unaligned_64.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684
  1. /*
  2. * unaligned.c: Unaligned load/store trap handling with special
  3. * cases for the kernel to do them more quickly.
  4. *
  5. * Copyright (C) 1996,2008 David S. Miller (davem@davemloft.net)
  6. * Copyright (C) 1996,1997 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
  7. */
  8. #include <linux/jiffies.h>
  9. #include <linux/kernel.h>
  10. #include <linux/sched.h>
  11. #include <linux/mm.h>
  12. #include <linux/module.h>
  13. #include <asm/asi.h>
  14. #include <asm/ptrace.h>
  15. #include <asm/pstate.h>
  16. #include <asm/processor.h>
  17. #include <asm/system.h>
  18. #include <asm/uaccess.h>
  19. #include <linux/smp.h>
  20. #include <linux/bitops.h>
  21. #include <linux/perf_event.h>
  22. #include <linux/ratelimit.h>
  23. #include <asm/fpumacro.h>
  24. enum direction {
  25. load, /* ld, ldd, ldh, ldsh */
  26. store, /* st, std, sth, stsh */
  27. both, /* Swap, ldstub, cas, ... */
  28. fpld,
  29. fpst,
  30. invalid,
  31. };
  32. static inline enum direction decode_direction(unsigned int insn)
  33. {
  34. unsigned long tmp = (insn >> 21) & 1;
  35. if (!tmp)
  36. return load;
  37. else {
  38. switch ((insn>>19)&0xf) {
  39. case 15: /* swap* */
  40. return both;
  41. default:
  42. return store;
  43. }
  44. }
  45. }
  46. /* 16 = double-word, 8 = extra-word, 4 = word, 2 = half-word */
  47. static inline int decode_access_size(struct pt_regs *regs, unsigned int insn)
  48. {
  49. unsigned int tmp;
  50. tmp = ((insn >> 19) & 0xf);
  51. if (tmp == 11 || tmp == 14) /* ldx/stx */
  52. return 8;
  53. tmp &= 3;
  54. if (!tmp)
  55. return 4;
  56. else if (tmp == 3)
  57. return 16; /* ldd/std - Although it is actually 8 */
  58. else if (tmp == 2)
  59. return 2;
  60. else {
  61. printk("Impossible unaligned trap. insn=%08x\n", insn);
  62. die_if_kernel("Byte sized unaligned access?!?!", regs);
  63. /* GCC should never warn that control reaches the end
  64. * of this function without returning a value because
  65. * die_if_kernel() is marked with attribute 'noreturn'.
  66. * Alas, some versions do...
  67. */
  68. return 0;
  69. }
  70. }
  71. static inline int decode_asi(unsigned int insn, struct pt_regs *regs)
  72. {
  73. if (insn & 0x800000) {
  74. if (insn & 0x2000)
  75. return (unsigned char)(regs->tstate >> 24); /* %asi */
  76. else
  77. return (unsigned char)(insn >> 5); /* imm_asi */
  78. } else
  79. return ASI_P;
  80. }
  81. /* 0x400000 = signed, 0 = unsigned */
  82. static inline int decode_signedness(unsigned int insn)
  83. {
  84. return (insn & 0x400000);
  85. }
  86. static inline void maybe_flush_windows(unsigned int rs1, unsigned int rs2,
  87. unsigned int rd, int from_kernel)
  88. {
  89. if (rs2 >= 16 || rs1 >= 16 || rd >= 16) {
  90. if (from_kernel != 0)
  91. __asm__ __volatile__("flushw");
  92. else
  93. flushw_user();
  94. }
  95. }
