security.c 30 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189
  1. /*
  2. * Security plug functions
  3. *
  4. * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
  5. * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
  6. * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. */
  13. #include <linux/capability.h>
  14. #include <linux/module.h>
  15. #include <linux/init.h>
  16. #include <linux/kernel.h>
  17. #include <linux/security.h>
  18. /* Boot-time LSM user choice */
  19. static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1];
  20. /* things that live in dummy.c */
  21. extern struct security_operations dummy_security_ops;
  22. extern void security_fixup_ops(struct security_operations *ops);
  23. struct security_operations *security_ops; /* Initialized to NULL */
  24. /* amount of vm to protect from userspace access */
  25. unsigned long mmap_min_addr = CONFIG_SECURITY_DEFAULT_MMAP_MIN_ADDR;
  26. static inline int verify(struct security_operations *ops)
  27. {
  28. /* verify the security_operations structure exists */
  29. if (!ops)
  30. return -EINVAL;
  31. security_fixup_ops(ops);
  32. return 0;
  33. }
  34. static void __init do_security_initcalls(void)
  35. {
  36. initcall_t *call;
  37. call = __security_initcall_start;
  38. while (call < __security_initcall_end) {
  39. (*call) ();
  40. call++;
  41. }
  42. }
  43. /**
  44. * security_init - initializes the security framework
  45. *
  46. * This should be called early in the kernel initialization sequence.
  47. */
  48. int __init security_init(void)
  49. {
  50. printk(KERN_INFO "Security Framework initialized\n");
  51. if (verify(&dummy_security_ops)) {
  52. printk(KERN_ERR "%s could not verify "
  53. "dummy_security_ops structure.\n", __func__);
  54. return -EIO;
  55. }
  56. security_ops = &dummy_security_ops;
  57. do_security_initcalls();
  58. return 0;
  59. }
  60. /* Save user chosen LSM */
  61. static int __init choose_lsm(char *str)
  62. {
  63. strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
  64. return 1;
  65. }
  66. __setup("security=", choose_lsm);
  67. /**
  68. * security_module_enable - Load given security module on boot ?
  69. * @ops: a pointer to the struct security_operations that is to be checked.
  70. *
  71. * Each LSM must pass this method before registering its own operations
  72. * to avoid security registration races. This method may also be used
  73. * to check if your LSM is currently loaded during kernel initialization.
  74. *
  75. * Return true if:
  76. * -The passed LSM is the one chosen by user at boot time,
  77. * -or user didsn't specify a specific LSM and we're the first to ask
  78. * for registeration permissoin,
  79. * -or the passed LSM is currently loaded.
  80. * Otherwise, return false.
  81. */
  82. int __init security_module_enable(struct security_operations *ops)
  83. {
  84. if (!*chosen_lsm)
  85. strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX);
  86. else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX))
  87. return 0;
  88. return 1;
  89. }
  90. /**
  91. * register_security - registers a security framework with the kernel
  92. * @ops: a pointer to the struct security_options that is to be registered
  93. *
  94. * This function is to allow a security module to register itself with the
  95. * kernel security subsystem. Some rudimentary checking is done on the @ops
  96. * value passed to this function. You'll need to check first if your LSM
  97. * is allowed to register its @ops by calling security_module_enable(@ops).
  98. *
  99. * If there is already a security module registered with the kernel,
  100. * an error will be returned. Otherwise 0 is returned on success.
  101. */
  102. int register_security(struct security_operations *ops)
  103. {
  104. if (verify(ops)) {
  105. printk(KERN_DEBUG "%s could not verify "
  106. "security_operations structure.\n", __func__);
  107. return -EINVAL;
  108. }
  109. if (security_ops != &dummy_security_ops)
  110. return -EAGAIN;
  111. security_ops = ops;
  112. return 0;
  113. }
  114. /**
  115. * mod_reg_security - allows security modules to be "stacked"
  116. * @name: a pointer to a string with the name of the security_options to be registered
  117. * @ops: a pointer to the struct security_options that is to be registered
  118. *
  119. * This function allows security modules to be stacked if the currently loaded
  120. * security module allows this to happen. It passes the @name and @ops to the
  121. * register_security function of the currently loaded security module.
  122. *
  123. * The return value depends on the currently loaded security module, with 0 as
  124. * success.
