. put_task_struct(mt);
  6013. wait_for_completion(&req.done);
  6014. tlb_migrate_finish(p->mm);
  6015. return 0;
  6016. }
  6017. out:
  6018. task_rq_unlock(rq, &flags);
  6019. return ret;
  6020. }
  6021. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  6022. /*
  6023. * Move (not current) task off this cpu, onto dest cpu. We're doing
  6024. * this because either it can't run here any more (set_cpus_allowed()
  6025. * away from this CPU, or CPU going down), or because we're
  6026. * attempting to rebalance this task on exec (sched_exec).
  6027. *
  6028. * So we race with normal scheduler movements, but that's OK, as long
  6029. * as the task is no longer on this CPU.
  6030. *
  6031. * Returns non-zero if task was successfully migrated.
  6032. */
  6033. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  6034. {
  6035. struct rq *rq_dest, *rq_src;
  6036. int ret = 0, on_rq;
  6037. if (unlikely(!cpu_active(dest_cpu)))
  6038. return ret;
  6039. rq_src = cpu_rq(src_cpu);
  6040. rq_dest = cpu_rq(dest_cpu);
  6041. double_rq_lock(rq_src, rq_dest);
  6042. /* Already moved. */
  6043. if (task_cpu(p) != src_cpu)
  6044. goto done;
  6045. /* Affinity changed (again). */
  6046. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  6047. goto fail;
  6048. on_rq = p->se.on_rq;
  6049. if (on_rq)
  6050. deactivate_task(rq_src, p, 0);
  6051. set_task_cpu(p, dest_cpu);
  6052. if (on_rq) {
  6053. activate_task(rq_dest, p, 0);
  6054. check_preempt_curr(rq_dest, p, 0);
  6055. }
  6056. done:
  6057. ret = 1;
  6058. fail:
  6059. double_rq_unlock(rq_src, rq_dest);
  6060. return ret;
  6061. }
  6062. #define RCU_MIGRATION_IDLE 0
  6063. #define RCU_MIGRATION_NEED_QS 1
  6064. #define RCU_MIGRATION_GOT_QS 2
  6065. #define RCU_MIGRATION_MUST_SYNC 3
  6066. /*
  6067. * migration_thread - this is a highprio system thread that performs
  6068. * thread migration by bumping thread off CPU then 'pushing' onto
  6069. * another runqueue.
  6070. */
  6071. static int migration_thread(void *data)
  6072. {
  6073. int badcpu;
  6074. int cpu = (long)data;
  6075. struct rq *rq;
  6076. rq = cpu_rq(cpu);
  6077. BUG_ON(rq->migration_thread != current);
  6078. set_current_state(TASK_INTERRUPTIBLE);
  6079. while (!kthread_should_stop()) {
  6080. struct migration_req *req;
  6081. struct list_head *head;
  6082. spin_lock_irq(&rq->lock);
  6083. if (cpu_is_offline(cpu)) {
  6084. spin_unlock_irq(&rq->lock);
  6085. break;
  6086. }
  6087. if (rq->active_balance) {
  6088. active_load_balance(rq, cpu);
  6089. rq->active_balance = 0;
  6090. }
  6091. head = &rq->migration_queue;
  6092. if (list_empty(head)) {
  6093. spin_unlock_irq(&rq->lock);
  6094. schedule();
  6095. set_current_state(TASK_INTERRUPTIBLE);
  6096. continue;
  6097. }
  6098. req = list_entry(head->next, struct migration_req, list);
  6099. list_del_init(head->next);
  6100. if (req->task != NULL) {
  6101. spin_unlock(&rq->lock);
  6102. __migrate_task(req->task, cpu, req->dest_cpu);
  6103. } else if (likely(cpu == (badcpu = smp_processor_id()))) {
  6104. req->dest_cpu = RCU_MIGRATION_GOT_QS;
  6105. spin_unlock(&rq->lock);
  6106. } else {
  6107. req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
  6108. spin_unlock(&rq->lock);
  6109. WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
  6110. }
  6111. local_irq_enable();
  6112. complete(&req->done);
  6113. }
  6114. __set_current_state(TASK_RUNNING);
  6115. return 0;
  6116. }
  6117. #ifdef CONFIG_HOTPLUG_CPU
  6118. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  6119. {
  6120. int ret;
  6121. local_irq_disable();
  6122. ret = __migrate_task(p, src_cpu, dest_cpu);
  6123. local_irq_enable();
  6124. return ret;
  6125. }
  6126. /*
  6127. * Figure out where task on dead CPU should go, use force if necessary.
  6128. */
  6129. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  6130. {
  6131. int dest_cpu;
  6132. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
  6133. again:
  6134. /* Look for allowed, online CPU in same node. */
  6135. for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
  6136. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  6137. goto move;
  6138. /* Any allowed, online CPU? */
  6139. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
  6140. if (dest_cpu < nr_cpu_ids)
  6141. goto move;
  6142. /* No more Mr. Nice Guy. */
  6143. if (dest_cpu >= nr_cpu_ids) {
  6144. cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
  6145. dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
  6146. /*
  6147. * Don't tell them about moving exiting tasks or
  6148. * kernel threads (both mm NULL), since they never
  6149. * leave kernel.
  6150. */
  6151. if (p->mm && printk_ratelimit()) {
  6152. printk(KERN_INFO "process %d (%s) no "
  6153. "longer affine to cpu%d\n",
  6154. task_pid_nr(p), p->comm, dead_cpu);
  6155. }
  6156. }
  6157. move:
  6158. /* It can have affinity changed while we were choosing. */
  6159. if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
  6160. goto again;
  6161. }
  6162. /*
  6163. * While a dead CPU has no uninterruptible tasks queued at this point,
  6164. * it might still have a nonzero ->nr_uninterruptible counter, because
  6165. * for performance reasons the counter is not stricly tracking tasks to
  6166. * their home CPUs. So we just add the counter to another CPU's counter,
  6167. * to keep the global sum constant after CPU-down:
  6168. */
  6169. static void migrate_nr_uninterruptible(struct rq *rq_src)
  6170. {
  6171. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
  6172. unsigned long flags;
  6173. local_irq_save(flags);
  6174. double_rq_lock(rq_src, rq_dest);
  6175. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  6176. rq_src->nr_uninterruptible = 0;
  6177. double_rq_unlock(rq_src, rq_dest);
  6178. local_irq_restore(flags);
  6179. }
  6180. /* Run through task list and migrate tasks from the dead cpu. */
  6181. static void migrate_live_tasks(int src_cpu)
  6182. {
  6183. struct task_struct *p, *t;
  6184. read_lock(&tasklist_lock);
  6185. do_each_thread(t, p) {
  6186. if (p == current)
  6187. continue;
  6188. if (task_cpu(p) == src_cpu)
  6189. move_task_off_dead_cpu(src_cpu, p);
  6190. } while_each_thread(t, p);
  6191. read_unlock(&tasklist_lock);
  6192. }
  6193. /*
  6194. * Schedules idle task to be the next runnable task on current CPU.
  6195. * It does so by boosting its priority to highest possible.
  6196. * Used by CPU offline code.
  6197. */
  6198. void sched_idle_next(void)
  6199. {
  6200. int this_cpu = smp_processor_id();
  6201. struct rq *rq = cpu_rq(this_cpu);
  6202. struct task_struct *p = rq->idle;
  6203. unsigned long flags;
  6204. /* cpu has to be offline */
  6205. BUG_ON(cpu_online(this_cpu));
  6206. /*
  6207. * Strictly not necessary since rest of the CPUs are stopped by now
  6208. * and interrupts disabled on the current cpu.
  6209. */
  6210. spin_lock_irqsave(&rq->lock, flags);
  6211. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6212. update_rq_clock(rq);
  6213. activate_task(rq, p, 0);
  6214. spin_unlock_irqrestore(&rq->lock, flags);
  6215. }
  6216. /*
  6217. * Ensures that the idle task is using init_mm right before its cpu goes
  6218. * offline.
  6219. */
  6220. void idle_task_exit(void)
  6221. {
  6222. struct mm_struct *mm = current->active_mm;
  6223. BUG_ON(cpu_online(smp_processor_id()));
  6224. if (mm != &init_mm)
  6225. switch_mm(mm, &init_mm, current);
  6226. mmdrop(mm);
  6227. }
  6228. /* called under rq->lock with disabled interrupts */
  6229. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  6230. {
  6231. struct rq *rq = cpu_rq(dead_cpu);
  6232. /* Must be exiting, otherwise would be on tasklist. */
  6233. BUG_ON(!p->exit_state);
  6234. /* Cannot have done final schedule yet: would have vanished. */
  6235. BUG_ON(p->state == TASK_DEAD);
  6236. get_task_struct(p);
  6237. /*
  6238. * Drop lock around migration; if someone else moves it,
  6239. * that's OK. No task can be added to this CPU, so iteration is
  6240. * fine.
  6241. */
  6242. spin_unlock_irq(&rq->lock);
  6243. move_task_off_dead_cpu(dead_cpu, p);
  6244. spin_lock_irq(&rq->lock);
  6245. put_task_struct(p);
  6246. }
  6247. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  6248. static void migrate_dead_tasks(unsigned int dead_cpu)
  6249. {
  6250. struct rq *rq = cpu_rq(dead_cpu);
  6251. struct task_struct *next;
  6252. for ( ; ; ) {
  6253. if (!rq->nr_running)
  6254. break;
  6255. update_rq_clock(rq);
  6256. next = pick_next_task(rq);
  6257. if (!next)
  6258. break;
  6259. next->sched_class->put_prev_task(rq, next);
  6260. migrate_dead(dead_cpu, next);
  6261. }
  6262. }
  6263. /*
  6264. * remove the tasks which were accounted by rq from calc_load_tasks.
  6265. */
  6266. static void calc_global_load_remove(struct rq *rq)
  6267. {
  6268. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  6269. rq->calc_load_active = 0;
  6270. }
  6271. #endif /* CONFIG_HOTPLUG_CPU */
  6272. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  6273. static struct ctl_table sd_ctl_dir[] = {
  6274. {
  6275. .procname = "sched_domain",
  6276. .mode = 0555,
  6277. },
  6278. {0, },
  6279. };
  6280. static struct ctl_table sd_ctl_root[] = {
  6281. {
  6282. .ctl_name = CTL_KERN,
  6283. .procname = "kernel",
  6284. .mode = 0555,
  6285. .child = sd_ctl_dir,
  6286. },
  6287. {0, },
  6288. };
  6289. static struct ctl_table *sd_alloc_ctl_entry(int n)
  6290. {
  6291. struct ctl_table *entry =
  6292. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  6293. return entry;
  6294. }
  6295. static void sd_free_ctl_entry(struct ctl_table **tablep)
  6296. {
  6297. struct ctl_table *entry;
  6298. /*
  6299. * In the intermediate directories, both the child directory and
  6300. * procname are dynamically allocated and could fail but the mode
  6301. * will always be set. In the lowest directory the names are
  6302. * static strings and all have proc handlers.
  6303. */
  6304. for (entry = *tablep; entry->mode; entry++) {
  6305. if (entry->child)
  6306. sd_free_ctl_entry(&entry->child);
  6307. if (entry->proc_handler == NULL)
  6308. kfree(entry->procname);
  6309. }
  6310. kfree(*tablep);
  6311. *tablep = NULL;
  6312. }
  6313. static void
  6314. set_table_entry(struct ctl_table *entry,
  6315. const char *procname, void *data, int maxlen,
  6316. mode_t mode, proc_handler *proc_handler)
  6317. {
  6318. entry->procname = procname;
  6319. entry->data = data;
  6320. entry->maxlen = maxlen;
  6321. entry->mode = mode;
  6322. entry->proc_handler = proc_handler;
  6323. }
  6324. static struct ctl_table *
  6325. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  6326. {
  6327. struct ctl_table *table = sd_alloc_ctl_entry(13);
  6328. if (table == NULL)
  6329. return NULL;
  6330. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  6331. sizeof(long), 0644, proc_doulongvec_minmax);
  6332. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  6333. sizeof(long), 0644, proc_doulongvec_minmax);
  6334. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  6335. sizeof(int), 0644, proc_dointvec_minmax);
  6336. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  6337. sizeof(int), 0644, proc_dointvec_minmax);
  6338. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  6339. sizeof(int), 0644, proc_dointvec_minmax);
  6340. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  6341. sizeof(int), 0644, proc_dointvec_minmax);
  6342. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  6343. sizeof(int), 0644, proc_dointvec_minmax);
  6344. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  6345. sizeof(int), 0644, proc_dointvec_minmax);
  6346. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  6347. sizeof(int), 0644, proc_dointvec_minmax);
  6348. set_table_entry(&table[9], "cache_nice_tries",
  6349. &sd->cache_nice_tries,
  6350. sizeof(int), 0644, proc_dointvec_minmax);
  6351. set_table_entry(&table[10], "flags", &sd->flags,
  6352. sizeof(int), 0644, proc_dointvec_minmax);
  6353. set_table_entry(&table[11], "name", sd->name,
  6354. CORENAME_MAX_SIZE, 0444, proc_dostring);
  6355. /* &table[12] is terminator */
  6356. return table;
  6357. }
  6358. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  6359. {
  6360. struct ctl_table *entry, *table;
  6361. struct sched_domain *sd;
  6362. int domain_num = 0, i;
  6363. char buf[32];
  6364. for_each_domain(cpu, sd)
  6365. domain_num++;
  6366. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  6367. if (table == NULL)
  6368. return NULL;
  6369. i = 0;
  6370. for_each_domain(cpu, sd) {
  6371. snprintf(buf, 32, "domain%d", i);
  6372. entry->procname = kstrdup(buf, GFP_KERNEL);
  6373. entry->mode = 0555;
  6374. entry->child = sd_alloc_ctl_domain_table(sd);
  6375. entry++;
  6376. i++;
  6377. }
  6378. return table;
  6379. }
  6380. static struct ctl_table_header *sd_sysctl_header;
  6381. static void register_sched_domain_sysctl(void)
  6382. {
  6383. int i, cpu_num = num_online_cpus();
  6384. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  6385. char buf[32];
  6386. WARN_ON(sd_ctl_dir[0].child);
  6387. sd_ctl_dir[0].child = entry;
  6388. if (entry == NULL)
  6389. return;
  6390. for_each_online_cpu(i) {
  6391. snprintf(buf, 32, "cpu%d", i);
  6392. entry->procname = kstrdup(buf, GFP_KERNEL);
  6393. entry->mode = 0555;
  6394. entry->child = sd_alloc_ctl_cpu_table(i);
  6395. entry++;
  6396. }
  6397. WARN_ON(sd_sysctl_header);
  6398. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  6399. }
  6400. /* may be called multiple times per register */
  6401. static void unregister_sched_domain_sysctl(void)
  6402. {
  6403. if (sd_sysctl_header)
  6404. unregister_sysctl_table(sd_sysctl_header);
  6405. sd_sysctl_header = NULL;
  6406. if (sd_ctl_dir[0].child)
  6407. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  6408. }
  6409. #else
  6410. static void register_sched_domain_sysctl(void)
  6411. {
  6412. }
  6413. static void unregister_sched_domain_sysctl(void)
  6414. {
  6415. }
  6416. #endif
  6417. static void set_rq_online(struct rq *rq)
  6418. {
  6419. if (!rq->online) {
  6420. const struct sched_class *class;
  6421. cpumask_set_cpu(rq->cpu, rq->rd->online);
  6422. rq->online = 1;
  6423. for_each_class(class) {
  6424. if (class->rq_online)
  6425. class->rq_online(rq);
  6426. }
  6427. }
  6428. }
  6429. static void set_rq_offline(struct rq *rq)
  6430. {
  6431. if (rq->online) {
  6432. const struct sched_class *class;
  6433. for_each_class(class) {
  6434. if (class->rq_offline)
  6435. class->rq_offline(rq);
  6436. }
  6437. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  6438. rq->online = 0;
  6439. }
  6440. }
  6441. /*
  6442. * migration_call - callback that gets triggered when a CPU is added.
