vmx.c 111 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "irq.h"
  18. #include "mmu.h"
  19. #include <linux/kvm_host.h>
  20. #include <linux/module.h>
  21. #include <linux/kernel.h>
  22. #include <linux/mm.h>
  23. #include <linux/highmem.h>
  24. #include <linux/sched.h>
  25. #include <linux/moduleparam.h>
  26. #include <linux/ftrace_event.h>
  27. #include <linux/slab.h>
  28. #include <linux/tboot.h>
  29. #include "kvm_cache_regs.h"
  30. #include "x86.h"
  31. #include <asm/io.h>
  32. #include <asm/desc.h>
  33. #include <asm/vmx.h>
  34. #include <asm/virtext.h>
  35. #include <asm/mce.h>
  36. #include "trace.h"
  37. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  38. MODULE_AUTHOR("Qumranet");
  39. MODULE_LICENSE("GPL");
  40. static int __read_mostly bypass_guest_pf = 1;
  41. module_param(bypass_guest_pf, bool, S_IRUGO);
  42. static int __read_mostly enable_vpid = 1;
  43. module_param_named(vpid, enable_vpid, bool, 0444);
  44. static int __read_mostly flexpriority_enabled = 1;
  45. module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  46. static int __read_mostly enable_ept = 1;
  47. module_param_named(ept, enable_ept, bool, S_IRUGO);
  48. static int __read_mostly enable_unrestricted_guest = 1;
  49. module_param_named(unrestricted_guest,
  50. enable_unrestricted_guest, bool, S_IRUGO);
  51. static int __read_mostly emulate_invalid_guest_state = 0;
  52. module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  53. #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
  54. (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
  55. #define KVM_GUEST_CR0_MASK \
  56. (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  57. #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
  58. (X86_CR0_WP | X86_CR0_NE)
  59. #define KVM_VM_CR0_ALWAYS_ON \
  60. (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  61. #define KVM_CR4_GUEST_OWNED_BITS \
  62. (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
  63. | X86_CR4_OSXMMEXCPT)
  64. #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
  65. #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
  66. #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
  67. /*
  68. * These 2 parameters are used to config the controls for Pause-Loop Exiting:
  69. * ple_gap: upper bound on the amount of time between two successive
  70. * executions of PAUSE in a loop. Also indicate if ple enabled.
  71. * According to test, this time is usually small than 41 cycles.
  72. * ple_window: upper bound on the amount of time a guest is allowed to execute
  73. * in a PAUSE loop. Tests indicate that most spinlocks are held for
  74. * less than 2^12 cycles
  75. * Time is measured based on a counter that runs at the same rate as the TSC,
  76. * refer SDM volume 3b section 21.6.13 & 22.1.3.
  77. */
  78. #define KVM_VMX_DEFAULT_PLE_GAP 41
  79. #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
  80. static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
  81. module_param(ple_gap, int, S_IRUGO);
  82. static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
  83. module_param(ple_window, int, S_IRUGO);
  84. #define NR_AUTOLOAD_MSRS 1
  85. struct vmcs {
  86. u32 revision_id;
  87. u32 abort;
  88. char data[0];
  89. };
  90. struct shared_msr_entry {
  91. unsigned index;
  92. u64 data;
  93. u64 mask;
  94. };
  95. struct vcpu_vmx {
  96. struct kvm_vcpu vcpu;
  97. struct list_head local_vcpus_link;
  98. unsigned long host_rsp;
  99. int launched;
  100. u8 fail;
  101. u32 idt_vectoring_info;
  102. struct shared_msr_entry *guest_msrs;
  103. int nmsrs;
  104. int save_nmsrs;
  105. #ifdef CONFIG_X86_64
  106. u64 msr_host_kernel_gs_base;
  107. u64 msr_guest_kernel_gs_base;
  108. #endif
  109. struct vmcs *vmcs;
  110. struct msr_autoload {
  111. unsigned nr;
  112. struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
  113. struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
  114. } msr_autoload;
  115. struct {
  116. int loaded;
  117. u16 fs_sel, gs_sel, ldt_sel;
  118. int gs_ldt_reload_needed;
  119. int fs_reload_needed;
  120. } host_state;
  121. struct {
  122. int vm86_active;
  123. ulong save_rflags;
  124. struct kvm_save_segment {
  125. u16 selector;
  126. unsigned long base;
  127. u32 limit;
  128. u32 ar;
  129. } tr, es, ds, fs, gs;
  130. struct {
  131. bool pending;
  132. u8 vector;
  133. unsigned rip;
  134. } irq;
  135. } rmode;
  136. int vpid;
  137. bool emulation_required;
  138. /* Support for vnmi-less CPUs */
  139. int soft_vnmi_blocked;
  140. ktime_t entry_time;
  141. s64 vnmi_blocked_time;
  142. u32 exit_reason;
  143. bool rdtscp_enabled;
  144. };
  145. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  146. {
  147. return container_of(vcpu, struct vcpu_vmx, vcpu);
  148. }
  149. static int init_rmode(struct kvm *kvm);
  150. static u64 construct_eptp(unsigned long root_hpa);
  151. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  152. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  153. static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
  154. static unsigned long *vmx_io_bitmap_a;
  155. static unsigned long *vmx_io_bitmap_b;
  156. static unsigned long *vmx_msr_bitmap_legacy;
  157. static unsigned long *vmx_msr_bitmap_longmode;
  158. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  159. static DEFINE_SPINLOCK(vmx_vpid_lock);
  160. static struct vmcs_config {
  161. int size;
  162. int order;
  163. u32 revision_id;
  164. u32 pin_based_exec_ctrl;
  165. u32 cpu_based_exec_ctrl;
  166. u32 cpu_based_2nd_exec_ctrl;
  167. u32 vmexit_ctrl;
  168. u32 vmentry_ctrl;
  169. } vmcs_config;
  170. static struct vmx_capability {
  171. u32 ept;
  172. u32 vpid;
  173. } vmx_capability;
  174. #define VMX_SEGMENT_FIELD(seg) \
  175. [VCPU_SREG_##seg] = { \
  176. .selector = GUEST_##seg##_SELECTOR, \
  177. .base = GUEST_##seg##_BASE, \
  178. .limit = GUEST_##seg##_LIMIT, \
  179. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  180. }
  181. static struct kvm_vmx_segment_field {
  182. unsigned selector;
  183. unsigned base;
  184. unsigned limit;
  185. unsigned ar_bytes;
  186. } kvm_vmx_segment_fields[] = {
  187. VMX_SEGMENT_FIELD(CS),
  188. VMX_SEGMENT_FIELD(DS),
  189. VMX_SEGMENT_FIELD(ES),
  190. VMX_SEGMENT_FIELD(FS),
  191. VMX_SEGMENT_FIELD(GS),
  192. VMX_SEGMENT_FIELD(SS),
  193. VMX_SEGMENT_FIELD(TR),
  194. VMX_SEGMENT_FIELD(LDTR),
  195. };
  196. static u64 host_efer;
  197. static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
  198. /*
  199. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  200. * away by decrementing the array size.
  201. */
  202. static const u32 vmx_msr_index[] = {
  203. #ifdef CONFIG_X86_64
  204. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
  205. #endif
  206. MSR_EFER, MSR_TSC_AUX, MSR_K6_STAR,
  207. };
  208. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  209. static inline bool is_page_fault(u32 intr_info)
  210. {
  211. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  212. INTR_INFO_VALID_MASK)) ==
  213. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  214. }
  215. static inline bool is_no_device(u32 intr_info)
  216. {
  217. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  218. INTR_INFO_VALID_MASK)) ==
  219. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  220. }
  221. static inline bool is_invalid_opcode(u32 intr_info)
  222. {
  223. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  224. INTR_INFO_VALID_MASK)) ==
  225. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  226. }
  227. static inline bool is_external_interrupt(u32 intr_info)
  228. {
  229. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  230. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  231. }
  232. static inline bool is_machine_check(u32 intr_info)
  233. {
  234. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  235. INTR_INFO_VALID_MASK)) ==
  236. (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
  237. }
  238. static inline bool cpu_has_vmx_msr_bitmap(void)
  239. {
  240. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
  241. }
  242. static inline bool cpu_has_vmx_tpr_shadow(void)
  243. {
  244. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
  245. }
  246. static inline bool vm_need_tpr_shadow(struct kvm *kvm)
  247. {
  248. return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
  249. }
  250. static inline bool cpu_has_secondary_exec_ctrls(void)
  251. {
  252. return vmcs_config.cpu_based_exec_ctrl &
  253. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  254. }
  255. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  256. {
  257. return vmcs_config.cpu_based_2nd_exec_ctrl &
  258. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  259. }
  260. static inline bool cpu_has_vmx_flexpriority(void)
  261. {
  262. return cpu_has_vmx_tpr_shadow() &&
  263. cpu_has_vmx_virtualize_apic_accesses();
  264. }
  265. static inline bool cpu_has_vmx_ept_execute_only(void)
  266. {
  267. return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
  268. }
  269. static inline bool cpu_has_vmx_eptp_uncacheable(void)
  270. {
  271. return vmx_capability.ept & VMX_EPTP_UC_BIT;
  272. }
  273. static inline bool cpu_has_vmx_eptp_writeback(void)
  274. {
  275. return vmx_capability.ept & VMX_EPTP_WB_BIT;
  276. }
  277. static inline bool cpu_has_vmx_ept_2m_page(void)
  278. {
  279. return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
  280. }
  281. static inline bool cpu_has_vmx_ept_1g_page(void)
  282. {
  283. return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
  284. }
  285. static inline bool cpu_has_vmx_invept_individual_addr(void)
  286. {
  287. return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
  288. }
  289. static inline bool cpu_has_vmx_invept_context(void)
  290. {
  291. return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
  292. }
  293. static inline bool cpu_has_vmx_invept_global(void)
  294. {
  295. return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
  296. }
  297. static inline bool cpu_has_vmx_ept(void)
  298. {
  299. return vmcs_config.cpu_based_2nd_exec_ctrl &
  300. SECONDARY_EXEC_ENABLE_EPT;
  301. }
  302. static inline bool cpu_has_vmx_unrestricted_guest(void)
  303. {
  304. return vmcs_config.cpu_based_2nd_exec_ctrl &
  305. SECONDARY_EXEC_UNRESTRICTED_GUEST;
  306. }
  307. static inline bool cpu_has_vmx_ple(void)
  308. {
  309. return vmcs_config.cpu_based_2nd_exec_ctrl &
  310. SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  311. }
  312. static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
  313. {
  314. return flexpriority_enabled && irqchip_in_kernel(kvm);
  315. }
  316. static inline bool cpu_has_vmx_vpid(void)
  317. {
  318. return vmcs_config.cpu_based_2nd_exec_ctrl &
  319. SECONDARY_EXEC_ENABLE_VPID;
  320. }
  321. static inline bool cpu_has_vmx_rdtscp(void)
  322. {
  323. return vmcs_config.cpu_based_2nd_exec_ctrl &
  324. SECONDARY_EXEC_RDTSCP;
  325. }
  326. static inline bool cpu_has_virtual_nmis(void)
  327. {
  328. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  329. }
  330. static inline bool report_flexpriority(void)
  331. {
  332. return flexpriority_enabled;
  333. }
  334. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  335. {
  336. int i;
  337. for (i = 0; i < vmx->nmsrs; ++i)
  338. if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
  339. return i;
  340. return -1;
  341. }
  342. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  343. {
  344. struct {
  345. u64 vpid : 16;
  346. u64 rsvd : 48;
  347. u64 gva;
  348. } operand = { vpid, 0, gva };
  349. asm volatile (__ex(ASM_VMX_INVVPID)
  350. /* CF==1 or ZF==1 --> rc = -1 */
  351. "; ja 1f ; ud2 ; 1:"
  352. : : "a"(&operand), "c"(ext) : "cc", "memory");
  353. }
  354. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  355. {
  356. struct {
  357. u64 eptp, gpa;
  358. } operand = {eptp, gpa};
  359. asm volatile (__ex(ASM_VMX_INVEPT)
  360. /* CF==1 or ZF==1 --> rc = -1 */
  361. "; ja 1f ; ud2 ; 1:\n"
  362. : : "a" (&operand), "c" (ext) : "cc", "memory");
  363. }
  364. static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  365. {
  366. int i;
  367. i = __find_msr_index(vmx, msr);
  368. if (i >= 0)
  369. return &vmx->guest_msrs[i];
  370. return NULL;
  371. }
  372. static void vmcs_clear(struct vmcs *vmcs)
  373. {
  374. u64 phys_addr = __pa(vmcs);
  375. u8 error;
  376. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  377. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  378. : "cc", "memory");
  379. if (error)
  380. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  381. vmcs, phys_addr);
  382. }
  383. static void __vcpu_clear(void *arg)
  384. {
  385. struct vcpu_vmx *vmx = arg;
  386. int cpu = raw_smp_processor_id();
  387. if (vmx->vcpu.cpu == cpu)
  388. vmcs_clear(vmx->vmcs);
  389. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  390. per_cpu(current_vmcs, cpu) = NULL;
  391. rdtscll(vmx->vcpu.arch.host_tsc);
  392. list_del(&vmx->local_vcpus_link);
  393. vmx->vcpu.cpu = -1;
  394. vmx->launched = 0;
  395. }
  396. static void vcpu_clear(struct vcpu_vmx *vmx)
  397. {
  398. if (vmx->vcpu.cpu == -1)
  399. return;
  400. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
  401. }
  402. static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
  403. {
  404. if (vmx->vpid == 0)
  405. return;
  406. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  407. }
  408. static inline void ept_sync_global(void)
  409. {
  410. if (cpu_has_vmx_invept_global())
  411. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  412. }
  413. static inline void ept_sync_context(u64 eptp)
  414. {
  415. if (enable_ept) {
  416. if (cpu_has_vmx_invept_context())
  417. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  418. else
  419. ept_sync_global();
  420. }
  421. }
  422. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  423. {
  424. if (enable_ept) {
  425. if (cpu_has_vmx_invept_individual_addr())
  426. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  427. eptp, gpa);
  428. else
  429. ept_sync_context(eptp);
  430. }
  431. }
  432. static unsigned long vmcs_readl(unsigned long field)
  433. {
  434. unsigned long value;
  435. asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
  436. : "=a"(value) : "d"(field) : "cc");
  437. return value;
  438. }
  439. static u16 vmcs_read16(unsigned long field)
  440. {
  441. return vmcs_readl(field);
  442. }
  443. static u32 vmcs_read32(unsigned long field)
  444. {
  445. return vmcs_readl(field);
  446. }
  447. static u64 vmcs_read64(unsigned long field)
  448. {
  449. #ifdef CONFIG_X86_64
  450. return vmcs_readl(field);
  451. #else
  452. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  453. #endif
  454. }
  455. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  456. {
  457. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  458. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  459. dump_stack();
  460. }
  461. static void vmcs_writel(unsigned long field, unsigned long value)
  462. {
  463. u8 error;
  464. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  465. : "=q"(error) : "a"(value), "d"(field) : "cc");
  466. if (unlikely(error))
  467. vmwrite_error(field, value);
  468. }
  469. static void vmcs_write16(unsigned long field, u16 value)
  470. {
  471. vmcs_writel(field, value);
  472. }
  473. static void vmcs_write32(unsigned long field, u32 value)
  474. {
  475. vmcs_writel(field, value);
  476. }
  477. static void vmcs_write64(unsigned long field, u64 value)
  478. {
  479. vmcs_writel(field, value);
  480. #ifndef CONFIG_X86_64
  481. asm volatile ("");
  482. vmcs_writel(field+1, value >> 32);
  483. #endif
  484. }
  485. static void vmcs_clear_bits(unsigned long field, u32 mask)
  486. {
  487. vmcs_writel(field, vmcs_readl(field) & ~mask);
  488. }
  489. static void vmcs_set_bits(unsigned long field, u32 mask)
  490. {
  491. vmcs_writel(field, vmcs_readl(field) | mask);
  492. }
  493. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  494. {
  495. u32 eb;
  496. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
  497. (1u << NM_VECTOR) | (1u << DB_VECTOR);
  498. if ((vcpu->guest_debug &
  499. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
  500. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
  501. eb |= 1u << BP_VECTOR;
  502. if (to_vmx(vcpu)->rmode.vm86_active)
  503. eb = ~0;
  504. if (enable_ept)
  505. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  506. if (vcpu->fpu_active)
  507. eb &= ~(1u << NM_VECTOR);
  508. vmcs_write32(EXCEPTION_BITMAP, eb);
  509. }
  510. static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
  511. {
  512. unsigned i;
  513. struct msr_autoload *m = &vmx->msr_autoload;
  514. for (i = 0; i < m->nr; ++i)
  515. if (m->guest[i].index == msr)
  516. break;
  517. if (i == m->nr)
  518. return;
  519. --m->nr;
  520. m->guest[i] = m->guest[m->nr];
  521. m->host[i] = m->host[m->nr];
  522. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  523. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  524. }
  525. static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
  526. u64 guest_val, u64 host_val)
  527. {
  528. unsigned i;
  529. struct msr_autoload *m = &vmx->msr_autoload;
  530. for (i = 0; i < m->nr; ++i)
  531. if (m->guest[i].index == msr)
  532. break;
  533. if (i == m->nr) {
  534. ++m->nr;
  535. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  536. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  537. }
  538. m->guest[i].index = msr;
  539. m->guest[i].value = guest_val;
  540. m->host[i].index = msr;
  541. m->host[i].value = host_val;
  542. }
  543. static void reload_tss(void)
  544. {
  545. /*
  546. * VT restores TR but not its size. Useless.