  125. */
  126. int mod_reg_security(const char *name, struct security_operations *ops)
  127. {
  128. if (verify(ops)) {
  129. printk(KERN_INFO "%s could not verify "
  130. "security operations.\n", __func__);
  131. return -EINVAL;
  132. }
  133. if (ops == security_ops) {
  134. printk(KERN_INFO "%s security operations "
  135. "already registered.\n", __func__);
  136. return -EINVAL;
  137. }
  138. return security_ops->register_security(name, ops);
  139. }
  140. /* Security operations */
  141. int security_ptrace(struct task_struct *parent, struct task_struct *child)
  142. {
  143. return security_ops->ptrace(parent, child);
  144. }
  145. int security_capget(struct task_struct *target,
  146. kernel_cap_t *effective,
  147. kernel_cap_t *inheritable,
  148. kernel_cap_t *permitted)
  149. {
  150. return security_ops->capget(target, effective, inheritable, permitted);
  151. }
  152. int security_capset_check(struct task_struct *target,
  153. kernel_cap_t *effective,
  154. kernel_cap_t *inheritable,
  155. kernel_cap_t *permitted)
  156. {
  157. return security_ops->capset_check(target, effective, inheritable, permitted);
  158. }
  159. void security_capset_set(struct task_struct *target,
  160. kernel_cap_t *effective,
  161. kernel_cap_t *inheritable,
  162. kernel_cap_t *permitted)
  163. {
  164. security_ops->capset_set(target, effective, inheritable, permitted);
  165. }
  166. int security_capable(struct task_struct *tsk, int cap)
  167. {
  168. return security_ops->capable(tsk, cap);
  169. }
  170. int security_acct(struct file *file)
  171. {
  172. return security_ops->acct(file);
  173. }
  174. int security_sysctl(struct ctl_table *table, int op)
  175. {
  176. return security_ops->sysctl(table, op);
  177. }
  178. int security_quotactl(int cmds, int type, int id, struct super_block *sb)
  179. {
  180. return security_ops->quotactl(cmds, type, id, sb);
  181. }
  182. int security_quota_on(struct dentry *dentry)
  183. {
  184. return security_ops->quota_on(dentry);
  185. }
  186. int security_syslog(int type)
  187. {
  188. return security_ops->syslog(type);
  189. }
  190. int security_settime(struct timespec *ts, struct timezone *tz)
  191. {
  192. return security_ops->settime(ts, tz);
  193. }
  194. int security_vm_enough_memory(long pages)
  195. {
  196. return security_ops->vm_enough_memory(current->mm, pages);
  197. }
  198. int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
  199. {
  200. return security_ops->vm_enough_memory(mm, pages);
  201. }
  202. int security_bprm_alloc(struct linux_binprm *bprm)
  203. {
  204. return security_ops->bprm_alloc_security(bprm);
  205. }
  206. void security_bprm_free(struct linux_binprm *bprm)
  207. {
  208. security_ops->bprm_free_security(bprm);
  209. }
  210. void security_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
  211. {
  212. security_ops->bprm_apply_creds(bprm, unsafe);
  213. }
  214. void security_bprm_post_apply_creds(struct linux_binprm *bprm)
  215. {
  216. security_ops->bprm_post_apply_creds(bprm);
  217. }
  218. int security_bprm_set(struct linux_binprm *bprm)
  219. {
  220. return security_ops->bprm_set_security(bprm);
  221. }
  222. int security_bprm_check(struct linux_binprm *bprm)
  223. {
  224. return security_ops->bprm_check_security(bprm);
  225. }
  226. int security_bprm_secureexec(struct linux_binprm *bprm)
  227. {
  228. return security_ops->bprm_secureexec(bprm);
  229. }
  230. int security_sb_alloc(struct super_block *sb)
  231. {
  232. return security_ops->sb_alloc_security(sb);
  233. }
  234. void security_sb_free(struct super_block *sb)
  235. {
  236. security_ops->sb_free_security(sb);
  237. }
  238. int security_sb_copy_data(char *orig, char *copy)
  239. {
  240. return security_ops->sb_copy_data(orig, copy);
  241. }
  242. EXPORT_SYMBOL(security_sb_copy_data);
  243. int security_sb_kern_mount(struct super_block *sb, void *data)
  244. {
  245. return security_ops->sb_kern_mount(sb, data);
  246. }
  247. int security_sb_statfs(struct dentry *dentry)
  248. {
  249. return security_ops->sb_statfs(dentry);
  250. }
  251. int security_sb_mount(char *dev_name, struct path *path,
  252. char *type, unsigned long flags, void *data)
  253. {
  254. return security_ops->sb_mount(dev_name, path, type, flags, data);
