pm8001_hwi.c 139 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371
  1. /*
  2. * PMC-Sierra SPC 8001 SAS/SATA based host adapters driver
  3. *
  4. * Copyright (c) 2008-2009 USI Co., Ltd.
  5. * All rights reserved.
  6. *
  7. * Redistribution and use in source and binary forms, with or without
  8. * modification, are permitted provided that the following conditions
  9. * are met:
  10. * 1. Redistributions of source code must retain the above copyright
  11. * notice, this list of conditions, and the following disclaimer,
  12. * without modification.
  13. * 2. Redistributions in binary form must reproduce at minimum a disclaimer
  14. * substantially similar to the "NO WARRANTY" disclaimer below
  15. * ("Disclaimer") and any redistribution must be conditioned upon
  16. * including a substantially similar Disclaimer requirement for further
  17. * binary redistribution.
  18. * 3. Neither the names of the above-listed copyright holders nor the names
  19. * of any contributors may be used to endorse or promote products derived
  20. * from this software without specific prior written permission.
  21. *
  22. * Alternatively, this software may be distributed under the terms of the
  23. * GNU General Public License ("GPL") version 2 as published by the Free
  24. * Software Foundation.
  25. *
  26. * NO WARRANTY
  27. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  28. * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  29. * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
  30. * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  31. * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  32. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  33. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  34. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
  35. * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
  36. * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  37. * POSSIBILITY OF SUCH DAMAGES.
  38. *
  39. */
  40. #include "pm8001_sas.h"
  41. #include "pm8001_hwi.h"
  42. #include "pm8001_chips.h"
  43. #include "pm8001_ctl.h"
  44. /**
  45. * read_main_config_table - read the configure table and save it.
  46. * @pm8001_ha: our hba card information
  47. */
  48. static void __devinit read_main_config_table(struct pm8001_hba_info *pm8001_ha)
  49. {
  50. void __iomem *address = pm8001_ha->main_cfg_tbl_addr;
  51. pm8001_ha->main_cfg_tbl.signature = pm8001_mr32(address, 0x00);
  52. pm8001_ha->main_cfg_tbl.interface_rev = pm8001_mr32(address, 0x04);
  53. pm8001_ha->main_cfg_tbl.firmware_rev = pm8001_mr32(address, 0x08);
  54. pm8001_ha->main_cfg_tbl.max_out_io = pm8001_mr32(address, 0x0C);
  55. pm8001_ha->main_cfg_tbl.max_sgl = pm8001_mr32(address, 0x10);
  56. pm8001_ha->main_cfg_tbl.ctrl_cap_flag = pm8001_mr32(address, 0x14);
  57. pm8001_ha->main_cfg_tbl.gst_offset = pm8001_mr32(address, 0x18);
  58. pm8001_ha->main_cfg_tbl.inbound_queue_offset =
  59. pm8001_mr32(address, 0x1C);
  60. pm8001_ha->main_cfg_tbl.outbound_queue_offset =
  61. pm8001_mr32(address, 0x20);
  62. pm8001_ha->main_cfg_tbl.hda_mode_flag =
  63. pm8001_mr32(address, MAIN_HDA_FLAGS_OFFSET);
  64. /* read analog Setting offset from the configuration table */
  65. pm8001_ha->main_cfg_tbl.anolog_setup_table_offset =
  66. pm8001_mr32(address, MAIN_ANALOG_SETUP_OFFSET);
  67. /* read Error Dump Offset and Length */
  68. pm8001_ha->main_cfg_tbl.fatal_err_dump_offset0 =
  69. pm8001_mr32(address, MAIN_FATAL_ERROR_RDUMP0_OFFSET);
  70. pm8001_ha->main_cfg_tbl.fatal_err_dump_length0 =
  71. pm8001_mr32(address, MAIN_FATAL_ERROR_RDUMP0_LENGTH);
  72. pm8001_ha->main_cfg_tbl.fatal_err_dump_offset1 =
  73. pm8001_mr32(address, MAIN_FATAL_ERROR_RDUMP1_OFFSET);
  74. pm8001_ha->main_cfg_tbl.fatal_err_dump_length1 =
  75. pm8001_mr32(address, MAIN_FATAL_ERROR_RDUMP1_LENGTH);
  76. }
  77. /**
  78. * read_general_status_table - read the general status table and save it.
  79. * @pm8001_ha: our hba card information
  80. */
  81. static void __devinit
  82. read_general_status_table(struct pm8001_hba_info *pm8001_ha)
  83. {
  84. void __iomem *address = pm8001_ha->general_stat_tbl_addr;
  85. pm8001_ha->gs_tbl.gst_len_mpistate = pm8001_mr32(address, 0x00);
  86. pm8001_ha->gs_tbl.iq_freeze_state0 = pm8001_mr32(address, 0x04);
  87. pm8001_ha->gs_tbl.iq_freeze_state1 = pm8001_mr32(address, 0x08);
  88. pm8001_ha->gs_tbl.msgu_tcnt = pm8001_mr32(address, 0x0C);
  89. pm8001_ha->gs_tbl.iop_tcnt = pm8001_mr32(address, 0x10);
  90. pm8001_ha->gs_tbl.reserved = pm8001_mr32(address, 0x14);
  91. pm8001_ha->gs_tbl.phy_state[0] = pm8001_mr32(address, 0x18);
  92. pm8001_ha->gs_tbl.phy_state[1] = pm8001_mr32(address, 0x1C);
  93. pm8001_ha->gs_tbl.phy_state[2] = pm8001_mr32(address, 0x20);
  94. pm8001_ha->gs_tbl.phy_state[3] = pm8001_mr32(address, 0x24);
  95. pm8001_ha->gs_tbl.phy_state[4] = pm8001_mr32(address, 0x28);
  96. pm8001_ha->gs_tbl.phy_state[5] = pm8001_mr32(address, 0x2C);
  97. pm8001_ha->gs_tbl.phy_state[6] = pm8001_mr32(address, 0x30);
  98. pm8001_ha->gs_tbl.phy_state[7] = pm8001_mr32(address, 0x34);
  99. pm8001_ha->gs_tbl.reserved1 = pm8001_mr32(address, 0x38);
  100. pm8001_ha->gs_tbl.reserved2 = pm8001_mr32(address, 0x3C);
  101. pm8001_ha->gs_tbl.reserved3 = pm8001_mr32(address, 0x40);
  102. pm8001_ha->gs_tbl.recover_err_info[0] = pm8001_mr32(address, 0x44);
  103. pm8001_ha->gs_tbl.recover_err_info[1] = pm8001_mr32(address, 0x48);
  104. pm8001_ha->gs_tbl.recover_err_info[2] = pm8001_mr32(address, 0x4C);
  105. pm8001_ha->gs_tbl.recover_err_info[3] = pm8001_mr32(address, 0x50);
  106. pm8001_ha->gs_tbl.recover_err_info[4] = pm8001_mr32(address, 0x54);
  107. pm8001_ha->gs_tbl.recover_err_info[5] = pm8001_mr32(address, 0x58);
  108. pm8001_ha->gs_tbl.recover_err_info[6] = pm8001_mr32(address, 0x5C);
  109. pm8001_ha->gs_tbl.recover_err_info[7] = pm8001_mr32(address, 0x60);
  110. }
  111. /**
  112. * read_inbnd_queue_table - read the inbound queue table and save it.
  113. * @pm8001_ha: our hba card information
  114. */
  115. static void __devinit
  116. read_inbnd_queue_table(struct pm8001_hba_info *pm8001_ha)
  117. {
  118. int inbQ_num = 1;
  119. int i;
  120. void __iomem *address = pm8001_ha->inbnd_q_tbl_addr;
  121. for (i = 0; i < inbQ_num; i++) {
  122. u32 offset = i * 0x24;
  123. pm8001_ha->inbnd_q_tbl[i].pi_pci_bar =
  124. get_pci_bar_index(pm8001_mr32(address, (offset + 0x14)));
  125. pm8001_ha->inbnd_q_tbl[i].pi_offset =
  126. pm8001_mr32(address, (offset + 0x18));
  127. }
  128. }
  129. /**
  130. * read_outbnd_queue_table - read the outbound queue table and save it.
  131. * @pm8001_ha: our hba card information
  132. */
  133. static void __devinit
  134. read_outbnd_queue_table(struct pm8001_hba_info *pm8001_ha)
  135. {
  136. int outbQ_num = 1;
  137. int i;
  138. void __iomem *address = pm8001_ha->outbnd_q_tbl_addr;
  139. for (i = 0; i < outbQ_num; i++) {
  140. u32 offset = i * 0x24;
  141. pm8001_ha->outbnd_q_tbl[i].ci_pci_bar =
  142. get_pci_bar_index(pm8001_mr32(address, (offset + 0x14)));
  143. pm8001_ha->outbnd_q_tbl[i].ci_offset =
  144. pm8001_mr32(address, (offset + 0x18));
  145. }
  146. }
  147. /**
  148. * init_default_table_values - init the default table.
  149. * @pm8001_ha: our hba card information
  150. */
  151. static void __devinit
  152. init_default_table_values(struct pm8001_hba_info *pm8001_ha)
  153. {
  154. int qn = 1;
  155. int i;
  156. u32 offsetib, offsetob;
  157. void __iomem *addressib = pm8001_ha->inbnd_q_tbl_addr;
  158. void __iomem *addressob = pm8001_ha->outbnd_q_tbl_addr;
  159. pm8001_ha->main_cfg_tbl.inbound_q_nppd_hppd = 0;
  160. pm8001_ha->main_cfg_tbl.outbound_hw_event_pid0_3 = 0;
  161. pm8001_ha->main_cfg_tbl.outbound_hw_event_pid4_7 = 0;
  162. pm8001_ha->main_cfg_tbl.outbound_ncq_event_pid0_3 = 0;
  163. pm8001_ha->main_cfg_tbl.outbound_ncq_event_pid4_7 = 0;
  164. pm8001_ha->main_cfg_tbl.outbound_tgt_ITNexus_event_pid0_3 = 0;
  165. pm8001_ha->main_cfg_tbl.outbound_tgt_ITNexus_event_pid4_7 = 0;
  166. pm8001_ha->main_cfg_tbl.outbound_tgt_ssp_event_pid0_3 = 0;
  167. pm8001_ha->main_cfg_tbl.outbound_tgt_ssp_event_pid4_7 = 0;
  168. pm8001_ha->main_cfg_tbl.outbound_tgt_smp_event_pid0_3 = 0;
  169. pm8001_ha->main_cfg_tbl.outbound_tgt_smp_event_pid4_7 = 0;
  170. pm8001_ha->main_cfg_tbl.upper_event_log_addr =
  171. pm8001_ha->memoryMap.region[AAP1].phys_addr_hi;
  172. pm8001_ha->main_cfg_tbl.lower_event_log_addr =
  173. pm8001_ha->memoryMap.region[AAP1].phys_addr_lo;
  174. pm8001_ha->main_cfg_tbl.event_log_size = PM8001_EVENT_LOG_SIZE;
  175. pm8001_ha->main_cfg_tbl.event_log_option = 0x01;
  176. pm8001_ha->main_cfg_tbl.upper_iop_event_log_addr =
  177. pm8001_ha->memoryMap.region[IOP].phys_addr_hi;
  178. pm8001_ha->main_cfg_tbl.lower_iop_event_log_addr =
  179. pm8001_ha->memoryMap.region[IOP].phys_addr_lo;
  180. pm8001_ha->main_cfg_tbl.iop_event_log_size = PM8001_EVENT_LOG_SIZE;
  181. pm8001_ha->main_cfg_tbl.iop_event_log_option = 0x01;
  182. pm8001_ha->main_cfg_tbl.fatal_err_interrupt = 0x01;
  183. for (i = 0; i < qn; i++) {
  184. pm8001_ha->inbnd_q_tbl[i].element_pri_size_cnt =
  185. 0x00000100 | (0x00000040 << 16) | (0x00<<30);
  186. pm8001_ha->inbnd_q_tbl[i].upper_base_addr =
  187. pm8001_ha->memoryMap.region[IB].phys_addr_hi;
  188. pm8001_ha->inbnd_q_tbl[i].lower_base_addr =
  189. pm8001_ha->memoryMap.region[IB].phys_addr_lo;
  190. pm8001_ha->inbnd_q_tbl[i].base_virt =
  191. (u8 *)pm8001_ha->memoryMap.region[IB].virt_ptr;
  192. pm8001_ha->inbnd_q_tbl[i].total_length =
  193. pm8001_ha->memoryMap.region[IB].total_len;
  194. pm8001_ha->inbnd_q_tbl[i].ci_upper_base_addr =
  195. pm8001_ha->memoryMap.region[CI].phys_addr_hi;
  196. pm8001_ha->inbnd_q_tbl[i].ci_lower_base_addr =
  197. pm8001_ha->memoryMap.region[CI].phys_addr_lo;
  198. pm8001_ha->inbnd_q_tbl[i].ci_virt =
  199. pm8001_ha->memoryMap.region[CI].virt_ptr;
  200. offsetib = i * 0x20;
  201. pm8001_ha->inbnd_q_tbl[i].pi_pci_bar =
  202. get_pci_bar_index(pm8001_mr32(addressib,
  203. (offsetib + 0x14)));
  204. pm8001_ha->inbnd_q_tbl[i].pi_offset =
  205. pm8001_mr32(addressib, (offsetib + 0x18));
  206. pm8001_ha->inbnd_q_tbl[i].producer_idx = 0;
  207. pm8001_ha->inbnd_q_tbl[i].consumer_index = 0;
  208. }
  209. for (i = 0; i < qn; i++) {
  210. pm8001_ha->outbnd_q_tbl[i].element_size_cnt =
  211. 256 | (64 << 16) | (1<<30);
  212. pm8001_ha->outbnd_q_tbl[i].upper_base_addr =
  213. pm8001_ha->memoryMap.region[OB].phys_addr_hi;
  214. pm8001_ha->outbnd_q_tbl[i].lower_base_addr =
  215. pm8001_ha->memoryMap.region[OB].phys_addr_lo;
  216. pm8001_ha->outbnd_q_tbl[i].base_virt =
  217. (u8 *)pm8001_ha->memoryMap.region[OB].virt_ptr;
  218. pm8001_ha->outbnd_q_tbl[i].total_length =
  219. pm8001_ha->memoryMap.region[OB].total_len;
  220. pm8001_ha->outbnd_q_tbl[i].pi_upper_base_addr =
  221. pm8001_ha->memoryMap.region[PI].phys_addr_hi;
  222. pm8001_ha->outbnd_q_tbl[i].pi_lower_base_addr =
  223. pm8001_ha->memoryMap.region[PI].phys_addr_lo;
  224. pm8001_ha->outbnd_q_tbl[i].interrup_vec_cnt_delay =
  225. 0 | (0 << 16) | (0 << 24);
  226. pm8001_ha->outbnd_q_tbl[i].pi_virt =
  227. pm8001_ha->memoryMap.region[PI].virt_ptr;
  228. offsetob = i * 0x24;
  229. pm8001_ha->outbnd_q_tbl[i].ci_pci_bar =
  230. get_pci_bar_index(pm8001_mr32(addressob,
  231. offsetob + 0x14));
  232. pm8001_ha->outbnd_q_tbl[i].ci_offset =
  233. pm8001_mr32(addressob, (offsetob + 0x18));
  234. pm8001_ha->outbnd_q_tbl[i].consumer_idx = 0;
  235. pm8001_ha->outbnd_q_tbl[i].producer_index = 0;
  236. }
  237. }
  238. /**
  239. * update_main_config_table - update the main default table to the HBA.
  240. * @pm8001_ha: our hba card information
  241. */
  242. static void __devinit
  243. update_main_config_table(struct pm8001_hba_info *pm8001_ha)
  244. {
  245. void __iomem *address = pm8001_ha->main_cfg_tbl_addr;
  246. pm8001_mw32(address, 0x24,
  247. pm8001_ha->main_cfg_tbl.inbound_q_nppd_hppd);
  248. pm8001_mw32(address, 0x28,
  249. pm8001_ha->main_cfg_tbl.outbound_hw_event_pid0_3);
  250. pm8001_mw32(address, 0x2C,
  251. pm8001_ha->main_cfg_tbl.outbound_hw_event_pid4_7);
  252. pm8001_mw32(address, 0x30,
  253. pm8001_ha->main_cfg_tbl.outbound_ncq_event_pid0_3);
  254. pm8001_mw32(address, 0x34,
  255. pm8001_ha->main_cfg_tbl.outbound_ncq_event_pid4_7);
  256. pm8001_mw32(address, 0x38,
  257. pm8001_ha->main_cfg_tbl.outbound_tgt_ITNexus_event_pid0_3);
  258. pm8001_mw32(address, 0x3C,
  259. pm8001_ha->main_cfg_tbl.outbound_tgt_ITNexus_event_pid4_7);
  260. pm8001_mw32(address, 0x40,
  261. pm8001_ha->main_cfg_tbl.outbound_tgt_ssp_event_pid0_3);
  262. pm8001_mw32(address, 0x44,
  263. pm8001_ha->main_cfg_tbl.outbound_tgt_ssp_event_pid4_7);
  264. pm8001_mw32(address, 0x48,
  265. pm8001_ha->main_cfg_tbl.outbound_tgt_smp_event_pid0_3);
  266. pm8001_mw32(address, 0x4C,
  267. pm8001_ha->main_cfg_tbl.outbound_tgt_smp_event_pid4_7);
  268. pm8001_mw32(address, 0x50,
  269. pm8001_ha->main_cfg_tbl.upper_event_log_addr);
  270. pm8001_mw32(address, 0x54,
  271. pm8001_ha->main_cfg_tbl.lower_event_log_addr);
  272. pm8001_mw32(address, 0x58, pm8001_ha->main_cfg_tbl.event_log_size);
  273. pm8001_mw32(address, 0x5C, pm8001_ha->main_cfg_tbl.event_log_option);
  274. pm8001_mw32(address, 0x60,
  275. pm8001_ha->main_cfg_tbl.upper_iop_event_log_addr);
  276. pm8001_mw32(address, 0x64,
  277. pm8001_ha->main_cfg_tbl.lower_iop_event_log_addr);
  278. pm8001_mw32(address, 0x68, pm8001_ha->main_cfg_tbl.iop_event_log_size);
  279. pm8001_mw32(address, 0x6C,
  280. pm8001_ha->main_cfg_tbl.iop_event_log_option);
  281. pm8001_mw32(address, 0x70,
  282. pm8001_ha->main_cfg_tbl.fatal_err_interrupt);
  283. }
  284. /**
  285. * update_inbnd_queue_table - update the inbound queue table to the HBA.
  286. * @pm8001_ha: our hba card information
  287. */
  288. static void __devinit
  289. update_inbnd_queue_table(struct pm8001_hba_info *pm8001_ha, int number)
  290. {
  291. void __iomem *address = pm8001_ha->inbnd_q_tbl_addr;
  292. u16 offset = number * 0x20;
  293. pm8001_mw32(address, offset + 0x00,
  294. pm8001_ha->inbnd_q_tbl[number].element_pri_size_cnt);
  295. pm8001_mw32(address, offset + 0x04,
  296. pm8001_ha->inbnd_q_tbl[number].upper_base_addr);
  297. pm8001_mw32(address, offset + 0x08,
  298. pm8001_ha->inbnd_q_tbl[number].lower_base_addr);
  299. pm8001_mw32(address, offset + 0x0C,
  300. pm8001_ha->inbnd_q_tbl[number].ci_upper_base_addr);
  301. pm8001_mw32(address, offset + 0x10,
  302. pm8001_ha->inbnd_q_tbl[number].ci_lower_base_addr);
  303. }
  304. /**
  305. * update_outbnd_queue_table - update the outbound queue table to the HBA.
  306. * @pm8001_ha: our hba card information
  307. */
  308. static void __devinit
  309. update_outbnd_queue_table(struct pm8001_hba_info *pm8001_ha, int number)
  310. {
  311. void __iomem *address = pm8001_ha->outbnd_q_tbl_addr;
  312. u16 offset = number * 0x24;
  313. pm8001_mw32(address, offset + 0x00,
  314. pm8001_ha->outbnd_q_tbl[number].element_size_cnt);
  315. pm8001_mw32(address, offset + 0x04,
  316. pm8001_ha->outbnd_q_tbl[number].upper_base_addr);
  317. pm8001_mw32(address, offset + 0x08,
  318. pm8001_ha->outbnd_q_tbl[number].lower_base_addr);
  319. pm8001_mw32(address, offset + 0x0C,
  320. pm8001_ha->outbnd_q_tbl[number].pi_upper_base_addr);
  321. pm8001_mw32(address, offset + 0x10,
  322. pm8001_ha->outbnd_q_tbl[number].pi_lower_base_addr);
  323. pm8001_mw32(address, offset + 0x1C,
  324. pm8001_ha->outbnd_q_tbl[number].interrup_vec_cnt_delay);
  325. }
  326. /**
  327. * bar4_shift - function is called to shift BAR base address
  328. * @pm8001_ha : our hba card infomation
  329. * @shiftValue : shifting value in memory bar.
  330. */
  331. static u32 bar4_shift(struct pm8001_hba_info *pm8001_ha, u32 shiftValue)
  332. {
  333. u32 regVal;
  334. u32 max_wait_count;
  335. /* program the inbound AXI translation Lower Address */
  336. pm8001_cw32(pm8001_ha, 1, SPC_IBW_AXI_TRANSLATION_LOW, shiftValue);
  337. /* confirm the setting is written */
  338. max_wait_count = 1 * 1000 * 1000; /* 1 sec */
  339. do {
  340. udelay(1);
  341. regVal = pm8001_cr32(pm8001_ha, 1, SPC_IBW_AXI_TRANSLATION_LOW);
  342. } while ((regVal != shiftValue) && (--max_wait_count));
  343. if (!max_wait_count) {
  344. PM8001_INIT_DBG(pm8001_ha,
  345. pm8001_printk("TIMEOUT:SPC_IBW_AXI_TRANSLATION_LOW"
  346. " = 0x%x\n", regVal));
  347. return -1;
  348. }
  349. return 0;
  350. }
  351. /**
  352. * mpi_set_phys_g3_with_ssc
  353. * @pm8001_ha: our hba card information
  354. * @SSCbit: set SSCbit to 0 to disable all phys ssc; 1 to enable all phys ssc.
  355. */
  356. static void __devinit
  357. mpi_set_phys_g3_with_ssc(struct pm8001_hba_info *pm8001_ha, u32 SSCbit)
  358. {
  359. u32 offset;
  360. u32 value;
  361. u32 i;
  362. #define SAS2_SETTINGS_LOCAL_PHY_0_3_SHIFT_ADDR 0x00030000
  363. #define SAS2_SETTINGS_LOCAL_PHY_4_7_SHIFT_ADDR 0x00040000
  364. #define SAS2_SETTINGS_LOCAL_PHY_0_3_OFFSET 0x1074
  365. #define SAS2_SETTINGS_LOCAL_PHY_4_7_OFFSET 0x1074
  366. #define PHY_SSC_BIT_SHIFT 13
  367. /*
  368. * Using shifted destination address 0x3_0000:0x1074 + 0x4000*N (N=0:3)
  369. * Using shifted destination address 0x4_0000:0x1074 + 0x4000*(N-4) (N=4:7)
  370. */
  371. if (-1 == bar4_shift(pm8001_ha, SAS2_SETTINGS_LOCAL_PHY_0_3_SHIFT_ADDR))
  372. return;
  373. /* set SSC bit of PHY 0 - 3 */
  374. for (i = 0; i < 4; i++) {
  375. offset = SAS2_SETTINGS_LOCAL_PHY_0_3_OFFSET + 0x4000 * i;
  376. value = pm8001_cr32(pm8001_ha, 2, offset);
  377. if (SSCbit)
  378. value = value | (0x00000001 << PHY_SSC_BIT_SHIFT);
  379. else
  380. value = value & (~(0x00000001<<PHY_SSC_BIT_SHIFT));
  381. pm8001_cw32(pm8001_ha, 2, offset, value);
  382. }
  383. /* shift membase 3 for SAS2_SETTINGS_LOCAL_PHY 4 - 7 */
  384. if (-1 == bar4_shift(pm8001_ha, SAS2_SETTINGS_LOCAL_PHY_4_7_SHIFT_ADDR))
  385. return;
  386. /* set SSC bit of PHY 4 - 7 */
  387. for (i = 4; i < 8; i++) {
  388. offset = SAS2_SETTINGS_LOCAL_PHY_4_7_OFFSET + 0x4000 * (i-4);
  389. value = pm8001_cr32(pm8001_ha, 2, offset);
  390. if (SSCbit)
  391. value = value | (0x00000001 << PHY_SSC_BIT_SHIFT);
  392. else
  393. value = value & (~(0x00000001<<PHY_SSC_BIT_SHIFT));
  394. pm8001_cw32(pm8001_ha, 2, offset, value);
  395. }
  396. /*set the shifted destination address to 0x0 to avoid error operation */
  397. bar4_shift(pm8001_ha, 0x0);
  398. return;
  399. }
  400. /**
  401. * mpi_set_open_retry_interval_reg
  402. * @pm8001_ha: our hba card information
  403. * @interval - interval time for each OPEN_REJECT (RETRY). The units are in 1us.
  404. */
  405. static void __devinit
  406. mpi_set_open_retry_interval_reg(struct pm8001_hba_info *pm8001_ha,
  407. u32 interval)
  408. {
  409. u32 offset;
  410. u32 value;
  411. u32 i;
  412. #define OPEN_RETRY_INTERVAL_PHY_0_3_SHIFT_ADDR 0x00030000
  413. #define OPEN_RETRY_INTERVAL_PHY_4_7_SHIFT_ADDR 0x00040000
  414. #define OPEN_RETRY_INTERVAL_PHY_0_3_OFFSET 0x30B4
  415. #define OPEN_RETRY_INTERVAL_PHY_4_7_OFFSET 0x30B4
  416. #define OPEN_RETRY_INTERVAL_REG_MASK 0x0000FFFF
  417. value = interval & OPEN_RETRY_INTERVAL_REG_MASK;
  418. /* shift bar and set the OPEN_REJECT(RETRY) interval time of PHY 0 -3.*/
  419. if (-1 == bar4_shift(pm8001_ha,
  420. OPEN_RETRY_INTERVAL_PHY_0_3_SHIFT_ADDR))
  421. return;
  422. for (i = 0; i < 4; i++) {
  423. offset = OPEN_RETRY_INTERVAL_PHY_0_3_OFFSET + 0x4000 * i;
  424. pm8001_cw32(pm8001_ha, 2, offset, value);
  425. }
  426. if (-1 == bar4_shift(pm8001_ha,
  427. OPEN_RETRY_INTERVAL_PHY_4_7_SHIFT_ADDR))
  428. return;
  429. for (i = 4; i < 8; i++) {
  430. offset = OPEN_RETRY_INTERVAL_PHY_4_7_OFFSET + 0x4000 * (i-4);
  431. pm8001_cw32(pm8001_ha, 2, offset, value);
  432. }
  433. /*set the shifted destination address to 0x0 to avoid error operation */
  434. bar4_shift(pm8001_ha, 0x0);
  435. return;
  436. }
  437. /**
  438. * mpi_init_check - check firmware initialization status.
  439. * @pm8001_ha: our hba card information
  440. */
  441. static int mpi_init_check(struct pm8001_hba_info *pm8001_ha)
  442. {
  443. u32 max_wait_count;
  444. u32 value;
  445. u32 gst_len_mpistate;
  446. /* Write bit0=1 to Inbound DoorBell Register to tell the SPC FW the
  447. table is updated */
  448. pm8001_cw32(pm8001_ha, 0, MSGU_IBDB_SET, SPC_MSGU_CFG_TABLE_UPDATE);
  449. /* wait until Inbound DoorBell Clear Register toggled */
  450. max_wait_count = 1 * 1000 * 1000;/* 1 sec */
  451. do {
  452. udelay(1);
  453. value = pm8001_cr32(pm8001_ha, 0, MSGU_IBDB_SET);
  454. value &= SPC_MSGU_CFG_TABLE_UPDATE;
  455. } while ((value != 0) && (--max_wait_count));
  456. if (!max_wait_count)
  457. return -1;
  458. /* check the MPI-State for initialization */
  459. gst_len_mpistate =
  460. pm8001_mr32(pm8001_ha->general_stat_tbl_addr,
  461. GST_GSTLEN_MPIS_OFFSET);
  462. if (GST_MPI_STATE_INIT != (gst_len_mpistate & GST_MPI_STATE_MASK))
  463. return -1;
  464. /* check MPI Initialization error */
  465. gst_len_mpistate = gst_len_mpistate >> 16;
  466. if (0x0000 != gst_len_mpistate)
  467. return -1;
  468. return 0;
  469. }
  470. /**
  471. * check_fw_ready - The LLDD check if the FW is ready, if not, return error.
