amd_iommu.c 60 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629
  1. /*
  2. * Copyright (C) 2007-2009 Advanced Micro Devices, Inc.
  3. * Author: Joerg Roedel <joerg.roedel@amd.com>
  4. * Leo Duran <leo.duran@amd.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. #include <linux/pci.h>
  20. #include <linux/bitmap.h>
  21. #include <linux/slab.h>
  22. #include <linux/debugfs.h>
  23. #include <linux/scatterlist.h>
  24. #include <linux/dma-mapping.h>
  25. #include <linux/iommu-helper.h>
  26. #include <linux/iommu.h>
  27. #include <asm/proto.h>
  28. #include <asm/iommu.h>
  29. #include <asm/gart.h>
  30. #include <asm/amd_iommu_proto.h>
  31. #include <asm/amd_iommu_types.h>
  32. #include <asm/amd_iommu.h>
  33. #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
  34. #define EXIT_LOOP_COUNT 10000000
  35. static DEFINE_RWLOCK(amd_iommu_devtable_lock);
  36. /* A list of preallocated protection domains */
  37. static LIST_HEAD(iommu_pd_list);
  38. static DEFINE_SPINLOCK(iommu_pd_list_lock);
  39. /*
  40. * Domain for untranslated devices - only allocated
  41. * if iommu=pt passed on kernel cmd line.
  42. */
  43. static struct protection_domain *pt_domain;
  44. static struct iommu_ops amd_iommu_ops;
  45. /*
  46. * general struct to manage commands send to an IOMMU
  47. */
  48. struct iommu_cmd {
  49. u32 data[4];
  50. };
  51. static void reset_iommu_command_buffer(struct amd_iommu *iommu);
  52. static void update_domain(struct protection_domain *domain);
  53. /****************************************************************************
  54. *
  55. * Helper functions
  56. *
  57. ****************************************************************************/
  58. static inline u16 get_device_id(struct device *dev)
  59. {
  60. struct pci_dev *pdev = to_pci_dev(dev);
  61. return calc_devid(pdev->bus->number, pdev->devfn);
  62. }
  63. static struct iommu_dev_data *get_dev_data(struct device *dev)
  64. {
  65. return dev->archdata.iommu;
  66. }
  67. /*
  68. * In this function the list of preallocated protection domains is traversed to
  69. * find the domain for a specific device
  70. */
  71. static struct dma_ops_domain *find_protection_domain(u16 devid)
  72. {
  73. struct dma_ops_domain *entry, *ret = NULL;
  74. unsigned long flags;
  75. u16 alias = amd_iommu_alias_table[devid];
  76. if (list_empty(&iommu_pd_list))
  77. return NULL;
  78. spin_lock_irqsave(&iommu_pd_list_lock, flags);
  79. list_for_each_entry(entry, &iommu_pd_list, list) {
  80. if (entry->target_dev == devid ||
  81. entry->target_dev == alias) {
  82. ret = entry;
  83. break;
  84. }
  85. }
  86. spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
  87. return ret;
  88. }
  89. /*
  90. * This function checks if the driver got a valid device from the caller to
  91. * avoid dereferencing invalid pointers.
  92. */
  93. static bool check_device(struct device *dev)
  94. {
  95. u16 devid;
  96. if (!dev || !dev->dma_mask)
  97. return false;
  98. /* No device or no PCI device */
  99. if (dev->bus != &pci_bus_type)
  100. return false;
  101. devid = get_device_id(dev);
  102. /* Out of our scope? */
  103. if (devid > amd_iommu_last_bdf)
  104. return false;
  105. if (amd_iommu_rlookup_table[devid] == NULL)
  106. return false;
  107. return true;
  108. }
  109. static int iommu_init_device(struct device *dev)
  110. {
  111. struct iommu_dev_data *dev_data;
  112. struct pci_dev *pdev;
  113. u16 devid, alias;
  114. if (dev->archdata.iommu)
  115. return 0;
  116. dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
  117. if (!dev_data)
  118. return -ENOMEM;
  119. dev_data->dev = dev;
  120. devid = get_device_id(dev);
  121. alias = amd_iommu_alias_table[devid];
  122. pdev = pci_get_bus_and_slot(PCI_BUS(alias), alias & 0xff);
  123. if (pdev)
  124. dev_data->alias = &pdev->dev;
  125. atomic_set(&dev_data->bind, 0);
  126. dev->archdata.iommu = dev_data;
  127. return 0;
  128. }
  129. static void iommu_uninit_device(struct device *dev)
  130. {
  131. kfree(dev->archdata.iommu);
  132. }
  133. void __init amd_iommu_uninit_devices(void)
  134. {
  135. struct pci_dev *pdev = NULL;
  136. for_each_pci_dev(pdev) {
  137. if (!check_device(&pdev->dev))
  138. continue;
  139. iommu_uninit_device(&pdev->dev);
  140. }
  141. }
  142. int __init amd_iommu_init_devices(void)
  143. {
  144. struct pci_dev *pdev = NULL;
  145. int ret = 0;
  146. for_each_pci_dev(pdev) {
  147. if (!check_device(&pdev->dev))
  148. continue;
  149. ret = iommu_init_device(&pdev->dev);
  150. if (ret)
  151. goto out_free;
  152. }
  153. return 0;
  154. out_free:
  155. amd_iommu_uninit_devices();
  156. return ret;
  157. }
  158. #ifdef CONFIG_AMD_IOMMU_STATS
  159. /*
  160. * Initialization code for statistics collection
  161. */
  162. DECLARE_STATS_COUNTER(compl_wait);
  163. DECLARE_STATS_COUNTER(cnt_map_single);
  164. DECLARE_STATS_COUNTER(cnt_unmap_single);
  165. DECLARE_STATS_COUNTER(cnt_map_sg);
  166. DECLARE_STATS_COUNTER(cnt_unmap_sg);
  167. DECLARE_STATS_COUNTER(cnt_alloc_coherent);
  168. DECLARE_STATS_COUNTER(cnt_free_coherent);
  169. DECLARE_STATS_COUNTER(cross_page);
  170. DECLARE_STATS_COUNTER(domain_flush_single);
  171. DECLARE_STATS_COUNTER(domain_flush_all);
  172. DECLARE_STATS_COUNTER(alloced_io_mem);
  173. DECLARE_STATS_COUNTER(total_map_requests);
  174. static struct dentry *stats_dir;
  175. static struct dentry *de_fflush;
  176. static void amd_iommu_stats_add(struct __iommu_counter *cnt)
  177. {
  178. if (stats_dir == NULL)
  179. return;
  180. cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
  181. &cnt->value);
  182. }
  183. static void amd_iommu_stats_init(void)
  184. {
  185. stats_dir = debugfs_create_dir("amd-iommu", NULL);
  186. if (stats_dir == NULL)
  187. return;
  188. de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
  189. (u32 *)&amd_iommu_unmap_flush);
  190. amd_iommu_stats_add(&compl_wait);
  191. amd_iommu_stats_add(&cnt_map_single);
  192. amd_iommu_stats_add(&cnt_unmap_single);
  193. amd_iommu_stats_add(&cnt_map_sg);
  194. amd_iommu_stats_add(&cnt_unmap_sg);
  195. amd_iommu_stats_add(&cnt_alloc_coherent);
  196. amd_iommu_stats_add(&cnt_free_coherent);
  197. amd_iommu_stats_add(&cross_page);
  198. amd_iommu_stats_add(&domain_flush_single);
  199. amd_iommu_stats_add(&domain_flush_all);
  200. amd_iommu_stats_add(&alloced_io_mem);
  201. amd_iommu_stats_add(&total_map_requests);
  202. }
  203. #endif
  204. /****************************************************************************
  205. *
  206. * Interrupt handling functions
  207. *
  208. ****************************************************************************/
  209. static void dump_dte_entry(u16 devid)
  210. {
  211. int i;
  212. for (i = 0; i < 8; ++i)
  213. pr_err("AMD-Vi: DTE[%d]: %08x\n", i,
  214. amd_iommu_dev_table[devid].data[i]);
  215. }
  216. static void dump_command(unsigned long phys_addr)
  217. {
  218. struct iommu_cmd *cmd = phys_to_virt(phys_addr);
  219. int i;
  220. for (i = 0; i < 4; ++i)
  221. pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
  222. }
  223. static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
  224. {
  225. u32 *event = __evt;
  226. int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
  227. int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
  228. int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
  229. int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
  230. u64 address = (u64)(((u64)event[3]) << 32) | event[2];
  231. printk(KERN_ERR "AMD-Vi: Event logged [");
  232. switch (type) {
  233. case EVENT_TYPE_ILL_DEV:
  234. printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
  235. "address=0x%016llx flags=0x%04x]\n",
  236. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  237. address, flags);
  238. dump_dte_entry(devid);
  239. break;
  240. case EVENT_TYPE_IO_FAULT:
  241. printk("IO_PAGE_FAULT device=%02x:%02x.%x "
  242. "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
  243. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  244. domid, address, flags);
  245. break;
  246. case EVENT_TYPE_DEV_TAB_ERR:
  247. printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
  248. "address=0x%016llx flags=0x%04x]\n",
  249. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  250. address, flags);
  251. break;
  252. case EVENT_TYPE_PAGE_TAB_ERR:
  253. printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
  254. "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
  255. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  256. domid, address, flags);
  257. break;
  258. case EVENT_TYPE_ILL_CMD:
  259. printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
  260. iommu->reset_in_progress = true;
  261. reset_iommu_command_buffer(iommu);
  262. dump_command(address);
  263. break;
  264. case EVENT_TYPE_CMD_HARD_ERR:
  265. printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
  266. "flags=0x%04x]\n", address, flags);
  267. break;
  268. case EVENT_TYPE_IOTLB_INV_TO:
  269. printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
  270. "address=0x%016llx]\n",
  271. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  272. address);
  273. break;
  274. case EVENT_TYPE_INV_DEV_REQ:
  275. printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
  276. "address=0x%016llx flags=0x%04x]\n",
  277. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  278. address, flags);
  279. break;
  280. default:
  281. printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
  282. }
  283. }
  284. static void iommu_poll_events(struct amd_iommu *iommu)
  285. {
  286. u32 head, tail;
  287. unsigned long flags;
  288. spin_lock_irqsave(&iommu->lock, flags);
  289. head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
  290. tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
  291. while (head != tail) {
  292. iommu_print_event(iommu, iommu->evt_buf + head);
  293. head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
  294. }
  295. writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
  296. spin_unlock_irqrestore(&iommu->lock, flags);
  297. }
  298. irqreturn_t amd_iommu_int_handler(int irq, void *data)
  299. {
  300. struct amd_iommu *iommu;
  301. for_each_iommu(iommu)
  302. iommu_poll_events(iommu);
  303. return IRQ_HANDLED;
  304. }
  305. /****************************************************************************
  306. *
  307. * IOMMU command queuing functions
  308. *
  309. ****************************************************************************/
  310. /*
  311. * Writes the command to the IOMMUs command buffer and informs the
  312. * hardware about the new command. Must be called with iommu->lock held.