  255. }
  256. int security_sb_check_sb(struct vfsmount *mnt, struct path *path)
  257. {
  258. return security_ops->sb_check_sb(mnt, path);
  259. }
  260. int security_sb_umount(struct vfsmount *mnt, int flags)
  261. {
  262. return security_ops->sb_umount(mnt, flags);
  263. }
  264. void security_sb_umount_close(struct vfsmount *mnt)
  265. {
  266. security_ops->sb_umount_close(mnt);
  267. }
  268. void security_sb_umount_busy(struct vfsmount *mnt)
  269. {
  270. security_ops->sb_umount_busy(mnt);
  271. }
  272. void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data)
  273. {
  274. security_ops->sb_post_remount(mnt, flags, data);
  275. }
  276. void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint)
  277. {
  278. security_ops->sb_post_addmount(mnt, mountpoint);
  279. }
  280. int security_sb_pivotroot(struct path *old_path, struct path *new_path)
  281. {
  282. return security_ops->sb_pivotroot(old_path, new_path);
  283. }
  284. void security_sb_post_pivotroot(struct path *old_path, struct path *new_path)
  285. {
  286. security_ops->sb_post_pivotroot(old_path, new_path);
  287. }
  288. int security_sb_get_mnt_opts(const struct super_block *sb,
  289. struct security_mnt_opts *opts)
  290. {
  291. return security_ops->sb_get_mnt_opts(sb, opts);
  292. }
  293. int security_sb_set_mnt_opts(struct super_block *sb,
  294. struct security_mnt_opts *opts)
  295. {
  296. return security_ops->sb_set_mnt_opts(sb, opts);
  297. }
  298. EXPORT_SYMBOL(security_sb_set_mnt_opts);
  299. void security_sb_clone_mnt_opts(const struct super_block *oldsb,
  300. struct super_block *newsb)
  301. {
  302. security_ops->sb_clone_mnt_opts(oldsb, newsb);
  303. }
  304. EXPORT_SYMBOL(security_sb_clone_mnt_opts);
  305. int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
  306. {
  307. return security_ops->sb_parse_opts_str(options, opts);
  308. }
  309. EXPORT_SYMBOL(security_sb_parse_opts_str);
  310. int security_inode_alloc(struct inode *inode)
  311. {
  312. inode->i_security = NULL;
  313. return security_ops->inode_alloc_security(inode);
  314. }
  315. void security_inode_free(struct inode *inode)
  316. {
  317. security_ops->inode_free_security(inode);
  318. }
  319. int security_inode_init_security(struct inode *inode, struct inode *dir,
  320. char **name, void **value, size_t *len)
  321. {
  322. if (unlikely(IS_PRIVATE(inode)))
  323. return -EOPNOTSUPP;
  324. return security_ops->inode_init_security(inode, dir, name, value, len);
  325. }
  326. EXPORT_SYMBOL(security_inode_init_security);
  327. int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
  328. {
  329. if (unlikely(IS_PRIVATE(dir)))
  330. return 0;
  331. return security_ops->inode_create(dir, dentry, mode);
  332. }
  333. int security_inode_link(struct dentry *old_dentry, struct inode *dir,
  334. struct dentry *new_dentry)
  335. {
  336. if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
  337. return 0;
  338. return security_ops->inode_link(old_dentry, dir, new_dentry);
  339. }
  340. int security_inode_unlink(struct inode *dir, struct dentry *dentry)
  341. {
  342. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  343. return 0;
  344. return security_ops->inode_unlink(dir, dentry);
  345. }
  346. int security_inode_symlink(struct inode *dir, struct dentry *dentry,
  347. const char *old_name)
  348. {
  349. if (unlikely(IS_PRIVATE(dir)))
  350. return 0;
  351. return security_ops->inode_symlink(dir, dentry, old_name);
  352. }
  353. int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
  354. {
  355. if (unlikely(IS_PRIVATE(dir)))
  356. return 0;
  357. return security_ops->inode_mkdir(dir, dentry, mode);
  358. }
  359. int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
  360. {
  361. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  362. return 0;
  363. return security_ops->inode_rmdir(dir, dentry);
  364. }
  365. int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
  366. {
  367. if (unlikely(IS_PRIVATE(dir)))
  368. return 0;
  369. return security_ops->inode_mknod(dir, dentry, mode, dev);
  370. }
  371. int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
  372. struct inode *new_dir, struct dentry *new_dentry)
  373. {
  374. if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
