process.c 9.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428
  1. /*
  2. * linux/arch/arm/kernel/process.c
  3. *
  4. * Copyright (C) 1996-2000 Russell King - Converted to ARM.
  5. * Original Copyright (C) 1995 Linus Torvalds
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <stdarg.h>
  12. #include <linux/module.h>
  13. #include <linux/sched.h>
  14. #include <linux/kernel.h>
  15. #include <linux/mm.h>
  16. #include <linux/stddef.h>
  17. #include <linux/unistd.h>
  18. #include <linux/user.h>
  19. #include <linux/delay.h>
  20. #include <linux/reboot.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/kallsyms.h>
  23. #include <linux/init.h>
  24. #include <linux/cpu.h>
  25. #include <linux/elfcore.h>
  26. #include <linux/pm.h>
  27. #include <linux/tick.h>
  28. #include <linux/utsname.h>
  29. #include <linux/uaccess.h>
  30. #include <asm/leds.h>
  31. #include <asm/processor.h>
  32. #include <asm/system.h>
  33. #include <asm/thread_notify.h>
  34. #include <asm/stacktrace.h>
  35. #include <asm/mach/time.h>
  36. static const char *processor_modes[] = {
  37. "USER_26", "FIQ_26" , "IRQ_26" , "SVC_26" , "UK4_26" , "UK5_26" , "UK6_26" , "UK7_26" ,
  38. "UK8_26" , "UK9_26" , "UK10_26", "UK11_26", "UK12_26", "UK13_26", "UK14_26", "UK15_26",
  39. "USER_32", "FIQ_32" , "IRQ_32" , "SVC_32" , "UK4_32" , "UK5_32" , "UK6_32" , "ABT_32" ,
  40. "UK8_32" , "UK9_32" , "UK10_32", "UND_32" , "UK12_32", "UK13_32", "UK14_32", "SYS_32"
  41. };
  42. static const char *isa_modes[] = {
  43. "ARM" , "Thumb" , "Jazelle", "ThumbEE"
  44. };
  45. extern void setup_mm_for_reboot(char mode);
  46. static volatile int hlt_counter;
  47. #include <mach/system.h>
  48. void disable_hlt(void)
  49. {
  50. hlt_counter++;
  51. }
  52. EXPORT_SYMBOL(disable_hlt);
  53. void enable_hlt(void)
  54. {
  55. hlt_counter--;
  56. }
  57. EXPORT_SYMBOL(enable_hlt);
  58. static int __init nohlt_setup(char *__unused)
  59. {
  60. hlt_counter = 1;
  61. return 1;
  62. }
  63. static int __init hlt_setup(char *__unused)
  64. {
  65. hlt_counter = 0;
  66. return 1;
  67. }
  68. __setup("nohlt", nohlt_setup);
  69. __setup("hlt", hlt_setup);
  70. void arm_machine_restart(char mode, const char *cmd)
  71. {
  72. /*
  73. * Clean and disable cache, and turn off interrupts
  74. */
  75. cpu_proc_fin();
  76. /*
  77. * Tell the mm system that we are going to reboot -
  78. * we may need it to insert some 1:1 mappings so that
  79. * soft boot works.
  80. */
  81. setup_mm_for_reboot(mode);
  82. /*
  83. * Now call the architecture specific reboot code.
  84. */
  85. arch_reset(mode, cmd);
  86. /*
  87. * Whoops - the architecture was unable to reboot.
  88. * Tell the user!
  89. */
  90. mdelay(1000);
  91. printk("Reboot failed -- System halted\n");
  92. while (1);
  93. }
  94. /*
  95. * Function pointers to optional machine specific functions
  96. */
  97. void (*pm_power_off)(void);
  98. EXPORT_SYMBOL(pm_power_off);
  99. void (*arm_pm_restart)(char str, const char *cmd) = arm_machine_restart;
  100. EXPORT_SYMBOL_GPL(arm_pm_restart);
  101. /*
  102. * This is our default idle handler. We need to disable
  103. * interrupts here to ensure we don't miss a wakeup call.
  104. */
  105. static void default_idle(void)
  106. {
  107. if (!need_resched())
  108. arch_idle();
  109. local_irq_enable();
  110. }
  111. void (*pm_idle)(void) = default_idle;
  112. EXPORT_SYMBOL(pm_idle);
  113. /*
  114. * The idle thread, has rather strange semantics for calling pm_idle,
  115. * but this is what x86 does and we need to do the same, so that
  116. * things like cpuidle get called in the same way. The only difference
  117. * is that we always respect 'hlt_counter' to prevent low power idle.
  118. */
  119. void cpu_idle(void)
  120. {
  121. local_fiq_enable();
  122. /* endless idle loop with no priority at all */
  123. while (1) {
  124. tick_nohz_stop_sched_tick(1);
  125. leds_event(led_idle_start);
  126. while (!need_resched()) {
  127. #ifdef CONFIG_HOTPLUG_CPU
  128. if (cpu_is_offline(smp_processor_id()))
  129. cpu_die();
  130. #endif
  131. local_irq_disable();
  132. if (hlt_counter) {
  133. local_irq_enable();
  134. cpu_relax();
  135. } else {
  136. stop_critical_timings();
  137. pm_idle();
  138. start_critical_timings();
  139. /*
  140. * This will eventually be removed - pm_idle
  141. * functions should always return with IRQs
  142. * enabled.