  313. */
  314. static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
  315. {
  316. u32 tail, head;
  317. u8 *target;
  318. WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
  319. tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
  320. target = iommu->cmd_buf + tail;
  321. memcpy_toio(target, cmd, sizeof(*cmd));
  322. tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
  323. head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
  324. if (tail == head)
  325. return -ENOMEM;
  326. writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
  327. return 0;
  328. }
  329. /*
  330. * General queuing function for commands. Takes iommu->lock and calls
  331. * __iommu_queue_command().
  332. */
  333. static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
  334. {
  335. unsigned long flags;
  336. int ret;
  337. spin_lock_irqsave(&iommu->lock, flags);
  338. ret = __iommu_queue_command(iommu, cmd);
  339. if (!ret)
  340. iommu->need_sync = true;
  341. spin_unlock_irqrestore(&iommu->lock, flags);
  342. return ret;
  343. }
  344. /*
  345. * This function waits until an IOMMU has completed a completion
  346. * wait command
  347. */
  348. static void __iommu_wait_for_completion(struct amd_iommu *iommu)
  349. {
  350. int ready = 0;
  351. unsigned status = 0;
  352. unsigned long i = 0;
  353. INC_STATS_COUNTER(compl_wait);
  354. while (!ready && (i < EXIT_LOOP_COUNT)) {
  355. ++i;
  356. /* wait for the bit to become one */
  357. status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
  358. ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
  359. }
  360. /* set bit back to zero */
  361. status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
  362. writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);
  363. if (unlikely(i == EXIT_LOOP_COUNT))
  364. iommu->reset_in_progress = true;
  365. }
  366. /*
  367. * This function queues a completion wait command into the command
  368. * buffer of an IOMMU
  369. */
  370. static int __iommu_completion_wait(struct amd_iommu *iommu)
  371. {
  372. struct iommu_cmd cmd;
  373. memset(&cmd, 0, sizeof(cmd));
  374. cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
  375. CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);
  376. return __iommu_queue_command(iommu, &cmd);
  377. }
  378. /*
  379. * This function is called whenever we need to ensure that the IOMMU has
  380. * completed execution of all commands we sent. It sends a
  381. * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
  382. * us about that by writing a value to a physical address we pass with
  383. * the command.
  384. */
  385. static int iommu_completion_wait(struct amd_iommu *iommu)
  386. {
  387. int ret = 0;
  388. unsigned long flags;
  389. spin_lock_irqsave(&iommu->lock, flags);
  390. if (!iommu->need_sync)
  391. goto out;
  392. ret = __iommu_completion_wait(iommu);
  393. iommu->need_sync = false;
  394. if (ret)
  395. goto out;
  396. __iommu_wait_for_completion(iommu);
  397. out:
  398. spin_unlock_irqrestore(&iommu->lock, flags);
  399. if (iommu->reset_in_progress)
  400. reset_iommu_command_buffer(iommu);
  401. return 0;
  402. }
  403. static void iommu_flush_complete(struct protection_domain *domain)
  404. {
  405. int i;
  406. for (i = 0; i < amd_iommus_present; ++i) {
  407. if (!domain->dev_iommu[i])
  408. continue;
  409. /*
  410. * Devices of this domain are behind this IOMMU
  411. * We need to wait for completion of all commands.
  412. */
  413. iommu_completion_wait(amd_iommus[i]);
  414. }
  415. }
  416. /*
  417. * Command send function for invalidating a device table entry
  418. */
  419. static int iommu_flush_device(struct device *dev)
  420. {
  421. struct amd_iommu *iommu;
  422. struct iommu_cmd cmd;
  423. u16 devid;
  424. devid = get_device_id(dev);
  425. iommu = amd_iommu_rlookup_table[devid];
  426. /* Build command */
  427. memset(&cmd, 0, sizeof(cmd));
  428. CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
  429. cmd.data[0] = devid;
  430. return iommu_queue_command(iommu, &cmd);
  431. }
  432. static void __iommu_build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
  433. u16 domid, int pde, int s)
  434. {
  435. memset(cmd, 0, sizeof(*cmd));
  436. address &= PAGE_MASK;
  437. CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
  438. cmd->data[1] |= domid;
  439. cmd->data[2] = lower_32_bits(address);
  440. cmd->data[3] = upper_32_bits(address);
  441. if (s) /* size bit - we flush more than one 4kb page */
  442. cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  443. if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
  444. cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
  445. }
  446. /*
  447. * Generic command send function for invalidaing TLB entries
  448. */
  449. static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
  450. u64 address, u16 domid, int pde, int s)
  451. {
  452. struct iommu_cmd cmd;
  453. int ret;
  454. __iommu_build_inv_iommu_pages(&cmd, address, domid, pde, s);
  455. ret = iommu_queue_command(iommu, &cmd);
  456. return ret;
  457. }
  458. /*
  459. * TLB invalidation function which is called from the mapping functions.
  460. * It invalidates a single PTE if the range to flush is within a single
  461. * page. Otherwise it flushes the whole TLB of the IOMMU.
  462. */
  463. static void __iommu_flush_pages(struct protection_domain *domain,
  464. u64 address, size_t size, int pde)
  465. {
  466. int s = 0, i;
  467. unsigned long pages = iommu_num_pages(address, size, PAGE_SIZE);
  468. address &= PAGE_MASK;
  469. if (pages > 1) {
  470. /*
  471. * If we have to flush more than one page, flush all
  472. * TLB entries for this domain
  473. */
  474. address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
  475. s = 1;
  476. }
  477. for (i = 0; i < amd_iommus_present; ++i) {
  478. if (!domain->dev_iommu[i])
  479. continue;
  480. /*
  481. * Devices of this domain are behind this IOMMU
  482. * We need a TLB flush
  483. */
  484. iommu_queue_inv_iommu_pages(amd_iommus[i], address,
  485. domain->id, pde, s);
  486. }
  487. return;
  488. }
  489. static void iommu_flush_pages(struct protection_domain *domain,
  490. u64 address, size_t size)
  491. {
  492. __iommu_flush_pages(domain, address, size, 0);
  493. }
  494. /* Flush the whole IO/TLB for a given protection domain */
  495. static void iommu_flush_tlb(struct protection_domain *domain)
  496. {
  497. __iommu_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
  498. }
  499. /* Flush the whole IO/TLB for a given protection domain - including PDE */
  500. static void iommu_flush_tlb_pde(struct protection_domain *domain)
  501. {
  502. __iommu_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
  503. }
  504. /*
  505. * This function flushes the DTEs for all devices in domain
  506. */
  507. static void iommu_flush_domain_devices(struct protection_domain *domain)
  508. {
  509. struct iommu_dev_data *dev_data;
  510. unsigned long flags;
  511. spin_lock_irqsave(&domain->lock, flags);
  512. list_for_each_entry(dev_data, &domain->dev_list, list)
  513. iommu_flush_device(dev_data->dev);
  514. spin_unlock_irqrestore(&domain->lock, flags);
  515. }
  516. static void iommu_flush_all_domain_devices(void)
  517. {
  518. struct protection_domain *domain;
  519. unsigned long flags;
  520. spin_lock_irqsave(&amd_iommu_pd_lock, flags);
  521. list_for_each_entry(domain, &amd_iommu_pd_list, list) {
  522. iommu_flush_domain_devices(domain);
  523. iommu_flush_complete(domain);
  524. }
  525. spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
  526. }
  527. void amd_iommu_flush_all_devices(void)
  528. {
  529. iommu_flush_all_domain_devices();
  530. }
  531. /*
  532. * This function uses heavy locking and may disable irqs for some time. But
  533. * this is no issue because it is only called during resume.
  534. */
  535. void amd_iommu_flush_all_domains(void)
  536. {
  537. struct protection_domain *domain;
  538. unsigned long flags;
  539. spin_lock_irqsave(&amd_iommu_pd_lock, flags);
  540. list_for_each_entry(domain, &amd_iommu_pd_list, list) {
  541. spin_lock(&domain->lock);
  542. iommu_flush_tlb_pde(domain);
  543. iommu_flush_complete(domain);
  544. spin_unlock(&domain->lock);
  545. }
  546. spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
  547. }
  548. static void reset_iommu_command_buffer(struct amd_iommu *iommu)
  549. {
  550. pr_err("AMD-Vi: Resetting IOMMU command buffer\n");
  551. if (iommu->reset_in_progress)
  552. panic("AMD-Vi: ILLEGAL_COMMAND_ERROR while resetting command buffer\n");
  553. amd_iommu_reset_cmd_buffer(iommu);
  554. amd_iommu_flush_all_devices();
  555. amd_iommu_flush_all_domains();
  556. iommu->reset_in_progress = false;
  557. }
  558. /****************************************************************************
  559. *
  560. * The functions below are used the create the page table mappings for
  561. * unity mapped regions.
