irqinit.c 7.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268
  1. #include <linux/linkage.h>
  2. #include <linux/errno.h>
  3. #include <linux/signal.h>
  4. #include <linux/sched.h>
  5. #include <linux/ioport.h>
  6. #include <linux/interrupt.h>
  7. #include <linux/timex.h>
  8. #include <linux/random.h>
  9. #include <linux/kprobes.h>
  10. #include <linux/init.h>
  11. #include <linux/kernel_stat.h>
  12. #include <linux/sysdev.h>
  13. #include <linux/bitops.h>
  14. #include <linux/acpi.h>
  15. #include <linux/io.h>
  16. #include <linux/delay.h>
  17. #include <asm/atomic.h>
  18. #include <asm/system.h>
  19. #include <asm/timer.h>
  20. #include <asm/hw_irq.h>
  21. #include <asm/pgtable.h>
  22. #include <asm/desc.h>
  23. #include <asm/apic.h>
  24. #include <asm/setup.h>
  25. #include <asm/i8259.h>
  26. #include <asm/traps.h>
  27. /*
  28. * ISA PIC or low IO-APIC triggered (INTA-cycle or APIC) interrupts:
  29. * (these are usually mapped to vectors 0x30-0x3f)
  30. */
  31. /*
  32. * The IO-APIC gives us many more interrupt sources. Most of these
  33. * are unused but an SMP system is supposed to have enough memory ...
  34. * sometimes (mostly wrt. hw bugs) we get corrupted vectors all
  35. * across the spectrum, so we really want to be prepared to get all
  36. * of these. Plus, more powerful systems might have more than 64
  37. * IO-APIC registers.
  38. *
  39. * (these are usually mapped into the 0x30-0xff vector range)
  40. */
  41. #ifdef CONFIG_X86_32
  42. /*
  43. * Note that on a 486, we don't want to do a SIGFPE on an irq13
  44. * as the irq is unreliable, and exception 16 works correctly
  45. * (ie as explained in the intel literature). On a 386, you
  46. * can't use exception 16 due to bad IBM design, so we have to
  47. * rely on the less exact irq13.
  48. *
  49. * Careful.. Not only is IRQ13 unreliable, but it is also
  50. * leads to races. IBM designers who came up with it should
  51. * be shot.
  52. */
  53. static irqreturn_t math_error_irq(int cpl, void *dev_id)
  54. {
  55. outb(0, 0xF0);
  56. if (ignore_fpu_irq || !boot_cpu_data.hard_math)
  57. return IRQ_NONE;
  58. math_error(get_irq_regs(), 0, 16);
  59. return IRQ_HANDLED;
  60. }
  61. /*
  62. * New motherboards sometimes make IRQ 13 be a PCI interrupt,
  63. * so allow interrupt sharing.
  64. */
  65. static struct irqaction fpu_irq = {
  66. .handler = math_error_irq,
  67. .name = "fpu",
  68. };
  69. #endif
  70. /*
  71. * IRQ2 is cascade interrupt to second interrupt controller
  72. */
  73. static struct irqaction irq2 = {
  74. .handler = no_action,
  75. .name = "cascade",
  76. };
  77. DEFINE_PER_CPU(vector_irq_t, vector_irq) = {
  78. [0 ... NR_VECTORS - 1] = -1,
  79. };
  80. int vector_used_by_percpu_irq(unsigned int vector)
  81. {
  82. int cpu;
  83. for_each_online_cpu(cpu) {
  84. if (per_cpu(vector_irq, cpu)[vector] != -1)
  85. return 1;
  86. }
  87. return 0;
  88. }
  89. void __init init_ISA_irqs(void)
  90. {
  91. int i;
  92. #if defined(CONFIG_X86_64) || defined(CONFIG_X86_LOCAL_APIC)
  93. init_bsp_APIC();
  94. #endif
  95. legacy_pic->init(0);
  96. /*
  97. * 16 old-style INTA-cycle interrupts:
  98. */
  99. for (i = 0; i < legacy_pic->nr_legacy_irqs; i++) {
  100. struct irq_desc *desc = irq_to_desc(i);
  101. desc->status = IRQ_DISABLED;
  102. desc->action = NULL;
  103. desc->depth = 1;
  104. set_irq_chip_and_handler_name(i, &i8259A_chip,
  105. handle_level_irq, "XT");
  106. }
  107. }
  108. void __init init_IRQ(void)
  109. {
  110. int i;
  111. /*
  112. * On cpu 0, Assign IRQ0_VECTOR..IRQ15_VECTOR's to IRQ 0..15.
  113. * If these IRQ's are handled by legacy interrupt-controllers like PIC,
  114. * then this configuration will likely be static after the boot. If
  115. * these IRQ's are handled by more mordern controllers like IO-APIC,
  116. * then this vector space can be freed and re-used dynamically as the
  117. * irq's migrate etc.
  118. */
  119. for (i = 0; i < legacy_pic->nr_legacy_irqs; i++)
  120. per_cpu(vector_irq, 0)[IRQ0_VECTOR + i] = i;
  121. x86_init.irqs.intr_init();
  122. }
  123. /*
  124. * Setup the vector to irq mappings.