  143. */
  144. WARN_ON(irqs_disabled());
  145. local_irq_enable();
  146. }
  147. }
  148. leds_event(led_idle_end);
  149. tick_nohz_restart_sched_tick();
  150. preempt_enable_no_resched();
  151. schedule();
  152. preempt_disable();
  153. }
  154. }
  155. static char reboot_mode = 'h';
  156. int __init reboot_setup(char *str)
  157. {
  158. reboot_mode = str[0];
  159. return 1;
  160. }
  161. __setup("reboot=", reboot_setup);
  162. void machine_halt(void)
  163. {
  164. }
  165. void machine_power_off(void)
  166. {
  167. if (pm_power_off)
  168. pm_power_off();
  169. }
  170. void machine_restart(char *cmd)
  171. {
  172. arm_pm_restart(reboot_mode, cmd);
  173. }
  174. void __show_regs(struct pt_regs *regs)
  175. {
  176. unsigned long flags;
  177. char buf[64];
  178. printk("CPU: %d %s (%s %.*s)\n",
  179. raw_smp_processor_id(), print_tainted(),
  180. init_utsname()->release,
  181. (int)strcspn(init_utsname()->version, " "),
  182. init_utsname()->version);
  183. print_symbol("PC is at %s\n", instruction_pointer(regs));
  184. print_symbol("LR is at %s\n", regs->ARM_lr);
  185. printk("pc : [<%08lx>] lr : [<%08lx>] psr: %08lx\n"
  186. "sp : %08lx ip : %08lx fp : %08lx\n",
  187. regs->ARM_pc, regs->ARM_lr, regs->ARM_cpsr,
  188. regs->ARM_sp, regs->ARM_ip, regs->ARM_fp);
  189. printk("r10: %08lx r9 : %08lx r8 : %08lx\n",
  190. regs->ARM_r10, regs->ARM_r9,
  191. regs->ARM_r8);
  192. printk("r7 : %08lx r6 : %08lx r5 : %08lx r4 : %08lx\n",
  193. regs->ARM_r7, regs->ARM_r6,
  194. regs->ARM_r5, regs->ARM_r4);
  195. printk("r3 : %08lx r2 : %08lx r1 : %08lx r0 : %08lx\n",
  196. regs->ARM_r3, regs->ARM_r2,
  197. regs->ARM_r1, regs->ARM_r0);
  198. flags = regs->ARM_cpsr;
  199. buf[0] = flags & PSR_N_BIT ? 'N' : 'n';
  200. buf[1] = flags & PSR_Z_BIT ? 'Z' : 'z';
  201. buf[2] = flags & PSR_C_BIT ? 'C' : 'c';
  202. buf[3] = flags & PSR_V_BIT ? 'V' : 'v';
  203. buf[4] = '\0';
  204. printk("Flags: %s IRQs o%s FIQs o%s Mode %s ISA %s Segment %s\n",
  205. buf, interrupts_enabled(regs) ? "n" : "ff",
  206. fast_interrupts_enabled(regs) ? "n" : "ff",
  207. processor_modes[processor_mode(regs)],
  208. isa_modes[isa_mode(regs)],
  209. get_fs() == get_ds() ? "kernel" : "user");
  210. #ifdef CONFIG_CPU_CP15
  211. {
  212. unsigned int ctrl;
  213. buf[0] = '\0';
  214. #ifdef CONFIG_CPU_CP15_MMU
  215. {
  216. unsigned int transbase, dac;
  217. asm("mrc p15, 0, %0, c2, c0\n\t"
  218. "mrc p15, 0, %1, c3, c0\n"
  219. : "=r" (transbase), "=r" (dac));
  220. snprintf(buf, sizeof(buf), " Table: %08x DAC: %08x",
  221. transbase, dac);
  222. }
  223. #endif
  224. asm("mrc p15, 0, %0, c1, c0\n" : "=r" (ctrl));
  225. printk("Control: %08x%s\n", ctrl, buf);
  226. }
  227. #endif
  228. }
  229. void show_regs(struct pt_regs * regs)
  230. {
  231. printk("\n");
  232. printk("Pid: %d, comm: %20s\n", task_pid_nr(current), current->comm);
  233. __show_regs(regs);
  234. __backtrace();
  235. }
  236. ATOMIC_NOTIFIER_HEAD(thread_notify_head);
  237. EXPORT_SYMBOL_GPL(thread_notify_head);
  238. /*
  239. * Free current thread data structures etc..