  547. */
  548. struct desc_ptr gdt;
  549. struct desc_struct *descs;
  550. native_store_gdt(&gdt);
  551. descs = (void *)gdt.address;
  552. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  553. load_TR_desc();
  554. }
  555. static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
  556. {
  557. u64 guest_efer;
  558. u64 ignore_bits;
  559. guest_efer = vmx->vcpu.arch.efer;
  560. /*
  561. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  562. * outside long mode
  563. */
  564. ignore_bits = EFER_NX | EFER_SCE;
  565. #ifdef CONFIG_X86_64
  566. ignore_bits |= EFER_LMA | EFER_LME;
  567. /* SCE is meaningful only in long mode on Intel */
  568. if (guest_efer & EFER_LMA)
  569. ignore_bits &= ~(u64)EFER_SCE;
  570. #endif
  571. guest_efer &= ~ignore_bits;
  572. guest_efer |= host_efer & ignore_bits;
  573. vmx->guest_msrs[efer_offset].data = guest_efer;
  574. vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
  575. clear_atomic_switch_msr(vmx, MSR_EFER);
  576. /* On ept, can't emulate nx, and must switch nx atomically */
  577. if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
  578. guest_efer = vmx->vcpu.arch.efer;
  579. if (!(guest_efer & EFER_LMA))
  580. guest_efer &= ~EFER_LME;
  581. add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
  582. return false;
  583. }
  584. return true;
  585. }
  586. static unsigned long segment_base(u16 selector)
  587. {
  588. struct desc_ptr gdt;
  589. struct desc_struct *d;
  590. unsigned long table_base;
  591. unsigned long v;
  592. if (!(selector & ~3))
  593. return 0;
  594. native_store_gdt(&gdt);
  595. table_base = gdt.address;
  596. if (selector & 4) { /* from ldt */
  597. u16 ldt_selector = kvm_read_ldt();
  598. if (!(ldt_selector & ~3))
  599. return 0;
  600. table_base = segment_base(ldt_selector);
  601. }
  602. d = (struct desc_struct *)(table_base + (selector & ~7));
  603. v = get_desc_base(d);
  604. #ifdef CONFIG_X86_64
  605. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  606. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  607. #endif
  608. return v;
  609. }
  610. static inline unsigned long kvm_read_tr_base(void)
  611. {
  612. u16 tr;
  613. asm("str %0" : "=g"(tr));
  614. return segment_base(tr);
  615. }
  616. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  617. {
  618. struct vcpu_vmx *vmx = to_vmx(vcpu);
  619. int i;
  620. if (vmx->host_state.loaded)
  621. return;
  622. vmx->host_state.loaded = 1;
  623. /*
  624. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  625. * allow segment selectors with cpl > 0 or ti == 1.
  626. */
  627. vmx->host_state.ldt_sel = kvm_read_ldt();
  628. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  629. vmx->host_state.fs_sel = kvm_read_fs();
  630. if (!(vmx->host_state.fs_sel & 7)) {
  631. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  632. vmx->host_state.fs_reload_needed = 0;
  633. } else {
  634. vmcs_write16(HOST_FS_SELECTOR, 0);
  635. vmx->host_state.fs_reload_needed = 1;
  636. }
  637. vmx->host_state.gs_sel = kvm_read_gs();
  638. if (!(vmx->host_state.gs_sel & 7))
  639. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  640. else {
  641. vmcs_write16(HOST_GS_SELECTOR, 0);
  642. vmx->host_state.gs_ldt_reload_needed = 1;
  643. }
  644. #ifdef CONFIG_X86_64
  645. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  646. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  647. #else
  648. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  649. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  650. #endif
  651. #ifdef CONFIG_X86_64
  652. if (is_long_mode(&vmx->vcpu)) {
  653. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  654. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  655. }
  656. #endif
  657. for (i = 0; i < vmx->save_nmsrs; ++i)
  658. kvm_set_shared_msr(vmx->guest_msrs[i].index,
  659. vmx->guest_msrs[i].data,
  660. vmx->guest_msrs[i].mask);
  661. }
  662. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  663. {
  664. unsigned long flags;
  665. if (!vmx->host_state.loaded)
  666. return;
  667. ++vmx->vcpu.stat.host_state_reload;
  668. vmx->host_state.loaded = 0;
  669. if (vmx->host_state.fs_reload_needed)
  670. kvm_load_fs(vmx->host_state.fs_sel);
  671. if (vmx->host_state.gs_ldt_reload_needed) {
  672. kvm_load_ldt(vmx->host_state.ldt_sel);
  673. /*
  674. * If we have to reload gs, we must take care to
  675. * preserve our gs base.
  676. */
  677. local_irq_save(flags);
  678. kvm_load_gs(vmx->host_state.gs_sel);
  679. #ifdef CONFIG_X86_64
  680. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  681. #endif
  682. local_irq_restore(flags);
  683. }
  684. reload_tss();
  685. #ifdef CONFIG_X86_64
  686. if (is_long_mode(&vmx->vcpu)) {
  687. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  688. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  689. }
  690. #endif
  691. }
  692. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  693. {
  694. preempt_disable();
  695. __vmx_load_host_state(vmx);
  696. preempt_enable();
  697. }
  698. /*
  699. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  700. * vcpu mutex is already taken.
  701. */
  702. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  703. {
  704. struct vcpu_vmx *vmx = to_vmx(vcpu);
  705. u64 phys_addr = __pa(vmx->vmcs);
  706. u64 tsc_this, delta, new_offset;
  707. if (vcpu->cpu != cpu) {
  708. vcpu_clear(vmx);
  709. kvm_migrate_timers(vcpu);
  710. set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
  711. local_irq_disable();
  712. list_add(&vmx->local_vcpus_link,
  713. &per_cpu(vcpus_on_cpu, cpu));
  714. local_irq_enable();
  715. }
  716. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  717. u8 error;
  718. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  719. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  720. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  721. : "cc");
  722. if (error)
  723. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  724. vmx->vmcs, phys_addr);
  725. }
  726. if (vcpu->cpu != cpu) {
  727. struct desc_ptr dt;
  728. unsigned long sysenter_esp;
  729. vcpu->cpu = cpu;
  730. /*
  731. * Linux uses per-cpu TSS and GDT, so set these when switching
  732. * processors.
  733. */
  734. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  735. native_store_gdt(&dt);
  736. vmcs_writel(HOST_GDTR_BASE, dt.address); /* 22.2.4 */
  737. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  738. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  739. /*
  740. * Make sure the time stamp counter is monotonous.
  741. */
  742. rdtscll(tsc_this);
  743. if (tsc_this < vcpu->arch.host_tsc) {
  744. delta = vcpu->arch.host_tsc - tsc_this;
  745. new_offset = vmcs_read64(TSC_OFFSET) + delta;
  746. vmcs_write64(TSC_OFFSET, new_offset);
  747. }
  748. }
  749. }
  750. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  751. {
  752. __vmx_load_host_state(to_vmx(vcpu));
  753. }
  754. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  755. {
  756. ulong cr0;
  757. if (vcpu->fpu_active)
  758. return;
  759. vcpu->fpu_active = 1;
  760. cr0 = vmcs_readl(GUEST_CR0);
  761. cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
  762. cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
  763. vmcs_writel(GUEST_CR0, cr0);
  764. update_exception_bitmap(vcpu);
  765. vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
  766. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  767. }
  768. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
  769. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  770. {
  771. vmx_decache_cr0_guest_bits(vcpu);
  772. vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
  773. update_exception_bitmap(vcpu);
  774. vcpu->arch.cr0_guest_owned_bits = 0;
  775. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  776. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  777. }
  778. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  779. {
  780. unsigned long rflags, save_rflags;
  781. rflags = vmcs_readl(GUEST_RFLAGS);
  782. if (to_vmx(vcpu)->rmode.vm86_active) {
  783. rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  784. save_rflags = to_vmx(vcpu)->rmode.save_rflags;
  785. rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  786. }
  787. return rflags;
  788. }
  789. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  790. {
  791. if (to_vmx(vcpu)->rmode.vm86_active) {
  792. to_vmx(vcpu)->rmode.save_rflags = rflags;
  793. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  794. }
  795. vmcs_writel(GUEST_RFLAGS, rflags);
  796. }
  797. static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  798. {
  799. u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  800. int ret = 0;
  801. if (interruptibility & GUEST_INTR_STATE_STI)
  802. ret |= KVM_X86_SHADOW_INT_STI;
  803. if (interruptibility & GUEST_INTR_STATE_MOV_SS)
  804. ret |= KVM_X86_SHADOW_INT_MOV_SS;
  805. return ret & mask;
  806. }
  807. static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  808. {
  809. u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  810. u32 interruptibility = interruptibility_old;
  811. interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
  812. if (mask & KVM_X86_SHADOW_INT_MOV_SS)
  813. interruptibility |= GUEST_INTR_STATE_MOV_SS;
  814. else if (mask & KVM_X86_SHADOW_INT_STI)
  815. interruptibility |= GUEST_INTR_STATE_STI;
  816. if ((interruptibility != interruptibility_old))
  817. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
  818. }
  819. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  820. {
  821. unsigned long rip;
  822. rip = kvm_rip_read(vcpu);
  823. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  824. kvm_rip_write(vcpu, rip);
  825. /* skipping an emulated instruction also counts */
  826. vmx_set_interrupt_shadow(vcpu, 0);
  827. }
  828. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  829. bool has_error_code, u32 error_code,
  830. bool reinject)
  831. {
  832. struct vcpu_vmx *vmx = to_vmx(vcpu);
  833. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  834. if (has_error_code) {
  835. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  836. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  837. }
  838. if (vmx->rmode.vm86_active) {
  839. vmx->rmode.irq.pending = true;
  840. vmx->rmode.irq.vector = nr;
  841. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  842. if (kvm_exception_is_soft(nr))
  843. vmx->rmode.irq.rip +=
  844. vmx->vcpu.arch.event_exit_inst_len;
  845. intr_info |= INTR_TYPE_SOFT_INTR;
  846. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  847. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  848. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  849. return;
  850. }
  851. if (kvm_exception_is_soft(nr)) {
  852. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  853. vmx->vcpu.arch.event_exit_inst_len);
  854. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  855. } else
  856. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  857. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  858. }
  859. static bool vmx_rdtscp_supported(void)
  860. {
  861. return cpu_has_vmx_rdtscp();
  862. }
  863. /*
  864. * Swap MSR entry in host/guest MSR entry array.
  865. */
  866. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  867. {
  868. struct shared_msr_entry tmp;
  869. tmp = vmx->guest_msrs[to];
  870. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  871. vmx->guest_msrs[from] = tmp;
  872. }
  873. /*
  874. * Set up the vmcs to automatically save and restore system
  875. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  876. * mode, as fiddling with msrs is very expensive.
  877. */
  878. static void setup_msrs(struct vcpu_vmx *vmx)
  879. {
  880. int save_nmsrs, index;
  881. unsigned long *msr_bitmap;
  882. vmx_load_host_state(vmx);
  883. save_nmsrs = 0;
  884. #ifdef CONFIG_X86_64
  885. if (is_long_mode(&vmx->vcpu)) {
  886. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  887. if (index >= 0)
  888. move_msr_up(vmx, index, save_nmsrs++);
  889. index = __find_msr_index(vmx, MSR_LSTAR);
  890. if (index >= 0)
  891. move_msr_up(vmx, index, save_nmsrs++);
  892. index = __find_msr_index(vmx, MSR_CSTAR);
  893. if (index >= 0)
  894. move_msr_up(vmx, index, save_nmsrs++);
  895. index = __find_msr_index(vmx, MSR_TSC_AUX);
  896. if (index >= 0 && vmx->rdtscp_enabled)
  897. move_msr_up(vmx, index, save_nmsrs++);
  898. /*
  899. * MSR_K6_STAR is only needed on long mode guests, and only
  900. * if efer.sce is enabled.
  901. */
  902. index = __find_msr_index(vmx, MSR_K6_STAR);
  903. if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
  904. move_msr_up(vmx, index, save_nmsrs++);
  905. }
  906. #endif
  907. index = __find_msr_index(vmx, MSR_EFER);
  908. if (index >= 0 && update_transition_efer(vmx, index))
  909. move_msr_up(vmx, index, save_nmsrs++);
  910. vmx->save_nmsrs = save_nmsrs;
  911. if (cpu_has_vmx_msr_bitmap()) {
  912. if (is_long_mode(&vmx->vcpu))
  913. msr_bitmap = vmx_msr_bitmap_longmode;
  914. else
  915. msr_bitmap = vmx_msr_bitmap_legacy;
  916. vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
  917. }
  918. }
  919. /*
  920. * reads and returns guest's timestamp counter "register"
  921. * guest_tsc = host_tsc + tsc_offset -- 21.3
  922. */
  923. static u64 guest_read_tsc(void)
  924. {
  925. u64 host_tsc, tsc_offset;
  926. rdtscll(host_tsc);
  927. tsc_offset = vmcs_read64(TSC_OFFSET);
  928. return host_tsc + tsc_offset;
  929. }
  930. /*
  931. * writes 'guest_tsc' into guest's timestamp counter "register"
  932. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  933. */
  934. static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
  935. {
  936. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  937. }
  938. /*
  939. * Reads an msr value (of 'msr_index') into 'pdata'.
  940. * Returns 0 on success, non-0 otherwise.
  941. * Assumes vcpu_load() was already called.
  942. */
  943. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  944. {
  945. u64 data;
  946. struct shared_msr_entry *msr;
  947. if (!pdata) {
  948. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  949. return -EINVAL;
  950. }
  951. switch (msr_index) {
  952. #ifdef CONFIG_X86_64
  953. case MSR_FS_BASE:
  954. data = vmcs_readl(GUEST_FS_BASE);
  955. break;
  956. case MSR_GS_BASE:
  957. data = vmcs_readl(GUEST_GS_BASE);
  958. break;
  959. case MSR_KERNEL_GS_BASE:
  960. vmx_load_host_state(to_vmx(vcpu));
  961. data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
  962. break;
  963. #endif
  964. case MSR_EFER:
  965. return kvm_get_msr_common(vcpu, msr_index, pdata);
  966. case MSR_IA32_TSC:
  967. data = guest_read_tsc();
  968. break;
  969. case MSR_IA32_SYSENTER_CS:
  970. data = vmcs_read32(GUEST_SYSENTER_CS);
  971. break;
  972. case MSR_IA32_SYSENTER_EIP:
  973. data = vmcs_readl(GUEST_SYSENTER_EIP);
  974. break;
  975. case MSR_IA32_SYSENTER_ESP:
  976. data = vmcs_readl(GUEST_SYSENTER_ESP);
  977. break;
  978. case MSR_TSC_AUX:
  979. if (!to_vmx(vcpu)->rdtscp_enabled)
  980. return 1;
  981. /* Otherwise falls through */
  982. default:
  983. vmx_load_host_state(to_vmx(vcpu));
  984. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  985. if (msr) {
  986. vmx_load_host_state(to_vmx(vcpu));
  987. data = msr->data;
  988. break;
  989. }
  990. return kvm_get_msr_common(vcpu, msr_index, pdata);
  991. }
  992. *pdata = data;
  993. return 0;
  994. }
  995. /*
  996. * Writes msr value into into the appropriate "register".