  472. * @pm8001_ha: our hba card information
  473. */
  474. static int check_fw_ready(struct pm8001_hba_info *pm8001_ha)
  475. {
  476. u32 value, value1;
  477. u32 max_wait_count;
  478. /* check error state */
  479. value = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1);
  480. value1 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2);
  481. /* check AAP error */
  482. if (SCRATCH_PAD1_ERR == (value & SCRATCH_PAD_STATE_MASK)) {
  483. /* error state */
  484. value = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_0);
  485. return -1;
  486. }
  487. /* check IOP error */
  488. if (SCRATCH_PAD2_ERR == (value1 & SCRATCH_PAD_STATE_MASK)) {
  489. /* error state */
  490. value1 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_3);
  491. return -1;
  492. }
  493. /* bit 4-31 of scratch pad1 should be zeros if it is not
  494. in error state*/
  495. if (value & SCRATCH_PAD1_STATE_MASK) {
  496. /* error case */
  497. pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_0);
  498. return -1;
  499. }
  500. /* bit 2, 4-31 of scratch pad2 should be zeros if it is not
  501. in error state */
  502. if (value1 & SCRATCH_PAD2_STATE_MASK) {
  503. /* error case */
  504. return -1;
  505. }
  506. max_wait_count = 1 * 1000 * 1000;/* 1 sec timeout */
  507. /* wait until scratch pad 1 and 2 registers in ready state */
  508. do {
  509. udelay(1);
  510. value = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1)
  511. & SCRATCH_PAD1_RDY;
  512. value1 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2)
  513. & SCRATCH_PAD2_RDY;
  514. if ((--max_wait_count) == 0)
  515. return -1;
  516. } while ((value != SCRATCH_PAD1_RDY) || (value1 != SCRATCH_PAD2_RDY));
  517. return 0;
  518. }
  519. static void init_pci_device_addresses(struct pm8001_hba_info *pm8001_ha)
  520. {
  521. void __iomem *base_addr;
  522. u32 value;
  523. u32 offset;
  524. u32 pcibar;
  525. u32 pcilogic;
  526. value = pm8001_cr32(pm8001_ha, 0, 0x44);
  527. offset = value & 0x03FFFFFF;
  528. PM8001_INIT_DBG(pm8001_ha,
  529. pm8001_printk("Scratchpad 0 Offset: %x \n", offset));
  530. pcilogic = (value & 0xFC000000) >> 26;
  531. pcibar = get_pci_bar_index(pcilogic);
  532. PM8001_INIT_DBG(pm8001_ha,
  533. pm8001_printk("Scratchpad 0 PCI BAR: %d \n", pcibar));
  534. pm8001_ha->main_cfg_tbl_addr = base_addr =
  535. pm8001_ha->io_mem[pcibar].memvirtaddr + offset;
  536. pm8001_ha->general_stat_tbl_addr =
  537. base_addr + pm8001_cr32(pm8001_ha, pcibar, offset + 0x18);
  538. pm8001_ha->inbnd_q_tbl_addr =
  539. base_addr + pm8001_cr32(pm8001_ha, pcibar, offset + 0x1C);
  540. pm8001_ha->outbnd_q_tbl_addr =
  541. base_addr + pm8001_cr32(pm8001_ha, pcibar, offset + 0x20);
  542. }
  543. /**
  544. * pm8001_chip_init - the main init function that initialize whole PM8001 chip.
  545. * @pm8001_ha: our hba card information
  546. */
  547. static int __devinit pm8001_chip_init(struct pm8001_hba_info *pm8001_ha)
  548. {
  549. /* check the firmware status */
  550. if (-1 == check_fw_ready(pm8001_ha)) {
  551. PM8001_FAIL_DBG(pm8001_ha,
  552. pm8001_printk("Firmware is not ready!\n"));
  553. return -EBUSY;
  554. }
  555. /* Initialize pci space address eg: mpi offset */
  556. init_pci_device_addresses(pm8001_ha);
  557. init_default_table_values(pm8001_ha);
  558. read_main_config_table(pm8001_ha);
  559. read_general_status_table(pm8001_ha);
  560. read_inbnd_queue_table(pm8001_ha);
  561. read_outbnd_queue_table(pm8001_ha);
  562. /* update main config table ,inbound table and outbound table */
  563. update_main_config_table(pm8001_ha);
  564. update_inbnd_queue_table(pm8001_ha, 0);
  565. update_outbnd_queue_table(pm8001_ha, 0);
  566. mpi_set_phys_g3_with_ssc(pm8001_ha, 0);
  567. mpi_set_open_retry_interval_reg(pm8001_ha, 7);
  568. /* notify firmware update finished and check initialization status */
  569. if (0 == mpi_init_check(pm8001_ha)) {
  570. PM8001_INIT_DBG(pm8001_ha,
  571. pm8001_printk("MPI initialize successful!\n"));
  572. } else
  573. return -EBUSY;
  574. /*This register is a 16-bit timer with a resolution of 1us. This is the
  575. timer used for interrupt delay/coalescing in the PCIe Application Layer.
  576. Zero is not a valid value. A value of 1 in the register will cause the
  577. interrupts to be normal. A value greater than 1 will cause coalescing
  578. delays.*/
  579. pm8001_cw32(pm8001_ha, 1, 0x0033c0, 0x1);
  580. pm8001_cw32(pm8001_ha, 1, 0x0033c4, 0x0);
  581. return 0;
  582. }
  583. static int mpi_uninit_check(struct pm8001_hba_info *pm8001_ha)
  584. {
  585. u32 max_wait_count;
  586. u32 value;
  587. u32 gst_len_mpistate;
  588. init_pci_device_addresses(pm8001_ha);
  589. /* Write bit1=1 to Inbound DoorBell Register to tell the SPC FW the
  590. table is stop */
  591. pm8001_cw32(pm8001_ha, 0, MSGU_IBDB_SET, SPC_MSGU_CFG_TABLE_RESET);
  592. /* wait until Inbound DoorBell Clear Register toggled */
  593. max_wait_count = 1 * 1000 * 1000;/* 1 sec */
  594. do {
  595. udelay(1);
  596. value = pm8001_cr32(pm8001_ha, 0, MSGU_IBDB_SET);
  597. value &= SPC_MSGU_CFG_TABLE_RESET;
  598. } while ((value != 0) && (--max_wait_count));
  599. if (!max_wait_count) {
  600. PM8001_FAIL_DBG(pm8001_ha,
  601. pm8001_printk("TIMEOUT:IBDB value/=0x%x\n", value));
  602. return -1;
  603. }
  604. /* check the MPI-State for termination in progress */
  605. /* wait until Inbound DoorBell Clear Register toggled */
  606. max_wait_count = 1 * 1000 * 1000; /* 1 sec */
  607. do {
  608. udelay(1);
  609. gst_len_mpistate =
  610. pm8001_mr32(pm8001_ha->general_stat_tbl_addr,
  611. GST_GSTLEN_MPIS_OFFSET);
  612. if (GST_MPI_STATE_UNINIT ==
  613. (gst_len_mpistate & GST_MPI_STATE_MASK))
  614. break;
  615. } while (--max_wait_count);
  616. if (!max_wait_count) {
  617. PM8001_FAIL_DBG(pm8001_ha,
  618. pm8001_printk(" TIME OUT MPI State = 0x%x\n",
  619. gst_len_mpistate & GST_MPI_STATE_MASK));
  620. return -1;
  621. }
  622. return 0;
  623. }
  624. /**
  625. * soft_reset_ready_check - Function to check FW is ready for soft reset.
  626. * @pm8001_ha: our hba card information
  627. */
  628. static u32 soft_reset_ready_check(struct pm8001_hba_info *pm8001_ha)
  629. {
  630. u32 regVal, regVal1, regVal2;
  631. if (mpi_uninit_check(pm8001_ha) != 0) {
  632. PM8001_FAIL_DBG(pm8001_ha,
  633. pm8001_printk("MPI state is not ready\n"));
  634. return -1;
  635. }
  636. /* read the scratch pad 2 register bit 2 */
  637. regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2)
  638. & SCRATCH_PAD2_FWRDY_RST;
  639. if (regVal == SCRATCH_PAD2_FWRDY_RST) {
  640. PM8001_INIT_DBG(pm8001_ha,
  641. pm8001_printk("Firmware is ready for reset .\n"));
  642. } else {
  643. /* Trigger NMI twice via RB6 */
  644. if (-1 == bar4_shift(pm8001_ha, RB6_ACCESS_REG)) {
  645. PM8001_FAIL_DBG(pm8001_ha,
  646. pm8001_printk("Shift Bar4 to 0x%x failed\n",
  647. RB6_ACCESS_REG));
  648. return -1;
  649. }
  650. pm8001_cw32(pm8001_ha, 2, SPC_RB6_OFFSET,
  651. RB6_MAGIC_NUMBER_RST);
  652. pm8001_cw32(pm8001_ha, 2, SPC_RB6_OFFSET, RB6_MAGIC_NUMBER_RST);
  653. /* wait for 100 ms */
  654. mdelay(100);
  655. regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2) &
  656. SCRATCH_PAD2_FWRDY_RST;
  657. if (regVal != SCRATCH_PAD2_FWRDY_RST) {
  658. regVal1 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1);
  659. regVal2 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2);
  660. PM8001_FAIL_DBG(pm8001_ha,
  661. pm8001_printk("TIMEOUT:MSGU_SCRATCH_PAD1"
  662. "=0x%x, MSGU_SCRATCH_PAD2=0x%x\n",
  663. regVal1, regVal2));
  664. PM8001_FAIL_DBG(pm8001_ha,
  665. pm8001_printk("SCRATCH_PAD0 value = 0x%x\n",
  666. pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_0)));
  667. PM8001_FAIL_DBG(pm8001_ha,
  668. pm8001_printk("SCRATCH_PAD3 value = 0x%x\n",
  669. pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_3)));
  670. return -1;
  671. }
  672. }
  673. return 0;
  674. }
  675. /**
  676. * pm8001_chip_soft_rst - soft reset the PM8001 chip, so that the clear all
  677. * the FW register status to the originated status.
  678. * @pm8001_ha: our hba card information
  679. * @signature: signature in host scratch pad0 register.
  680. */
  681. static int
  682. pm8001_chip_soft_rst(struct pm8001_hba_info *pm8001_ha, u32 signature)
  683. {
  684. u32 regVal, toggleVal;
  685. u32 max_wait_count;
  686. u32 regVal1, regVal2, regVal3;
  687. /* step1: Check FW is ready for soft reset */
  688. if (soft_reset_ready_check(pm8001_ha) != 0) {
  689. PM8001_FAIL_DBG(pm8001_ha, pm8001_printk("FW is not ready\n"));
  690. return -1;
  691. }
  692. /* step 2: clear NMI status register on AAP1 and IOP, write the same
  693. value to clear */
  694. /* map 0x60000 to BAR4(0x20), BAR2(win) */
  695. if (-1 == bar4_shift(pm8001_ha, MBIC_AAP1_ADDR_BASE)) {
  696. PM8001_FAIL_DBG(pm8001_ha,
  697. pm8001_printk("Shift Bar4 to 0x%x failed\n",
  698. MBIC_AAP1_ADDR_BASE));
  699. return -1;
  700. }
  701. regVal = pm8001_cr32(pm8001_ha, 2, MBIC_NMI_ENABLE_VPE0_IOP);
  702. PM8001_INIT_DBG(pm8001_ha,
  703. pm8001_printk("MBIC - NMI Enable VPE0 (IOP)= 0x%x\n", regVal));
  704. pm8001_cw32(pm8001_ha, 2, MBIC_NMI_ENABLE_VPE0_IOP, 0x0);
  705. /* map 0x70000 to BAR4(0x20), BAR2(win) */
  706. if (-1 == bar4_shift(pm8001_ha, MBIC_IOP_ADDR_BASE)) {
  707. PM8001_FAIL_DBG(pm8001_ha,
  708. pm8001_printk("Shift Bar4 to 0x%x failed\n",
  709. MBIC_IOP_ADDR_BASE));
  710. return -1;
  711. }
  712. regVal = pm8001_cr32(pm8001_ha, 2, MBIC_NMI_ENABLE_VPE0_AAP1);
  713. PM8001_INIT_DBG(pm8001_ha,
  714. pm8001_printk("MBIC - NMI Enable VPE0 (AAP1)= 0x%x\n", regVal));
  715. pm8001_cw32(pm8001_ha, 2, MBIC_NMI_ENABLE_VPE0_AAP1, 0x0);
  716. regVal = pm8001_cr32(pm8001_ha, 1, PCIE_EVENT_INTERRUPT_ENABLE);
  717. PM8001_INIT_DBG(pm8001_ha,
  718. pm8001_printk("PCIE -Event Interrupt Enable = 0x%x\n", regVal));
  719. pm8001_cw32(pm8001_ha, 1, PCIE_EVENT_INTERRUPT_ENABLE, 0x0);
  720. regVal = pm8001_cr32(pm8001_ha, 1, PCIE_EVENT_INTERRUPT);
  721. PM8001_INIT_DBG(pm8001_ha,
  722. pm8001_printk("PCIE - Event Interrupt = 0x%x\n", regVal));
  723. pm8001_cw32(pm8001_ha, 1, PCIE_EVENT_INTERRUPT, regVal);
  724. regVal = pm8001_cr32(pm8001_ha, 1, PCIE_ERROR_INTERRUPT_ENABLE);
  725. PM8001_INIT_DBG(pm8001_ha,
  726. pm8001_printk("PCIE -Error Interrupt Enable = 0x%x\n", regVal));
  727. pm8001_cw32(pm8001_ha, 1, PCIE_ERROR_INTERRUPT_ENABLE, 0x0);
  728. regVal = pm8001_cr32(pm8001_ha, 1, PCIE_ERROR_INTERRUPT);
  729. PM8001_INIT_DBG(pm8001_ha,
  730. pm8001_printk("PCIE - Error Interrupt = 0x%x\n", regVal));
  731. pm8001_cw32(pm8001_ha, 1, PCIE_ERROR_INTERRUPT, regVal);
  732. /* read the scratch pad 1 register bit 2 */
  733. regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1)
  734. & SCRATCH_PAD1_RST;
  735. toggleVal = regVal ^ SCRATCH_PAD1_RST;
  736. /* set signature in host scratch pad0 register to tell SPC that the
  737. host performs the soft reset */
  738. pm8001_cw32(pm8001_ha, 0, MSGU_HOST_SCRATCH_PAD_0, signature);
  739. /* read required registers for confirmming */
  740. /* map 0x0700000 to BAR4(0x20), BAR2(win) */
  741. if (-1 == bar4_shift(pm8001_ha, GSM_ADDR_BASE)) {
  742. PM8001_FAIL_DBG(pm8001_ha,
  743. pm8001_printk("Shift Bar4 to 0x%x failed\n",
  744. GSM_ADDR_BASE));
  745. return -1;
  746. }
  747. PM8001_INIT_DBG(pm8001_ha,
  748. pm8001_printk("GSM 0x0(0x00007b88)-GSM Configuration and"
  749. " Reset = 0x%x\n",
  750. pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET)));
  751. /* step 3: host read GSM Configuration and Reset register */
  752. regVal = pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET);
  753. /* Put those bits to low */
  754. /* GSM XCBI offset = 0x70 0000
  755. 0x00 Bit 13 COM_SLV_SW_RSTB 1
  756. 0x00 Bit 12 QSSP_SW_RSTB 1
  757. 0x00 Bit 11 RAAE_SW_RSTB 1
  758. 0x00 Bit 9 RB_1_SW_RSTB 1
  759. 0x00 Bit 8 SM_SW_RSTB 1
  760. */
  761. regVal &= ~(0x00003b00);
  762. /* host write GSM Configuration and Reset register */
  763. pm8001_cw32(pm8001_ha, 2, GSM_CONFIG_RESET, regVal);
  764. PM8001_INIT_DBG(pm8001_ha,
  765. pm8001_printk("GSM 0x0 (0x00007b88 ==> 0x00004088) - GSM "
  766. "Configuration and Reset is set to = 0x%x\n",
  767. pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET)));
  768. /* step 4: */
  769. /* disable GSM - Read Address Parity Check */
  770. regVal1 = pm8001_cr32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK);
  771. PM8001_INIT_DBG(pm8001_ha,
  772. pm8001_printk("GSM 0x700038 - Read Address Parity Check "
  773. "Enable = 0x%x\n", regVal1));
  774. pm8001_cw32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK, 0x0);
  775. PM8001_INIT_DBG(pm8001_ha,
  776. pm8001_printk("GSM 0x700038 - Read Address Parity Check Enable"
  777. "is set to = 0x%x\n",
  778. pm8001_cr32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK)));
  779. /* disable GSM - Write Address Parity Check */
  780. regVal2 = pm8001_cr32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK);
  781. PM8001_INIT_DBG(pm8001_ha,
  782. pm8001_printk("GSM 0x700040 - Write Address Parity Check"
  783. " Enable = 0x%x\n", regVal2));
  784. pm8001_cw32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK, 0x0);
  785. PM8001_INIT_DBG(pm8001_ha,
  786. pm8001_printk("GSM 0x700040 - Write Address Parity Check "
  787. "Enable is set to = 0x%x\n",
  788. pm8001_cr32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK)));
  789. /* disable GSM - Write Data Parity Check */
  790. regVal3 = pm8001_cr32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK);
  791. PM8001_INIT_DBG(pm8001_ha,
  792. pm8001_printk("GSM 0x300048 - Write Data Parity Check"
  793. " Enable = 0x%x\n", regVal3));
  794. pm8001_cw32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK, 0x0);
  795. PM8001_INIT_DBG(pm8001_ha,
  796. pm8001_printk("GSM 0x300048 - Write Data Parity Check Enable"
  797. "is set to = 0x%x\n",
  798. pm8001_cr32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK)));
  799. /* step 5: delay 10 usec */
  800. udelay(10);
  801. /* step 5-b: set GPIO-0 output control to tristate anyway */
  802. if (-1 == bar4_shift(pm8001_ha, GPIO_ADDR_BASE)) {
  803. PM8001_INIT_DBG(pm8001_ha,
  804. pm8001_printk("Shift Bar4 to 0x%x failed\n",
  805. GPIO_ADDR_BASE));
  806. return -1;
  807. }
  808. regVal = pm8001_cr32(pm8001_ha, 2, GPIO_GPIO_0_0UTPUT_CTL_OFFSET);
  809. PM8001_INIT_DBG(pm8001_ha,
  810. pm8001_printk("GPIO Output Control Register:"
  811. " = 0x%x\n", regVal));
  812. /* set GPIO-0 output control to tri-state */
  813. regVal &= 0xFFFFFFFC;
  814. pm8001_cw32(pm8001_ha, 2, GPIO_GPIO_0_0UTPUT_CTL_OFFSET, regVal);
  815. /* Step 6: Reset the IOP and AAP1 */
  816. /* map 0x00000 to BAR4(0x20), BAR2(win) */
  817. if (-1 == bar4_shift(pm8001_ha, SPC_TOP_LEVEL_ADDR_BASE)) {
  818. PM8001_FAIL_DBG(pm8001_ha,
  819. pm8001_printk("SPC Shift Bar4 to 0x%x failed\n",
  820. SPC_TOP_LEVEL_ADDR_BASE));
  821. return -1;
  822. }
  823. regVal = pm8001_cr32(pm8001_ha, 2, SPC_REG_RESET);
  824. PM8001_INIT_DBG(pm8001_ha,
  825. pm8001_printk("Top Register before resetting IOP/AAP1"
  826. ":= 0x%x\n", regVal));
  827. regVal &= ~(SPC_REG_RESET_PCS_IOP_SS | SPC_REG_RESET_PCS_AAP1_SS);
  828. pm8001_cw32(pm8001_ha, 2, SPC_REG_RESET, regVal);
  829. /* step 7: Reset the BDMA/OSSP */
  830. regVal = pm8001_cr32(pm8001_ha, 2, SPC_REG_RESET);
  831. PM8001_INIT_DBG(pm8001_ha,
  832. pm8001_printk("Top Register before resetting BDMA/OSSP"
  833. ": = 0x%x\n", regVal));
  834. regVal &= ~(SPC_REG_RESET_BDMA_CORE | SPC_REG_RESET_OSSP);
  835. pm8001_cw32(pm8001_ha, 2, SPC_REG_RESET, regVal);
  836. /* step 8: delay 10 usec */
  837. udelay(10);
  838. /* step 9: bring the BDMA and OSSP out of reset */
  839. regVal = pm8001_cr32(pm8001_ha, 2, SPC_REG_RESET);
  840. PM8001_INIT_DBG(pm8001_ha,
  841. pm8001_printk("Top Register before bringing up BDMA/OSSP"
  842. ":= 0x%x\n", regVal));
  843. regVal |= (SPC_REG_RESET_BDMA_CORE | SPC_REG_RESET_OSSP);
  844. pm8001_cw32(pm8001_ha, 2, SPC_REG_RESET, regVal);
  845. /* step 10: delay 10 usec */
  846. udelay(10);
  847. /* step 11: reads and sets the GSM Configuration and Reset Register */
  848. /* map 0x0700000 to BAR4(0x20), BAR2(win) */
  849. if (-1 == bar4_shift(pm8001_ha, GSM_ADDR_BASE)) {
  850. PM8001_FAIL_DBG(pm8001_ha,
  851. pm8001_printk("SPC Shift Bar4 to 0x%x failed\n",
  852. GSM_ADDR_BASE));
  853. return -1;
  854. }
  855. PM8001_INIT_DBG(pm8001_ha,
  856. pm8001_printk("GSM 0x0 (0x00007b88)-GSM Configuration and "
  857. "Reset = 0x%x\n", pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET)));
  858. regVal = pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET);
  859. /* Put those bits to high */
  860. /* GSM XCBI offset = 0x70 0000
  861. 0x00 Bit 13 COM_SLV_SW_RSTB 1
  862. 0x00 Bit 12 QSSP_SW_RSTB 1
  863. 0x00 Bit 11 RAAE_SW_RSTB 1
  864. 0x00 Bit 9 RB_1_SW_RSTB 1
  865. 0x00 Bit 8 SM_SW_RSTB 1
  866. */
  867. regVal |= (GSM_CONFIG_RESET_VALUE);
  868. pm8001_cw32(pm8001_ha, 2, GSM_CONFIG_RESET, regVal);
  869. PM8001_INIT_DBG(pm8001_ha,
  870. pm8001_printk("GSM (0x00004088 ==> 0x00007b88) - GSM"
  871. " Configuration and Reset is set to = 0x%x\n",
  872. pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET)));
  873. /* step 12: Restore GSM - Read Address Parity Check */
  874. regVal = pm8001_cr32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK);
  875. /* just for debugging */
  876. PM8001_INIT_DBG(pm8001_ha,
  877. pm8001_printk("GSM 0x700038 - Read Address Parity Check Enable"
  878. " = 0x%x\n", regVal));
  879. pm8001_cw32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK, regVal1);
  880. PM8001_INIT_DBG(pm8001_ha,
  881. pm8001_printk("GSM 0x700038 - Read Address Parity"
  882. " Check Enable is set to = 0x%x\n",
  883. pm8001_cr32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK)));
  884. /* Restore GSM - Write Address Parity Check */
  885. regVal = pm8001_cr32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK);
  886. pm8001_cw32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK, regVal2);
  887. PM8001_INIT_DBG(pm8001_ha,
  888. pm8001_printk("GSM 0x700040 - Write Address Parity Check"
  889. " Enable is set to = 0x%x\n",
  890. pm8001_cr32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK)));
  891. /* Restore GSM - Write Data Parity Check */
  892. regVal = pm8001_cr32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK);
  893. pm8001_cw32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK, regVal3);
  894. PM8001_INIT_DBG(pm8001_ha,
  895. pm8001_printk("GSM 0x700048 - Write Data Parity Check Enable"
  896. "is set to = 0x%x\n",
  897. pm8001_cr32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK)));
  898. /* step 13: bring the IOP and AAP1 out of reset */
  899. /* map 0x00000 to BAR4(0x20), BAR2(win) */
  900. if (-1 == bar4_shift(pm8001_ha, SPC_TOP_LEVEL_ADDR_BASE)) {
  901. PM8001_FAIL_DBG(pm8001_ha,
  902. pm8001_printk("Shift Bar4 to 0x%x failed\n",
  903. SPC_TOP_LEVEL_ADDR_BASE));
  904. return -1;
  905. }
  906. regVal = pm8001_cr32(pm8001_ha, 2, SPC_REG_RESET);
  907. regVal |= (SPC_REG_RESET_PCS_IOP_SS | SPC_REG_RESET_PCS_AAP1_SS);
  908. pm8001_cw32(pm8001_ha, 2, SPC_REG_RESET, regVal);
  909. /* step 14: delay 10 usec - Normal Mode */
  910. udelay(10);
  911. /* check Soft Reset Normal mode or Soft Reset HDA mode */
  912. if (signature == SPC_SOFT_RESET_SIGNATURE) {
  913. /* step 15 (Normal Mode): wait until scratch pad1 register
  914. bit 2 toggled */
  915. max_wait_count = 2 * 1000 * 1000;/* 2 sec */
  916. do {
  917. udelay(1);
  918. regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1) &
  919. SCRATCH_PAD1_RST;
  920. } while ((regVal != toggleVal) && (--max_wait_count));
  921. if (!max_wait_count) {
  922. regVal = pm8001_cr32(pm8001_ha, 0,
  923. MSGU_SCRATCH_PAD_1);
  924. PM8001_FAIL_DBG(pm8001_ha,
  925. pm8001_printk("TIMEOUT : ToggleVal 0x%x,"
  926. "MSGU_SCRATCH_PAD1 = 0x%x\n",
  927. toggleVal, regVal));
  928. PM8001_FAIL_DBG(pm8001_ha,
  929. pm8001_printk("SCRATCH_PAD0 value = 0x%x\n",
  930. pm8001_cr32(pm8001_ha, 0,
  931. MSGU_SCRATCH_PAD_0)));
  932. PM8001_FAIL_DBG(pm8001_ha,
  933. pm8001_printk("SCRATCH_PAD2 value = 0x%x\n",
  934. pm8001_cr32(pm8001_ha, 0,
  935. MSGU_SCRATCH_PAD_2)));
  936. PM8001_FAIL_DBG(pm8001_ha,
  937. pm8001_printk("SCRATCH_PAD3 value = 0x%x\n",
  938. pm8001_cr32(pm8001_ha, 0,
  939. MSGU_SCRATCH_PAD_3)));
  940. return -1;
  941. }
  942. /* step 16 (Normal) - Clear ODMR and ODCR */
  943. pm8001_cw32(pm8001_ha, 0, MSGU_ODCR, ODCR_CLEAR_ALL);
  944. pm8001_cw32(pm8001_ha, 0, MSGU_ODMR, ODMR_CLEAR_ALL);
  945. /* step 17 (Normal Mode): wait for the FW and IOP to get
  946. ready - 1 sec timeout */
  947. /* Wait for the SPC Configuration Table to be ready */
  948. if (check_fw_ready(pm8001_ha) == -1) {
  949. regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1);
  950. /* return error if MPI Configuration Table not ready */
  951. PM8001_INIT_DBG(pm8001_ha,
  952. pm8001_printk("FW not ready SCRATCH_PAD1"
  953. " = 0x%x\n", regVal));
  954. regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2);
  955. /* return error if MPI Configuration Table not ready */
  956. PM8001_INIT_DBG(pm8001_ha,
  957. pm8001_printk("FW not ready SCRATCH_PAD2"
  958. " = 0x%x\n", regVal));
  959. PM8001_INIT_DBG(pm8001_ha,
  960. pm8001_printk("SCRATCH_PAD0 value = 0x%x\n",
  961. pm8001_cr32(pm8001_ha, 0,
  962. MSGU_SCRATCH_PAD_0)));
  963. PM8001_INIT_DBG(pm8001_ha,
  964. pm8001_printk("SCRATCH_PAD3 value = 0x%x\n",
  965. pm8001_cr32(pm8001_ha, 0,
  966. MSGU_SCRATCH_PAD_3)));
  967. return -1;
  968. }
  969. }
  970. PM8001_INIT_DBG(pm8001_ha,
  971. pm8001_printk("SPC soft reset Complete\n"));
  972. return 0;
  973. }
  974. static void pm8001_hw_chip_rst(struct pm8001_hba_info *pm8001_ha)
  975. {
  976. u32 i;
  977. u32 regVal;
  978. PM8001_INIT_DBG(pm8001_ha,
  979. pm8001_printk("chip reset start\n"));
  980. /* do SPC chip reset. */
  981. regVal = pm8001_cr32(pm8001_ha, 1, SPC_REG_RESET);
  982. regVal &= ~(SPC_REG_RESET_DEVICE);
  983. pm8001_cw32(pm8001_ha, 1, SPC_REG_RESET, regVal);
  984. /* delay 10 usec */
  985. udelay(10);
  986. /* bring chip reset out of reset */
  987. regVal = pm8001_cr32(pm8001_ha, 1, SPC_REG_RESET);
  988. regVal |= SPC_REG_RESET_DEVICE;
  989. pm8001_cw32(pm8001_ha, 1, SPC_REG_RESET, regVal);
  990. /* delay 10 usec */
  991. udelay(10);
  992. /* wait for 20 msec until the firmware gets reloaded */
  993. i = 20;
  994. do {
  995. mdelay(1);
  996. } while ((--i) != 0);
  997. PM8001_INIT_DBG(pm8001_ha,
  998. pm8001_printk("chip reset finished\n"));
  999. }
  1000. /**
  1001. * pm8001_chip_iounmap - which maped when initilized.