  562. *
  563. ****************************************************************************/
  564. /*
  565. * This function is used to add another level to an IO page table. Adding
  566. * another level increases the size of the address space by 9 bits to a size up
  567. * to 64 bits.
  568. */
  569. static bool increase_address_space(struct protection_domain *domain,
  570. gfp_t gfp)
  571. {
  572. u64 *pte;
  573. if (domain->mode == PAGE_MODE_6_LEVEL)
  574. /* address space already 64 bit large */
  575. return false;
  576. pte = (void *)get_zeroed_page(gfp);
  577. if (!pte)
  578. return false;
  579. *pte = PM_LEVEL_PDE(domain->mode,
  580. virt_to_phys(domain->pt_root));
  581. domain->pt_root = pte;
  582. domain->mode += 1;
  583. domain->updated = true;
  584. return true;
  585. }
  586. static u64 *alloc_pte(struct protection_domain *domain,
  587. unsigned long address,
  588. unsigned long page_size,
  589. u64 **pte_page,
  590. gfp_t gfp)
  591. {
  592. int level, end_lvl;
  593. u64 *pte, *page;
  594. BUG_ON(!is_power_of_2(page_size));
  595. while (address > PM_LEVEL_SIZE(domain->mode))
  596. increase_address_space(domain, gfp);
  597. level = domain->mode - 1;
  598. pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
  599. address = PAGE_SIZE_ALIGN(address, page_size);
  600. end_lvl = PAGE_SIZE_LEVEL(page_size);
  601. while (level > end_lvl) {
  602. if (!IOMMU_PTE_PRESENT(*pte)) {
  603. page = (u64 *)get_zeroed_page(gfp);
  604. if (!page)
  605. return NULL;
  606. *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
  607. }
  608. /* No level skipping support yet */
  609. if (PM_PTE_LEVEL(*pte) != level)
  610. return NULL;
  611. level -= 1;
  612. pte = IOMMU_PTE_PAGE(*pte);
  613. if (pte_page && level == end_lvl)
  614. *pte_page = pte;
  615. pte = &pte[PM_LEVEL_INDEX(level, address)];
  616. }
  617. return pte;
  618. }
  619. /*
  620. * This function checks if there is a PTE for a given dma address. If
  621. * there is one, it returns the pointer to it.
  622. */
  623. static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
  624. {
  625. int level;
  626. u64 *pte;
  627. if (address > PM_LEVEL_SIZE(domain->mode))
  628. return NULL;
  629. level = domain->mode - 1;
  630. pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
  631. while (level > 0) {
  632. /* Not Present */
  633. if (!IOMMU_PTE_PRESENT(*pte))
  634. return NULL;
  635. /* Large PTE */
  636. if (PM_PTE_LEVEL(*pte) == 0x07) {
  637. unsigned long pte_mask, __pte;
  638. /*
  639. * If we have a series of large PTEs, make
  640. * sure to return a pointer to the first one.
  641. */
  642. pte_mask = PTE_PAGE_SIZE(*pte);
  643. pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
  644. __pte = ((unsigned long)pte) & pte_mask;
  645. return (u64 *)__pte;
  646. }
  647. /* No level skipping support yet */
  648. if (PM_PTE_LEVEL(*pte) != level)
  649. return NULL;
  650. level -= 1;
  651. /* Walk to the next level */
  652. pte = IOMMU_PTE_PAGE(*pte);
  653. pte = &pte[PM_LEVEL_INDEX(level, address)];
  654. }
  655. return pte;
  656. }
  657. /*
  658. * Generic mapping functions. It maps a physical address into a DMA
  659. * address space. It allocates the page table pages if necessary.
  660. * In the future it can be extended to a generic mapping function
  661. * supporting all features of AMD IOMMU page tables like level skipping
  662. * and full 64 bit address spaces.
  663. */
  664. static int iommu_map_page(struct protection_domain *dom,
  665. unsigned long bus_addr,
  666. unsigned long phys_addr,
  667. int prot,
  668. unsigned long page_size)
  669. {
  670. u64 __pte, *pte;
  671. int i, count;
  672. if (!(prot & IOMMU_PROT_MASK))
  673. return -EINVAL;
  674. bus_addr = PAGE_ALIGN(bus_addr);
  675. phys_addr = PAGE_ALIGN(phys_addr);
  676. count = PAGE_SIZE_PTE_COUNT(page_size);
  677. pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
  678. for (i = 0; i < count; ++i)
  679. if (IOMMU_PTE_PRESENT(pte[i]))
  680. return -EBUSY;
  681. if (page_size > PAGE_SIZE) {
  682. __pte = PAGE_SIZE_PTE(phys_addr, page_size);
  683. __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
  684. } else
  685. __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
  686. if (prot & IOMMU_PROT_IR)
  687. __pte |= IOMMU_PTE_IR;
  688. if (prot & IOMMU_PROT_IW)
  689. __pte |= IOMMU_PTE_IW;
  690. for (i = 0; i < count; ++i)
  691. pte[i] = __pte;
  692. update_domain(dom);
  693. return 0;
  694. }
  695. static unsigned long iommu_unmap_page(struct protection_domain *dom,
  696. unsigned long bus_addr,
  697. unsigned long page_size)
  698. {
  699. unsigned long long unmap_size, unmapped;
  700. u64 *pte;
  701. BUG_ON(!is_power_of_2(page_size));
  702. unmapped = 0;
  703. while (unmapped < page_size) {
  704. pte = fetch_pte(dom, bus_addr);
  705. if (!pte) {
  706. /*
  707. * No PTE for this address
  708. * move forward in 4kb steps
  709. */
  710. unmap_size = PAGE_SIZE;
  711. } else if (PM_PTE_LEVEL(*pte) == 0) {
  712. /* 4kb PTE found for this address */
  713. unmap_size = PAGE_SIZE;
  714. *pte = 0ULL;
  715. } else {
  716. int count, i;
  717. /* Large PTE found which maps this address */
  718. unmap_size = PTE_PAGE_SIZE(*pte);
  719. count = PAGE_SIZE_PTE_COUNT(unmap_size);
  720. for (i = 0; i < count; i++)
  721. pte[i] = 0ULL;
  722. }
  723. bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
  724. unmapped += unmap_size;
  725. }
  726. BUG_ON(!is_power_of_2(unmapped));
  727. return unmapped;
  728. }
  729. /*
  730. * This function checks if a specific unity mapping entry is needed for
  731. * this specific IOMMU.
  732. */
  733. static int iommu_for_unity_map(struct amd_iommu *iommu,
  734. struct unity_map_entry *entry)
  735. {
  736. u16 bdf, i;
  737. for (i = entry->devid_start; i <= entry->devid_end; ++i) {
  738. bdf = amd_iommu_alias_table[i];
  739. if (amd_iommu_rlookup_table[bdf] == iommu)
  740. return 1;
  741. }
  742. return 0;
  743. }
  744. /*
  745. * This function actually applies the mapping to the page table of the
  746. * dma_ops domain.
  747. */
  748. static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
  749. struct unity_map_entry *e)
  750. {
  751. u64 addr;
  752. int ret;
  753. for (addr = e->address_start; addr < e->address_end;
  754. addr += PAGE_SIZE) {
  755. ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
  756. PAGE_SIZE);
  757. if (ret)
  758. return ret;
  759. /*
  760. * if unity mapping is in aperture range mark the page
  761. * as allocated in the aperture
  762. */
  763. if (addr < dma_dom->aperture_size)
  764. __set_bit(addr >> PAGE_SHIFT,
  765. dma_dom->aperture[0]->bitmap);
  766. }
  767. return 0;
  768. }
  769. /*
  770. * Init the unity mappings for a specific IOMMU in the system
  771. *
  772. * Basically iterates over all unity mapping entries and applies them to
  773. * the default domain DMA of that IOMMU if necessary.
  774. */
  775. static int iommu_init_unity_mappings(struct amd_iommu *iommu)
  776. {
  777. struct unity_map_entry *entry;
  778. int ret;
  779. list_for_each_entry(entry, &amd_iommu_unity_map, list) {
  780. if (!iommu_for_unity_map(iommu, entry))
  781. continue;
  782. ret = dma_ops_unity_map(iommu->default_dom, entry);
  783. if (ret)
  784. return ret;
  785. }
  786. return 0;
  787. }
  788. /*
  789. * Inits the unity mappings required for a specific device
  790. */
  791. static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
  792. u16 devid)
  793. {
  794. struct unity_map_entry *e;
  795. int ret;
  796. list_for_each_entry(e, &amd_iommu_unity_map, list) {
  797. if (!(devid >= e->devid_start && devid <= e->devid_end))
  798. continue;
  799. ret = dma_ops_unity_map(dma_dom, e);
  800. if (ret)
  801. return ret;
  802. }
  803. return 0;
  804. }
  805. /****************************************************************************
  806. *
  807. * The next functions belong to the address allocator for the dma_ops
  808. * interface functions. They work like the allocators in the other IOMMU
  809. * drivers. Its basically a bitmap which marks the allocated pages in
  810. * the aperture. Maybe it could be enhanced in the future to a more
  811. * efficient allocator.
  812. *
  813. ****************************************************************************/
  814. /*
  815. * The address allocator core functions.