  997. * Returns 0 on success, non-0 otherwise.
  998. * Assumes vcpu_load() was already called.
  999. */
  1000. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1001. {
  1002. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1003. struct shared_msr_entry *msr;
  1004. u64 host_tsc;
  1005. int ret = 0;
  1006. switch (msr_index) {
  1007. case MSR_EFER:
  1008. vmx_load_host_state(vmx);
  1009. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1010. break;
  1011. #ifdef CONFIG_X86_64
  1012. case MSR_FS_BASE:
  1013. vmcs_writel(GUEST_FS_BASE, data);
  1014. break;
  1015. case MSR_GS_BASE:
  1016. vmcs_writel(GUEST_GS_BASE, data);
  1017. break;
  1018. case MSR_KERNEL_GS_BASE:
  1019. vmx_load_host_state(vmx);
  1020. vmx->msr_guest_kernel_gs_base = data;
  1021. break;
  1022. #endif
  1023. case MSR_IA32_SYSENTER_CS:
  1024. vmcs_write32(GUEST_SYSENTER_CS, data);
  1025. break;
  1026. case MSR_IA32_SYSENTER_EIP:
  1027. vmcs_writel(GUEST_SYSENTER_EIP, data);
  1028. break;
  1029. case MSR_IA32_SYSENTER_ESP:
  1030. vmcs_writel(GUEST_SYSENTER_ESP, data);
  1031. break;
  1032. case MSR_IA32_TSC:
  1033. rdtscll(host_tsc);
  1034. guest_write_tsc(data, host_tsc);
  1035. break;
  1036. case MSR_IA32_CR_PAT:
  1037. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  1038. vmcs_write64(GUEST_IA32_PAT, data);
  1039. vcpu->arch.pat = data;
  1040. break;
  1041. }
  1042. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1043. break;
  1044. case MSR_TSC_AUX:
  1045. if (!vmx->rdtscp_enabled)
  1046. return 1;
  1047. /* Check reserved bit, higher 32 bits should be zero */
  1048. if ((data >> 32) != 0)
  1049. return 1;
  1050. /* Otherwise falls through */
  1051. default:
  1052. msr = find_msr_entry(vmx, msr_index);
  1053. if (msr) {
  1054. vmx_load_host_state(vmx);
  1055. msr->data = data;
  1056. break;
  1057. }
  1058. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1059. }
  1060. return ret;
  1061. }
  1062. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  1063. {
  1064. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  1065. switch (reg) {
  1066. case VCPU_REGS_RSP:
  1067. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  1068. break;
  1069. case VCPU_REGS_RIP:
  1070. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  1071. break;
  1072. case VCPU_EXREG_PDPTR:
  1073. if (enable_ept)
  1074. ept_save_pdptrs(vcpu);
  1075. break;
  1076. default:
  1077. break;
  1078. }
  1079. }
  1080. static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
  1081. {
  1082. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  1083. vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
  1084. else
  1085. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  1086. update_exception_bitmap(vcpu);
  1087. }
  1088. static __init int cpu_has_kvm_support(void)
  1089. {
  1090. return cpu_has_vmx();
  1091. }
  1092. static __init int vmx_disabled_by_bios(void)
  1093. {
  1094. u64 msr;
  1095. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  1096. if (msr & FEATURE_CONTROL_LOCKED) {
  1097. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
  1098. && tboot_enabled())
  1099. return 1;
  1100. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
  1101. && !tboot_enabled())
  1102. return 1;
  1103. }
  1104. return 0;
  1105. /* locked but not enabled */
  1106. }
  1107. static int hardware_enable(void *garbage)
  1108. {
  1109. int cpu = raw_smp_processor_id();
  1110. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  1111. u64 old, test_bits;
  1112. if (read_cr4() & X86_CR4_VMXE)
  1113. return -EBUSY;
  1114. INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
  1115. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  1116. test_bits = FEATURE_CONTROL_LOCKED;
  1117. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
  1118. if (tboot_enabled())
  1119. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
  1120. if ((old & test_bits) != test_bits) {
  1121. /* enable and lock */
  1122. wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
  1123. }
  1124. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  1125. asm volatile (ASM_VMX_VMXON_RAX
  1126. : : "a"(&phys_addr), "m"(phys_addr)
  1127. : "memory", "cc");
  1128. ept_sync_global();
  1129. return 0;
  1130. }
  1131. static void vmclear_local_vcpus(void)
  1132. {
  1133. int cpu = raw_smp_processor_id();
  1134. struct vcpu_vmx *vmx, *n;
  1135. list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
  1136. local_vcpus_link)
  1137. __vcpu_clear(vmx);
  1138. }
  1139. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  1140. * tricks.
  1141. */
  1142. static void kvm_cpu_vmxoff(void)
  1143. {
  1144. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  1145. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  1146. }
  1147. static void hardware_disable(void *garbage)
  1148. {
  1149. vmclear_local_vcpus();
  1150. kvm_cpu_vmxoff();
  1151. }
  1152. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  1153. u32 msr, u32 *result)
  1154. {
  1155. u32 vmx_msr_low, vmx_msr_high;
  1156. u32 ctl = ctl_min | ctl_opt;
  1157. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  1158. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  1159. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  1160. /* Ensure minimum (required) set of control bits are supported. */
  1161. if (ctl_min & ~ctl)
  1162. return -EIO;
  1163. *result = ctl;
  1164. return 0;
  1165. }
  1166. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  1167. {
  1168. u32 vmx_msr_low, vmx_msr_high;
  1169. u32 min, opt, min2, opt2;
  1170. u32 _pin_based_exec_control = 0;
  1171. u32 _cpu_based_exec_control = 0;
  1172. u32 _cpu_based_2nd_exec_control = 0;
  1173. u32 _vmexit_control = 0;
  1174. u32 _vmentry_control = 0;
  1175. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  1176. opt = PIN_BASED_VIRTUAL_NMIS;
  1177. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  1178. &_pin_based_exec_control) < 0)
  1179. return -EIO;
  1180. min = CPU_BASED_HLT_EXITING |
  1181. #ifdef CONFIG_X86_64
  1182. CPU_BASED_CR8_LOAD_EXITING |
  1183. CPU_BASED_CR8_STORE_EXITING |
  1184. #endif
  1185. CPU_BASED_CR3_LOAD_EXITING |
  1186. CPU_BASED_CR3_STORE_EXITING |
  1187. CPU_BASED_USE_IO_BITMAPS |
  1188. CPU_BASED_MOV_DR_EXITING |
  1189. CPU_BASED_USE_TSC_OFFSETING |
  1190. CPU_BASED_MWAIT_EXITING |
  1191. CPU_BASED_MONITOR_EXITING |
  1192. CPU_BASED_INVLPG_EXITING;
  1193. opt = CPU_BASED_TPR_SHADOW |
  1194. CPU_BASED_USE_MSR_BITMAPS |
  1195. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1196. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1197. &_cpu_based_exec_control) < 0)
  1198. return -EIO;
  1199. #ifdef CONFIG_X86_64
  1200. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  1201. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  1202. ~CPU_BASED_CR8_STORE_EXITING;
  1203. #endif
  1204. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  1205. min2 = 0;
  1206. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  1207. SECONDARY_EXEC_WBINVD_EXITING |
  1208. SECONDARY_EXEC_ENABLE_VPID |
  1209. SECONDARY_EXEC_ENABLE_EPT |
  1210. SECONDARY_EXEC_UNRESTRICTED_GUEST |
  1211. SECONDARY_EXEC_PAUSE_LOOP_EXITING |
  1212. SECONDARY_EXEC_RDTSCP;
  1213. if (adjust_vmx_controls(min2, opt2,
  1214. MSR_IA32_VMX_PROCBASED_CTLS2,
  1215. &_cpu_based_2nd_exec_control) < 0)
  1216. return -EIO;
  1217. }
  1218. #ifndef CONFIG_X86_64
  1219. if (!(_cpu_based_2nd_exec_control &
  1220. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  1221. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  1222. #endif
  1223. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  1224. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  1225. enabled */
  1226. _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
  1227. CPU_BASED_CR3_STORE_EXITING |
  1228. CPU_BASED_INVLPG_EXITING);
  1229. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  1230. vmx_capability.ept, vmx_capability.vpid);
  1231. }
  1232. min = 0;
  1233. #ifdef CONFIG_X86_64
  1234. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1235. #endif
  1236. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
  1237. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  1238. &_vmexit_control) < 0)
  1239. return -EIO;
  1240. min = 0;
  1241. opt = VM_ENTRY_LOAD_IA32_PAT;
  1242. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  1243. &_vmentry_control) < 0)
  1244. return -EIO;
  1245. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  1246. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  1247. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  1248. return -EIO;
  1249. #ifdef CONFIG_X86_64
  1250. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  1251. if (vmx_msr_high & (1u<<16))
  1252. return -EIO;
  1253. #endif
  1254. /* Require Write-Back (WB) memory type for VMCS accesses. */
  1255. if (((vmx_msr_high >> 18) & 15) != 6)
  1256. return -EIO;
  1257. vmcs_conf->size = vmx_msr_high & 0x1fff;
  1258. vmcs_conf->order = get_order(vmcs_config.size);
  1259. vmcs_conf->revision_id = vmx_msr_low;
  1260. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  1261. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  1262. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  1263. vmcs_conf->vmexit_ctrl = _vmexit_control;
  1264. vmcs_conf->vmentry_ctrl = _vmentry_control;
  1265. return 0;
  1266. }
  1267. static struct vmcs *alloc_vmcs_cpu(int cpu)
  1268. {
  1269. int node = cpu_to_node(cpu);
  1270. struct page *pages;
  1271. struct vmcs *vmcs;
  1272. pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
  1273. if (!pages)
  1274. return NULL;
  1275. vmcs = page_address(pages);
  1276. memset(vmcs, 0, vmcs_config.size);
  1277. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  1278. return vmcs;
  1279. }
  1280. static struct vmcs *alloc_vmcs(void)
  1281. {
  1282. return alloc_vmcs_cpu(raw_smp_processor_id());
  1283. }
  1284. static void free_vmcs(struct vmcs *vmcs)
  1285. {
  1286. free_pages((unsigned long)vmcs, vmcs_config.order);
  1287. }
  1288. static void free_kvm_area(void)
  1289. {
  1290. int cpu;
  1291. for_each_possible_cpu(cpu) {
  1292. free_vmcs(per_cpu(vmxarea, cpu));
  1293. per_cpu(vmxarea, cpu) = NULL;
  1294. }
  1295. }
  1296. static __init int alloc_kvm_area(void)
  1297. {
  1298. int cpu;
  1299. for_each_possible_cpu(cpu) {
  1300. struct vmcs *vmcs;
  1301. vmcs = alloc_vmcs_cpu(cpu);
  1302. if (!vmcs) {
  1303. free_kvm_area();
  1304. return -ENOMEM;
  1305. }
  1306. per_cpu(vmxarea, cpu) = vmcs;
  1307. }
  1308. return 0;
  1309. }
  1310. static __init int hardware_setup(void)
  1311. {
  1312. if (setup_vmcs_config(&vmcs_config) < 0)
  1313. return -EIO;
  1314. if (boot_cpu_has(X86_FEATURE_NX))
  1315. kvm_enable_efer_bits(EFER_NX);
  1316. if (!cpu_has_vmx_vpid())
  1317. enable_vpid = 0;
  1318. if (!cpu_has_vmx_ept()) {
  1319. enable_ept = 0;
  1320. enable_unrestricted_guest = 0;
  1321. }
  1322. if (!cpu_has_vmx_unrestricted_guest())
  1323. enable_unrestricted_guest = 0;
  1324. if (!cpu_has_vmx_flexpriority())
  1325. flexpriority_enabled = 0;
  1326. if (!cpu_has_vmx_tpr_shadow())
  1327. kvm_x86_ops->update_cr8_intercept = NULL;
  1328. if (enable_ept && !cpu_has_vmx_ept_2m_page())
  1329. kvm_disable_largepages();
  1330. if (!cpu_has_vmx_ple())
  1331. ple_gap = 0;
  1332. return alloc_kvm_area();
  1333. }
  1334. static __exit void hardware_unsetup(void)
  1335. {
  1336. free_kvm_area();
  1337. }
  1338. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  1339. {
  1340. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1341. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  1342. vmcs_write16(sf->selector, save->selector);
  1343. vmcs_writel(sf->base, save->base);
  1344. vmcs_write32(sf->limit, save->limit);
  1345. vmcs_write32(sf->ar_bytes, save->ar);
  1346. } else {
  1347. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  1348. << AR_DPL_SHIFT;
  1349. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  1350. }
  1351. }
  1352. static void enter_pmode(struct kvm_vcpu *vcpu)
  1353. {
  1354. unsigned long flags;
  1355. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1356. vmx->emulation_required = 1;
  1357. vmx->rmode.vm86_active = 0;
  1358. vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
  1359. vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
  1360. vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
  1361. flags = vmcs_readl(GUEST_RFLAGS);
  1362. flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  1363. flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  1364. vmcs_writel(GUEST_RFLAGS, flags);
  1365. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  1366. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  1367. update_exception_bitmap(vcpu);
  1368. if (emulate_invalid_guest_state)
  1369. return;
  1370. fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
  1371. fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
  1372. fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
  1373. fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
  1374. vmcs_write16(GUEST_SS_SELECTOR, 0);
  1375. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  1376. vmcs_write16(GUEST_CS_SELECTOR,
  1377. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  1378. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1379. }
  1380. static gva_t rmode_tss_base(struct kvm *kvm)
  1381. {
  1382. if (!kvm->arch.tss_addr) {
  1383. struct kvm_memslots *slots;
  1384. gfn_t base_gfn;
  1385. slots = kvm_memslots(kvm);
  1386. base_gfn = kvm->memslots->memslots[0].base_gfn +
  1387. kvm->memslots->memslots[0].npages - 3;
  1388. return base_gfn << PAGE_SHIFT;
  1389. }
  1390. return kvm->arch.tss_addr;
  1391. }
  1392. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  1393. {
  1394. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1395. save->selector = vmcs_read16(sf->selector);
  1396. save->base = vmcs_readl(sf->base);
  1397. save->limit = vmcs_read32(sf->limit);
  1398. save->ar = vmcs_read32(sf->ar_bytes);
  1399. vmcs_write16(sf->selector, save->base >> 4);
  1400. vmcs_write32(sf->base, save->base & 0xfffff);
  1401. vmcs_write32(sf->limit, 0xffff);
  1402. vmcs_write32(sf->ar_bytes, 0xf3);
  1403. }
  1404. static void enter_rmode(struct kvm_vcpu *vcpu)
  1405. {
  1406. unsigned long flags;
  1407. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1408. if (enable_unrestricted_guest)
  1409. return;
  1410. vmx->emulation_required = 1;
  1411. vmx->rmode.vm86_active = 1;
  1412. vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1413. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1414. vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1415. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1416. vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1417. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1418. flags = vmcs_readl(GUEST_RFLAGS);
  1419. vmx->rmode.save_rflags = flags;
  1420. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1421. vmcs_writel(GUEST_RFLAGS, flags);
  1422. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1423. update_exception_bitmap(vcpu);
  1424. if (emulate_invalid_guest_state)
  1425. goto continue_rmode;
  1426. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1427. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1428. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1429. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1430. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1431. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1432. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1433. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1434. fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
  1435. fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
  1436. fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
  1437. fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
  1438. continue_rmode:
  1439. kvm_mmu_reset_context(vcpu);
  1440. init_rmode(vcpu->kvm);
  1441. }
  1442. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1443. {
  1444. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1445. struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1446. if (!msr)
  1447. return;
  1448. /*
  1449. * Force kernel_gs_base reloading before EFER changes, as control
  1450. * of this msr depends on is_long_mode().