  1002. * @pm8001_ha: our hba card information
  1003. */
  1004. static void pm8001_chip_iounmap(struct pm8001_hba_info *pm8001_ha)
  1005. {
  1006. s8 bar, logical = 0;
  1007. for (bar = 0; bar < 6; bar++) {
  1008. /*
  1009. ** logical BARs for SPC:
  1010. ** bar 0 and 1 - logical BAR0
  1011. ** bar 2 and 3 - logical BAR1
  1012. ** bar4 - logical BAR2
  1013. ** bar5 - logical BAR3
  1014. ** Skip the appropriate assignments:
  1015. */
  1016. if ((bar == 1) || (bar == 3))
  1017. continue;
  1018. if (pm8001_ha->io_mem[logical].memvirtaddr) {
  1019. iounmap(pm8001_ha->io_mem[logical].memvirtaddr);
  1020. logical++;
  1021. }
  1022. }
  1023. }
  1024. /**
  1025. * pm8001_chip_interrupt_enable - enable PM8001 chip interrupt
  1026. * @pm8001_ha: our hba card information
  1027. */
  1028. static void
  1029. pm8001_chip_intx_interrupt_enable(struct pm8001_hba_info *pm8001_ha)
  1030. {
  1031. pm8001_cw32(pm8001_ha, 0, MSGU_ODMR, ODMR_CLEAR_ALL);
  1032. pm8001_cw32(pm8001_ha, 0, MSGU_ODCR, ODCR_CLEAR_ALL);
  1033. }
  1034. /**
  1035. * pm8001_chip_intx_interrupt_disable- disable PM8001 chip interrupt
  1036. * @pm8001_ha: our hba card information
  1037. */
  1038. static void
  1039. pm8001_chip_intx_interrupt_disable(struct pm8001_hba_info *pm8001_ha)
  1040. {
  1041. pm8001_cw32(pm8001_ha, 0, MSGU_ODMR, ODMR_MASK_ALL);
  1042. }
  1043. /**
  1044. * pm8001_chip_msix_interrupt_enable - enable PM8001 chip interrupt
  1045. * @pm8001_ha: our hba card information
  1046. */
  1047. static void
  1048. pm8001_chip_msix_interrupt_enable(struct pm8001_hba_info *pm8001_ha,
  1049. u32 int_vec_idx)
  1050. {
  1051. u32 msi_index;
  1052. u32 value;
  1053. msi_index = int_vec_idx * MSIX_TABLE_ELEMENT_SIZE;
  1054. msi_index += MSIX_TABLE_BASE;
  1055. pm8001_cw32(pm8001_ha, 0, msi_index, MSIX_INTERRUPT_ENABLE);
  1056. value = (1 << int_vec_idx);
  1057. pm8001_cw32(pm8001_ha, 0, MSGU_ODCR, value);
  1058. }
  1059. /**
  1060. * pm8001_chip_msix_interrupt_disable - disable PM8001 chip interrupt
  1061. * @pm8001_ha: our hba card information
  1062. */
  1063. static void
  1064. pm8001_chip_msix_interrupt_disable(struct pm8001_hba_info *pm8001_ha,
  1065. u32 int_vec_idx)
  1066. {
  1067. u32 msi_index;
  1068. msi_index = int_vec_idx * MSIX_TABLE_ELEMENT_SIZE;
  1069. msi_index += MSIX_TABLE_BASE;
  1070. pm8001_cw32(pm8001_ha, 0, msi_index, MSIX_INTERRUPT_DISABLE);
  1071. }
  1072. /**
  1073. * pm8001_chip_interrupt_enable - enable PM8001 chip interrupt
  1074. * @pm8001_ha: our hba card information
  1075. */
  1076. static void
  1077. pm8001_chip_interrupt_enable(struct pm8001_hba_info *pm8001_ha)
  1078. {
  1079. #ifdef PM8001_USE_MSIX
  1080. pm8001_chip_msix_interrupt_enable(pm8001_ha, 0);
  1081. return;
  1082. #endif
  1083. pm8001_chip_intx_interrupt_enable(pm8001_ha);
  1084. }
  1085. /**
  1086. * pm8001_chip_intx_interrupt_disable- disable PM8001 chip interrupt
  1087. * @pm8001_ha: our hba card information
  1088. */
  1089. static void
  1090. pm8001_chip_interrupt_disable(struct pm8001_hba_info *pm8001_ha)
  1091. {
  1092. #ifdef PM8001_USE_MSIX
  1093. pm8001_chip_msix_interrupt_disable(pm8001_ha, 0);
  1094. return;
  1095. #endif
  1096. pm8001_chip_intx_interrupt_disable(pm8001_ha);
  1097. }
  1098. /**
  1099. * mpi_msg_free_get- get the free message buffer for transfer inbound queue.
  1100. * @circularQ: the inbound queue we want to transfer to HBA.
  1101. * @messageSize: the message size of this transfer, normally it is 64 bytes
  1102. * @messagePtr: the pointer to message.
  1103. */
  1104. static u32 mpi_msg_free_get(struct inbound_queue_table *circularQ,
  1105. u16 messageSize, void **messagePtr)
  1106. {
  1107. u32 offset, consumer_index;
  1108. struct mpi_msg_hdr *msgHeader;
  1109. u8 bcCount = 1; /* only support single buffer */
  1110. /* Checks is the requested message size can be allocated in this queue*/
  1111. if (messageSize > 64) {
  1112. *messagePtr = NULL;
  1113. return -1;
  1114. }
  1115. /* Stores the new consumer index */
  1116. consumer_index = pm8001_read_32(circularQ->ci_virt);
  1117. circularQ->consumer_index = cpu_to_le32(consumer_index);
  1118. if (((circularQ->producer_idx + bcCount) % 256) ==
  1119. circularQ->consumer_index) {
  1120. *messagePtr = NULL;
  1121. return -1;
  1122. }
  1123. /* get memory IOMB buffer address */
  1124. offset = circularQ->producer_idx * 64;
  1125. /* increment to next bcCount element */
  1126. circularQ->producer_idx = (circularQ->producer_idx + bcCount) % 256;
  1127. /* Adds that distance to the base of the region virtual address plus
  1128. the message header size*/
  1129. msgHeader = (struct mpi_msg_hdr *)(circularQ->base_virt + offset);
  1130. *messagePtr = ((void *)msgHeader) + sizeof(struct mpi_msg_hdr);
  1131. return 0;
  1132. }
  1133. /**
  1134. * mpi_build_cmd- build the message queue for transfer, update the PI to FW
  1135. * to tell the fw to get this message from IOMB.
  1136. * @pm8001_ha: our hba card information
  1137. * @circularQ: the inbound queue we want to transfer to HBA.
  1138. * @opCode: the operation code represents commands which LLDD and fw recognized.
  1139. * @payload: the command payload of each operation command.
  1140. */
  1141. static u32 mpi_build_cmd(struct pm8001_hba_info *pm8001_ha,
  1142. struct inbound_queue_table *circularQ,
  1143. u32 opCode, void *payload)
  1144. {
  1145. u32 Header = 0, hpriority = 0, bc = 1, category = 0x02;
  1146. u32 responseQueue = 0;
  1147. void *pMessage;
  1148. if (mpi_msg_free_get(circularQ, 64, &pMessage) < 0) {
  1149. PM8001_IO_DBG(pm8001_ha,
  1150. pm8001_printk("No free mpi buffer \n"));
  1151. return -1;
  1152. }
  1153. /*Copy to the payload*/
  1154. memcpy(pMessage, payload, (64 - sizeof(struct mpi_msg_hdr)));
  1155. /*Build the header*/
  1156. Header = ((1 << 31) | (hpriority << 30) | ((bc & 0x1f) << 24)
  1157. | ((responseQueue & 0x3F) << 16)
  1158. | ((category & 0xF) << 12) | (opCode & 0xFFF));
  1159. pm8001_write_32((pMessage - 4), 0, cpu_to_le32(Header));
  1160. /*Update the PI to the firmware*/
  1161. pm8001_cw32(pm8001_ha, circularQ->pi_pci_bar,
  1162. circularQ->pi_offset, circularQ->producer_idx);
  1163. PM8001_IO_DBG(pm8001_ha,
  1164. pm8001_printk("after PI= %d CI= %d \n", circularQ->producer_idx,
  1165. circularQ->consumer_index));
  1166. return 0;
  1167. }
  1168. static u32 mpi_msg_free_set(struct pm8001_hba_info *pm8001_ha,
  1169. struct outbound_queue_table *circularQ, u8 bc)
  1170. {
  1171. u32 producer_index;
  1172. /* free the circular queue buffer elements associated with the message*/
  1173. circularQ->consumer_idx = (circularQ->consumer_idx + bc) % 256;
  1174. /* update the CI of outbound queue */
  1175. pm8001_cw32(pm8001_ha, circularQ->ci_pci_bar, circularQ->ci_offset,
  1176. circularQ->consumer_idx);
  1177. /* Update the producer index from SPC*/
  1178. producer_index = pm8001_read_32(circularQ->pi_virt);
  1179. circularQ->producer_index = cpu_to_le32(producer_index);
  1180. PM8001_IO_DBG(pm8001_ha,
  1181. pm8001_printk(" CI=%d PI=%d\n", circularQ->consumer_idx,
  1182. circularQ->producer_index));
  1183. return 0;
  1184. }
  1185. /**
  1186. * mpi_msg_consume- get the MPI message from outbound queue message table.
  1187. * @pm8001_ha: our hba card information
  1188. * @circularQ: the outbound queue table.
  1189. * @messagePtr1: the message contents of this outbound message.
  1190. * @pBC: the message size.
  1191. */
  1192. static u32 mpi_msg_consume(struct pm8001_hba_info *pm8001_ha,
  1193. struct outbound_queue_table *circularQ,
  1194. void **messagePtr1, u8 *pBC)
  1195. {
  1196. struct mpi_msg_hdr *msgHeader;
  1197. __le32 msgHeader_tmp;
  1198. u32 header_tmp;
  1199. do {
  1200. /* If there are not-yet-delivered messages ... */
  1201. if (circularQ->producer_index != circularQ->consumer_idx) {
  1202. PM8001_IO_DBG(pm8001_ha,
  1203. pm8001_printk("process an IOMB\n"));
  1204. /*Get the pointer to the circular queue buffer element*/
  1205. msgHeader = (struct mpi_msg_hdr *)
  1206. (circularQ->base_virt +
  1207. circularQ->consumer_idx * 64);
  1208. /* read header */
  1209. header_tmp = pm8001_read_32(msgHeader);
  1210. msgHeader_tmp = cpu_to_le32(header_tmp);
  1211. if (0 != (msgHeader_tmp & 0x80000000)) {
  1212. if (OPC_OUB_SKIP_ENTRY !=
  1213. (msgHeader_tmp & 0xfff)) {
  1214. *messagePtr1 =
  1215. ((u8 *)msgHeader) +
  1216. sizeof(struct mpi_msg_hdr);
  1217. *pBC = (u8)((msgHeader_tmp >> 24) &
  1218. 0x1f);
  1219. PM8001_IO_DBG(pm8001_ha,
  1220. pm8001_printk("mpi_msg_consume"
  1221. ": CI=%d PI=%d msgHeader=%x\n",
  1222. circularQ->consumer_idx,
  1223. circularQ->producer_index,
  1224. msgHeader_tmp));
  1225. return MPI_IO_STATUS_SUCCESS;
  1226. } else {
  1227. u32 producer_index;
  1228. void *pi_virt = circularQ->pi_virt;
  1229. /* free the circular queue buffer
  1230. elements associated with the message*/
  1231. circularQ->consumer_idx =
  1232. (circularQ->consumer_idx +
  1233. ((msgHeader_tmp >> 24) & 0x1f))
  1234. % 256;
  1235. /* update the CI of outbound queue */
  1236. pm8001_cw32(pm8001_ha,
  1237. circularQ->ci_pci_bar,
  1238. circularQ->ci_offset,
  1239. circularQ->consumer_idx);
  1240. /* Update the producer index from SPC */
  1241. producer_index =
  1242. pm8001_read_32(pi_virt);
  1243. circularQ->producer_index =
  1244. cpu_to_le32(producer_index);
  1245. }
  1246. } else
  1247. return MPI_IO_STATUS_FAIL;
  1248. }
  1249. } while (circularQ->producer_index != circularQ->consumer_idx);
  1250. /* while we don't have any more not-yet-delivered message */
  1251. /* report empty */
  1252. return MPI_IO_STATUS_BUSY;
  1253. }
  1254. static void pm8001_work_queue(struct work_struct *work)
  1255. {
  1256. struct delayed_work *dw = container_of(work, struct delayed_work, work);
  1257. struct pm8001_wq *wq = container_of(dw, struct pm8001_wq, work_q);
  1258. struct pm8001_device *pm8001_dev;
  1259. struct domain_device *dev;
  1260. switch (wq->handler) {
  1261. case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS:
  1262. pm8001_dev = wq->data;
  1263. dev = pm8001_dev->sas_device;
  1264. pm8001_I_T_nexus_reset(dev);
  1265. break;
  1266. case IO_OPEN_CNX_ERROR_STP_RESOURCES_BUSY:
  1267. pm8001_dev = wq->data;
  1268. dev = pm8001_dev->sas_device;
  1269. pm8001_I_T_nexus_reset(dev);
  1270. break;
  1271. case IO_DS_IN_ERROR:
  1272. pm8001_dev = wq->data;
  1273. dev = pm8001_dev->sas_device;
  1274. pm8001_I_T_nexus_reset(dev);
  1275. break;
  1276. case IO_DS_NON_OPERATIONAL:
  1277. pm8001_dev = wq->data;
  1278. dev = pm8001_dev->sas_device;
  1279. pm8001_I_T_nexus_reset(dev);
  1280. break;
  1281. }
  1282. list_del(&wq->entry);
  1283. kfree(wq);
  1284. }
  1285. static int pm8001_handle_event(struct pm8001_hba_info *pm8001_ha, void *data,
  1286. int handler)
  1287. {
  1288. struct pm8001_wq *wq;
  1289. int ret = 0;
  1290. wq = kmalloc(sizeof(struct pm8001_wq), GFP_ATOMIC);
  1291. if (wq) {
  1292. wq->pm8001_ha = pm8001_ha;
  1293. wq->data = data;
  1294. wq->handler = handler;
  1295. INIT_DELAYED_WORK(&wq->work_q, pm8001_work_queue);
  1296. list_add_tail(&wq->entry, &pm8001_ha->wq_list);
  1297. schedule_delayed_work(&wq->work_q, 0);
  1298. } else
  1299. ret = -ENOMEM;
  1300. return ret;
  1301. }
  1302. /**
  1303. * mpi_ssp_completion- process the event that FW response to the SSP request.
  1304. * @pm8001_ha: our hba card information
  1305. * @piomb: the message contents of this outbound message.
  1306. *
  1307. * When FW has completed a ssp request for example a IO request, after it has
  1308. * filled the SG data with the data, it will trigger this event represent
  1309. * that he has finished the job,please check the coresponding buffer.
  1310. * So we will tell the caller who maybe waiting the result to tell upper layer
  1311. * that the task has been finished.
  1312. */
  1313. static int
  1314. mpi_ssp_completion(struct pm8001_hba_info *pm8001_ha , void *piomb)
  1315. {
  1316. struct sas_task *t;
  1317. struct pm8001_ccb_info *ccb;
  1318. unsigned long flags;
  1319. u32 status;
  1320. u32 param;
  1321. u32 tag;
  1322. struct ssp_completion_resp *psspPayload;
  1323. struct task_status_struct *ts;
  1324. struct ssp_response_iu *iu;
  1325. struct pm8001_device *pm8001_dev;
  1326. psspPayload = (struct ssp_completion_resp *)(piomb + 4);
  1327. status = le32_to_cpu(psspPayload->status);
  1328. tag = le32_to_cpu(psspPayload->tag);
  1329. ccb = &pm8001_ha->ccb_info[tag];
  1330. pm8001_dev = ccb->device;
  1331. param = le32_to_cpu(psspPayload->param);
  1332. PM8001_IO_DBG(pm8001_ha, pm8001_printk("OPC_OUB_SSP_COMP\n"));
  1333. t = ccb->task;
  1334. if (status)
  1335. PM8001_FAIL_DBG(pm8001_ha,
  1336. pm8001_printk("sas IO status 0x%x\n", status));
  1337. if (unlikely(!t || !t->lldd_task || !t->dev))
  1338. return -1;
  1339. ts = &t->task_status;
  1340. switch (status) {
  1341. case IO_SUCCESS:
  1342. PM8001_IO_DBG(pm8001_ha, pm8001_printk("IO_SUCCESS"
  1343. ",param = %d \n", param));
  1344. if (param == 0) {
  1345. ts->resp = SAS_TASK_COMPLETE;
  1346. ts->stat = SAM_GOOD;
  1347. } else {
  1348. ts->resp = SAS_TASK_COMPLETE;
  1349. ts->stat = SAS_PROTO_RESPONSE;
  1350. ts->residual = param;
  1351. iu = &psspPayload->ssp_resp_iu;
  1352. sas_ssp_task_response(pm8001_ha->dev, t, iu);
  1353. }
  1354. if (pm8001_dev)
  1355. pm8001_dev->running_req--;
  1356. break;
  1357. case IO_ABORTED:
  1358. PM8001_IO_DBG(pm8001_ha,
  1359. pm8001_printk("IO_ABORTED IOMB Tag \n"));
  1360. ts->resp = SAS_TASK_COMPLETE;
  1361. ts->stat = SAS_ABORTED_TASK;
  1362. break;
  1363. case IO_UNDERFLOW:
  1364. /* SSP Completion with error */
  1365. PM8001_IO_DBG(pm8001_ha, pm8001_printk("IO_UNDERFLOW"
  1366. ",param = %d \n", param));
  1367. ts->resp = SAS_TASK_COMPLETE;
  1368. ts->stat = SAS_DATA_UNDERRUN;
  1369. ts->residual = param;
  1370. if (pm8001_dev)
  1371. pm8001_dev->running_req--;
  1372. break;
  1373. case IO_NO_DEVICE:
  1374. PM8001_IO_DBG(pm8001_ha,
  1375. pm8001_printk("IO_NO_DEVICE\n"));
  1376. ts->resp = SAS_TASK_UNDELIVERED;
  1377. ts->stat = SAS_PHY_DOWN;
  1378. break;
  1379. case IO_XFER_ERROR_BREAK:
  1380. PM8001_IO_DBG(pm8001_ha,
  1381. pm8001_printk("IO_XFER_ERROR_BREAK\n"));
  1382. ts->resp = SAS_TASK_COMPLETE;
  1383. ts->stat = SAS_OPEN_REJECT;
  1384. break;
  1385. case IO_XFER_ERROR_PHY_NOT_READY:
  1386. PM8001_IO_DBG(pm8001_ha,
  1387. pm8001_printk("IO_XFER_ERROR_PHY_NOT_READY\n"));
  1388. ts->resp = SAS_TASK_COMPLETE;
  1389. ts->stat = SAS_OPEN_REJECT;
  1390. ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
  1391. break;
  1392. case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED:
  1393. PM8001_IO_DBG(pm8001_ha,
  1394. pm8001_printk("IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED\n"));
  1395. ts->resp = SAS_TASK_COMPLETE;
  1396. ts->stat = SAS_OPEN_REJECT;
  1397. ts->open_rej_reason = SAS_OREJ_EPROTO;
  1398. break;
  1399. case IO_OPEN_CNX_ERROR_ZONE_VIOLATION:
  1400. PM8001_IO_DBG(pm8001_ha,
  1401. pm8001_printk("IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n"));
  1402. ts->resp = SAS_TASK_COMPLETE;
  1403. ts->stat = SAS_OPEN_REJECT;
  1404. ts->open_rej_reason = SAS_OREJ_UNKNOWN;
  1405. break;
  1406. case IO_OPEN_CNX_ERROR_BREAK:
  1407. PM8001_IO_DBG(pm8001_ha,
  1408. pm8001_printk("IO_OPEN_CNX_ERROR_BREAK\n"));
  1409. ts->resp = SAS_TASK_COMPLETE;
  1410. ts->stat = SAS_OPEN_REJECT;
  1411. ts->open_rej_reason = SAS_OREJ_RSVD_CONT0;
  1412. break;
  1413. case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS:
  1414. PM8001_IO_DBG(pm8001_ha,
  1415. pm8001_printk("IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n"));
  1416. ts->resp = SAS_TASK_COMPLETE;
  1417. ts->stat = SAS_OPEN_REJECT;
  1418. ts->open_rej_reason = SAS_OREJ_UNKNOWN;
  1419. if (!t->uldd_task)
  1420. pm8001_handle_event(pm8001_ha,
  1421. pm8001_dev,
  1422. IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS);
  1423. break;
  1424. case IO_OPEN_CNX_ERROR_BAD_DESTINATION:
  1425. PM8001_IO_DBG(pm8001_ha,
  1426. pm8001_printk("IO_OPEN_CNX_ERROR_BAD_DESTINATION\n"));
  1427. ts->resp = SAS_TASK_COMPLETE;
  1428. ts->stat = SAS_OPEN_REJECT;
  1429. ts->open_rej_reason = SAS_OREJ_BAD_DEST;
  1430. break;
  1431. case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED:
  1432. PM8001_IO_DBG(pm8001_ha,
  1433. pm8001_printk("IO_OPEN_CNX_ERROR_CONNECTION_RATE_"
  1434. "NOT_SUPPORTED\n"));
  1435. ts->resp = SAS_TASK_COMPLETE;
  1436. ts->stat = SAS_OPEN_REJECT;
  1437. ts->open_rej_reason = SAS_OREJ_CONN_RATE;
  1438. break;
  1439. case IO_OPEN_CNX_ERROR_WRONG_DESTINATION:
  1440. PM8001_IO_DBG(pm8001_ha,
  1441. pm8001_printk("IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n"));
  1442. ts->resp = SAS_TASK_UNDELIVERED;
  1443. ts->stat = SAS_OPEN_REJECT;
  1444. ts->open_rej_reason = SAS_OREJ_WRONG_DEST;
  1445. break;
  1446. case IO_XFER_ERROR_NAK_RECEIVED:
  1447. PM8001_IO_DBG(pm8001_ha,
  1448. pm8001_printk("IO_XFER_ERROR_NAK_RECEIVED\n"));
  1449. ts->resp = SAS_TASK_COMPLETE;
  1450. ts->stat = SAS_OPEN_REJECT;
  1451. break;
  1452. case IO_XFER_ERROR_ACK_NAK_TIMEOUT:
  1453. PM8001_IO_DBG(pm8001_ha,
  1454. pm8001_printk("IO_XFER_ERROR_ACK_NAK_TIMEOUT\n"));
  1455. ts->resp = SAS_TASK_COMPLETE;
  1456. ts->stat = SAS_NAK_R_ERR;
  1457. break;
  1458. case IO_XFER_ERROR_DMA:
  1459. PM8001_IO_DBG(pm8001_ha,
  1460. pm8001_printk("IO_XFER_ERROR_DMA\n"));
  1461. ts->resp = SAS_TASK_COMPLETE;
  1462. ts->stat = SAS_OPEN_REJECT;
  1463. break;
  1464. case IO_XFER_OPEN_RETRY_TIMEOUT:
  1465. PM8001_IO_DBG(pm8001_ha,
  1466. pm8001_printk("IO_XFER_OPEN_RETRY_TIMEOUT\n"));
  1467. ts->resp = SAS_TASK_COMPLETE;
  1468. ts->stat = SAS_OPEN_REJECT;
  1469. ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
  1470. break;
  1471. case IO_XFER_ERROR_OFFSET_MISMATCH:
  1472. PM8001_IO_DBG(pm8001_ha,
  1473. pm8001_printk("IO_XFER_ERROR_OFFSET_MISMATCH\n"));
  1474. ts->resp = SAS_TASK_COMPLETE;
  1475. ts->stat = SAS_OPEN_REJECT;
  1476. break;
  1477. case IO_PORT_IN_RESET:
  1478. PM8001_IO_DBG(pm8001_ha,
  1479. pm8001_printk("IO_PORT_IN_RESET\n"));
  1480. ts->resp = SAS_TASK_COMPLETE;
  1481. ts->stat = SAS_OPEN_REJECT;
  1482. break;
  1483. case IO_DS_NON_OPERATIONAL:
  1484. PM8001_IO_DBG(pm8001_ha,
  1485. pm8001_printk("IO_DS_NON_OPERATIONAL\n"));
  1486. ts->resp = SAS_TASK_COMPLETE;
  1487. ts->stat = SAS_OPEN_REJECT;
  1488. if (!t->uldd_task)
  1489. pm8001_handle_event(pm8001_ha,
  1490. pm8001_dev,
  1491. IO_DS_NON_OPERATIONAL);
  1492. break;
  1493. case IO_DS_IN_RECOVERY:
  1494. PM8001_IO_DBG(pm8001_ha,
  1495. pm8001_printk("IO_DS_IN_RECOVERY\n"));
  1496. ts->resp = SAS_TASK_COMPLETE;
  1497. ts->stat = SAS_OPEN_REJECT;
  1498. break;
  1499. case IO_TM_TAG_NOT_FOUND:
  1500. PM8001_IO_DBG(pm8001_ha,
  1501. pm8001_printk("IO_TM_TAG_NOT_FOUND\n"));
  1502. ts->resp = SAS_TASK_COMPLETE;
  1503. ts->stat = SAS_OPEN_REJECT;
  1504. break;
  1505. case IO_SSP_EXT_IU_ZERO_LEN_ERROR:
  1506. PM8001_IO_DBG(pm8001_ha,
  1507. pm8001_printk("IO_SSP_EXT_IU_ZERO_LEN_ERROR\n"));
  1508. ts->resp = SAS_TASK_COMPLETE;
  1509. ts->stat = SAS_OPEN_REJECT;
  1510. break;
  1511. case IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY:
  1512. PM8001_IO_DBG(pm8001_ha,
  1513. pm8001_printk("IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY\n"));
  1514. ts->resp = SAS_TASK_COMPLETE;
  1515. ts->stat = SAS_OPEN_REJECT;
  1516. ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
  1517. default:
  1518. PM8001_IO_DBG(pm8001_ha,
  1519. pm8001_printk("Unknown status 0x%x\n", status));
  1520. /* not allowed case. Therefore, return failed status */
  1521. ts->resp = SAS_TASK_COMPLETE;
  1522. ts->stat = SAS_OPEN_REJECT;
  1523. break;
  1524. }
  1525. PM8001_IO_DBG(pm8001_ha,
  1526. pm8001_printk("scsi_satus = %x \n ",
  1527. psspPayload->ssp_resp_iu.status));
  1528. spin_lock_irqsave(&t->task_state_lock, flags);
  1529. t->task_state_flags &= ~SAS_TASK_STATE_PENDING;
  1530. t->task_state_flags &= ~SAS_TASK_AT_INITIATOR;
  1531. t->task_state_flags |= SAS_TASK_STATE_DONE;
  1532. if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) {
  1533. spin_unlock_irqrestore(&t->task_state_lock, flags);
  1534. PM8001_FAIL_DBG(pm8001_ha, pm8001_printk("task 0x%p done with"
  1535. " io_status 0x%x resp 0x%x "
  1536. "stat 0x%x but aborted by upper layer!\n",
  1537. t, status, ts->resp, ts->stat));
  1538. pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
  1539. } else {
  1540. spin_unlock_irqrestore(&t->task_state_lock, flags);
  1541. pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
  1542. mb();/* in order to force CPU ordering */
  1543. t->task_done(t);
  1544. }
  1545. return 0;
  1546. }
  1547. /*See the comments for mpi_ssp_completion */
  1548. static int mpi_ssp_event(struct pm8001_hba_info *pm8001_ha , void *piomb)
  1549. {
  1550. struct sas_task *t;
  1551. unsigned long flags;
  1552. struct task_status_struct *ts;
  1553. struct pm8001_ccb_info *ccb;