  375. (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
  376. return 0;
  377. return security_ops->inode_rename(old_dir, old_dentry,
  378. new_dir, new_dentry);
  379. }
  380. int security_inode_readlink(struct dentry *dentry)
  381. {
  382. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  383. return 0;
  384. return security_ops->inode_readlink(dentry);
  385. }
  386. int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
  387. {
  388. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  389. return 0;
  390. return security_ops->inode_follow_link(dentry, nd);
  391. }
  392. int security_inode_permission(struct inode *inode, int mask, struct nameidata *nd)
  393. {
  394. if (unlikely(IS_PRIVATE(inode)))
  395. return 0;
  396. return security_ops->inode_permission(inode, mask, nd);
  397. }
  398. int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
  399. {
  400. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  401. return 0;
  402. return security_ops->inode_setattr(dentry, attr);
  403. }
  404. int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
  405. {
  406. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  407. return 0;
  408. return security_ops->inode_getattr(mnt, dentry);
  409. }
  410. void security_inode_delete(struct inode *inode)
  411. {
  412. if (unlikely(IS_PRIVATE(inode)))
  413. return;
  414. security_ops->inode_delete(inode);
  415. }
  416. int security_inode_setxattr(struct dentry *dentry, const char *name,
  417. const void *value, size_t size, int flags)
  418. {
  419. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  420. return 0;
  421. return security_ops->inode_setxattr(dentry, name, value, size, flags);
  422. }
  423. void security_inode_post_setxattr(struct dentry *dentry, const char *name,
  424. const void *value, size_t size, int flags)
  425. {
  426. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  427. return;
  428. security_ops->inode_post_setxattr(dentry, name, value, size, flags);
  429. }
  430. int security_inode_getxattr(struct dentry *dentry, const char *name)
  431. {
  432. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  433. return 0;
  434. return security_ops->inode_getxattr(dentry, name);
  435. }
  436. int security_inode_listxattr(struct dentry *dentry)
  437. {
  438. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  439. return 0;
  440. return security_ops->inode_listxattr(dentry);
  441. }
  442. int security_inode_removexattr(struct dentry *dentry, const char *name)
  443. {
  444. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  445. return 0;
  446. return security_ops->inode_removexattr(dentry, name);
  447. }
  448. int security_inode_need_killpriv(struct dentry *dentry)
  449. {
  450. return security_ops->inode_need_killpriv(dentry);
  451. }
  452. int security_inode_killpriv(struct dentry *dentry)
  453. {
  454. return security_ops->inode_killpriv(dentry);
  455. }
  456. int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
  457. {
  458. if (unlikely(IS_PRIVATE(inode)))
  459. return 0;
  460. return security_ops->inode_getsecurity(inode, name, buffer, alloc);
  461. }
  462. int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
  463. {
  464. if (unlikely(IS_PRIVATE(inode)))
  465. return 0;
  466. return security_ops->inode_setsecurity(inode, name, value, size, flags);
  467. }
  468. int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
  469. {
  470. if (unlikely(IS_PRIVATE(inode)))
  471. return 0;
  472. return security_ops->inode_listsecurity(inode, buffer, buffer_size);
  473. }
  474. void security_inode_getsecid(const struct inode *inode, u32 *secid)
  475. {
  476. security_ops->inode_getsecid(inode, secid);
  477. }
  478. int security_file_permission(struct file *file, int mask)
  479. {
  480. return security_ops->file_permission(file, mask);
  481. }
  482. int security_file_alloc(struct file *file)
  483. {
  484. return security_ops->file_alloc_security(file);
  485. }
  486. void security_file_free(struct file *file)
  487. {
  488. security_ops->file_free_security(file);
  489. }
  490. int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  491. {
  492. return security_ops->file_ioctl(file, cmd, arg);
  493. }
  494. int security_file_mmap(struct file *file, unsigned long reqprot,