  816. *
  817. * called with domain->lock held
  818. */
  819. /*
  820. * Used to reserve address ranges in the aperture (e.g. for exclusion
  821. * ranges.
  822. */
  823. static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
  824. unsigned long start_page,
  825. unsigned int pages)
  826. {
  827. unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
  828. if (start_page + pages > last_page)
  829. pages = last_page - start_page;
  830. for (i = start_page; i < start_page + pages; ++i) {
  831. int index = i / APERTURE_RANGE_PAGES;
  832. int page = i % APERTURE_RANGE_PAGES;
  833. __set_bit(page, dom->aperture[index]->bitmap);
  834. }
  835. }
  836. /*
  837. * This function is used to add a new aperture range to an existing
  838. * aperture in case of dma_ops domain allocation or address allocation
  839. * failure.
  840. */
  841. static int alloc_new_range(struct dma_ops_domain *dma_dom,
  842. bool populate, gfp_t gfp)
  843. {
  844. int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
  845. struct amd_iommu *iommu;
  846. unsigned long i;
  847. #ifdef CONFIG_IOMMU_STRESS
  848. populate = false;
  849. #endif
  850. if (index >= APERTURE_MAX_RANGES)
  851. return -ENOMEM;
  852. dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
  853. if (!dma_dom->aperture[index])
  854. return -ENOMEM;
  855. dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
  856. if (!dma_dom->aperture[index]->bitmap)
  857. goto out_free;
  858. dma_dom->aperture[index]->offset = dma_dom->aperture_size;
  859. if (populate) {
  860. unsigned long address = dma_dom->aperture_size;
  861. int i, num_ptes = APERTURE_RANGE_PAGES / 512;
  862. u64 *pte, *pte_page;
  863. for (i = 0; i < num_ptes; ++i) {
  864. pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
  865. &pte_page, gfp);
  866. if (!pte)
  867. goto out_free;
  868. dma_dom->aperture[index]->pte_pages[i] = pte_page;
  869. address += APERTURE_RANGE_SIZE / 64;
  870. }
  871. }
  872. dma_dom->aperture_size += APERTURE_RANGE_SIZE;
  873. /* Intialize the exclusion range if necessary */
  874. for_each_iommu(iommu) {
  875. if (iommu->exclusion_start &&
  876. iommu->exclusion_start >= dma_dom->aperture[index]->offset
  877. && iommu->exclusion_start < dma_dom->aperture_size) {
  878. unsigned long startpage;
  879. int pages = iommu_num_pages(iommu->exclusion_start,
  880. iommu->exclusion_length,
  881. PAGE_SIZE);
  882. startpage = iommu->exclusion_start >> PAGE_SHIFT;
  883. dma_ops_reserve_addresses(dma_dom, startpage, pages);
  884. }
  885. }
  886. /*
  887. * Check for areas already mapped as present in the new aperture
  888. * range and mark those pages as reserved in the allocator. Such
  889. * mappings may already exist as a result of requested unity
  890. * mappings for devices.
  891. */
  892. for (i = dma_dom->aperture[index]->offset;
  893. i < dma_dom->aperture_size;
  894. i += PAGE_SIZE) {
  895. u64 *pte = fetch_pte(&dma_dom->domain, i);
  896. if (!pte || !IOMMU_PTE_PRESENT(*pte))
  897. continue;
  898. dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
  899. }
  900. update_domain(&dma_dom->domain);
  901. return 0;
  902. out_free:
  903. update_domain(&dma_dom->domain);
  904. free_page((unsigned long)dma_dom->aperture[index]->bitmap);
  905. kfree(dma_dom->aperture[index]);
  906. dma_dom->aperture[index] = NULL;
  907. return -ENOMEM;
  908. }
  909. static unsigned long dma_ops_area_alloc(struct device *dev,
  910. struct dma_ops_domain *dom,
  911. unsigned int pages,
  912. unsigned long align_mask,
  913. u64 dma_mask,
  914. unsigned long start)
  915. {
  916. unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
  917. int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
  918. int i = start >> APERTURE_RANGE_SHIFT;
  919. unsigned long boundary_size;
  920. unsigned long address = -1;
  921. unsigned long limit;
  922. next_bit >>= PAGE_SHIFT;
  923. boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
  924. PAGE_SIZE) >> PAGE_SHIFT;
  925. for (;i < max_index; ++i) {
  926. unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
  927. if (dom->aperture[i]->offset >= dma_mask)
  928. break;
  929. limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
  930. dma_mask >> PAGE_SHIFT);
  931. address = iommu_area_alloc(dom->aperture[i]->bitmap,
  932. limit, next_bit, pages, 0,
  933. boundary_size, align_mask);
  934. if (address != -1) {
  935. address = dom->aperture[i]->offset +
  936. (address << PAGE_SHIFT);
  937. dom->next_address = address + (pages << PAGE_SHIFT);
  938. break;
  939. }
  940. next_bit = 0;
  941. }
  942. return address;
  943. }
  944. static unsigned long dma_ops_alloc_addresses(struct device *dev,
  945. struct dma_ops_domain *dom,
  946. unsigned int pages,
  947. unsigned long align_mask,
  948. u64 dma_mask)
  949. {
  950. unsigned long address;
  951. #ifdef CONFIG_IOMMU_STRESS
  952. dom->next_address = 0;
  953. dom->need_flush = true;
  954. #endif
  955. address = dma_ops_area_alloc(dev, dom, pages, align_mask,
  956. dma_mask, dom->next_address);
  957. if (address == -1) {
  958. dom->next_address = 0;
  959. address = dma_ops_area_alloc(dev, dom, pages, align_mask,
  960. dma_mask, 0);
  961. dom->need_flush = true;
  962. }
  963. if (unlikely(address == -1))
  964. address = DMA_ERROR_CODE;
  965. WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
  966. return address;
  967. }
  968. /*
  969. * The address free function.
  970. *
  971. * called with domain->lock held
  972. */
  973. static void dma_ops_free_addresses(struct dma_ops_domain *dom,
  974. unsigned long address,
  975. unsigned int pages)
  976. {
  977. unsigned i = address >> APERTURE_RANGE_SHIFT;
  978. struct aperture_range *range = dom->aperture[i];
  979. BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
  980. #ifdef CONFIG_IOMMU_STRESS
  981. if (i < 4)
  982. return;
  983. #endif
  984. if (address >= dom->next_address)
  985. dom->need_flush = true;
  986. address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
  987. bitmap_clear(range->bitmap, address, pages);
  988. }
  989. /****************************************************************************
  990. *
  991. * The next functions belong to the domain allocation. A domain is
  992. * allocated for every IOMMU as the default domain. If device isolation
  993. * is enabled, every device get its own domain. The most important thing
  994. * about domains is the page table mapping the DMA address space they
  995. * contain.
  996. *
  997. ****************************************************************************/
  998. /*
  999. * This function adds a protection domain to the global protection domain list
  1000. */
  1001. static void add_domain_to_list(struct protection_domain *domain)
  1002. {
  1003. unsigned long flags;
  1004. spin_lock_irqsave(&amd_iommu_pd_lock, flags);
  1005. list_add(&domain->list, &amd_iommu_pd_list);
  1006. spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
  1007. }
  1008. /*
  1009. * This function removes a protection domain to the global
  1010. * protection domain list
  1011. */
  1012. static void del_domain_from_list(struct protection_domain *domain)
  1013. {
  1014. unsigned long flags;
  1015. spin_lock_irqsave(&amd_iommu_pd_lock, flags);
  1016. list_del(&domain->list);
  1017. spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
  1018. }
  1019. static u16 domain_id_alloc(void)
  1020. {
  1021. unsigned long flags;
  1022. int id;
  1023. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1024. id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
  1025. BUG_ON(id == 0);
  1026. if (id > 0 && id < MAX_DOMAIN_ID)
  1027. __set_bit(id, amd_iommu_pd_alloc_bitmap);
  1028. else
  1029. id = 0;
  1030. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1031. return id;
  1032. }
  1033. static void domain_id_free(int id)
  1034. {
  1035. unsigned long flags;
  1036. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1037. if (id > 0 && id < MAX_DOMAIN_ID)
  1038. __clear_bit(id, amd_iommu_pd_alloc_bitmap);
  1039. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1040. }
  1041. static void free_pagetable(struct protection_domain *domain)
  1042. {
  1043. int i, j;
  1044. u64 *p1, *p2, *p3;
  1045. p1 = domain->pt_root;
  1046. if (!p1)
  1047. return;
  1048. for (i = 0; i < 512; ++i) {
  1049. if (!IOMMU_PTE_PRESENT(p1[i]))
  1050. continue;
  1051. p2 = IOMMU_PTE_PAGE(p1[i]);
  1052. for (j = 0; j < 512; ++j) {
  1053. if (!IOMMU_PTE_PRESENT(p2[j]))
  1054. continue;
  1055. p3 = IOMMU_PTE_PAGE(p2[j]);
  1056. free_page((unsigned long)p3);
  1057. }
  1058. free_page((unsigned long)p2);
  1059. }
  1060. free_page((unsigned long)p1);
  1061. domain->pt_root = NULL;
  1062. }
  1063. /*
  1064. * Free a domain, only used if something went wrong in the
  1065. * allocation path and we need to free an already allocated page table
  1066. */
  1067. static void dma_ops_domain_free(struct dma_ops_domain *dom)
  1068. {
  1069. int i;
  1070. if (!dom)
  1071. return;
  1072. del_domain_from_list(&dom->domain);
  1073. free_pagetable(&dom->domain);
  1074. for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
  1075. if (!dom->aperture[i])
  1076. continue;
  1077. free_page((unsigned long)dom->aperture[i]->bitmap);
  1078. kfree(dom->aperture[i]);
  1079. }
  1080. kfree(dom);
  1081. }
  1082. /*
  1083. * Allocates a new protection domain usable for the dma_ops functions.