  1554. struct pm8001_device *pm8001_dev;
  1555. struct ssp_event_resp *psspPayload =
  1556. (struct ssp_event_resp *)(piomb + 4);
  1557. u32 event = le32_to_cpu(psspPayload->event);
  1558. u32 tag = le32_to_cpu(psspPayload->tag);
  1559. u32 port_id = le32_to_cpu(psspPayload->port_id);
  1560. u32 dev_id = le32_to_cpu(psspPayload->device_id);
  1561. ccb = &pm8001_ha->ccb_info[tag];
  1562. t = ccb->task;
  1563. pm8001_dev = ccb->device;
  1564. if (event)
  1565. PM8001_FAIL_DBG(pm8001_ha,
  1566. pm8001_printk("sas IO status 0x%x\n", event));
  1567. if (unlikely(!t || !t->lldd_task || !t->dev))
  1568. return -1;
  1569. ts = &t->task_status;
  1570. PM8001_IO_DBG(pm8001_ha,
  1571. pm8001_printk("port_id = %x,device_id = %x\n",
  1572. port_id, dev_id));
  1573. switch (event) {
  1574. case IO_OVERFLOW:
  1575. PM8001_IO_DBG(pm8001_ha, pm8001_printk("IO_UNDERFLOW\n");)
  1576. ts->resp = SAS_TASK_COMPLETE;
  1577. ts->stat = SAS_DATA_OVERRUN;
  1578. ts->residual = 0;
  1579. if (pm8001_dev)
  1580. pm8001_dev->running_req--;
  1581. break;
  1582. case IO_XFER_ERROR_BREAK:
  1583. PM8001_IO_DBG(pm8001_ha,
  1584. pm8001_printk("IO_XFER_ERROR_BREAK\n"));
  1585. ts->resp = SAS_TASK_COMPLETE;
  1586. ts->stat = SAS_INTERRUPTED;
  1587. break;
  1588. case IO_XFER_ERROR_PHY_NOT_READY:
  1589. PM8001_IO_DBG(pm8001_ha,
  1590. pm8001_printk("IO_XFER_ERROR_PHY_NOT_READY\n"));
  1591. ts->resp = SAS_TASK_COMPLETE;
  1592. ts->stat = SAS_OPEN_REJECT;
  1593. ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
  1594. break;
  1595. case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED:
  1596. PM8001_IO_DBG(pm8001_ha,
  1597. pm8001_printk("IO_OPEN_CNX_ERROR_PROTOCOL_NOT"
  1598. "_SUPPORTED\n"));
  1599. ts->resp = SAS_TASK_COMPLETE;
  1600. ts->stat = SAS_OPEN_REJECT;
  1601. ts->open_rej_reason = SAS_OREJ_EPROTO;
  1602. break;
  1603. case IO_OPEN_CNX_ERROR_ZONE_VIOLATION:
  1604. PM8001_IO_DBG(pm8001_ha,
  1605. pm8001_printk("IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n"));
  1606. ts->resp = SAS_TASK_COMPLETE;
  1607. ts->stat = SAS_OPEN_REJECT;
  1608. ts->open_rej_reason = SAS_OREJ_UNKNOWN;
  1609. break;
  1610. case IO_OPEN_CNX_ERROR_BREAK:
  1611. PM8001_IO_DBG(pm8001_ha,
  1612. pm8001_printk("IO_OPEN_CNX_ERROR_BREAK\n"));
  1613. ts->resp = SAS_TASK_COMPLETE;
  1614. ts->stat = SAS_OPEN_REJECT;
  1615. ts->open_rej_reason = SAS_OREJ_RSVD_CONT0;
  1616. break;
  1617. case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS:
  1618. PM8001_IO_DBG(pm8001_ha,
  1619. pm8001_printk("IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n"));
  1620. ts->resp = SAS_TASK_COMPLETE;
  1621. ts->stat = SAS_OPEN_REJECT;
  1622. ts->open_rej_reason = SAS_OREJ_UNKNOWN;
  1623. if (!t->uldd_task)
  1624. pm8001_handle_event(pm8001_ha,
  1625. pm8001_dev,
  1626. IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS);
  1627. break;
  1628. case IO_OPEN_CNX_ERROR_BAD_DESTINATION:
  1629. PM8001_IO_DBG(pm8001_ha,
  1630. pm8001_printk("IO_OPEN_CNX_ERROR_BAD_DESTINATION\n"));
  1631. ts->resp = SAS_TASK_COMPLETE;
  1632. ts->stat = SAS_OPEN_REJECT;
  1633. ts->open_rej_reason = SAS_OREJ_BAD_DEST;
  1634. break;
  1635. case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED:
  1636. PM8001_IO_DBG(pm8001_ha,
  1637. pm8001_printk("IO_OPEN_CNX_ERROR_CONNECTION_RATE_"
  1638. "NOT_SUPPORTED\n"));
  1639. ts->resp = SAS_TASK_COMPLETE;
  1640. ts->stat = SAS_OPEN_REJECT;
  1641. ts->open_rej_reason = SAS_OREJ_CONN_RATE;
  1642. break;
  1643. case IO_OPEN_CNX_ERROR_WRONG_DESTINATION:
  1644. PM8001_IO_DBG(pm8001_ha,
  1645. pm8001_printk("IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n"));
  1646. ts->resp = SAS_TASK_COMPLETE;
  1647. ts->stat = SAS_OPEN_REJECT;
  1648. ts->open_rej_reason = SAS_OREJ_WRONG_DEST;
  1649. break;
  1650. case IO_XFER_ERROR_NAK_RECEIVED:
  1651. PM8001_IO_DBG(pm8001_ha,
  1652. pm8001_printk("IO_XFER_ERROR_NAK_RECEIVED\n"));
  1653. ts->resp = SAS_TASK_COMPLETE;
  1654. ts->stat = SAS_OPEN_REJECT;
  1655. break;
  1656. case IO_XFER_ERROR_ACK_NAK_TIMEOUT:
  1657. PM8001_IO_DBG(pm8001_ha,
  1658. pm8001_printk("IO_XFER_ERROR_ACK_NAK_TIMEOUT\n"));
  1659. ts->resp = SAS_TASK_COMPLETE;
  1660. ts->stat = SAS_NAK_R_ERR;
  1661. break;
  1662. case IO_XFER_OPEN_RETRY_TIMEOUT:
  1663. PM8001_IO_DBG(pm8001_ha,
  1664. pm8001_printk("IO_XFER_OPEN_RETRY_TIMEOUT\n"));
  1665. ts->resp = SAS_TASK_COMPLETE;
  1666. ts->stat = SAS_OPEN_REJECT;
  1667. ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
  1668. break;
  1669. case IO_XFER_ERROR_UNEXPECTED_PHASE:
  1670. PM8001_IO_DBG(pm8001_ha,
  1671. pm8001_printk("IO_XFER_ERROR_UNEXPECTED_PHASE\n"));
  1672. ts->resp = SAS_TASK_COMPLETE;
  1673. ts->stat = SAS_DATA_OVERRUN;
  1674. break;
  1675. case IO_XFER_ERROR_XFER_RDY_OVERRUN:
  1676. PM8001_IO_DBG(pm8001_ha,
  1677. pm8001_printk("IO_XFER_ERROR_XFER_RDY_OVERRUN\n"));
  1678. ts->resp = SAS_TASK_COMPLETE;
  1679. ts->stat = SAS_DATA_OVERRUN;
  1680. break;
  1681. case IO_XFER_ERROR_XFER_RDY_NOT_EXPECTED:
  1682. PM8001_IO_DBG(pm8001_ha,
  1683. pm8001_printk("IO_XFER_ERROR_XFER_RDY_NOT_EXPECTED\n"));
  1684. ts->resp = SAS_TASK_COMPLETE;
  1685. ts->stat = SAS_DATA_OVERRUN;
  1686. break;
  1687. case IO_XFER_ERROR_CMD_ISSUE_ACK_NAK_TIMEOUT:
  1688. PM8001_IO_DBG(pm8001_ha,
  1689. pm8001_printk("IO_XFER_ERROR_CMD_ISSUE_ACK_NAK_TIMEOUT\n"));
  1690. ts->resp = SAS_TASK_COMPLETE;
  1691. ts->stat = SAS_DATA_OVERRUN;
  1692. break;
  1693. case IO_XFER_ERROR_OFFSET_MISMATCH:
  1694. PM8001_IO_DBG(pm8001_ha,
  1695. pm8001_printk("IO_XFER_ERROR_OFFSET_MISMATCH\n"));
  1696. ts->resp = SAS_TASK_COMPLETE;
  1697. ts->stat = SAS_DATA_OVERRUN;
  1698. break;
  1699. case IO_XFER_ERROR_XFER_ZERO_DATA_LEN:
  1700. PM8001_IO_DBG(pm8001_ha,
  1701. pm8001_printk("IO_XFER_ERROR_XFER_ZERO_DATA_LEN\n"));
  1702. ts->resp = SAS_TASK_COMPLETE;
  1703. ts->stat = SAS_DATA_OVERRUN;
  1704. break;
  1705. case IO_XFER_CMD_FRAME_ISSUED:
  1706. PM8001_IO_DBG(pm8001_ha,
  1707. pm8001_printk(" IO_XFER_CMD_FRAME_ISSUED\n"));
  1708. return 0;
  1709. default:
  1710. PM8001_IO_DBG(pm8001_ha,
  1711. pm8001_printk("Unknown status 0x%x\n", event));
  1712. /* not allowed case. Therefore, return failed status */
  1713. ts->resp = SAS_TASK_COMPLETE;
  1714. ts->stat = SAS_DATA_OVERRUN;
  1715. break;
  1716. }
  1717. spin_lock_irqsave(&t->task_state_lock, flags);
  1718. t->task_state_flags &= ~SAS_TASK_STATE_PENDING;
  1719. t->task_state_flags &= ~SAS_TASK_AT_INITIATOR;
  1720. t->task_state_flags |= SAS_TASK_STATE_DONE;
  1721. if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) {
  1722. spin_unlock_irqrestore(&t->task_state_lock, flags);
  1723. PM8001_FAIL_DBG(pm8001_ha, pm8001_printk("task 0x%p done with"
  1724. " event 0x%x resp 0x%x "
  1725. "stat 0x%x but aborted by upper layer!\n",
  1726. t, event, ts->resp, ts->stat));
  1727. pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
  1728. } else {
  1729. spin_unlock_irqrestore(&t->task_state_lock, flags);
  1730. pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
  1731. mb();/* in order to force CPU ordering */
  1732. t->task_done(t);
  1733. }
  1734. return 0;
  1735. }
  1736. /*See the comments for mpi_ssp_completion */
  1737. static int
  1738. mpi_sata_completion(struct pm8001_hba_info *pm8001_ha, void *piomb)
  1739. {
  1740. struct sas_task *t;
  1741. struct pm8001_ccb_info *ccb;
  1742. unsigned long flags;
  1743. u32 param;
  1744. u32 status;
  1745. u32 tag;
  1746. struct sata_completion_resp *psataPayload;
  1747. struct task_status_struct *ts;
  1748. struct ata_task_resp *resp ;
  1749. u32 *sata_resp;
  1750. struct pm8001_device *pm8001_dev;
  1751. psataPayload = (struct sata_completion_resp *)(piomb + 4);
  1752. status = le32_to_cpu(psataPayload->status);
  1753. tag = le32_to_cpu(psataPayload->tag);
  1754. ccb = &pm8001_ha->ccb_info[tag];
  1755. param = le32_to_cpu(psataPayload->param);
  1756. t = ccb->task;
  1757. ts = &t->task_status;
  1758. pm8001_dev = ccb->device;
  1759. if (status)
  1760. PM8001_FAIL_DBG(pm8001_ha,
  1761. pm8001_printk("sata IO status 0x%x\n", status));
  1762. if (unlikely(!t || !t->lldd_task || !t->dev))
  1763. return -1;
  1764. switch (status) {
  1765. case IO_SUCCESS:
  1766. PM8001_IO_DBG(pm8001_ha, pm8001_printk("IO_SUCCESS\n"));
  1767. if (param == 0) {
  1768. ts->resp = SAS_TASK_COMPLETE;
  1769. ts->stat = SAM_GOOD;
  1770. } else {
  1771. u8 len;
  1772. ts->resp = SAS_TASK_COMPLETE;
  1773. ts->stat = SAS_PROTO_RESPONSE;
  1774. ts->residual = param;
  1775. PM8001_IO_DBG(pm8001_ha,
  1776. pm8001_printk("SAS_PROTO_RESPONSE len = %d\n",
  1777. param));
  1778. sata_resp = &psataPayload->sata_resp[0];
  1779. resp = (struct ata_task_resp *)ts->buf;
  1780. if (t->ata_task.dma_xfer == 0 &&
  1781. t->data_dir == PCI_DMA_FROMDEVICE) {
  1782. len = sizeof(struct pio_setup_fis);
  1783. PM8001_IO_DBG(pm8001_ha,
  1784. pm8001_printk("PIO read len = %d\n", len));
  1785. } else if (t->ata_task.use_ncq) {
  1786. len = sizeof(struct set_dev_bits_fis);
  1787. PM8001_IO_DBG(pm8001_ha,
  1788. pm8001_printk("FPDMA len = %d\n", len));
  1789. } else {
  1790. len = sizeof(struct dev_to_host_fis);
  1791. PM8001_IO_DBG(pm8001_ha,
  1792. pm8001_printk("other len = %d\n", len));
  1793. }
  1794. if (SAS_STATUS_BUF_SIZE >= sizeof(*resp)) {
  1795. resp->frame_len = len;
  1796. memcpy(&resp->ending_fis[0], sata_resp, len);
  1797. ts->buf_valid_size = sizeof(*resp);
  1798. } else
  1799. PM8001_IO_DBG(pm8001_ha,
  1800. pm8001_printk("response to large \n"));
  1801. }
  1802. if (pm8001_dev)
  1803. pm8001_dev->running_req--;
  1804. break;
  1805. case IO_ABORTED:
  1806. PM8001_IO_DBG(pm8001_ha,
  1807. pm8001_printk("IO_ABORTED IOMB Tag \n"));
  1808. ts->resp = SAS_TASK_COMPLETE;
  1809. ts->stat = SAS_ABORTED_TASK;
  1810. if (pm8001_dev)
  1811. pm8001_dev->running_req--;
  1812. break;
  1813. /* following cases are to do cases */
  1814. case IO_UNDERFLOW:
  1815. /* SATA Completion with error */
  1816. PM8001_IO_DBG(pm8001_ha,
  1817. pm8001_printk("IO_UNDERFLOW param = %d\n", param));
  1818. ts->resp = SAS_TASK_COMPLETE;
  1819. ts->stat = SAS_DATA_UNDERRUN;
  1820. ts->residual = param;
  1821. if (pm8001_dev)
  1822. pm8001_dev->running_req--;
  1823. break;
  1824. case IO_NO_DEVICE:
  1825. PM8001_IO_DBG(pm8001_ha,
  1826. pm8001_printk("IO_NO_DEVICE\n"));
  1827. ts->resp = SAS_TASK_UNDELIVERED;
  1828. ts->stat = SAS_PHY_DOWN;
  1829. break;
  1830. case IO_XFER_ERROR_BREAK:
  1831. PM8001_IO_DBG(pm8001_ha,
  1832. pm8001_printk("IO_XFER_ERROR_BREAK\n"));
  1833. ts->resp = SAS_TASK_COMPLETE;
  1834. ts->stat = SAS_INTERRUPTED;
  1835. break;
  1836. case IO_XFER_ERROR_PHY_NOT_READY:
  1837. PM8001_IO_DBG(pm8001_ha,
  1838. pm8001_printk("IO_XFER_ERROR_PHY_NOT_READY\n"));
  1839. ts->resp = SAS_TASK_COMPLETE;
  1840. ts->stat = SAS_OPEN_REJECT;
  1841. ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
  1842. break;
  1843. case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED:
  1844. PM8001_IO_DBG(pm8001_ha,
  1845. pm8001_printk("IO_OPEN_CNX_ERROR_PROTOCOL_NOT"
  1846. "_SUPPORTED\n"));
  1847. ts->resp = SAS_TASK_COMPLETE;
  1848. ts->stat = SAS_OPEN_REJECT;
  1849. ts->open_rej_reason = SAS_OREJ_EPROTO;
  1850. break;
  1851. case IO_OPEN_CNX_ERROR_ZONE_VIOLATION:
  1852. PM8001_IO_DBG(pm8001_ha,
  1853. pm8001_printk("IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n"));
  1854. ts->resp = SAS_TASK_COMPLETE;
  1855. ts->stat = SAS_OPEN_REJECT;
  1856. ts->open_rej_reason = SAS_OREJ_UNKNOWN;
  1857. break;
  1858. case IO_OPEN_CNX_ERROR_BREAK:
  1859. PM8001_IO_DBG(pm8001_ha,
  1860. pm8001_printk("IO_OPEN_CNX_ERROR_BREAK\n"));
  1861. ts->resp = SAS_TASK_COMPLETE;
  1862. ts->stat = SAS_OPEN_REJECT;
  1863. ts->open_rej_reason = SAS_OREJ_RSVD_CONT0;
  1864. break;
  1865. case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS:
  1866. PM8001_IO_DBG(pm8001_ha,
  1867. pm8001_printk("IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n"));
  1868. ts->resp = SAS_TASK_COMPLETE;
  1869. ts->stat = SAS_DEV_NO_RESPONSE;
  1870. if (!t->uldd_task) {
  1871. pm8001_handle_event(pm8001_ha,
  1872. pm8001_dev,
  1873. IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS);
  1874. ts->resp = SAS_TASK_UNDELIVERED;
  1875. ts->stat = SAS_QUEUE_FULL;
  1876. pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
  1877. mb();/*in order to force CPU ordering*/
  1878. t->task_done(t);
  1879. return 0;
  1880. }
  1881. break;
  1882. case IO_OPEN_CNX_ERROR_BAD_DESTINATION:
  1883. PM8001_IO_DBG(pm8001_ha,
  1884. pm8001_printk("IO_OPEN_CNX_ERROR_BAD_DESTINATION\n"));
  1885. ts->resp = SAS_TASK_UNDELIVERED;
  1886. ts->stat = SAS_OPEN_REJECT;
  1887. ts->open_rej_reason = SAS_OREJ_BAD_DEST;
  1888. if (!t->uldd_task) {
  1889. pm8001_handle_event(pm8001_ha,
  1890. pm8001_dev,
  1891. IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS);
  1892. ts->resp = SAS_TASK_UNDELIVERED;
  1893. ts->stat = SAS_QUEUE_FULL;
  1894. pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
  1895. mb();/*ditto*/
  1896. t->task_done(t);
  1897. return 0;
  1898. }
  1899. break;
  1900. case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED:
  1901. PM8001_IO_DBG(pm8001_ha,
  1902. pm8001_printk("IO_OPEN_CNX_ERROR_CONNECTION_RATE_"
  1903. "NOT_SUPPORTED\n"));
  1904. ts->resp = SAS_TASK_COMPLETE;
  1905. ts->stat = SAS_OPEN_REJECT;
  1906. ts->open_rej_reason = SAS_OREJ_CONN_RATE;
  1907. break;
  1908. case IO_OPEN_CNX_ERROR_STP_RESOURCES_BUSY:
  1909. PM8001_IO_DBG(pm8001_ha,
  1910. pm8001_printk("IO_OPEN_CNX_ERROR_STP_RESOURCES"
  1911. "_BUSY\n"));
  1912. ts->resp = SAS_TASK_COMPLETE;
  1913. ts->stat = SAS_DEV_NO_RESPONSE;
  1914. if (!t->uldd_task) {
  1915. pm8001_handle_event(pm8001_ha,
  1916. pm8001_dev,
  1917. IO_OPEN_CNX_ERROR_STP_RESOURCES_BUSY);
  1918. ts->resp = SAS_TASK_UNDELIVERED;
  1919. ts->stat = SAS_QUEUE_FULL;
  1920. pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
  1921. mb();/* ditto*/
  1922. t->task_done(t);
  1923. return 0;
  1924. }
  1925. break;
  1926. case IO_OPEN_CNX_ERROR_WRONG_DESTINATION:
  1927. PM8001_IO_DBG(pm8001_ha,
  1928. pm8001_printk("IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n"));
  1929. ts->resp = SAS_TASK_COMPLETE;
  1930. ts->stat = SAS_OPEN_REJECT;
  1931. ts->open_rej_reason = SAS_OREJ_WRONG_DEST;
  1932. break;
  1933. case IO_XFER_ERROR_NAK_RECEIVED:
  1934. PM8001_IO_DBG(pm8001_ha,
  1935. pm8001_printk("IO_XFER_ERROR_NAK_RECEIVED\n"));
  1936. ts->resp = SAS_TASK_COMPLETE;
  1937. ts->stat = SAS_NAK_R_ERR;
  1938. break;
  1939. case IO_XFER_ERROR_ACK_NAK_TIMEOUT:
  1940. PM8001_IO_DBG(pm8001_ha,
  1941. pm8001_printk("IO_XFER_ERROR_ACK_NAK_TIMEOUT\n"));
  1942. ts->resp = SAS_TASK_COMPLETE;
  1943. ts->stat = SAS_NAK_R_ERR;
  1944. break;
  1945. case IO_XFER_ERROR_DMA:
  1946. PM8001_IO_DBG(pm8001_ha,
  1947. pm8001_printk("IO_XFER_ERROR_DMA\n"));
  1948. ts->resp = SAS_TASK_COMPLETE;
  1949. ts->stat = SAS_ABORTED_TASK;
  1950. break;
  1951. case IO_XFER_ERROR_SATA_LINK_TIMEOUT:
  1952. PM8001_IO_DBG(pm8001_ha,
  1953. pm8001_printk("IO_XFER_ERROR_SATA_LINK_TIMEOUT\n"));
  1954. ts->resp = SAS_TASK_UNDELIVERED;
  1955. ts->stat = SAS_DEV_NO_RESPONSE;
  1956. break;
  1957. case IO_XFER_ERROR_REJECTED_NCQ_MODE:
  1958. PM8001_IO_DBG(pm8001_ha,
  1959. pm8001_printk("IO_XFER_ERROR_REJECTED_NCQ_MODE\n"));
  1960. ts->resp = SAS_TASK_COMPLETE;
  1961. ts->stat = SAS_DATA_UNDERRUN;
  1962. break;
  1963. case IO_XFER_OPEN_RETRY_TIMEOUT:
  1964. PM8001_IO_DBG(pm8001_ha,
  1965. pm8001_printk("IO_XFER_OPEN_RETRY_TIMEOUT\n"));
  1966. ts->resp = SAS_TASK_COMPLETE;
  1967. ts->stat = SAS_OPEN_TO;
  1968. break;
  1969. case IO_PORT_IN_RESET:
  1970. PM8001_IO_DBG(pm8001_ha,
  1971. pm8001_printk("IO_PORT_IN_RESET\n"));
  1972. ts->resp = SAS_TASK_COMPLETE;
  1973. ts->stat = SAS_DEV_NO_RESPONSE;
  1974. break;
  1975. case IO_DS_NON_OPERATIONAL:
  1976. PM8001_IO_DBG(pm8001_ha,
  1977. pm8001_printk("IO_DS_NON_OPERATIONAL\n"));
  1978. ts->resp = SAS_TASK_COMPLETE;
  1979. ts->stat = SAS_DEV_NO_RESPONSE;
  1980. if (!t->uldd_task) {
  1981. pm8001_handle_event(pm8001_ha, pm8001_dev,
  1982. IO_DS_NON_OPERATIONAL);
  1983. ts->resp = SAS_TASK_UNDELIVERED;
  1984. ts->stat = SAS_QUEUE_FULL;
  1985. pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
  1986. mb();/*ditto*/
  1987. t->task_done(t);
  1988. return 0;
  1989. }
  1990. break;
  1991. case IO_DS_IN_RECOVERY:
  1992. PM8001_IO_DBG(pm8001_ha,
  1993. pm8001_printk(" IO_DS_IN_RECOVERY\n"));
  1994. ts->resp = SAS_TASK_COMPLETE;
  1995. ts->stat = SAS_DEV_NO_RESPONSE;
  1996. break;
  1997. case IO_DS_IN_ERROR:
  1998. PM8001_IO_DBG(pm8001_ha,
  1999. pm8001_printk("IO_DS_IN_ERROR\n"));
  2000. ts->resp = SAS_TASK_COMPLETE;
  2001. ts->stat = SAS_DEV_NO_RESPONSE;
  2002. if (!t->uldd_task) {
  2003. pm8001_handle_event(pm8001_ha, pm8001_dev,
  2004. IO_DS_IN_ERROR);
  2005. ts->resp = SAS_TASK_UNDELIVERED;
  2006. ts->stat = SAS_QUEUE_FULL;
  2007. pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
  2008. mb();/*ditto*/
  2009. t->task_done(t);
  2010. return 0;
  2011. }
  2012. break;
  2013. case IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY:
  2014. PM8001_IO_DBG(pm8001_ha,
  2015. pm8001_printk("IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY\n"));
  2016. ts->resp = SAS_TASK_COMPLETE;
  2017. ts->stat = SAS_OPEN_REJECT;
  2018. ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
  2019. default:
  2020. PM8001_IO_DBG(pm8001_ha,
  2021. pm8001_printk("Unknown status 0x%x\n", status));
  2022. /* not allowed case. Therefore, return failed status */
  2023. ts->resp = SAS_TASK_COMPLETE;
  2024. ts->stat = SAS_DEV_NO_RESPONSE;
  2025. break;
  2026. }
  2027. spin_lock_irqsave(&t->task_state_lock, flags);
  2028. t->task_state_flags &= ~SAS_TASK_STATE_PENDING;
  2029. t->task_state_flags &= ~SAS_TASK_AT_INITIATOR;
  2030. t->task_state_flags |= SAS_TASK_STATE_DONE;
  2031. if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) {
  2032. spin_unlock_irqrestore(&t->task_state_lock, flags);
  2033. PM8001_FAIL_DBG(pm8001_ha,
  2034. pm8001_printk("task 0x%p done with io_status 0x%x"
  2035. " resp 0x%x stat 0x%x but aborted by upper layer!\n",
  2036. t, status, ts->resp, ts->stat));
  2037. pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
  2038. } else {
  2039. spin_unlock_irqrestore(&t->task_state_lock, flags);
  2040. pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
  2041. mb();/* ditto */
  2042. t->task_done(t);
  2043. }
  2044. return 0;
  2045. }
  2046. /*See the comments for mpi_ssp_completion */
  2047. static int mpi_sata_event(struct pm8001_hba_info *pm8001_ha , void *piomb)
  2048. {
  2049. struct sas_task *t;
  2050. unsigned long flags;
  2051. struct task_status_struct *ts;
  2052. struct pm8001_ccb_info *ccb;
  2053. struct pm8001_device *pm8001_dev;
  2054. struct sata_event_resp *psataPayload =
  2055. (struct sata_event_resp *)(piomb + 4);
  2056. u32 event = le32_to_cpu(psataPayload->event);
  2057. u32 tag = le32_to_cpu(psataPayload->tag);
  2058. u32 port_id = le32_to_cpu(psataPayload->port_id);
  2059. u32 dev_id = le32_to_cpu(psataPayload->device_id);
  2060. ccb = &pm8001_ha->ccb_info[tag];
  2061. t = ccb->task;
  2062. pm8001_dev = ccb->device;
  2063. if (event)
  2064. PM8001_FAIL_DBG(pm8001_ha,
  2065. pm8001_printk("sata IO status 0x%x\n", event));
  2066. if (unlikely(!t || !t->lldd_task || !t->dev))
  2067. return -1;
  2068. ts = &t->task_status;
  2069. PM8001_IO_DBG(pm8001_ha,
  2070. pm8001_printk("port_id = %x,device_id = %x\n",
  2071. port_id, dev_id));
  2072. switch (event) {
  2073. case IO_OVERFLOW:
  2074. PM8001_IO_DBG(pm8001_ha, pm8001_printk("IO_UNDERFLOW\n"));
  2075. ts->resp = SAS_TASK_COMPLETE;
  2076. ts->stat = SAS_DATA_OVERRUN;
  2077. ts->residual = 0;
  2078. if (pm8001_dev)
  2079. pm8001_dev->running_req--;
  2080. break;
  2081. case IO_XFER_ERROR_BREAK:
  2082. PM8001_IO_DBG(pm8001_ha,
  2083. pm8001_printk("IO_XFER_ERROR_BREAK\n"));
  2084. ts->resp = SAS_TASK_COMPLETE;
  2085. ts->stat = SAS_INTERRUPTED;
  2086. break;
  2087. case IO_XFER_ERROR_PHY_NOT_READY:
  2088. PM8001_IO_DBG(pm8001_ha,
  2089. pm8001_printk("IO_XFER_ERROR_PHY_NOT_READY\n"));
  2090. ts->resp = SAS_TASK_COMPLETE;
  2091. ts->stat = SAS_OPEN_REJECT;
  2092. ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
  2093. break;
  2094. case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED:
  2095. PM8001_IO_DBG(pm8001_ha,
  2096. pm8001_printk("IO_OPEN_CNX_ERROR_PROTOCOL_NOT"
  2097. "_SUPPORTED\n"));
  2098. ts->resp = SAS_TASK_COMPLETE;
  2099. ts->stat = SAS_OPEN_REJECT;
  2100. ts->open_rej_reason = SAS_OREJ_EPROTO;
  2101. break;
  2102. case IO_OPEN_CNX_ERROR_ZONE_VIOLATION:
  2103. PM8001_IO_DBG(pm8001_ha,
  2104. pm8001_printk("IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n"));
  2105. ts->resp = SAS_TASK_COMPLETE;
  2106. ts->stat = SAS_OPEN_REJECT;
  2107. ts->open_rej_reason = SAS_OREJ_UNKNOWN;
  2108. break;
  2109. case IO_OPEN_CNX_ERROR_BREAK:
  2110. PM8001_IO_DBG(pm8001_ha,