  96. static inline long sign_extend_imm13(long imm)
  97. {
  98. return imm << 51 >> 51;
  99. }
  100. static unsigned long fetch_reg(unsigned int reg, struct pt_regs *regs)
  101. {
  102. unsigned long value;
  103. if (reg < 16)
  104. return (!reg ? 0 : regs->u_regs[reg]);
  105. if (regs->tstate & TSTATE_PRIV) {
  106. struct reg_window *win;
  107. win = (struct reg_window *)(regs->u_regs[UREG_FP] + STACK_BIAS);
  108. value = win->locals[reg - 16];
  109. } else if (test_thread_flag(TIF_32BIT)) {
  110. struct reg_window32 __user *win32;
  111. win32 = (struct reg_window32 __user *)((unsigned long)((u32)regs->u_regs[UREG_FP]));
  112. get_user(value, &win32->locals[reg - 16]);
  113. } else {
  114. struct reg_window __user *win;
  115. win = (struct reg_window __user *)(regs->u_regs[UREG_FP] + STACK_BIAS);
  116. get_user(value, &win->locals[reg - 16]);
  117. }
  118. return value;
  119. }
  120. static unsigned long *fetch_reg_addr(unsigned int reg, struct pt_regs *regs)
  121. {
  122. if (reg < 16)
  123. return &regs->u_regs[reg];
  124. if (regs->tstate & TSTATE_PRIV) {
  125. struct reg_window *win;
  126. win = (struct reg_window *)(regs->u_regs[UREG_FP] + STACK_BIAS);
  127. return &win->locals[reg - 16];
  128. } else if (test_thread_flag(TIF_32BIT)) {
  129. struct reg_window32 *win32;
  130. win32 = (struct reg_window32 *)((unsigned long)((u32)regs->u_regs[UREG_FP]));
  131. return (unsigned long *)&win32->locals[reg - 16];
  132. } else {
  133. struct reg_window *win;
  134. win = (struct reg_window *)(regs->u_regs[UREG_FP] + STACK_BIAS);
  135. return &win->locals[reg - 16];
  136. }
  137. }
  138. unsigned long compute_effective_address(struct pt_regs *regs,
  139. unsigned int insn, unsigned int rd)
  140. {
  141. unsigned int rs1 = (insn >> 14) & 0x1f;
  142. unsigned int rs2 = insn & 0x1f;
  143. int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
  144. if (insn & 0x2000) {
  145. maybe_flush_windows(rs1, 0, rd, from_kernel);
  146. return (fetch_reg(rs1, regs) + sign_extend_imm13(insn));
  147. } else {
  148. maybe_flush_windows(rs1, rs2, rd, from_kernel);
  149. return (fetch_reg(rs1, regs) + fetch_reg(rs2, regs));
  150. }
  151. }
  152. /* This is just to make gcc think die_if_kernel does return... */
  153. static void __used unaligned_panic(char *str, struct pt_regs *regs)
  154. {
  155. die_if_kernel(str, regs);
  156. }
  157. extern int do_int_load(unsigned long *dest_reg, int size,
  158. unsigned long *saddr, int is_signed, int asi);
  159. extern int __do_int_store(unsigned long *dst_addr, int size,
  160. unsigned long src_val, int asi);
  161. static inline int do_int_store(int reg_num, int size, unsigned long *dst_addr,
  162. struct pt_regs *regs, int asi, int orig_asi)
  163. {
  164. unsigned long zero = 0;
  165. unsigned long *src_val_p = &zero;
  166. unsigned long src_val;
  167. if (size == 16) {
  168. size = 8;
  169. zero = (((long)(reg_num ?