  1084. * It also intializes the page table and the address allocator data
  1085. * structures required for the dma_ops interface
  1086. */
  1087. static struct dma_ops_domain *dma_ops_domain_alloc(void)
  1088. {
  1089. struct dma_ops_domain *dma_dom;
  1090. dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
  1091. if (!dma_dom)
  1092. return NULL;
  1093. spin_lock_init(&dma_dom->domain.lock);
  1094. dma_dom->domain.id = domain_id_alloc();
  1095. if (dma_dom->domain.id == 0)
  1096. goto free_dma_dom;
  1097. INIT_LIST_HEAD(&dma_dom->domain.dev_list);
  1098. dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
  1099. dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
  1100. dma_dom->domain.flags = PD_DMA_OPS_MASK;
  1101. dma_dom->domain.priv = dma_dom;
  1102. if (!dma_dom->domain.pt_root)
  1103. goto free_dma_dom;
  1104. dma_dom->need_flush = false;
  1105. dma_dom->target_dev = 0xffff;
  1106. add_domain_to_list(&dma_dom->domain);
  1107. if (alloc_new_range(dma_dom, true, GFP_KERNEL))
  1108. goto free_dma_dom;
  1109. /*
  1110. * mark the first page as allocated so we never return 0 as
  1111. * a valid dma-address. So we can use 0 as error value
  1112. */
  1113. dma_dom->aperture[0]->bitmap[0] = 1;
  1114. dma_dom->next_address = 0;
  1115. return dma_dom;
  1116. free_dma_dom:
  1117. dma_ops_domain_free(dma_dom);
  1118. return NULL;
  1119. }
  1120. /*
  1121. * little helper function to check whether a given protection domain is a
  1122. * dma_ops domain
  1123. */
  1124. static bool dma_ops_domain(struct protection_domain *domain)
  1125. {
  1126. return domain->flags & PD_DMA_OPS_MASK;
  1127. }
  1128. static void set_dte_entry(u16 devid, struct protection_domain *domain)
  1129. {
  1130. u64 pte_root = virt_to_phys(domain->pt_root);
  1131. pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
  1132. << DEV_ENTRY_MODE_SHIFT;
  1133. pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
  1134. amd_iommu_dev_table[devid].data[2] = domain->id;
  1135. amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
  1136. amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
  1137. }
  1138. static void clear_dte_entry(u16 devid)
  1139. {
  1140. /* remove entry from the device table seen by the hardware */
  1141. amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
  1142. amd_iommu_dev_table[devid].data[1] = 0;
  1143. amd_iommu_dev_table[devid].data[2] = 0;
  1144. amd_iommu_apply_erratum_63(devid);
  1145. }
  1146. static void do_attach(struct device *dev, struct protection_domain *domain)
  1147. {
  1148. struct iommu_dev_data *dev_data;
  1149. struct amd_iommu *iommu;
  1150. u16 devid;
  1151. devid = get_device_id(dev);
  1152. iommu = amd_iommu_rlookup_table[devid];
  1153. dev_data = get_dev_data(dev);
  1154. /* Update data structures */
  1155. dev_data->domain = domain;
  1156. list_add(&dev_data->list, &domain->dev_list);
  1157. set_dte_entry(devid, domain);
  1158. /* Do reference counting */
  1159. domain->dev_iommu[iommu->index] += 1;
  1160. domain->dev_cnt += 1;
  1161. /* Flush the DTE entry */
  1162. iommu_flush_device(dev);
  1163. }
  1164. static void do_detach(struct device *dev)
  1165. {
  1166. struct iommu_dev_data *dev_data;
  1167. struct amd_iommu *iommu;
  1168. u16 devid;
  1169. devid = get_device_id(dev);
  1170. iommu = amd_iommu_rlookup_table[devid];
  1171. dev_data = get_dev_data(dev);
  1172. /* decrease reference counters */
  1173. dev_data->domain->dev_iommu[iommu->index] -= 1;
  1174. dev_data->domain->dev_cnt -= 1;
  1175. /* Update data structures */
  1176. dev_data->domain = NULL;
  1177. list_del(&dev_data->list);
  1178. clear_dte_entry(devid);
  1179. /* Flush the DTE entry */
  1180. iommu_flush_device(dev);
  1181. }
  1182. /*
  1183. * If a device is not yet associated with a domain, this function does
  1184. * assigns it visible for the hardware
  1185. */
  1186. static int __attach_device(struct device *dev,
  1187. struct protection_domain *domain)
  1188. {
  1189. struct iommu_dev_data *dev_data, *alias_data;
  1190. int ret;
  1191. dev_data = get_dev_data(dev);
  1192. alias_data = get_dev_data(dev_data->alias);
  1193. if (!alias_data)
  1194. return -EINVAL;
  1195. /* lock domain */
  1196. spin_lock(&domain->lock);
  1197. /* Some sanity checks */
  1198. ret = -EBUSY;
  1199. if (alias_data->domain != NULL &&
  1200. alias_data->domain != domain)
  1201. goto out_unlock;
  1202. if (dev_data->domain != NULL &&
  1203. dev_data->domain != domain)
  1204. goto out_unlock;
  1205. /* Do real assignment */
  1206. if (dev_data->alias != dev) {
  1207. alias_data = get_dev_data(dev_data->alias);
  1208. if (alias_data->domain == NULL)
  1209. do_attach(dev_data->alias, domain);
  1210. atomic_inc(&alias_data->bind);
  1211. }
  1212. if (dev_data->domain == NULL)
  1213. do_attach(dev, domain);
  1214. atomic_inc(&dev_data->bind);
  1215. ret = 0;
  1216. out_unlock:
  1217. /* ready */
  1218. spin_unlock(&domain->lock);
  1219. return ret;
  1220. }
  1221. /*
  1222. * If a device is not yet associated with a domain, this function does
  1223. * assigns it visible for the hardware
  1224. */
  1225. static int attach_device(struct device *dev,
  1226. struct protection_domain *domain)
  1227. {
  1228. unsigned long flags;
  1229. int ret;
  1230. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1231. ret = __attach_device(dev, domain);
  1232. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1233. /*
  1234. * We might boot into a crash-kernel here. The crashed kernel
  1235. * left the caches in the IOMMU dirty. So we have to flush
  1236. * here to evict all dirty stuff.
  1237. */
  1238. iommu_flush_tlb_pde(domain);
  1239. return ret;
  1240. }
  1241. /*
  1242. * Removes a device from a protection domain (unlocked)
  1243. */
  1244. static void __detach_device(struct device *dev)
  1245. {
  1246. struct iommu_dev_data *dev_data = get_dev_data(dev);
  1247. struct iommu_dev_data *alias_data;
  1248. struct protection_domain *domain;
  1249. unsigned long flags;
  1250. BUG_ON(!dev_data->domain);
  1251. domain = dev_data->domain;
  1252. spin_lock_irqsave(&domain->lock, flags);
  1253. if (dev_data->alias != dev) {
  1254. alias_data = get_dev_data(dev_data->alias);
  1255. if (atomic_dec_and_test(&alias_data->bind))
  1256. do_detach(dev_data->alias);
  1257. }
  1258. if (atomic_dec_and_test(&dev_data->bind))
  1259. do_detach(dev);
  1260. spin_unlock_irqrestore(&domain->lock, flags);
  1261. /*
  1262. * If we run in passthrough mode the device must be assigned to the
  1263. * passthrough domain if it is detached from any other domain.
  1264. * Make sure we can deassign from the pt_domain itself.
  1265. */
  1266. if (iommu_pass_through &&
  1267. (dev_data->domain == NULL && domain != pt_domain))
  1268. __attach_device(dev, pt_domain);
  1269. }
  1270. /*
  1271. * Removes a device from a protection domain (with devtable_lock held)
  1272. */
  1273. static void detach_device(struct device *dev)
  1274. {
  1275. unsigned long flags;
  1276. /* lock device table */
  1277. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1278. __detach_device(dev);
  1279. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1280. }
  1281. /*
  1282. * Find out the protection domain structure for a given PCI device. This
  1283. * will give us the pointer to the page table root for example.
