perf_callchain.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502
  1. /*
  2. * Performance counter callchain support - powerpc architecture code
  3. *
  4. * Copyright © 2009 Paul Mackerras, IBM Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License
  8. * as published by the Free Software Foundation; either version
  9. * 2 of the License, or (at your option) any later version.
  10. */
  11. #include <linux/kernel.h>
  12. #include <linux/sched.h>
  13. #include <linux/perf_event.h>
  14. #include <linux/percpu.h>
  15. #include <linux/uaccess.h>
  16. #include <linux/mm.h>
  17. #include <asm/ptrace.h>
  18. #include <asm/pgtable.h>
  19. #include <asm/sigcontext.h>
  20. #include <asm/ucontext.h>
  21. #include <asm/vdso.h>
  22. #ifdef CONFIG_PPC64
  23. #include "ppc32.h"
  24. #endif
  25. /*
  26. * Is sp valid as the address of the next kernel stack frame after prev_sp?
  27. * The next frame may be in a different stack area but should not go
  28. * back down in the same stack area.
  29. */
  30. static int valid_next_sp(unsigned long sp, unsigned long prev_sp)
  31. {
  32. if (sp & 0xf)
  33. return 0; /* must be 16-byte aligned */
  34. if (!validate_sp(sp, current, STACK_FRAME_OVERHEAD))
  35. return 0;
  36. if (sp >= prev_sp + STACK_FRAME_OVERHEAD)
  37. return 1;
  38. /*
  39. * sp could decrease when we jump off an interrupt stack
  40. * back to the regular process stack.
  41. */
  42. if ((sp & ~(THREAD_SIZE - 1)) != (prev_sp & ~(THREAD_SIZE - 1)))
  43. return 1;
  44. return 0;
  45. }
  46. static void perf_callchain_kernel(struct pt_regs *regs,
  47. struct perf_callchain_entry *entry)
  48. {
  49. unsigned long sp, next_sp;
  50. unsigned long next_ip;
  51. unsigned long lr;
  52. long level = 0;
  53. unsigned long *fp;
  54. lr = regs->link;
  55. sp = regs->gpr[1];
  56. perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
  57. perf_callchain_store(entry, regs->nip);
  58. if (!validate_sp(sp, current, STACK_FRAME_OVERHEAD))
  59. return;
  60. for (;;) {
  61. fp = (unsigned long *) sp;
  62. next_sp = fp[0];
  63. if (next_sp == sp + STACK_INT_FRAME_SIZE &&
  64. fp[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
  65. /*
  66. * This looks like an interrupt frame for an
  67. * interrupt that occurred in the kernel
  68. */
  69. regs = (struct pt_regs *)(sp + STACK_FRAME_OVERHEAD);
  70. next_ip = regs->nip;
  71. lr = regs->link;
  72. level = 0;
  73. perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
  74. } else {
  75. if (level == 0)
  76. next_ip = lr;
  77. else
  78. next_ip = fp[STACK_FRAME_LR_SAVE];
  79. /*
  80. * We can't tell which of the first two addresses
  81. * we get are valid, but we can filter out the
  82. * obviously bogus ones here. We replace them
  83. * with 0 rather than removing them entirely so
  84. * that userspace can tell which is which.
  85. */
  86. if ((level == 1 && next_ip == lr) ||
  87. (level <= 1 && !kernel_text_address(next_ip)))
  88. next_ip = 0;
  89. ++level;
  90. }
  91. perf_callchain_store(entry, next_ip);
  92. if (!valid_next_sp(next_sp, sp))
  93. return;
  94. sp = next_sp;
  95. }
  96. }
  97. #ifdef CONFIG_PPC64
  98. /*
  99. * On 64-bit we don't want to invoke hash_page on user addresses from
  100. * interrupt context, so if the access faults, we read the page tables
  101. * to find which page (if any) is mapped and access it directly.
