mmzone.h 38 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235
  1. #ifndef _LINUX_MMZONE_H
  2. #define _LINUX_MMZONE_H
  3. #ifndef __ASSEMBLY__
  4. #ifndef __GENERATING_BOUNDS_H
  5. #include <linux/spinlock.h>
  6. #include <linux/list.h>
  7. #include <linux/wait.h>
  8. #include <linux/bitops.h>
  9. #include <linux/cache.h>
  10. #include <linux/threads.h>
  11. #include <linux/numa.h>
  12. #include <linux/init.h>
  13. #include <linux/seqlock.h>
  14. #include <linux/nodemask.h>
  15. #include <linux/pageblock-flags.h>
  16. #include <generated/bounds.h>
  17. #include <linux/atomic.h>
  18. #include <asm/page.h>
  19. /* Free memory management - zoned buddy allocator. */
  20. #ifndef CONFIG_FORCE_MAX_ZONEORDER
  21. #define MAX_ORDER 11
  22. #else
  23. #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
  24. #endif
  25. #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
  26. /*
  27. * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
  28. * costly to service. That is between allocation orders which should
  29. * coalesce naturally under reasonable reclaim pressure and those which
  30. * will not.
  31. */
  32. #define PAGE_ALLOC_COSTLY_ORDER 3
  33. enum {
  34. MIGRATE_UNMOVABLE,
  35. MIGRATE_RECLAIMABLE,
  36. MIGRATE_MOVABLE,
  37. MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
  38. MIGRATE_RESERVE = MIGRATE_PCPTYPES,
  39. #ifdef CONFIG_CMA
  40. /*
  41. * MIGRATE_CMA migration type is designed to mimic the way
  42. * ZONE_MOVABLE works. Only movable pages can be allocated
  43. * from MIGRATE_CMA pageblocks and page allocator never
  44. * implicitly change migration type of MIGRATE_CMA pageblock.
  45. *
  46. * The way to use it is to change migratetype of a range of
  47. * pageblocks to MIGRATE_CMA which can be done by
  48. * __free_pageblock_cma() function. What is important though
  49. * is that a range of pageblocks must be aligned to
  50. * MAX_ORDER_NR_PAGES should biggest page be bigger then
  51. * a single pageblock.
  52. */
  53. MIGRATE_CMA,
  54. #endif
  55. MIGRATE_ISOLATE, /* can't allocate from here */
  56. MIGRATE_TYPES
  57. };
  58. #ifdef CONFIG_CMA
  59. # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
  60. # define cma_wmark_pages(zone) zone->min_cma_pages
  61. #else
  62. # define is_migrate_cma(migratetype) false
  63. # define cma_wmark_pages(zone) 0
  64. #endif
  65. #define for_each_migratetype_order(order, type) \
  66. for (order = 0; order < MAX_ORDER; order++) \
  67. for (type = 0; type < MIGRATE_TYPES; type++)
  68. extern int page_group_by_mobility_disabled;
  69. static inline int get_pageblock_migratetype(struct page *page)
  70. {
  71. return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
  72. }
  73. struct free_area {
  74. struct list_head free_list[MIGRATE_TYPES];
  75. unsigned long nr_free;
  76. };
  77. struct pglist_data;
  78. /*
  79. * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
  80. * So add a wild amount of padding here to ensure that they fall into separate
  81. * cachelines. There are very few zone structures in the machine, so space
  82. * consumption is not a concern here.
  83. */
  84. #if defined(CONFIG_SMP)
  85. struct zone_padding {
  86. char x[0];
  87. } ____cacheline_internodealigned_in_smp;
  88. #define ZONE_PADDING(name) struct zone_padding name;
  89. #else
  90. #define ZONE_PADDING(name)
  91. #endif
  92. enum zone_stat_item {
  93. /* First 128 byte cacheline (assuming 64 bit words) */
  94. NR_FREE_PAGES,
  95. NR_LRU_BASE,
  96. NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
  97. NR_ACTIVE_ANON, /* " " " " " */
  98. NR_INACTIVE_FILE, /* " " " " " */
  99. NR_ACTIVE_FILE, /* " " " " " */
  100. NR_UNEVICTABLE, /* " " " " " */
  101. NR_MLOCK, /* mlock()ed pages found and moved off LRU */
  102. NR_ANON_PAGES, /* Mapped anonymous pages */
  103. NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
  104. only modified from process context */
  105. NR_FILE_PAGES,
  106. NR_FILE_DIRTY,
  107. NR_WRITEBACK,
  108. NR_SLAB_RECLAIMABLE,
  109. NR_SLAB_UNRECLAIMABLE,
  110. NR_PAGETABLE, /* used for pagetables */
  111. NR_KERNEL_STACK,
  112. /* Second 128 byte cacheline */
  113. NR_UNSTABLE_NFS, /* NFS unstable pages */
  114. NR_BOUNCE,
  115. NR_VMSCAN_WRITE,
  116. NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
  117. NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
  118. NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
  119. NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
  120. NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
  121. NR_DIRTIED, /* page dirtyings since bootup */
  122. NR_WRITTEN, /* page writings since bootup */
  123. #ifdef CONFIG_NUMA
  124. NUMA_HIT, /* allocated in intended node */
  125. NUMA_MISS, /* allocated in non intended node */
  126. NUMA_FOREIGN, /* was intended here, hit elsewhere */
  127. NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
  128. NUMA_LOCAL, /* allocation from local node */
  129. NUMA_OTHER, /* allocation from other node */
  130. #endif
  131. NR_ANON_TRANSPARENT_HUGEPAGES,