  2111. pm8001_printk("IO_OPEN_CNX_ERROR_BREAK\n"));
  2112. ts->resp = SAS_TASK_COMPLETE;
  2113. ts->stat = SAS_OPEN_REJECT;
  2114. ts->open_rej_reason = SAS_OREJ_RSVD_CONT0;
  2115. break;
  2116. case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS:
  2117. PM8001_IO_DBG(pm8001_ha,
  2118. pm8001_printk("IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n"));
  2119. ts->resp = SAS_TASK_UNDELIVERED;
  2120. ts->stat = SAS_DEV_NO_RESPONSE;
  2121. if (!t->uldd_task) {
  2122. pm8001_handle_event(pm8001_ha,
  2123. pm8001_dev,
  2124. IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS);
  2125. ts->resp = SAS_TASK_COMPLETE;
  2126. ts->stat = SAS_QUEUE_FULL;
  2127. pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
  2128. mb();/*ditto*/
  2129. t->task_done(t);
  2130. return 0;
  2131. }
  2132. break;
  2133. case IO_OPEN_CNX_ERROR_BAD_DESTINATION:
  2134. PM8001_IO_DBG(pm8001_ha,
  2135. pm8001_printk("IO_OPEN_CNX_ERROR_BAD_DESTINATION\n"));
  2136. ts->resp = SAS_TASK_UNDELIVERED;
  2137. ts->stat = SAS_OPEN_REJECT;
  2138. ts->open_rej_reason = SAS_OREJ_BAD_DEST;
  2139. break;
  2140. case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED:
  2141. PM8001_IO_DBG(pm8001_ha,
  2142. pm8001_printk("IO_OPEN_CNX_ERROR_CONNECTION_RATE_"
  2143. "NOT_SUPPORTED\n"));
  2144. ts->resp = SAS_TASK_COMPLETE;
  2145. ts->stat = SAS_OPEN_REJECT;
  2146. ts->open_rej_reason = SAS_OREJ_CONN_RATE;
  2147. break;
  2148. case IO_OPEN_CNX_ERROR_WRONG_DESTINATION:
  2149. PM8001_IO_DBG(pm8001_ha,
  2150. pm8001_printk("IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n"));
  2151. ts->resp = SAS_TASK_COMPLETE;
  2152. ts->stat = SAS_OPEN_REJECT;
  2153. ts->open_rej_reason = SAS_OREJ_WRONG_DEST;
  2154. break;
  2155. case IO_XFER_ERROR_NAK_RECEIVED:
  2156. PM8001_IO_DBG(pm8001_ha,
  2157. pm8001_printk("IO_XFER_ERROR_NAK_RECEIVED\n"));
  2158. ts->resp = SAS_TASK_COMPLETE;
  2159. ts->stat = SAS_NAK_R_ERR;
  2160. break;
  2161. case IO_XFER_ERROR_PEER_ABORTED:
  2162. PM8001_IO_DBG(pm8001_ha,
  2163. pm8001_printk("IO_XFER_ERROR_PEER_ABORTED\n"));
  2164. ts->resp = SAS_TASK_COMPLETE;
  2165. ts->stat = SAS_NAK_R_ERR;
  2166. break;
  2167. case IO_XFER_ERROR_REJECTED_NCQ_MODE:
  2168. PM8001_IO_DBG(pm8001_ha,
  2169. pm8001_printk("IO_XFER_ERROR_REJECTED_NCQ_MODE\n"));
  2170. ts->resp = SAS_TASK_COMPLETE;
  2171. ts->stat = SAS_DATA_UNDERRUN;
  2172. break;
  2173. case IO_XFER_OPEN_RETRY_TIMEOUT:
  2174. PM8001_IO_DBG(pm8001_ha,
  2175. pm8001_printk("IO_XFER_OPEN_RETRY_TIMEOUT\n"));
  2176. ts->resp = SAS_TASK_COMPLETE;
  2177. ts->stat = SAS_OPEN_TO;
  2178. break;
  2179. case IO_XFER_ERROR_UNEXPECTED_PHASE:
  2180. PM8001_IO_DBG(pm8001_ha,
  2181. pm8001_printk("IO_XFER_ERROR_UNEXPECTED_PHASE\n"));
  2182. ts->resp = SAS_TASK_COMPLETE;
  2183. ts->stat = SAS_OPEN_TO;
  2184. break;
  2185. case IO_XFER_ERROR_XFER_RDY_OVERRUN:
  2186. PM8001_IO_DBG(pm8001_ha,
  2187. pm8001_printk("IO_XFER_ERROR_XFER_RDY_OVERRUN\n"));
  2188. ts->resp = SAS_TASK_COMPLETE;
  2189. ts->stat = SAS_OPEN_TO;
  2190. break;
  2191. case IO_XFER_ERROR_XFER_RDY_NOT_EXPECTED:
  2192. PM8001_IO_DBG(pm8001_ha,
  2193. pm8001_printk("IO_XFER_ERROR_XFER_RDY_NOT_EXPECTED\n"));
  2194. ts->resp = SAS_TASK_COMPLETE;
  2195. ts->stat = SAS_OPEN_TO;
  2196. break;
  2197. case IO_XFER_ERROR_OFFSET_MISMATCH:
  2198. PM8001_IO_DBG(pm8001_ha,
  2199. pm8001_printk("IO_XFER_ERROR_OFFSET_MISMATCH\n"));
  2200. ts->resp = SAS_TASK_COMPLETE;
  2201. ts->stat = SAS_OPEN_TO;
  2202. break;
  2203. case IO_XFER_ERROR_XFER_ZERO_DATA_LEN:
  2204. PM8001_IO_DBG(pm8001_ha,
  2205. pm8001_printk("IO_XFER_ERROR_XFER_ZERO_DATA_LEN\n"));
  2206. ts->resp = SAS_TASK_COMPLETE;
  2207. ts->stat = SAS_OPEN_TO;
  2208. break;
  2209. case IO_XFER_CMD_FRAME_ISSUED:
  2210. PM8001_IO_DBG(pm8001_ha,
  2211. pm8001_printk("IO_XFER_CMD_FRAME_ISSUED\n"));
  2212. break;
  2213. case IO_XFER_PIO_SETUP_ERROR:
  2214. PM8001_IO_DBG(pm8001_ha,
  2215. pm8001_printk("IO_XFER_PIO_SETUP_ERROR\n"));
  2216. ts->resp = SAS_TASK_COMPLETE;
  2217. ts->stat = SAS_OPEN_TO;
  2218. break;
  2219. default:
  2220. PM8001_IO_DBG(pm8001_ha,
  2221. pm8001_printk("Unknown status 0x%x\n", event));
  2222. /* not allowed case. Therefore, return failed status */
  2223. ts->resp = SAS_TASK_COMPLETE;
  2224. ts->stat = SAS_OPEN_TO;
  2225. break;
  2226. }
  2227. spin_lock_irqsave(&t->task_state_lock, flags);
  2228. t->task_state_flags &= ~SAS_TASK_STATE_PENDING;
  2229. t->task_state_flags &= ~SAS_TASK_AT_INITIATOR;
  2230. t->task_state_flags |= SAS_TASK_STATE_DONE;
  2231. if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) {
  2232. spin_unlock_irqrestore(&t->task_state_lock, flags);
  2233. PM8001_FAIL_DBG(pm8001_ha,
  2234. pm8001_printk("task 0x%p done with io_status 0x%x"
  2235. " resp 0x%x stat 0x%x but aborted by upper layer!\n",
  2236. t, event, ts->resp, ts->stat));
  2237. pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
  2238. } else {
  2239. spin_unlock_irqrestore(&t->task_state_lock, flags);
  2240. pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
  2241. mb();/* in order to force CPU ordering */
  2242. t->task_done(t);
  2243. }
  2244. return 0;
  2245. }
  2246. /*See the comments for mpi_ssp_completion */
  2247. static int
  2248. mpi_smp_completion(struct pm8001_hba_info *pm8001_ha, void *piomb)
  2249. {
  2250. u32 param;
  2251. struct sas_task *t;
  2252. struct pm8001_ccb_info *ccb;
  2253. unsigned long flags;
  2254. u32 status;
  2255. u32 tag;
  2256. struct smp_completion_resp *psmpPayload;
  2257. struct task_status_struct *ts;
  2258. struct pm8001_device *pm8001_dev;
  2259. psmpPayload = (struct smp_completion_resp *)(piomb + 4);
  2260. status = le32_to_cpu(psmpPayload->status);
  2261. tag = le32_to_cpu(psmpPayload->tag);
  2262. ccb = &pm8001_ha->ccb_info[tag];
  2263. param = le32_to_cpu(psmpPayload->param);
  2264. t = ccb->task;
  2265. ts = &t->task_status;
  2266. pm8001_dev = ccb->device;
  2267. if (status)
  2268. PM8001_FAIL_DBG(pm8001_ha,
  2269. pm8001_printk("smp IO status 0x%x\n", status));
  2270. if (unlikely(!t || !t->lldd_task || !t->dev))
  2271. return -1;
  2272. switch (status) {
  2273. case IO_SUCCESS:
  2274. PM8001_IO_DBG(pm8001_ha, pm8001_printk("IO_SUCCESS\n"));
  2275. ts->resp = SAS_TASK_COMPLETE;
  2276. ts->stat = SAM_GOOD;
  2277. if (pm8001_dev)
  2278. pm8001_dev->running_req--;
  2279. break;
  2280. case IO_ABORTED:
  2281. PM8001_IO_DBG(pm8001_ha,
  2282. pm8001_printk("IO_ABORTED IOMB\n"));
  2283. ts->resp = SAS_TASK_COMPLETE;
  2284. ts->stat = SAS_ABORTED_TASK;
  2285. if (pm8001_dev)
  2286. pm8001_dev->running_req--;
  2287. break;
  2288. case IO_OVERFLOW:
  2289. PM8001_IO_DBG(pm8001_ha, pm8001_printk("IO_UNDERFLOW\n"));
  2290. ts->resp = SAS_TASK_COMPLETE;
  2291. ts->stat = SAS_DATA_OVERRUN;
  2292. ts->residual = 0;
  2293. if (pm8001_dev)
  2294. pm8001_dev->running_req--;
  2295. break;
  2296. case IO_NO_DEVICE:
  2297. PM8001_IO_DBG(pm8001_ha, pm8001_printk("IO_NO_DEVICE\n"));
  2298. ts->resp = SAS_TASK_COMPLETE;
  2299. ts->stat = SAS_PHY_DOWN;
  2300. break;
  2301. case IO_ERROR_HW_TIMEOUT:
  2302. PM8001_IO_DBG(pm8001_ha,
  2303. pm8001_printk("IO_ERROR_HW_TIMEOUT\n"));
  2304. ts->resp = SAS_TASK_COMPLETE;
  2305. ts->stat = SAM_BUSY;
  2306. break;
  2307. case IO_XFER_ERROR_BREAK:
  2308. PM8001_IO_DBG(pm8001_ha,
  2309. pm8001_printk("IO_XFER_ERROR_BREAK\n"));
  2310. ts->resp = SAS_TASK_COMPLETE;
  2311. ts->stat = SAM_BUSY;
  2312. break;
  2313. case IO_XFER_ERROR_PHY_NOT_READY:
  2314. PM8001_IO_DBG(pm8001_ha,
  2315. pm8001_printk("IO_XFER_ERROR_PHY_NOT_READY\n"));
  2316. ts->resp = SAS_TASK_COMPLETE;
  2317. ts->stat = SAM_BUSY;
  2318. break;
  2319. case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED:
  2320. PM8001_IO_DBG(pm8001_ha,
  2321. pm8001_printk("IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED\n"));
  2322. ts->resp = SAS_TASK_COMPLETE;
  2323. ts->stat = SAS_OPEN_REJECT;
  2324. ts->open_rej_reason = SAS_OREJ_UNKNOWN;
  2325. break;
  2326. case IO_OPEN_CNX_ERROR_ZONE_VIOLATION:
  2327. PM8001_IO_DBG(pm8001_ha,
  2328. pm8001_printk("IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n"));
  2329. ts->resp = SAS_TASK_COMPLETE;
  2330. ts->stat = SAS_OPEN_REJECT;
  2331. ts->open_rej_reason = SAS_OREJ_UNKNOWN;
  2332. break;
  2333. case IO_OPEN_CNX_ERROR_BREAK:
  2334. PM8001_IO_DBG(pm8001_ha,
  2335. pm8001_printk("IO_OPEN_CNX_ERROR_BREAK\n"));
  2336. ts->resp = SAS_TASK_COMPLETE;
  2337. ts->stat = SAS_OPEN_REJECT;
  2338. ts->open_rej_reason = SAS_OREJ_RSVD_CONT0;
  2339. break;
  2340. case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS:
  2341. PM8001_IO_DBG(pm8001_ha,
  2342. pm8001_printk("IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n"));
  2343. ts->resp = SAS_TASK_COMPLETE;
  2344. ts->stat = SAS_OPEN_REJECT;
  2345. ts->open_rej_reason = SAS_OREJ_UNKNOWN;
  2346. pm8001_handle_event(pm8001_ha,
  2347. pm8001_dev,
  2348. IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS);
  2349. break;
  2350. case IO_OPEN_CNX_ERROR_BAD_DESTINATION:
  2351. PM8001_IO_DBG(pm8001_ha,
  2352. pm8001_printk("IO_OPEN_CNX_ERROR_BAD_DESTINATION\n"));
  2353. ts->resp = SAS_TASK_COMPLETE;
  2354. ts->stat = SAS_OPEN_REJECT;
  2355. ts->open_rej_reason = SAS_OREJ_BAD_DEST;
  2356. break;
  2357. case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED:
  2358. PM8001_IO_DBG(pm8001_ha,
  2359. pm8001_printk("IO_OPEN_CNX_ERROR_CONNECTION_RATE_"
  2360. "NOT_SUPPORTED\n"));
  2361. ts->resp = SAS_TASK_COMPLETE;
  2362. ts->stat = SAS_OPEN_REJECT;
  2363. ts->open_rej_reason = SAS_OREJ_CONN_RATE;
  2364. break;
  2365. case IO_OPEN_CNX_ERROR_WRONG_DESTINATION:
  2366. PM8001_IO_DBG(pm8001_ha,
  2367. pm8001_printk("IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n"));
  2368. ts->resp = SAS_TASK_COMPLETE;
  2369. ts->stat = SAS_OPEN_REJECT;
  2370. ts->open_rej_reason = SAS_OREJ_WRONG_DEST;
  2371. break;
  2372. case IO_XFER_ERROR_RX_FRAME:
  2373. PM8001_IO_DBG(pm8001_ha,
  2374. pm8001_printk("IO_XFER_ERROR_RX_FRAME\n"));
  2375. ts->resp = SAS_TASK_COMPLETE;
  2376. ts->stat = SAS_DEV_NO_RESPONSE;
  2377. break;
  2378. case IO_XFER_OPEN_RETRY_TIMEOUT:
  2379. PM8001_IO_DBG(pm8001_ha,
  2380. pm8001_printk("IO_XFER_OPEN_RETRY_TIMEOUT\n"));
  2381. ts->resp = SAS_TASK_COMPLETE;
  2382. ts->stat = SAS_OPEN_REJECT;
  2383. ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
  2384. break;
  2385. case IO_ERROR_INTERNAL_SMP_RESOURCE:
  2386. PM8001_IO_DBG(pm8001_ha,
  2387. pm8001_printk("IO_ERROR_INTERNAL_SMP_RESOURCE\n"));
  2388. ts->resp = SAS_TASK_COMPLETE;
  2389. ts->stat = SAS_QUEUE_FULL;
  2390. break;
  2391. case IO_PORT_IN_RESET:
  2392. PM8001_IO_DBG(pm8001_ha,
  2393. pm8001_printk("IO_PORT_IN_RESET\n"));
  2394. ts->resp = SAS_TASK_COMPLETE;
  2395. ts->stat = SAS_OPEN_REJECT;
  2396. ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
  2397. break;
  2398. case IO_DS_NON_OPERATIONAL:
  2399. PM8001_IO_DBG(pm8001_ha,
  2400. pm8001_printk("IO_DS_NON_OPERATIONAL\n"));
  2401. ts->resp = SAS_TASK_COMPLETE;
  2402. ts->stat = SAS_DEV_NO_RESPONSE;
  2403. break;
  2404. case IO_DS_IN_RECOVERY:
  2405. PM8001_IO_DBG(pm8001_ha,
  2406. pm8001_printk("IO_DS_IN_RECOVERY\n"));
  2407. ts->resp = SAS_TASK_COMPLETE;
  2408. ts->stat = SAS_OPEN_REJECT;
  2409. ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
  2410. break;
  2411. case IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY:
  2412. PM8001_IO_DBG(pm8001_ha,
  2413. pm8001_printk("IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY\n"));
  2414. ts->resp = SAS_TASK_COMPLETE;
  2415. ts->stat = SAS_OPEN_REJECT;
  2416. ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
  2417. break;
  2418. default:
  2419. PM8001_IO_DBG(pm8001_ha,
  2420. pm8001_printk("Unknown status 0x%x\n", status));
  2421. ts->resp = SAS_TASK_COMPLETE;
  2422. ts->stat = SAS_DEV_NO_RESPONSE;
  2423. /* not allowed case. Therefore, return failed status */
  2424. break;
  2425. }
  2426. spin_lock_irqsave(&t->task_state_lock, flags);
  2427. t->task_state_flags &= ~SAS_TASK_STATE_PENDING;
  2428. t->task_state_flags &= ~SAS_TASK_AT_INITIATOR;
  2429. t->task_state_flags |= SAS_TASK_STATE_DONE;
  2430. if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) {
  2431. spin_unlock_irqrestore(&t->task_state_lock, flags);
  2432. PM8001_FAIL_DBG(pm8001_ha, pm8001_printk("task 0x%p done with"
  2433. " io_status 0x%x resp 0x%x "
  2434. "stat 0x%x but aborted by upper layer!\n",
  2435. t, status, ts->resp, ts->stat));
  2436. pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
  2437. } else {
  2438. spin_unlock_irqrestore(&t->task_state_lock, flags);
  2439. pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
  2440. mb();/* in order to force CPU ordering */
  2441. t->task_done(t);
  2442. }
  2443. return 0;
  2444. }
  2445. static void
  2446. mpi_set_dev_state_resp(struct pm8001_hba_info *pm8001_ha, void *piomb)
  2447. {
  2448. struct set_dev_state_resp *pPayload =
  2449. (struct set_dev_state_resp *)(piomb + 4);
  2450. u32 tag = le32_to_cpu(pPayload->tag);
  2451. struct pm8001_ccb_info *ccb = &pm8001_ha->ccb_info[tag];
  2452. struct pm8001_device *pm8001_dev = ccb->device;
  2453. u32 status = le32_to_cpu(pPayload->status);
  2454. u32 device_id = le32_to_cpu(pPayload->device_id);
  2455. u8 pds = le32_to_cpu(pPayload->pds_nds) | PDS_BITS;
  2456. u8 nds = le32_to_cpu(pPayload->pds_nds) | NDS_BITS;
  2457. PM8001_MSG_DBG(pm8001_ha, pm8001_printk("Set device id = 0x%x state "
  2458. "from 0x%x to 0x%x status = 0x%x!\n",
  2459. device_id, pds, nds, status));
  2460. complete(pm8001_dev->setds_completion);
  2461. ccb->task = NULL;
  2462. ccb->ccb_tag = 0xFFFFFFFF;
  2463. pm8001_ccb_free(pm8001_ha, tag);
  2464. }
  2465. static void
  2466. mpi_set_nvmd_resp(struct pm8001_hba_info *pm8001_ha, void *piomb)
  2467. {
  2468. struct get_nvm_data_resp *pPayload =
  2469. (struct get_nvm_data_resp *)(piomb + 4);
  2470. u32 tag = le32_to_cpu(pPayload->tag);
  2471. struct pm8001_ccb_info *ccb = &pm8001_ha->ccb_info[tag];
  2472. u32 dlen_status = le32_to_cpu(pPayload->dlen_status);
  2473. complete(pm8001_ha->nvmd_completion);
  2474. PM8001_MSG_DBG(pm8001_ha, pm8001_printk("Set nvm data complete!\n"));
  2475. if ((dlen_status & NVMD_STAT) != 0) {
  2476. PM8001_FAIL_DBG(pm8001_ha,
  2477. pm8001_printk("Set nvm data error!\n"));
  2478. return;
  2479. }
  2480. ccb->task = NULL;
  2481. ccb->ccb_tag = 0xFFFFFFFF;
  2482. pm8001_ccb_free(pm8001_ha, tag);
  2483. }
  2484. static void
  2485. mpi_get_nvmd_resp(struct pm8001_hba_info *pm8001_ha, void *piomb)
  2486. {
  2487. struct fw_control_ex *fw_control_context;
  2488. struct get_nvm_data_resp *pPayload =
  2489. (struct get_nvm_data_resp *)(piomb + 4);
  2490. u32 tag = le32_to_cpu(pPayload->tag);
  2491. struct pm8001_ccb_info *ccb = &pm8001_ha->ccb_info[tag];
  2492. u32 dlen_status = le32_to_cpu(pPayload->dlen_status);
  2493. u32 ir_tds_bn_dps_das_nvm =
  2494. le32_to_cpu(pPayload->ir_tda_bn_dps_das_nvm);
  2495. void *virt_addr = pm8001_ha->memoryMap.region[NVMD].virt_ptr;
  2496. fw_control_context = ccb->fw_control_context;
  2497. PM8001_MSG_DBG(pm8001_ha, pm8001_printk("Get nvm data complete!\n"));
  2498. if ((dlen_status & NVMD_STAT) != 0) {
  2499. PM8001_FAIL_DBG(pm8001_ha,
  2500. pm8001_printk("Get nvm data error!\n"));
  2501. complete(pm8001_ha->nvmd_completion);
  2502. return;
  2503. }
  2504. if (ir_tds_bn_dps_das_nvm & IPMode) {
  2505. /* indirect mode - IR bit set */
  2506. PM8001_MSG_DBG(pm8001_ha,
  2507. pm8001_printk("Get NVMD success, IR=1\n"));
  2508. if ((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == TWI_DEVICE) {
  2509. if (ir_tds_bn_dps_das_nvm == 0x80a80200) {
  2510. memcpy(pm8001_ha->sas_addr,
  2511. ((u8 *)virt_addr + 4),
  2512. SAS_ADDR_SIZE);
  2513. PM8001_MSG_DBG(pm8001_ha,
  2514. pm8001_printk("Get SAS address"
  2515. " from VPD successfully!\n"));
  2516. }
  2517. } else if (((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == C_SEEPROM)
  2518. || ((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == VPD_FLASH) ||
  2519. ((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == EXPAN_ROM)) {
  2520. ;
  2521. } else if (((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == AAP1_RDUMP)
  2522. || ((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == IOP_RDUMP)) {
  2523. ;
  2524. } else {
  2525. /* Should not be happened*/
  2526. PM8001_MSG_DBG(pm8001_ha,
  2527. pm8001_printk("(IR=1)Wrong Device type 0x%x\n",
  2528. ir_tds_bn_dps_das_nvm));
  2529. }
  2530. } else /* direct mode */{
  2531. PM8001_MSG_DBG(pm8001_ha,
  2532. pm8001_printk("Get NVMD success, IR=0, dataLen=%d\n",
  2533. (dlen_status & NVMD_LEN) >> 24));
  2534. }
  2535. memcpy((void *)(fw_control_context->usrAddr),
  2536. (void *)(pm8001_ha->memoryMap.region[NVMD].virt_ptr),
  2537. fw_control_context->len);
  2538. complete(pm8001_ha->nvmd_completion);
  2539. ccb->task = NULL;
  2540. ccb->ccb_tag = 0xFFFFFFFF;
  2541. pm8001_ccb_free(pm8001_ha, tag);
  2542. }
  2543. static int mpi_local_phy_ctl(struct pm8001_hba_info *pm8001_ha, void *piomb)
  2544. {
  2545. struct local_phy_ctl_resp *pPayload =
  2546. (struct local_phy_ctl_resp *)(piomb + 4);
  2547. u32 status = le32_to_cpu(pPayload->status);
  2548. u32 phy_id = le32_to_cpu(pPayload->phyop_phyid) & ID_BITS;
  2549. u32 phy_op = le32_to_cpu(pPayload->phyop_phyid) & OP_BITS;
  2550. if (status != 0) {
  2551. PM8001_MSG_DBG(pm8001_ha,
  2552. pm8001_printk("%x phy execute %x phy op failed! \n",
  2553. phy_id, phy_op));
  2554. } else
  2555. PM8001_MSG_DBG(pm8001_ha,
  2556. pm8001_printk("%x phy execute %x phy op success! \n",
  2557. phy_id, phy_op));
  2558. return 0;
  2559. }
  2560. /**
  2561. * pm8001_bytes_dmaed - one of the interface function communication with libsas
  2562. * @pm8001_ha: our hba card information
  2563. * @i: which phy that received the event.
  2564. *
  2565. * when HBA driver received the identify done event or initiate FIS received
  2566. * event(for SATA), it will invoke this function to notify the sas layer that
  2567. * the sas toplogy has formed, please discover the the whole sas domain,
  2568. * while receive a broadcast(change) primitive just tell the sas
  2569. * layer to discover the changed domain rather than the whole domain.
  2570. */
  2571. static void pm8001_bytes_dmaed(struct pm8001_hba_info *pm8001_ha, int i)
  2572. {
  2573. struct pm8001_phy *phy = &pm8001_ha->phy[i];
  2574. struct asd_sas_phy *sas_phy = &phy->sas_phy;
  2575. struct sas_ha_struct *sas_ha;
  2576. if (!phy->phy_attached)
  2577. return;
  2578. sas_ha = pm8001_ha->sas;
  2579. if (sas_phy->phy) {
  2580. struct sas_phy *sphy = sas_phy->phy;
  2581. sphy->negotiated_linkrate = sas_phy->linkrate;
  2582. sphy->minimum_linkrate = phy->minimum_linkrate;
  2583. sphy->minimum_linkrate_hw = SAS_LINK_RATE_1_5_GBPS;
  2584. sphy->maximum_linkrate = phy->maximum_linkrate;
  2585. sphy->maximum_linkrate_hw = phy->maximum_linkrate;
  2586. }
  2587. if (phy->phy_type & PORT_TYPE_SAS) {
  2588. struct sas_identify_frame *id;
  2589. id = (struct sas_identify_frame *)phy->frame_rcvd;
  2590. id->dev_type = phy->identify.device_type;
  2591. id->initiator_bits = SAS_PROTOCOL_ALL;
  2592. id->target_bits = phy->identify.target_port_protocols;
  2593. } else if (phy->phy_type & PORT_TYPE_SATA) {
  2594. /*Nothing*/
  2595. }
  2596. PM8001_MSG_DBG(pm8001_ha, pm8001_printk("phy %d byte dmaded.\n", i));
  2597. sas_phy->frame_rcvd_size = phy->frame_rcvd_size;
  2598. pm8001_ha->sas->notify_port_event(sas_phy, PORTE_BYTES_DMAED);
  2599. }
  2600. /* Get the link rate speed */
  2601. static void get_lrate_mode(struct pm8001_phy *phy, u8 link_rate)
  2602. {
  2603. struct sas_phy *sas_phy = phy->sas_phy.phy;
  2604. switch (link_rate) {
  2605. case PHY_SPEED_60:
  2606. phy->sas_phy.linkrate = SAS_LINK_RATE_6_0_GBPS;
  2607. phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_6_0_GBPS;
  2608. break;
  2609. case PHY_SPEED_30:
  2610. phy->sas_phy.linkrate = SAS_LINK_RATE_3_0_GBPS;
  2611. phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_3_0_GBPS;
  2612. break;
  2613. case PHY_SPEED_15:
  2614. phy->sas_phy.linkrate = SAS_LINK_RATE_1_5_GBPS;
  2615. phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_1_5_GBPS;
  2616. break;
  2617. }
  2618. sas_phy->negotiated_linkrate = phy->sas_phy.linkrate;
  2619. sas_phy->maximum_linkrate_hw = SAS_LINK_RATE_6_0_GBPS;
  2620. sas_phy->minimum_linkrate_hw = SAS_LINK_RATE_1_5_GBPS;
  2621. sas_phy->maximum_linkrate = SAS_LINK_RATE_6_0_GBPS;
  2622. sas_phy->minimum_linkrate = SAS_LINK_RATE_1_5_GBPS;
  2623. }
  2624. /**
  2625. * asd_get_attached_sas_addr -- extract/generate attached SAS address
  2626. * @phy: pointer to asd_phy
  2627. * @sas_addr: pointer to buffer where the SAS address is to be written
  2628. *
  2629. * This function extracts the SAS address from an IDENTIFY frame
  2630. * received. If OOB is SATA, then a SAS address is generated from the
  2631. * HA tables.