  102. */
  103. static int read_user_stack_slow(void __user *ptr, void *ret, int nb)
  104. {
  105. pgd_t *pgdir;
  106. pte_t *ptep, pte;
  107. unsigned shift;
  108. unsigned long addr = (unsigned long) ptr;
  109. unsigned long offset;
  110. unsigned long pfn;
  111. void *kaddr;
  112. pgdir = current->mm->pgd;
  113. if (!pgdir)
  114. return -EFAULT;
  115. ptep = find_linux_pte_or_hugepte(pgdir, addr, &shift);
  116. if (!shift)
  117. shift = PAGE_SHIFT;
  118. /* align address to page boundary */
  119. offset = addr & ((1UL << shift) - 1);
  120. addr -= offset;
  121. if (ptep == NULL)
  122. return -EFAULT;
  123. pte = *ptep;
  124. if (!pte_present(pte) || !(pte_val(pte) & _PAGE_USER))
  125. return -EFAULT;
  126. pfn = pte_pfn(pte);
  127. if (!page_is_ram(pfn))
  128. return -EFAULT;
  129. /* no highmem to worry about here */
  130. kaddr = pfn_to_kaddr(pfn);
  131. memcpy(ret, kaddr + offset, nb);
  132. return 0;
  133. }
  134. static int read_user_stack_64(unsigned long __user *ptr, unsigned long *ret)
  135. {
  136. if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned long) ||
  137. ((unsigned long)ptr & 7))
  138. return -EFAULT;
  139. if (!__get_user_inatomic(*ret, ptr))
  140. return 0;
  141. return read_user_stack_slow(ptr, ret, 8);
  142. }
  143. static int read_user_stack_32(unsigned int __user *ptr, unsigned int *ret)
  144. {
  145. if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned int) ||
  146. ((unsigned long)ptr & 3))
  147. return -EFAULT;
  148. if (!__get_user_inatomic(*ret, ptr))
  149. return 0;
  150. return read_user_stack_slow(ptr, ret, 4);
  151. }
  152. static inline int valid_user_sp(unsigned long sp, int is_64)
  153. {
  154. if (!sp || (sp & 7) || sp > (is_64 ? TASK_SIZE : 0x100000000UL) - 32)
  155. return 0;
  156. return 1;
  157. }
  158. /*
  159. * 64-bit user processes use the same stack frame for RT and non-RT signals.
  160. */
  161. struct signal_frame_64 {
  162. char dummy[__SIGNAL_FRAMESIZE];
  163. struct ucontext uc;
  164. unsigned long unused[2];
  165. unsigned int tramp[6];
  166. struct siginfo *pinfo;
  167. void *puc;
  168. struct siginfo info;
  169. char abigap[288];
  170. };
  171. static int is_sigreturn_64_address(unsigned long nip, unsigned long fp)
  172. {
  173. if (nip == fp + offsetof(struct signal_frame_64, tramp))
  174. return 1;
  175. if (vdso64_rt_sigtramp && current->mm->context.vdso_base &&
  176. nip == current->mm->context.vdso_base + vdso64_rt_sigtramp)
  177. return 1;
  178. return 0;
  179. }
  180. /*
  181. * Do some sanity checking on the signal frame pointed to by sp.
  182. * We check the pinfo and puc pointers in the frame.
  183. */
  184. static int sane_signal_64_frame(unsigned long sp)
  185. {
  186. struct signal_frame_64 __user *sf;
  187. unsigned long pinfo, puc;
  188. sf = (struct signal_frame_64 __user *) sp;
  189. if (read_user_stack_64((unsigned long __user *) &sf->pinfo, &pinfo) ||
  190. read_user_stack_64((unsigned long __user *) &sf->puc, &puc))
  191. return 0;
  192. return pinfo == (unsigned long) &sf->info &&
  193. puc == (unsigned long) &sf->uc;
  194. }
  195. static void perf_callchain_user_64(struct pt_regs *regs,
  196. struct perf_callchain_entry *entry)
  197. {
  198. unsigned long sp, next_sp;
  199. unsigned long next_ip;
  200. unsigned long lr;
  201. long level = 0;
  202. struct signal_frame_64 __user *sigframe;
  203. unsigned long __user *fp, *uregs;
  204. next_ip = regs->nip;
  205. lr = regs->link;
  206. sp = regs->gpr[1];
  207. perf_callchain_store(entry, PERF_CONTEXT_USER);
  208. perf_callchain_store(entry, next_ip);
  209. for (;;) {
  210. fp = (unsigned long __user *) sp;
  211. if (!valid_user_sp(sp, 1) || read_user_stack_64(fp, &next_sp))
  212. return;
  213. if (level > 0 && read_user_stack_64(&fp[2], &next_ip))
  214. return;
  215. /*
  216. * Note: the next_sp - sp >= signal frame size check
  217. * is true when next_sp < sp, which can happen when
  218. * transitioning from an alternate signal stack to the
  219. * normal stack.