  495. unsigned long prot, unsigned long flags,
  496. unsigned long addr, unsigned long addr_only)
  497. {
  498. return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
  499. }
  500. int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
  501. unsigned long prot)
  502. {
  503. return security_ops->file_mprotect(vma, reqprot, prot);
  504. }
  505. int security_file_lock(struct file *file, unsigned int cmd)
  506. {
  507. return security_ops->file_lock(file, cmd);
  508. }
  509. int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
  510. {
  511. return security_ops->file_fcntl(file, cmd, arg);
  512. }
  513. int security_file_set_fowner(struct file *file)
  514. {
  515. return security_ops->file_set_fowner(file);
  516. }
  517. int security_file_send_sigiotask(struct task_struct *tsk,
  518. struct fown_struct *fown, int sig)
  519. {
  520. return security_ops->file_send_sigiotask(tsk, fown, sig);
  521. }
  522. int security_file_receive(struct file *file)
  523. {
  524. return security_ops->file_receive(file);
  525. }
  526. int security_dentry_open(struct file *file)
  527. {
  528. return security_ops->dentry_open(file);
  529. }
  530. int security_task_create(unsigned long clone_flags)
  531. {
  532. return security_ops->task_create(clone_flags);
  533. }
  534. int security_task_alloc(struct task_struct *p)
  535. {
  536. return security_ops->task_alloc_security(p);
  537. }
  538. void security_task_free(struct task_struct *p)
  539. {
  540. security_ops->task_free_security(p);
  541. }
  542. int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
  543. {
  544. return security_ops->task_setuid(id0, id1, id2, flags);
  545. }
  546. int security_task_post_setuid(uid_t old_ruid, uid_t old_euid,
  547. uid_t old_suid, int flags)
  548. {
  549. return security_ops->task_post_setuid(old_ruid, old_euid, old_suid, flags);
  550. }
  551. int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
  552. {
  553. return security_ops->task_setgid(id0, id1, id2, flags);
  554. }
  555. int security_task_setpgid(struct task_struct *p, pid_t pgid)
  556. {
  557. return security_ops->task_setpgid(p, pgid);
  558. }
  559. int security_task_getpgid(struct task_struct *p)
  560. {
  561. return security_ops->task_getpgid(p);
  562. }
  563. int security_task_getsid(struct task_struct *p)
  564. {
  565. return security_ops->task_getsid(p);
  566. }
  567. void security_task_getsecid(struct task_struct *p, u32 *secid)
  568. {
  569. security_ops->task_getsecid(p, secid);
  570. }
  571. EXPORT_SYMBOL(security_task_getsecid);
  572. int security_task_setgroups(struct group_info *group_info)
  573. {
  574. return security_ops->task_setgroups(group_info);
  575. }
  576. int security_task_setnice(struct task_struct *p, int nice)
  577. {
  578. return security_ops->task_setnice(p, nice);
  579. }
  580. int security_task_setioprio(struct task_struct *p, int ioprio)
  581. {
  582. return security_ops->task_setioprio(p, ioprio);
  583. }
  584. int security_task_getioprio(struct task_struct *p)
  585. {
  586. return security_ops->task_getioprio(p);
  587. }
  588. int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
  589. {
  590. return security_ops->task_setrlimit(resource, new_rlim);
  591. }
  592. int security_task_setscheduler(struct task_struct *p,
  593. int policy, struct sched_param *lp)
  594. {
  595. return security_ops->task_setscheduler(p, policy, lp);
  596. }
  597. int security_task_getscheduler(struct task_struct *p)
  598. {
  599. return security_ops->task_getscheduler(p);
  600. }
  601. int security_task_movememory(struct task_struct *p)
  602. {
  603. return security_ops->task_movememory(p);
  604. }
  605. int security_task_kill(struct task_struct *p, struct siginfo *info,
  606. int sig, u32 secid)
  607. {
  608. return security_ops->task_kill(p, info, sig, secid);
  609. }
  610. int security_task_wait(struct task_struct *p)
  611. {
  612. return security_ops->task_wait(p);
  613. }
  614. int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
  615. unsigned long arg4, unsigned long arg5, long *rc_p)
  616. {
  617. return security_ops->task_prctl(option, arg2, arg3, arg4, arg5, rc_p);
  618. }
  619. void security_task_reparent_to_init(struct task_struct *p)
  620. {