  6443. * Here we can start up the necessary migration thread for the new CPU.
  6444. */
  6445. static int __cpuinit
  6446. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  6447. {
  6448. struct task_struct *p;
  6449. int cpu = (long)hcpu;
  6450. unsigned long flags;
  6451. struct rq *rq;
  6452. switch (action) {
  6453. case CPU_UP_PREPARE:
  6454. case CPU_UP_PREPARE_FROZEN:
  6455. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  6456. if (IS_ERR(p))
  6457. return NOTIFY_BAD;
  6458. kthread_bind(p, cpu);
  6459. /* Must be high prio: stop_machine expects to yield to it. */
  6460. rq = task_rq_lock(p, &flags);
  6461. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6462. task_rq_unlock(rq, &flags);
  6463. get_task_struct(p);
  6464. cpu_rq(cpu)->migration_thread = p;
  6465. rq->calc_load_update = calc_load_update;
  6466. break;
  6467. case CPU_ONLINE:
  6468. case CPU_ONLINE_FROZEN:
  6469. /* Strictly unnecessary, as first user will wake it. */
  6470. wake_up_process(cpu_rq(cpu)->migration_thread);
  6471. /* Update our root-domain */
  6472. rq = cpu_rq(cpu);
  6473. spin_lock_irqsave(&rq->lock, flags);
  6474. if (rq->rd) {
  6475. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6476. set_rq_online(rq);
  6477. }
  6478. spin_unlock_irqrestore(&rq->lock, flags);
  6479. break;
  6480. #ifdef CONFIG_HOTPLUG_CPU
  6481. case CPU_UP_CANCELED:
  6482. case CPU_UP_CANCELED_FROZEN:
  6483. if (!cpu_rq(cpu)->migration_thread)
  6484. break;
  6485. /* Unbind it from offline cpu so it can run. Fall thru. */
  6486. kthread_bind(cpu_rq(cpu)->migration_thread,
  6487. cpumask_any(cpu_online_mask));
  6488. kthread_stop(cpu_rq(cpu)->migration_thread);
  6489. put_task_struct(cpu_rq(cpu)->migration_thread);
  6490. cpu_rq(cpu)->migration_thread = NULL;
  6491. break;
  6492. case CPU_DEAD:
  6493. case CPU_DEAD_FROZEN:
  6494. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  6495. migrate_live_tasks(cpu);
  6496. rq = cpu_rq(cpu);
  6497. kthread_stop(rq->migration_thread);
  6498. put_task_struct(rq->migration_thread);
  6499. rq->migration_thread = NULL;
  6500. /* Idle task back to normal (off runqueue, low prio) */
  6501. spin_lock_irq(&rq->lock);
  6502. update_rq_clock(rq);
  6503. deactivate_task(rq, rq->idle, 0);
  6504. rq->idle->static_prio = MAX_PRIO;
  6505. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  6506. rq->idle->sched_class = &idle_sched_class;
  6507. migrate_dead_tasks(cpu);
  6508. spin_unlock_irq(&rq->lock);
  6509. cpuset_unlock();
  6510. migrate_nr_uninterruptible(rq);
  6511. BUG_ON(rq->nr_running != 0);
  6512. calc_global_load_remove(rq);
  6513. /*
  6514. * No need to migrate the tasks: it was best-effort if
  6515. * they didn't take sched_hotcpu_mutex. Just wake up
  6516. * the requestors.
  6517. */
  6518. spin_lock_irq(&rq->lock);
  6519. while (!list_empty(&rq->migration_queue)) {
  6520. struct migration_req *req;
  6521. req = list_entry(rq->migration_queue.next,
  6522. struct migration_req, list);
  6523. list_del_init(&req->list);
  6524. spin_unlock_irq(&rq->lock);
  6525. complete(&req->done);
  6526. spin_lock_irq(&rq->lock);
  6527. }
  6528. spin_unlock_irq(&rq->lock);
  6529. break;
  6530. case CPU_DYING:
  6531. case CPU_DYING_FROZEN:
  6532. /* Update our root-domain */
  6533. rq = cpu_rq(cpu);
  6534. spin_lock_irqsave(&rq->lock, flags);
  6535. if (rq->rd) {
  6536. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6537. set_rq_offline(rq);
  6538. }
  6539. spin_unlock_irqrestore(&rq->lock, flags);
  6540. break;
  6541. #endif
  6542. }
  6543. return NOTIFY_OK;
  6544. }
  6545. /*
  6546. * Register at high priority so that task migration (migrate_all_tasks)
  6547. * happens before everything else. This has to be lower priority than
  6548. * the notifier in the perf_event subsystem, though.
  6549. */
  6550. static struct notifier_block __cpuinitdata migration_notifier = {
  6551. .notifier_call = migration_call,
  6552. .priority = 10
  6553. };
  6554. static int __init migration_init(void)
  6555. {
  6556. void *cpu = (void *)(long)smp_processor_id();
  6557. int err;
  6558. /* Start one for the boot CPU: */
  6559. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  6560. BUG_ON(err == NOTIFY_BAD);
  6561. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  6562. register_cpu_notifier(&migration_notifier);
  6563. return 0;
  6564. }
  6565. early_initcall(migration_init);
  6566. #endif
  6567. #ifdef CONFIG_SMP
  6568. #ifdef CONFIG_SCHED_DEBUG
  6569. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  6570. struct cpumask *groupmask)
  6571. {
  6572. struct sched_group *group = sd->groups;
  6573. char str[256];
  6574. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  6575. cpumask_clear(groupmask);
  6576. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  6577. if (!(sd->flags & SD_LOAD_BALANCE)) {
  6578. printk("does not load-balance\n");
  6579. if (sd->parent)
  6580. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  6581. " has parent");
  6582. return -1;
  6583. }
  6584. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  6585. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  6586. printk(KERN_ERR "ERROR: domain->span does not contain "
  6587. "CPU%d\n", cpu);
  6588. }
  6589. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  6590. printk(KERN_ERR "ERROR: domain->groups does not contain"
  6591. " CPU%d\n", cpu);
  6592. }
  6593. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  6594. do {
  6595. if (!group) {
  6596. printk("\n");
  6597. printk(KERN_ERR "ERROR: group is NULL\n");
  6598. break;
  6599. }
  6600. if (!group->cpu_power) {
  6601. printk(KERN_CONT "\n");
  6602. printk(KERN_ERR "ERROR: domain->cpu_power not "
  6603. "set\n");
  6604. break;
  6605. }
  6606. if (!cpumask_weight(sched_group_cpus(group))) {
  6607. printk(KERN_CONT "\n");
  6608. printk(KERN_ERR "ERROR: empty group\n");
  6609. break;
  6610. }
  6611. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  6612. printk(KERN_CONT "\n");
  6613. printk(KERN_ERR "ERROR: repeated CPUs\n");
  6614. break;
  6615. }
  6616. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  6617. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  6618. printk(KERN_CONT " %s", str);
  6619. if (group->cpu_power != SCHED_LOAD_SCALE) {
  6620. printk(KERN_CONT " (cpu_power = %d)",
  6621. group->cpu_power);
  6622. }
  6623. group = group->next;
  6624. } while (group != sd->groups);
  6625. printk(KERN_CONT "\n");
  6626. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  6627. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  6628. if (sd->parent &&
  6629. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  6630. printk(KERN_ERR "ERROR: parent span is not a superset "
  6631. "of domain->span\n");
  6632. return 0;
  6633. }
  6634. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  6635. {
  6636. cpumask_var_t groupmask;
  6637. int level = 0;
  6638. if (!sd) {
  6639. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  6640. return;
  6641. }
  6642. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  6643. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  6644. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  6645. return;
  6646. }
  6647. for (;;) {
  6648. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  6649. break;
  6650. level++;
  6651. sd = sd->parent;
  6652. if (!sd)
  6653. break;
  6654. }
  6655. free_cpumask_var(groupmask);
  6656. }
  6657. #else /* !CONFIG_SCHED_DEBUG */
  6658. # define sched_domain_debug(sd, cpu) do { } while (0)
  6659. #endif /* CONFIG_SCHED_DEBUG */
  6660. static int sd_degenerate(struct sched_domain *sd)
  6661. {
  6662. if (cpumask_weight(sched_domain_span(sd)) == 1)
  6663. return 1;
  6664. /* Following flags need at least 2 groups */
  6665. if (sd->flags & (SD_LOAD_BALANCE |
  6666. SD_BALANCE_NEWIDLE |
  6667. SD_BALANCE_FORK |
  6668. SD_BALANCE_EXEC |
  6669. SD_SHARE_CPUPOWER |
  6670. SD_SHARE_PKG_RESOURCES)) {
  6671. if (sd->groups != sd->groups->next)
  6672. return 0;
  6673. }
  6674. /* Following flags don't use groups */
  6675. if (sd->flags & (SD_WAKE_AFFINE))
  6676. return 0;
  6677. return 1;
  6678. }
  6679. static int
  6680. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  6681. {
  6682. unsigned long cflags = sd->flags, pflags = parent->flags;
  6683. if (sd_degenerate(parent))
  6684. return 1;
  6685. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  6686. return 0;
  6687. /* Flags needing groups don't count if only 1 group in parent */
  6688. if (parent->groups == parent->groups->next) {
  6689. pflags &= ~(SD_LOAD_BALANCE |
  6690. SD_BALANCE_NEWIDLE |
  6691. SD_BALANCE_FORK |
  6692. SD_BALANCE_EXEC |
  6693. SD_SHARE_CPUPOWER |
  6694. SD_SHARE_PKG_RESOURCES);
  6695. if (nr_node_ids == 1)
  6696. pflags &= ~SD_SERIALIZE;
  6697. }
  6698. if (~cflags & pflags)
  6699. return 0;
  6700. return 1;
  6701. }
  6702. static void free_rootdomain(struct root_domain *rd)
  6703. {
  6704. cpupri_cleanup(&rd->cpupri);
  6705. free_cpumask_var(rd->rto_mask);
  6706. free_cpumask_var(rd->online);
  6707. free_cpumask_var(rd->span);
  6708. kfree(rd);
  6709. }
  6710. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  6711. {
  6712. struct root_domain *old_rd = NULL;
  6713. unsigned long flags;
  6714. spin_lock_irqsave(&rq->lock, flags);
  6715. if (rq->rd) {
  6716. old_rd = rq->rd;
  6717. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  6718. set_rq_offline(rq);
  6719. cpumask_clear_cpu(rq->cpu, old_rd->span);
  6720. /*
  6721. * If we dont want to free the old_rt yet then
  6722. * set old_rd to NULL to skip the freeing later
  6723. * in this function:
  6724. */
  6725. if (!atomic_dec_and_test(&old_rd->refcount))
  6726. old_rd = NULL;
  6727. }
  6728. atomic_inc(&rd->refcount);
  6729. rq->rd = rd;
  6730. cpumask_set_cpu(rq->cpu, rd->span);
  6731. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  6732. set_rq_online(rq);
  6733. spin_unlock_irqrestore(&rq->lock, flags);
  6734. if (old_rd)
  6735. free_rootdomain(old_rd);
  6736. }
  6737. static int init_rootdomain(struct root_domain *rd, bool bootmem)
  6738. {
  6739. gfp_t gfp = GFP_KERNEL;
  6740. memset(rd, 0, sizeof(*rd));
  6741. if (bootmem)
  6742. gfp = GFP_NOWAIT;
  6743. if (!alloc_cpumask_var(&rd->span, gfp))
  6744. goto out;
  6745. if (!alloc_cpumask_var(&rd->online, gfp))
  6746. goto free_span;
  6747. if (!alloc_cpumask_var(&rd->rto_mask, gfp))
  6748. goto free_online;
  6749. if (cpupri_init(&rd->cpupri, bootmem) != 0)
  6750. goto free_rto_mask;
  6751. return 0;
  6752. free_rto_mask:
  6753. free_cpumask_var(rd->rto_mask);
  6754. free_online:
  6755. free_cpumask_var(rd->online);
  6756. free_span:
  6757. free_cpumask_var(rd->span);
  6758. out:
  6759. return -ENOMEM;
  6760. }
  6761. static void init_defrootdomain(void)
  6762. {
  6763. init_rootdomain(&def_root_domain, true);
  6764. atomic_set(&def_root_domain.refcount, 1);
  6765. }
  6766. static struct root_domain *alloc_rootdomain(void)
  6767. {
  6768. struct root_domain *rd;
  6769. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  6770. if (!rd)
  6771. return NULL;
  6772. if (init_rootdomain(rd, false) != 0) {
  6773. kfree(rd);
  6774. return NULL;
  6775. }
  6776. return rd;
  6777. }
  6778. /*
  6779. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  6780. * hold the hotplug lock.
  6781. */
  6782. static void
  6783. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  6784. {
  6785. struct rq *rq = cpu_rq(cpu);
  6786. struct sched_domain *tmp;
  6787. /* Remove the sched domains which do not contribute to scheduling. */
  6788. for (tmp = sd; tmp; ) {
  6789. struct sched_domain *parent = tmp->parent;
  6790. if (!parent)
  6791. break;
  6792. if (sd_parent_degenerate(tmp, parent)) {
  6793. tmp->parent = parent->parent;
  6794. if (parent->parent)
  6795. parent->parent->child = tmp;
  6796. } else
  6797. tmp = tmp->parent;
  6798. }
  6799. if (sd && sd_degenerate(sd)) {
  6800. sd = sd->parent;
  6801. if (sd)
  6802. sd->child = NULL;
  6803. }
  6804. sched_domain_debug(sd, cpu);
  6805. rq_attach_root(rq, rd);
  6806. rcu_assign_pointer(rq->sd, sd);
  6807. }
  6808. /* cpus with isolated domains */
  6809. static cpumask_var_t cpu_isolated_map;
  6810. /* Setup the mask of cpus configured for isolated domains */
  6811. static int __init isolated_cpu_setup(char *str)
  6812. {
  6813. cpulist_parse(str, cpu_isolated_map);
  6814. return 1;
  6815. }
  6816. __setup("isolcpus=", isolated_cpu_setup);
  6817. /*
  6818. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  6819. * to a function which identifies what group(along with sched group) a CPU
  6820. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  6821. * (due to the fact that we keep track of groups covered with a struct cpumask).