  132. NR_VM_ZONE_STAT_ITEMS };
  133. /*
  134. * We do arithmetic on the LRU lists in various places in the code,
  135. * so it is important to keep the active lists LRU_ACTIVE higher in
  136. * the array than the corresponding inactive lists, and to keep
  137. * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
  138. *
  139. * This has to be kept in sync with the statistics in zone_stat_item
  140. * above and the descriptions in vmstat_text in mm/vmstat.c
  141. */
  142. #define LRU_BASE 0
  143. #define LRU_ACTIVE 1
  144. #define LRU_FILE 2
  145. enum lru_list {
  146. LRU_INACTIVE_ANON = LRU_BASE,
  147. LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
  148. LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
  149. LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
  150. LRU_UNEVICTABLE,
  151. NR_LRU_LISTS
  152. };
  153. #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
  154. #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
  155. static inline int is_file_lru(enum lru_list lru)
  156. {
  157. return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
  158. }
  159. static inline int is_active_lru(enum lru_list lru)
  160. {
  161. return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
  162. }
  163. static inline int is_unevictable_lru(enum lru_list lru)
  164. {
  165. return (lru == LRU_UNEVICTABLE);
  166. }
  167. struct zone_reclaim_stat {
  168. /*
  169. * The pageout code in vmscan.c keeps track of how many of the
  170. * mem/swap backed and file backed pages are referenced.
  171. * The higher the rotated/scanned ratio, the more valuable
  172. * that cache is.
  173. *
  174. * The anon LRU stats live in [0], file LRU stats in [1]
  175. */
  176. unsigned long recent_rotated[2];
  177. unsigned long recent_scanned[2];
  178. };
  179. struct lruvec {
  180. struct list_head lists[NR_LRU_LISTS];
  181. struct zone_reclaim_stat reclaim_stat;
  182. #ifdef CONFIG_MEMCG
  183. struct zone *zone;
  184. #endif
  185. };
  186. /* Mask used at gathering information at once (see memcontrol.c) */
  187. #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
  188. #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
  189. #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
  190. /* Isolate clean file */
  191. #define ISOLATE_CLEAN ((__force isolate_mode_t)0x1)
  192. /* Isolate unmapped file */
  193. #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
  194. /* Isolate for asynchronous migration */
  195. #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
  196. /* LRU Isolation modes. */
  197. typedef unsigned __bitwise__ isolate_mode_t;
  198. enum zone_watermarks {
  199. WMARK_MIN,
  200. WMARK_LOW,
  201. WMARK_HIGH,
  202. NR_WMARK
  203. };
  204. #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
  205. #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
  206. #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
  207. struct per_cpu_pages {
  208. int count; /* number of pages in the list */
  209. int high; /* high watermark, emptying needed */
  210. int batch; /* chunk size for buddy add/remove */
  211. /* Lists of pages, one per migrate type stored on the pcp-lists */
  212. struct list_head lists[MIGRATE_PCPTYPES];
  213. };
  214. struct per_cpu_pageset {
  215. struct per_cpu_pages pcp;
  216. #ifdef CONFIG_NUMA
  217. s8 expire;
  218. #endif
  219. #ifdef CONFIG_SMP
  220. s8 stat_threshold;
  221. s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
  222. #endif
  223. };
  224. #endif /* !__GENERATING_BOUNDS.H */
  225. enum zone_type {
  226. #ifdef CONFIG_ZONE_DMA
  227. /*
  228. * ZONE_DMA is used when there are devices that are not able
  229. * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
  230. * carve out the portion of memory that is needed for these devices.
  231. * The range is arch specific.
  232. *
  233. * Some examples
  234. *
  235. * Architecture Limit
  236. * ---------------------------
  237. * parisc, ia64, sparc <4G
  238. * s390 <2G
  239. * arm Various
  240. * alpha Unlimited or 0-16MB.
  241. *
  242. * i386, x86_64 and multiple other arches
  243. * <16M.
  244. */
  245. ZONE_DMA,
  246. #endif
  247. #ifdef CONFIG_ZONE_DMA32
  248. /*
  249. * x86_64 needs two ZONE_DMAs because it supports devices that are
  250. * only able to do DMA to the lower 16M but also 32 bit devices that
  251. * can only do DMA areas below 4G.
  252. */
  253. ZONE_DMA32,
  254. #endif
  255. /*
  256. * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
  257. * performed on pages in ZONE_NORMAL if the DMA devices support
  258. * transfers to all addressable memory.
  259. */
  260. ZONE_NORMAL,
  261. #ifdef CONFIG_HIGHMEM
  262. /*
  263. * A memory area that is only addressable by the kernel through
  264. * mapping portions into its own address space. This is for example
  265. * used by i386 to allow the kernel to address the memory beyond
  266. * 900MB. The kernel will set up special mappings (page
  267. * table entries on i386) for each page that the kernel needs to
  268. * access.