  240. */
  241. void exit_thread(void)
  242. {
  243. thread_notify(THREAD_NOTIFY_EXIT, current_thread_info());
  244. }
  245. void flush_thread(void)
  246. {
  247. struct thread_info *thread = current_thread_info();
  248. struct task_struct *tsk = current;
  249. memset(thread->used_cp, 0, sizeof(thread->used_cp));
  250. memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
  251. memset(&thread->fpstate, 0, sizeof(union fp_state));
  252. thread_notify(THREAD_NOTIFY_FLUSH, thread);
  253. }
  254. void release_thread(struct task_struct *dead_task)
  255. {
  256. }
  257. asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
  258. int
  259. copy_thread(unsigned long clone_flags, unsigned long stack_start,
  260. unsigned long stk_sz, struct task_struct *p, struct pt_regs *regs)
  261. {
  262. struct thread_info *thread = task_thread_info(p);
  263. struct pt_regs *childregs = task_pt_regs(p);
  264. *childregs = *regs;
  265. childregs->ARM_r0 = 0;
  266. childregs->ARM_sp = stack_start;
  267. memset(&thread->cpu_context, 0, sizeof(struct cpu_context_save));
  268. thread->cpu_context.sp = (unsigned long)childregs;
  269. thread->cpu_context.pc = (unsigned long)ret_from_fork;
  270. if (clone_flags & CLONE_SETTLS)
  271. thread->tp_value = regs->ARM_r3;
  272. return 0;
  273. }
  274. /*
  275. * Fill in the task's elfregs structure for a core dump.
  276. */
  277. int dump_task_regs(struct task_struct *t, elf_gregset_t *elfregs)
  278. {
  279. elf_core_copy_regs(elfregs, task_pt_regs(t));
  280. return 1;
  281. }
  282. /*
  283. * fill in the fpe structure for a core dump...
  284. */
  285. int dump_fpu (struct pt_regs *regs, struct user_fp *fp)
  286. {
  287. struct thread_info *thread = current_thread_info();
  288. int used_math = thread->used_cp[1] | thread->used_cp[2];
  289. if (used_math)
  290. memcpy(fp, &thread->fpstate.soft, sizeof (*fp));
  291. return used_math != 0;
  292. }
  293. EXPORT_SYMBOL(dump_fpu);
  294. /*
  295. * Shuffle the argument into the correct register before calling the
  296. * thread function. r4 is the thread argument, r5 is the pointer to
  297. * the thread function, and r6 points to the exit function.
  298. */
  299. extern void kernel_thread_helper(void);
  300. asm( ".pushsection .text\n"
  301. " .align\n"
  302. " .type kernel_thread_helper, #function\n"
  303. "kernel_thread_helper:\n"
  304. #ifdef CONFIG_TRACE_IRQFLAGS
  305. " bl trace_hardirqs_on\n"
  306. #endif
  307. " msr cpsr_c, r7\n"
  308. " mov r0, r4\n"
  309. " mov lr, r6\n"
  310. " mov pc, r5\n"
  311. " .size kernel_thread_helper, . - kernel_thread_helper\n"
  312. " .popsection");
  313. #ifdef CONFIG_ARM_UNWIND
  314. extern void kernel_thread_exit(long code);
  315. asm( ".pushsection .text\n"
  316. " .align\n"
  317. " .type kernel_thread_exit, #function\n"
  318. "kernel_thread_exit:\n"
  319. " .fnstart\n"
  320. " .cantunwind\n"
  321. " bl do_exit\n"
  322. " nop\n"
  323. " .fnend\n"
  324. " .size kernel_thread_exit, . - kernel_thread_exit\n"
  325. " .popsection");
  326. #else
  327. #define kernel_thread_exit do_exit
  328. #endif
  329. /*
  330. * Create a kernel thread.
  331. */
  332. pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
  333. {
  334. struct pt_regs regs;
  335. memset(&regs, 0, sizeof(regs));
  336. regs.ARM_r4 = (unsigned long)arg;
  337. regs.ARM_r5 = (unsigned long)fn;
  338. regs.ARM_r6 = (unsigned long)kernel_thread_exit;
  339. regs.ARM_r7 = SVC_MODE | PSR_ENDSTATE | PSR_ISETSTATE;
  340. regs.ARM_pc = (unsigned long)kernel_thread_helper;
  341. regs.ARM_cpsr = regs.ARM_r7 | PSR_I_BIT;
  342. return do_fork(flags|CLONE_VM|CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
  343. }
  344. EXPORT_SYMBOL(kernel_thread);
  345. unsigned long get_wchan(struct task_struct *p)
  346. {
  347. struct stackframe frame;
  348. int count = 0;
  349. if (!p || p == current || p->state == TASK_RUNNING)
  350. return 0;
  351. frame.fp = thread_saved_fp(p);
  352. frame.sp = thread_saved_sp(p);
  353. frame.lr = 0; /* recovered from the stack */
  354. frame.pc = thread_saved_pc(p);
  355. do {
  356. int ret = unwind_frame(&frame);
  357. if (ret < 0)
  358. return 0;
  359. if (!in_sched_functions(frame.pc))
  360. return frame.pc;
  361. } while (count ++ < 16);
  362. return 0;
  363. }