contig.c 7.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Copyright (C) 1998-2003 Hewlett-Packard Co
  7. * David Mosberger-Tang <davidm@hpl.hp.com>
  8. * Stephane Eranian <eranian@hpl.hp.com>
  9. * Copyright (C) 2000, Rohit Seth <rohit.seth@intel.com>
  10. * Copyright (C) 1999 VA Linux Systems
  11. * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  12. * Copyright (C) 2003 Silicon Graphics, Inc. All rights reserved.
  13. *
  14. * Routines used by ia64 machines with contiguous (or virtually contiguous)
  15. * memory.
  16. */
  17. #include <linux/bootmem.h>
  18. #include <linux/efi.h>
  19. #include <linux/mm.h>
  20. #include <linux/swap.h>
  21. #include <asm/meminit.h>
  22. #include <asm/pgalloc.h>
  23. #include <asm/pgtable.h>
  24. #include <asm/sections.h>
  25. #include <asm/mca.h>
  26. #ifdef CONFIG_VIRTUAL_MEM_MAP
  27. static unsigned long num_dma_physpages;
  28. static unsigned long max_gap;
  29. #endif
  30. /**
  31. * show_mem - display a memory statistics summary
  32. *
  33. * Just walks the pages in the system and describes where they're allocated.
  34. */
  35. void
  36. show_mem (void)
  37. {
  38. int i, total = 0, reserved = 0;
  39. int shared = 0, cached = 0;
  40. printk(KERN_INFO "Mem-info:\n");
  41. show_free_areas();
  42. printk(KERN_INFO "Free swap: %6ldkB\n",
  43. nr_swap_pages<<(PAGE_SHIFT-10));
  44. i = max_mapnr;
  45. for (i = 0; i < max_mapnr; i++) {
  46. if (!pfn_valid(i)) {
  47. #ifdef CONFIG_VIRTUAL_MEM_MAP
  48. if (max_gap < LARGE_GAP)
  49. continue;
  50. i = vmemmap_find_next_valid_pfn(0, i) - 1;
  51. #endif
  52. continue;
  53. }
  54. total++;
  55. if (PageReserved(mem_map+i))
  56. reserved++;
  57. else if (PageSwapCache(mem_map+i))
  58. cached++;
  59. else if (page_count(mem_map + i))
  60. shared += page_count(mem_map + i) - 1;
  61. }
  62. printk(KERN_INFO "%d pages of RAM\n", total);
  63. printk(KERN_INFO "%d reserved pages\n", reserved);
  64. printk(KERN_INFO "%d pages shared\n", shared);
  65. printk(KERN_INFO "%d pages swap cached\n", cached);
  66. printk(KERN_INFO "%ld pages in page table cache\n",
  67. pgtable_quicklist_total_size());
  68. }
  69. /* physical address where the bootmem map is located */
  70. unsigned long bootmap_start;
  71. /**
  72. * find_max_pfn - adjust the maximum page number callback
  73. * @start: start of range
  74. * @end: end of range
  75. * @arg: address of pointer to global max_pfn variable
  76. *
  77. * Passed as a callback function to efi_memmap_walk() to determine the highest
  78. * available page frame number in the system.
  79. */
  80. int
  81. find_max_pfn (unsigned long start, unsigned long end, void *arg)
  82. {
  83. unsigned long *max_pfnp = arg, pfn;
  84. pfn = (PAGE_ALIGN(end - 1) - PAGE_OFFSET) >> PAGE_SHIFT;
  85. if (pfn > *max_pfnp)
  86. *max_pfnp = pfn;
  87. return 0;
  88. }
  89. /**
  90. * find_bootmap_location - callback to find a memory area for the bootmap
  91. * @start: start of region
  92. * @end: end of region
  93. * @arg: unused callback data
  94. *
  95. * Find a place to put the bootmap and return its starting address in
  96. * bootmap_start. This address must be page-aligned.
  97. */
  98. static int __init
  99. find_bootmap_location (unsigned long start, unsigned long end, void *arg)
  100. {
  101. unsigned long needed = *(unsigned long *)arg;
  102. unsigned long range_start, range_end, free_start;
  103. int i;
  104. #if IGNORE_PFN0
  105. if (start == PAGE_OFFSET) {
  106. start += PAGE_SIZE;
  107. if (start >= end)
  108. return 0;
  109. }
  110. #endif
  111. free_start = PAGE_OFFSET;
  112. for (i = 0; i < num_rsvd_regions; i++) {
  113. range_start = max(start, free_start);
  114. range_end = min(end, rsvd_region[i].start & PAGE_MASK);
  115. free_start = PAGE_ALIGN(rsvd_region[i].end);
  116. if (range_end <= range_start)
  117. continue; /* skip over empty range */
  118. if (range_end - range_start >= needed) {
  119. bootmap_start = __pa(range_start);
  120. return -1; /* done */
  121. }
  122. /* nothing more available in this segment */
  123. if (range_end == end)
  124. return 0;
  125. }
  126. return 0;
  127. }
  128. /**
  129. * find_memory - setup memory map
  130. *
  131. * Walk the EFI memory map and find usable memory for the system, taking
  132. * into account reserved areas.