  269. */
  270. ZONE_HIGHMEM,
  271. #endif
  272. ZONE_MOVABLE,
  273. __MAX_NR_ZONES
  274. };
  275. #ifndef __GENERATING_BOUNDS_H
  276. /*
  277. * When a memory allocation must conform to specific limitations (such
  278. * as being suitable for DMA) the caller will pass in hints to the
  279. * allocator in the gfp_mask, in the zone modifier bits. These bits
  280. * are used to select a priority ordered list of memory zones which
  281. * match the requested limits. See gfp_zone() in include/linux/gfp.h
  282. */
  283. #if MAX_NR_ZONES < 2
  284. #define ZONES_SHIFT 0
  285. #elif MAX_NR_ZONES <= 2
  286. #define ZONES_SHIFT 1
  287. #elif MAX_NR_ZONES <= 4
  288. #define ZONES_SHIFT 2
  289. #else
  290. #error ZONES_SHIFT -- too many zones configured adjust calculation
  291. #endif
  292. struct zone {
  293. /* Fields commonly accessed by the page allocator */
  294. /* zone watermarks, access with *_wmark_pages(zone) macros */
  295. unsigned long watermark[NR_WMARK];
  296. /*
  297. * When free pages are below this point, additional steps are taken
  298. * when reading the number of free pages to avoid per-cpu counter
  299. * drift allowing watermarks to be breached
  300. */
  301. unsigned long percpu_drift_mark;
  302. /*
  303. * We don't know if the memory that we're going to allocate will be freeable
  304. * or/and it will be released eventually, so to avoid totally wasting several
  305. * GB of ram we must reserve some of the lower zone memory (otherwise we risk
  306. * to run OOM on the lower zones despite there's tons of freeable ram
  307. * on the higher zones). This array is recalculated at runtime if the
  308. * sysctl_lowmem_reserve_ratio sysctl changes.
  309. */
  310. unsigned long lowmem_reserve[MAX_NR_ZONES];
  311. /*
  312. * This is a per-zone reserve of pages that should not be
  313. * considered dirtyable memory.
  314. */
  315. unsigned long dirty_balance_reserve;
  316. #ifdef CONFIG_NUMA
  317. int node;
  318. /*
  319. * zone reclaim becomes active if more unmapped pages exist.
  320. */
  321. unsigned long min_unmapped_pages;
  322. unsigned long min_slab_pages;
  323. #endif
  324. struct per_cpu_pageset __percpu *pageset;
  325. /*
  326. * free areas of different sizes
  327. */
  328. spinlock_t lock;
  329. int all_unreclaimable; /* All pages pinned */
  330. #if defined CONFIG_COMPACTION || defined CONFIG_CMA
  331. /* pfn where the last incremental compaction isolated free pages */
  332. unsigned long compact_cached_free_pfn;
  333. #endif
  334. #ifdef CONFIG_MEMORY_HOTPLUG
  335. /* see spanned/present_pages for more description */
  336. seqlock_t span_seqlock;
  337. #endif
  338. #ifdef CONFIG_CMA
  339. /*
  340. * CMA needs to increase watermark levels during the allocation
  341. * process to make sure that the system is not starved.
  342. */
  343. unsigned long min_cma_pages;
  344. #endif
  345. struct free_area free_area[MAX_ORDER];
  346. #ifndef CONFIG_SPARSEMEM
  347. /*
  348. * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
  349. * In SPARSEMEM, this map is stored in struct mem_section
  350. */
  351. unsigned long *pageblock_flags;
  352. #endif /* CONFIG_SPARSEMEM */
  353. #ifdef CONFIG_COMPACTION
  354. /*
  355. * On compaction failure, 1<<compact_defer_shift compactions
  356. * are skipped before trying again. The number attempted since
  357. * last failure is tracked with compact_considered.
  358. */
  359. unsigned int compact_considered;
  360. unsigned int compact_defer_shift;
  361. int compact_order_failed;
  362. #endif
  363. ZONE_PADDING(_pad1_)
  364. /* Fields commonly accessed by the page reclaim scanner */
  365. spinlock_t lru_lock;
  366. struct lruvec lruvec;
  367. unsigned long pages_scanned; /* since last reclaim */
  368. unsigned long flags; /* zone flags, see below */
  369. /* Zone statistics */
  370. atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
  371. /*
  372. * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
  373. * this zone's LRU. Maintained by the pageout code.
  374. */
  375. unsigned int inactive_ratio;
  376. ZONE_PADDING(_pad2_)
  377. /* Rarely used or read-mostly fields */
  378. /*
  379. * wait_table -- the array holding the hash table
  380. * wait_table_hash_nr_entries -- the size of the hash table array
  381. * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
  382. *
  383. * The purpose of all these is to keep track of the people
  384. * waiting for a page to become available and make them
  385. * runnable again when possible. The trouble is that this
  386. * consumes a lot of space, especially when so few things
  387. * wait on pages at a given time. So instead of using
  388. * per-page waitqueues, we use a waitqueue hash table.
  389. *
  390. * The bucket discipline is to sleep on the same queue when
  391. * colliding and wake all in that wait queue when removing.