  621. security_ops->task_reparent_to_init(p);
  622. }
  623. void security_task_to_inode(struct task_struct *p, struct inode *inode)
  624. {
  625. security_ops->task_to_inode(p, inode);
  626. }
  627. int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
  628. {
  629. return security_ops->ipc_permission(ipcp, flag);
  630. }
  631. void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
  632. {
  633. security_ops->ipc_getsecid(ipcp, secid);
  634. }
  635. int security_msg_msg_alloc(struct msg_msg *msg)
  636. {
  637. return security_ops->msg_msg_alloc_security(msg);
  638. }
  639. void security_msg_msg_free(struct msg_msg *msg)
  640. {
  641. security_ops->msg_msg_free_security(msg);
  642. }
  643. int security_msg_queue_alloc(struct msg_queue *msq)
  644. {
  645. return security_ops->msg_queue_alloc_security(msq);
  646. }
  647. void security_msg_queue_free(struct msg_queue *msq)
  648. {
  649. security_ops->msg_queue_free_security(msq);
  650. }
  651. int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
  652. {
  653. return security_ops->msg_queue_associate(msq, msqflg);
  654. }
  655. int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
  656. {
  657. return security_ops->msg_queue_msgctl(msq, cmd);
  658. }
  659. int security_msg_queue_msgsnd(struct msg_queue *msq,
  660. struct msg_msg *msg, int msqflg)
  661. {
  662. return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
  663. }
  664. int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
  665. struct task_struct *target, long type, int mode)
  666. {
  667. return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
  668. }
  669. int security_shm_alloc(struct shmid_kernel *shp)
  670. {
  671. return security_ops->shm_alloc_security(shp);
  672. }
  673. void security_shm_free(struct shmid_kernel *shp)
  674. {
  675. security_ops->shm_free_security(shp);
  676. }
  677. int security_shm_associate(struct shmid_kernel *shp, int shmflg)
  678. {
  679. return security_ops->shm_associate(shp, shmflg);
  680. }
  681. int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
  682. {
  683. return security_ops->shm_shmctl(shp, cmd);
  684. }
  685. int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
  686. {
  687. return security_ops->shm_shmat(shp, shmaddr, shmflg);
  688. }
  689. int security_sem_alloc(struct sem_array *sma)
  690. {
  691. return security_ops->sem_alloc_security(sma);
  692. }
  693. void security_sem_free(struct sem_array *sma)
  694. {
  695. security_ops->sem_free_security(sma);
  696. }
  697. int security_sem_associate(struct sem_array *sma, int semflg)
  698. {
  699. return security_ops->sem_associate(sma, semflg);
  700. }
  701. int security_sem_semctl(struct sem_array *sma, int cmd)
  702. {
  703. return security_ops->sem_semctl(sma, cmd);
  704. }
  705. int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
  706. unsigned nsops, int alter)
  707. {
  708. return security_ops->sem_semop(sma, sops, nsops, alter);
  709. }
  710. void security_d_instantiate(struct dentry *dentry, struct inode *inode)
  711. {
  712. if (unlikely(inode && IS_PRIVATE(inode)))
  713. return;
  714. security_ops->d_instantiate(dentry, inode);
  715. }
  716. EXPORT_SYMBOL(security_d_instantiate);
  717. int security_getprocattr(struct task_struct *p, char *name, char **value)
  718. {
  719. return security_ops->getprocattr(p, name, value);
  720. }
  721. int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
  722. {
  723. return security_ops->setprocattr(p, name, value, size);
  724. }
  725. int security_netlink_send(struct sock *sk, struct sk_buff *skb)
  726. {
  727. return security_ops->netlink_send(sk, skb);
  728. }
  729. int security_netlink_recv(struct sk_buff *skb, int cap)
  730. {
  731. return security_ops->netlink_recv(skb, cap);
  732. }
  733. EXPORT_SYMBOL(security_netlink_recv);
  734. int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
  735. {
  736. return security_ops->secid_to_secctx(secid, secdata, seclen);
  737. }
  738. EXPORT_SYMBOL(security_secid_to_secctx);
  739. int security_secctx_to_secid(char *secdata, u32 seclen, u32 *secid)
  740. {
  741. return security_ops->secctx_to_secid(secdata, seclen, secid);
  742. }
  743. EXPORT_SYMBOL(security_secctx_to_secid);
  744. void security_release_secctx(char *secdata, u32 seclen)