  170. (unsigned)fetch_reg(reg_num, regs) : 0)) << 32) |
  171. (unsigned)fetch_reg(reg_num + 1, regs);
  172. } else if (reg_num) {
  173. src_val_p = fetch_reg_addr(reg_num, regs);
  174. }
  175. src_val = *src_val_p;
  176. if (unlikely(asi != orig_asi)) {
  177. switch (size) {
  178. case 2:
  179. src_val = swab16(src_val);
  180. break;
  181. case 4:
  182. src_val = swab32(src_val);
  183. break;
  184. case 8:
  185. src_val = swab64(src_val);
  186. break;
  187. case 16:
  188. default:
  189. BUG();
  190. break;
  191. };
  192. }
  193. return __do_int_store(dst_addr, size, src_val, asi);
  194. }
  195. static inline void advance(struct pt_regs *regs)
  196. {
  197. regs->tpc = regs->tnpc;
  198. regs->tnpc += 4;
  199. if (test_thread_flag(TIF_32BIT)) {
  200. regs->tpc &= 0xffffffff;
  201. regs->tnpc &= 0xffffffff;
  202. }
  203. }
  204. static inline int floating_point_load_or_store_p(unsigned int insn)
  205. {
  206. return (insn >> 24) & 1;
  207. }
  208. static inline int ok_for_kernel(unsigned int insn)
  209. {
  210. return !floating_point_load_or_store_p(insn);
  211. }
  212. static void kernel_mna_trap_fault(int fixup_tstate_asi)
  213. {
  214. struct pt_regs *regs = current_thread_info()->kern_una_regs;
  215. unsigned int insn = current_thread_info()->kern_una_insn;
  216. const struct exception_table_entry *entry;
  217. entry = search_exception_tables(regs->tpc);
  218. if (!entry) {
  219. unsigned long address;
  220. address = compute_effective_address(regs, insn,
  221. ((insn >> 25) & 0x1f));
  222. if (address < PAGE_SIZE) {
  223. printk(KERN_ALERT "Unable to handle kernel NULL "
  224. "pointer dereference in mna handler");
  225. } else
  226. printk(KERN_ALERT "Unable to handle kernel paging "
  227. "request in mna handler");
  228. printk(KERN_ALERT " at virtual address %016lx\n",address);
  229. printk(KERN_ALERT "current->{active_,}mm->context = %016lx\n",
  230. (current->mm ? CTX_HWBITS(current->mm->context) :
  231. CTX_HWBITS(current->active_mm->context)));
  232. printk(KERN_ALERT "current->{active_,}mm->pgd = %016lx\n",
  233. (current->mm ? (unsigned long) current->mm->pgd :
  234. (unsigned long) current->active_mm->pgd));
  235. die_if_kernel("Oops", regs);
  236. /* Not reached */
  237. }
  238. regs->tpc = entry->fixup;
  239. regs->tnpc = regs->tpc + 4;
  240. if (fixup_tstate_asi) {
  241. regs->tstate &= ~TSTATE_ASI;
  242. regs->tstate |= (ASI_AIUS << 24UL);
  243. }
  244. }
  245. static void log_unaligned(struct pt_regs *regs)
  246. {
  247. static DEFINE_RATELIMIT_STATE(ratelimit, 5 * HZ, 5);
  248. if (__ratelimit(&ratelimit)) {
  249. printk("Kernel unaligned access at TPC[%lx] %pS\n",
  250. regs->tpc, (void *) regs->tpc);
  251. }
  252. }
  253. asmlinkage void kernel_unaligned_trap(struct pt_regs *regs, unsigned int insn)
  254. {
  255. enum direction dir = decode_direction(insn);
  256. int size = decode_access_size(regs, insn);
  257. int orig_asi, asi;
  258. current_thread_info()->kern_una_regs = regs;
  259. current_thread_info()->kern_una_insn = insn;
  260. orig_asi = asi = decode_asi(insn, regs);
  261. /* If this is a {get,put}_user() on an unaligned userspace pointer,
  262. * just signal a fault and do not log the event.
  263. */
  264. if (asi == ASI_AIUS) {
  265. kernel_mna_trap_fault(0);
  266. return;
  267. }
  268. log_unaligned(regs);
  269. if (!ok_for_kernel(insn) || dir == both) {
  270. printk("Unsupported unaligned load/store trap for kernel "
  271. "at <%016lx>.\n", regs->tpc);
  272. unaligned_panic("Kernel does fpu/atomic "
  273. "unaligned load/store.", regs);
  274. kernel_mna_trap_fault(0);
  275. } else {