  392. * When something wakes, it must check to be sure its page is
  393. * truly available, a la thundering herd. The cost of a
  394. * collision is great, but given the expected load of the
  395. * table, they should be so rare as to be outweighed by the
  396. * benefits from the saved space.
  397. *
  398. * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
  399. * primary users of these fields, and in mm/page_alloc.c
  400. * free_area_init_core() performs the initialization of them.
  401. */
  402. wait_queue_head_t * wait_table;
  403. unsigned long wait_table_hash_nr_entries;
  404. unsigned long wait_table_bits;
  405. /*
  406. * Discontig memory support fields.
  407. */
  408. struct pglist_data *zone_pgdat;
  409. /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
  410. unsigned long zone_start_pfn;
  411. /*
  412. * zone_start_pfn, spanned_pages and present_pages are all
  413. * protected by span_seqlock. It is a seqlock because it has
  414. * to be read outside of zone->lock, and it is done in the main
  415. * allocator path. But, it is written quite infrequently.
  416. *
  417. * The lock is declared along with zone->lock because it is
  418. * frequently read in proximity to zone->lock. It's good to
  419. * give them a chance of being in the same cacheline.
  420. */
  421. unsigned long spanned_pages; /* total size, including holes */
  422. unsigned long present_pages; /* amount of memory (excluding holes) */
  423. /*
  424. * rarely used fields:
  425. */
  426. const char *name;
  427. #ifdef CONFIG_MEMORY_ISOLATION
  428. /*
  429. * the number of MIGRATE_ISOLATE *pageblock*.
  430. * We need this for free page counting. Look at zone_watermark_ok_safe.
  431. * It's protected by zone->lock
  432. */
  433. int nr_pageblock_isolate;
  434. #endif
  435. } ____cacheline_internodealigned_in_smp;
  436. typedef enum {
  437. ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
  438. ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
  439. ZONE_CONGESTED, /* zone has many dirty pages backed by
  440. * a congested BDI
  441. */
  442. } zone_flags_t;
  443. static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
  444. {
  445. set_bit(flag, &zone->flags);
  446. }
  447. static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
  448. {
  449. return test_and_set_bit(flag, &zone->flags);
  450. }
  451. static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
  452. {
  453. clear_bit(flag, &zone->flags);
  454. }
  455. static inline int zone_is_reclaim_congested(const struct zone *zone)
  456. {
  457. return test_bit(ZONE_CONGESTED, &zone->flags);
  458. }
  459. static inline int zone_is_reclaim_locked(const struct zone *zone)
  460. {
  461. return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
  462. }
  463. static inline int zone_is_oom_locked(const struct zone *zone)
  464. {
  465. return test_bit(ZONE_OOM_LOCKED, &zone->flags);
  466. }
  467. /*
  468. * The "priority" of VM scanning is how much of the queues we will scan in one
  469. * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
  470. * queues ("queue_length >> 12") during an aging round.
  471. */
  472. #define DEF_PRIORITY 12
  473. /* Maximum number of zones on a zonelist */
  474. #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
  475. #ifdef CONFIG_NUMA
  476. /*
  477. * The NUMA zonelists are doubled because we need zonelists that restrict the
  478. * allocations to a single node for GFP_THISNODE.
  479. *
  480. * [0] : Zonelist with fallback
  481. * [1] : No fallback (GFP_THISNODE)
  482. */
  483. #define MAX_ZONELISTS 2
  484. /*
  485. * We cache key information from each zonelist for smaller cache
  486. * footprint when scanning for free pages in get_page_from_freelist().
  487. *
  488. * 1) The BITMAP fullzones tracks which zones in a zonelist have come
  489. * up short of free memory since the last time (last_fullzone_zap)
  490. * we zero'd fullzones.
  491. * 2) The array z_to_n[] maps each zone in the zonelist to its node
  492. * id, so that we can efficiently evaluate whether that node is
  493. * set in the current tasks mems_allowed.
  494. *
  495. * Both fullzones and z_to_n[] are one-to-one with the zonelist,
  496. * indexed by a zones offset in the zonelist zones[] array.
  497. *
  498. * The get_page_from_freelist() routine does two scans. During the
  499. * first scan, we skip zones whose corresponding bit in 'fullzones'
  500. * is set or whose corresponding node in current->mems_allowed (which
  501. * comes from cpusets) is not set. During the second scan, we bypass
  502. * this zonelist_cache, to ensure we look methodically at each zone.
  503. *
  504. * Once per second, we zero out (zap) fullzones, forcing us to
  505. * reconsider nodes that might have regained more free memory.
  506. * The field last_full_zap is the time we last zapped fullzones.
  507. *
  508. * This mechanism reduces the amount of time we waste repeatedly
  509. * reexaming zones for free memory when they just came up low on
  510. * memory momentarilly ago.
  511. *
  512. * The zonelist_cache struct members logically belong in struct
  513. * zonelist. However, the mempolicy zonelists constructed for
  514. * MPOL_BIND are intentionally variable length (and usually much
  515. * shorter). A general purpose mechanism for handling structs with
  516. * multiple variable length members is more mechanism than we want
  517. * here. We resort to some special case hackery instead.