  1451. */
  1452. vmx_load_host_state(to_vmx(vcpu));
  1453. vcpu->arch.efer = efer;
  1454. if (efer & EFER_LMA) {
  1455. vmcs_write32(VM_ENTRY_CONTROLS,
  1456. vmcs_read32(VM_ENTRY_CONTROLS) |
  1457. VM_ENTRY_IA32E_MODE);
  1458. msr->data = efer;
  1459. } else {
  1460. vmcs_write32(VM_ENTRY_CONTROLS,
  1461. vmcs_read32(VM_ENTRY_CONTROLS) &
  1462. ~VM_ENTRY_IA32E_MODE);
  1463. msr->data = efer & ~EFER_LME;
  1464. }
  1465. setup_msrs(vmx);
  1466. }
  1467. #ifdef CONFIG_X86_64
  1468. static void enter_lmode(struct kvm_vcpu *vcpu)
  1469. {
  1470. u32 guest_tr_ar;
  1471. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1472. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1473. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1474. __func__);
  1475. vmcs_write32(GUEST_TR_AR_BYTES,
  1476. (guest_tr_ar & ~AR_TYPE_MASK)
  1477. | AR_TYPE_BUSY_64_TSS);
  1478. }
  1479. vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
  1480. }
  1481. static void exit_lmode(struct kvm_vcpu *vcpu)
  1482. {
  1483. vmcs_write32(VM_ENTRY_CONTROLS,
  1484. vmcs_read32(VM_ENTRY_CONTROLS)
  1485. & ~VM_ENTRY_IA32E_MODE);
  1486. vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
  1487. }
  1488. #endif
  1489. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1490. {
  1491. vpid_sync_vcpu_all(to_vmx(vcpu));
  1492. if (enable_ept)
  1493. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  1494. }
  1495. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
  1496. {
  1497. ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
  1498. vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
  1499. vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
  1500. }
  1501. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1502. {
  1503. ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
  1504. vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
  1505. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
  1506. }
  1507. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  1508. {
  1509. if (!test_bit(VCPU_EXREG_PDPTR,
  1510. (unsigned long *)&vcpu->arch.regs_dirty))
  1511. return;
  1512. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1513. vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
  1514. vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
  1515. vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
  1516. vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
  1517. }
  1518. }
  1519. static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
  1520. {
  1521. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1522. vcpu->arch.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
  1523. vcpu->arch.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
  1524. vcpu->arch.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
  1525. vcpu->arch.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
  1526. }
  1527. __set_bit(VCPU_EXREG_PDPTR,
  1528. (unsigned long *)&vcpu->arch.regs_avail);
  1529. __set_bit(VCPU_EXREG_PDPTR,
  1530. (unsigned long *)&vcpu->arch.regs_dirty);
  1531. }
  1532. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  1533. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  1534. unsigned long cr0,
  1535. struct kvm_vcpu *vcpu)
  1536. {
  1537. if (!(cr0 & X86_CR0_PG)) {
  1538. /* From paging/starting to nonpaging */
  1539. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1540. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  1541. (CPU_BASED_CR3_LOAD_EXITING |
  1542. CPU_BASED_CR3_STORE_EXITING));
  1543. vcpu->arch.cr0 = cr0;
  1544. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  1545. } else if (!is_paging(vcpu)) {
  1546. /* From nonpaging to paging */
  1547. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1548. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  1549. ~(CPU_BASED_CR3_LOAD_EXITING |
  1550. CPU_BASED_CR3_STORE_EXITING));
  1551. vcpu->arch.cr0 = cr0;
  1552. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  1553. }
  1554. if (!(cr0 & X86_CR0_WP))
  1555. *hw_cr0 &= ~X86_CR0_WP;
  1556. }
  1557. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1558. {
  1559. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1560. unsigned long hw_cr0;
  1561. if (enable_unrestricted_guest)
  1562. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
  1563. | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
  1564. else
  1565. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
  1566. if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
  1567. enter_pmode(vcpu);
  1568. if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
  1569. enter_rmode(vcpu);
  1570. #ifdef CONFIG_X86_64
  1571. if (vcpu->arch.efer & EFER_LME) {
  1572. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1573. enter_lmode(vcpu);
  1574. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1575. exit_lmode(vcpu);
  1576. }
  1577. #endif
  1578. if (enable_ept)
  1579. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  1580. if (!vcpu->fpu_active)
  1581. hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
  1582. vmcs_writel(CR0_READ_SHADOW, cr0);
  1583. vmcs_writel(GUEST_CR0, hw_cr0);
  1584. vcpu->arch.cr0 = cr0;
  1585. }
  1586. static u64 construct_eptp(unsigned long root_hpa)
  1587. {
  1588. u64 eptp;
  1589. /* TODO write the value reading from MSR */
  1590. eptp = VMX_EPT_DEFAULT_MT |
  1591. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  1592. eptp |= (root_hpa & PAGE_MASK);
  1593. return eptp;
  1594. }
  1595. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1596. {
  1597. unsigned long guest_cr3;
  1598. u64 eptp;
  1599. guest_cr3 = cr3;
  1600. if (enable_ept) {
  1601. eptp = construct_eptp(cr3);
  1602. vmcs_write64(EPT_POINTER, eptp);
  1603. guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
  1604. vcpu->kvm->arch.ept_identity_map_addr;
  1605. ept_load_pdptrs(vcpu);
  1606. }
  1607. vmx_flush_tlb(vcpu);
  1608. vmcs_writel(GUEST_CR3, guest_cr3);
  1609. }
  1610. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1611. {
  1612. unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
  1613. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  1614. vcpu->arch.cr4 = cr4;
  1615. if (enable_ept) {
  1616. if (!is_paging(vcpu)) {
  1617. hw_cr4 &= ~X86_CR4_PAE;
  1618. hw_cr4 |= X86_CR4_PSE;
  1619. } else if (!(cr4 & X86_CR4_PAE)) {
  1620. hw_cr4 &= ~X86_CR4_PAE;
  1621. }
  1622. }
  1623. vmcs_writel(CR4_READ_SHADOW, cr4);
  1624. vmcs_writel(GUEST_CR4, hw_cr4);
  1625. }
  1626. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1627. {
  1628. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1629. return vmcs_readl(sf->base);
  1630. }
  1631. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1632. struct kvm_segment *var, int seg)
  1633. {
  1634. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1635. u32 ar;
  1636. var->base = vmcs_readl(sf->base);
  1637. var->limit = vmcs_read32(sf->limit);
  1638. var->selector = vmcs_read16(sf->selector);
  1639. ar = vmcs_read32(sf->ar_bytes);
  1640. if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
  1641. ar = 0;
  1642. var->type = ar & 15;
  1643. var->s = (ar >> 4) & 1;
  1644. var->dpl = (ar >> 5) & 3;
  1645. var->present = (ar >> 7) & 1;
  1646. var->avl = (ar >> 12) & 1;
  1647. var->l = (ar >> 13) & 1;
  1648. var->db = (ar >> 14) & 1;
  1649. var->g = (ar >> 15) & 1;
  1650. var->unusable = (ar >> 16) & 1;
  1651. }
  1652. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  1653. {
  1654. if (!is_protmode(vcpu))
  1655. return 0;
  1656. if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
  1657. return 3;
  1658. return vmcs_read16(GUEST_CS_SELECTOR) & 3;
  1659. }
  1660. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1661. {
  1662. u32 ar;
  1663. if (var->unusable)
  1664. ar = 1 << 16;
  1665. else {
  1666. ar = var->type & 15;
  1667. ar |= (var->s & 1) << 4;
  1668. ar |= (var->dpl & 3) << 5;
  1669. ar |= (var->present & 1) << 7;
  1670. ar |= (var->avl & 1) << 12;
  1671. ar |= (var->l & 1) << 13;
  1672. ar |= (var->db & 1) << 14;
  1673. ar |= (var->g & 1) << 15;
  1674. }
  1675. if (ar == 0) /* a 0 value means unusable */
  1676. ar = AR_UNUSABLE_MASK;
  1677. return ar;
  1678. }
  1679. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1680. struct kvm_segment *var, int seg)
  1681. {
  1682. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1683. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1684. u32 ar;
  1685. if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
  1686. vmx->rmode.tr.selector = var->selector;
  1687. vmx->rmode.tr.base = var->base;
  1688. vmx->rmode.tr.limit = var->limit;
  1689. vmx->rmode.tr.ar = vmx_segment_access_rights(var);
  1690. return;
  1691. }
  1692. vmcs_writel(sf->base, var->base);
  1693. vmcs_write32(sf->limit, var->limit);
  1694. vmcs_write16(sf->selector, var->selector);
  1695. if (vmx->rmode.vm86_active && var->s) {
  1696. /*
  1697. * Hack real-mode segments into vm86 compatibility.
  1698. */
  1699. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1700. vmcs_writel(sf->base, 0xf0000);
  1701. ar = 0xf3;
  1702. } else
  1703. ar = vmx_segment_access_rights(var);
  1704. /*
  1705. * Fix the "Accessed" bit in AR field of segment registers for older
  1706. * qemu binaries.
  1707. * IA32 arch specifies that at the time of processor reset the
  1708. * "Accessed" bit in the AR field of segment registers is 1. And qemu
  1709. * is setting it to 0 in the usedland code. This causes invalid guest
  1710. * state vmexit when "unrestricted guest" mode is turned on.
  1711. * Fix for this setup issue in cpu_reset is being pushed in the qemu
  1712. * tree. Newer qemu binaries with that qemu fix would not need this
  1713. * kvm hack.
  1714. */
  1715. if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
  1716. ar |= 0x1; /* Accessed */
  1717. vmcs_write32(sf->ar_bytes, ar);
  1718. }
  1719. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1720. {
  1721. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1722. *db = (ar >> 14) & 1;
  1723. *l = (ar >> 13) & 1;
  1724. }
  1725. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  1726. {
  1727. dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
  1728. dt->address = vmcs_readl(GUEST_IDTR_BASE);
  1729. }
  1730. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  1731. {
  1732. vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
  1733. vmcs_writel(GUEST_IDTR_BASE, dt->address);
  1734. }
  1735. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  1736. {
  1737. dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
  1738. dt->address = vmcs_readl(GUEST_GDTR_BASE);
  1739. }
  1740. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  1741. {
  1742. vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
  1743. vmcs_writel(GUEST_GDTR_BASE, dt->address);
  1744. }
  1745. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1746. {
  1747. struct kvm_segment var;
  1748. u32 ar;
  1749. vmx_get_segment(vcpu, &var, seg);
  1750. ar = vmx_segment_access_rights(&var);
  1751. if (var.base != (var.selector << 4))
  1752. return false;
  1753. if (var.limit != 0xffff)
  1754. return false;
  1755. if (ar != 0xf3)
  1756. return false;
  1757. return true;
  1758. }
  1759. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  1760. {
  1761. struct kvm_segment cs;
  1762. unsigned int cs_rpl;
  1763. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1764. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  1765. if (cs.unusable)
  1766. return false;
  1767. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  1768. return false;
  1769. if (!cs.s)
  1770. return false;
  1771. if (cs.type & AR_TYPE_WRITEABLE_MASK) {
  1772. if (cs.dpl > cs_rpl)
  1773. return false;
  1774. } else {
  1775. if (cs.dpl != cs_rpl)
  1776. return false;
  1777. }
  1778. if (!cs.present)
  1779. return false;
  1780. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  1781. return true;
  1782. }
  1783. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  1784. {
  1785. struct kvm_segment ss;
  1786. unsigned int ss_rpl;
  1787. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1788. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  1789. if (ss.unusable)
  1790. return true;
  1791. if (ss.type != 3 && ss.type != 7)
  1792. return false;
  1793. if (!ss.s)
  1794. return false;
  1795. if (ss.dpl != ss_rpl) /* DPL != RPL */
  1796. return false;
  1797. if (!ss.present)
  1798. return false;
  1799. return true;
  1800. }
  1801. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1802. {
  1803. struct kvm_segment var;
  1804. unsigned int rpl;
  1805. vmx_get_segment(vcpu, &var, seg);
  1806. rpl = var.selector & SELECTOR_RPL_MASK;
  1807. if (var.unusable)
  1808. return true;
  1809. if (!var.s)
  1810. return false;
  1811. if (!var.present)
  1812. return false;
  1813. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  1814. if (var.dpl < rpl) /* DPL < RPL */
  1815. return false;
  1816. }
  1817. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  1818. * rights flags
  1819. */
  1820. return true;
  1821. }
  1822. static bool tr_valid(struct kvm_vcpu *vcpu)
  1823. {
  1824. struct kvm_segment tr;
  1825. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  1826. if (tr.unusable)
  1827. return false;
  1828. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1829. return false;
  1830. if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
  1831. return false;
  1832. if (!tr.present)
  1833. return false;
  1834. return true;
  1835. }
  1836. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  1837. {
  1838. struct kvm_segment ldtr;
  1839. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  1840. if (ldtr.unusable)
  1841. return true;
  1842. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1843. return false;
  1844. if (ldtr.type != 2)
  1845. return false;
  1846. if (!ldtr.present)
  1847. return false;
  1848. return true;
  1849. }
  1850. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  1851. {
  1852. struct kvm_segment cs, ss;
  1853. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1854. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1855. return ((cs.selector & SELECTOR_RPL_MASK) ==
  1856. (ss.selector & SELECTOR_RPL_MASK));
  1857. }
  1858. /*
  1859. * Check if guest state is valid. Returns true if valid, false if
  1860. * not.