  220. */
  221. if (next_sp - sp >= sizeof(struct signal_frame_64) &&
  222. (is_sigreturn_64_address(next_ip, sp) ||
  223. (level <= 1 && is_sigreturn_64_address(lr, sp))) &&
  224. sane_signal_64_frame(sp)) {
  225. /*
  226. * This looks like an signal frame
  227. */
  228. sigframe = (struct signal_frame_64 __user *) sp;
  229. uregs = sigframe->uc.uc_mcontext.gp_regs;
  230. if (read_user_stack_64(&uregs[PT_NIP], &next_ip) ||
  231. read_user_stack_64(&uregs[PT_LNK], &lr) ||
  232. read_user_stack_64(&uregs[PT_R1], &sp))
  233. return;
  234. level = 0;
  235. perf_callchain_store(entry, PERF_CONTEXT_USER);
  236. perf_callchain_store(entry, next_ip);
  237. continue;
  238. }
  239. if (level == 0)
  240. next_ip = lr;
  241. perf_callchain_store(entry, next_ip);
  242. ++level;
  243. sp = next_sp;
  244. }
  245. }
  246. static inline int current_is_64bit(void)
  247. {
  248. /*
  249. * We can't use test_thread_flag() here because we may be on an
  250. * interrupt stack, and the thread flags don't get copied over
  251. * from the thread_info on the main stack to the interrupt stack.
  252. */
  253. return !test_ti_thread_flag(task_thread_info(current), TIF_32BIT);
  254. }
  255. #else /* CONFIG_PPC64 */
  256. /*
  257. * On 32-bit we just access the address and let hash_page create a
  258. * HPTE if necessary, so there is no need to fall back to reading
  259. * the page tables. Since this is called at interrupt level,
  260. * do_page_fault() won't treat a DSI as a page fault.
  261. */
  262. static int read_user_stack_32(unsigned int __user *ptr, unsigned int *ret)
  263. {
  264. if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned int) ||
  265. ((unsigned long)ptr & 3))
  266. return -EFAULT;
  267. return __get_user_inatomic(*ret, ptr);
  268. }
  269. static inline void perf_callchain_user_64(struct pt_regs *regs,
  270. struct perf_callchain_entry *entry)
  271. {
  272. }
  273. static inline int current_is_64bit(void)
  274. {
  275. return 0;
  276. }
  277. static inline int valid_user_sp(unsigned long sp, int is_64)
  278. {
  279. if (!sp || (sp & 7) || sp > TASK_SIZE - 32)
  280. return 0;
  281. return 1;
  282. }
  283. #define __SIGNAL_FRAMESIZE32 __SIGNAL_FRAMESIZE
  284. #define sigcontext32 sigcontext
  285. #define mcontext32 mcontext
  286. #define ucontext32 ucontext
  287. #define compat_siginfo_t struct siginfo
  288. #endif /* CONFIG_PPC64 */
  289. /*
  290. * Layout for non-RT signal frames
  291. */
  292. struct signal_frame_32 {
  293. char dummy[__SIGNAL_FRAMESIZE32];
  294. struct sigcontext32 sctx;
  295. struct mcontext32 mctx;
  296. int abigap[56];
  297. };
  298. /*
  299. * Layout for RT signal frames
  300. */
  301. struct rt_signal_frame_32 {
  302. char dummy[__SIGNAL_FRAMESIZE32 + 16];
  303. compat_siginfo_t info;
  304. struct ucontext32 uc;
  305. int abigap[56];
  306. };
  307. static int is_sigreturn_32_address(unsigned int nip, unsigned int fp)
  308. {
  309. if (nip == fp + offsetof(struct signal_frame_32, mctx.mc_pad))
  310. return 1;
  311. if (vdso32_sigtramp && current->mm->context.vdso_base &&
  312. nip == current->mm->context.vdso_base + vdso32_sigtramp)
  313. return 1;
  314. return 0;
  315. }
  316. static int is_rt_sigreturn_32_address(unsigned int nip, unsigned int fp)
  317. {
  318. if (nip == fp + offsetof(struct rt_signal_frame_32,
  319. uc.uc_mcontext.mc_pad))
  320. return 1;
  321. if (vdso32_rt_sigtramp && current->mm->context.vdso_base &&
  322. nip == current->mm->context.vdso_base + vdso32_rt_sigtramp)
  323. return 1;
  324. return 0;
  325. }
  326. static int sane_signal_32_frame(unsigned int sp)
  327. {
  328. struct signal_frame_32 __user *sf;
  329. unsigned int regs;
  330. sf = (struct signal_frame_32 __user *) (unsigned long) sp;
  331. if (read_user_stack_32((unsigned int __user *) &sf->sctx.regs, &regs))
  332. return 0;
  333. return regs == (unsigned long) &sf->mctx;
  334. }
  335. static int sane_rt_signal_32_frame(unsigned int sp)
  336. {
  337. struct rt_signal_frame_32 __user *sf;
  338. unsigned int regs;
  339. sf = (struct rt_signal_frame_32 __user *) (unsigned long) sp;
  340. if (read_user_stack_32((unsigned int __user *) &sf->uc.uc_regs, &regs))
  341. return 0;
  342. return regs == (unsigned long) &sf->uc.uc_mcontext;
  343. }
  344. static unsigned int __user *signal_frame_32_regs(unsigned int sp,
  345. unsigned int next_sp, unsigned int next_ip)
  346. {
  347. struct mcontext32 __user *mctx = NULL;
  348. struct signal_frame_32 __user *sf;
  349. struct rt_signal_frame_32 __user *rt_sf;
  350. /*
  351. * Note: the next_sp - sp >= signal frame size check
  352. * is true when next_sp < sp, for example, when
  353. * transitioning from an alternate signal stack to the
  354. * normal stack.