  518. *
  519. * The MPOL_BIND zonelists don't need this zonelist_cache (in good
  520. * part because they are shorter), so we put the fixed length stuff
  521. * at the front of the zonelist struct, ending in a variable length
  522. * zones[], as is needed by MPOL_BIND.
  523. *
  524. * Then we put the optional zonelist cache on the end of the zonelist
  525. * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
  526. * the fixed length portion at the front of the struct. This pointer
  527. * both enables us to find the zonelist cache, and in the case of
  528. * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
  529. * to know that the zonelist cache is not there.
  530. *
  531. * The end result is that struct zonelists come in two flavors:
  532. * 1) The full, fixed length version, shown below, and
  533. * 2) The custom zonelists for MPOL_BIND.
  534. * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
  535. *
  536. * Even though there may be multiple CPU cores on a node modifying
  537. * fullzones or last_full_zap in the same zonelist_cache at the same
  538. * time, we don't lock it. This is just hint data - if it is wrong now
  539. * and then, the allocator will still function, perhaps a bit slower.
  540. */
  541. struct zonelist_cache {
  542. unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
  543. DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
  544. unsigned long last_full_zap; /* when last zap'd (jiffies) */
  545. };
  546. #else
  547. #define MAX_ZONELISTS 1
  548. struct zonelist_cache;
  549. #endif
  550. /*
  551. * This struct contains information about a zone in a zonelist. It is stored
  552. * here to avoid dereferences into large structures and lookups of tables
  553. */
  554. struct zoneref {
  555. struct zone *zone; /* Pointer to actual zone */
  556. int zone_idx; /* zone_idx(zoneref->zone) */
  557. };
  558. /*
  559. * One allocation request operates on a zonelist. A zonelist
  560. * is a list of zones, the first one is the 'goal' of the
  561. * allocation, the other zones are fallback zones, in decreasing
  562. * priority.
  563. *
  564. * If zlcache_ptr is not NULL, then it is just the address of zlcache,
  565. * as explained above. If zlcache_ptr is NULL, there is no zlcache.
  566. * *
  567. * To speed the reading of the zonelist, the zonerefs contain the zone index
  568. * of the entry being read. Helper functions to access information given
  569. * a struct zoneref are
  570. *
  571. * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
  572. * zonelist_zone_idx() - Return the index of the zone for an entry
  573. * zonelist_node_idx() - Return the index of the node for an entry
  574. */
  575. struct zonelist {
  576. struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
  577. struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
  578. #ifdef CONFIG_NUMA
  579. struct zonelist_cache zlcache; // optional ...
  580. #endif
  581. };
  582. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  583. struct node_active_region {
  584. unsigned long start_pfn;
  585. unsigned long end_pfn;
  586. int nid;
  587. };
  588. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  589. #ifndef CONFIG_DISCONTIGMEM
  590. /* The array of struct pages - for discontigmem use pgdat->lmem_map */
  591. extern struct page *mem_map;
  592. #endif
  593. /*
  594. * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
  595. * (mostly NUMA machines?) to denote a higher-level memory zone than the
  596. * zone denotes.
  597. *
  598. * On NUMA machines, each NUMA node would have a pg_data_t to describe
  599. * it's memory layout.
  600. *
  601. * Memory statistics and page replacement data structures are maintained on a
  602. * per-zone basis.
  603. */
  604. struct bootmem_data;
  605. typedef struct pglist_data {
  606. struct zone node_zones[MAX_NR_ZONES];
  607. struct zonelist node_zonelists[MAX_ZONELISTS];
  608. int nr_zones;
  609. #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
  610. struct page *node_mem_map;
  611. #ifdef CONFIG_MEMCG
  612. struct page_cgroup *node_page_cgroup;
  613. #endif
  614. #endif
  615. #ifndef CONFIG_NO_BOOTMEM
  616. struct bootmem_data *bdata;
  617. #endif
  618. #ifdef CONFIG_MEMORY_HOTPLUG
  619. /*
  620. * Must be held any time you expect node_start_pfn, node_present_pages
  621. * or node_spanned_pages stay constant. Holding this will also
  622. * guarantee that any pfn_valid() stays that way.
  623. *
  624. * Nests above zone->lock and zone->size_seqlock.