  1284. */
  1285. static struct protection_domain *domain_for_device(struct device *dev)
  1286. {
  1287. struct protection_domain *dom;
  1288. struct iommu_dev_data *dev_data, *alias_data;
  1289. unsigned long flags;
  1290. u16 devid, alias;
  1291. devid = get_device_id(dev);
  1292. alias = amd_iommu_alias_table[devid];
  1293. dev_data = get_dev_data(dev);
  1294. alias_data = get_dev_data(dev_data->alias);
  1295. if (!alias_data)
  1296. return NULL;
  1297. read_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1298. dom = dev_data->domain;
  1299. if (dom == NULL &&
  1300. alias_data->domain != NULL) {
  1301. __attach_device(dev, alias_data->domain);
  1302. dom = alias_data->domain;
  1303. }
  1304. read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1305. return dom;
  1306. }
  1307. static int device_change_notifier(struct notifier_block *nb,
  1308. unsigned long action, void *data)
  1309. {
  1310. struct device *dev = data;
  1311. u16 devid;
  1312. struct protection_domain *domain;
  1313. struct dma_ops_domain *dma_domain;
  1314. struct amd_iommu *iommu;
  1315. unsigned long flags;
  1316. if (!check_device(dev))
  1317. return 0;
  1318. devid = get_device_id(dev);
  1319. iommu = amd_iommu_rlookup_table[devid];
  1320. switch (action) {
  1321. case BUS_NOTIFY_UNBOUND_DRIVER:
  1322. domain = domain_for_device(dev);
  1323. if (!domain)
  1324. goto out;
  1325. if (iommu_pass_through)
  1326. break;
  1327. detach_device(dev);
  1328. break;
  1329. case BUS_NOTIFY_ADD_DEVICE:
  1330. iommu_init_device(dev);
  1331. domain = domain_for_device(dev);
  1332. /* allocate a protection domain if a device is added */
  1333. dma_domain = find_protection_domain(devid);
  1334. if (dma_domain)
  1335. goto out;
  1336. dma_domain = dma_ops_domain_alloc();
  1337. if (!dma_domain)
  1338. goto out;
  1339. dma_domain->target_dev = devid;
  1340. spin_lock_irqsave(&iommu_pd_list_lock, flags);
  1341. list_add_tail(&dma_domain->list, &iommu_pd_list);
  1342. spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
  1343. break;
  1344. case BUS_NOTIFY_DEL_DEVICE:
  1345. iommu_uninit_device(dev);
  1346. default:
  1347. goto out;
  1348. }
  1349. iommu_flush_device(dev);
  1350. iommu_completion_wait(iommu);
  1351. out:
  1352. return 0;
  1353. }
  1354. static struct notifier_block device_nb = {
  1355. .notifier_call = device_change_notifier,
  1356. };
  1357. void amd_iommu_init_notifier(void)
  1358. {
  1359. bus_register_notifier(&pci_bus_type, &device_nb);
  1360. }
  1361. /*****************************************************************************
  1362. *
  1363. * The next functions belong to the dma_ops mapping/unmapping code.
  1364. *
  1365. *****************************************************************************/
  1366. /*
  1367. * In the dma_ops path we only have the struct device. This function
  1368. * finds the corresponding IOMMU, the protection domain and the
  1369. * requestor id for a given device.
  1370. * If the device is not yet associated with a domain this is also done
  1371. * in this function.
  1372. */
  1373. static struct protection_domain *get_domain(struct device *dev)
  1374. {
  1375. struct protection_domain *domain;
  1376. struct dma_ops_domain *dma_dom;
  1377. u16 devid = get_device_id(dev);
  1378. if (!check_device(dev))
  1379. return ERR_PTR(-EINVAL);
  1380. domain = domain_for_device(dev);
  1381. if (domain != NULL && !dma_ops_domain(domain))
  1382. return ERR_PTR(-EBUSY);
  1383. if (domain != NULL)
  1384. return domain;
  1385. /* Device not bount yet - bind it */
  1386. dma_dom = find_protection_domain(devid);
  1387. if (!dma_dom)
  1388. dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
  1389. attach_device(dev, &dma_dom->domain);
  1390. DUMP_printk("Using protection domain %d for device %s\n",
  1391. dma_dom->domain.id, dev_name(dev));
  1392. return &dma_dom->domain;
  1393. }
  1394. static void update_device_table(struct protection_domain *domain)
  1395. {
  1396. struct iommu_dev_data *dev_data;
  1397. list_for_each_entry(dev_data, &domain->dev_list, list) {
  1398. u16 devid = get_device_id(dev_data->dev);
  1399. set_dte_entry(devid, domain);
  1400. }
  1401. }
  1402. static void update_domain(struct protection_domain *domain)
  1403. {
  1404. if (!domain->updated)
  1405. return;
  1406. update_device_table(domain);
  1407. iommu_flush_domain_devices(domain);
  1408. iommu_flush_tlb_pde(domain);
  1409. domain->updated = false;
  1410. }
  1411. /*
  1412. * This function fetches the PTE for a given address in the aperture
  1413. */
  1414. static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
  1415. unsigned long address)
  1416. {
  1417. struct aperture_range *aperture;
  1418. u64 *pte, *pte_page;
  1419. aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
  1420. if (!aperture)
  1421. return NULL;
  1422. pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
  1423. if (!pte) {
  1424. pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
  1425. GFP_ATOMIC);
  1426. aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
  1427. } else
  1428. pte += PM_LEVEL_INDEX(0, address);
  1429. update_domain(&dom->domain);
  1430. return pte;
  1431. }
  1432. /*
  1433. * This is the generic map function. It maps one 4kb page at paddr to
  1434. * the given address in the DMA address space for the domain.
  1435. */
  1436. static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
  1437. unsigned long address,
  1438. phys_addr_t paddr,
  1439. int direction)
  1440. {
  1441. u64 *pte, __pte;
  1442. WARN_ON(address > dom->aperture_size);
  1443. paddr &= PAGE_MASK;
  1444. pte = dma_ops_get_pte(dom, address);
  1445. if (!pte)
  1446. return DMA_ERROR_CODE;
  1447. __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
  1448. if (direction == DMA_TO_DEVICE)
  1449. __pte |= IOMMU_PTE_IR;
  1450. else if (direction == DMA_FROM_DEVICE)
  1451. __pte |= IOMMU_PTE_IW;
  1452. else if (direction == DMA_BIDIRECTIONAL)
  1453. __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
  1454. WARN_ON(*pte);
  1455. *pte = __pte;
  1456. return (dma_addr_t)address;
  1457. }
  1458. /*
  1459. * The generic unmapping function for on page in the DMA address space.
  1460. */
  1461. static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
  1462. unsigned long address)
  1463. {
  1464. struct aperture_range *aperture;
  1465. u64 *pte;
  1466. if (address >= dom->aperture_size)
  1467. return;
  1468. aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
  1469. if (!aperture)
  1470. return;
  1471. pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
  1472. if (!pte)
  1473. return;
  1474. pte += PM_LEVEL_INDEX(0, address);
  1475. WARN_ON(!*pte);
  1476. *pte = 0ULL;
  1477. }
  1478. /*
  1479. * This function contains common code for mapping of a physically
  1480. * contiguous memory region into DMA address space. It is used by all
  1481. * mapping functions provided with this IOMMU driver.
  1482. * Must be called with the domain lock held.
  1483. */
  1484. static dma_addr_t __map_single(struct device *dev,
  1485. struct dma_ops_domain *dma_dom,
  1486. phys_addr_t paddr,
  1487. size_t size,
  1488. int dir,
  1489. bool align,
  1490. u64 dma_mask)
  1491. {
  1492. dma_addr_t offset = paddr & ~PAGE_MASK;
  1493. dma_addr_t address, start, ret;
  1494. unsigned int pages;
  1495. unsigned long align_mask = 0;
  1496. int i;
  1497. pages = iommu_num_pages(paddr, size, PAGE_SIZE);
  1498. paddr &= PAGE_MASK;
  1499. INC_STATS_COUNTER(total_map_requests);
  1500. if (pages > 1)
  1501. INC_STATS_COUNTER(cross_page);
  1502. if (align)
  1503. align_mask = (1UL << get_order(size)) - 1;
  1504. retry:
  1505. address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
  1506. dma_mask);
  1507. if (unlikely(address == DMA_ERROR_CODE)) {
  1508. /*
  1509. * setting next_address here will let the address
  1510. * allocator only scan the new allocated range in the
  1511. * first run. This is a small optimization.
  1512. */
  1513. dma_dom->next_address = dma_dom->aperture_size;
  1514. if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
  1515. goto out;
  1516. /*
  1517. * aperture was successfully enlarged by 128 MB, try
  1518. * allocation again
  1519. */
  1520. goto retry;
  1521. }
  1522. start = address;
  1523. for (i = 0; i < pages; ++i) {
  1524. ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
  1525. if (ret == DMA_ERROR_CODE)
  1526. goto out_unmap;
  1527. paddr += PAGE_SIZE;
  1528. start += PAGE_SIZE;
  1529. }
  1530. address += offset;
  1531. ADD_STATS_COUNTER(alloced_io_mem, size);
  1532. if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
  1533. iommu_flush_tlb(&dma_dom->domain);
  1534. dma_dom->need_flush = false;
  1535. } else if (unlikely(amd_iommu_np_cache))
  1536. iommu_flush_pages(&dma_dom->domain, address, size);
  1537. out:
  1538. return address;
  1539. out_unmap:
  1540. for (--i; i >= 0; --i) {
  1541. start -= PAGE_SIZE;
  1542. dma_ops_domain_unmap(dma_dom, start);
  1543. }
  1544. dma_ops_free_addresses(dma_dom, address, pages);
  1545. return DMA_ERROR_CODE;
  1546. }
  1547. /*
  1548. * Does the reverse of the __map_single function. Must be called with
  1549. * the domain lock held too
  1550. */
  1551. static void __unmap_single(struct dma_ops_domain *dma_dom,
  1552. dma_addr_t dma_addr,
  1553. size_t size,
  1554. int dir)
  1555. {
  1556. dma_addr_t i, start;
  1557. unsigned int pages;
  1558. if ((dma_addr == DMA_ERROR_CODE) ||
  1559. (dma_addr + size > dma_dom->aperture_size))
  1560. return;
  1561. pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
  1562. dma_addr &= PAGE_MASK;
  1563. start = dma_addr;
  1564. for (i = 0; i < pages; ++i) {
  1565. dma_ops_domain_unmap(dma_dom, start);
  1566. start += PAGE_SIZE;
  1567. }
  1568. SUB_STATS_COUNTER(alloced_io_mem, size);
  1569. dma_ops_free_addresses(dma_dom, dma_addr, pages);
  1570. if (amd_iommu_unmap_flush || dma_dom->need_flush) {
  1571. iommu_flush_pages(&dma_dom->domain, dma_addr, size);
  1572. dma_dom->need_flush = false;
  1573. }
  1574. }
  1575. /*
  1576. * The exported map_single function for dma_ops.