  745. {
  746. return security_ops->release_secctx(secdata, seclen);
  747. }
  748. EXPORT_SYMBOL(security_release_secctx);
  749. #ifdef CONFIG_SECURITY_NETWORK
  750. int security_unix_stream_connect(struct socket *sock, struct socket *other,
  751. struct sock *newsk)
  752. {
  753. return security_ops->unix_stream_connect(sock, other, newsk);
  754. }
  755. EXPORT_SYMBOL(security_unix_stream_connect);
  756. int security_unix_may_send(struct socket *sock, struct socket *other)
  757. {
  758. return security_ops->unix_may_send(sock, other);
  759. }
  760. EXPORT_SYMBOL(security_unix_may_send);
  761. int security_socket_create(int family, int type, int protocol, int kern)
  762. {
  763. return security_ops->socket_create(family, type, protocol, kern);
  764. }
  765. int security_socket_post_create(struct socket *sock, int family,
  766. int type, int protocol, int kern)
  767. {
  768. return security_ops->socket_post_create(sock, family, type,
  769. protocol, kern);
  770. }
  771. int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
  772. {
  773. return security_ops->socket_bind(sock, address, addrlen);
  774. }
  775. int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
  776. {
  777. return security_ops->socket_connect(sock, address, addrlen);
  778. }
  779. int security_socket_listen(struct socket *sock, int backlog)
  780. {
  781. return security_ops->socket_listen(sock, backlog);
  782. }
  783. int security_socket_accept(struct socket *sock, struct socket *newsock)
  784. {
  785. return security_ops->socket_accept(sock, newsock);
  786. }
  787. void security_socket_post_accept(struct socket *sock, struct socket *newsock)
  788. {
  789. security_ops->socket_post_accept(sock, newsock);
  790. }
  791. int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
  792. {
  793. return security_ops->socket_sendmsg(sock, msg, size);
  794. }
  795. int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
  796. int size, int flags)
  797. {
  798. return security_ops->socket_recvmsg(sock, msg, size, flags);
  799. }
  800. int security_socket_getsockname(struct socket *sock)
  801. {
  802. return security_ops->socket_getsockname(sock);
  803. }
  804. int security_socket_getpeername(struct socket *sock)
  805. {
  806. return security_ops->socket_getpeername(sock);
  807. }
  808. int security_socket_getsockopt(struct socket *sock, int level, int optname)
  809. {
  810. return security_ops->socket_getsockopt(sock, level, optname);
  811. }
  812. int security_socket_setsockopt(struct socket *sock, int level, int optname)
  813. {
  814. return security_ops->socket_setsockopt(sock, level, optname);
  815. }
  816. int security_socket_shutdown(struct socket *sock, int how)
  817. {
  818. return security_ops->socket_shutdown(sock, how);
  819. }
  820. int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
  821. {
  822. return security_ops->socket_sock_rcv_skb(sk, skb);
  823. }
  824. EXPORT_SYMBOL(security_sock_rcv_skb);
  825. int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
  826. int __user *optlen, unsigned len)
  827. {
  828. return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
  829. }
  830. int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
  831. {
  832. return security_ops->socket_getpeersec_dgram(sock, skb, secid);
  833. }
  834. EXPORT_SYMBOL(security_socket_getpeersec_dgram);
  835. int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
  836. {
  837. return security_ops->sk_alloc_security(sk, family, priority);
  838. }
  839. void security_sk_free(struct sock *sk)
  840. {
  841. return security_ops->sk_free_security(sk);
  842. }
  843. void security_sk_clone(const struct sock *sk, struct sock *newsk)
  844. {
  845. return security_ops->sk_clone_security(sk, newsk);
  846. }
  847. void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
  848. {
  849. security_ops->sk_getsecid(sk, &fl->secid);
  850. }
  851. EXPORT_SYMBOL(security_sk_classify_flow);
  852. void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
  853. {
  854. security_ops->req_classify_flow(req, fl);
  855. }
  856. EXPORT_SYMBOL(security_req_classify_flow);
  857. void security_sock_graft(struct sock *sk, struct socket *parent)
  858. {
  859. security_ops->sock_graft(sk, parent);
  860. }