  625. */
  626. spinlock_t node_size_lock;
  627. #endif
  628. unsigned long node_start_pfn;
  629. unsigned long node_present_pages; /* total number of physical pages */
  630. unsigned long node_spanned_pages; /* total size of physical page
  631. range, including holes */
  632. int node_id;
  633. wait_queue_head_t kswapd_wait;
  634. struct task_struct *kswapd; /* Protected by lock_memory_hotplug() */
  635. int kswapd_max_order;
  636. enum zone_type classzone_idx;
  637. } pg_data_t;
  638. #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
  639. #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
  640. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  641. #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
  642. #else
  643. #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
  644. #endif
  645. #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
  646. #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
  647. #define node_end_pfn(nid) ({\
  648. pg_data_t *__pgdat = NODE_DATA(nid);\
  649. __pgdat->node_start_pfn + __pgdat->node_spanned_pages;\
  650. })
  651. #include <linux/memory_hotplug.h>
  652. extern struct mutex zonelists_mutex;
  653. void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
  654. void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
  655. bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  656. int classzone_idx, int alloc_flags);
  657. bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
  658. int classzone_idx, int alloc_flags);
  659. enum memmap_context {
  660. MEMMAP_EARLY,
  661. MEMMAP_HOTPLUG,
  662. };
  663. extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
  664. unsigned long size,
  665. enum memmap_context context);
  666. extern void lruvec_init(struct lruvec *lruvec, struct zone *zone);
  667. static inline struct zone *lruvec_zone(struct lruvec *lruvec)
  668. {
  669. #ifdef CONFIG_MEMCG
  670. return lruvec->zone;
  671. #else
  672. return container_of(lruvec, struct zone, lruvec);
  673. #endif
  674. }
  675. #ifdef CONFIG_HAVE_MEMORY_PRESENT
  676. void memory_present(int nid, unsigned long start, unsigned long end);
  677. #else
  678. static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
  679. #endif
  680. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  681. int local_memory_node(int node_id);
  682. #else
  683. static inline int local_memory_node(int node_id) { return node_id; };
  684. #endif
  685. #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
  686. unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
  687. #endif
  688. /*
  689. * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
  690. */
  691. #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
  692. static inline int populated_zone(struct zone *zone)
  693. {
  694. return (!!zone->present_pages);
  695. }
  696. extern int movable_zone;
  697. static inline int zone_movable_is_highmem(void)
  698. {
  699. #if defined(CONFIG_HIGHMEM) && defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
  700. return movable_zone == ZONE_HIGHMEM;
  701. #else
  702. return 0;
  703. #endif
  704. }
  705. static inline int is_highmem_idx(enum zone_type idx)
  706. {
  707. #ifdef CONFIG_HIGHMEM
  708. return (idx == ZONE_HIGHMEM ||
  709. (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
  710. #else
  711. return 0;
  712. #endif
  713. }
  714. static inline int is_normal_idx(enum zone_type idx)
  715. {
  716. return (idx == ZONE_NORMAL);
  717. }
  718. /**
  719. * is_highmem - helper function to quickly check if a struct zone is a
  720. * highmem zone or not. This is an attempt to keep references
  721. * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
  722. * @zone - pointer to struct zone variable
  723. */
  724. static inline int is_highmem(struct zone *zone)
  725. {
  726. #ifdef CONFIG_HIGHMEM
  727. int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
  728. return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
  729. (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
  730. zone_movable_is_highmem());
  731. #else
  732. return 0;
  733. #endif
  734. }
  735. static inline int is_normal(struct zone *zone)
  736. {
  737. return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
  738. }
  739. static inline int is_dma32(struct zone *zone)
  740. {
  741. #ifdef CONFIG_ZONE_DMA32
  742. return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
  743. #else
  744. return 0;
  745. #endif
  746. }
  747. static inline int is_dma(struct zone *zone)
  748. {
  749. #ifdef CONFIG_ZONE_DMA
  750. return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
  751. #else
  752. return 0;
  753. #endif
  754. }
  755. /* These two functions are used to setup the per zone pages min values */
  756. struct ctl_table;
  757. int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
  758. void __user *, size_t *, loff_t *);
  759. extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
  760. int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
  761. void __user *, size_t *, loff_t *);
  762. int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
  763. void __user *, size_t *, loff_t *);
  764. int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
  765. void __user *, size_t *, loff_t *);
  766. int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
  767. void __user *, size_t *, loff_t *);
  768. extern int numa_zonelist_order_handler(struct ctl_table *, int,
  769. void __user *, size_t *, loff_t *);
  770. extern char numa_zonelist_order[];
  771. #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
  772. #ifndef CONFIG_NEED_MULTIPLE_NODES
  773. extern struct pglist_data contig_page_data;
  774. #define NODE_DATA(nid) (&contig_page_data)
  775. #define NODE_MEM_MAP(nid) mem_map
  776. #else /* CONFIG_NEED_MULTIPLE_NODES */
  777. #include <asm/mmzone.h>
  778. #endif /* !CONFIG_NEED_MULTIPLE_NODES */
  779. extern struct pglist_data *first_online_pgdat(void);
  780. extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
  781. extern struct zone *next_zone(struct zone *zone);
  782. /**
  783. * for_each_online_pgdat - helper macro to iterate over all online nodes
  784. * @pgdat - pointer to a pg_data_t variable
  785. */
  786. #define for_each_online_pgdat(pgdat) \
  787. for (pgdat = first_online_pgdat(); \
  788. pgdat; \
  789. pgdat = next_online_pgdat(pgdat))
  790. /**
  791. * for_each_zone - helper macro to iterate over all memory zones
  792. * @zone - pointer to struct zone variable
  793. *
  794. * The user only needs to declare the zone variable, for_each_zone
  795. * fills it in.