  6822. *
  6823. * init_sched_build_groups will build a circular linked list of the groups
  6824. * covered by the given span, and will set each group's ->cpumask correctly,
  6825. * and ->cpu_power to 0.
  6826. */
  6827. static void
  6828. init_sched_build_groups(const struct cpumask *span,
  6829. const struct cpumask *cpu_map,
  6830. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  6831. struct sched_group **sg,
  6832. struct cpumask *tmpmask),
  6833. struct cpumask *covered, struct cpumask *tmpmask)
  6834. {
  6835. struct sched_group *first = NULL, *last = NULL;
  6836. int i;
  6837. cpumask_clear(covered);
  6838. for_each_cpu(i, span) {
  6839. struct sched_group *sg;
  6840. int group = group_fn(i, cpu_map, &sg, tmpmask);
  6841. int j;
  6842. if (cpumask_test_cpu(i, covered))
  6843. continue;
  6844. cpumask_clear(sched_group_cpus(sg));
  6845. sg->cpu_power = 0;
  6846. for_each_cpu(j, span) {
  6847. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  6848. continue;
  6849. cpumask_set_cpu(j, covered);
  6850. cpumask_set_cpu(j, sched_group_cpus(sg));
  6851. }
  6852. if (!first)
  6853. first = sg;
  6854. if (last)
  6855. last->next = sg;
  6856. last = sg;
  6857. }
  6858. last->next = first;
  6859. }
  6860. #define SD_NODES_PER_DOMAIN 16
  6861. #ifdef CONFIG_NUMA
  6862. /**
  6863. * find_next_best_node - find the next node to include in a sched_domain
  6864. * @node: node whose sched_domain we're building
  6865. * @used_nodes: nodes already in the sched_domain
  6866. *
  6867. * Find the next node to include in a given scheduling domain. Simply
  6868. * finds the closest node not already in the @used_nodes map.
  6869. *
  6870. * Should use nodemask_t.
  6871. */
  6872. static int find_next_best_node(int node, nodemask_t *used_nodes)
  6873. {
  6874. int i, n, val, min_val, best_node = 0;
  6875. min_val = INT_MAX;
  6876. for (i = 0; i < nr_node_ids; i++) {
  6877. /* Start at @node */
  6878. n = (node + i) % nr_node_ids;
  6879. if (!nr_cpus_node(n))
  6880. continue;
  6881. /* Skip already used nodes */
  6882. if (node_isset(n, *used_nodes))
  6883. continue;
  6884. /* Simple min distance search */
  6885. val = node_distance(node, n);
  6886. if (val < min_val) {
  6887. min_val = val;
  6888. best_node = n;
  6889. }
  6890. }
  6891. node_set(best_node, *used_nodes);
  6892. return best_node;
  6893. }
  6894. /**
  6895. * sched_domain_node_span - get a cpumask for a node's sched_domain
  6896. * @node: node whose cpumask we're constructing
  6897. * @span: resulting cpumask
  6898. *
  6899. * Given a node, construct a good cpumask for its sched_domain to span. It
  6900. * should be one that prevents unnecessary balancing, but also spreads tasks
  6901. * out optimally.
  6902. */
  6903. static void sched_domain_node_span(int node, struct cpumask *span)
  6904. {
  6905. nodemask_t used_nodes;
  6906. int i;
  6907. cpumask_clear(span);
  6908. nodes_clear(used_nodes);
  6909. cpumask_or(span, span, cpumask_of_node(node));
  6910. node_set(node, used_nodes);
  6911. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  6912. int next_node = find_next_best_node(node, &used_nodes);
  6913. cpumask_or(span, span, cpumask_of_node(next_node));
  6914. }
  6915. }
  6916. #endif /* CONFIG_NUMA */
  6917. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  6918. /*
  6919. * The cpus mask in sched_group and sched_domain hangs off the end.
  6920. *
  6921. * ( See the the comments in include/linux/sched.h:struct sched_group
  6922. * and struct sched_domain. )
  6923. */
  6924. struct static_sched_group {
  6925. struct sched_group sg;
  6926. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  6927. };
  6928. struct static_sched_domain {
  6929. struct sched_domain sd;
  6930. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  6931. };
  6932. struct s_data {
  6933. #ifdef CONFIG_NUMA
  6934. int sd_allnodes;
  6935. cpumask_var_t domainspan;
  6936. cpumask_var_t covered;
  6937. cpumask_var_t notcovered;
  6938. #endif
  6939. cpumask_var_t nodemask;
  6940. cpumask_var_t this_sibling_map;
  6941. cpumask_var_t this_core_map;
  6942. cpumask_var_t send_covered;
  6943. cpumask_var_t tmpmask;
  6944. struct sched_group **sched_group_nodes;
  6945. struct root_domain *rd;
  6946. };
  6947. enum s_alloc {
  6948. sa_sched_groups = 0,
  6949. sa_rootdomain,
  6950. sa_tmpmask,
  6951. sa_send_covered,
  6952. sa_this_core_map,
  6953. sa_this_sibling_map,
  6954. sa_nodemask,
  6955. sa_sched_group_nodes,
  6956. #ifdef CONFIG_NUMA
  6957. sa_notcovered,
  6958. sa_covered,
  6959. sa_domainspan,
  6960. #endif
  6961. sa_none,
  6962. };
  6963. /*
  6964. * SMT sched-domains:
  6965. */
  6966. #ifdef CONFIG_SCHED_SMT
  6967. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  6968. static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
  6969. static int
  6970. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  6971. struct sched_group **sg, struct cpumask *unused)
  6972. {
  6973. if (sg)
  6974. *sg = &per_cpu(sched_group_cpus, cpu).sg;
  6975. return cpu;
  6976. }
  6977. #endif /* CONFIG_SCHED_SMT */
  6978. /*
  6979. * multi-core sched-domains:
  6980. */
  6981. #ifdef CONFIG_SCHED_MC
  6982. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  6983. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  6984. #endif /* CONFIG_SCHED_MC */
  6985. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  6986. static int
  6987. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  6988. struct sched_group **sg, struct cpumask *mask)
  6989. {
  6990. int group;
  6991. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  6992. group = cpumask_first(mask);
  6993. if (sg)
  6994. *sg = &per_cpu(sched_group_core, group).sg;
  6995. return group;
  6996. }
  6997. #elif defined(CONFIG_SCHED_MC)
  6998. static int
  6999. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  7000. struct sched_group **sg, struct cpumask *unused)
  7001. {
  7002. if (sg)
  7003. *sg = &per_cpu(sched_group_core, cpu).sg;
  7004. return cpu;
  7005. }
  7006. #endif
  7007. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  7008. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  7009. static int
  7010. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  7011. struct sched_group **sg, struct cpumask *mask)
  7012. {
  7013. int group;
  7014. #ifdef CONFIG_SCHED_MC
  7015. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  7016. group = cpumask_first(mask);
  7017. #elif defined(CONFIG_SCHED_SMT)
  7018. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  7019. group = cpumask_first(mask);
  7020. #else
  7021. group = cpu;
  7022. #endif
  7023. if (sg)
  7024. *sg = &per_cpu(sched_group_phys, group).sg;
  7025. return group;
  7026. }
  7027. #ifdef CONFIG_NUMA
  7028. /*
  7029. * The init_sched_build_groups can't handle what we want to do with node
  7030. * groups, so roll our own. Now each node has its own list of groups which
  7031. * gets dynamically allocated.
  7032. */
  7033. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  7034. static struct sched_group ***sched_group_nodes_bycpu;
  7035. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  7036. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  7037. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  7038. struct sched_group **sg,
  7039. struct cpumask *nodemask)
  7040. {
  7041. int group;
  7042. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  7043. group = cpumask_first(nodemask);
  7044. if (sg)
  7045. *sg = &per_cpu(sched_group_allnodes, group).sg;
  7046. return group;
  7047. }
  7048. static void init_numa_sched_groups_power(struct sched_group *group_head)
  7049. {
  7050. struct sched_group *sg = group_head;
  7051. int j;
  7052. if (!sg)
  7053. return;
  7054. do {
  7055. for_each_cpu(j, sched_group_cpus(sg)) {
  7056. struct sched_domain *sd;
  7057. sd = &per_cpu(phys_domains, j).sd;
  7058. if (j != group_first_cpu(sd->groups)) {
  7059. /*
  7060. * Only add "power" once for each
  7061. * physical package.
  7062. */
  7063. continue;
  7064. }
  7065. sg->cpu_power += sd->groups->cpu_power;
  7066. }
  7067. sg = sg->next;
  7068. } while (sg != group_head);
  7069. }
  7070. static int build_numa_sched_groups(struct s_data *d,
  7071. const struct cpumask *cpu_map, int num)
  7072. {
  7073. struct sched_domain *sd;
  7074. struct sched_group *sg, *prev;
  7075. int n, j;
  7076. cpumask_clear(d->covered);
  7077. cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
  7078. if (cpumask_empty(d->nodemask)) {
  7079. d->sched_group_nodes[num] = NULL;
  7080. goto out;
  7081. }
  7082. sched_domain_node_span(num, d->domainspan);
  7083. cpumask_and(d->domainspan, d->domainspan, cpu_map);
  7084. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  7085. GFP_KERNEL, num);
  7086. if (!sg) {
  7087. printk(KERN_WARNING "Can not alloc domain group for node %d\n",
  7088. num);
  7089. return -ENOMEM;
  7090. }
  7091. d->sched_group_nodes[num] = sg;
  7092. for_each_cpu(j, d->nodemask) {
  7093. sd = &per_cpu(node_domains, j).sd;
  7094. sd->groups = sg;
  7095. }
  7096. sg->cpu_power = 0;
  7097. cpumask_copy(sched_group_cpus(sg), d->nodemask);
  7098. sg->next = sg;
  7099. cpumask_or(d->covered, d->covered, d->nodemask);
  7100. prev = sg;
  7101. for (j = 0; j < nr_node_ids; j++) {
  7102. n = (num + j) % nr_node_ids;
  7103. cpumask_complement(d->notcovered, d->covered);
  7104. cpumask_and(d->tmpmask, d->notcovered, cpu_map);
  7105. cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
  7106. if (cpumask_empty(d->tmpmask))
  7107. break;
  7108. cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
  7109. if (cpumask_empty(d->tmpmask))
  7110. continue;
  7111. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  7112. GFP_KERNEL, num);
  7113. if (!sg) {
  7114. printk(KERN_WARNING
  7115. "Can not alloc domain group for node %d\n", j);
  7116. return -ENOMEM;
  7117. }
  7118. sg->cpu_power = 0;
  7119. cpumask_copy(sched_group_cpus(sg), d->tmpmask);
  7120. sg->next = prev->next;
  7121. cpumask_or(d->covered, d->covered, d->tmpmask);
  7122. prev->next = sg;
  7123. prev = sg;
  7124. }
  7125. out:
  7126. return 0;
  7127. }
  7128. #endif /* CONFIG_NUMA */
  7129. #ifdef CONFIG_NUMA
  7130. /* Free memory allocated for various sched_group structures */
  7131. static void free_sched_groups(const struct cpumask *cpu_map,
  7132. struct cpumask *nodemask)
  7133. {
  7134. int cpu, i;
  7135. for_each_cpu(cpu, cpu_map) {
  7136. struct sched_group **sched_group_nodes
  7137. = sched_group_nodes_bycpu[cpu];
  7138. if (!sched_group_nodes)
  7139. continue;
  7140. for (i = 0; i < nr_node_ids; i++) {
  7141. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  7142. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  7143. if (cpumask_empty(nodemask))
  7144. continue;
  7145. if (sg == NULL)
  7146. continue;
  7147. sg = sg->next;
  7148. next_sg:
  7149. oldsg = sg;
  7150. sg = sg->next;
  7151. kfree(oldsg);
  7152. if (oldsg != sched_group_nodes[i])
  7153. goto next_sg;
  7154. }
  7155. kfree(sched_group_nodes);
  7156. sched_group_nodes_bycpu[cpu] = NULL;
  7157. }
  7158. }
  7159. #else /* !CONFIG_NUMA */
  7160. static void free_sched_groups(const struct cpumask *cpu_map,
  7161. struct cpumask *nodemask)
  7162. {
  7163. }
  7164. #endif /* CONFIG_NUMA */
  7165. /*
  7166. * Initialize sched groups cpu_power.
  7167. *
  7168. * cpu_power indicates the capacity of sched group, which is used while
  7169. * distributing the load between different sched groups in a sched domain.
  7170. * Typically cpu_power for all the groups in a sched domain will be same unless
  7171. * there are asymmetries in the topology. If there are asymmetries, group
  7172. * having more cpu_power will pickup more load compared to the group having
  7173. * less cpu_power.
  7174. */
  7175. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  7176. {
  7177. struct sched_domain *child;
  7178. struct sched_group *group;
  7179. long power;
  7180. int weight;
  7181. WARN_ON(!sd || !sd->groups);
  7182. if (cpu != group_first_cpu(sd->groups))
  7183. return;
  7184. child = sd->child;
  7185. sd->groups->cpu_power = 0;
  7186. if (!child) {
  7187. power = SCHED_LOAD_SCALE;
  7188. weight = cpumask_weight(sched_domain_span(sd));
  7189. /*
  7190. * SMT siblings share the power of a single core.
  7191. * Usually multiple threads get a better yield out of
  7192. * that one core than a single thread would have,
  7193. * reflect that in sd->smt_gain.
  7194. */
  7195. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  7196. power *= sd->smt_gain;
  7197. power /= weight;
  7198. power >>= SCHED_LOAD_SHIFT;
  7199. }
  7200. sd->groups->cpu_power += power;
  7201. return;
  7202. }
  7203. /*
  7204. * Add cpu_power of each child group to this groups cpu_power.