  1861. * We assume that registers are always usable
  1862. */
  1863. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  1864. {
  1865. /* real mode guest state checks */
  1866. if (!is_protmode(vcpu)) {
  1867. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  1868. return false;
  1869. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  1870. return false;
  1871. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  1872. return false;
  1873. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  1874. return false;
  1875. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  1876. return false;
  1877. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  1878. return false;
  1879. } else {
  1880. /* protected mode guest state checks */
  1881. if (!cs_ss_rpl_check(vcpu))
  1882. return false;
  1883. if (!code_segment_valid(vcpu))
  1884. return false;
  1885. if (!stack_segment_valid(vcpu))
  1886. return false;
  1887. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  1888. return false;
  1889. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  1890. return false;
  1891. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  1892. return false;
  1893. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  1894. return false;
  1895. if (!tr_valid(vcpu))
  1896. return false;
  1897. if (!ldtr_valid(vcpu))
  1898. return false;
  1899. }
  1900. /* TODO:
  1901. * - Add checks on RIP
  1902. * - Add checks on RFLAGS
  1903. */
  1904. return true;
  1905. }
  1906. static int init_rmode_tss(struct kvm *kvm)
  1907. {
  1908. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1909. u16 data = 0;
  1910. int ret = 0;
  1911. int r;
  1912. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1913. if (r < 0)
  1914. goto out;
  1915. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1916. r = kvm_write_guest_page(kvm, fn++, &data,
  1917. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  1918. if (r < 0)
  1919. goto out;
  1920. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  1921. if (r < 0)
  1922. goto out;
  1923. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1924. if (r < 0)
  1925. goto out;
  1926. data = ~0;
  1927. r = kvm_write_guest_page(kvm, fn, &data,
  1928. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  1929. sizeof(u8));
  1930. if (r < 0)
  1931. goto out;
  1932. ret = 1;
  1933. out:
  1934. return ret;
  1935. }
  1936. static int init_rmode_identity_map(struct kvm *kvm)
  1937. {
  1938. int i, r, ret;
  1939. pfn_t identity_map_pfn;
  1940. u32 tmp;
  1941. if (!enable_ept)
  1942. return 1;
  1943. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  1944. printk(KERN_ERR "EPT: identity-mapping pagetable "
  1945. "haven't been allocated!\n");
  1946. return 0;
  1947. }
  1948. if (likely(kvm->arch.ept_identity_pagetable_done))
  1949. return 1;
  1950. ret = 0;
  1951. identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
  1952. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  1953. if (r < 0)
  1954. goto out;
  1955. /* Set up identity-mapping pagetable for EPT in real mode */
  1956. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  1957. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  1958. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  1959. r = kvm_write_guest_page(kvm, identity_map_pfn,
  1960. &tmp, i * sizeof(tmp), sizeof(tmp));
  1961. if (r < 0)
  1962. goto out;
  1963. }
  1964. kvm->arch.ept_identity_pagetable_done = true;
  1965. ret = 1;
  1966. out:
  1967. return ret;
  1968. }
  1969. static void seg_setup(int seg)
  1970. {
  1971. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1972. unsigned int ar;
  1973. vmcs_write16(sf->selector, 0);
  1974. vmcs_writel(sf->base, 0);
  1975. vmcs_write32(sf->limit, 0xffff);
  1976. if (enable_unrestricted_guest) {
  1977. ar = 0x93;
  1978. if (seg == VCPU_SREG_CS)
  1979. ar |= 0x08; /* code segment */
  1980. } else
  1981. ar = 0xf3;
  1982. vmcs_write32(sf->ar_bytes, ar);
  1983. }
  1984. static int alloc_apic_access_page(struct kvm *kvm)
  1985. {
  1986. struct kvm_userspace_memory_region kvm_userspace_mem;
  1987. int r = 0;
  1988. mutex_lock(&kvm->slots_lock);
  1989. if (kvm->arch.apic_access_page)
  1990. goto out;
  1991. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  1992. kvm_userspace_mem.flags = 0;
  1993. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  1994. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1995. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1996. if (r)
  1997. goto out;
  1998. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  1999. out:
  2000. mutex_unlock(&kvm->slots_lock);
  2001. return r;
  2002. }
  2003. static int alloc_identity_pagetable(struct kvm *kvm)
  2004. {
  2005. struct kvm_userspace_memory_region kvm_userspace_mem;
  2006. int r = 0;
  2007. mutex_lock(&kvm->slots_lock);
  2008. if (kvm->arch.ept_identity_pagetable)
  2009. goto out;
  2010. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  2011. kvm_userspace_mem.flags = 0;
  2012. kvm_userspace_mem.guest_phys_addr =
  2013. kvm->arch.ept_identity_map_addr;
  2014. kvm_userspace_mem.memory_size = PAGE_SIZE;
  2015. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  2016. if (r)
  2017. goto out;
  2018. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  2019. kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
  2020. out:
  2021. mutex_unlock(&kvm->slots_lock);
  2022. return r;
  2023. }
  2024. static void allocate_vpid(struct vcpu_vmx *vmx)
  2025. {
  2026. int vpid;
  2027. vmx->vpid = 0;
  2028. if (!enable_vpid)
  2029. return;
  2030. spin_lock(&vmx_vpid_lock);
  2031. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  2032. if (vpid < VMX_NR_VPIDS) {
  2033. vmx->vpid = vpid;
  2034. __set_bit(vpid, vmx_vpid_bitmap);
  2035. }
  2036. spin_unlock(&vmx_vpid_lock);
  2037. }
  2038. static void free_vpid(struct vcpu_vmx *vmx)
  2039. {
  2040. if (!enable_vpid)
  2041. return;
  2042. spin_lock(&vmx_vpid_lock);
  2043. if (vmx->vpid != 0)
  2044. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  2045. spin_unlock(&vmx_vpid_lock);
  2046. }
  2047. static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
  2048. {
  2049. int f = sizeof(unsigned long);
  2050. if (!cpu_has_vmx_msr_bitmap())
  2051. return;
  2052. /*
  2053. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  2054. * have the write-low and read-high bitmap offsets the wrong way round.
  2055. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  2056. */
  2057. if (msr <= 0x1fff) {
  2058. __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
  2059. __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
  2060. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  2061. msr &= 0x1fff;
  2062. __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
  2063. __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
  2064. }
  2065. }
  2066. static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
  2067. {
  2068. if (!longmode_only)
  2069. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
  2070. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
  2071. }
  2072. /*
  2073. * Sets up the vmcs for emulated real mode.
  2074. */
  2075. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  2076. {
  2077. u32 host_sysenter_cs, msr_low, msr_high;
  2078. u32 junk;
  2079. u64 host_pat, tsc_this, tsc_base;
  2080. unsigned long a;
  2081. struct desc_ptr dt;
  2082. int i;
  2083. unsigned long kvm_vmx_return;
  2084. u32 exec_control;
  2085. /* I/O */
  2086. vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
  2087. vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
  2088. if (cpu_has_vmx_msr_bitmap())
  2089. vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
  2090. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  2091. /* Control */
  2092. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  2093. vmcs_config.pin_based_exec_ctrl);
  2094. exec_control = vmcs_config.cpu_based_exec_ctrl;
  2095. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  2096. exec_control &= ~CPU_BASED_TPR_SHADOW;
  2097. #ifdef CONFIG_X86_64
  2098. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  2099. CPU_BASED_CR8_LOAD_EXITING;
  2100. #endif
  2101. }
  2102. if (!enable_ept)
  2103. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  2104. CPU_BASED_CR3_LOAD_EXITING |
  2105. CPU_BASED_INVLPG_EXITING;
  2106. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  2107. if (cpu_has_secondary_exec_ctrls()) {
  2108. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  2109. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  2110. exec_control &=
  2111. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  2112. if (vmx->vpid == 0)
  2113. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  2114. if (!enable_ept) {
  2115. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  2116. enable_unrestricted_guest = 0;
  2117. }
  2118. if (!enable_unrestricted_guest)
  2119. exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
  2120. if (!ple_gap)
  2121. exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  2122. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  2123. }
  2124. if (ple_gap) {
  2125. vmcs_write32(PLE_GAP, ple_gap);
  2126. vmcs_write32(PLE_WINDOW, ple_window);
  2127. }
  2128. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  2129. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  2130. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  2131. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  2132. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  2133. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  2134. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  2135. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2136. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2137. vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
  2138. vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
  2139. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2140. #ifdef CONFIG_X86_64
  2141. rdmsrl(MSR_FS_BASE, a);
  2142. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  2143. rdmsrl(MSR_GS_BASE, a);
  2144. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  2145. #else
  2146. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  2147. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  2148. #endif
  2149. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  2150. native_store_idt(&dt);
  2151. vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
  2152. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  2153. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  2154. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  2155. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  2156. vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
  2157. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  2158. vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
  2159. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  2160. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  2161. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  2162. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  2163. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  2164. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  2165. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  2166. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  2167. host_pat = msr_low | ((u64) msr_high << 32);
  2168. vmcs_write64(HOST_IA32_PAT, host_pat);
  2169. }
  2170. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  2171. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  2172. host_pat = msr_low | ((u64) msr_high << 32);
  2173. /* Write the default value follow host pat */
  2174. vmcs_write64(GUEST_IA32_PAT, host_pat);
  2175. /* Keep arch.pat sync with GUEST_IA32_PAT */
  2176. vmx->vcpu.arch.pat = host_pat;
  2177. }
  2178. for (i = 0; i < NR_VMX_MSR; ++i) {
  2179. u32 index = vmx_msr_index[i];
  2180. u32 data_low, data_high;
  2181. int j = vmx->nmsrs;
  2182. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  2183. continue;
  2184. if (wrmsr_safe(index, data_low, data_high) < 0)
  2185. continue;
  2186. vmx->guest_msrs[j].index = i;
  2187. vmx->guest_msrs[j].data = 0;
  2188. vmx->guest_msrs[j].mask = -1ull;
  2189. ++vmx->nmsrs;
  2190. }
  2191. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  2192. /* 22.2.1, 20.8.1 */
  2193. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  2194. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  2195. vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
  2196. if (enable_ept)
  2197. vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
  2198. vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
  2199. tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
  2200. rdtscll(tsc_this);
  2201. if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
  2202. tsc_base = tsc_this;
  2203. guest_write_tsc(0, tsc_base);
  2204. return 0;
  2205. }
  2206. static int init_rmode(struct kvm *kvm)
  2207. {
  2208. if (!init_rmode_tss(kvm))
  2209. return 0;
  2210. if (!init_rmode_identity_map(kvm))
  2211. return 0;
  2212. return 1;
  2213. }
  2214. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  2215. {
  2216. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2217. u64 msr;
  2218. int ret, idx;
  2219. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  2220. idx = srcu_read_lock(&vcpu->kvm->srcu);
  2221. if (!init_rmode(vmx->vcpu.kvm)) {
  2222. ret = -ENOMEM;
  2223. goto out;
  2224. }
  2225. vmx->rmode.vm86_active = 0;
  2226. vmx->soft_vnmi_blocked = 0;
  2227. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  2228. kvm_set_cr8(&vmx->vcpu, 0);
  2229. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  2230. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  2231. msr |= MSR_IA32_APICBASE_BSP;
  2232. kvm_set_apic_base(&vmx->vcpu, msr);
  2233. fx_init(&vmx->vcpu);
  2234. seg_setup(VCPU_SREG_CS);
  2235. /*
  2236. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  2237. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  2238. */
  2239. if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
  2240. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  2241. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  2242. } else {
  2243. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  2244. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  2245. }
  2246. seg_setup(VCPU_SREG_DS);
  2247. seg_setup(VCPU_SREG_ES);
  2248. seg_setup(VCPU_SREG_FS);
  2249. seg_setup(VCPU_SREG_GS);
  2250. seg_setup(VCPU_SREG_SS);
  2251. vmcs_write16(GUEST_TR_SELECTOR, 0);
  2252. vmcs_writel(GUEST_TR_BASE, 0);
  2253. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  2254. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  2255. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  2256. vmcs_writel(GUEST_LDTR_BASE, 0);
  2257. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  2258. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  2259. vmcs_write32(GUEST_SYSENTER_CS, 0);
  2260. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  2261. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  2262. vmcs_writel(GUEST_RFLAGS, 0x02);
  2263. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  2264. kvm_rip_write(vcpu, 0xfff0);
  2265. else
  2266. kvm_rip_write(vcpu, 0);
  2267. kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
  2268. vmcs_writel(GUEST_DR7, 0x400);
  2269. vmcs_writel(GUEST_GDTR_BASE, 0);
  2270. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  2271. vmcs_writel(GUEST_IDTR_BASE, 0);
  2272. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  2273. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  2274. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  2275. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  2276. /* Special registers */
  2277. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  2278. setup_msrs(vmx);
  2279. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  2280. if (cpu_has_vmx_tpr_shadow()) {
  2281. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  2282. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  2283. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  2284. page_to_phys(vmx->vcpu.arch.apic->regs_page));
  2285. vmcs_write32(TPR_THRESHOLD, 0);
  2286. }
  2287. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  2288. vmcs_write64(APIC_ACCESS_ADDR,
  2289. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  2290. if (vmx->vpid != 0)
  2291. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  2292. vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
  2293. vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
  2294. vmx_set_cr4(&vmx->vcpu, 0);
  2295. vmx_set_efer(&vmx->vcpu, 0);
  2296. vmx_fpu_activate(&vmx->vcpu);
  2297. update_exception_bitmap(&vmx->vcpu);
  2298. vpid_sync_vcpu_all(vmx);
  2299. ret = 0;
  2300. /* HACK: Don't enable emulation on guest boot/reset */
  2301. vmx->emulation_required = 0;
  2302. out:
  2303. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  2304. return ret;
  2305. }
  2306. static void enable_irq_window(struct kvm_vcpu *vcpu)
  2307. {
  2308. u32 cpu_based_vm_exec_control;
  2309. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2310. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  2311. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2312. }
  2313. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  2314. {
  2315. u32 cpu_based_vm_exec_control;
  2316. if (!cpu_has_virtual_nmis()) {
  2317. enable_irq_window(vcpu);
  2318. return;
  2319. }
  2320. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2321. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  2322. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2323. }
  2324. static void vmx_inject_irq(struct kvm_vcpu *vcpu)
  2325. {
  2326. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2327. uint32_t intr;
  2328. int irq = vcpu->arch.interrupt.nr;
  2329. trace_kvm_inj_virq(irq);
  2330. ++vcpu->stat.irq_injections;
  2331. if (vmx->rmode.vm86_active) {
  2332. vmx->rmode.irq.pending = true;
  2333. vmx->rmode.irq.vector = irq;
  2334. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2335. if (vcpu->arch.interrupt.soft)
  2336. vmx->rmode.irq.rip +=
  2337. vmx->vcpu.arch.event_exit_inst_len;
  2338. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2339. irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
  2340. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2341. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2342. return;
  2343. }
  2344. intr = irq | INTR_INFO_VALID_MASK;
  2345. if (vcpu->arch.interrupt.soft) {
  2346. intr |= INTR_TYPE_SOFT_INTR;
  2347. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  2348. vmx->vcpu.arch.event_exit_inst_len);
  2349. } else
  2350. intr |= INTR_TYPE_EXT_INTR;
  2351. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
  2352. }
  2353. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  2354. {
  2355. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2356. if (!cpu_has_virtual_nmis()) {
  2357. /*
  2358. * Tracking the NMI-blocked state in software is built upon
  2359. * finding the next open IRQ window. This, in turn, depends on
  2360. * well-behaving guests: They have to keep IRQs disabled at
  2361. * least as long as the NMI handler runs. Otherwise we may
  2362. * cause NMI nesting, maybe breaking the guest. But as this is
  2363. * highly unlikely, we can live with the residual risk.
  2364. */
  2365. vmx->soft_vnmi_blocked = 1;
  2366. vmx->vnmi_blocked_time = 0;
  2367. }
  2368. ++vcpu->stat.nmi_injections;
  2369. if (vmx->rmode.vm86_active) {
  2370. vmx->rmode.irq.pending = true;
  2371. vmx->rmode.irq.vector = NMI_VECTOR;
  2372. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2373. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2374. NMI_VECTOR | INTR_TYPE_SOFT_INTR |
  2375. INTR_INFO_VALID_MASK);
  2376. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2377. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2378. return;
  2379. }
  2380. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2381. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  2382. }
  2383. static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
  2384. {
  2385. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  2386. return 0;
  2387. return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2388. (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_NMI));
  2389. }
  2390. static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
  2391. {
  2392. if (!cpu_has_virtual_nmis())
  2393. return to_vmx(vcpu)->soft_vnmi_blocked;
  2394. else
  2395. return !!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2396. GUEST_INTR_STATE_NMI);
  2397. }
  2398. static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
  2399. {
  2400. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2401. if (!cpu_has_virtual_nmis()) {
  2402. if (vmx->soft_vnmi_blocked != masked) {
  2403. vmx->soft_vnmi_blocked = masked;
  2404. vmx->vnmi_blocked_time = 0;
  2405. }
  2406. } else {
  2407. if (masked)
  2408. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2409. GUEST_INTR_STATE_NMI);
  2410. else
  2411. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  2412. GUEST_INTR_STATE_NMI);
  2413. }
  2414. }
  2415. static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
  2416. {
  2417. return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  2418. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2419. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
  2420. }
  2421. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  2422. {
  2423. int ret;
  2424. struct kvm_userspace_memory_region tss_mem = {
  2425. .slot = TSS_PRIVATE_MEMSLOT,
  2426. .guest_phys_addr = addr,
  2427. .memory_size = PAGE_SIZE * 3,
  2428. .flags = 0,
  2429. };
  2430. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  2431. if (ret)
  2432. return ret;
  2433. kvm->arch.tss_addr = addr;
  2434. return 0;
  2435. }
  2436. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  2437. int vec, u32 err_code)
  2438. {
  2439. /*
  2440. * Instruction with address size override prefix opcode 0x67
  2441. * Cause the #SS fault with 0 error code in VM86 mode.
  2442. */
  2443. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  2444. if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE)
  2445. return 1;
  2446. /*
  2447. * Forward all other exceptions that are valid in real mode.