  796. */
  797. #define for_each_zone(zone) \
  798. for (zone = (first_online_pgdat())->node_zones; \
  799. zone; \
  800. zone = next_zone(zone))
  801. #define for_each_populated_zone(zone) \
  802. for (zone = (first_online_pgdat())->node_zones; \
  803. zone; \
  804. zone = next_zone(zone)) \
  805. if (!populated_zone(zone)) \
  806. ; /* do nothing */ \
  807. else
  808. static inline struct zone *zonelist_zone(struct zoneref *zoneref)
  809. {
  810. return zoneref->zone;
  811. }
  812. static inline int zonelist_zone_idx(struct zoneref *zoneref)
  813. {
  814. return zoneref->zone_idx;
  815. }
  816. static inline int zonelist_node_idx(struct zoneref *zoneref)
  817. {
  818. #ifdef CONFIG_NUMA
  819. /* zone_to_nid not available in this context */
  820. return zoneref->zone->node;
  821. #else
  822. return 0;
  823. #endif /* CONFIG_NUMA */
  824. }
  825. /**
  826. * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
  827. * @z - The cursor used as a starting point for the search
  828. * @highest_zoneidx - The zone index of the highest zone to return
  829. * @nodes - An optional nodemask to filter the zonelist with
  830. * @zone - The first suitable zone found is returned via this parameter
  831. *
  832. * This function returns the next zone at or below a given zone index that is
  833. * within the allowed nodemask using a cursor as the starting point for the
  834. * search. The zoneref returned is a cursor that represents the current zone
  835. * being examined. It should be advanced by one before calling
  836. * next_zones_zonelist again.
  837. */
  838. struct zoneref *next_zones_zonelist(struct zoneref *z,
  839. enum zone_type highest_zoneidx,
  840. nodemask_t *nodes,
  841. struct zone **zone);
  842. /**
  843. * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
  844. * @zonelist - The zonelist to search for a suitable zone
  845. * @highest_zoneidx - The zone index of the highest zone to return
  846. * @nodes - An optional nodemask to filter the zonelist with
  847. * @zone - The first suitable zone found is returned via this parameter
  848. *
  849. * This function returns the first zone at or below a given zone index that is
  850. * within the allowed nodemask. The zoneref returned is a cursor that can be
  851. * used to iterate the zonelist with next_zones_zonelist by advancing it by
  852. * one before calling.
  853. */
  854. static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
  855. enum zone_type highest_zoneidx,
  856. nodemask_t *nodes,
  857. struct zone **zone)
  858. {
  859. return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
  860. zone);
  861. }
  862. /**
  863. * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
  864. * @zone - The current zone in the iterator
  865. * @z - The current pointer within zonelist->zones being iterated
  866. * @zlist - The zonelist being iterated
  867. * @highidx - The zone index of the highest zone to return
  868. * @nodemask - Nodemask allowed by the allocator
  869. *
  870. * This iterator iterates though all zones at or below a given zone index and
  871. * within a given nodemask
  872. */
  873. #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
  874. for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
  875. zone; \
  876. z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
  877. /**
  878. * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
  879. * @zone - The current zone in the iterator
  880. * @z - The current pointer within zonelist->zones being iterated
  881. * @zlist - The zonelist being iterated
  882. * @highidx - The zone index of the highest zone to return
  883. *
  884. * This iterator iterates though all zones at or below a given zone index.
  885. */
  886. #define for_each_zone_zonelist(zone, z, zlist, highidx) \
  887. for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
  888. #ifdef CONFIG_SPARSEMEM
  889. #include <asm/sparsemem.h>
  890. #endif
  891. #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
  892. !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
  893. static inline unsigned long early_pfn_to_nid(unsigned long pfn)
  894. {
  895. return 0;
  896. }
  897. #endif
  898. #ifdef CONFIG_FLATMEM
  899. #define pfn_to_nid(pfn) (0)
  900. #endif
  901. #ifdef CONFIG_SPARSEMEM
  902. /*
  903. * SECTION_SHIFT #bits space required to store a section #
  904. *
  905. * PA_SECTION_SHIFT physical address to/from section number
  906. * PFN_SECTION_SHIFT pfn to/from section number
  907. */
  908. #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
  909. #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
  910. #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
  911. #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
  912. #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
  913. #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
  914. #define SECTION_BLOCKFLAGS_BITS \
  915. ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
  916. #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
  917. #error Allocator MAX_ORDER exceeds SECTION_SIZE
  918. #endif
  919. #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
  920. #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
  921. #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
  922. #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
  923. struct page;
  924. struct page_cgroup;
  925. struct mem_section {
  926. /*
  927. * This is, logically, a pointer to an array of struct
  928. * pages. However, it is stored with some other magic.
  929. * (see sparse.c::sparse_init_one_section())
  930. *
  931. * Additionally during early boot we encode node id of
  932. * the location of the section here to guide allocation.
  933. * (see sparse.c::memory_present())
  934. *
  935. * Making it a UL at least makes someone do a cast
  936. * before using it wrong.
  937. */
  938. unsigned long section_mem_map;
  939. /* See declaration of similar field in struct zone */
  940. unsigned long *pageblock_flags;
  941. #ifdef CONFIG_MEMCG
  942. /*
  943. * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
  944. * section. (see memcontrol.h/page_cgroup.h about this.)