  276. unsigned long addr, *reg_addr;
  277. int err;
  278. addr = compute_effective_address(regs, insn,
  279. ((insn >> 25) & 0x1f));
  280. perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, 0, regs, addr);
  281. switch (asi) {
  282. case ASI_NL:
  283. case ASI_AIUPL:
  284. case ASI_AIUSL:
  285. case ASI_PL:
  286. case ASI_SL:
  287. case ASI_PNFL:
  288. case ASI_SNFL:
  289. asi &= ~0x08;
  290. break;
  291. };
  292. switch (dir) {
  293. case load:
  294. reg_addr = fetch_reg_addr(((insn>>25)&0x1f), regs);
  295. err = do_int_load(reg_addr, size,
  296. (unsigned long *) addr,
  297. decode_signedness(insn), asi);
  298. if (likely(!err) && unlikely(asi != orig_asi)) {
  299. unsigned long val_in = *reg_addr;
  300. switch (size) {
  301. case 2:
  302. val_in = swab16(val_in);
  303. break;
  304. case 4:
  305. val_in = swab32(val_in);
  306. break;
  307. case 8:
  308. val_in = swab64(val_in);
  309. break;
  310. case 16:
  311. default:
  312. BUG();
  313. break;
  314. };
  315. *reg_addr = val_in;
  316. }
  317. break;
  318. case store:
  319. err = do_int_store(((insn>>25)&0x1f), size,
  320. (unsigned long *) addr, regs,
  321. asi, orig_asi);
  322. break;
  323. default:
  324. panic("Impossible kernel unaligned trap.");
  325. /* Not reached... */
  326. }
  327. if (unlikely(err))
  328. kernel_mna_trap_fault(1);
  329. else
  330. advance(regs);
  331. }
  332. }
  333. static char popc_helper[] = {
  334. 0, 1, 1, 2, 1, 2, 2, 3,
  335. 1, 2, 2, 3, 2, 3, 3, 4,
  336. };
  337. int handle_popc(u32 insn, struct pt_regs *regs)
  338. {
  339. u64 value;
  340. int ret, i, rd = ((insn >> 25) & 0x1f);
  341. int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
  342. perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, 0, regs, 0);
  343. if (insn & 0x2000) {
  344. maybe_flush_windows(0, 0, rd, from_kernel);
  345. value = sign_extend_imm13(insn);
  346. } else {
  347. maybe_flush_windows(0, insn & 0x1f, rd, from_kernel);
  348. value = fetch_reg(insn & 0x1f, regs);
  349. }
  350. for (ret = 0, i = 0; i < 16; i++) {
  351. ret += popc_helper[value & 0xf];
  352. value >>= 4;
  353. }
  354. if (rd < 16) {
  355. if (rd)
  356. regs->u_regs[rd] = ret;
  357. } else {
  358. if (test_thread_flag(TIF_32BIT)) {
  359. struct reg_window32 __user *win32;
  360. win32 = (struct reg_window32 __user *)((unsigned long)((u32)regs->u_regs[UREG_FP]));
  361. put_user(ret, &win32->locals[rd - 16]);
  362. } else {
  363. struct reg_window __user *win;
  364. win = (struct reg_window __user *)(regs->u_regs[UREG_FP] + STACK_BIAS);
  365. put_user(ret, &win->locals[rd - 16]);
  366. }
  367. }
  368. advance(regs);
  369. return 1;
  370. }
  371. extern void do_fpother(struct pt_regs *regs);
  372. extern void do_privact(struct pt_regs *regs);
  373. extern void spitfire_data_access_exception(struct pt_regs *regs,
  374. unsigned long sfsr,
  375. unsigned long sfar);
  376. extern void sun4v_data_access_exception(struct pt_regs *regs,
  377. unsigned long addr,
  378. unsigned long type_ctx);
  379. int handle_ldf_stq(u32 insn, struct pt_regs *regs)
  380. {
  381. unsigned long addr = compute_effective_address(regs, insn, 0);
  382. int freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
  383. struct fpustate *f = FPUSTATE;
  384. int asi = decode_asi(insn, regs);
  385. int flag = (freg < 32) ? FPRS_DL : FPRS_DU;
  386. perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, 0, regs, 0);
  387. save_and_clear_fpu();
  388. current_thread_info()->xfsr[0] &= ~0x1c000;
  389. if (freg & 3) {
  390. current_thread_info()->xfsr[0] |= (6 << 14) /* invalid_fp_register */;
  391. do_fpother(regs);