  2448. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  2449. * the required debugging infrastructure rework.
  2450. */
  2451. switch (vec) {
  2452. case DB_VECTOR:
  2453. if (vcpu->guest_debug &
  2454. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  2455. return 0;
  2456. kvm_queue_exception(vcpu, vec);
  2457. return 1;
  2458. case BP_VECTOR:
  2459. /*
  2460. * Update instruction length as we may reinject the exception
  2461. * from user space while in guest debugging mode.
  2462. */
  2463. to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
  2464. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  2465. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  2466. return 0;
  2467. /* fall through */
  2468. case DE_VECTOR:
  2469. case OF_VECTOR:
  2470. case BR_VECTOR:
  2471. case UD_VECTOR:
  2472. case DF_VECTOR:
  2473. case SS_VECTOR:
  2474. case GP_VECTOR:
  2475. case MF_VECTOR:
  2476. kvm_queue_exception(vcpu, vec);
  2477. return 1;
  2478. }
  2479. return 0;
  2480. }
  2481. /*
  2482. * Trigger machine check on the host. We assume all the MSRs are already set up
  2483. * by the CPU and that we still run on the same CPU as the MCE occurred on.
  2484. * We pass a fake environment to the machine check handler because we want
  2485. * the guest to be always treated like user space, no matter what context
  2486. * it used internally.
  2487. */
  2488. static void kvm_machine_check(void)
  2489. {
  2490. #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
  2491. struct pt_regs regs = {
  2492. .cs = 3, /* Fake ring 3 no matter what the guest ran on */
  2493. .flags = X86_EFLAGS_IF,
  2494. };
  2495. do_machine_check(&regs, 0);
  2496. #endif
  2497. }
  2498. static int handle_machine_check(struct kvm_vcpu *vcpu)
  2499. {
  2500. /* already handled by vcpu_run */
  2501. return 1;
  2502. }
  2503. static int handle_exception(struct kvm_vcpu *vcpu)
  2504. {
  2505. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2506. struct kvm_run *kvm_run = vcpu->run;
  2507. u32 intr_info, ex_no, error_code;
  2508. unsigned long cr2, rip, dr6;
  2509. u32 vect_info;
  2510. enum emulation_result er;
  2511. vect_info = vmx->idt_vectoring_info;
  2512. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2513. if (is_machine_check(intr_info))
  2514. return handle_machine_check(vcpu);
  2515. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  2516. !is_page_fault(intr_info)) {
  2517. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  2518. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
  2519. vcpu->run->internal.ndata = 2;
  2520. vcpu->run->internal.data[0] = vect_info;
  2521. vcpu->run->internal.data[1] = intr_info;
  2522. return 0;
  2523. }
  2524. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  2525. return 1; /* already handled by vmx_vcpu_run() */
  2526. if (is_no_device(intr_info)) {
  2527. vmx_fpu_activate(vcpu);
  2528. return 1;
  2529. }
  2530. if (is_invalid_opcode(intr_info)) {
  2531. er = emulate_instruction(vcpu, 0, 0, EMULTYPE_TRAP_UD);
  2532. if (er != EMULATE_DONE)
  2533. kvm_queue_exception(vcpu, UD_VECTOR);
  2534. return 1;
  2535. }
  2536. error_code = 0;
  2537. rip = kvm_rip_read(vcpu);
  2538. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  2539. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  2540. if (is_page_fault(intr_info)) {
  2541. /* EPT won't cause page fault directly */
  2542. if (enable_ept)
  2543. BUG();
  2544. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  2545. trace_kvm_page_fault(cr2, error_code);
  2546. if (kvm_event_needs_reinjection(vcpu))
  2547. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  2548. return kvm_mmu_page_fault(vcpu, cr2, error_code);
  2549. }
  2550. if (vmx->rmode.vm86_active &&
  2551. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  2552. error_code)) {
  2553. if (vcpu->arch.halt_request) {
  2554. vcpu->arch.halt_request = 0;
  2555. return kvm_emulate_halt(vcpu);
  2556. }
  2557. return 1;
  2558. }
  2559. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  2560. switch (ex_no) {
  2561. case DB_VECTOR:
  2562. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  2563. if (!(vcpu->guest_debug &
  2564. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  2565. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  2566. kvm_queue_exception(vcpu, DB_VECTOR);
  2567. return 1;
  2568. }
  2569. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  2570. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  2571. /* fall through */
  2572. case BP_VECTOR:
  2573. /*
  2574. * Update instruction length as we may reinject #BP from
  2575. * user space while in guest debugging mode. Reading it for
  2576. * #DB as well causes no harm, it is not used in that case.
  2577. */
  2578. vmx->vcpu.arch.event_exit_inst_len =
  2579. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  2580. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  2581. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  2582. kvm_run->debug.arch.exception = ex_no;
  2583. break;
  2584. default:
  2585. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  2586. kvm_run->ex.exception = ex_no;
  2587. kvm_run->ex.error_code = error_code;
  2588. break;
  2589. }
  2590. return 0;
  2591. }
  2592. static int handle_external_interrupt(struct kvm_vcpu *vcpu)
  2593. {
  2594. ++vcpu->stat.irq_exits;
  2595. return 1;
  2596. }
  2597. static int handle_triple_fault(struct kvm_vcpu *vcpu)
  2598. {
  2599. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  2600. return 0;
  2601. }
  2602. static int handle_io(struct kvm_vcpu *vcpu)
  2603. {
  2604. unsigned long exit_qualification;
  2605. int size, in, string;
  2606. unsigned port;
  2607. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2608. string = (exit_qualification & 16) != 0;
  2609. in = (exit_qualification & 8) != 0;
  2610. ++vcpu->stat.io_exits;
  2611. if (string || in)
  2612. return !(emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DO_MMIO);
  2613. port = exit_qualification >> 16;
  2614. size = (exit_qualification & 7) + 1;
  2615. skip_emulated_instruction(vcpu);
  2616. return kvm_fast_pio_out(vcpu, size, port);
  2617. }
  2618. static void
  2619. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  2620. {
  2621. /*
  2622. * Patch in the VMCALL instruction:
  2623. */
  2624. hypercall[0] = 0x0f;
  2625. hypercall[1] = 0x01;
  2626. hypercall[2] = 0xc1;
  2627. }
  2628. static int handle_cr(struct kvm_vcpu *vcpu)
  2629. {
  2630. unsigned long exit_qualification, val;
  2631. int cr;
  2632. int reg;
  2633. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2634. cr = exit_qualification & 15;
  2635. reg = (exit_qualification >> 8) & 15;
  2636. switch ((exit_qualification >> 4) & 3) {
  2637. case 0: /* mov to cr */
  2638. val = kvm_register_read(vcpu, reg);
  2639. trace_kvm_cr_write(cr, val);
  2640. switch (cr) {
  2641. case 0:
  2642. kvm_set_cr0(vcpu, val);
  2643. skip_emulated_instruction(vcpu);
  2644. return 1;
  2645. case 3:
  2646. kvm_set_cr3(vcpu, val);
  2647. skip_emulated_instruction(vcpu);
  2648. return 1;
  2649. case 4:
  2650. kvm_set_cr4(vcpu, val);
  2651. skip_emulated_instruction(vcpu);
  2652. return 1;
  2653. case 8: {
  2654. u8 cr8_prev = kvm_get_cr8(vcpu);
  2655. u8 cr8 = kvm_register_read(vcpu, reg);
  2656. kvm_set_cr8(vcpu, cr8);
  2657. skip_emulated_instruction(vcpu);
  2658. if (irqchip_in_kernel(vcpu->kvm))
  2659. return 1;
  2660. if (cr8_prev <= cr8)
  2661. return 1;
  2662. vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
  2663. return 0;
  2664. }
  2665. };
  2666. break;
  2667. case 2: /* clts */
  2668. vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
  2669. trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
  2670. skip_emulated_instruction(vcpu);
  2671. vmx_fpu_activate(vcpu);
  2672. return 1;
  2673. case 1: /*mov from cr*/
  2674. switch (cr) {
  2675. case 3:
  2676. kvm_register_write(vcpu, reg, vcpu->arch.cr3);
  2677. trace_kvm_cr_read(cr, vcpu->arch.cr3);
  2678. skip_emulated_instruction(vcpu);
  2679. return 1;
  2680. case 8:
  2681. val = kvm_get_cr8(vcpu);
  2682. kvm_register_write(vcpu, reg, val);
  2683. trace_kvm_cr_read(cr, val);
  2684. skip_emulated_instruction(vcpu);
  2685. return 1;
  2686. }
  2687. break;
  2688. case 3: /* lmsw */
  2689. val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
  2690. trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
  2691. kvm_lmsw(vcpu, val);
  2692. skip_emulated_instruction(vcpu);
  2693. return 1;
  2694. default:
  2695. break;
  2696. }
  2697. vcpu->run->exit_reason = 0;
  2698. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  2699. (int)(exit_qualification >> 4) & 3, cr);
  2700. return 0;
  2701. }
  2702. static int handle_dr(struct kvm_vcpu *vcpu)
  2703. {
  2704. unsigned long exit_qualification;
  2705. int dr, reg;
  2706. /* Do not handle if the CPL > 0, will trigger GP on re-entry */
  2707. if (!kvm_require_cpl(vcpu, 0))
  2708. return 1;
  2709. dr = vmcs_readl(GUEST_DR7);
  2710. if (dr & DR7_GD) {
  2711. /*
  2712. * As the vm-exit takes precedence over the debug trap, we
  2713. * need to emulate the latter, either for the host or the
  2714. * guest debugging itself.
  2715. */
  2716. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  2717. vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
  2718. vcpu->run->debug.arch.dr7 = dr;
  2719. vcpu->run->debug.arch.pc =
  2720. vmcs_readl(GUEST_CS_BASE) +
  2721. vmcs_readl(GUEST_RIP);
  2722. vcpu->run->debug.arch.exception = DB_VECTOR;
  2723. vcpu->run->exit_reason = KVM_EXIT_DEBUG;
  2724. return 0;
  2725. } else {
  2726. vcpu->arch.dr7 &= ~DR7_GD;
  2727. vcpu->arch.dr6 |= DR6_BD;
  2728. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2729. kvm_queue_exception(vcpu, DB_VECTOR);
  2730. return 1;
  2731. }
  2732. }
  2733. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2734. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  2735. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  2736. if (exit_qualification & TYPE_MOV_FROM_DR) {
  2737. unsigned long val;
  2738. if (!kvm_get_dr(vcpu, dr, &val))
  2739. kvm_register_write(vcpu, reg, val);
  2740. } else
  2741. kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
  2742. skip_emulated_instruction(vcpu);
  2743. return 1;
  2744. }
  2745. static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
  2746. {
  2747. vmcs_writel(GUEST_DR7, val);
  2748. }
  2749. static int handle_cpuid(struct kvm_vcpu *vcpu)
  2750. {
  2751. kvm_emulate_cpuid(vcpu);
  2752. return 1;
  2753. }
  2754. static int handle_rdmsr(struct kvm_vcpu *vcpu)
  2755. {
  2756. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2757. u64 data;
  2758. if (vmx_get_msr(vcpu, ecx, &data)) {
  2759. trace_kvm_msr_read_ex(ecx);
  2760. kvm_inject_gp(vcpu, 0);
  2761. return 1;
  2762. }
  2763. trace_kvm_msr_read(ecx, data);
  2764. /* FIXME: handling of bits 32:63 of rax, rdx */
  2765. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  2766. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  2767. skip_emulated_instruction(vcpu);
  2768. return 1;
  2769. }
  2770. static int handle_wrmsr(struct kvm_vcpu *vcpu)
  2771. {
  2772. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2773. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  2774. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  2775. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  2776. trace_kvm_msr_write_ex(ecx, data);
  2777. kvm_inject_gp(vcpu, 0);
  2778. return 1;
  2779. }
  2780. trace_kvm_msr_write(ecx, data);
  2781. skip_emulated_instruction(vcpu);
  2782. return 1;
  2783. }
  2784. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
  2785. {
  2786. return 1;
  2787. }
  2788. static int handle_interrupt_window(struct kvm_vcpu *vcpu)
  2789. {
  2790. u32 cpu_based_vm_exec_control;
  2791. /* clear pending irq */
  2792. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2793. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  2794. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2795. ++vcpu->stat.irq_window_exits;
  2796. /*
  2797. * If the user space waits to inject interrupts, exit as soon as
  2798. * possible
  2799. */
  2800. if (!irqchip_in_kernel(vcpu->kvm) &&
  2801. vcpu->run->request_interrupt_window &&
  2802. !kvm_cpu_has_interrupt(vcpu)) {
  2803. vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  2804. return 0;
  2805. }
  2806. return 1;
  2807. }
  2808. static int handle_halt(struct kvm_vcpu *vcpu)
  2809. {
  2810. skip_emulated_instruction(vcpu);
  2811. return kvm_emulate_halt(vcpu);
  2812. }
  2813. static int handle_vmcall(struct kvm_vcpu *vcpu)
  2814. {
  2815. skip_emulated_instruction(vcpu);
  2816. kvm_emulate_hypercall(vcpu);
  2817. return 1;
  2818. }
  2819. static int handle_vmx_insn(struct kvm_vcpu *vcpu)
  2820. {
  2821. kvm_queue_exception(vcpu, UD_VECTOR);
  2822. return 1;
  2823. }
  2824. static int handle_invlpg(struct kvm_vcpu *vcpu)
  2825. {
  2826. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2827. kvm_mmu_invlpg(vcpu, exit_qualification);
  2828. skip_emulated_instruction(vcpu);
  2829. return 1;
  2830. }
  2831. static int handle_wbinvd(struct kvm_vcpu *vcpu)
  2832. {
  2833. skip_emulated_instruction(vcpu);
  2834. /* TODO: Add support for VT-d/pass-through device */
  2835. return 1;
  2836. }
  2837. static int handle_apic_access(struct kvm_vcpu *vcpu)
  2838. {
  2839. unsigned long exit_qualification;
  2840. enum emulation_result er;
  2841. unsigned long offset;
  2842. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2843. offset = exit_qualification & 0xffful;
  2844. er = emulate_instruction(vcpu, 0, 0, 0);
  2845. if (er != EMULATE_DONE) {
  2846. printk(KERN_ERR
  2847. "Fail to handle apic access vmexit! Offset is 0x%lx\n",
  2848. offset);
  2849. return -ENOEXEC;
  2850. }
  2851. return 1;
  2852. }
  2853. static int handle_task_switch(struct kvm_vcpu *vcpu)
  2854. {
  2855. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2856. unsigned long exit_qualification;
  2857. bool has_error_code = false;
  2858. u32 error_code = 0;
  2859. u16 tss_selector;
  2860. int reason, type, idt_v;
  2861. idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  2862. type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
  2863. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2864. reason = (u32)exit_qualification >> 30;
  2865. if (reason == TASK_SWITCH_GATE && idt_v) {
  2866. switch (type) {
  2867. case INTR_TYPE_NMI_INTR:
  2868. vcpu->arch.nmi_injected = false;
  2869. if (cpu_has_virtual_nmis())
  2870. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2871. GUEST_INTR_STATE_NMI);
  2872. break;
  2873. case INTR_TYPE_EXT_INTR:
  2874. case INTR_TYPE_SOFT_INTR:
  2875. kvm_clear_interrupt_queue(vcpu);
  2876. break;
  2877. case INTR_TYPE_HARD_EXCEPTION:
  2878. if (vmx->idt_vectoring_info &
  2879. VECTORING_INFO_DELIVER_CODE_MASK) {
  2880. has_error_code = true;
  2881. error_code =
  2882. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  2883. }
  2884. /* fall through */
  2885. case INTR_TYPE_SOFT_EXCEPTION:
  2886. kvm_clear_exception_queue(vcpu);
  2887. break;
  2888. default:
  2889. break;
  2890. }
  2891. }
  2892. tss_selector = exit_qualification;
  2893. if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
  2894. type != INTR_TYPE_EXT_INTR &&
  2895. type != INTR_TYPE_NMI_INTR))
  2896. skip_emulated_instruction(vcpu);
  2897. if (kvm_task_switch(vcpu, tss_selector, reason,
  2898. has_error_code, error_code) == EMULATE_FAIL) {
  2899. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  2900. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  2901. vcpu->run->internal.ndata = 0;
  2902. return 0;
  2903. }
  2904. /* clear all local breakpoint enable flags */
  2905. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  2906. /*
  2907. * TODO: What about debug traps on tss switch?