  945. */
  946. struct page_cgroup *page_cgroup;
  947. unsigned long pad;
  948. #endif
  949. };
  950. #ifdef CONFIG_SPARSEMEM_EXTREME
  951. #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
  952. #else
  953. #define SECTIONS_PER_ROOT 1
  954. #endif
  955. #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
  956. #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
  957. #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
  958. #ifdef CONFIG_SPARSEMEM_EXTREME
  959. extern struct mem_section *mem_section[NR_SECTION_ROOTS];
  960. #else
  961. extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
  962. #endif
  963. static inline struct mem_section *__nr_to_section(unsigned long nr)
  964. {
  965. if (!mem_section[SECTION_NR_TO_ROOT(nr)])
  966. return NULL;
  967. return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
  968. }
  969. extern int __section_nr(struct mem_section* ms);
  970. extern unsigned long usemap_size(void);
  971. /*
  972. * We use the lower bits of the mem_map pointer to store
  973. * a little bit of information. There should be at least
  974. * 3 bits here due to 32-bit alignment.
  975. */
  976. #define SECTION_MARKED_PRESENT (1UL<<0)
  977. #define SECTION_HAS_MEM_MAP (1UL<<1)
  978. #define SECTION_MAP_LAST_BIT (1UL<<2)
  979. #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
  980. #define SECTION_NID_SHIFT 2
  981. static inline struct page *__section_mem_map_addr(struct mem_section *section)
  982. {
  983. unsigned long map = section->section_mem_map;
  984. map &= SECTION_MAP_MASK;
  985. return (struct page *)map;
  986. }
  987. static inline int present_section(struct mem_section *section)
  988. {
  989. return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
  990. }
  991. static inline int present_section_nr(unsigned long nr)
  992. {
  993. return present_section(__nr_to_section(nr));
  994. }
  995. static inline int valid_section(struct mem_section *section)
  996. {
  997. return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
  998. }
  999. static inline int valid_section_nr(unsigned long nr)
  1000. {
  1001. return valid_section(__nr_to_section(nr));
  1002. }
  1003. static inline struct mem_section *__pfn_to_section(unsigned long pfn)
  1004. {
  1005. return __nr_to_section(pfn_to_section_nr(pfn));
  1006. }
  1007. #ifndef CONFIG_HAVE_ARCH_PFN_VALID
  1008. static inline int pfn_valid(unsigned long pfn)
  1009. {
  1010. if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
  1011. return 0;
  1012. return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
  1013. }
  1014. #endif
  1015. static inline int pfn_present(unsigned long pfn)
  1016. {
  1017. if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
  1018. return 0;
  1019. return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
  1020. }
  1021. /*
  1022. * These are _only_ used during initialisation, therefore they
  1023. * can use __initdata ... They could have names to indicate
  1024. * this restriction.
  1025. */
  1026. #ifdef CONFIG_NUMA
  1027. #define pfn_to_nid(pfn) \
  1028. ({ \
  1029. unsigned long __pfn_to_nid_pfn = (pfn); \
  1030. page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
  1031. })
  1032. #else
  1033. #define pfn_to_nid(pfn) (0)
  1034. #endif
  1035. #define early_pfn_valid(pfn) pfn_valid(pfn)
  1036. void sparse_init(void);
  1037. #else
  1038. #define sparse_init() do {} while (0)
  1039. #define sparse_index_init(_sec, _nid) do {} while (0)
  1040. #endif /* CONFIG_SPARSEMEM */
  1041. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  1042. bool early_pfn_in_nid(unsigned long pfn, int nid);
  1043. #else
  1044. #define early_pfn_in_nid(pfn, nid) (1)
  1045. #endif
  1046. #ifndef early_pfn_valid
  1047. #define early_pfn_valid(pfn) (1)
  1048. #endif
  1049. void memory_present(int nid, unsigned long start, unsigned long end);
  1050. unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
  1051. /*
  1052. * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
  1053. * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
  1054. * pfn_valid_within() should be used in this case; we optimise this away
  1055. * when we have no holes within a MAX_ORDER_NR_PAGES block.
  1056. */
  1057. #ifdef CONFIG_HOLES_IN_ZONE
  1058. #define pfn_valid_within(pfn) pfn_valid(pfn)
  1059. #else
  1060. #define pfn_valid_within(pfn) (1)
  1061. #endif
  1062. #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
  1063. /*
  1064. * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
  1065. * associated with it or not. In FLATMEM, it is expected that holes always
  1066. * have valid memmap as long as there is valid PFNs either side of the hole.
  1067. * In SPARSEMEM, it is assumed that a valid section has a memmap for the
  1068. * entire section.
  1069. *
  1070. * However, an ARM, and maybe other embedded architectures in the future
  1071. * free memmap backing holes to save memory on the assumption the memmap is
  1072. * never used. The page_zone linkages are then broken even though pfn_valid()
  1073. * returns true. A walker of the full memmap must then do this additional
  1074. * check to ensure the memmap they are looking at is sane by making sure
  1075. * the zone and PFN linkages are still valid. This is expensive, but walkers
  1076. * of the full memmap are extremely rare.
  1077. */
  1078. int memmap_valid_within(unsigned long pfn,
  1079. struct page *page, struct zone *zone);
  1080. #else
  1081. static inline int memmap_valid_within(unsigned long pfn,
  1082. struct page *page, struct zone *zone)
  1083. {
  1084. return 1;
  1085. }
  1086. #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
  1087. #endif /* !__GENERATING_BOUNDS.H */
  1088. #endif /* !__ASSEMBLY__ */
  1089. #endif /* _LINUX_MMZONE_H */