  7205. */
  7206. group = child->groups;
  7207. do {
  7208. sd->groups->cpu_power += group->cpu_power;
  7209. group = group->next;
  7210. } while (group != child->groups);
  7211. }
  7212. /*
  7213. * Initializers for schedule domains
  7214. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  7215. */
  7216. #ifdef CONFIG_SCHED_DEBUG
  7217. # define SD_INIT_NAME(sd, type) sd->name = #type
  7218. #else
  7219. # define SD_INIT_NAME(sd, type) do { } while (0)
  7220. #endif
  7221. #define SD_INIT(sd, type) sd_init_##type(sd)
  7222. #define SD_INIT_FUNC(type) \
  7223. static noinline void sd_init_##type(struct sched_domain *sd) \
  7224. { \
  7225. memset(sd, 0, sizeof(*sd)); \
  7226. *sd = SD_##type##_INIT; \
  7227. sd->level = SD_LV_##type; \
  7228. SD_INIT_NAME(sd, type); \
  7229. }
  7230. SD_INIT_FUNC(CPU)
  7231. #ifdef CONFIG_NUMA
  7232. SD_INIT_FUNC(ALLNODES)
  7233. SD_INIT_FUNC(NODE)
  7234. #endif
  7235. #ifdef CONFIG_SCHED_SMT
  7236. SD_INIT_FUNC(SIBLING)
  7237. #endif
  7238. #ifdef CONFIG_SCHED_MC
  7239. SD_INIT_FUNC(MC)
  7240. #endif
  7241. static int default_relax_domain_level = -1;
  7242. static int __init setup_relax_domain_level(char *str)
  7243. {
  7244. unsigned long val;
  7245. val = simple_strtoul(str, NULL, 0);
  7246. if (val < SD_LV_MAX)
  7247. default_relax_domain_level = val;
  7248. return 1;
  7249. }
  7250. __setup("relax_domain_level=", setup_relax_domain_level);
  7251. static void set_domain_attribute(struct sched_domain *sd,
  7252. struct sched_domain_attr *attr)
  7253. {
  7254. int request;
  7255. if (!attr || attr->relax_domain_level < 0) {
  7256. if (default_relax_domain_level < 0)
  7257. return;
  7258. else
  7259. request = default_relax_domain_level;
  7260. } else
  7261. request = attr->relax_domain_level;
  7262. if (request < sd->level) {
  7263. /* turn off idle balance on this domain */
  7264. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  7265. } else {
  7266. /* turn on idle balance on this domain */
  7267. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  7268. }
  7269. }
  7270. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  7271. const struct cpumask *cpu_map)
  7272. {
  7273. switch (what) {
  7274. case sa_sched_groups:
  7275. free_sched_groups(cpu_map, d->tmpmask); /* fall through */
  7276. d->sched_group_nodes = NULL;
  7277. case sa_rootdomain:
  7278. free_rootdomain(d->rd); /* fall through */
  7279. case sa_tmpmask:
  7280. free_cpumask_var(d->tmpmask); /* fall through */
  7281. case sa_send_covered:
  7282. free_cpumask_var(d->send_covered); /* fall through */
  7283. case sa_this_core_map:
  7284. free_cpumask_var(d->this_core_map); /* fall through */
  7285. case sa_this_sibling_map:
  7286. free_cpumask_var(d->this_sibling_map); /* fall through */
  7287. case sa_nodemask:
  7288. free_cpumask_var(d->nodemask); /* fall through */
  7289. case sa_sched_group_nodes:
  7290. #ifdef CONFIG_NUMA
  7291. kfree(d->sched_group_nodes); /* fall through */
  7292. case sa_notcovered:
  7293. free_cpumask_var(d->notcovered); /* fall through */
  7294. case sa_covered:
  7295. free_cpumask_var(d->covered); /* fall through */
  7296. case sa_domainspan:
  7297. free_cpumask_var(d->domainspan); /* fall through */
  7298. #endif
  7299. case sa_none:
  7300. break;
  7301. }
  7302. }
  7303. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  7304. const struct cpumask *cpu_map)
  7305. {
  7306. #ifdef CONFIG_NUMA
  7307. if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
  7308. return sa_none;
  7309. if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
  7310. return sa_domainspan;
  7311. if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
  7312. return sa_covered;
  7313. /* Allocate the per-node list of sched groups */
  7314. d->sched_group_nodes = kcalloc(nr_node_ids,
  7315. sizeof(struct sched_group *), GFP_KERNEL);
  7316. if (!d->sched_group_nodes) {
  7317. printk(KERN_WARNING "Can not alloc sched group node list\n");
  7318. return sa_notcovered;
  7319. }
  7320. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
  7321. #endif
  7322. if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
  7323. return sa_sched_group_nodes;
  7324. if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
  7325. return sa_nodemask;
  7326. if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
  7327. return sa_this_sibling_map;
  7328. if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
  7329. return sa_this_core_map;
  7330. if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
  7331. return sa_send_covered;
  7332. d->rd = alloc_rootdomain();
  7333. if (!d->rd) {
  7334. printk(KERN_WARNING "Cannot alloc root domain\n");
  7335. return sa_tmpmask;
  7336. }
  7337. return sa_rootdomain;
  7338. }
  7339. static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
  7340. const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
  7341. {
  7342. struct sched_domain *sd = NULL;
  7343. #ifdef CONFIG_NUMA
  7344. struct sched_domain *parent;
  7345. d->sd_allnodes = 0;
  7346. if (cpumask_weight(cpu_map) >
  7347. SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
  7348. sd = &per_cpu(allnodes_domains, i).sd;
  7349. SD_INIT(sd, ALLNODES);
  7350. set_domain_attribute(sd, attr);
  7351. cpumask_copy(sched_domain_span(sd), cpu_map);
  7352. cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
  7353. d->sd_allnodes = 1;
  7354. }
  7355. parent = sd;
  7356. sd = &per_cpu(node_domains, i).sd;
  7357. SD_INIT(sd, NODE);
  7358. set_domain_attribute(sd, attr);
  7359. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  7360. sd->parent = parent;
  7361. if (parent)
  7362. parent->child = sd;
  7363. cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
  7364. #endif
  7365. return sd;
  7366. }
  7367. static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
  7368. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  7369. struct sched_domain *parent, int i)
  7370. {
  7371. struct sched_domain *sd;
  7372. sd = &per_cpu(phys_domains, i).sd;
  7373. SD_INIT(sd, CPU);
  7374. set_domain_attribute(sd, attr);
  7375. cpumask_copy(sched_domain_span(sd), d->nodemask);
  7376. sd->parent = parent;
  7377. if (parent)
  7378. parent->child = sd;
  7379. cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
  7380. return sd;
  7381. }
  7382. static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
  7383. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  7384. struct sched_domain *parent, int i)
  7385. {
  7386. struct sched_domain *sd = parent;
  7387. #ifdef CONFIG_SCHED_MC
  7388. sd = &per_cpu(core_domains, i).sd;
  7389. SD_INIT(sd, MC);
  7390. set_domain_attribute(sd, attr);
  7391. cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
  7392. sd->parent = parent;
  7393. parent->child = sd;
  7394. cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
  7395. #endif
  7396. return sd;
  7397. }
  7398. static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
  7399. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  7400. struct sched_domain *parent, int i)
  7401. {
  7402. struct sched_domain *sd = parent;
  7403. #ifdef CONFIG_SCHED_SMT
  7404. sd = &per_cpu(cpu_domains, i).sd;
  7405. SD_INIT(sd, SIBLING);
  7406. set_domain_attribute(sd, attr);
  7407. cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
  7408. sd->parent = parent;
  7409. parent->child = sd;
  7410. cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
  7411. #endif
  7412. return sd;
  7413. }
  7414. static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
  7415. const struct cpumask *cpu_map, int cpu)
  7416. {
  7417. switch (l) {
  7418. #ifdef CONFIG_SCHED_SMT
  7419. case SD_LV_SIBLING: /* set up CPU (sibling) groups */
  7420. cpumask_and(d->this_sibling_map, cpu_map,
  7421. topology_thread_cpumask(cpu));
  7422. if (cpu == cpumask_first(d->this_sibling_map))
  7423. init_sched_build_groups(d->this_sibling_map, cpu_map,
  7424. &cpu_to_cpu_group,
  7425. d->send_covered, d->tmpmask);
  7426. break;
  7427. #endif
  7428. #ifdef CONFIG_SCHED_MC
  7429. case SD_LV_MC: /* set up multi-core groups */
  7430. cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
  7431. if (cpu == cpumask_first(d->this_core_map))
  7432. init_sched_build_groups(d->this_core_map, cpu_map,
  7433. &cpu_to_core_group,
  7434. d->send_covered, d->tmpmask);
  7435. break;
  7436. #endif
  7437. case SD_LV_CPU: /* set up physical groups */
  7438. cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
  7439. if (!cpumask_empty(d->nodemask))
  7440. init_sched_build_groups(d->nodemask, cpu_map,
  7441. &cpu_to_phys_group,
  7442. d->send_covered, d->tmpmask);
  7443. break;
  7444. #ifdef CONFIG_NUMA
  7445. case SD_LV_ALLNODES:
  7446. init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
  7447. d->send_covered, d->tmpmask);
  7448. break;
  7449. #endif
  7450. default:
  7451. break;
  7452. }
  7453. }
  7454. /*
  7455. * Build sched domains for a given set of cpus and attach the sched domains
  7456. * to the individual cpus
  7457. */
  7458. static int __build_sched_domains(const struct cpumask *cpu_map,
  7459. struct sched_domain_attr *attr)
  7460. {
  7461. enum s_alloc alloc_state = sa_none;
  7462. struct s_data d;
  7463. struct sched_domain *sd;
  7464. int i;
  7465. #ifdef CONFIG_NUMA
  7466. d.sd_allnodes = 0;
  7467. #endif
  7468. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  7469. if (alloc_state != sa_rootdomain)
  7470. goto error;
  7471. alloc_state = sa_sched_groups;
  7472. /*
  7473. * Set up domains for cpus specified by the cpu_map.
  7474. */
  7475. for_each_cpu(i, cpu_map) {
  7476. cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
  7477. cpu_map);
  7478. sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
  7479. sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
  7480. sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
  7481. sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
  7482. }
  7483. for_each_cpu(i, cpu_map) {
  7484. build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
  7485. build_sched_groups(&d, SD_LV_MC, cpu_map, i);
  7486. }
  7487. /* Set up physical groups */
  7488. for (i = 0; i < nr_node_ids; i++)
  7489. build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
  7490. #ifdef CONFIG_NUMA
  7491. /* Set up node groups */
  7492. if (d.sd_allnodes)
  7493. build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
  7494. for (i = 0; i < nr_node_ids; i++)
  7495. if (build_numa_sched_groups(&d, cpu_map, i))
  7496. goto error;
  7497. #endif
  7498. /* Calculate CPU power for physical packages and nodes */
  7499. #ifdef CONFIG_SCHED_SMT
  7500. for_each_cpu(i, cpu_map) {
  7501. sd = &per_cpu(cpu_domains, i).sd;
  7502. init_sched_groups_power(i, sd);
  7503. }
  7504. #endif
  7505. #ifdef CONFIG_SCHED_MC
  7506. for_each_cpu(i, cpu_map) {
  7507. sd = &per_cpu(core_domains, i).sd;
  7508. init_sched_groups_power(i, sd);
  7509. }
  7510. #endif
  7511. for_each_cpu(i, cpu_map) {
  7512. sd = &per_cpu(phys_domains, i).sd;
  7513. init_sched_groups_power(i, sd);
  7514. }
  7515. #ifdef CONFIG_NUMA
  7516. for (i = 0; i < nr_node_ids; i++)
  7517. init_numa_sched_groups_power(d.sched_group_nodes[i]);
  7518. if (d.sd_allnodes) {
  7519. struct sched_group *sg;
  7520. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  7521. d.tmpmask);
  7522. init_numa_sched_groups_power(sg);
  7523. }
  7524. #endif
  7525. /* Attach the domains */
  7526. for_each_cpu(i, cpu_map) {
  7527. #ifdef CONFIG_SCHED_SMT
  7528. sd = &per_cpu(cpu_domains, i).sd;
  7529. #elif defined(CONFIG_SCHED_MC)
  7530. sd = &per_cpu(core_domains, i).sd;
  7531. #else
  7532. sd = &per_cpu(phys_domains, i).sd;
  7533. #endif
  7534. cpu_attach_domain(sd, d.rd, i);
  7535. }
  7536. d.sched_group_nodes = NULL; /* don't free this we still need it */
  7537. __free_domain_allocs(&d, sa_tmpmask, cpu_map);
  7538. return 0;
  7539. error:
  7540. __free_domain_allocs(&d, alloc_state, cpu_map);
  7541. return -ENOMEM;
  7542. }
  7543. static int build_sched_domains(const struct cpumask *cpu_map)
  7544. {
  7545. return __build_sched_domains(cpu_map, NULL);
  7546. }
  7547. static struct cpumask *doms_cur; /* current sched domains */
  7548. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  7549. static struct sched_domain_attr *dattr_cur;
  7550. /* attribues of custom domains in 'doms_cur' */
  7551. /*
  7552. * Special case: If a kmalloc of a doms_cur partition (array of
  7553. * cpumask) fails, then fallback to a single sched domain,
  7554. * as determined by the single cpumask fallback_doms.
  7555. */
  7556. static cpumask_var_t fallback_doms;
  7557. /*
  7558. * arch_update_cpu_topology lets virtualized architectures update the
  7559. * cpu core maps. It is supposed to return 1 if the topology changed
  7560. * or 0 if it stayed the same.
  7561. */
  7562. int __attribute__((weak)) arch_update_cpu_topology(void)
  7563. {
  7564. return 0;
  7565. }
  7566. /*
  7567. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  7568. * For now this just excludes isolated cpus, but could be used to
  7569. * exclude other special cases in the future.
  7570. */
  7571. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  7572. {
  7573. int err;
  7574. arch_update_cpu_topology();
  7575. ndoms_cur = 1;
  7576. doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
  7577. if (!doms_cur)
  7578. doms_cur = fallback_doms;
  7579. cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
  7580. dattr_cur = NULL;
  7581. err = build_sched_domains(doms_cur);
  7582. register_sched_domain_sysctl();
  7583. return err;
  7584. }
  7585. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  7586. struct cpumask *tmpmask)
  7587. {
  7588. free_sched_groups(cpu_map, tmpmask);
  7589. }
  7590. /*
  7591. * Detach sched domains from a group of cpus specified in cpu_map
  7592. * These cpus will now be attached to the NULL domain
  7593. */
  7594. static void detach_destroy_domains(const struct cpumask *cpu_map)
  7595. {
  7596. /* Save because hotplug lock held. */
  7597. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  7598. int i;
  7599. for_each_cpu(i, cpu_map)
  7600. cpu_attach_domain(NULL, &def_root_domain, i);
  7601. synchronize_sched();
  7602. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  7603. }
  7604. /* handle null as "default" */
  7605. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  7606. struct sched_domain_attr *new, int idx_new)
  7607. {
  7608. struct sched_domain_attr tmp;
  7609. /* fast path */
  7610. if (!new && !cur)
  7611. return 1;
  7612. tmp = SD_ATTR_INIT;
  7613. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  7614. new ? (new + idx_new) : &tmp,
  7615. sizeof(struct sched_domain_attr));
  7616. }
  7617. /*
  7618. * Partition sched domains as specified by the 'ndoms_new'
  7619. * cpumasks in the array doms_new[] of cpumasks. This compares
  7620. * doms_new[] to the current sched domain partitioning, doms_cur[].