  2908. * Are we supposed to inject them and update dr6?
  2909. */
  2910. return 1;
  2911. }
  2912. static int handle_ept_violation(struct kvm_vcpu *vcpu)
  2913. {
  2914. unsigned long exit_qualification;
  2915. gpa_t gpa;
  2916. int gla_validity;
  2917. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2918. if (exit_qualification & (1 << 6)) {
  2919. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  2920. return -EINVAL;
  2921. }
  2922. gla_validity = (exit_qualification >> 7) & 0x3;
  2923. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  2924. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  2925. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2926. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2927. vmcs_readl(GUEST_LINEAR_ADDRESS));
  2928. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2929. (long unsigned int)exit_qualification);
  2930. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  2931. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
  2932. return 0;
  2933. }
  2934. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2935. trace_kvm_page_fault(gpa, exit_qualification);
  2936. return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
  2937. }
  2938. static u64 ept_rsvd_mask(u64 spte, int level)
  2939. {
  2940. int i;
  2941. u64 mask = 0;
  2942. for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
  2943. mask |= (1ULL << i);
  2944. if (level > 2)
  2945. /* bits 7:3 reserved */
  2946. mask |= 0xf8;
  2947. else if (level == 2) {
  2948. if (spte & (1ULL << 7))
  2949. /* 2MB ref, bits 20:12 reserved */
  2950. mask |= 0x1ff000;
  2951. else
  2952. /* bits 6:3 reserved */
  2953. mask |= 0x78;
  2954. }
  2955. return mask;
  2956. }
  2957. static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
  2958. int level)
  2959. {
  2960. printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
  2961. /* 010b (write-only) */
  2962. WARN_ON((spte & 0x7) == 0x2);
  2963. /* 110b (write/execute) */
  2964. WARN_ON((spte & 0x7) == 0x6);
  2965. /* 100b (execute-only) and value not supported by logical processor */
  2966. if (!cpu_has_vmx_ept_execute_only())
  2967. WARN_ON((spte & 0x7) == 0x4);
  2968. /* not 000b */
  2969. if ((spte & 0x7)) {
  2970. u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
  2971. if (rsvd_bits != 0) {
  2972. printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
  2973. __func__, rsvd_bits);
  2974. WARN_ON(1);
  2975. }
  2976. if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
  2977. u64 ept_mem_type = (spte & 0x38) >> 3;
  2978. if (ept_mem_type == 2 || ept_mem_type == 3 ||
  2979. ept_mem_type == 7) {
  2980. printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
  2981. __func__, ept_mem_type);
  2982. WARN_ON(1);
  2983. }
  2984. }
  2985. }
  2986. }
  2987. static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
  2988. {
  2989. u64 sptes[4];
  2990. int nr_sptes, i;
  2991. gpa_t gpa;
  2992. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2993. printk(KERN_ERR "EPT: Misconfiguration.\n");
  2994. printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
  2995. nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
  2996. for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
  2997. ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
  2998. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  2999. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
  3000. return 0;
  3001. }
  3002. static int handle_nmi_window(struct kvm_vcpu *vcpu)
  3003. {
  3004. u32 cpu_based_vm_exec_control;
  3005. /* clear pending NMI */
  3006. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3007. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  3008. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3009. ++vcpu->stat.nmi_window_exits;
  3010. return 1;
  3011. }
  3012. static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
  3013. {
  3014. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3015. enum emulation_result err = EMULATE_DONE;
  3016. int ret = 1;
  3017. while (!guest_state_valid(vcpu)) {
  3018. err = emulate_instruction(vcpu, 0, 0, 0);
  3019. if (err == EMULATE_DO_MMIO) {
  3020. ret = 0;
  3021. goto out;
  3022. }
  3023. if (err != EMULATE_DONE) {
  3024. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  3025. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  3026. vcpu->run->internal.ndata = 0;
  3027. ret = 0;
  3028. goto out;
  3029. }
  3030. if (signal_pending(current))
  3031. goto out;
  3032. if (need_resched())
  3033. schedule();
  3034. }
  3035. vmx->emulation_required = 0;
  3036. out:
  3037. return ret;
  3038. }
  3039. /*
  3040. * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
  3041. * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
  3042. */
  3043. static int handle_pause(struct kvm_vcpu *vcpu)
  3044. {
  3045. skip_emulated_instruction(vcpu);
  3046. kvm_vcpu_on_spin(vcpu);
  3047. return 1;
  3048. }
  3049. static int handle_invalid_op(struct kvm_vcpu *vcpu)
  3050. {
  3051. kvm_queue_exception(vcpu, UD_VECTOR);
  3052. return 1;
  3053. }
  3054. /*
  3055. * The exit handlers return 1 if the exit was handled fully and guest execution
  3056. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  3057. * to be done to userspace and return 0.
  3058. */
  3059. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
  3060. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  3061. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  3062. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  3063. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  3064. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  3065. [EXIT_REASON_CR_ACCESS] = handle_cr,
  3066. [EXIT_REASON_DR_ACCESS] = handle_dr,
  3067. [EXIT_REASON_CPUID] = handle_cpuid,
  3068. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  3069. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  3070. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  3071. [EXIT_REASON_HLT] = handle_halt,
  3072. [EXIT_REASON_INVLPG] = handle_invlpg,
  3073. [EXIT_REASON_VMCALL] = handle_vmcall,
  3074. [EXIT_REASON_VMCLEAR] = handle_vmx_insn,
  3075. [EXIT_REASON_VMLAUNCH] = handle_vmx_insn,
  3076. [EXIT_REASON_VMPTRLD] = handle_vmx_insn,
  3077. [EXIT_REASON_VMPTRST] = handle_vmx_insn,
  3078. [EXIT_REASON_VMREAD] = handle_vmx_insn,
  3079. [EXIT_REASON_VMRESUME] = handle_vmx_insn,
  3080. [EXIT_REASON_VMWRITE] = handle_vmx_insn,
  3081. [EXIT_REASON_VMOFF] = handle_vmx_insn,
  3082. [EXIT_REASON_VMON] = handle_vmx_insn,
  3083. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  3084. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  3085. [EXIT_REASON_WBINVD] = handle_wbinvd,
  3086. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  3087. [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
  3088. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  3089. [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
  3090. [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
  3091. [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
  3092. [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
  3093. };
  3094. static const int kvm_vmx_max_exit_handlers =
  3095. ARRAY_SIZE(kvm_vmx_exit_handlers);
  3096. /*
  3097. * The guest has exited. See if we can fix it or if we need userspace
  3098. * assistance.
  3099. */
  3100. static int vmx_handle_exit(struct kvm_vcpu *vcpu)
  3101. {
  3102. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3103. u32 exit_reason = vmx->exit_reason;
  3104. u32 vectoring_info = vmx->idt_vectoring_info;
  3105. trace_kvm_exit(exit_reason, vcpu);
  3106. /* If guest state is invalid, start emulating */
  3107. if (vmx->emulation_required && emulate_invalid_guest_state)
  3108. return handle_invalid_guest_state(vcpu);
  3109. /* Access CR3 don't cause VMExit in paging mode, so we need
  3110. * to sync with guest real CR3. */
  3111. if (enable_ept && is_paging(vcpu))
  3112. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  3113. if (unlikely(vmx->fail)) {
  3114. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  3115. vcpu->run->fail_entry.hardware_entry_failure_reason
  3116. = vmcs_read32(VM_INSTRUCTION_ERROR);
  3117. return 0;
  3118. }
  3119. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  3120. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  3121. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  3122. exit_reason != EXIT_REASON_TASK_SWITCH))
  3123. printk(KERN_WARNING "%s: unexpected, valid vectoring info "
  3124. "(0x%x) and exit reason is 0x%x\n",
  3125. __func__, vectoring_info, exit_reason);
  3126. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
  3127. if (vmx_interrupt_allowed(vcpu)) {
  3128. vmx->soft_vnmi_blocked = 0;
  3129. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  3130. vcpu->arch.nmi_pending) {
  3131. /*
  3132. * This CPU don't support us in finding the end of an
  3133. * NMI-blocked window if the guest runs with IRQs
  3134. * disabled. So we pull the trigger after 1 s of
  3135. * futile waiting, but inform the user about this.
  3136. */
  3137. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  3138. "state on VCPU %d after 1 s timeout\n",
  3139. __func__, vcpu->vcpu_id);
  3140. vmx->soft_vnmi_blocked = 0;
  3141. }
  3142. }
  3143. if (exit_reason < kvm_vmx_max_exit_handlers
  3144. && kvm_vmx_exit_handlers[exit_reason])
  3145. return kvm_vmx_exit_handlers[exit_reason](vcpu);
  3146. else {
  3147. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  3148. vcpu->run->hw.hardware_exit_reason = exit_reason;
  3149. }
  3150. return 0;
  3151. }
  3152. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  3153. {
  3154. if (irr == -1 || tpr < irr) {
  3155. vmcs_write32(TPR_THRESHOLD, 0);
  3156. return;
  3157. }
  3158. vmcs_write32(TPR_THRESHOLD, irr);
  3159. }
  3160. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  3161. {
  3162. u32 exit_intr_info;
  3163. u32 idt_vectoring_info = vmx->idt_vectoring_info;
  3164. bool unblock_nmi;
  3165. u8 vector;
  3166. int type;
  3167. bool idtv_info_valid;
  3168. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  3169. vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
  3170. /* Handle machine checks before interrupts are enabled */
  3171. if ((vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
  3172. || (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI
  3173. && is_machine_check(exit_intr_info)))
  3174. kvm_machine_check();
  3175. /* We need to handle NMIs before interrupts are enabled */
  3176. if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  3177. (exit_intr_info & INTR_INFO_VALID_MASK)) {
  3178. kvm_before_handle_nmi(&vmx->vcpu);
  3179. asm("int $2");
  3180. kvm_after_handle_nmi(&vmx->vcpu);
  3181. }
  3182. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  3183. if (cpu_has_virtual_nmis()) {
  3184. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  3185. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  3186. /*
  3187. * SDM 3: 27.7.1.2 (September 2008)
  3188. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  3189. * a guest IRET fault.
  3190. * SDM 3: 23.2.2 (September 2008)
  3191. * Bit 12 is undefined in any of the following cases:
  3192. * If the VM exit sets the valid bit in the IDT-vectoring
  3193. * information field.
  3194. * If the VM exit is due to a double fault.
  3195. */
  3196. if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
  3197. vector != DF_VECTOR && !idtv_info_valid)
  3198. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  3199. GUEST_INTR_STATE_NMI);
  3200. } else if (unlikely(vmx->soft_vnmi_blocked))
  3201. vmx->vnmi_blocked_time +=
  3202. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  3203. vmx->vcpu.arch.nmi_injected = false;
  3204. kvm_clear_exception_queue(&vmx->vcpu);
  3205. kvm_clear_interrupt_queue(&vmx->vcpu);
  3206. if (!idtv_info_valid)
  3207. return;
  3208. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  3209. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  3210. switch (type) {
  3211. case INTR_TYPE_NMI_INTR:
  3212. vmx->vcpu.arch.nmi_injected = true;
  3213. /*
  3214. * SDM 3: 27.7.1.2 (September 2008)
  3215. * Clear bit "block by NMI" before VM entry if a NMI
  3216. * delivery faulted.
  3217. */
  3218. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  3219. GUEST_INTR_STATE_NMI);
  3220. break;
  3221. case INTR_TYPE_SOFT_EXCEPTION:
  3222. vmx->vcpu.arch.event_exit_inst_len =
  3223. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3224. /* fall through */
  3225. case INTR_TYPE_HARD_EXCEPTION:
  3226. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  3227. u32 err = vmcs_read32(IDT_VECTORING_ERROR_CODE);
  3228. kvm_queue_exception_e(&vmx->vcpu, vector, err);
  3229. } else
  3230. kvm_queue_exception(&vmx->vcpu, vector);
  3231. break;
  3232. case INTR_TYPE_SOFT_INTR:
  3233. vmx->vcpu.arch.event_exit_inst_len =
  3234. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3235. /* fall through */
  3236. case INTR_TYPE_EXT_INTR:
  3237. kvm_queue_interrupt(&vmx->vcpu, vector,
  3238. type == INTR_TYPE_SOFT_INTR);
  3239. break;
  3240. default:
  3241. break;
  3242. }
  3243. }
  3244. /*
  3245. * Failure to inject an interrupt should give us the information
  3246. * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
  3247. * when fetching the interrupt redirection bitmap in the real-mode
  3248. * tss, this doesn't happen. So we do it ourselves.