  125. */
  126. void setup_vector_irq(int cpu)
  127. {
  128. #ifndef CONFIG_X86_IO_APIC
  129. int irq;
  130. /*
  131. * On most of the platforms, legacy PIC delivers the interrupts on the
  132. * boot cpu. But there are certain platforms where PIC interrupts are
  133. * delivered to multiple cpu's. If the legacy IRQ is handled by the
  134. * legacy PIC, for the new cpu that is coming online, setup the static
  135. * legacy vector to irq mapping:
  136. */
  137. for (irq = 0; irq < legacy_pic->nr_legacy_irqs; irq++)
  138. per_cpu(vector_irq, cpu)[IRQ0_VECTOR + irq] = irq;
  139. #endif
  140. __setup_vector_irq(cpu);
  141. }
  142. static void __init smp_intr_init(void)
  143. {
  144. #ifdef CONFIG_SMP
  145. #if defined(CONFIG_X86_64) || defined(CONFIG_X86_LOCAL_APIC)
  146. /*
  147. * The reschedule interrupt is a CPU-to-CPU reschedule-helper
  148. * IPI, driven by wakeup.
  149. */
  150. alloc_intr_gate(RESCHEDULE_VECTOR, reschedule_interrupt);
  151. /* IPIs for invalidation */
  152. alloc_intr_gate(INVALIDATE_TLB_VECTOR_START+0, invalidate_interrupt0);
  153. alloc_intr_gate(INVALIDATE_TLB_VECTOR_START+1, invalidate_interrupt1);
  154. alloc_intr_gate(INVALIDATE_TLB_VECTOR_START+2, invalidate_interrupt2);
  155. alloc_intr_gate(INVALIDATE_TLB_VECTOR_START+3, invalidate_interrupt3);
  156. alloc_intr_gate(INVALIDATE_TLB_VECTOR_START+4, invalidate_interrupt4);
  157. alloc_intr_gate(INVALIDATE_TLB_VECTOR_START+5, invalidate_interrupt5);
  158. alloc_intr_gate(INVALIDATE_TLB_VECTOR_START+6, invalidate_interrupt6);
  159. alloc_intr_gate(INVALIDATE_TLB_VECTOR_START+7, invalidate_interrupt7);
  160. /* IPI for generic function call */
  161. alloc_intr_gate(CALL_FUNCTION_VECTOR, call_function_interrupt);
  162. /* IPI for generic single function call */
  163. alloc_intr_gate(CALL_FUNCTION_SINGLE_VECTOR,
  164. call_function_single_interrupt);
  165. /* Low priority IPI to cleanup after moving an irq */
  166. set_intr_gate(IRQ_MOVE_CLEANUP_VECTOR, irq_move_cleanup_interrupt);
  167. set_bit(IRQ_MOVE_CLEANUP_VECTOR, used_vectors);
  168. /* IPI used for rebooting/stopping */
  169. alloc_intr_gate(REBOOT_VECTOR, reboot_interrupt);
  170. #endif
  171. #endif /* CONFIG_SMP */
  172. }
  173. static void __init apic_intr_init(void)
  174. {
  175. smp_intr_init();
  176. #ifdef CONFIG_X86_THERMAL_VECTOR
  177. alloc_intr_gate(THERMAL_APIC_VECTOR, thermal_interrupt);
  178. #endif
  179. #ifdef CONFIG_X86_MCE_THRESHOLD
  180. alloc_intr_gate(THRESHOLD_APIC_VECTOR, threshold_interrupt);
  181. #endif
  182. #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_LOCAL_APIC)
  183. alloc_intr_gate(MCE_SELF_VECTOR, mce_self_interrupt);
  184. #endif
  185. #if defined(CONFIG_X86_64) || defined(CONFIG_X86_LOCAL_APIC)
  186. /* self generated IPI for local APIC timer */
  187. alloc_intr_gate(LOCAL_TIMER_VECTOR, apic_timer_interrupt);
  188. /* IPI for X86 platform specific use */
  189. alloc_intr_gate(X86_PLATFORM_IPI_VECTOR, x86_platform_ipi);
  190. /* IPI vectors for APIC spurious and error interrupts */
  191. alloc_intr_gate(SPURIOUS_APIC_VECTOR, spurious_interrupt);
  192. alloc_intr_gate(ERROR_APIC_VECTOR, error_interrupt);
  193. /* Performance monitoring interrupts: */
  194. # ifdef CONFIG_PERF_EVENTS
  195. alloc_intr_gate(LOCAL_PENDING_VECTOR, perf_pending_interrupt);
  196. # endif
  197. #endif
  198. }
  199. void __init native_init_IRQ(void)
  200. {
  201. int i;
  202. /* Execute any quirks before the call gates are initialised: */
  203. x86_init.irqs.pre_vector_init();
  204. apic_intr_init();
  205. /*
  206. * Cover the whole vector space, no vector can escape
  207. * us. (some of these will be overridden and become
  208. * 'special' SMP interrupts)
  209. */
  210. for (i = FIRST_EXTERNAL_VECTOR; i < NR_VECTORS; i++) {
  211. /* IA32_SYSCALL_VECTOR could be used in trap_init already. */
  212. if (!test_bit(i, used_vectors))
  213. set_intr_gate(i, interrupt[i-FIRST_EXTERNAL_VECTOR]);
  214. }
  215. if (!acpi_ioapic)
  216. setup_irq(2, &irq2);
  217. #ifdef CONFIG_X86_32
  218. /*
  219. * External FPU? Set up irq13 if so, for
  220. * original braindamaged IBM FERR coupling.
  221. */
  222. if (boot_cpu_data.hard_math && !cpu_has_fpu)
  223. setup_irq(FPU_IRQ, &fpu_irq);
  224. irq_ctx_init(smp_processor_id());
  225. #endif
  226. }