  7621. * It destroys each deleted domain and builds each new domain.
  7622. *
  7623. * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
  7624. * The masks don't intersect (don't overlap.) We should setup one
  7625. * sched domain for each mask. CPUs not in any of the cpumasks will
  7626. * not be load balanced. If the same cpumask appears both in the
  7627. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  7628. * it as it is.
  7629. *
  7630. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  7631. * ownership of it and will kfree it when done with it. If the caller
  7632. * failed the kmalloc call, then it can pass in doms_new == NULL &&
  7633. * ndoms_new == 1, and partition_sched_domains() will fallback to
  7634. * the single partition 'fallback_doms', it also forces the domains
  7635. * to be rebuilt.
  7636. *
  7637. * If doms_new == NULL it will be replaced with cpu_online_mask.
  7638. * ndoms_new == 0 is a special case for destroying existing domains,
  7639. * and it will not create the default domain.
  7640. *
  7641. * Call with hotplug lock held
  7642. */
  7643. /* FIXME: Change to struct cpumask *doms_new[] */
  7644. void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
  7645. struct sched_domain_attr *dattr_new)
  7646. {
  7647. int i, j, n;
  7648. int new_topology;
  7649. mutex_lock(&sched_domains_mutex);
  7650. /* always unregister in case we don't destroy any domains */
  7651. unregister_sched_domain_sysctl();
  7652. /* Let architecture update cpu core mappings. */
  7653. new_topology = arch_update_cpu_topology();
  7654. n = doms_new ? ndoms_new : 0;
  7655. /* Destroy deleted domains */
  7656. for (i = 0; i < ndoms_cur; i++) {
  7657. for (j = 0; j < n && !new_topology; j++) {
  7658. if (cpumask_equal(&doms_cur[i], &doms_new[j])
  7659. && dattrs_equal(dattr_cur, i, dattr_new, j))
  7660. goto match1;
  7661. }
  7662. /* no match - a current sched domain not in new doms_new[] */
  7663. detach_destroy_domains(doms_cur + i);
  7664. match1:
  7665. ;
  7666. }
  7667. if (doms_new == NULL) {
  7668. ndoms_cur = 0;
  7669. doms_new = fallback_doms;
  7670. cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
  7671. WARN_ON_ONCE(dattr_new);
  7672. }
  7673. /* Build new domains */
  7674. for (i = 0; i < ndoms_new; i++) {
  7675. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  7676. if (cpumask_equal(&doms_new[i], &doms_cur[j])
  7677. && dattrs_equal(dattr_new, i, dattr_cur, j))
  7678. goto match2;
  7679. }
  7680. /* no match - add a new doms_new */
  7681. __build_sched_domains(doms_new + i,
  7682. dattr_new ? dattr_new + i : NULL);
  7683. match2:
  7684. ;
  7685. }
  7686. /* Remember the new sched domains */
  7687. if (doms_cur != fallback_doms)
  7688. kfree(doms_cur);
  7689. kfree(dattr_cur); /* kfree(NULL) is safe */
  7690. doms_cur = doms_new;
  7691. dattr_cur = dattr_new;
  7692. ndoms_cur = ndoms_new;
  7693. register_sched_domain_sysctl();
  7694. mutex_unlock(&sched_domains_mutex);
  7695. }
  7696. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  7697. static void arch_reinit_sched_domains(void)
  7698. {
  7699. get_online_cpus();
  7700. /* Destroy domains first to force the rebuild */
  7701. partition_sched_domains(0, NULL, NULL);
  7702. rebuild_sched_domains();
  7703. put_online_cpus();
  7704. }
  7705. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  7706. {
  7707. unsigned int level = 0;
  7708. if (sscanf(buf, "%u", &level) != 1)
  7709. return -EINVAL;
  7710. /*
  7711. * level is always be positive so don't check for
  7712. * level < POWERSAVINGS_BALANCE_NONE which is 0
  7713. * What happens on 0 or 1 byte write,
  7714. * need to check for count as well?
  7715. */
  7716. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  7717. return -EINVAL;
  7718. if (smt)
  7719. sched_smt_power_savings = level;
  7720. else
  7721. sched_mc_power_savings = level;
  7722. arch_reinit_sched_domains();
  7723. return count;
  7724. }
  7725. #ifdef CONFIG_SCHED_MC
  7726. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  7727. char *page)
  7728. {
  7729. return sprintf(page, "%u\n", sched_mc_power_savings);
  7730. }
  7731. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  7732. const char *buf, size_t count)
  7733. {
  7734. return sched_power_savings_store(buf, count, 0);
  7735. }
  7736. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  7737. sched_mc_power_savings_show,
  7738. sched_mc_power_savings_store);
  7739. #endif
  7740. #ifdef CONFIG_SCHED_SMT
  7741. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  7742. char *page)
  7743. {
  7744. return sprintf(page, "%u\n", sched_smt_power_savings);
  7745. }
  7746. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  7747. const char *buf, size_t count)
  7748. {
  7749. return sched_power_savings_store(buf, count, 1);
  7750. }
  7751. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  7752. sched_smt_power_savings_show,
  7753. sched_smt_power_savings_store);
  7754. #endif
  7755. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  7756. {
  7757. int err = 0;
  7758. #ifdef CONFIG_SCHED_SMT
  7759. if (smt_capable())
  7760. err = sysfs_create_file(&cls->kset.kobj,
  7761. &attr_sched_smt_power_savings.attr);
  7762. #endif
  7763. #ifdef CONFIG_SCHED_MC
  7764. if (!err && mc_capable())
  7765. err = sysfs_create_file(&cls->kset.kobj,
  7766. &attr_sched_mc_power_savings.attr);
  7767. #endif
  7768. return err;
  7769. }
  7770. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  7771. #ifndef CONFIG_CPUSETS
  7772. /*
  7773. * Add online and remove offline CPUs from the scheduler domains.
  7774. * When cpusets are enabled they take over this function.
  7775. */
  7776. static int update_sched_domains(struct notifier_block *nfb,
  7777. unsigned long action, void *hcpu)
  7778. {
  7779. switch (action) {
  7780. case CPU_ONLINE:
  7781. case CPU_ONLINE_FROZEN:
  7782. case CPU_DEAD:
  7783. case CPU_DEAD_FROZEN:
  7784. partition_sched_domains(1, NULL, NULL);
  7785. return NOTIFY_OK;
  7786. default:
  7787. return NOTIFY_DONE;
  7788. }
  7789. }
  7790. #endif
  7791. static int update_runtime(struct notifier_block *nfb,
  7792. unsigned long action, void *hcpu)
  7793. {
  7794. int cpu = (int)(long)hcpu;
  7795. switch (action) {
  7796. case CPU_DOWN_PREPARE:
  7797. case CPU_DOWN_PREPARE_FROZEN:
  7798. disable_runtime(cpu_rq(cpu));
  7799. return NOTIFY_OK;
  7800. case CPU_DOWN_FAILED:
  7801. case CPU_DOWN_FAILED_FROZEN:
  7802. case CPU_ONLINE:
  7803. case CPU_ONLINE_FROZEN:
  7804. enable_runtime(cpu_rq(cpu));
  7805. return NOTIFY_OK;
  7806. default:
  7807. return NOTIFY_DONE;
  7808. }
  7809. }
  7810. void __init sched_init_smp(void)
  7811. {
  7812. cpumask_var_t non_isolated_cpus;
  7813. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  7814. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  7815. #if defined(CONFIG_NUMA)
  7816. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  7817. GFP_KERNEL);
  7818. BUG_ON(sched_group_nodes_bycpu == NULL);
  7819. #endif
  7820. get_online_cpus();
  7821. mutex_lock(&sched_domains_mutex);
  7822. arch_init_sched_domains(cpu_online_mask);
  7823. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  7824. if (cpumask_empty(non_isolated_cpus))
  7825. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  7826. mutex_unlock(&sched_domains_mutex);
  7827. put_online_cpus();
  7828. #ifndef CONFIG_CPUSETS
  7829. /* XXX: Theoretical race here - CPU may be hotplugged now */
  7830. hotcpu_notifier(update_sched_domains, 0);
  7831. #endif
  7832. /* RT runtime code needs to handle some hotplug events */
  7833. hotcpu_notifier(update_runtime, 0);
  7834. init_hrtick();
  7835. /* Move init over to a non-isolated CPU */
  7836. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  7837. BUG();
  7838. sched_init_granularity();
  7839. free_cpumask_var(non_isolated_cpus);
  7840. init_sched_rt_class();
  7841. }
  7842. #else
  7843. void __init sched_init_smp(void)
  7844. {
  7845. sched_init_granularity();
  7846. }
  7847. #endif /* CONFIG_SMP */
  7848. const_debug unsigned int sysctl_timer_migration = 1;
  7849. int in_sched_functions(unsigned long addr)
  7850. {
  7851. return in_lock_functions(addr) ||
  7852. (addr >= (unsigned long)__sched_text_start
  7853. && addr < (unsigned long)__sched_text_end);
  7854. }
  7855. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  7856. {
  7857. cfs_rq->tasks_timeline = RB_ROOT;
  7858. INIT_LIST_HEAD(&cfs_rq->tasks);
  7859. #ifdef CONFIG_FAIR_GROUP_SCHED
  7860. cfs_rq->rq = rq;
  7861. #endif
  7862. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  7863. }
  7864. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  7865. {
  7866. struct rt_prio_array *array;
  7867. int i;
  7868. array = &rt_rq->active;
  7869. for (i = 0; i < MAX_RT_PRIO; i++) {
  7870. INIT_LIST_HEAD(array->queue + i);
  7871. __clear_bit(i, array->bitmap);
  7872. }
  7873. /* delimiter for bitsearch: */
  7874. __set_bit(MAX_RT_PRIO, array->bitmap);
  7875. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  7876. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  7877. #ifdef CONFIG_SMP
  7878. rt_rq->highest_prio.next = MAX_RT_PRIO;
  7879. #endif
  7880. #endif
  7881. #ifdef CONFIG_SMP
  7882. rt_rq->rt_nr_migratory = 0;
  7883. rt_rq->overloaded = 0;
  7884. plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
  7885. #endif
  7886. rt_rq->rt_time = 0;
  7887. rt_rq->rt_throttled = 0;
  7888. rt_rq->rt_runtime = 0;
  7889. spin_lock_init(&rt_rq->rt_runtime_lock);
  7890. #ifdef CONFIG_RT_GROUP_SCHED
  7891. rt_rq->rt_nr_boosted = 0;
  7892. rt_rq->rq = rq;
  7893. #endif
  7894. }
  7895. #ifdef CONFIG_FAIR_GROUP_SCHED
  7896. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  7897. struct sched_entity *se, int cpu, int add,
  7898. struct sched_entity *parent)
  7899. {
  7900. struct rq *rq = cpu_rq(cpu);
  7901. tg->cfs_rq[cpu] = cfs_rq;
  7902. init_cfs_rq(cfs_rq, rq);
  7903. cfs_rq->tg = tg;
  7904. if (add)
  7905. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  7906. tg->se[cpu] = se;
  7907. /* se could be NULL for init_task_group */
  7908. if (!se)
  7909. return;
  7910. if (!parent)
  7911. se->cfs_rq = &rq->cfs;
  7912. else
  7913. se->cfs_rq = parent->my_q;
  7914. se->my_q = cfs_rq;
  7915. se->load.weight = tg->shares;
  7916. se->load.inv_weight = 0;
  7917. se->parent = parent;
  7918. }
  7919. #endif
  7920. #ifdef CONFIG_RT_GROUP_SCHED
  7921. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  7922. struct sched_rt_entity *rt_se, int cpu, int add,
  7923. struct sched_rt_entity *parent)
  7924. {
  7925. struct rq *rq = cpu_rq(cpu);
  7926. tg->rt_rq[cpu] = rt_rq;
  7927. init_rt_rq(rt_rq, rq);
  7928. rt_rq->tg = tg;
  7929. rt_rq->rt_se = rt_se;
  7930. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  7931. if (add)
  7932. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  7933. tg->rt_se[cpu] = rt_se;
  7934. if (!rt_se)
  7935. return;
  7936. if (!parent)
  7937. rt_se->rt_rq = &rq->rt;
  7938. else
  7939. rt_se->rt_rq = parent->my_q;
  7940. rt_se->my_q = rt_rq;
  7941. rt_se->parent = parent;
  7942. INIT_LIST_HEAD(&rt_se->run_list);
  7943. }
  7944. #endif
  7945. void __init sched_init(void)
  7946. {
  7947. int i, j;
  7948. unsigned long alloc_size = 0, ptr;
  7949. #ifdef CONFIG_FAIR_GROUP_SCHED
  7950. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  7951. #endif
  7952. #ifdef CONFIG_RT_GROUP_SCHED
  7953. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  7954. #endif
  7955. #ifdef CONFIG_USER_SCHED
  7956. alloc_size *= 2;
  7957. #endif
  7958. #ifdef CONFIG_CPUMASK_OFFSTACK
  7959. alloc_size += num_possible_cpus() * cpumask_size();
  7960. #endif
  7961. /*
  7962. * As sched_init() is called before page_alloc is setup,
  7963. * we use alloc_bootmem().