  1577. */
  1578. static dma_addr_t map_page(struct device *dev, struct page *page,
  1579. unsigned long offset, size_t size,
  1580. enum dma_data_direction dir,
  1581. struct dma_attrs *attrs)
  1582. {
  1583. unsigned long flags;
  1584. struct protection_domain *domain;
  1585. dma_addr_t addr;
  1586. u64 dma_mask;
  1587. phys_addr_t paddr = page_to_phys(page) + offset;
  1588. INC_STATS_COUNTER(cnt_map_single);
  1589. domain = get_domain(dev);
  1590. if (PTR_ERR(domain) == -EINVAL)
  1591. return (dma_addr_t)paddr;
  1592. else if (IS_ERR(domain))
  1593. return DMA_ERROR_CODE;
  1594. dma_mask = *dev->dma_mask;
  1595. spin_lock_irqsave(&domain->lock, flags);
  1596. addr = __map_single(dev, domain->priv, paddr, size, dir, false,
  1597. dma_mask);
  1598. if (addr == DMA_ERROR_CODE)
  1599. goto out;
  1600. iommu_flush_complete(domain);
  1601. out:
  1602. spin_unlock_irqrestore(&domain->lock, flags);
  1603. return addr;
  1604. }
  1605. /*
  1606. * The exported unmap_single function for dma_ops.
  1607. */
  1608. static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
  1609. enum dma_data_direction dir, struct dma_attrs *attrs)
  1610. {
  1611. unsigned long flags;
  1612. struct protection_domain *domain;
  1613. INC_STATS_COUNTER(cnt_unmap_single);
  1614. domain = get_domain(dev);
  1615. if (IS_ERR(domain))
  1616. return;
  1617. spin_lock_irqsave(&domain->lock, flags);
  1618. __unmap_single(domain->priv, dma_addr, size, dir);
  1619. iommu_flush_complete(domain);
  1620. spin_unlock_irqrestore(&domain->lock, flags);
  1621. }
  1622. /*
  1623. * This is a special map_sg function which is used if we should map a
  1624. * device which is not handled by an AMD IOMMU in the system.
  1625. */
  1626. static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
  1627. int nelems, int dir)
  1628. {
  1629. struct scatterlist *s;
  1630. int i;
  1631. for_each_sg(sglist, s, nelems, i) {
  1632. s->dma_address = (dma_addr_t)sg_phys(s);
  1633. s->dma_length = s->length;
  1634. }
  1635. return nelems;
  1636. }
  1637. /*
  1638. * The exported map_sg function for dma_ops (handles scatter-gather
  1639. * lists).
  1640. */
  1641. static int map_sg(struct device *dev, struct scatterlist *sglist,
  1642. int nelems, enum dma_data_direction dir,
  1643. struct dma_attrs *attrs)
  1644. {
  1645. unsigned long flags;
  1646. struct protection_domain *domain;
  1647. int i;
  1648. struct scatterlist *s;
  1649. phys_addr_t paddr;
  1650. int mapped_elems = 0;
  1651. u64 dma_mask;
  1652. INC_STATS_COUNTER(cnt_map_sg);
  1653. domain = get_domain(dev);
  1654. if (PTR_ERR(domain) == -EINVAL)
  1655. return map_sg_no_iommu(dev, sglist, nelems, dir);
  1656. else if (IS_ERR(domain))
  1657. return 0;
  1658. dma_mask = *dev->dma_mask;
  1659. spin_lock_irqsave(&domain->lock, flags);
  1660. for_each_sg(sglist, s, nelems, i) {
  1661. paddr = sg_phys(s);
  1662. s->dma_address = __map_single(dev, domain->priv,
  1663. paddr, s->length, dir, false,
  1664. dma_mask);
  1665. if (s->dma_address) {
  1666. s->dma_length = s->length;
  1667. mapped_elems++;
  1668. } else
  1669. goto unmap;
  1670. }
  1671. iommu_flush_complete(domain);
  1672. out:
  1673. spin_unlock_irqrestore(&domain->lock, flags);
  1674. return mapped_elems;
  1675. unmap:
  1676. for_each_sg(sglist, s, mapped_elems, i) {
  1677. if (s->dma_address)
  1678. __unmap_single(domain->priv, s->dma_address,
  1679. s->dma_length, dir);
  1680. s->dma_address = s->dma_length = 0;
  1681. }
  1682. mapped_elems = 0;
  1683. goto out;
  1684. }
  1685. /*
  1686. * The exported map_sg function for dma_ops (handles scatter-gather
  1687. * lists).
  1688. */
  1689. static void unmap_sg(struct device *dev, struct scatterlist *sglist,
  1690. int nelems, enum dma_data_direction dir,
  1691. struct dma_attrs *attrs)
  1692. {
  1693. unsigned long flags;
  1694. struct protection_domain *domain;
  1695. struct scatterlist *s;
  1696. int i;
  1697. INC_STATS_COUNTER(cnt_unmap_sg);
  1698. domain = get_domain(dev);
  1699. if (IS_ERR(domain))
  1700. return;
  1701. spin_lock_irqsave(&domain->lock, flags);
  1702. for_each_sg(sglist, s, nelems, i) {
  1703. __unmap_single(domain->priv, s->dma_address,
  1704. s->dma_length, dir);
  1705. s->dma_address = s->dma_length = 0;
  1706. }
  1707. iommu_flush_complete(domain);
  1708. spin_unlock_irqrestore(&domain->lock, flags);
  1709. }
  1710. /*
  1711. * The exported alloc_coherent function for dma_ops.
  1712. */
  1713. static void *alloc_coherent(struct device *dev, size_t size,
  1714. dma_addr_t *dma_addr, gfp_t flag)
  1715. {
  1716. unsigned long flags;
  1717. void *virt_addr;
  1718. struct protection_domain *domain;
  1719. phys_addr_t paddr;
  1720. u64 dma_mask = dev->coherent_dma_mask;
  1721. INC_STATS_COUNTER(cnt_alloc_coherent);
  1722. domain = get_domain(dev);
  1723. if (PTR_ERR(domain) == -EINVAL) {
  1724. virt_addr = (void *)__get_free_pages(flag, get_order(size));
  1725. *dma_addr = __pa(virt_addr);
  1726. return virt_addr;
  1727. } else if (IS_ERR(domain))
  1728. return NULL;
  1729. dma_mask = dev->coherent_dma_mask;
  1730. flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
  1731. flag |= __GFP_ZERO;
  1732. virt_addr = (void *)__get_free_pages(flag, get_order(size));
  1733. if (!virt_addr)
  1734. return NULL;
  1735. paddr = virt_to_phys(virt_addr);
  1736. if (!dma_mask)
  1737. dma_mask = *dev->dma_mask;
  1738. spin_lock_irqsave(&domain->lock, flags);
  1739. *dma_addr = __map_single(dev, domain->priv, paddr,
  1740. size, DMA_BIDIRECTIONAL, true, dma_mask);
  1741. if (*dma_addr == DMA_ERROR_CODE) {
  1742. spin_unlock_irqrestore(&domain->lock, flags);
  1743. goto out_free;
  1744. }
  1745. iommu_flush_complete(domain);
  1746. spin_unlock_irqrestore(&domain->lock, flags);
  1747. return virt_addr;
  1748. out_free:
  1749. free_pages((unsigned long)virt_addr, get_order(size));
  1750. return NULL;
  1751. }
  1752. /*
  1753. * The exported free_coherent function for dma_ops.
  1754. */
  1755. static void free_coherent(struct device *dev, size_t size,
  1756. void *virt_addr, dma_addr_t dma_addr)
  1757. {
  1758. unsigned long flags;
  1759. struct protection_domain *domain;
  1760. INC_STATS_COUNTER(cnt_free_coherent);
  1761. domain = get_domain(dev);
  1762. if (IS_ERR(domain))
  1763. goto free_mem;
  1764. spin_lock_irqsave(&domain->lock, flags);
  1765. __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
  1766. iommu_flush_complete(domain);
  1767. spin_unlock_irqrestore(&domain->lock, flags);
  1768. free_mem:
  1769. free_pages((unsigned long)virt_addr, get_order(size));
  1770. }
  1771. /*
  1772. * This function is called by the DMA layer to find out if we can handle a
  1773. * particular device. It is part of the dma_ops.
  1774. */
  1775. static int amd_iommu_dma_supported(struct device *dev, u64 mask)
  1776. {
  1777. return check_device(dev);
  1778. }
  1779. /*
  1780. * The function for pre-allocating protection domains.
  1781. *
  1782. * If the driver core informs the DMA layer if a driver grabs a device
  1783. * we don't need to preallocate the protection domains anymore.
  1784. * For now we have to.
  1785. */
  1786. static void prealloc_protection_domains(void)
  1787. {
  1788. struct pci_dev *dev = NULL;
  1789. struct dma_ops_domain *dma_dom;
  1790. u16 devid;
  1791. for_each_pci_dev(dev) {
  1792. /* Do we handle this device? */
  1793. if (!check_device(&dev->dev))
  1794. continue;
  1795. /* Is there already any domain for it? */
  1796. if (domain_for_device(&dev->dev))
  1797. continue;
  1798. devid = get_device_id(&dev->dev);
  1799. dma_dom = dma_ops_domain_alloc();
  1800. if (!dma_dom)
  1801. continue;
  1802. init_unity_mappings_for_device(dma_dom, devid);
  1803. dma_dom->target_dev = devid;
  1804. attach_device(&dev->dev, &dma_dom->domain);
  1805. list_add_tail(&dma_dom->list, &iommu_pd_list);
  1806. }
  1807. }
  1808. static struct dma_map_ops amd_iommu_dma_ops = {
  1809. .alloc_coherent = alloc_coherent,
  1810. .free_coherent = free_coherent,
  1811. .map_page = map_page,
  1812. .unmap_page = unmap_page,
  1813. .map_sg = map_sg,
  1814. .unmap_sg = unmap_sg,
  1815. .dma_supported = amd_iommu_dma_supported,
  1816. };
  1817. /*
  1818. * The function which clues the AMD IOMMU driver into dma_ops.