  355. */
  356. if (next_sp - sp >= sizeof(struct signal_frame_32) &&
  357. is_sigreturn_32_address(next_ip, sp) &&
  358. sane_signal_32_frame(sp)) {
  359. sf = (struct signal_frame_32 __user *) (unsigned long) sp;
  360. mctx = &sf->mctx;
  361. }
  362. if (!mctx && next_sp - sp >= sizeof(struct rt_signal_frame_32) &&
  363. is_rt_sigreturn_32_address(next_ip, sp) &&
  364. sane_rt_signal_32_frame(sp)) {
  365. rt_sf = (struct rt_signal_frame_32 __user *) (unsigned long) sp;
  366. mctx = &rt_sf->uc.uc_mcontext;
  367. }
  368. if (!mctx)
  369. return NULL;
  370. return mctx->mc_gregs;
  371. }
  372. static void perf_callchain_user_32(struct pt_regs *regs,
  373. struct perf_callchain_entry *entry)
  374. {
  375. unsigned int sp, next_sp;
  376. unsigned int next_ip;
  377. unsigned int lr;
  378. long level = 0;
  379. unsigned int __user *fp, *uregs;
  380. next_ip = regs->nip;
  381. lr = regs->link;
  382. sp = regs->gpr[1];
  383. perf_callchain_store(entry, PERF_CONTEXT_USER);
  384. perf_callchain_store(entry, next_ip);
  385. while (entry->nr < PERF_MAX_STACK_DEPTH) {
  386. fp = (unsigned int __user *) (unsigned long) sp;
  387. if (!valid_user_sp(sp, 0) || read_user_stack_32(fp, &next_sp))
  388. return;
  389. if (level > 0 && read_user_stack_32(&fp[1], &next_ip))
  390. return;
  391. uregs = signal_frame_32_regs(sp, next_sp, next_ip);
  392. if (!uregs && level <= 1)
  393. uregs = signal_frame_32_regs(sp, next_sp, lr);
  394. if (uregs) {
  395. /*
  396. * This looks like an signal frame, so restart
  397. * the stack trace with the values in it.
  398. */
  399. if (read_user_stack_32(&uregs[PT_NIP], &next_ip) ||
  400. read_user_stack_32(&uregs[PT_LNK], &lr) ||
  401. read_user_stack_32(&uregs[PT_R1], &sp))
  402. return;
  403. level = 0;
  404. perf_callchain_store(entry, PERF_CONTEXT_USER);
  405. perf_callchain_store(entry, next_ip);
  406. continue;
  407. }
  408. if (level == 0)
  409. next_ip = lr;
  410. perf_callchain_store(entry, next_ip);
  411. ++level;
  412. sp = next_sp;
  413. }
  414. }
  415. /*
  416. * Since we can't get PMU interrupts inside a PMU interrupt handler,
  417. * we don't need separate irq and nmi entries here.
  418. */
  419. static DEFINE_PER_CPU(struct perf_callchain_entry, cpu_perf_callchain);
  420. struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
  421. {
  422. struct perf_callchain_entry *entry = &__get_cpu_var(cpu_perf_callchain);
  423. entry->nr = 0;
  424. if (!user_mode(regs)) {
  425. perf_callchain_kernel(regs, entry);
  426. if (current->mm)
  427. regs = task_pt_regs(current);
  428. else
  429. regs = NULL;
  430. }
  431. if (regs) {
  432. if (current_is_64bit())
  433. perf_callchain_user_64(regs, entry);
  434. else
  435. perf_callchain_user_32(regs, entry);
  436. }
  437. return entry;
  438. }