  7964. */
  7965. if (alloc_size) {
  7966. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  7967. #ifdef CONFIG_FAIR_GROUP_SCHED
  7968. init_task_group.se = (struct sched_entity **)ptr;
  7969. ptr += nr_cpu_ids * sizeof(void **);
  7970. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7971. ptr += nr_cpu_ids * sizeof(void **);
  7972. #ifdef CONFIG_USER_SCHED
  7973. root_task_group.se = (struct sched_entity **)ptr;
  7974. ptr += nr_cpu_ids * sizeof(void **);
  7975. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7976. ptr += nr_cpu_ids * sizeof(void **);
  7977. #endif /* CONFIG_USER_SCHED */
  7978. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7979. #ifdef CONFIG_RT_GROUP_SCHED
  7980. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7981. ptr += nr_cpu_ids * sizeof(void **);
  7982. init_task_group.rt_rq = (struct rt_rq **)ptr;
  7983. ptr += nr_cpu_ids * sizeof(void **);
  7984. #ifdef CONFIG_USER_SCHED
  7985. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7986. ptr += nr_cpu_ids * sizeof(void **);
  7987. root_task_group.rt_rq = (struct rt_rq **)ptr;
  7988. ptr += nr_cpu_ids * sizeof(void **);
  7989. #endif /* CONFIG_USER_SCHED */
  7990. #endif /* CONFIG_RT_GROUP_SCHED */
  7991. #ifdef CONFIG_CPUMASK_OFFSTACK
  7992. for_each_possible_cpu(i) {
  7993. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  7994. ptr += cpumask_size();
  7995. }
  7996. #endif /* CONFIG_CPUMASK_OFFSTACK */
  7997. }
  7998. #ifdef CONFIG_SMP
  7999. init_defrootdomain();
  8000. #endif
  8001. init_rt_bandwidth(&def_rt_bandwidth,
  8002. global_rt_period(), global_rt_runtime());
  8003. #ifdef CONFIG_RT_GROUP_SCHED
  8004. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  8005. global_rt_period(), global_rt_runtime());
  8006. #ifdef CONFIG_USER_SCHED
  8007. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  8008. global_rt_period(), RUNTIME_INF);
  8009. #endif /* CONFIG_USER_SCHED */
  8010. #endif /* CONFIG_RT_GROUP_SCHED */
  8011. #ifdef CONFIG_GROUP_SCHED
  8012. list_add(&init_task_group.list, &task_groups);
  8013. INIT_LIST_HEAD(&init_task_group.children);
  8014. #ifdef CONFIG_USER_SCHED
  8015. INIT_LIST_HEAD(&root_task_group.children);
  8016. init_task_group.parent = &root_task_group;
  8017. list_add(&init_task_group.siblings, &root_task_group.children);
  8018. #endif /* CONFIG_USER_SCHED */
  8019. #endif /* CONFIG_GROUP_SCHED */
  8020. #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
  8021. update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
  8022. __alignof__(unsigned long));
  8023. #endif
  8024. for_each_possible_cpu(i) {
  8025. struct rq *rq;
  8026. rq = cpu_rq(i);
  8027. spin_lock_init(&rq->lock);
  8028. rq->nr_running = 0;
  8029. rq->calc_load_active = 0;
  8030. rq->calc_load_update = jiffies + LOAD_FREQ;
  8031. init_cfs_rq(&rq->cfs, rq);
  8032. init_rt_rq(&rq->rt, rq);
  8033. #ifdef CONFIG_FAIR_GROUP_SCHED
  8034. init_task_group.shares = init_task_group_load;
  8035. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  8036. #ifdef CONFIG_CGROUP_SCHED
  8037. /*
  8038. * How much cpu bandwidth does init_task_group get?
  8039. *
  8040. * In case of task-groups formed thr' the cgroup filesystem, it
  8041. * gets 100% of the cpu resources in the system. This overall
  8042. * system cpu resource is divided among the tasks of
  8043. * init_task_group and its child task-groups in a fair manner,
  8044. * based on each entity's (task or task-group's) weight
  8045. * (se->load.weight).
  8046. *
  8047. * In other words, if init_task_group has 10 tasks of weight
  8048. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  8049. * then A0's share of the cpu resource is:
  8050. *
  8051. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  8052. *
  8053. * We achieve this by letting init_task_group's tasks sit
  8054. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  8055. */
  8056. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  8057. #elif defined CONFIG_USER_SCHED
  8058. root_task_group.shares = NICE_0_LOAD;
  8059. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  8060. /*
  8061. * In case of task-groups formed thr' the user id of tasks,
  8062. * init_task_group represents tasks belonging to root user.
  8063. * Hence it forms a sibling of all subsequent groups formed.
  8064. * In this case, init_task_group gets only a fraction of overall
  8065. * system cpu resource, based on the weight assigned to root
  8066. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  8067. * by letting tasks of init_task_group sit in a separate cfs_rq
  8068. * (init_tg_cfs_rq) and having one entity represent this group of
  8069. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  8070. */
  8071. init_tg_cfs_entry(&init_task_group,
  8072. &per_cpu(init_tg_cfs_rq, i),
  8073. &per_cpu(init_sched_entity, i), i, 1,
  8074. root_task_group.se[i]);
  8075. #endif
  8076. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8077. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  8078. #ifdef CONFIG_RT_GROUP_SCHED
  8079. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  8080. #ifdef CONFIG_CGROUP_SCHED
  8081. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  8082. #elif defined CONFIG_USER_SCHED
  8083. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  8084. init_tg_rt_entry(&init_task_group,
  8085. &per_cpu(init_rt_rq, i),
  8086. &per_cpu(init_sched_rt_entity, i), i, 1,
  8087. root_task_group.rt_se[i]);
  8088. #endif
  8089. #endif
  8090. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  8091. rq->cpu_load[j] = 0;
  8092. #ifdef CONFIG_SMP
  8093. rq->sd = NULL;
  8094. rq->rd = NULL;
  8095. rq->post_schedule = 0;
  8096. rq->active_balance = 0;
  8097. rq->next_balance = jiffies;
  8098. rq->push_cpu = 0;
  8099. rq->cpu = i;
  8100. rq->online = 0;
  8101. rq->migration_thread = NULL;
  8102. INIT_LIST_HEAD(&rq->migration_queue);
  8103. rq_attach_root(rq, &def_root_domain);
  8104. #endif
  8105. init_rq_hrtick(rq);
  8106. atomic_set(&rq->nr_iowait, 0);
  8107. }
  8108. set_load_weight(&init_task);
  8109. #ifdef CONFIG_PREEMPT_NOTIFIERS
  8110. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  8111. #endif
  8112. #ifdef CONFIG_SMP
  8113. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  8114. #endif
  8115. #ifdef CONFIG_RT_MUTEXES
  8116. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  8117. #endif
  8118. /*
  8119. * The boot idle thread does lazy MMU switching as well:
  8120. */
  8121. atomic_inc(&init_mm.mm_count);
  8122. enter_lazy_tlb(&init_mm, current);
  8123. /*
  8124. * Make us the idle thread. Technically, schedule() should not be
  8125. * called from this thread, however somewhere below it might be,
  8126. * but because we are the idle thread, we just pick up running again
  8127. * when this runqueue becomes "idle".
  8128. */
  8129. init_idle(current, smp_processor_id());
  8130. calc_load_update = jiffies + LOAD_FREQ;
  8131. /*
  8132. * During early bootup we pretend to be a normal task:
  8133. */
  8134. current->sched_class = &fair_sched_class;
  8135. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  8136. alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  8137. #ifdef CONFIG_SMP
  8138. #ifdef CONFIG_NO_HZ
  8139. alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
  8140. alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
  8141. #endif
  8142. alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  8143. #endif /* SMP */
  8144. perf_event_init();
  8145. scheduler_running = 1;
  8146. }
  8147. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  8148. static inline int preempt_count_equals(int preempt_offset)
  8149. {
  8150. int nested = preempt_count() & ~PREEMPT_ACTIVE;
  8151. return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
  8152. }
  8153. void __might_sleep(char *file, int line, int preempt_offset)
  8154. {
  8155. #ifdef in_atomic
  8156. static unsigned long prev_jiffy; /* ratelimiting */
  8157. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  8158. system_state != SYSTEM_RUNNING || oops_in_progress)
  8159. return;
  8160. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  8161. return;
  8162. prev_jiffy = jiffies;
  8163. printk(KERN_ERR
  8164. "BUG: sleeping function called from invalid context at %s:%d\n",
  8165. file, line);
  8166. printk(KERN_ERR
  8167. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  8168. in_atomic(), irqs_disabled(),
  8169. current->pid, current->comm);
  8170. debug_show_held_locks(current);
  8171. if (irqs_disabled())
  8172. print_irqtrace_events(current);
  8173. dump_stack();
  8174. #endif
  8175. }
  8176. EXPORT_SYMBOL(__might_sleep);
  8177. #endif
  8178. #ifdef CONFIG_MAGIC_SYSRQ
  8179. static void normalize_task(struct rq *rq, struct task_struct *p)
  8180. {
  8181. int on_rq;
  8182. update_rq_clock(rq);
  8183. on_rq = p->se.on_rq;
  8184. if (on_rq)
  8185. deactivate_task(rq, p, 0);
  8186. __setscheduler(rq, p, SCHED_NORMAL, 0);
  8187. if (on_rq) {
  8188. activate_task(rq, p, 0);
  8189. resched_task(rq->curr);
  8190. }
  8191. }
  8192. void normalize_rt_tasks(void)
  8193. {
  8194. struct task_struct *g, *p;
  8195. unsigned long flags;
  8196. struct rq *rq;
  8197. read_lock_irqsave(&tasklist_lock, flags);
  8198. do_each_thread(g, p) {
  8199. /*
  8200. * Only normalize user tasks:
  8201. */
  8202. if (!p->mm)
  8203. continue;
  8204. p->se.exec_start = 0;
  8205. #ifdef CONFIG_SCHEDSTATS
  8206. p->se.wait_start = 0;
  8207. p->se.sleep_start = 0;
  8208. p->se.block_start = 0;
  8209. #endif
  8210. if (!rt_task(p)) {
  8211. /*
  8212. * Renice negative nice level userspace
  8213. * tasks back to 0:
  8214. */
  8215. if (TASK_NICE(p) < 0 && p->mm)
  8216. set_user_nice(p, 0);
  8217. continue;
  8218. }
  8219. spin_lock(&p->pi_lock);
  8220. rq = __task_rq_lock(p);
  8221. normalize_task(rq, p);
  8222. __task_rq_unlock(rq);
  8223. spin_unlock(&p->pi_lock);
  8224. } while_each_thread(g, p);
  8225. read_unlock_irqrestore(&tasklist_lock, flags);
  8226. }
  8227. #endif /* CONFIG_MAGIC_SYSRQ */
  8228. #ifdef CONFIG_IA64
  8229. /*
  8230. * These functions are only useful for the IA64 MCA handling.
  8231. *
  8232. * They can only be called when the whole system has been
  8233. * stopped - every CPU needs to be quiescent, and no scheduling
  8234. * activity can take place. Using them for anything else would
  8235. * be a serious bug, and as a result, they aren't even visible
  8236. * under any other configuration.
  8237. */
  8238. /**
  8239. * curr_task - return the current task for a given cpu.
  8240. * @cpu: the processor in question.
  8241. *
  8242. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  8243. */
  8244. struct task_struct *curr_task(int cpu)
  8245. {
  8246. return cpu_curr(cpu);
  8247. }
  8248. /**
  8249. * set_curr_task - set the current task for a given cpu.
  8250. * @cpu: the processor in question.
  8251. * @p: the task pointer to set.
  8252. *
  8253. * Description: This function must only be used when non-maskable interrupts
  8254. * are serviced on a separate stack. It allows the architecture to switch the
  8255. * notion of the current task on a cpu in a non-blocking manner. This function
  8256. * must be called with all CPU's synchronized, and interrupts disabled, the
  8257. * and caller must save the original value of the current task (see
  8258. * curr_task() above) and restore that value before reenabling interrupts and
  8259. * re-starting the system.
  8260. *
  8261. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  8262. */
  8263. void set_curr_task(int cpu, struct task_struct *p)
  8264. {
  8265. cpu_curr(cpu) = p;
  8266. }
  8267. #endif
  8268. #ifdef CONFIG_FAIR_GROUP_SCHED
  8269. static void free_fair_sched_group(struct task_group *tg)
  8270. {
  8271. int i;
  8272. for_each_possible_cpu(i) {
  8273. if (tg->cfs_rq)
  8274. kfree(tg->cfs_rq[i]);
  8275. if (tg->se)
  8276. kfree(tg->se[i]);
  8277. }
  8278. kfree(tg->cfs_rq);
  8279. kfree(tg->se);
  8280. }
  8281. static
  8282. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  8283. {
  8284. struct cfs_rq *cfs_rq;
  8285. struct sched_entity *se;
  8286. struct rq *rq;
  8287. int i;
  8288. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  8289. if (!tg->cfs_rq)
  8290. goto err;
  8291. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  8292. if (!tg->se)
  8293. goto err;
  8294. tg->shares = NICE_0_LOAD;
  8295. for_each_possible_cpu(i) {
  8296. rq = cpu_rq(i);
  8297. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  8298. GFP_KERNEL, cpu_to_node(i));
  8299. if (!cfs_rq)
  8300. goto err;
  8301. se = kzalloc_node(sizeof(struct sched_entity),
  8302. GFP_KERNEL, cpu_to_node(i));
  8303. if (!se)
  8304. goto err;
  8305. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  8306. }
  8307. return 1;
  8308. err:
  8309. return 0;
  8310. }
  8311. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  8312. {
  8313. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  8314. &cpu_rq(cpu)->leaf_cfs_rq_list);
  8315. }
  8316. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  8317. {
  8318. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  8319. }
  8320. #else /* !CONFG_FAIR_GROUP_SCHED */
  8321. static inline void free_fair_sched_group(struct task_group *tg)
  8322. {
  8323. }
  8324. static inline
  8325. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  8326. {
  8327. return 1;
  8328. }
  8329. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  8330. {
  8331. }
  8332. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  8333. {
  8334. }
  8335. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8336. #ifdef CONFIG_RT_GROUP_SCHED
  8337. static void free_rt_sched_group(struct task_group *tg)
  8338. {
  8339. int i;
  8340. destroy_rt_bandwidth(&tg->rt_bandwidth);
  8341. for_each_possible_cpu(i) {
  8342. if (tg->rt_rq)
  8343. kfree(tg->rt_rq[i]);
  8344. if (tg->rt_se)
  8345. kfree(tg->rt_se[i]);
  8346. }
  8347. kfree(tg->rt_rq);
  8348. kfree(tg->rt_se);
  8349. }
  8350. static
  8351. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8352. {
  8353. struct rt_rq *rt_rq;
  8354. struct sched_rt_entity *rt_se;
  8355. struct rq *rq;
  8356. int i;
  8357. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  8358. if (!tg->rt_rq)
  8359. goto err;
  8360. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  8361. if (!tg->rt_se)
  8362. goto err;
  8363. init_rt_bandwidth(&tg->rt_bandwidth,
  8364. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  8365. for_each_possible_cpu(i) {
  8366. rq = cpu_rq(i);
  8367. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  8368. GFP_KERNEL, cpu_to_node(i));
  8369. if (!rt_rq)
  8370. goto err;
  8371. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  8372. GFP_KERNEL, cpu_to_node(i));
  8373. if (!rt_se)
  8374. goto err;
  8375. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  8376. }
  8377. return 1;
  8378. err:
  8379. return 0;
  8380. }
  8381. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8382. {
  8383. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  8384. &cpu_rq(cpu)->leaf_rt_rq_list);
  8385. }
  8386. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8387. {
  8388. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  8389. }
  8390. #else /* !CONFIG_RT_GROUP_SCHED */
  8391. static inline void free_rt_sched_group(struct task_group *tg)
  8392. {
  8393. }
  8394. static inline
  8395. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8396. {
  8397. return 1;
  8398. }
  8399. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8400. {
  8401. }
  8402. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8403. {
  8404. }
  8405. #endif /* CONFIG_RT_GROUP_SCHED */
  8406. #ifdef CONFIG_GROUP_SCHED
  8407. static void free_sched_group(struct task_group *tg)
  8408. {
  8409. free_fair_sched_group(tg);
  8410. free_rt_sched_group(tg);
  8411. kfree(tg);
  8412. }
  8413. /* allocate runqueue etc for a new task group */
  8414. struct task_group *sched_create_group(struct task_group *parent)
  8415. {
  8416. struct task_group *tg;
  8417. unsigned long flags;
  8418. int i;
  8419. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  8420. if (!tg)
  8421. return ERR_PTR(-ENOMEM);
  8422. if (!alloc_fair_sched_group(tg, parent))
  8423. goto err;
  8424. if (!alloc_rt_sched_group(tg, parent))
  8425. goto err;
  8426. spin_lock_irqsave(&task_group_lock, flags);
  8427. for_each_possible_cpu(i) {
  8428. register_fair_sched_group(tg, i);
  8429. register_rt_sched_group(tg, i);
  8430. }
  8431. list_add_rcu(&tg->list, &task_groups);
  8432. WARN_ON(!parent); /* root should already exist */
  8433. tg->parent = parent;
  8434. INIT_LIST_HEAD(&tg->children);
  8435. list_add_rcu(&tg->siblings, &parent->children);
  8436. spin_unlock_irqrestore(&task_group_lock, flags);
  8437. return tg;
  8438. err:
  8439. free_sched_group(tg);
  8440. return ERR_PTR(-ENOMEM);
  8441. }
  8442. /* rcu callback to free various structures associated with a task group */
  8443. static void free_sched_group_rcu(struct rcu_head *rhp)
  8444. {
  8445. /* now it should be safe to free those cfs_rqs */
  8446. free_sched_group(container_of(rhp, struct task_group, rcu));
  8447. }
  8448. /* Destroy runqueue etc associated with a task group */
  8449. void sched_destroy_group(struct task_group *tg)
  8450. {
  8451. unsigned long flags;
  8452. int i;
  8453. spin_lock_irqsave(&task_group_lock, flags);
  8454. for_each_possible_cpu(i) {
  8455. unregister_fair_sched_group(tg, i);
  8456. unregister_rt_sched_group(tg, i);
  8457. }
  8458. list_del_rcu(&tg->list);
  8459. list_del_rcu(&tg->siblings);
  8460. spin_unlock_irqrestore(&task_group_lock, flags);
  8461. /* wait for possible concurrent references to cfs_rqs complete */
  8462. call_rcu(&tg->rcu, free_sched_group_rcu);
  8463. }
  8464. /* change task's runqueue when it moves between groups.