  2632. *
  2633. * LOCKING: the frame_rcvd_lock needs to be held since this parses the frame
  2634. * buffer.
  2635. */
  2636. static void pm8001_get_attached_sas_addr(struct pm8001_phy *phy,
  2637. u8 *sas_addr)
  2638. {
  2639. if (phy->sas_phy.frame_rcvd[0] == 0x34
  2640. && phy->sas_phy.oob_mode == SATA_OOB_MODE) {
  2641. struct pm8001_hba_info *pm8001_ha = phy->sas_phy.ha->lldd_ha;
  2642. /* FIS device-to-host */
  2643. u64 addr = be64_to_cpu(*(__be64 *)pm8001_ha->sas_addr);
  2644. addr += phy->sas_phy.id;
  2645. *(__be64 *)sas_addr = cpu_to_be64(addr);
  2646. } else {
  2647. struct sas_identify_frame *idframe =
  2648. (void *) phy->sas_phy.frame_rcvd;
  2649. memcpy(sas_addr, idframe->sas_addr, SAS_ADDR_SIZE);
  2650. }
  2651. }
  2652. /**
  2653. * pm8001_hw_event_ack_req- For PM8001,some events need to acknowage to FW.
  2654. * @pm8001_ha: our hba card information
  2655. * @Qnum: the outbound queue message number.
  2656. * @SEA: source of event to ack
  2657. * @port_id: port id.
  2658. * @phyId: phy id.
  2659. * @param0: parameter 0.
  2660. * @param1: parameter 1.
  2661. */
  2662. static void pm8001_hw_event_ack_req(struct pm8001_hba_info *pm8001_ha,
  2663. u32 Qnum, u32 SEA, u32 port_id, u32 phyId, u32 param0, u32 param1)
  2664. {
  2665. struct hw_event_ack_req payload;
  2666. u32 opc = OPC_INB_SAS_HW_EVENT_ACK;
  2667. struct inbound_queue_table *circularQ;
  2668. memset((u8 *)&payload, 0, sizeof(payload));
  2669. circularQ = &pm8001_ha->inbnd_q_tbl[Qnum];
  2670. payload.tag = 1;
  2671. payload.sea_phyid_portid = cpu_to_le32(((SEA & 0xFFFF) << 8) |
  2672. ((phyId & 0x0F) << 4) | (port_id & 0x0F));
  2673. payload.param0 = cpu_to_le32(param0);
  2674. payload.param1 = cpu_to_le32(param1);
  2675. mpi_build_cmd(pm8001_ha, circularQ, opc, &payload);
  2676. }
  2677. static int pm8001_chip_phy_ctl_req(struct pm8001_hba_info *pm8001_ha,
  2678. u32 phyId, u32 phy_op);
  2679. /**
  2680. * hw_event_sas_phy_up -FW tells me a SAS phy up event.
  2681. * @pm8001_ha: our hba card information
  2682. * @piomb: IO message buffer
  2683. */
  2684. static void
  2685. hw_event_sas_phy_up(struct pm8001_hba_info *pm8001_ha, void *piomb)
  2686. {
  2687. struct hw_event_resp *pPayload =
  2688. (struct hw_event_resp *)(piomb + 4);
  2689. u32 lr_evt_status_phyid_portid =
  2690. le32_to_cpu(pPayload->lr_evt_status_phyid_portid);
  2691. u8 link_rate =
  2692. (u8)((lr_evt_status_phyid_portid & 0xF0000000) >> 28);
  2693. u8 phy_id =
  2694. (u8)((lr_evt_status_phyid_portid & 0x000000F0) >> 4);
  2695. struct sas_ha_struct *sas_ha = pm8001_ha->sas;
  2696. struct pm8001_phy *phy = &pm8001_ha->phy[phy_id];
  2697. unsigned long flags;
  2698. u8 deviceType = pPayload->sas_identify.dev_type;
  2699. PM8001_MSG_DBG(pm8001_ha,
  2700. pm8001_printk("HW_EVENT_SAS_PHY_UP \n"));
  2701. switch (deviceType) {
  2702. case SAS_PHY_UNUSED:
  2703. PM8001_MSG_DBG(pm8001_ha,
  2704. pm8001_printk("device type no device.\n"));
  2705. break;
  2706. case SAS_END_DEVICE:
  2707. PM8001_MSG_DBG(pm8001_ha, pm8001_printk("end device.\n"));
  2708. pm8001_chip_phy_ctl_req(pm8001_ha, phy_id,
  2709. PHY_NOTIFY_ENABLE_SPINUP);
  2710. get_lrate_mode(phy, link_rate);
  2711. break;
  2712. case SAS_EDGE_EXPANDER_DEVICE:
  2713. PM8001_MSG_DBG(pm8001_ha,
  2714. pm8001_printk("expander device.\n"));
  2715. get_lrate_mode(phy, link_rate);
  2716. break;
  2717. case SAS_FANOUT_EXPANDER_DEVICE:
  2718. PM8001_MSG_DBG(pm8001_ha,
  2719. pm8001_printk("fanout expander device.\n"));
  2720. get_lrate_mode(phy, link_rate);
  2721. break;
  2722. default:
  2723. PM8001_MSG_DBG(pm8001_ha,
  2724. pm8001_printk("unkown device type(%x)\n", deviceType));
  2725. break;
  2726. }
  2727. phy->phy_type |= PORT_TYPE_SAS;
  2728. phy->identify.device_type = deviceType;
  2729. phy->phy_attached = 1;
  2730. if (phy->identify.device_type == SAS_END_DEV)
  2731. phy->identify.target_port_protocols = SAS_PROTOCOL_SSP;
  2732. else if (phy->identify.device_type != NO_DEVICE)
  2733. phy->identify.target_port_protocols = SAS_PROTOCOL_SMP;
  2734. phy->sas_phy.oob_mode = SAS_OOB_MODE;
  2735. sas_ha->notify_phy_event(&phy->sas_phy, PHYE_OOB_DONE);
  2736. spin_lock_irqsave(&phy->sas_phy.frame_rcvd_lock, flags);
  2737. memcpy(phy->frame_rcvd, &pPayload->sas_identify,
  2738. sizeof(struct sas_identify_frame)-4);
  2739. phy->frame_rcvd_size = sizeof(struct sas_identify_frame) - 4;
  2740. pm8001_get_attached_sas_addr(phy, phy->sas_phy.attached_sas_addr);
  2741. spin_unlock_irqrestore(&phy->sas_phy.frame_rcvd_lock, flags);
  2742. if (pm8001_ha->flags == PM8001F_RUN_TIME)
  2743. mdelay(200);/*delay a moment to wait disk to spinup*/
  2744. pm8001_bytes_dmaed(pm8001_ha, phy_id);
  2745. }
  2746. /**
  2747. * hw_event_sata_phy_up -FW tells me a SATA phy up event.
  2748. * @pm8001_ha: our hba card information
  2749. * @piomb: IO message buffer
  2750. */
  2751. static void
  2752. hw_event_sata_phy_up(struct pm8001_hba_info *pm8001_ha, void *piomb)
  2753. {
  2754. struct hw_event_resp *pPayload =
  2755. (struct hw_event_resp *)(piomb + 4);
  2756. u32 lr_evt_status_phyid_portid =
  2757. le32_to_cpu(pPayload->lr_evt_status_phyid_portid);
  2758. u8 link_rate =
  2759. (u8)((lr_evt_status_phyid_portid & 0xF0000000) >> 28);
  2760. u8 phy_id =
  2761. (u8)((lr_evt_status_phyid_portid & 0x000000F0) >> 4);
  2762. struct sas_ha_struct *sas_ha = pm8001_ha->sas;
  2763. struct pm8001_phy *phy = &pm8001_ha->phy[phy_id];
  2764. unsigned long flags;
  2765. get_lrate_mode(phy, link_rate);
  2766. phy->phy_type |= PORT_TYPE_SATA;
  2767. phy->phy_attached = 1;
  2768. phy->sas_phy.oob_mode = SATA_OOB_MODE;
  2769. sas_ha->notify_phy_event(&phy->sas_phy, PHYE_OOB_DONE);
  2770. spin_lock_irqsave(&phy->sas_phy.frame_rcvd_lock, flags);
  2771. memcpy(phy->frame_rcvd, ((u8 *)&pPayload->sata_fis - 4),
  2772. sizeof(struct dev_to_host_fis));
  2773. phy->frame_rcvd_size = sizeof(struct dev_to_host_fis);
  2774. phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
  2775. phy->identify.device_type = SATA_DEV;
  2776. pm8001_get_attached_sas_addr(phy, phy->sas_phy.attached_sas_addr);
  2777. spin_unlock_irqrestore(&phy->sas_phy.frame_rcvd_lock, flags);
  2778. pm8001_bytes_dmaed(pm8001_ha, phy_id);
  2779. }
  2780. /**
  2781. * hw_event_phy_down -we should notify the libsas the phy is down.
  2782. * @pm8001_ha: our hba card information
  2783. * @piomb: IO message buffer
  2784. */
  2785. static void
  2786. hw_event_phy_down(struct pm8001_hba_info *pm8001_ha, void *piomb)
  2787. {
  2788. struct hw_event_resp *pPayload =
  2789. (struct hw_event_resp *)(piomb + 4);
  2790. u32 lr_evt_status_phyid_portid =
  2791. le32_to_cpu(pPayload->lr_evt_status_phyid_portid);
  2792. u8 port_id = (u8)(lr_evt_status_phyid_portid & 0x0000000F);
  2793. u8 phy_id =
  2794. (u8)((lr_evt_status_phyid_portid & 0x000000F0) >> 4);
  2795. u32 npip_portstate = le32_to_cpu(pPayload->npip_portstate);
  2796. u8 portstate = (u8)(npip_portstate & 0x0000000F);
  2797. switch (portstate) {
  2798. case PORT_VALID:
  2799. break;
  2800. case PORT_INVALID:
  2801. PM8001_MSG_DBG(pm8001_ha,
  2802. pm8001_printk(" PortInvalid portID %d \n", port_id));
  2803. PM8001_MSG_DBG(pm8001_ha,
  2804. pm8001_printk(" Last phy Down and port invalid\n"));
  2805. pm8001_hw_event_ack_req(pm8001_ha, 0, HW_EVENT_PHY_DOWN,
  2806. port_id, phy_id, 0, 0);
  2807. break;
  2808. case PORT_IN_RESET:
  2809. PM8001_MSG_DBG(pm8001_ha,
  2810. pm8001_printk(" PortInReset portID %d \n", port_id));
  2811. break;
  2812. case PORT_NOT_ESTABLISHED:
  2813. PM8001_MSG_DBG(pm8001_ha,
  2814. pm8001_printk(" phy Down and PORT_NOT_ESTABLISHED\n"));
  2815. break;
  2816. case PORT_LOSTCOMM:
  2817. PM8001_MSG_DBG(pm8001_ha,
  2818. pm8001_printk(" phy Down and PORT_LOSTCOMM\n"));
  2819. PM8001_MSG_DBG(pm8001_ha,
  2820. pm8001_printk(" Last phy Down and port invalid\n"));
  2821. pm8001_hw_event_ack_req(pm8001_ha, 0, HW_EVENT_PHY_DOWN,
  2822. port_id, phy_id, 0, 0);
  2823. break;
  2824. default:
  2825. PM8001_MSG_DBG(pm8001_ha,
  2826. pm8001_printk(" phy Down and(default) = %x\n",
  2827. portstate));
  2828. break;
  2829. }
  2830. }
  2831. /**
  2832. * mpi_reg_resp -process register device ID response.
  2833. * @pm8001_ha: our hba card information
  2834. * @piomb: IO message buffer
  2835. *
  2836. * when sas layer find a device it will notify LLDD, then the driver register
  2837. * the domain device to FW, this event is the return device ID which the FW
  2838. * has assigned, from now,inter-communication with FW is no longer using the
  2839. * SAS address, use device ID which FW assigned.
  2840. */
  2841. static int mpi_reg_resp(struct pm8001_hba_info *pm8001_ha, void *piomb)
  2842. {
  2843. u32 status;
  2844. u32 device_id;
  2845. u32 htag;
  2846. struct pm8001_ccb_info *ccb;
  2847. struct pm8001_device *pm8001_dev;
  2848. struct dev_reg_resp *registerRespPayload =
  2849. (struct dev_reg_resp *)(piomb + 4);
  2850. htag = le32_to_cpu(registerRespPayload->tag);
  2851. ccb = &pm8001_ha->ccb_info[registerRespPayload->tag];
  2852. pm8001_dev = ccb->device;
  2853. status = le32_to_cpu(registerRespPayload->status);
  2854. device_id = le32_to_cpu(registerRespPayload->device_id);
  2855. PM8001_MSG_DBG(pm8001_ha,
  2856. pm8001_printk(" register device is status = %d\n", status));
  2857. switch (status) {
  2858. case DEVREG_SUCCESS:
  2859. PM8001_MSG_DBG(pm8001_ha, pm8001_printk("DEVREG_SUCCESS\n"));
  2860. pm8001_dev->device_id = device_id;
  2861. break;
  2862. case DEVREG_FAILURE_OUT_OF_RESOURCE:
  2863. PM8001_MSG_DBG(pm8001_ha,
  2864. pm8001_printk("DEVREG_FAILURE_OUT_OF_RESOURCE\n"));
  2865. break;
  2866. case DEVREG_FAILURE_DEVICE_ALREADY_REGISTERED:
  2867. PM8001_MSG_DBG(pm8001_ha,
  2868. pm8001_printk("DEVREG_FAILURE_DEVICE_ALREADY_REGISTERED\n"));
  2869. break;
  2870. case DEVREG_FAILURE_INVALID_PHY_ID:
  2871. PM8001_MSG_DBG(pm8001_ha,
  2872. pm8001_printk("DEVREG_FAILURE_INVALID_PHY_ID\n"));
  2873. break;
  2874. case DEVREG_FAILURE_PHY_ID_ALREADY_REGISTERED:
  2875. PM8001_MSG_DBG(pm8001_ha,
  2876. pm8001_printk("DEVREG_FAILURE_PHY_ID_ALREADY_REGISTERED\n"));
  2877. break;
  2878. case DEVREG_FAILURE_PORT_ID_OUT_OF_RANGE:
  2879. PM8001_MSG_DBG(pm8001_ha,
  2880. pm8001_printk("DEVREG_FAILURE_PORT_ID_OUT_OF_RANGE\n"));
  2881. break;
  2882. case DEVREG_FAILURE_PORT_NOT_VALID_STATE:
  2883. PM8001_MSG_DBG(pm8001_ha,
  2884. pm8001_printk("DEVREG_FAILURE_PORT_NOT_VALID_STATE\n"));
  2885. break;
  2886. case DEVREG_FAILURE_DEVICE_TYPE_NOT_VALID:
  2887. PM8001_MSG_DBG(pm8001_ha,
  2888. pm8001_printk("DEVREG_FAILURE_DEVICE_TYPE_NOT_VALID\n"));
  2889. break;
  2890. default:
  2891. PM8001_MSG_DBG(pm8001_ha,
  2892. pm8001_printk("DEVREG_FAILURE_DEVICE_TYPE_NOT_UNSORPORTED\n"));
  2893. break;
  2894. }
  2895. complete(pm8001_dev->dcompletion);
  2896. ccb->task = NULL;
  2897. ccb->ccb_tag = 0xFFFFFFFF;
  2898. pm8001_ccb_free(pm8001_ha, htag);
  2899. return 0;
  2900. }
  2901. static int mpi_dereg_resp(struct pm8001_hba_info *pm8001_ha, void *piomb)
  2902. {
  2903. u32 status;
  2904. u32 device_id;
  2905. struct dev_reg_resp *registerRespPayload =
  2906. (struct dev_reg_resp *)(piomb + 4);
  2907. status = le32_to_cpu(registerRespPayload->status);
  2908. device_id = le32_to_cpu(registerRespPayload->device_id);
  2909. if (status != 0)
  2910. PM8001_MSG_DBG(pm8001_ha,
  2911. pm8001_printk(" deregister device failed ,status = %x"
  2912. ", device_id = %x\n", status, device_id));
  2913. return 0;
  2914. }
  2915. static int
  2916. mpi_fw_flash_update_resp(struct pm8001_hba_info *pm8001_ha, void *piomb)
  2917. {
  2918. u32 status;
  2919. struct fw_control_ex fw_control_context;
  2920. struct fw_flash_Update_resp *ppayload =
  2921. (struct fw_flash_Update_resp *)(piomb + 4);
  2922. u32 tag = le32_to_cpu(ppayload->tag);
  2923. struct pm8001_ccb_info *ccb = &pm8001_ha->ccb_info[tag];
  2924. status = le32_to_cpu(ppayload->status);
  2925. memcpy(&fw_control_context,
  2926. ccb->fw_control_context,
  2927. sizeof(fw_control_context));
  2928. switch (status) {
  2929. case FLASH_UPDATE_COMPLETE_PENDING_REBOOT:
  2930. PM8001_MSG_DBG(pm8001_ha,
  2931. pm8001_printk(": FLASH_UPDATE_COMPLETE_PENDING_REBOOT\n"));
  2932. break;
  2933. case FLASH_UPDATE_IN_PROGRESS:
  2934. PM8001_MSG_DBG(pm8001_ha,
  2935. pm8001_printk(": FLASH_UPDATE_IN_PROGRESS\n"));
  2936. break;
  2937. case FLASH_UPDATE_HDR_ERR:
  2938. PM8001_MSG_DBG(pm8001_ha,
  2939. pm8001_printk(": FLASH_UPDATE_HDR_ERR\n"));
  2940. break;
  2941. case FLASH_UPDATE_OFFSET_ERR:
  2942. PM8001_MSG_DBG(pm8001_ha,
  2943. pm8001_printk(": FLASH_UPDATE_OFFSET_ERR\n"));
  2944. break;
  2945. case FLASH_UPDATE_CRC_ERR:
  2946. PM8001_MSG_DBG(pm8001_ha,
  2947. pm8001_printk(": FLASH_UPDATE_CRC_ERR\n"));
  2948. break;
  2949. case FLASH_UPDATE_LENGTH_ERR:
  2950. PM8001_MSG_DBG(pm8001_ha,
  2951. pm8001_printk(": FLASH_UPDATE_LENGTH_ERR\n"));
  2952. break;
  2953. case FLASH_UPDATE_HW_ERR:
  2954. PM8001_MSG_DBG(pm8001_ha,
  2955. pm8001_printk(": FLASH_UPDATE_HW_ERR\n"));
  2956. break;
  2957. case FLASH_UPDATE_DNLD_NOT_SUPPORTED:
  2958. PM8001_MSG_DBG(pm8001_ha,
  2959. pm8001_printk(": FLASH_UPDATE_DNLD_NOT_SUPPORTED\n"));
  2960. break;
  2961. case FLASH_UPDATE_DISABLED:
  2962. PM8001_MSG_DBG(pm8001_ha,
  2963. pm8001_printk(": FLASH_UPDATE_DISABLED\n"));
  2964. break;
  2965. default:
  2966. PM8001_MSG_DBG(pm8001_ha,
  2967. pm8001_printk("No matched status = %d\n", status));
  2968. break;
  2969. }
  2970. ccb->fw_control_context->fw_control->retcode = status;
  2971. pci_free_consistent(pm8001_ha->pdev,
  2972. fw_control_context.len,
  2973. fw_control_context.virtAddr,
  2974. fw_control_context.phys_addr);
  2975. complete(pm8001_ha->nvmd_completion);
  2976. ccb->task = NULL;
  2977. ccb->ccb_tag = 0xFFFFFFFF;
  2978. pm8001_ccb_free(pm8001_ha, tag);
  2979. return 0;
  2980. }
  2981. static int
  2982. mpi_general_event(struct pm8001_hba_info *pm8001_ha , void *piomb)
  2983. {
  2984. u32 status;
  2985. int i;
  2986. struct general_event_resp *pPayload =
  2987. (struct general_event_resp *)(piomb + 4);
  2988. status = le32_to_cpu(pPayload->status);
  2989. PM8001_MSG_DBG(pm8001_ha,
  2990. pm8001_printk(" status = 0x%x\n", status));
  2991. for (i = 0; i < GENERAL_EVENT_PAYLOAD; i++)
  2992. PM8001_MSG_DBG(pm8001_ha,
  2993. pm8001_printk("inb_IOMB_payload[0x%x] 0x%x, \n", i,
  2994. pPayload->inb_IOMB_payload[i]));
  2995. return 0;
  2996. }
  2997. static int
  2998. mpi_task_abort_resp(struct pm8001_hba_info *pm8001_ha, void *piomb)
  2999. {
  3000. struct sas_task *t;
  3001. struct pm8001_ccb_info *ccb;
  3002. unsigned long flags;
  3003. u32 status ;
  3004. u32 tag, scp;
  3005. struct task_status_struct *ts;
  3006. struct task_abort_resp *pPayload =
  3007. (struct task_abort_resp *)(piomb + 4);
  3008. ccb = &pm8001_ha->ccb_info[pPayload->tag];
  3009. t = ccb->task;
  3010. ts = &t->task_status;
  3011. if (t == NULL)
  3012. return -1;
  3013. status = le32_to_cpu(pPayload->status);
  3014. tag = le32_to_cpu(pPayload->tag);
  3015. scp = le32_to_cpu(pPayload->scp);
  3016. PM8001_IO_DBG(pm8001_ha,
  3017. pm8001_printk(" status = 0x%x\n", status));
  3018. if (status != 0)
  3019. PM8001_FAIL_DBG(pm8001_ha,
  3020. pm8001_printk("task abort failed tag = 0x%x,"
  3021. " scp= 0x%x\n", tag, scp));
  3022. switch (status) {
  3023. case IO_SUCCESS:
  3024. PM8001_IO_DBG(pm8001_ha, pm8001_printk("IO_SUCCESS\n"));
  3025. ts->resp = SAS_TASK_COMPLETE;
  3026. ts->stat = SAM_GOOD;
  3027. break;
  3028. case IO_NOT_VALID:
  3029. PM8001_IO_DBG(pm8001_ha, pm8001_printk("IO_NOT_VALID\n"));
  3030. ts->resp = TMF_RESP_FUNC_FAILED;
  3031. break;
  3032. }
  3033. spin_lock_irqsave(&t->task_state_lock, flags);
  3034. t->task_state_flags &= ~SAS_TASK_STATE_PENDING;
  3035. t->task_state_flags &= ~SAS_TASK_AT_INITIATOR;
  3036. t->task_state_flags |= SAS_TASK_STATE_DONE;
  3037. spin_unlock_irqrestore(&t->task_state_lock, flags);
  3038. pm8001_ccb_task_free(pm8001_ha, t, ccb, pPayload->tag);
  3039. mb();
  3040. t->task_done(t);
  3041. return 0;
  3042. }
  3043. /**
  3044. * mpi_hw_event -The hw event has come.