  392. return 0;
  393. }
  394. if (insn & 0x200000) {
  395. /* STQ */
  396. u64 first = 0, second = 0;
  397. if (current_thread_info()->fpsaved[0] & flag) {
  398. first = *(u64 *)&f->regs[freg];
  399. second = *(u64 *)&f->regs[freg+2];
  400. }
  401. if (asi < 0x80) {
  402. do_privact(regs);
  403. return 1;
  404. }
  405. switch (asi) {
  406. case ASI_P:
  407. case ASI_S: break;
  408. case ASI_PL:
  409. case ASI_SL:
  410. {
  411. /* Need to convert endians */
  412. u64 tmp = __swab64p(&first);
  413. first = __swab64p(&second);
  414. second = tmp;
  415. break;
  416. }
  417. default:
  418. if (tlb_type == hypervisor)
  419. sun4v_data_access_exception(regs, addr, 0);
  420. else
  421. spitfire_data_access_exception(regs, 0, addr);
  422. return 1;
  423. }
  424. if (put_user (first >> 32, (u32 __user *)addr) ||
  425. __put_user ((u32)first, (u32 __user *)(addr + 4)) ||
  426. __put_user (second >> 32, (u32 __user *)(addr + 8)) ||
  427. __put_user ((u32)second, (u32 __user *)(addr + 12))) {
  428. if (tlb_type == hypervisor)
  429. sun4v_data_access_exception(regs, addr, 0);
  430. else
  431. spitfire_data_access_exception(regs, 0, addr);
  432. return 1;
  433. }
  434. } else {
  435. /* LDF, LDDF, LDQF */
  436. u32 data[4] __attribute__ ((aligned(8)));
  437. int size, i;
  438. int err;
  439. if (asi < 0x80) {
  440. do_privact(regs);
  441. return 1;
  442. } else if (asi > ASI_SNFL) {
  443. if (tlb_type == hypervisor)
  444. sun4v_data_access_exception(regs, addr, 0);
  445. else
  446. spitfire_data_access_exception(regs, 0, addr);
  447. return 1;
  448. }
  449. switch (insn & 0x180000) {
  450. case 0x000000: size = 1; break;
  451. case 0x100000: size = 4; break;
  452. default: size = 2; break;
  453. }
  454. for (i = 0; i < size; i++)
  455. data[i] = 0;
  456. err = get_user (data[0], (u32 __user *) addr);
  457. if (!err) {
  458. for (i = 1; i < size; i++)
  459. err |= __get_user (data[i], (u32 __user *)(addr + 4*i));
  460. }
  461. if (err && !(asi & 0x2 /* NF */)) {
  462. if (tlb_type == hypervisor)
  463. sun4v_data_access_exception(regs, addr, 0);
  464. else
  465. spitfire_data_access_exception(regs, 0, addr);
  466. return 1;
  467. }
  468. if (asi & 0x8) /* Little */ {
  469. u64 tmp;
  470. switch (size) {
  471. case 1: data[0] = le32_to_cpup(data + 0); break;
  472. default:*(u64 *)(data + 0) = le64_to_cpup((u64 *)(data + 0));
  473. break;
  474. case 4: tmp = le64_to_cpup((u64 *)(data + 0));
  475. *(u64 *)(data + 0) = le64_to_cpup((u64 *)(data + 2));
  476. *(u64 *)(data + 2) = tmp;
  477. break;
  478. }
  479. }
  480. if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
  481. current_thread_info()->fpsaved[0] = FPRS_FEF;
  482. current_thread_info()->gsr[0] = 0;
  483. }
  484. if (!(current_thread_info()->fpsaved[0] & flag)) {
  485. if (freg < 32)
  486. memset(f->regs, 0, 32*sizeof(u32));
  487. else
  488. memset(f->regs+32, 0, 32*sizeof(u32));
  489. }
  490. memcpy(f->regs + freg, data, size * 4);
  491. current_thread_info()->fpsaved[0] |= flag;
  492. }
  493. advance(regs);
  494. return 1;
  495. }
  496. void handle_ld_nf(u32 insn, struct pt_regs *regs)
  497. {
  498. int rd = ((insn >> 25) & 0x1f);
  499. int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
  500. unsigned long *reg;
  501. perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, 0, regs, 0);
  502. maybe_flush_windows(0, 0, rd, from_kernel);
  503. reg = fetch_reg_addr(rd, regs);
  504. if (from_kernel || rd < 16) {
  505. reg[0] = 0;
  506. if ((insn & 0x780000) == 0x180000)
  507. reg[1] = 0;
  508. } else if (test_thread_flag(TIF_32BIT)) {
  509. put_user(0, (int __user *) reg);