  8465. * The caller of this function should have put the task in its new group
  8466. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  8467. * reflect its new group.
  8468. */
  8469. void sched_move_task(struct task_struct *tsk)
  8470. {
  8471. int on_rq, running;
  8472. unsigned long flags;
  8473. struct rq *rq;
  8474. rq = task_rq_lock(tsk, &flags);
  8475. update_rq_clock(rq);
  8476. running = task_current(rq, tsk);
  8477. on_rq = tsk->se.on_rq;
  8478. if (on_rq)
  8479. dequeue_task(rq, tsk, 0);
  8480. if (unlikely(running))
  8481. tsk->sched_class->put_prev_task(rq, tsk);
  8482. set_task_rq(tsk, task_cpu(tsk));
  8483. #ifdef CONFIG_FAIR_GROUP_SCHED
  8484. if (tsk->sched_class->moved_group)
  8485. tsk->sched_class->moved_group(tsk);
  8486. #endif
  8487. if (unlikely(running))
  8488. tsk->sched_class->set_curr_task(rq);
  8489. if (on_rq)
  8490. enqueue_task(rq, tsk, 0);
  8491. task_rq_unlock(rq, &flags);
  8492. }
  8493. #endif /* CONFIG_GROUP_SCHED */
  8494. #ifdef CONFIG_FAIR_GROUP_SCHED
  8495. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  8496. {
  8497. struct cfs_rq *cfs_rq = se->cfs_rq;
  8498. int on_rq;
  8499. on_rq = se->on_rq;
  8500. if (on_rq)
  8501. dequeue_entity(cfs_rq, se, 0);
  8502. se->load.weight = shares;
  8503. se->load.inv_weight = 0;
  8504. if (on_rq)
  8505. enqueue_entity(cfs_rq, se, 0);
  8506. }
  8507. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  8508. {
  8509. struct cfs_rq *cfs_rq = se->cfs_rq;
  8510. struct rq *rq = cfs_rq->rq;
  8511. unsigned long flags;
  8512. spin_lock_irqsave(&rq->lock, flags);
  8513. __set_se_shares(se, shares);
  8514. spin_unlock_irqrestore(&rq->lock, flags);
  8515. }
  8516. static DEFINE_MUTEX(shares_mutex);
  8517. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  8518. {
  8519. int i;
  8520. unsigned long flags;
  8521. /*
  8522. * We can't change the weight of the root cgroup.
  8523. */
  8524. if (!tg->se[0])
  8525. return -EINVAL;
  8526. if (shares < MIN_SHARES)
  8527. shares = MIN_SHARES;
  8528. else if (shares > MAX_SHARES)
  8529. shares = MAX_SHARES;
  8530. mutex_lock(&shares_mutex);
  8531. if (tg->shares == shares)
  8532. goto done;
  8533. spin_lock_irqsave(&task_group_lock, flags);
  8534. for_each_possible_cpu(i)
  8535. unregister_fair_sched_group(tg, i);
  8536. list_del_rcu(&tg->siblings);
  8537. spin_unlock_irqrestore(&task_group_lock, flags);
  8538. /* wait for any ongoing reference to this group to finish */
  8539. synchronize_sched();
  8540. /*
  8541. * Now we are free to modify the group's share on each cpu
  8542. * w/o tripping rebalance_share or load_balance_fair.
  8543. */
  8544. tg->shares = shares;
  8545. for_each_possible_cpu(i) {
  8546. /*
  8547. * force a rebalance
  8548. */
  8549. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  8550. set_se_shares(tg->se[i], shares);
  8551. }
  8552. /*
  8553. * Enable load balance activity on this group, by inserting it back on
  8554. * each cpu's rq->leaf_cfs_rq_list.
  8555. */
  8556. spin_lock_irqsave(&task_group_lock, flags);
  8557. for_each_possible_cpu(i)
  8558. register_fair_sched_group(tg, i);
  8559. list_add_rcu(&tg->siblings, &tg->parent->children);
  8560. spin_unlock_irqrestore(&task_group_lock, flags);
  8561. done:
  8562. mutex_unlock(&shares_mutex);
  8563. return 0;
  8564. }
  8565. unsigned long sched_group_shares(struct task_group *tg)
  8566. {
  8567. return tg->shares;
  8568. }
  8569. #endif
  8570. #ifdef CONFIG_RT_GROUP_SCHED
  8571. /*
  8572. * Ensure that the real time constraints are schedulable.
  8573. */
  8574. static DEFINE_MUTEX(rt_constraints_mutex);
  8575. static unsigned long to_ratio(u64 period, u64 runtime)
  8576. {
  8577. if (runtime == RUNTIME_INF)
  8578. return 1ULL << 20;
  8579. return div64_u64(runtime << 20, period);
  8580. }
  8581. /* Must be called with tasklist_lock held */
  8582. static inline int tg_has_rt_tasks(struct task_group *tg)
  8583. {
  8584. struct task_struct *g, *p;
  8585. do_each_thread(g, p) {
  8586. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  8587. return 1;
  8588. } while_each_thread(g, p);
  8589. return 0;
  8590. }
  8591. struct rt_schedulable_data {
  8592. struct task_group *tg;
  8593. u64 rt_period;
  8594. u64 rt_runtime;
  8595. };
  8596. static int tg_schedulable(struct task_group *tg, void *data)
  8597. {
  8598. struct rt_schedulable_data *d = data;
  8599. struct task_group *child;
  8600. unsigned long total, sum = 0;
  8601. u64 period, runtime;
  8602. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8603. runtime = tg->rt_bandwidth.rt_runtime;
  8604. if (tg == d->tg) {
  8605. period = d->rt_period;
  8606. runtime = d->rt_runtime;
  8607. }
  8608. #ifdef CONFIG_USER_SCHED
  8609. if (tg == &root_task_group) {
  8610. period = global_rt_period();
  8611. runtime = global_rt_runtime();
  8612. }
  8613. #endif
  8614. /*
  8615. * Cannot have more runtime than the period.
  8616. */
  8617. if (runtime > period && runtime != RUNTIME_INF)
  8618. return -EINVAL;
  8619. /*
  8620. * Ensure we don't starve existing RT tasks.
  8621. */
  8622. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  8623. return -EBUSY;
  8624. total = to_ratio(period, runtime);
  8625. /*
  8626. * Nobody can have more than the global setting allows.
  8627. */
  8628. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  8629. return -EINVAL;
  8630. /*
  8631. * The sum of our children's runtime should not exceed our own.
  8632. */
  8633. list_for_each_entry_rcu(child, &tg->children, siblings) {
  8634. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  8635. runtime = child->rt_bandwidth.rt_runtime;
  8636. if (child == d->tg) {
  8637. period = d->rt_period;
  8638. runtime = d->rt_runtime;
  8639. }
  8640. sum += to_ratio(period, runtime);
  8641. }
  8642. if (sum > total)
  8643. return -EINVAL;
  8644. return 0;
  8645. }
  8646. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  8647. {
  8648. struct rt_schedulable_data data = {
  8649. .tg = tg,
  8650. .rt_period = period,
  8651. .rt_runtime = runtime,
  8652. };
  8653. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  8654. }
  8655. static int tg_set_bandwidth(struct task_group *tg,
  8656. u64 rt_period, u64 rt_runtime)
  8657. {
  8658. int i, err = 0;
  8659. mutex_lock(&rt_constraints_mutex);
  8660. read_lock(&tasklist_lock);
  8661. err = __rt_schedulable(tg, rt_period, rt_runtime);
  8662. if (err)
  8663. goto unlock;
  8664. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8665. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  8666. tg->rt_bandwidth.rt_runtime = rt_runtime;
  8667. for_each_possible_cpu(i) {
  8668. struct rt_rq *rt_rq = tg->rt_rq[i];
  8669. spin_lock(&rt_rq->rt_runtime_lock);
  8670. rt_rq->rt_runtime = rt_runtime;
  8671. spin_unlock(&rt_rq->rt_runtime_lock);
  8672. }
  8673. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8674. unlock:
  8675. read_unlock(&tasklist_lock);
  8676. mutex_unlock(&rt_constraints_mutex);
  8677. return err;
  8678. }
  8679. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  8680. {
  8681. u64 rt_runtime, rt_period;
  8682. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8683. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  8684. if (rt_runtime_us < 0)
  8685. rt_runtime = RUNTIME_INF;
  8686. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8687. }
  8688. long sched_group_rt_runtime(struct task_group *tg)
  8689. {
  8690. u64 rt_runtime_us;
  8691. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  8692. return -1;
  8693. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  8694. do_div(rt_runtime_us, NSEC_PER_USEC);
  8695. return rt_runtime_us;
  8696. }
  8697. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  8698. {
  8699. u64 rt_runtime, rt_period;
  8700. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  8701. rt_runtime = tg->rt_bandwidth.rt_runtime;
  8702. if (rt_period == 0)
  8703. return -EINVAL;
  8704. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8705. }
  8706. long sched_group_rt_period(struct task_group *tg)
  8707. {
  8708. u64 rt_period_us;
  8709. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8710. do_div(rt_period_us, NSEC_PER_USEC);
  8711. return rt_period_us;
  8712. }
  8713. static int sched_rt_global_constraints(void)
  8714. {
  8715. u64 runtime, period;
  8716. int ret = 0;
  8717. if (sysctl_sched_rt_period <= 0)
  8718. return -EINVAL;
  8719. runtime = global_rt_runtime();
  8720. period = global_rt_period();
  8721. /*
  8722. * Sanity check on the sysctl variables.
  8723. */
  8724. if (runtime > period && runtime != RUNTIME_INF)
  8725. return -EINVAL;
  8726. mutex_lock(&rt_constraints_mutex);
  8727. read_lock(&tasklist_lock);
  8728. ret = __rt_schedulable(NULL, 0, 0);
  8729. read_unlock(&tasklist_lock);
  8730. mutex_unlock(&rt_constraints_mutex);
  8731. return ret;
  8732. }
  8733. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  8734. {
  8735. /* Don't accept realtime tasks when there is no way for them to run */
  8736. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  8737. return 0;
  8738. return 1;
  8739. }
  8740. #else /* !CONFIG_RT_GROUP_SCHED */
  8741. static int sched_rt_global_constraints(void)
  8742. {
  8743. unsigned long flags;
  8744. int i;
  8745. if (sysctl_sched_rt_period <= 0)
  8746. return -EINVAL;
  8747. /*
  8748. * There's always some RT tasks in the root group
  8749. * -- migration, kstopmachine etc..