  3045. * @pm8001_ha: our hba card information
  3046. * @piomb: IO message buffer
  3047. */
  3048. static int mpi_hw_event(struct pm8001_hba_info *pm8001_ha, void* piomb)
  3049. {
  3050. unsigned long flags;
  3051. struct hw_event_resp *pPayload =
  3052. (struct hw_event_resp *)(piomb + 4);
  3053. u32 lr_evt_status_phyid_portid =
  3054. le32_to_cpu(pPayload->lr_evt_status_phyid_portid);
  3055. u8 port_id = (u8)(lr_evt_status_phyid_portid & 0x0000000F);
  3056. u8 phy_id =
  3057. (u8)((lr_evt_status_phyid_portid & 0x000000F0) >> 4);
  3058. u16 eventType =
  3059. (u16)((lr_evt_status_phyid_portid & 0x00FFFF00) >> 8);
  3060. u8 status =
  3061. (u8)((lr_evt_status_phyid_portid & 0x0F000000) >> 24);
  3062. struct sas_ha_struct *sas_ha = pm8001_ha->sas;
  3063. struct pm8001_phy *phy = &pm8001_ha->phy[phy_id];
  3064. struct asd_sas_phy *sas_phy = sas_ha->sas_phy[phy_id];
  3065. PM8001_MSG_DBG(pm8001_ha,
  3066. pm8001_printk("outbound queue HW event & event type : "));
  3067. switch (eventType) {
  3068. case HW_EVENT_PHY_START_STATUS:
  3069. PM8001_MSG_DBG(pm8001_ha,
  3070. pm8001_printk("HW_EVENT_PHY_START_STATUS"
  3071. " status = %x\n", status));
  3072. if (status == 0) {
  3073. phy->phy_state = 1;
  3074. if (pm8001_ha->flags == PM8001F_RUN_TIME)
  3075. complete(phy->enable_completion);
  3076. }
  3077. break;
  3078. case HW_EVENT_SAS_PHY_UP:
  3079. PM8001_MSG_DBG(pm8001_ha,
  3080. pm8001_printk("HW_EVENT_PHY_START_STATUS \n"));
  3081. hw_event_sas_phy_up(pm8001_ha, piomb);
  3082. break;
  3083. case HW_EVENT_SATA_PHY_UP:
  3084. PM8001_MSG_DBG(pm8001_ha,
  3085. pm8001_printk("HW_EVENT_SATA_PHY_UP \n"));
  3086. hw_event_sata_phy_up(pm8001_ha, piomb);
  3087. break;
  3088. case HW_EVENT_PHY_STOP_STATUS:
  3089. PM8001_MSG_DBG(pm8001_ha,
  3090. pm8001_printk("HW_EVENT_PHY_STOP_STATUS "
  3091. "status = %x\n", status));
  3092. if (status == 0)
  3093. phy->phy_state = 0;
  3094. break;
  3095. case HW_EVENT_SATA_SPINUP_HOLD:
  3096. PM8001_MSG_DBG(pm8001_ha,
  3097. pm8001_printk("HW_EVENT_SATA_SPINUP_HOLD \n"));
  3098. sas_ha->notify_phy_event(&phy->sas_phy, PHYE_SPINUP_HOLD);
  3099. break;
  3100. case HW_EVENT_PHY_DOWN:
  3101. PM8001_MSG_DBG(pm8001_ha,
  3102. pm8001_printk("HW_EVENT_PHY_DOWN \n"));
  3103. sas_ha->notify_phy_event(&phy->sas_phy, PHYE_LOSS_OF_SIGNAL);
  3104. phy->phy_attached = 0;
  3105. phy->phy_state = 0;
  3106. hw_event_phy_down(pm8001_ha, piomb);
  3107. break;
  3108. case HW_EVENT_PORT_INVALID:
  3109. PM8001_MSG_DBG(pm8001_ha,
  3110. pm8001_printk("HW_EVENT_PORT_INVALID\n"));
  3111. sas_phy_disconnected(sas_phy);
  3112. phy->phy_attached = 0;
  3113. sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR);
  3114. break;
  3115. /* the broadcast change primitive received, tell the LIBSAS this event
  3116. to revalidate the sas domain*/
  3117. case HW_EVENT_BROADCAST_CHANGE:
  3118. PM8001_MSG_DBG(pm8001_ha,
  3119. pm8001_printk("HW_EVENT_BROADCAST_CHANGE\n"));
  3120. pm8001_hw_event_ack_req(pm8001_ha, 0, HW_EVENT_BROADCAST_CHANGE,
  3121. port_id, phy_id, 1, 0);
  3122. spin_lock_irqsave(&sas_phy->sas_prim_lock, flags);
  3123. sas_phy->sas_prim = HW_EVENT_BROADCAST_CHANGE;
  3124. spin_unlock_irqrestore(&sas_phy->sas_prim_lock, flags);
  3125. sas_ha->notify_port_event(sas_phy, PORTE_BROADCAST_RCVD);
  3126. break;
  3127. case HW_EVENT_PHY_ERROR:
  3128. PM8001_MSG_DBG(pm8001_ha,
  3129. pm8001_printk("HW_EVENT_PHY_ERROR\n"));
  3130. sas_phy_disconnected(&phy->sas_phy);
  3131. phy->phy_attached = 0;
  3132. sas_ha->notify_phy_event(&phy->sas_phy, PHYE_OOB_ERROR);
  3133. break;
  3134. case HW_EVENT_BROADCAST_EXP:
  3135. PM8001_MSG_DBG(pm8001_ha,
  3136. pm8001_printk("HW_EVENT_BROADCAST_EXP\n"));
  3137. spin_lock_irqsave(&sas_phy->sas_prim_lock, flags);
  3138. sas_phy->sas_prim = HW_EVENT_BROADCAST_EXP;
  3139. spin_unlock_irqrestore(&sas_phy->sas_prim_lock, flags);
  3140. sas_ha->notify_port_event(sas_phy, PORTE_BROADCAST_RCVD);
  3141. break;
  3142. case HW_EVENT_LINK_ERR_INVALID_DWORD:
  3143. PM8001_MSG_DBG(pm8001_ha,
  3144. pm8001_printk("HW_EVENT_LINK_ERR_INVALID_DWORD\n"));
  3145. pm8001_hw_event_ack_req(pm8001_ha, 0,
  3146. HW_EVENT_LINK_ERR_INVALID_DWORD, port_id, phy_id, 0, 0);
  3147. sas_phy_disconnected(sas_phy);
  3148. phy->phy_attached = 0;
  3149. sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR);
  3150. break;
  3151. case HW_EVENT_LINK_ERR_DISPARITY_ERROR:
  3152. PM8001_MSG_DBG(pm8001_ha,
  3153. pm8001_printk("HW_EVENT_LINK_ERR_DISPARITY_ERROR\n"));
  3154. pm8001_hw_event_ack_req(pm8001_ha, 0,
  3155. HW_EVENT_LINK_ERR_DISPARITY_ERROR,
  3156. port_id, phy_id, 0, 0);
  3157. sas_phy_disconnected(sas_phy);
  3158. phy->phy_attached = 0;
  3159. sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR);
  3160. break;
  3161. case HW_EVENT_LINK_ERR_CODE_VIOLATION:
  3162. PM8001_MSG_DBG(pm8001_ha,
  3163. pm8001_printk("HW_EVENT_LINK_ERR_CODE_VIOLATION\n"));
  3164. pm8001_hw_event_ack_req(pm8001_ha, 0,
  3165. HW_EVENT_LINK_ERR_CODE_VIOLATION,
  3166. port_id, phy_id, 0, 0);
  3167. sas_phy_disconnected(sas_phy);
  3168. phy->phy_attached = 0;
  3169. sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR);
  3170. break;
  3171. case HW_EVENT_LINK_ERR_LOSS_OF_DWORD_SYNCH:
  3172. PM8001_MSG_DBG(pm8001_ha,
  3173. pm8001_printk("HW_EVENT_LINK_ERR_LOSS_OF_DWORD_SYNCH\n"));
  3174. pm8001_hw_event_ack_req(pm8001_ha, 0,
  3175. HW_EVENT_LINK_ERR_LOSS_OF_DWORD_SYNCH,
  3176. port_id, phy_id, 0, 0);
  3177. sas_phy_disconnected(sas_phy);
  3178. phy->phy_attached = 0;
  3179. sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR);
  3180. break;
  3181. case HW_EVENT_MALFUNCTION:
  3182. PM8001_MSG_DBG(pm8001_ha,
  3183. pm8001_printk("HW_EVENT_MALFUNCTION\n"));
  3184. break;
  3185. case HW_EVENT_BROADCAST_SES:
  3186. PM8001_MSG_DBG(pm8001_ha,
  3187. pm8001_printk("HW_EVENT_BROADCAST_SES\n"));
  3188. spin_lock_irqsave(&sas_phy->sas_prim_lock, flags);
  3189. sas_phy->sas_prim = HW_EVENT_BROADCAST_SES;
  3190. spin_unlock_irqrestore(&sas_phy->sas_prim_lock, flags);
  3191. sas_ha->notify_port_event(sas_phy, PORTE_BROADCAST_RCVD);
  3192. break;
  3193. case HW_EVENT_INBOUND_CRC_ERROR:
  3194. PM8001_MSG_DBG(pm8001_ha,
  3195. pm8001_printk("HW_EVENT_INBOUND_CRC_ERROR\n"));
  3196. pm8001_hw_event_ack_req(pm8001_ha, 0,
  3197. HW_EVENT_INBOUND_CRC_ERROR,
  3198. port_id, phy_id, 0, 0);
  3199. break;
  3200. case HW_EVENT_HARD_RESET_RECEIVED:
  3201. PM8001_MSG_DBG(pm8001_ha,
  3202. pm8001_printk("HW_EVENT_HARD_RESET_RECEIVED\n"));
  3203. sas_ha->notify_port_event(sas_phy, PORTE_HARD_RESET);
  3204. break;
  3205. case HW_EVENT_ID_FRAME_TIMEOUT:
  3206. PM8001_MSG_DBG(pm8001_ha,
  3207. pm8001_printk("HW_EVENT_ID_FRAME_TIMEOUT\n"));
  3208. sas_phy_disconnected(sas_phy);
  3209. phy->phy_attached = 0;
  3210. sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR);
  3211. break;
  3212. case HW_EVENT_LINK_ERR_PHY_RESET_FAILED:
  3213. PM8001_MSG_DBG(pm8001_ha,
  3214. pm8001_printk("HW_EVENT_LINK_ERR_PHY_RESET_FAILED \n"));
  3215. pm8001_hw_event_ack_req(pm8001_ha, 0,
  3216. HW_EVENT_LINK_ERR_PHY_RESET_FAILED,
  3217. port_id, phy_id, 0, 0);
  3218. sas_phy_disconnected(sas_phy);
  3219. phy->phy_attached = 0;
  3220. sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR);
  3221. break;
  3222. case HW_EVENT_PORT_RESET_TIMER_TMO:
  3223. PM8001_MSG_DBG(pm8001_ha,
  3224. pm8001_printk("HW_EVENT_PORT_RESET_TIMER_TMO \n"));
  3225. sas_phy_disconnected(sas_phy);
  3226. phy->phy_attached = 0;
  3227. sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR);
  3228. break;
  3229. case HW_EVENT_PORT_RECOVERY_TIMER_TMO:
  3230. PM8001_MSG_DBG(pm8001_ha,
  3231. pm8001_printk("HW_EVENT_PORT_RECOVERY_TIMER_TMO \n"));
  3232. sas_phy_disconnected(sas_phy);
  3233. phy->phy_attached = 0;
  3234. sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR);
  3235. break;
  3236. case HW_EVENT_PORT_RECOVER:
  3237. PM8001_MSG_DBG(pm8001_ha,
  3238. pm8001_printk("HW_EVENT_PORT_RECOVER \n"));
  3239. break;
  3240. case HW_EVENT_PORT_RESET_COMPLETE:
  3241. PM8001_MSG_DBG(pm8001_ha,
  3242. pm8001_printk("HW_EVENT_PORT_RESET_COMPLETE \n"));
  3243. break;
  3244. case EVENT_BROADCAST_ASYNCH_EVENT:
  3245. PM8001_MSG_DBG(pm8001_ha,
  3246. pm8001_printk("EVENT_BROADCAST_ASYNCH_EVENT\n"));
  3247. break;
  3248. default:
  3249. PM8001_MSG_DBG(pm8001_ha,
  3250. pm8001_printk("Unknown event type = %x\n", eventType));
  3251. break;
  3252. }
  3253. return 0;
  3254. }
  3255. /**
  3256. * process_one_iomb - process one outbound Queue memory block
  3257. * @pm8001_ha: our hba card information
  3258. * @piomb: IO message buffer
  3259. */
  3260. static void process_one_iomb(struct pm8001_hba_info *pm8001_ha, void *piomb)
  3261. {
  3262. u32 pHeader = (u32)*(u32 *)piomb;
  3263. u8 opc = (u8)((le32_to_cpu(pHeader)) & 0xFFF);
  3264. PM8001_MSG_DBG(pm8001_ha, pm8001_printk("process_one_iomb:\n"));
  3265. switch (opc) {
  3266. case OPC_OUB_ECHO:
  3267. PM8001_MSG_DBG(pm8001_ha, pm8001_printk("OPC_OUB_ECHO \n"));
  3268. break;
  3269. case OPC_OUB_HW_EVENT:
  3270. PM8001_MSG_DBG(pm8001_ha,
  3271. pm8001_printk("OPC_OUB_HW_EVENT \n"));
  3272. mpi_hw_event(pm8001_ha, piomb);
  3273. break;
  3274. case OPC_OUB_SSP_COMP:
  3275. PM8001_MSG_DBG(pm8001_ha,
  3276. pm8001_printk("OPC_OUB_SSP_COMP \n"));
  3277. mpi_ssp_completion(pm8001_ha, piomb);
  3278. break;
  3279. case OPC_OUB_SMP_COMP:
  3280. PM8001_MSG_DBG(pm8001_ha,
  3281. pm8001_printk("OPC_OUB_SMP_COMP \n"));
  3282. mpi_smp_completion(pm8001_ha, piomb);
  3283. break;
  3284. case OPC_OUB_LOCAL_PHY_CNTRL:
  3285. PM8001_MSG_DBG(pm8001_ha,
  3286. pm8001_printk("OPC_OUB_LOCAL_PHY_CNTRL\n"));
  3287. mpi_local_phy_ctl(pm8001_ha, piomb);
  3288. break;
  3289. case OPC_OUB_DEV_REGIST:
  3290. PM8001_MSG_DBG(pm8001_ha,
  3291. pm8001_printk("OPC_OUB_DEV_REGIST \n"));
  3292. mpi_reg_resp(pm8001_ha, piomb);
  3293. break;
  3294. case OPC_OUB_DEREG_DEV:
  3295. PM8001_MSG_DBG(pm8001_ha,
  3296. pm8001_printk("unresgister the deviece \n"));
  3297. mpi_dereg_resp(pm8001_ha, piomb);
  3298. break;
  3299. case OPC_OUB_GET_DEV_HANDLE:
  3300. PM8001_MSG_DBG(pm8001_ha,
  3301. pm8001_printk("OPC_OUB_GET_DEV_HANDLE \n"));
  3302. break;
  3303. case OPC_OUB_SATA_COMP:
  3304. PM8001_MSG_DBG(pm8001_ha,
  3305. pm8001_printk("OPC_OUB_SATA_COMP \n"));
  3306. mpi_sata_completion(pm8001_ha, piomb);
  3307. break;
  3308. case OPC_OUB_SATA_EVENT:
  3309. PM8001_MSG_DBG(pm8001_ha,
  3310. pm8001_printk("OPC_OUB_SATA_EVENT \n"));
  3311. mpi_sata_event(pm8001_ha, piomb);
  3312. break;
  3313. case OPC_OUB_SSP_EVENT:
  3314. PM8001_MSG_DBG(pm8001_ha,
  3315. pm8001_printk("OPC_OUB_SSP_EVENT\n"));
  3316. mpi_ssp_event(pm8001_ha, piomb);
  3317. break;
  3318. case OPC_OUB_DEV_HANDLE_ARRIV:
  3319. PM8001_MSG_DBG(pm8001_ha,
  3320. pm8001_printk("OPC_OUB_DEV_HANDLE_ARRIV\n"));
  3321. /*This is for target*/
  3322. break;
  3323. case OPC_OUB_SSP_RECV_EVENT:
  3324. PM8001_MSG_DBG(pm8001_ha,
  3325. pm8001_printk("OPC_OUB_SSP_RECV_EVENT\n"));
  3326. /*This is for target*/
  3327. break;
  3328. case OPC_OUB_DEV_INFO:
  3329. PM8001_MSG_DBG(pm8001_ha,
  3330. pm8001_printk("OPC_OUB_DEV_INFO\n"));
  3331. break;
  3332. case OPC_OUB_FW_FLASH_UPDATE:
  3333. PM8001_MSG_DBG(pm8001_ha,
  3334. pm8001_printk("OPC_OUB_FW_FLASH_UPDATE\n"));
  3335. mpi_fw_flash_update_resp(pm8001_ha, piomb);
  3336. break;
  3337. case OPC_OUB_GPIO_RESPONSE:
  3338. PM8001_MSG_DBG(pm8001_ha,
  3339. pm8001_printk("OPC_OUB_GPIO_RESPONSE\n"));
  3340. break;
  3341. case OPC_OUB_GPIO_EVENT:
  3342. PM8001_MSG_DBG(pm8001_ha,
  3343. pm8001_printk("OPC_OUB_GPIO_EVENT\n"));
  3344. break;
  3345. case OPC_OUB_GENERAL_EVENT:
  3346. PM8001_MSG_DBG(pm8001_ha,
  3347. pm8001_printk("OPC_OUB_GENERAL_EVENT\n"));
  3348. mpi_general_event(pm8001_ha, piomb);
  3349. break;
  3350. case OPC_OUB_SSP_ABORT_RSP:
  3351. PM8001_MSG_DBG(pm8001_ha,
  3352. pm8001_printk("OPC_OUB_SSP_ABORT_RSP\n"));
  3353. mpi_task_abort_resp(pm8001_ha, piomb);
  3354. break;
  3355. case OPC_OUB_SATA_ABORT_RSP:
  3356. PM8001_MSG_DBG(pm8001_ha,
  3357. pm8001_printk("OPC_OUB_SATA_ABORT_RSP\n"));
  3358. mpi_task_abort_resp(pm8001_ha, piomb);
  3359. break;
  3360. case OPC_OUB_SAS_DIAG_MODE_START_END:
  3361. PM8001_MSG_DBG(pm8001_ha,
  3362. pm8001_printk("OPC_OUB_SAS_DIAG_MODE_START_END\n"));
  3363. break;
  3364. case OPC_OUB_SAS_DIAG_EXECUTE:
  3365. PM8001_MSG_DBG(pm8001_ha,
  3366. pm8001_printk("OPC_OUB_SAS_DIAG_EXECUTE\n"));
  3367. break;
  3368. case OPC_OUB_GET_TIME_STAMP:
  3369. PM8001_MSG_DBG(pm8001_ha,
  3370. pm8001_printk("OPC_OUB_GET_TIME_STAMP\n"));
  3371. break;
  3372. case OPC_OUB_SAS_HW_EVENT_ACK:
  3373. PM8001_MSG_DBG(pm8001_ha,
  3374. pm8001_printk("OPC_OUB_SAS_HW_EVENT_ACK\n"));
  3375. break;
  3376. case OPC_OUB_PORT_CONTROL:
  3377. PM8001_MSG_DBG(pm8001_ha,
  3378. pm8001_printk("OPC_OUB_PORT_CONTROL\n"));
  3379. break;
  3380. case OPC_OUB_SMP_ABORT_RSP:
  3381. PM8001_MSG_DBG(pm8001_ha,
  3382. pm8001_printk("OPC_OUB_SMP_ABORT_RSP\n"));
  3383. mpi_task_abort_resp(pm8001_ha, piomb);
  3384. break;
  3385. case OPC_OUB_GET_NVMD_DATA:
  3386. PM8001_MSG_DBG(pm8001_ha,
  3387. pm8001_printk("OPC_OUB_GET_NVMD_DATA\n"));
  3388. mpi_get_nvmd_resp(pm8001_ha, piomb);
  3389. break;
  3390. case OPC_OUB_SET_NVMD_DATA:
  3391. PM8001_MSG_DBG(pm8001_ha,
  3392. pm8001_printk("OPC_OUB_SET_NVMD_DATA\n"));
  3393. mpi_set_nvmd_resp(pm8001_ha, piomb);
  3394. break;
  3395. case OPC_OUB_DEVICE_HANDLE_REMOVAL:
  3396. PM8001_MSG_DBG(pm8001_ha,
  3397. pm8001_printk("OPC_OUB_DEVICE_HANDLE_REMOVAL\n"));
  3398. break;
  3399. case OPC_OUB_SET_DEVICE_STATE:
  3400. PM8001_MSG_DBG(pm8001_ha,
  3401. pm8001_printk("OPC_OUB_SET_DEVICE_STATE\n"));
  3402. mpi_set_dev_state_resp(pm8001_ha, piomb);
  3403. break;
  3404. case OPC_OUB_GET_DEVICE_STATE:
  3405. PM8001_MSG_DBG(pm8001_ha,
  3406. pm8001_printk("OPC_OUB_GET_DEVICE_STATE\n"));
  3407. break;
  3408. case OPC_OUB_SET_DEV_INFO:
  3409. PM8001_MSG_DBG(pm8001_ha,
  3410. pm8001_printk("OPC_OUB_SET_DEV_INFO\n"));
  3411. break;
  3412. case OPC_OUB_SAS_RE_INITIALIZE:
  3413. PM8001_MSG_DBG(pm8001_ha,
  3414. pm8001_printk("OPC_OUB_SAS_RE_INITIALIZE\n"));
  3415. break;
  3416. default:
  3417. PM8001_MSG_DBG(pm8001_ha,
  3418. pm8001_printk("Unknown outbound Queue IOMB OPC = %x\n",
  3419. opc));
  3420. break;
  3421. }
  3422. }
  3423. static int process_oq(struct pm8001_hba_info *pm8001_ha)
  3424. {
  3425. struct outbound_queue_table *circularQ;
  3426. void *pMsg1 = NULL;
  3427. u8 bc = 0;
  3428. u32 ret = MPI_IO_STATUS_FAIL, processedMsgCount = 0;
  3429. circularQ = &pm8001_ha->outbnd_q_tbl[0];
  3430. do {
  3431. ret = mpi_msg_consume(pm8001_ha, circularQ, &pMsg1, &bc);
  3432. if (MPI_IO_STATUS_SUCCESS == ret) {
  3433. /* process the outbound message */
  3434. process_one_iomb(pm8001_ha, (void *)((u8 *)pMsg1 - 4));
  3435. /* free the message from the outbound circular buffer */
  3436. mpi_msg_free_set(pm8001_ha, circularQ, bc);
  3437. processedMsgCount++;
  3438. }
  3439. if (MPI_IO_STATUS_BUSY == ret) {
  3440. u32 producer_idx;
  3441. /* Update the producer index from SPC */
  3442. producer_idx = pm8001_read_32(circularQ->pi_virt);
  3443. circularQ->producer_index = cpu_to_le32(producer_idx);
  3444. if (circularQ->producer_index ==
  3445. circularQ->consumer_idx)
  3446. /* OQ is empty */
  3447. break;
  3448. }
  3449. } while (100 > processedMsgCount);/*end message processing if hit the
  3450. count*/
  3451. return ret;
  3452. }
  3453. /* PCI_DMA_... to our direction translation. */
  3454. static const u8 data_dir_flags[] = {
  3455. [PCI_DMA_BIDIRECTIONAL] = DATA_DIR_BYRECIPIENT,/* UNSPECIFIED */
  3456. [PCI_DMA_TODEVICE] = DATA_DIR_OUT,/* OUTBOUND */
  3457. [PCI_DMA_FROMDEVICE] = DATA_DIR_IN,/* INBOUND */
  3458. [PCI_DMA_NONE] = DATA_DIR_NONE,/* NO TRANSFER */
  3459. };
  3460. static void
  3461. pm8001_chip_make_sg(struct scatterlist *scatter, int nr, void *prd)
  3462. {
  3463. int i;
  3464. struct scatterlist *sg;
  3465. struct pm8001_prd *buf_prd = prd;
  3466. for_each_sg(scatter, sg, nr, i) {
  3467. buf_prd->addr = cpu_to_le64(sg_dma_address(sg));
  3468. buf_prd->im_len.len = cpu_to_le32(sg_dma_len(sg));
  3469. buf_prd->im_len.e = 0;
  3470. buf_prd++;
  3471. }
  3472. }
  3473. static void build_smp_cmd(u32 deviceID, u32 hTag, struct smp_req *psmp_cmd)
  3474. {
  3475. psmp_cmd->tag = cpu_to_le32(hTag);
  3476. psmp_cmd->device_id = cpu_to_le32(deviceID);
  3477. psmp_cmd->len_ip_ir = cpu_to_le32(1|(1 << 1));
  3478. }
  3479. /**
  3480. * pm8001_chip_smp_req - send a SMP task to FW
  3481. * @pm8001_ha: our hba card information.
  3482. * @ccb: the ccb information this request used.
  3483. */
  3484. static int pm8001_chip_smp_req(struct pm8001_hba_info *pm8001_ha,
  3485. struct pm8001_ccb_info *ccb)
  3486. {
  3487. int elem, rc;
  3488. struct sas_task *task = ccb->task;
  3489. struct domain_device *dev = task->dev;
  3490. struct pm8001_device *pm8001_dev = dev->lldd_dev;
  3491. struct scatterlist *sg_req, *sg_resp;
  3492. u32 req_len, resp_len;
  3493. struct smp_req smp_cmd;
  3494. u32 opc;
  3495. struct inbound_queue_table *circularQ;
  3496. memset(&smp_cmd, 0, sizeof(smp_cmd));
  3497. /*
  3498. * DMA-map SMP request, response buffers
  3499. */
  3500. sg_req = &task->smp_task.smp_req;
  3501. elem = dma_map_sg(pm8001_ha->dev, sg_req, 1, PCI_DMA_TODEVICE);
  3502. if (!elem)
  3503. return -ENOMEM;
  3504. req_len = sg_dma_len(sg_req);
  3505. sg_resp = &task->smp_task.smp_resp;
  3506. elem = dma_map_sg(pm8001_ha->dev, sg_resp, 1, PCI_DMA_FROMDEVICE);
  3507. if (!elem) {
  3508. rc = -ENOMEM;
  3509. goto err_out;
  3510. }
  3511. resp_len = sg_dma_len(sg_resp);
  3512. /* must be in dwords */
  3513. if ((req_len & 0x3) || (resp_len & 0x3)) {
  3514. rc = -EINVAL;
  3515. goto err_out_2;
  3516. }
  3517. opc = OPC_INB_SMP_REQUEST;
  3518. circularQ = &pm8001_ha->inbnd_q_tbl[0];
  3519. smp_cmd.tag = cpu_to_le32(ccb->ccb_tag);
  3520. smp_cmd.long_smp_req.long_req_addr =
  3521. cpu_to_le64((u64)sg_dma_address(&task->smp_task.smp_req));
  3522. smp_cmd.long_smp_req.long_req_size =
  3523. cpu_to_le32((u32)sg_dma_len(&task->smp_task.smp_req)-4);
  3524. smp_cmd.long_smp_req.long_resp_addr =
  3525. cpu_to_le64((u64)sg_dma_address(&task->smp_task.smp_resp));
  3526. smp_cmd.long_smp_req.long_resp_size =
  3527. cpu_to_le32((u32)sg_dma_len(&task->smp_task.smp_resp)-4);
  3528. build_smp_cmd(pm8001_dev->device_id, smp_cmd.tag, &smp_cmd);
  3529. mpi_build_cmd(pm8001_ha, circularQ, opc, (u32 *)&smp_cmd);
  3530. return 0;
  3531. err_out_2:
  3532. dma_unmap_sg(pm8001_ha->dev, &ccb->task->smp_task.smp_resp, 1,
  3533. PCI_DMA_FROMDEVICE);
  3534. err_out:
  3535. dma_unmap_sg(pm8001_ha->dev, &ccb->task->smp_task.smp_req, 1,
  3536. PCI_DMA_TODEVICE);
  3537. return rc;
  3538. }
  3539. /**
  3540. * pm8001_chip_ssp_io_req - send a SSP task to FW
  3541. * @pm8001_ha: our hba card information.
  3542. * @ccb: the ccb information this request used.
  3543. */
  3544. static int pm8001_chip_ssp_io_req(struct pm8001_hba_info *pm8001_ha,
  3545. struct pm8001_ccb_info *ccb)
  3546. {
  3547. struct sas_task *task = ccb->task;
  3548. struct domain_device *dev = task->dev;
  3549. struct pm8001_device *pm8001_dev = dev->lldd_dev;
  3550. struct ssp_ini_io_start_req ssp_cmd;
  3551. u32 tag = ccb->ccb_tag;
  3552. __le64 phys_addr;
  3553. struct inbound_queue_table *circularQ;
  3554. u32 opc = OPC_INB_SSPINIIOSTART;
  3555. memset(&ssp_cmd, 0, sizeof(ssp_cmd));
  3556. memcpy(ssp_cmd.ssp_iu.lun, task->ssp_task.LUN, 8);
  3557. ssp_cmd.dir_m_tlr = data_dir_flags[task->data_dir] << 8 | 0x0;/*0 for
  3558. SAS 1.1 compatible TLR*/
  3559. ssp_cmd.data_len = cpu_to_le32(task->total_xfer_len);
  3560. ssp_cmd.device_id = cpu_to_le32(pm8001_dev->device_id);
  3561. ssp_cmd.tag = cpu_to_le32(tag);
  3562. if (task->ssp_task.enable_first_burst)
  3563. ssp_cmd.ssp_iu.efb_prio_attr |= 0x80;
  3564. ssp_cmd.ssp_iu.efb_prio_attr |= (task->ssp_task.task_prio << 3);
  3565. ssp_cmd.ssp_iu.efb_prio_attr |= (task->ssp_task.task_attr & 7);
  3566. memcpy(ssp_cmd.ssp_iu.cdb, task->ssp_task.cdb, 16);
  3567. circularQ = &pm8001_ha->inbnd_q_tbl[0];
  3568. /* fill in PRD (scatter/gather) table, if any */
  3569. if (task->num_scatter > 1) {
  3570. pm8001_chip_make_sg(task->scatter, ccb->n_elem, ccb->buf_prd);
  3571. phys_addr = cpu_to_le64(ccb->ccb_dma_handle +
  3572. offsetof(struct pm8001_ccb_info, buf_prd[0]));
  3573. ssp_cmd.addr_low = lower_32_bits(phys_addr);
  3574. ssp_cmd.addr_high = upper_32_bits(phys_addr);
  3575. ssp_cmd.esgl = cpu_to_le32(1<<31);
  3576. } else if (task->num_scatter == 1) {
  3577. __le64 dma_addr = cpu_to_le64(sg_dma_address(task->scatter));
  3578. ssp_cmd.addr_low = lower_32_bits(dma_addr);
  3579. ssp_cmd.addr_high = upper_32_bits(dma_addr);
  3580. ssp_cmd.len = cpu_to_le32(task->total_xfer_len);
  3581. ssp_cmd.esgl = 0;
  3582. } else if (task->num_scatter == 0) {
  3583. ssp_cmd.addr_low = 0;
  3584. ssp_cmd.addr_high = 0;
  3585. ssp_cmd.len = cpu_to_le32(task->total_xfer_len);
  3586. ssp_cmd.esgl = 0;
  3587. }
  3588. mpi_build_cmd(pm8001_ha, circularQ, opc, &ssp_cmd);
  3589. return 0;
  3590. }
  3591. static int pm8001_chip_sata_req(struct pm8001_hba_info *pm8001_ha,
  3592. struct pm8001_ccb_info *ccb)
  3593. {
  3594. struct sas_task *task = ccb->task;
  3595. struct domain_device *dev = task->dev;
  3596. struct pm8001_device *pm8001_ha_dev = dev->lldd_dev;
  3597. u32 tag = ccb->ccb_tag;
  3598. struct sata_start_req sata_cmd;
  3599. u32 hdr_tag, ncg_tag = 0;
  3600. __le64 phys_addr;
  3601. u32 ATAP = 0x0;
  3602. u32 dir;
  3603. struct inbound_queue_table *circularQ;
  3604. u32 opc = OPC_INB_SATA_HOST_OPSTART;
  3605. memset(&sata_cmd, 0, sizeof(sata_cmd));
  3606. circularQ = &pm8001_ha->inbnd_q_tbl[0];
  3607. if (task->data_dir == PCI_DMA_NONE) {
  3608. ATAP = 0x04; /* no data*/
  3609. PM8001_IO_DBG(pm8001_ha, pm8001_printk("no data \n"));
  3610. } else if (likely(!task->ata_task.device_control_reg_update)) {
  3611. if (task->ata_task.dma_xfer) {
  3612. ATAP = 0x06; /* DMA */
  3613. PM8001_IO_DBG(pm8001_ha, pm8001_printk("DMA \n"));
  3614. } else {
  3615. ATAP = 0x05; /* PIO*/
  3616. PM8001_IO_DBG(pm8001_ha, pm8001_printk("PIO \n"));
  3617. }
  3618. if (task->ata_task.use_ncq &&
  3619. dev->sata_dev.command_set != ATAPI_COMMAND_SET) {
  3620. ATAP = 0x07; /* FPDMA */
  3621. PM8001_IO_DBG(pm8001_ha, pm8001_printk("FPDMA \n"));
  3622. }
  3623. }
  3624. if (task->ata_task.use_ncq && pm8001_get_ncq_tag(task, &hdr_tag))
  3625. ncg_tag = cpu_to_le32(hdr_tag);
  3626. dir = data_dir_flags[task->data_dir] << 8;
  3627. sata_cmd.tag = cpu_to_le32(tag);
  3628. sata_cmd.device_id = cpu_to_le32(pm8001_ha_dev->device_id);
  3629. sata_cmd.data_len = cpu_to_le32(task->total_xfer_len);
  3630. sata_cmd.ncqtag_atap_dir_m =
  3631. cpu_to_le32(((ncg_tag & 0xff)<<16)|((ATAP & 0x3f) << 10) | dir);
  3632. sata_cmd.sata_fis = task->ata_task.fis;
  3633. if (likely(!task->ata_task.device_control_reg_update))
  3634. sata_cmd.sata_fis.flags |= 0x80;/* C=1: update ATA cmd reg */
  3635. sata_cmd.sata_fis.flags &= 0xF0;/* PM_PORT field shall be 0 */
  3636. /* fill in PRD (scatter/gather) table, if any */
  3637. if (task->num_scatter > 1) {
  3638. pm8001_chip_make_sg(task->scatter, ccb->n_elem, ccb->buf_prd);
  3639. phys_addr = cpu_to_le64(ccb->ccb_dma_handle +
  3640. offsetof(struct pm8001_ccb_info, buf_prd[0]));
  3641. sata_cmd.addr_low = lower_32_bits(phys_addr);
  3642. sata_cmd.addr_high = upper_32_bits(phys_addr);
  3643. sata_cmd.esgl = cpu_to_le32(1 << 31);
  3644. } else if (task->num_scatter == 1) {
  3645. __le64 dma_addr = cpu_to_le64(sg_dma_address(task->scatter));
  3646. sata_cmd.addr_low = lower_32_bits(dma_addr);
  3647. sata_cmd.addr_high = upper_32_bits(dma_addr);
  3648. sata_cmd.len = cpu_to_le32(task->total_xfer_len);
  3649. sata_cmd.esgl = 0;
  3650. } else if (task->num_scatter == 0) {
  3651. sata_cmd.addr_low = 0;
  3652. sata_cmd.addr_high = 0;
  3653. sata_cmd.len = cpu_to_le32(task->total_xfer_len);
  3654. sata_cmd.esgl = 0;
  3655. }
  3656. mpi_build_cmd(pm8001_ha, circularQ, opc, &sata_cmd);
  3657. return 0;
  3658. }
  3659. /**
  3660. * pm8001_chip_phy_start_req - start phy via PHY_START COMMAND
  3661. * @pm8001_ha: our hba card information.