  133. */
  134. void __init
  135. find_memory (void)
  136. {
  137. unsigned long bootmap_size;
  138. reserve_memory();
  139. /* first find highest page frame number */
  140. max_pfn = 0;
  141. efi_memmap_walk(find_max_pfn, &max_pfn);
  142. /* how many bytes to cover all the pages */
  143. bootmap_size = bootmem_bootmap_pages(max_pfn) << PAGE_SHIFT;
  144. /* look for a location to hold the bootmap */
  145. bootmap_start = ~0UL;
  146. efi_memmap_walk(find_bootmap_location, &bootmap_size);
  147. if (bootmap_start == ~0UL)
  148. panic("Cannot find %ld bytes for bootmap\n", bootmap_size);
  149. bootmap_size = init_bootmem(bootmap_start >> PAGE_SHIFT, max_pfn);
  150. /* Free all available memory, then mark bootmem-map as being in use. */
  151. efi_memmap_walk(filter_rsvd_memory, free_bootmem);
  152. reserve_bootmem(bootmap_start, bootmap_size);
  153. find_initrd();
  154. }
  155. #ifdef CONFIG_SMP
  156. /**
  157. * per_cpu_init - setup per-cpu variables
  158. *
  159. * Allocate and setup per-cpu data areas.
  160. */
  161. void * __cpuinit
  162. per_cpu_init (void)
  163. {
  164. void *cpu_data;
  165. int cpu;
  166. static int first_time=1;
  167. /*
  168. * get_free_pages() cannot be used before cpu_init() done. BSP
  169. * allocates "NR_CPUS" pages for all CPUs to avoid that AP calls
  170. * get_zeroed_page().
  171. */
  172. if (first_time) {
  173. first_time=0;
  174. cpu_data = __alloc_bootmem(PERCPU_PAGE_SIZE * NR_CPUS,
  175. PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
  176. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  177. memcpy(cpu_data, __phys_per_cpu_start, __per_cpu_end - __per_cpu_start);
  178. __per_cpu_offset[cpu] = (char *) cpu_data - __per_cpu_start;
  179. cpu_data += PERCPU_PAGE_SIZE;
  180. per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
  181. }
  182. }
  183. return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
  184. }
  185. #endif /* CONFIG_SMP */
  186. static int
  187. count_pages (u64 start, u64 end, void *arg)
  188. {
  189. unsigned long *count = arg;
  190. *count += (end - start) >> PAGE_SHIFT;
  191. return 0;
  192. }
  193. #ifdef CONFIG_VIRTUAL_MEM_MAP
  194. static int
  195. count_dma_pages (u64 start, u64 end, void *arg)
  196. {
  197. unsigned long *count = arg;
  198. if (start < MAX_DMA_ADDRESS)
  199. *count += (min(end, MAX_DMA_ADDRESS) - start) >> PAGE_SHIFT;
  200. return 0;
  201. }
  202. #endif
  203. /*
  204. * Set up the page tables.
  205. */
  206. void __init
  207. paging_init (void)
  208. {
  209. unsigned long max_dma;
  210. unsigned long zones_size[MAX_NR_ZONES];
  211. #ifdef CONFIG_VIRTUAL_MEM_MAP
  212. unsigned long zholes_size[MAX_NR_ZONES];
  213. #endif
  214. /* initialize mem_map[] */
  215. memset(zones_size, 0, sizeof(zones_size));
  216. num_physpages = 0;
  217. efi_memmap_walk(count_pages, &num_physpages);
  218. max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
  219. #ifdef CONFIG_VIRTUAL_MEM_MAP
  220. memset(zholes_size, 0, sizeof(zholes_size));
  221. num_dma_physpages = 0;
  222. efi_memmap_walk(count_dma_pages, &num_dma_physpages);
  223. if (max_low_pfn < max_dma) {
  224. zones_size[ZONE_DMA] = max_low_pfn;
  225. zholes_size[ZONE_DMA] = max_low_pfn - num_dma_physpages;
  226. } else {
  227. zones_size[ZONE_DMA] = max_dma;
  228. zholes_size[ZONE_DMA] = max_dma - num_dma_physpages;
  229. if (num_physpages > num_dma_physpages) {
  230. zones_size[ZONE_NORMAL] = max_low_pfn - max_dma;
  231. zholes_size[ZONE_NORMAL] =
  232. ((max_low_pfn - max_dma) -
  233. (num_physpages - num_dma_physpages));
  234. }
  235. }
  236. efi_memmap_walk(find_largest_hole, (u64 *)&max_gap);
  237. if (max_gap < LARGE_GAP) {
  238. vmem_map = (struct page *) 0;
  239. free_area_init_node(0, NODE_DATA(0), zones_size, 0,
  240. zholes_size);
  241. } else {
  242. unsigned long map_size;
  243. /* allocate virtual_mem_map */
  244. map_size = PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
  245. sizeof(struct page));
  246. vmalloc_end -= map_size;
  247. vmem_map = (struct page *) vmalloc_end;
  248. efi_memmap_walk(create_mem_map_page_table, NULL);
  249. NODE_DATA(0)->node_mem_map = vmem_map;
  250. free_area_init_node(0, NODE_DATA(0), zones_size,
  251. 0, zholes_size);
  252. printk("Virtual mem_map starts at 0x%p\n", mem_map);
  253. }
  254. #else /* !CONFIG_VIRTUAL_MEM_MAP */
  255. if (max_low_pfn < max_dma)
  256. zones_size[ZONE_DMA] = max_low_pfn;
  257. else {
  258. zones_size[ZONE_DMA] = max_dma;
  259. zones_size[ZONE_NORMAL] = max_low_pfn - max_dma;
  260. }
  261. free_area_init(zones_size);
  262. #endif /* !CONFIG_VIRTUAL_MEM_MAP */
  263. zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
  264. }