  8750. */
  8751. if (sysctl_sched_rt_runtime == 0)
  8752. return -EBUSY;
  8753. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  8754. for_each_possible_cpu(i) {
  8755. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  8756. spin_lock(&rt_rq->rt_runtime_lock);
  8757. rt_rq->rt_runtime = global_rt_runtime();
  8758. spin_unlock(&rt_rq->rt_runtime_lock);
  8759. }
  8760. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  8761. return 0;
  8762. }
  8763. #endif /* CONFIG_RT_GROUP_SCHED */
  8764. int sched_rt_handler(struct ctl_table *table, int write,
  8765. void __user *buffer, size_t *lenp,
  8766. loff_t *ppos)
  8767. {
  8768. int ret;
  8769. int old_period, old_runtime;
  8770. static DEFINE_MUTEX(mutex);
  8771. mutex_lock(&mutex);
  8772. old_period = sysctl_sched_rt_period;
  8773. old_runtime = sysctl_sched_rt_runtime;
  8774. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  8775. if (!ret && write) {
  8776. ret = sched_rt_global_constraints();
  8777. if (ret) {
  8778. sysctl_sched_rt_period = old_period;
  8779. sysctl_sched_rt_runtime = old_runtime;
  8780. } else {
  8781. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  8782. def_rt_bandwidth.rt_period =
  8783. ns_to_ktime(global_rt_period());
  8784. }
  8785. }
  8786. mutex_unlock(&mutex);
  8787. return ret;
  8788. }
  8789. #ifdef CONFIG_CGROUP_SCHED
  8790. /* return corresponding task_group object of a cgroup */
  8791. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  8792. {
  8793. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  8794. struct task_group, css);
  8795. }
  8796. static struct cgroup_subsys_state *
  8797. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8798. {
  8799. struct task_group *tg, *parent;
  8800. if (!cgrp->parent) {
  8801. /* This is early initialization for the top cgroup */
  8802. return &init_task_group.css;
  8803. }
  8804. parent = cgroup_tg(cgrp->parent);
  8805. tg = sched_create_group(parent);
  8806. if (IS_ERR(tg))
  8807. return ERR_PTR(-ENOMEM);
  8808. return &tg->css;
  8809. }
  8810. static void
  8811. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8812. {
  8813. struct task_group *tg = cgroup_tg(cgrp);
  8814. sched_destroy_group(tg);
  8815. }
  8816. static int
  8817. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  8818. {
  8819. #ifdef CONFIG_RT_GROUP_SCHED
  8820. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  8821. return -EINVAL;
  8822. #else
  8823. /* We don't support RT-tasks being in separate groups */
  8824. if (tsk->sched_class != &fair_sched_class)
  8825. return -EINVAL;
  8826. #endif
  8827. return 0;
  8828. }
  8829. static int
  8830. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8831. struct task_struct *tsk, bool threadgroup)
  8832. {
  8833. int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
  8834. if (retval)
  8835. return retval;
  8836. if (threadgroup) {
  8837. struct task_struct *c;
  8838. rcu_read_lock();
  8839. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  8840. retval = cpu_cgroup_can_attach_task(cgrp, c);
  8841. if (retval) {
  8842. rcu_read_unlock();
  8843. return retval;
  8844. }
  8845. }
  8846. rcu_read_unlock();
  8847. }
  8848. return 0;
  8849. }
  8850. static void
  8851. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8852. struct cgroup *old_cont, struct task_struct *tsk,
  8853. bool threadgroup)
  8854. {
  8855. sched_move_task(tsk);
  8856. if (threadgroup) {
  8857. struct task_struct *c;
  8858. rcu_read_lock();
  8859. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  8860. sched_move_task(c);
  8861. }
  8862. rcu_read_unlock();
  8863. }
  8864. }
  8865. #ifdef CONFIG_FAIR_GROUP_SCHED
  8866. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  8867. u64 shareval)
  8868. {
  8869. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  8870. }
  8871. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  8872. {
  8873. struct task_group *tg = cgroup_tg(cgrp);
  8874. return (u64) tg->shares;
  8875. }
  8876. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8877. #ifdef CONFIG_RT_GROUP_SCHED
  8878. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  8879. s64 val)
  8880. {
  8881. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  8882. }
  8883. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  8884. {
  8885. return sched_group_rt_runtime(cgroup_tg(cgrp));
  8886. }
  8887. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  8888. u64 rt_period_us)
  8889. {
  8890. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  8891. }
  8892. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  8893. {
  8894. return sched_group_rt_period(cgroup_tg(cgrp));
  8895. }
  8896. #endif /* CONFIG_RT_GROUP_SCHED */
  8897. static struct cftype cpu_files[] = {
  8898. #ifdef CONFIG_FAIR_GROUP_SCHED
  8899. {
  8900. .name = "shares",
  8901. .read_u64 = cpu_shares_read_u64,
  8902. .write_u64 = cpu_shares_write_u64,
  8903. },
  8904. #endif
  8905. #ifdef CONFIG_RT_GROUP_SCHED
  8906. {
  8907. .name = "rt_runtime_us",
  8908. .read_s64 = cpu_rt_runtime_read,
  8909. .write_s64 = cpu_rt_runtime_write,
  8910. },
  8911. {
  8912. .name = "rt_period_us",
  8913. .read_u64 = cpu_rt_period_read_uint,
  8914. .write_u64 = cpu_rt_period_write_uint,
  8915. },
  8916. #endif
  8917. };
  8918. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  8919. {
  8920. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  8921. }
  8922. struct cgroup_subsys cpu_cgroup_subsys = {
  8923. .name = "cpu",
  8924. .create = cpu_cgroup_create,
  8925. .destroy = cpu_cgroup_destroy,
  8926. .can_attach = cpu_cgroup_can_attach,
  8927. .attach = cpu_cgroup_attach,
  8928. .populate = cpu_cgroup_populate,
  8929. .subsys_id = cpu_cgroup_subsys_id,
  8930. .early_init = 1,
  8931. };
  8932. #endif /* CONFIG_CGROUP_SCHED */
  8933. #ifdef CONFIG_CGROUP_CPUACCT
  8934. /*
  8935. * CPU accounting code for task groups.
  8936. *
  8937. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  8938. * (balbir@in.ibm.com).
  8939. */
  8940. /* track cpu usage of a group of tasks and its child groups */
  8941. struct cpuacct {
  8942. struct cgroup_subsys_state css;
  8943. /* cpuusage holds pointer to a u64-type object on every cpu */
  8944. u64 *cpuusage;
  8945. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  8946. struct cpuacct *parent;
  8947. };
  8948. struct cgroup_subsys cpuacct_subsys;
  8949. /* return cpu accounting group corresponding to this container */
  8950. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  8951. {
  8952. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  8953. struct cpuacct, css);
  8954. }
  8955. /* return cpu accounting group to which this task belongs */
  8956. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  8957. {
  8958. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  8959. struct cpuacct, css);
  8960. }
  8961. /* create a new cpu accounting group */
  8962. static struct cgroup_subsys_state *cpuacct_create(
  8963. struct cgroup_subsys *ss, struct cgroup *cgrp)
  8964. {
  8965. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  8966. int i;
  8967. if (!ca)
  8968. goto out;
  8969. ca->cpuusage = alloc_percpu(u64);
  8970. if (!ca->cpuusage)
  8971. goto out_free_ca;
  8972. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  8973. if (percpu_counter_init(&ca->cpustat[i], 0))
  8974. goto out_free_counters;
  8975. if (cgrp->parent)
  8976. ca->parent = cgroup_ca(cgrp->parent);
  8977. return &ca->css;
  8978. out_free_counters:
  8979. while (--i >= 0)
  8980. percpu_counter_destroy(&ca->cpustat[i]);
  8981. free_percpu(ca->cpuusage);
  8982. out_free_ca:
  8983. kfree(ca);
  8984. out:
  8985. return ERR_PTR(-ENOMEM);
  8986. }
  8987. /* destroy an existing cpu accounting group */
  8988. static void
  8989. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8990. {
  8991. struct cpuacct *ca = cgroup_ca(cgrp);
  8992. int i;
  8993. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  8994. percpu_counter_destroy(&ca->cpustat[i]);
  8995. free_percpu(ca->cpuusage);
  8996. kfree(ca);
  8997. }
  8998. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  8999. {
  9000. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  9001. u64 data;
  9002. #ifndef CONFIG_64BIT
  9003. /*
  9004. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  9005. */
  9006. spin_lock_irq(&cpu_rq(cpu)->lock);
  9007. data = *cpuusage;
  9008. spin_unlock_irq(&cpu_rq(cpu)->lock);
  9009. #else
  9010. data = *cpuusage;
  9011. #endif
  9012. return data;
  9013. }
  9014. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  9015. {
  9016. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  9017. #ifndef CONFIG_64BIT
  9018. /*
  9019. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  9020. */
  9021. spin_lock_irq(&cpu_rq(cpu)->lock);
  9022. *cpuusage = val;
  9023. spin_unlock_irq(&cpu_rq(cpu)->lock);
  9024. #else
  9025. *cpuusage = val;
  9026. #endif
  9027. }
  9028. /* return total cpu usage (in nanoseconds) of a group */
  9029. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  9030. {
  9031. struct cpuacct *ca = cgroup_ca(cgrp);
  9032. u64 totalcpuusage = 0;
  9033. int i;
  9034. for_each_present_cpu(i)
  9035. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  9036. return totalcpuusage;
  9037. }
  9038. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  9039. u64 reset)
  9040. {
  9041. struct cpuacct *ca = cgroup_ca(cgrp);
  9042. int err = 0;
  9043. int i;
  9044. if (reset) {
  9045. err = -EINVAL;
  9046. goto out;
  9047. }
  9048. for_each_present_cpu(i)
  9049. cpuacct_cpuusage_write(ca, i, 0);
  9050. out:
  9051. return err;
  9052. }
  9053. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  9054. struct seq_file *m)
  9055. {
  9056. struct cpuacct *ca = cgroup_ca(cgroup);
  9057. u64 percpu;
  9058. int i;
  9059. for_each_present_cpu(i) {
  9060. percpu = cpuacct_cpuusage_read(ca, i);
  9061. seq_printf(m, "%llu ", (unsigned long long) percpu);
  9062. }
  9063. seq_printf(m, "\n");
  9064. return 0;
  9065. }
  9066. static const char *cpuacct_stat_desc[] = {
  9067. [CPUACCT_STAT_USER] = "user",
  9068. [CPUACCT_STAT_SYSTEM] = "system",
  9069. };
  9070. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  9071. struct cgroup_map_cb *cb)
  9072. {
  9073. struct cpuacct *ca = cgroup_ca(cgrp);
  9074. int i;
  9075. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  9076. s64 val = percpu_counter_read(&ca->cpustat[i]);
  9077. val = cputime64_to_clock_t(val);
  9078. cb->fill(cb, cpuacct_stat_desc[i], val);
  9079. }
  9080. return 0;
  9081. }
  9082. static struct cftype files[] = {
  9083. {
  9084. .name = "usage",
  9085. .read_u64 = cpuusage_read,
  9086. .write_u64 = cpuusage_write,
  9087. },
  9088. {
  9089. .name = "usage_percpu",
  9090. .read_seq_string = cpuacct_percpu_seq_read,
  9091. },
  9092. {
  9093. .name = "stat",
  9094. .read_map = cpuacct_stats_show,
  9095. },
  9096. };
  9097. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  9098. {
  9099. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  9100. }
  9101. /*
  9102. * charge this task's execution time to its accounting group.
  9103. *
  9104. * called with rq->lock held.
  9105. */
  9106. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  9107. {
  9108. struct cpuacct *ca;
  9109. int cpu;
  9110. if (unlikely(!cpuacct_subsys.active))
  9111. return;
  9112. cpu = task_cpu(tsk);
  9113. rcu_read_lock();
  9114. ca = task_ca(tsk);
  9115. for (; ca; ca = ca->parent) {
  9116. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  9117. *cpuusage += cputime;
  9118. }
  9119. rcu_read_unlock();
  9120. }
  9121. /*
  9122. * Charge the system/user time to the task's accounting group.
  9123. */
  9124. static void cpuacct_update_stats(struct task_struct *tsk,
  9125. enum cpuacct_stat_index idx, cputime_t val)
  9126. {
  9127. struct cpuacct *ca;
  9128. if (unlikely(!cpuacct_subsys.active))
  9129. return;
  9130. rcu_read_lock();
  9131. ca = task_ca(tsk);
  9132. do {
  9133. percpu_counter_add(&ca->cpustat[idx], val);
  9134. ca = ca->parent;
  9135. } while (ca);
  9136. rcu_read_unlock();
  9137. }
  9138. struct cgroup_subsys cpuacct_subsys = {
  9139. .name = "cpuacct",
  9140. .create = cpuacct_create,
  9141. .destroy = cpuacct_destroy,
  9142. .populate = cpuacct_populate,
  9143. .subsys_id = cpuacct_subsys_id,
  9144. };
  9145. #endif /* CONFIG_CGROUP_CPUACCT */
  9146. #ifndef CONFIG_SMP
  9147. int rcu_expedited_torture_stats(char *page)
  9148. {
  9149. return 0;
  9150. }
  9151. EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
  9152. void synchronize_sched_expedited(void)
  9153. {
  9154. }
  9155. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  9156. #else /* #ifndef CONFIG_SMP */
  9157. static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
  9158. static DEFINE_MUTEX(rcu_sched_expedited_mutex);
  9159. #define RCU_EXPEDITED_STATE_POST -2
  9160. #define RCU_EXPEDITED_STATE_IDLE -1
  9161. static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
  9162. int rcu_expedited_torture_stats(char *page)
  9163. {
  9164. int cnt = 0;
  9165. int cpu;
  9166. cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
  9167. for_each_online_cpu(cpu) {
  9168. cnt += sprintf(&page[cnt], " %d:%d",
  9169. cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
  9170. }
  9171. cnt += sprintf(&page[cnt], "\n");
  9172. return cnt;
  9173. }
  9174. EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
  9175. static long synchronize_sched_expedited_count;
  9176. /*
  9177. * Wait for an rcu-sched grace period to elapse, but use "big hammer"
  9178. * approach to force grace period to end quickly. This consumes
  9179. * significant time on all CPUs, and is thus not recommended for
  9180. * any sort of common-case code.
  9181. *
  9182. * Note that it is illegal to call this function while holding any
  9183. * lock that is acquired by a CPU-hotplug notifier. Failing to
  9184. * observe this restriction will result in deadlock.
  9185. */
  9186. void synchronize_sched_expedited(void)
  9187. {
  9188. int cpu;
  9189. unsigned long flags;
  9190. bool need_full_sync = 0;
  9191. struct rq *rq;
  9192. struct migration_req *req;
  9193. long snap;
  9194. int trycount = 0;
  9195. smp_mb(); /* ensure prior mod happens before capturing snap. */
  9196. snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
  9197. get_online_cpus();
  9198. while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
  9199. put_online_cpus();
  9200. if (trycount++ < 10)
  9201. udelay(trycount * num_online_cpus());
  9202. else {
  9203. synchronize_sched();
  9204. return;
  9205. }
  9206. if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
  9207. smp_mb(); /* ensure test happens before caller kfree */
  9208. return;
  9209. }
  9210. get_online_cpus();
  9211. }
  9212. rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
  9213. for_each_online_cpu(cpu) {
  9214. rq = cpu_rq(cpu);
  9215. req = &per_cpu(rcu_migration_req, cpu);
  9216. init_completion(&req->done);
  9217. req->task = NULL;
  9218. req->dest_cpu = RCU_MIGRATION_NEED_QS;
  9219. spin_lock_irqsave(&rq->lock, flags);
  9220. list_add(&req->list, &rq->migration_queue);
  9221. spin_unlock_irqrestore(&rq->lock, flags);
  9222. wake_up_process(rq->migration_thread);
  9223. }
  9224. for_each_online_cpu(cpu) {
  9225. rcu_expedited_state = cpu;
  9226. req = &per_cpu(rcu_migration_req, cpu);
  9227. rq = cpu_rq(cpu);
  9228. wait_for_completion(&req->done);
  9229. spin_lock_irqsave(&rq->lock, flags);
  9230. if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
  9231. need_full_sync = 1;
  9232. req->dest_cpu = RCU_MIGRATION_IDLE;
  9233. spin_unlock_irqrestore(&rq->lock, flags);
  9234. }
  9235. rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
  9236. mutex_unlock(&rcu_sched_expedited_mutex);
  9237. put_online_cpus();
  9238. if (need_full_sync)
  9239. synchronize_sched();
  9240. }
  9241. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  9242. #endif /* #else #ifndef CONFIG_SMP */