  861. EXPORT_SYMBOL(security_sock_graft);
  862. int security_inet_conn_request(struct sock *sk,
  863. struct sk_buff *skb, struct request_sock *req)
  864. {
  865. return security_ops->inet_conn_request(sk, skb, req);
  866. }
  867. EXPORT_SYMBOL(security_inet_conn_request);
  868. void security_inet_csk_clone(struct sock *newsk,
  869. const struct request_sock *req)
  870. {
  871. security_ops->inet_csk_clone(newsk, req);
  872. }
  873. void security_inet_conn_established(struct sock *sk,
  874. struct sk_buff *skb)
  875. {
  876. security_ops->inet_conn_established(sk, skb);
  877. }
  878. #endif /* CONFIG_SECURITY_NETWORK */
  879. #ifdef CONFIG_SECURITY_NETWORK_XFRM
  880. int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
  881. {
  882. return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
  883. }
  884. EXPORT_SYMBOL(security_xfrm_policy_alloc);
  885. int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
  886. struct xfrm_sec_ctx **new_ctxp)
  887. {
  888. return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
  889. }
  890. void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
  891. {
  892. security_ops->xfrm_policy_free_security(ctx);
  893. }
  894. EXPORT_SYMBOL(security_xfrm_policy_free);
  895. int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
  896. {
  897. return security_ops->xfrm_policy_delete_security(ctx);
  898. }
  899. int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
  900. {
  901. return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
  902. }
  903. EXPORT_SYMBOL(security_xfrm_state_alloc);
  904. int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
  905. struct xfrm_sec_ctx *polsec, u32 secid)
  906. {
  907. if (!polsec)
  908. return 0;
  909. /*
  910. * We want the context to be taken from secid which is usually
  911. * from the sock.
  912. */
  913. return security_ops->xfrm_state_alloc_security(x, NULL, secid);
  914. }
  915. int security_xfrm_state_delete(struct xfrm_state *x)
  916. {
  917. return security_ops->xfrm_state_delete_security(x);
  918. }
  919. EXPORT_SYMBOL(security_xfrm_state_delete);
  920. void security_xfrm_state_free(struct xfrm_state *x)
  921. {
  922. security_ops->xfrm_state_free_security(x);
  923. }
  924. int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
  925. {
  926. return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
  927. }
  928. int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
  929. struct xfrm_policy *xp, struct flowi *fl)
  930. {
  931. return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
  932. }
  933. int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
  934. {
  935. return security_ops->xfrm_decode_session(skb, secid, 1);
  936. }
  937. void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
  938. {
  939. int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
  940. BUG_ON(rc);
  941. }
  942. EXPORT_SYMBOL(security_skb_classify_flow);
  943. #endif /* CONFIG_SECURITY_NETWORK_XFRM */
  944. #ifdef CONFIG_KEYS
  945. int security_key_alloc(struct key *key, struct task_struct *tsk, unsigned long flags)
  946. {
  947. return security_ops->key_alloc(key, tsk, flags);
  948. }
  949. void security_key_free(struct key *key)
  950. {
  951. security_ops->key_free(key);
  952. }
  953. int security_key_permission(key_ref_t key_ref,
  954. struct task_struct *context, key_perm_t perm)
  955. {
  956. return security_ops->key_permission(key_ref, context, perm);
  957. }
  958. int security_key_getsecurity(struct key *key, char **_buffer)
  959. {
  960. return security_ops->key_getsecurity(key, _buffer);
  961. }
  962. #endif /* CONFIG_KEYS */
  963. #ifdef CONFIG_AUDIT
  964. int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
  965. {
  966. return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
  967. }
  968. int security_audit_rule_known(struct audit_krule *krule)
  969. {
  970. return security_ops->audit_rule_known(krule);
  971. }
  972. void security_audit_rule_free(void *lsmrule)
  973. {
  974. security_ops->audit_rule_free(lsmrule);
  975. }
  976. int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
  977. struct audit_context *actx)
  978. {
  979. return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
  980. }
  981. #endif /* CONFIG_AUDIT */