  1819. */
  1820. void __init amd_iommu_init_api(void)
  1821. {
  1822. register_iommu(&amd_iommu_ops);
  1823. }
  1824. int __init amd_iommu_init_dma_ops(void)
  1825. {
  1826. struct amd_iommu *iommu;
  1827. int ret;
  1828. /*
  1829. * first allocate a default protection domain for every IOMMU we
  1830. * found in the system. Devices not assigned to any other
  1831. * protection domain will be assigned to the default one.
  1832. */
  1833. for_each_iommu(iommu) {
  1834. iommu->default_dom = dma_ops_domain_alloc();
  1835. if (iommu->default_dom == NULL)
  1836. return -ENOMEM;
  1837. iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
  1838. ret = iommu_init_unity_mappings(iommu);
  1839. if (ret)
  1840. goto free_domains;
  1841. }
  1842. /*
  1843. * Pre-allocate the protection domains for each device.
  1844. */
  1845. prealloc_protection_domains();
  1846. iommu_detected = 1;
  1847. swiotlb = 0;
  1848. /* Make the driver finally visible to the drivers */
  1849. dma_ops = &amd_iommu_dma_ops;
  1850. amd_iommu_stats_init();
  1851. return 0;
  1852. free_domains:
  1853. for_each_iommu(iommu) {
  1854. if (iommu->default_dom)
  1855. dma_ops_domain_free(iommu->default_dom);
  1856. }
  1857. return ret;
  1858. }
  1859. /*****************************************************************************
  1860. *
  1861. * The following functions belong to the exported interface of AMD IOMMU
  1862. *
  1863. * This interface allows access to lower level functions of the IOMMU
  1864. * like protection domain handling and assignement of devices to domains
  1865. * which is not possible with the dma_ops interface.
  1866. *
  1867. *****************************************************************************/
  1868. static void cleanup_domain(struct protection_domain *domain)
  1869. {
  1870. struct iommu_dev_data *dev_data, *next;
  1871. unsigned long flags;
  1872. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1873. list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
  1874. struct device *dev = dev_data->dev;
  1875. __detach_device(dev);
  1876. atomic_set(&dev_data->bind, 0);
  1877. }
  1878. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1879. }
  1880. static void protection_domain_free(struct protection_domain *domain)
  1881. {
  1882. if (!domain)
  1883. return;
  1884. del_domain_from_list(domain);
  1885. if (domain->id)
  1886. domain_id_free(domain->id);
  1887. kfree(domain);
  1888. }
  1889. static struct protection_domain *protection_domain_alloc(void)
  1890. {
  1891. struct protection_domain *domain;
  1892. domain = kzalloc(sizeof(*domain), GFP_KERNEL);
  1893. if (!domain)
  1894. return NULL;
  1895. spin_lock_init(&domain->lock);
  1896. mutex_init(&domain->api_lock);
  1897. domain->id = domain_id_alloc();
  1898. if (!domain->id)
  1899. goto out_err;
  1900. INIT_LIST_HEAD(&domain->dev_list);
  1901. add_domain_to_list(domain);
  1902. return domain;
  1903. out_err:
  1904. kfree(domain);
  1905. return NULL;
  1906. }
  1907. static int amd_iommu_domain_init(struct iommu_domain *dom)
  1908. {
  1909. struct protection_domain *domain;
  1910. domain = protection_domain_alloc();
  1911. if (!domain)
  1912. goto out_free;
  1913. domain->mode = PAGE_MODE_3_LEVEL;
  1914. domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
  1915. if (!domain->pt_root)
  1916. goto out_free;
  1917. dom->priv = domain;
  1918. return 0;
  1919. out_free:
  1920. protection_domain_free(domain);
  1921. return -ENOMEM;
  1922. }
  1923. static void amd_iommu_domain_destroy(struct iommu_domain *dom)
  1924. {
  1925. struct protection_domain *domain = dom->priv;
  1926. if (!domain)
  1927. return;
  1928. if (domain->dev_cnt > 0)
  1929. cleanup_domain(domain);
  1930. BUG_ON(domain->dev_cnt != 0);
  1931. free_pagetable(domain);
  1932. protection_domain_free(domain);
  1933. dom->priv = NULL;
  1934. }
  1935. static void amd_iommu_detach_device(struct iommu_domain *dom,
  1936. struct device *dev)
  1937. {
  1938. struct iommu_dev_data *dev_data = dev->archdata.iommu;
  1939. struct amd_iommu *iommu;
  1940. u16 devid;
  1941. if (!check_device(dev))
  1942. return;
  1943. devid = get_device_id(dev);
  1944. if (dev_data->domain != NULL)
  1945. detach_device(dev);
  1946. iommu = amd_iommu_rlookup_table[devid];
  1947. if (!iommu)
  1948. return;
  1949. iommu_flush_device(dev);
  1950. iommu_completion_wait(iommu);
  1951. }
  1952. static int amd_iommu_attach_device(struct iommu_domain *dom,
  1953. struct device *dev)
  1954. {
  1955. struct protection_domain *domain = dom->priv;
  1956. struct iommu_dev_data *dev_data;
  1957. struct amd_iommu *iommu;
  1958. int ret;
  1959. u16 devid;
  1960. if (!check_device(dev))
  1961. return -EINVAL;
  1962. dev_data = dev->archdata.iommu;
  1963. devid = get_device_id(dev);
  1964. iommu = amd_iommu_rlookup_table[devid];
  1965. if (!iommu)
  1966. return -EINVAL;
  1967. if (dev_data->domain)
  1968. detach_device(dev);
  1969. ret = attach_device(dev, domain);
  1970. iommu_completion_wait(iommu);
  1971. return ret;
  1972. }
  1973. static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
  1974. phys_addr_t paddr, int gfp_order, int iommu_prot)
  1975. {
  1976. unsigned long page_size = 0x1000UL << gfp_order;
  1977. struct protection_domain *domain = dom->priv;
  1978. int prot = 0;
  1979. int ret;
  1980. if (iommu_prot & IOMMU_READ)
  1981. prot |= IOMMU_PROT_IR;
  1982. if (iommu_prot & IOMMU_WRITE)
  1983. prot |= IOMMU_PROT_IW;
  1984. mutex_lock(&domain->api_lock);
  1985. ret = iommu_map_page(domain, iova, paddr, prot, page_size);
  1986. mutex_unlock(&domain->api_lock);
  1987. return ret;
  1988. }
  1989. static int amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
  1990. int gfp_order)
  1991. {
  1992. struct protection_domain *domain = dom->priv;
  1993. unsigned long page_size, unmap_size;
  1994. page_size = 0x1000UL << gfp_order;
  1995. mutex_lock(&domain->api_lock);
  1996. unmap_size = iommu_unmap_page(domain, iova, page_size);
  1997. mutex_unlock(&domain->api_lock);
  1998. iommu_flush_tlb_pde(domain);
  1999. return get_order(unmap_size);
  2000. }
  2001. static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
  2002. unsigned long iova)
  2003. {
  2004. struct protection_domain *domain = dom->priv;
  2005. unsigned long offset_mask;
  2006. phys_addr_t paddr;
  2007. u64 *pte, __pte;
  2008. pte = fetch_pte(domain, iova);
  2009. if (!pte || !IOMMU_PTE_PRESENT(*pte))
  2010. return 0;
  2011. if (PM_PTE_LEVEL(*pte) == 0)
  2012. offset_mask = PAGE_SIZE - 1;
  2013. else
  2014. offset_mask = PTE_PAGE_SIZE(*pte) - 1;
  2015. __pte = *pte & PM_ADDR_MASK;
  2016. paddr = (__pte & ~offset_mask) | (iova & offset_mask);
  2017. return paddr;
  2018. }
  2019. static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
  2020. unsigned long cap)
  2021. {
  2022. return 0;
  2023. }
  2024. static struct iommu_ops amd_iommu_ops = {
  2025. .domain_init = amd_iommu_domain_init,
  2026. .domain_destroy = amd_iommu_domain_destroy,
  2027. .attach_dev = amd_iommu_attach_device,
  2028. .detach_dev = amd_iommu_detach_device,
  2029. .map = amd_iommu_map,
  2030. .unmap = amd_iommu_unmap,
  2031. .iova_to_phys = amd_iommu_iova_to_phys,
  2032. .domain_has_cap = amd_iommu_domain_has_cap,
  2033. };
  2034. /*****************************************************************************
  2035. *
  2036. * The next functions do a basic initialization of IOMMU for pass through
  2037. * mode
  2038. *
  2039. * In passthrough mode the IOMMU is initialized and enabled but not used for
  2040. * DMA-API translation.
  2041. *
  2042. *****************************************************************************/
  2043. int __init amd_iommu_init_passthrough(void)
  2044. {
  2045. struct amd_iommu *iommu;
  2046. struct pci_dev *dev = NULL;
  2047. u16 devid;
  2048. /* allocate passthrough domain */
  2049. pt_domain = protection_domain_alloc();
  2050. if (!pt_domain)
  2051. return -ENOMEM;
  2052. pt_domain->mode |= PAGE_MODE_NONE;
  2053. while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
  2054. if (!check_device(&dev->dev))
  2055. continue;
  2056. devid = get_device_id(&dev->dev);
  2057. iommu = amd_iommu_rlookup_table[devid];
  2058. if (!iommu)
  2059. continue;
  2060. attach_device(&dev->dev, pt_domain);
  2061. }
  2062. pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
  2063. return 0;
  2064. }