  510. if ((insn & 0x780000) == 0x180000)
  511. put_user(0, ((int __user *) reg) + 1);
  512. } else {
  513. put_user(0, (unsigned long __user *) reg);
  514. if ((insn & 0x780000) == 0x180000)
  515. put_user(0, (unsigned long __user *) reg + 1);
  516. }
  517. advance(regs);
  518. }
  519. void handle_lddfmna(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
  520. {
  521. unsigned long pc = regs->tpc;
  522. unsigned long tstate = regs->tstate;
  523. u32 insn;
  524. u64 value;
  525. u8 freg;
  526. int flag;
  527. struct fpustate *f = FPUSTATE;
  528. if (tstate & TSTATE_PRIV)
  529. die_if_kernel("lddfmna from kernel", regs);
  530. perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, 0, regs, sfar);
  531. if (test_thread_flag(TIF_32BIT))
  532. pc = (u32)pc;
  533. if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
  534. int asi = decode_asi(insn, regs);
  535. u32 first, second;
  536. int err;
  537. if ((asi > ASI_SNFL) ||
  538. (asi < ASI_P))
  539. goto daex;
  540. first = second = 0;
  541. err = get_user(first, (u32 __user *)sfar);
  542. if (!err)
  543. err = get_user(second, (u32 __user *)(sfar + 4));
  544. if (err) {
  545. if (!(asi & 0x2))
  546. goto daex;
  547. first = second = 0;
  548. }
  549. save_and_clear_fpu();
  550. freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
  551. value = (((u64)first) << 32) | second;
  552. if (asi & 0x8) /* Little */
  553. value = __swab64p(&value);
  554. flag = (freg < 32) ? FPRS_DL : FPRS_DU;
  555. if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
  556. current_thread_info()->fpsaved[0] = FPRS_FEF;
  557. current_thread_info()->gsr[0] = 0;
  558. }
  559. if (!(current_thread_info()->fpsaved[0] & flag)) {
  560. if (freg < 32)
  561. memset(f->regs, 0, 32*sizeof(u32));
  562. else
  563. memset(f->regs+32, 0, 32*sizeof(u32));
  564. }
  565. *(u64 *)(f->regs + freg) = value;
  566. current_thread_info()->fpsaved[0] |= flag;
  567. } else {
  568. daex:
  569. if (tlb_type == hypervisor)
  570. sun4v_data_access_exception(regs, sfar, sfsr);
  571. else
  572. spitfire_data_access_exception(regs, sfsr, sfar);
  573. return;
  574. }
  575. advance(regs);
  576. }
  577. void handle_stdfmna(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
  578. {
  579. unsigned long pc = regs->tpc;
  580. unsigned long tstate = regs->tstate;
  581. u32 insn;
  582. u64 value;
  583. u8 freg;
  584. int flag;
  585. struct fpustate *f = FPUSTATE;
  586. if (tstate & TSTATE_PRIV)
  587. die_if_kernel("stdfmna from kernel", regs);
  588. perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, 0, regs, sfar);
  589. if (test_thread_flag(TIF_32BIT))
  590. pc = (u32)pc;
  591. if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
  592. int asi = decode_asi(insn, regs);
  593. freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
  594. value = 0;
  595. flag = (freg < 32) ? FPRS_DL : FPRS_DU;
  596. if ((asi > ASI_SNFL) ||
  597. (asi < ASI_P))
  598. goto daex;
  599. save_and_clear_fpu();
  600. if (current_thread_info()->fpsaved[0] & flag)
  601. value = *(u64 *)&f->regs[freg];
  602. switch (asi) {
  603. case ASI_P:
  604. case ASI_S: break;
  605. case ASI_PL:
  606. case ASI_SL:
  607. value = __swab64p(&value); break;
  608. default: goto daex;
  609. }
  610. if (put_user (value >> 32, (u32 __user *) sfar) ||
  611. __put_user ((u32)value, (u32 __user *)(sfar + 4)))
  612. goto daex;
  613. } else {
  614. daex:
  615. if (tlb_type == hypervisor)
  616. sun4v_data_access_exception(regs, sfar, sfsr);
  617. else
  618. spitfire_data_access_exception(regs, sfsr, sfar);
  619. return;
  620. }
  621. advance(regs);
  622. }