  3249. */
  3250. static void fixup_rmode_irq(struct vcpu_vmx *vmx)
  3251. {
  3252. vmx->rmode.irq.pending = 0;
  3253. if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
  3254. return;
  3255. kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
  3256. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  3257. vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
  3258. vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
  3259. return;
  3260. }
  3261. vmx->idt_vectoring_info =
  3262. VECTORING_INFO_VALID_MASK
  3263. | INTR_TYPE_EXT_INTR
  3264. | vmx->rmode.irq.vector;
  3265. }
  3266. #ifdef CONFIG_X86_64
  3267. #define R "r"
  3268. #define Q "q"
  3269. #else
  3270. #define R "e"
  3271. #define Q "l"
  3272. #endif
  3273. static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
  3274. {
  3275. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3276. /* Record the guest's net vcpu time for enforced NMI injections. */
  3277. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  3278. vmx->entry_time = ktime_get();
  3279. /* Don't enter VMX if guest state is invalid, let the exit handler
  3280. start emulation until we arrive back to a valid state */
  3281. if (vmx->emulation_required && emulate_invalid_guest_state)
  3282. return;
  3283. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  3284. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  3285. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  3286. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  3287. /* When single-stepping over STI and MOV SS, we must clear the
  3288. * corresponding interruptibility bits in the guest state. Otherwise
  3289. * vmentry fails as it then expects bit 14 (BS) in pending debug
  3290. * exceptions being set, but that's not correct for the guest debugging
  3291. * case. */
  3292. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  3293. vmx_set_interrupt_shadow(vcpu, 0);
  3294. /*
  3295. * Loading guest fpu may have cleared host cr0.ts
  3296. */
  3297. vmcs_writel(HOST_CR0, read_cr0());
  3298. asm(
  3299. /* Store host registers */
  3300. "push %%"R"dx; push %%"R"bp;"
  3301. "push %%"R"cx \n\t"
  3302. "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
  3303. "je 1f \n\t"
  3304. "mov %%"R"sp, %c[host_rsp](%0) \n\t"
  3305. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  3306. "1: \n\t"
  3307. /* Reload cr2 if changed */
  3308. "mov %c[cr2](%0), %%"R"ax \n\t"
  3309. "mov %%cr2, %%"R"dx \n\t"
  3310. "cmp %%"R"ax, %%"R"dx \n\t"
  3311. "je 2f \n\t"
  3312. "mov %%"R"ax, %%cr2 \n\t"
  3313. "2: \n\t"
  3314. /* Check if vmlaunch of vmresume is needed */
  3315. "cmpl $0, %c[launched](%0) \n\t"
  3316. /* Load guest registers. Don't clobber flags. */
  3317. "mov %c[rax](%0), %%"R"ax \n\t"
  3318. "mov %c[rbx](%0), %%"R"bx \n\t"
  3319. "mov %c[rdx](%0), %%"R"dx \n\t"
  3320. "mov %c[rsi](%0), %%"R"si \n\t"
  3321. "mov %c[rdi](%0), %%"R"di \n\t"
  3322. "mov %c[rbp](%0), %%"R"bp \n\t"
  3323. #ifdef CONFIG_X86_64
  3324. "mov %c[r8](%0), %%r8 \n\t"
  3325. "mov %c[r9](%0), %%r9 \n\t"
  3326. "mov %c[r10](%0), %%r10 \n\t"
  3327. "mov %c[r11](%0), %%r11 \n\t"
  3328. "mov %c[r12](%0), %%r12 \n\t"
  3329. "mov %c[r13](%0), %%r13 \n\t"
  3330. "mov %c[r14](%0), %%r14 \n\t"
  3331. "mov %c[r15](%0), %%r15 \n\t"
  3332. #endif
  3333. "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
  3334. /* Enter guest mode */
  3335. "jne .Llaunched \n\t"
  3336. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  3337. "jmp .Lkvm_vmx_return \n\t"
  3338. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  3339. ".Lkvm_vmx_return: "
  3340. /* Save guest registers, load host registers, keep flags */
  3341. "xchg %0, (%%"R"sp) \n\t"
  3342. "mov %%"R"ax, %c[rax](%0) \n\t"
  3343. "mov %%"R"bx, %c[rbx](%0) \n\t"
  3344. "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
  3345. "mov %%"R"dx, %c[rdx](%0) \n\t"
  3346. "mov %%"R"si, %c[rsi](%0) \n\t"
  3347. "mov %%"R"di, %c[rdi](%0) \n\t"
  3348. "mov %%"R"bp, %c[rbp](%0) \n\t"
  3349. #ifdef CONFIG_X86_64
  3350. "mov %%r8, %c[r8](%0) \n\t"
  3351. "mov %%r9, %c[r9](%0) \n\t"
  3352. "mov %%r10, %c[r10](%0) \n\t"
  3353. "mov %%r11, %c[r11](%0) \n\t"
  3354. "mov %%r12, %c[r12](%0) \n\t"
  3355. "mov %%r13, %c[r13](%0) \n\t"
  3356. "mov %%r14, %c[r14](%0) \n\t"
  3357. "mov %%r15, %c[r15](%0) \n\t"
  3358. #endif
  3359. "mov %%cr2, %%"R"ax \n\t"
  3360. "mov %%"R"ax, %c[cr2](%0) \n\t"
  3361. "pop %%"R"bp; pop %%"R"bp; pop %%"R"dx \n\t"
  3362. "setbe %c[fail](%0) \n\t"
  3363. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  3364. [launched]"i"(offsetof(struct vcpu_vmx, launched)),
  3365. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  3366. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  3367. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  3368. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  3369. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  3370. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  3371. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  3372. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  3373. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  3374. #ifdef CONFIG_X86_64
  3375. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  3376. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  3377. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  3378. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  3379. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  3380. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  3381. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  3382. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  3383. #endif
  3384. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
  3385. : "cc", "memory"
  3386. , R"bx", R"di", R"si"
  3387. #ifdef CONFIG_X86_64
  3388. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  3389. #endif
  3390. );
  3391. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
  3392. | (1 << VCPU_EXREG_PDPTR));
  3393. vcpu->arch.regs_dirty = 0;
  3394. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  3395. if (vmx->rmode.irq.pending)
  3396. fixup_rmode_irq(vmx);
  3397. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  3398. vmx->launched = 1;
  3399. vmx_complete_interrupts(vmx);
  3400. }
  3401. #undef R
  3402. #undef Q
  3403. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  3404. {
  3405. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3406. if (vmx->vmcs) {
  3407. vcpu_clear(vmx);
  3408. free_vmcs(vmx->vmcs);
  3409. vmx->vmcs = NULL;
  3410. }
  3411. }
  3412. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  3413. {
  3414. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3415. free_vpid(vmx);
  3416. vmx_free_vmcs(vcpu);
  3417. kfree(vmx->guest_msrs);
  3418. kvm_vcpu_uninit(vcpu);
  3419. kmem_cache_free(kvm_vcpu_cache, vmx);
  3420. }
  3421. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  3422. {
  3423. int err;
  3424. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  3425. int cpu;
  3426. if (!vmx)
  3427. return ERR_PTR(-ENOMEM);
  3428. allocate_vpid(vmx);
  3429. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  3430. if (err)
  3431. goto free_vcpu;
  3432. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3433. if (!vmx->guest_msrs) {
  3434. err = -ENOMEM;
  3435. goto uninit_vcpu;
  3436. }
  3437. vmx->vmcs = alloc_vmcs();
  3438. if (!vmx->vmcs)
  3439. goto free_msrs;
  3440. vmcs_clear(vmx->vmcs);
  3441. cpu = get_cpu();
  3442. vmx_vcpu_load(&vmx->vcpu, cpu);
  3443. err = vmx_vcpu_setup(vmx);
  3444. vmx_vcpu_put(&vmx->vcpu);
  3445. put_cpu();
  3446. if (err)
  3447. goto free_vmcs;
  3448. if (vm_need_virtualize_apic_accesses(kvm))
  3449. if (alloc_apic_access_page(kvm) != 0)
  3450. goto free_vmcs;
  3451. if (enable_ept) {
  3452. if (!kvm->arch.ept_identity_map_addr)
  3453. kvm->arch.ept_identity_map_addr =
  3454. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  3455. if (alloc_identity_pagetable(kvm) != 0)
  3456. goto free_vmcs;
  3457. }
  3458. return &vmx->vcpu;
  3459. free_vmcs:
  3460. free_vmcs(vmx->vmcs);
  3461. free_msrs:
  3462. kfree(vmx->guest_msrs);
  3463. uninit_vcpu:
  3464. kvm_vcpu_uninit(&vmx->vcpu);
  3465. free_vcpu:
  3466. free_vpid(vmx);
  3467. kmem_cache_free(kvm_vcpu_cache, vmx);
  3468. return ERR_PTR(err);
  3469. }
  3470. static void __init vmx_check_processor_compat(void *rtn)
  3471. {
  3472. struct vmcs_config vmcs_conf;
  3473. *(int *)rtn = 0;
  3474. if (setup_vmcs_config(&vmcs_conf) < 0)
  3475. *(int *)rtn = -EIO;
  3476. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  3477. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  3478. smp_processor_id());
  3479. *(int *)rtn = -EIO;
  3480. }
  3481. }
  3482. static int get_ept_level(void)
  3483. {
  3484. return VMX_EPT_DEFAULT_GAW + 1;
  3485. }
  3486. static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
  3487. {
  3488. u64 ret;
  3489. /* For VT-d and EPT combination
  3490. * 1. MMIO: always map as UC
  3491. * 2. EPT with VT-d:
  3492. * a. VT-d without snooping control feature: can't guarantee the
  3493. * result, try to trust guest.
  3494. * b. VT-d with snooping control feature: snooping control feature of
  3495. * VT-d engine can guarantee the cache correctness. Just set it
  3496. * to WB to keep consistent with host. So the same as item 3.
  3497. * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
  3498. * consistent with host MTRR
  3499. */
  3500. if (is_mmio)
  3501. ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
  3502. else if (vcpu->kvm->arch.iommu_domain &&
  3503. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
  3504. ret = kvm_get_guest_memory_type(vcpu, gfn) <<
  3505. VMX_EPT_MT_EPTE_SHIFT;
  3506. else
  3507. ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
  3508. | VMX_EPT_IPAT_BIT;
  3509. return ret;
  3510. }
  3511. #define _ER(x) { EXIT_REASON_##x, #x }
  3512. static const struct trace_print_flags vmx_exit_reasons_str[] = {
  3513. _ER(EXCEPTION_NMI),
  3514. _ER(EXTERNAL_INTERRUPT),
  3515. _ER(TRIPLE_FAULT),
  3516. _ER(PENDING_INTERRUPT),
  3517. _ER(NMI_WINDOW),
  3518. _ER(TASK_SWITCH),
  3519. _ER(CPUID),
  3520. _ER(HLT),
  3521. _ER(INVLPG),
  3522. _ER(RDPMC),
  3523. _ER(RDTSC),
  3524. _ER(VMCALL),
  3525. _ER(VMCLEAR),
  3526. _ER(VMLAUNCH),
  3527. _ER(VMPTRLD),
  3528. _ER(VMPTRST),
  3529. _ER(VMREAD),
  3530. _ER(VMRESUME),
  3531. _ER(VMWRITE),
  3532. _ER(VMOFF),
  3533. _ER(VMON),
  3534. _ER(CR_ACCESS),
  3535. _ER(DR_ACCESS),
  3536. _ER(IO_INSTRUCTION),
  3537. _ER(MSR_READ),
  3538. _ER(MSR_WRITE),
  3539. _ER(MWAIT_INSTRUCTION),
  3540. _ER(MONITOR_INSTRUCTION),
  3541. _ER(PAUSE_INSTRUCTION),
  3542. _ER(MCE_DURING_VMENTRY),
  3543. _ER(TPR_BELOW_THRESHOLD),
  3544. _ER(APIC_ACCESS),
  3545. _ER(EPT_VIOLATION),
  3546. _ER(EPT_MISCONFIG),
  3547. _ER(WBINVD),
  3548. { -1, NULL }
  3549. };
  3550. #undef _ER
  3551. static int vmx_get_lpage_level(void)
  3552. {
  3553. if (enable_ept && !cpu_has_vmx_ept_1g_page())
  3554. return PT_DIRECTORY_LEVEL;
  3555. else
  3556. /* For shadow and EPT supported 1GB page */
  3557. return PT_PDPE_LEVEL;
  3558. }
  3559. static inline u32 bit(int bitno)
  3560. {
  3561. return 1 << (bitno & 31);
  3562. }
  3563. static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
  3564. {
  3565. struct kvm_cpuid_entry2 *best;
  3566. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3567. u32 exec_control;
  3568. vmx->rdtscp_enabled = false;
  3569. if (vmx_rdtscp_supported()) {
  3570. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  3571. if (exec_control & SECONDARY_EXEC_RDTSCP) {
  3572. best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  3573. if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
  3574. vmx->rdtscp_enabled = true;
  3575. else {
  3576. exec_control &= ~SECONDARY_EXEC_RDTSCP;
  3577. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  3578. exec_control);
  3579. }
  3580. }
  3581. }
  3582. }
  3583. static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
  3584. {
  3585. }
  3586. static struct kvm_x86_ops vmx_x86_ops = {
  3587. .cpu_has_kvm_support = cpu_has_kvm_support,
  3588. .disabled_by_bios = vmx_disabled_by_bios,
  3589. .hardware_setup = hardware_setup,
  3590. .hardware_unsetup = hardware_unsetup,
  3591. .check_processor_compatibility = vmx_check_processor_compat,
  3592. .hardware_enable = hardware_enable,
  3593. .hardware_disable = hardware_disable,
  3594. .cpu_has_accelerated_tpr = report_flexpriority,
  3595. .vcpu_create = vmx_create_vcpu,
  3596. .vcpu_free = vmx_free_vcpu,
  3597. .vcpu_reset = vmx_vcpu_reset,
  3598. .prepare_guest_switch = vmx_save_host_state,
  3599. .vcpu_load = vmx_vcpu_load,
  3600. .vcpu_put = vmx_vcpu_put,
  3601. .set_guest_debug = set_guest_debug,
  3602. .get_msr = vmx_get_msr,
  3603. .set_msr = vmx_set_msr,
  3604. .get_segment_base = vmx_get_segment_base,
  3605. .get_segment = vmx_get_segment,
  3606. .set_segment = vmx_set_segment,
  3607. .get_cpl = vmx_get_cpl,
  3608. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  3609. .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
  3610. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  3611. .set_cr0 = vmx_set_cr0,
  3612. .set_cr3 = vmx_set_cr3,
  3613. .set_cr4 = vmx_set_cr4,
  3614. .set_efer = vmx_set_efer,
  3615. .get_idt = vmx_get_idt,
  3616. .set_idt = vmx_set_idt,
  3617. .get_gdt = vmx_get_gdt,
  3618. .set_gdt = vmx_set_gdt,
  3619. .set_dr7 = vmx_set_dr7,
  3620. .cache_reg = vmx_cache_reg,
  3621. .get_rflags = vmx_get_rflags,
  3622. .set_rflags = vmx_set_rflags,
  3623. .fpu_activate = vmx_fpu_activate,
  3624. .fpu_deactivate = vmx_fpu_deactivate,
  3625. .tlb_flush = vmx_flush_tlb,
  3626. .run = vmx_vcpu_run,
  3627. .handle_exit = vmx_handle_exit,
  3628. .skip_emulated_instruction = skip_emulated_instruction,
  3629. .set_interrupt_shadow = vmx_set_interrupt_shadow,
  3630. .get_interrupt_shadow = vmx_get_interrupt_shadow,
  3631. .patch_hypercall = vmx_patch_hypercall,
  3632. .set_irq = vmx_inject_irq,
  3633. .set_nmi = vmx_inject_nmi,
  3634. .queue_exception = vmx_queue_exception,
  3635. .interrupt_allowed = vmx_interrupt_allowed,
  3636. .nmi_allowed = vmx_nmi_allowed,
  3637. .get_nmi_mask = vmx_get_nmi_mask,
  3638. .set_nmi_mask = vmx_set_nmi_mask,
  3639. .enable_nmi_window = enable_nmi_window,
  3640. .enable_irq_window = enable_irq_window,
  3641. .update_cr8_intercept = update_cr8_intercept,
  3642. .set_tss_addr = vmx_set_tss_addr,
  3643. .get_tdp_level = get_ept_level,
  3644. .get_mt_mask = vmx_get_mt_mask,
  3645. .exit_reasons_str = vmx_exit_reasons_str,
  3646. .get_lpage_level = vmx_get_lpage_level,
  3647. .cpuid_update = vmx_cpuid_update,
  3648. .rdtscp_supported = vmx_rdtscp_supported,
  3649. .set_supported_cpuid = vmx_set_supported_cpuid,
  3650. };
  3651. static int __init vmx_init(void)
  3652. {
  3653. int r, i;
  3654. rdmsrl_safe(MSR_EFER, &host_efer);
  3655. for (i = 0; i < NR_VMX_MSR; ++i)
  3656. kvm_define_shared_msr(i, vmx_msr_index[i]);
  3657. vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
  3658. if (!vmx_io_bitmap_a)
  3659. return -ENOMEM;
  3660. vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
  3661. if (!vmx_io_bitmap_b) {
  3662. r = -ENOMEM;
  3663. goto out;
  3664. }
  3665. vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
  3666. if (!vmx_msr_bitmap_legacy) {
  3667. r = -ENOMEM;
  3668. goto out1;
  3669. }
  3670. vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
  3671. if (!vmx_msr_bitmap_longmode) {
  3672. r = -ENOMEM;
  3673. goto out2;
  3674. }
  3675. /*
  3676. * Allow direct access to the PC debug port (it is often used for I/O
  3677. * delays, but the vmexits simply slow things down).
  3678. */
  3679. memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
  3680. clear_bit(0x80, vmx_io_bitmap_a);
  3681. memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
  3682. memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
  3683. memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
  3684. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  3685. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
  3686. __alignof__(struct vcpu_vmx), THIS_MODULE);
  3687. if (r)
  3688. goto out3;
  3689. vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
  3690. vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
  3691. vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
  3692. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
  3693. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
  3694. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
  3695. if (enable_ept) {
  3696. bypass_guest_pf = 0;
  3697. kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
  3698. VMX_EPT_WRITABLE_MASK);
  3699. kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
  3700. VMX_EPT_EXECUTABLE_MASK);
  3701. kvm_enable_tdp();
  3702. } else
  3703. kvm_disable_tdp();
  3704. if (bypass_guest_pf)
  3705. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  3706. return 0;
  3707. out3:
  3708. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3709. out2:
  3710. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3711. out1:
  3712. free_page((unsigned long)vmx_io_bitmap_b);
  3713. out:
  3714. free_page((unsigned long)vmx_io_bitmap_a);
  3715. return r;
  3716. }
  3717. static void __exit vmx_exit(void)
  3718. {
  3719. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3720. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3721. free_page((unsigned long)vmx_io_bitmap_b);
  3722. free_page((unsigned long)vmx_io_bitmap_a);
  3723. kvm_exit();
  3724. }
  3725. module_init(vmx_init)
  3726. module_exit(vmx_exit)