  3662. * @num: the inbound queue number
  3663. * @phy_id: the phy id which we wanted to start up.
  3664. */
  3665. static int
  3666. pm8001_chip_phy_start_req(struct pm8001_hba_info *pm8001_ha, u8 phy_id)
  3667. {
  3668. struct phy_start_req payload;
  3669. struct inbound_queue_table *circularQ;
  3670. u32 tag = 0x01;
  3671. u32 opcode = OPC_INB_PHYSTART;
  3672. circularQ = &pm8001_ha->inbnd_q_tbl[0];
  3673. memset(&payload, 0, sizeof(payload));
  3674. payload.tag = cpu_to_le32(tag);
  3675. /*
  3676. ** [0:7] PHY Identifier
  3677. ** [8:11] link rate 1.5G, 3G, 6G
  3678. ** [12:13] link mode 01b SAS mode; 10b SATA mode; 11b both
  3679. ** [14] 0b disable spin up hold; 1b enable spin up hold
  3680. */
  3681. payload.ase_sh_lm_slr_phyid = cpu_to_le32(SPINHOLD_DISABLE |
  3682. LINKMODE_AUTO | LINKRATE_15 |
  3683. LINKRATE_30 | LINKRATE_60 | phy_id);
  3684. payload.sas_identify.dev_type = SAS_END_DEV;
  3685. payload.sas_identify.initiator_bits = SAS_PROTOCOL_ALL;
  3686. memcpy(payload.sas_identify.sas_addr,
  3687. pm8001_ha->sas_addr, SAS_ADDR_SIZE);
  3688. payload.sas_identify.phy_id = phy_id;
  3689. mpi_build_cmd(pm8001_ha, circularQ, opcode, &payload);
  3690. return 0;
  3691. }
  3692. /**
  3693. * pm8001_chip_phy_stop_req - start phy via PHY_STOP COMMAND
  3694. * @pm8001_ha: our hba card information.
  3695. * @num: the inbound queue number
  3696. * @phy_id: the phy id which we wanted to start up.
  3697. */
  3698. static int pm8001_chip_phy_stop_req(struct pm8001_hba_info *pm8001_ha,
  3699. u8 phy_id)
  3700. {
  3701. struct phy_stop_req payload;
  3702. struct inbound_queue_table *circularQ;
  3703. u32 tag = 0x01;
  3704. u32 opcode = OPC_INB_PHYSTOP;
  3705. circularQ = &pm8001_ha->inbnd_q_tbl[0];
  3706. memset(&payload, 0, sizeof(payload));
  3707. payload.tag = cpu_to_le32(tag);
  3708. payload.phy_id = cpu_to_le32(phy_id);
  3709. mpi_build_cmd(pm8001_ha, circularQ, opcode, &payload);
  3710. return 0;
  3711. }
  3712. /**
  3713. * see comments on mpi_reg_resp.
  3714. */
  3715. static int pm8001_chip_reg_dev_req(struct pm8001_hba_info *pm8001_ha,
  3716. struct pm8001_device *pm8001_dev, u32 flag)
  3717. {
  3718. struct reg_dev_req payload;
  3719. u32 opc;
  3720. u32 stp_sspsmp_sata = 0x4;
  3721. struct inbound_queue_table *circularQ;
  3722. u32 linkrate, phy_id;
  3723. u32 rc, tag = 0xdeadbeef;
  3724. struct pm8001_ccb_info *ccb;
  3725. u8 retryFlag = 0x1;
  3726. u16 firstBurstSize = 0;
  3727. u16 ITNT = 2000;
  3728. struct domain_device *dev = pm8001_dev->sas_device;
  3729. struct domain_device *parent_dev = dev->parent;
  3730. circularQ = &pm8001_ha->inbnd_q_tbl[0];
  3731. memset(&payload, 0, sizeof(payload));
  3732. rc = pm8001_tag_alloc(pm8001_ha, &tag);
  3733. if (rc)
  3734. return rc;
  3735. ccb = &pm8001_ha->ccb_info[tag];
  3736. ccb->device = pm8001_dev;
  3737. ccb->ccb_tag = tag;
  3738. payload.tag = cpu_to_le32(tag);
  3739. if (flag == 1)
  3740. stp_sspsmp_sata = 0x02; /*direct attached sata */
  3741. else {
  3742. if (pm8001_dev->dev_type == SATA_DEV)
  3743. stp_sspsmp_sata = 0x00; /* stp*/
  3744. else if (pm8001_dev->dev_type == SAS_END_DEV ||
  3745. pm8001_dev->dev_type == EDGE_DEV ||
  3746. pm8001_dev->dev_type == FANOUT_DEV)
  3747. stp_sspsmp_sata = 0x01; /*ssp or smp*/
  3748. }
  3749. if (parent_dev && DEV_IS_EXPANDER(parent_dev->dev_type))
  3750. phy_id = parent_dev->ex_dev.ex_phy->phy_id;
  3751. else
  3752. phy_id = pm8001_dev->attached_phy;
  3753. opc = OPC_INB_REG_DEV;
  3754. linkrate = (pm8001_dev->sas_device->linkrate < dev->port->linkrate) ?
  3755. pm8001_dev->sas_device->linkrate : dev->port->linkrate;
  3756. payload.phyid_portid =
  3757. cpu_to_le32(((pm8001_dev->sas_device->port->id) & 0x0F) |
  3758. ((phy_id & 0x0F) << 4));
  3759. payload.dtype_dlr_retry = cpu_to_le32((retryFlag & 0x01) |
  3760. ((linkrate & 0x0F) * 0x1000000) |
  3761. ((stp_sspsmp_sata & 0x03) * 0x10000000));
  3762. payload.firstburstsize_ITNexustimeout =
  3763. cpu_to_le32(ITNT | (firstBurstSize * 0x10000));
  3764. memcpy(&payload.sas_addr_hi, pm8001_dev->sas_device->sas_addr,
  3765. SAS_ADDR_SIZE);
  3766. mpi_build_cmd(pm8001_ha, circularQ, opc, &payload);
  3767. return 0;
  3768. }
  3769. /**
  3770. * see comments on mpi_reg_resp.
  3771. */
  3772. static int pm8001_chip_dereg_dev_req(struct pm8001_hba_info *pm8001_ha,
  3773. u32 device_id)
  3774. {
  3775. struct dereg_dev_req payload;
  3776. u32 opc = OPC_INB_DEREG_DEV_HANDLE;
  3777. struct inbound_queue_table *circularQ;
  3778. circularQ = &pm8001_ha->inbnd_q_tbl[0];
  3779. memset((u8 *)&payload, 0, sizeof(payload));
  3780. payload.tag = 1;
  3781. payload.device_id = cpu_to_le32(device_id);
  3782. PM8001_MSG_DBG(pm8001_ha,
  3783. pm8001_printk("unregister device device_id = %d\n", device_id));
  3784. mpi_build_cmd(pm8001_ha, circularQ, opc, &payload);
  3785. return 0;
  3786. }
  3787. /**
  3788. * pm8001_chip_phy_ctl_req - support the local phy operation
  3789. * @pm8001_ha: our hba card information.
  3790. * @num: the inbound queue number
  3791. * @phy_id: the phy id which we wanted to operate
  3792. * @phy_op:
  3793. */
  3794. static int pm8001_chip_phy_ctl_req(struct pm8001_hba_info *pm8001_ha,
  3795. u32 phyId, u32 phy_op)
  3796. {
  3797. struct local_phy_ctl_req payload;
  3798. struct inbound_queue_table *circularQ;
  3799. u32 opc = OPC_INB_LOCAL_PHY_CONTROL;
  3800. memset((u8 *)&payload, 0, sizeof(payload));
  3801. circularQ = &pm8001_ha->inbnd_q_tbl[0];
  3802. payload.tag = 1;
  3803. payload.phyop_phyid =
  3804. cpu_to_le32(((phy_op & 0xff) << 8) | (phyId & 0x0F));
  3805. mpi_build_cmd(pm8001_ha, circularQ, opc, &payload);
  3806. return 0;
  3807. }
  3808. static u32 pm8001_chip_is_our_interupt(struct pm8001_hba_info *pm8001_ha)
  3809. {
  3810. u32 value;
  3811. #ifdef PM8001_USE_MSIX
  3812. return 1;
  3813. #endif
  3814. value = pm8001_cr32(pm8001_ha, 0, MSGU_ODR);
  3815. if (value)
  3816. return 1;
  3817. return 0;
  3818. }
  3819. /**
  3820. * pm8001_chip_isr - PM8001 isr handler.
  3821. * @pm8001_ha: our hba card information.
  3822. * @irq: irq number.
  3823. * @stat: stat.
  3824. */
  3825. static void
  3826. pm8001_chip_isr(struct pm8001_hba_info *pm8001_ha)
  3827. {
  3828. pm8001_chip_interrupt_disable(pm8001_ha);
  3829. process_oq(pm8001_ha);
  3830. pm8001_chip_interrupt_enable(pm8001_ha);
  3831. }
  3832. static int send_task_abort(struct pm8001_hba_info *pm8001_ha, u32 opc,
  3833. u32 dev_id, u8 flag, u32 task_tag, u32 cmd_tag)
  3834. {
  3835. struct task_abort_req task_abort;
  3836. struct inbound_queue_table *circularQ;
  3837. circularQ = &pm8001_ha->inbnd_q_tbl[0];
  3838. memset(&task_abort, 0, sizeof(task_abort));
  3839. if (ABORT_SINGLE == (flag & ABORT_MASK)) {
  3840. task_abort.abort_all = 0;
  3841. task_abort.device_id = cpu_to_le32(dev_id);
  3842. task_abort.tag_to_abort = cpu_to_le32(task_tag);
  3843. task_abort.tag = cpu_to_le32(cmd_tag);
  3844. } else if (ABORT_ALL == (flag & ABORT_MASK)) {
  3845. task_abort.abort_all = cpu_to_le32(1);
  3846. task_abort.device_id = cpu_to_le32(dev_id);
  3847. task_abort.tag = cpu_to_le32(cmd_tag);
  3848. }
  3849. mpi_build_cmd(pm8001_ha, circularQ, opc, &task_abort);
  3850. return 0;
  3851. }
  3852. /**
  3853. * pm8001_chip_abort_task - SAS abort task when error or exception happened.
  3854. * @task: the task we wanted to aborted.
  3855. * @flag: the abort flag.
  3856. */
  3857. static int pm8001_chip_abort_task(struct pm8001_hba_info *pm8001_ha,
  3858. struct pm8001_device *pm8001_dev, u8 flag, u32 task_tag, u32 cmd_tag)
  3859. {
  3860. u32 opc, device_id;
  3861. int rc = TMF_RESP_FUNC_FAILED;
  3862. PM8001_IO_DBG(pm8001_ha, pm8001_printk("Abort tag[%x]", task_tag));
  3863. if (pm8001_dev->dev_type == SAS_END_DEV)
  3864. opc = OPC_INB_SSP_ABORT;
  3865. else if (pm8001_dev->dev_type == SATA_DEV)
  3866. opc = OPC_INB_SATA_ABORT;
  3867. else
  3868. opc = OPC_INB_SMP_ABORT;/* SMP */
  3869. device_id = pm8001_dev->device_id;
  3870. rc = send_task_abort(pm8001_ha, opc, device_id, flag,
  3871. task_tag, cmd_tag);
  3872. if (rc != TMF_RESP_FUNC_COMPLETE)
  3873. PM8001_IO_DBG(pm8001_ha, pm8001_printk("rc= %d\n", rc));
  3874. return rc;
  3875. }
  3876. /**
  3877. * pm8001_chip_ssp_tm_req - built the task managment command.
  3878. * @pm8001_ha: our hba card information.
  3879. * @ccb: the ccb information.
  3880. * @tmf: task management function.
  3881. */
  3882. static int pm8001_chip_ssp_tm_req(struct pm8001_hba_info *pm8001_ha,
  3883. struct pm8001_ccb_info *ccb, struct pm8001_tmf_task *tmf)
  3884. {
  3885. struct sas_task *task = ccb->task;
  3886. struct domain_device *dev = task->dev;
  3887. struct pm8001_device *pm8001_dev = dev->lldd_dev;
  3888. u32 opc = OPC_INB_SSPINITMSTART;
  3889. struct inbound_queue_table *circularQ;
  3890. struct ssp_ini_tm_start_req sspTMCmd;
  3891. memset(&sspTMCmd, 0, sizeof(sspTMCmd));
  3892. sspTMCmd.device_id = cpu_to_le32(pm8001_dev->device_id);
  3893. sspTMCmd.relate_tag = cpu_to_le32(tmf->tag_of_task_to_be_managed);
  3894. sspTMCmd.tmf = cpu_to_le32(tmf->tmf);
  3895. sspTMCmd.ds_ads_m = cpu_to_le32(1 << 2);
  3896. memcpy(sspTMCmd.lun, task->ssp_task.LUN, 8);
  3897. sspTMCmd.tag = cpu_to_le32(ccb->ccb_tag);
  3898. circularQ = &pm8001_ha->inbnd_q_tbl[0];
  3899. mpi_build_cmd(pm8001_ha, circularQ, opc, &sspTMCmd);
  3900. return 0;
  3901. }
  3902. static int pm8001_chip_get_nvmd_req(struct pm8001_hba_info *pm8001_ha,
  3903. void *payload)
  3904. {
  3905. u32 opc = OPC_INB_GET_NVMD_DATA;
  3906. u32 nvmd_type;
  3907. u32 rc;
  3908. u32 tag;
  3909. struct pm8001_ccb_info *ccb;
  3910. struct inbound_queue_table *circularQ;
  3911. struct get_nvm_data_req nvmd_req;
  3912. struct fw_control_ex *fw_control_context;
  3913. struct pm8001_ioctl_payload *ioctl_payload = payload;
  3914. nvmd_type = ioctl_payload->minor_function;
  3915. fw_control_context = kzalloc(sizeof(struct fw_control_ex), GFP_KERNEL);
  3916. fw_control_context->usrAddr = (u8 *)&ioctl_payload->func_specific[0];
  3917. fw_control_context->len = ioctl_payload->length;
  3918. circularQ = &pm8001_ha->inbnd_q_tbl[0];
  3919. memset(&nvmd_req, 0, sizeof(nvmd_req));
  3920. rc = pm8001_tag_alloc(pm8001_ha, &tag);
  3921. if (rc)
  3922. return rc;
  3923. ccb = &pm8001_ha->ccb_info[tag];
  3924. ccb->ccb_tag = tag;
  3925. ccb->fw_control_context = fw_control_context;
  3926. nvmd_req.tag = cpu_to_le32(tag);
  3927. switch (nvmd_type) {
  3928. case TWI_DEVICE: {
  3929. u32 twi_addr, twi_page_size;
  3930. twi_addr = 0xa8;
  3931. twi_page_size = 2;
  3932. nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | twi_addr << 16 |
  3933. twi_page_size << 8 | TWI_DEVICE);
  3934. nvmd_req.resp_len = cpu_to_le32(ioctl_payload->length);
  3935. nvmd_req.resp_addr_hi =
  3936. cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi);
  3937. nvmd_req.resp_addr_lo =
  3938. cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo);
  3939. break;
  3940. }
  3941. case C_SEEPROM: {
  3942. nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | C_SEEPROM);
  3943. nvmd_req.resp_len = cpu_to_le32(ioctl_payload->length);
  3944. nvmd_req.resp_addr_hi =
  3945. cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi);
  3946. nvmd_req.resp_addr_lo =
  3947. cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo);
  3948. break;
  3949. }
  3950. case VPD_FLASH: {
  3951. nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | VPD_FLASH);
  3952. nvmd_req.resp_len = cpu_to_le32(ioctl_payload->length);
  3953. nvmd_req.resp_addr_hi =
  3954. cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi);
  3955. nvmd_req.resp_addr_lo =
  3956. cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo);
  3957. break;
  3958. }
  3959. case EXPAN_ROM: {
  3960. nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | EXPAN_ROM);
  3961. nvmd_req.resp_len = cpu_to_le32(ioctl_payload->length);
  3962. nvmd_req.resp_addr_hi =
  3963. cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi);
  3964. nvmd_req.resp_addr_lo =
  3965. cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo);
  3966. break;
  3967. }
  3968. default:
  3969. break;
  3970. }
  3971. mpi_build_cmd(pm8001_ha, circularQ, opc, &nvmd_req);
  3972. return 0;
  3973. }
  3974. static int pm8001_chip_set_nvmd_req(struct pm8001_hba_info *pm8001_ha,
  3975. void *payload)
  3976. {
  3977. u32 opc = OPC_INB_SET_NVMD_DATA;
  3978. u32 nvmd_type;
  3979. u32 rc;
  3980. u32 tag;
  3981. struct pm8001_ccb_info *ccb;
  3982. struct inbound_queue_table *circularQ;
  3983. struct set_nvm_data_req nvmd_req;
  3984. struct fw_control_ex *fw_control_context;
  3985. struct pm8001_ioctl_payload *ioctl_payload = payload;
  3986. nvmd_type = ioctl_payload->minor_function;
  3987. fw_control_context = kzalloc(sizeof(struct fw_control_ex), GFP_KERNEL);
  3988. circularQ = &pm8001_ha->inbnd_q_tbl[0];
  3989. memcpy(pm8001_ha->memoryMap.region[NVMD].virt_ptr,
  3990. ioctl_payload->func_specific,
  3991. ioctl_payload->length);
  3992. memset(&nvmd_req, 0, sizeof(nvmd_req));
  3993. rc = pm8001_tag_alloc(pm8001_ha, &tag);
  3994. if (rc)
  3995. return rc;
  3996. ccb = &pm8001_ha->ccb_info[tag];
  3997. ccb->fw_control_context = fw_control_context;
  3998. ccb->ccb_tag = tag;
  3999. nvmd_req.tag = cpu_to_le32(tag);
  4000. switch (nvmd_type) {
  4001. case TWI_DEVICE: {
  4002. u32 twi_addr, twi_page_size;
  4003. twi_addr = 0xa8;
  4004. twi_page_size = 2;
  4005. nvmd_req.reserved[0] = cpu_to_le32(0xFEDCBA98);
  4006. nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | twi_addr << 16 |
  4007. twi_page_size << 8 | TWI_DEVICE);
  4008. nvmd_req.resp_len = cpu_to_le32(ioctl_payload->length);
  4009. nvmd_req.resp_addr_hi =
  4010. cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi);
  4011. nvmd_req.resp_addr_lo =
  4012. cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo);
  4013. break;
  4014. }
  4015. case C_SEEPROM:
  4016. nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | C_SEEPROM);
  4017. nvmd_req.resp_len = cpu_to_le32(ioctl_payload->length);
  4018. nvmd_req.reserved[0] = cpu_to_le32(0xFEDCBA98);
  4019. nvmd_req.resp_addr_hi =
  4020. cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi);
  4021. nvmd_req.resp_addr_lo =
  4022. cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo);
  4023. break;
  4024. case VPD_FLASH:
  4025. nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | VPD_FLASH);
  4026. nvmd_req.resp_len = cpu_to_le32(ioctl_payload->length);
  4027. nvmd_req.reserved[0] = cpu_to_le32(0xFEDCBA98);
  4028. nvmd_req.resp_addr_hi =
  4029. cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi);
  4030. nvmd_req.resp_addr_lo =
  4031. cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo);
  4032. break;
  4033. case EXPAN_ROM:
  4034. nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | EXPAN_ROM);
  4035. nvmd_req.resp_len = cpu_to_le32(ioctl_payload->length);
  4036. nvmd_req.reserved[0] = cpu_to_le32(0xFEDCBA98);
  4037. nvmd_req.resp_addr_hi =
  4038. cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi);
  4039. nvmd_req.resp_addr_lo =
  4040. cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo);
  4041. break;
  4042. default:
  4043. break;
  4044. }
  4045. mpi_build_cmd(pm8001_ha, circularQ, opc, &nvmd_req);
  4046. return 0;
  4047. }
  4048. /**
  4049. * pm8001_chip_fw_flash_update_build - support the firmware update operation
  4050. * @pm8001_ha: our hba card information.
  4051. * @fw_flash_updata_info: firmware flash update param
  4052. */
  4053. static int
  4054. pm8001_chip_fw_flash_update_build(struct pm8001_hba_info *pm8001_ha,
  4055. void *fw_flash_updata_info, u32 tag)
  4056. {
  4057. struct fw_flash_Update_req payload;
  4058. struct fw_flash_updata_info *info;
  4059. struct inbound_queue_table *circularQ;
  4060. u32 opc = OPC_INB_FW_FLASH_UPDATE;
  4061. memset((u8 *)&payload, 0, sizeof(struct fw_flash_Update_req));
  4062. circularQ = &pm8001_ha->inbnd_q_tbl[0];
  4063. info = fw_flash_updata_info;
  4064. payload.tag = cpu_to_le32(tag);
  4065. payload.cur_image_len = cpu_to_le32(info->cur_image_len);
  4066. payload.cur_image_offset = cpu_to_le32(info->cur_image_offset);
  4067. payload.total_image_len = cpu_to_le32(info->total_image_len);
  4068. payload.len = info->sgl.im_len.len ;
  4069. payload.sgl_addr_lo = lower_32_bits(info->sgl.addr);
  4070. payload.sgl_addr_hi = upper_32_bits(info->sgl.addr);
  4071. mpi_build_cmd(pm8001_ha, circularQ, opc, &payload);
  4072. return 0;
  4073. }
  4074. static int
  4075. pm8001_chip_fw_flash_update_req(struct pm8001_hba_info *pm8001_ha,
  4076. void *payload)
  4077. {
  4078. struct fw_flash_updata_info flash_update_info;
  4079. struct fw_control_info *fw_control;
  4080. struct fw_control_ex *fw_control_context;
  4081. u32 rc;
  4082. u32 tag;
  4083. struct pm8001_ccb_info *ccb;
  4084. void *buffer = NULL;
  4085. dma_addr_t phys_addr;
  4086. u32 phys_addr_hi;
  4087. u32 phys_addr_lo;
  4088. struct pm8001_ioctl_payload *ioctl_payload = payload;
  4089. fw_control_context = kzalloc(sizeof(struct fw_control_ex), GFP_KERNEL);
  4090. fw_control = (struct fw_control_info *)&ioctl_payload->func_specific[0];
  4091. if (fw_control->len != 0) {
  4092. if (pm8001_mem_alloc(pm8001_ha->pdev,
  4093. (void **)&buffer,
  4094. &phys_addr,
  4095. &phys_addr_hi,
  4096. &phys_addr_lo,
  4097. fw_control->len, 0) != 0) {
  4098. PM8001_FAIL_DBG(pm8001_ha,
  4099. pm8001_printk("Mem alloc failure\n"));
  4100. return -ENOMEM;
  4101. }
  4102. }
  4103. memset((void *)buffer, 0, fw_control->len);
  4104. memcpy((void *)buffer, fw_control->buffer, fw_control->len);
  4105. flash_update_info.sgl.addr = cpu_to_le64(phys_addr);
  4106. flash_update_info.sgl.im_len.len = cpu_to_le32(fw_control->len);
  4107. flash_update_info.sgl.im_len.e = 0;
  4108. flash_update_info.cur_image_offset = fw_control->offset;
  4109. flash_update_info.cur_image_len = fw_control->len;
  4110. flash_update_info.total_image_len = fw_control->size;
  4111. fw_control_context->fw_control = fw_control;
  4112. fw_control_context->virtAddr = buffer;
  4113. fw_control_context->len = fw_control->len;
  4114. rc = pm8001_tag_alloc(pm8001_ha, &tag);
  4115. if (rc)
  4116. return rc;
  4117. ccb = &pm8001_ha->ccb_info[tag];
  4118. ccb->fw_control_context = fw_control_context;
  4119. ccb->ccb_tag = tag;
  4120. pm8001_chip_fw_flash_update_build(pm8001_ha, &flash_update_info, tag);
  4121. return 0;
  4122. }
  4123. static int
  4124. pm8001_chip_set_dev_state_req(struct pm8001_hba_info *pm8001_ha,
  4125. struct pm8001_device *pm8001_dev, u32 state)
  4126. {
  4127. struct set_dev_state_req payload;
  4128. struct inbound_queue_table *circularQ;
  4129. struct pm8001_ccb_info *ccb;
  4130. u32 rc;
  4131. u32 tag;
  4132. u32 opc = OPC_INB_SET_DEVICE_STATE;
  4133. memset((u8 *)&payload, 0, sizeof(payload));
  4134. rc = pm8001_tag_alloc(pm8001_ha, &tag);
  4135. if (rc)
  4136. return -1;
  4137. ccb = &pm8001_ha->ccb_info[tag];
  4138. ccb->ccb_tag = tag;
  4139. ccb->device = pm8001_dev;
  4140. circularQ = &pm8001_ha->inbnd_q_tbl[0];
  4141. payload.tag = cpu_to_le32(tag);
  4142. payload.device_id = cpu_to_le32(pm8001_dev->device_id);
  4143. payload.nds = cpu_to_le32(state);
  4144. mpi_build_cmd(pm8001_ha, circularQ, opc, &payload);
  4145. return 0;
  4146. }
  4147. const struct pm8001_dispatch pm8001_8001_dispatch = {
  4148. .name = "pmc8001",
  4149. .chip_init = pm8001_chip_init,
  4150. .chip_soft_rst = pm8001_chip_soft_rst,
  4151. .chip_rst = pm8001_hw_chip_rst,
  4152. .chip_iounmap = pm8001_chip_iounmap,
  4153. .isr = pm8001_chip_isr,
  4154. .is_our_interupt = pm8001_chip_is_our_interupt,
  4155. .isr_process_oq = process_oq,
  4156. .interrupt_enable = pm8001_chip_interrupt_enable,
  4157. .interrupt_disable = pm8001_chip_interrupt_disable,
  4158. .make_prd = pm8001_chip_make_sg,
  4159. .smp_req = pm8001_chip_smp_req,
  4160. .ssp_io_req = pm8001_chip_ssp_io_req,
  4161. .sata_req = pm8001_chip_sata_req,
  4162. .phy_start_req = pm8001_chip_phy_start_req,
  4163. .phy_stop_req = pm8001_chip_phy_stop_req,
  4164. .reg_dev_req = pm8001_chip_reg_dev_req,
  4165. .dereg_dev_req = pm8001_chip_dereg_dev_req,
  4166. .phy_ctl_req = pm8001_chip_phy_ctl_req,
  4167. .task_abort = pm8001_chip_abort_task,
  4168. .ssp_tm_req = pm8001_chip_ssp_tm_req,
  4169. .get_nvmd_req = pm8001_chip_get_nvmd_req,
  4170. .set_nvmd_req = pm8001_chip_set_nvmd_req,
  4171. .fw_flash_update_req = pm8001_chip_fw_flash_update_req,
  4172. .set_dev_state_req = pm8001_chip_set_dev_state_req,
  4173. };