x86.c 158 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  10. *
  11. * Authors:
  12. * Avi Kivity <avi@qumranet.com>
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Amit Shah <amit.shah@qumranet.com>
  15. * Ben-Ami Yassour <benami@il.ibm.com>
  16. *
  17. * This work is licensed under the terms of the GNU GPL, version 2. See
  18. * the COPYING file in the top-level directory.
  19. *
  20. */
  21. #include <linux/kvm_host.h>
  22. #include "irq.h"
  23. #include "mmu.h"
  24. #include "i8254.h"
  25. #include "tss.h"
  26. #include "kvm_cache_regs.h"
  27. #include "x86.h"
  28. #include <linux/clocksource.h>
  29. #include <linux/interrupt.h>
  30. #include <linux/kvm.h>
  31. #include <linux/fs.h>
  32. #include <linux/vmalloc.h>
  33. #include <linux/module.h>
  34. #include <linux/mman.h>
  35. #include <linux/highmem.h>
  36. #include <linux/iommu.h>
  37. #include <linux/intel-iommu.h>
  38. #include <linux/cpufreq.h>
  39. #include <linux/user-return-notifier.h>
  40. #include <linux/srcu.h>
  41. #include <linux/slab.h>
  42. #include <linux/perf_event.h>
  43. #include <linux/uaccess.h>
  44. #include <linux/hash.h>
  45. #include <trace/events/kvm.h>
  46. #define CREATE_TRACE_POINTS
  47. #include "trace.h"
  48. #include <asm/debugreg.h>
  49. #include <asm/msr.h>
  50. #include <asm/desc.h>
  51. #include <asm/mtrr.h>
  52. #include <asm/mce.h>
  53. #include <asm/i387.h>
  54. #include <asm/xcr.h>
  55. #include <asm/pvclock.h>
  56. #include <asm/div64.h>
  57. #define MAX_IO_MSRS 256
  58. #define CR0_RESERVED_BITS \
  59. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  60. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  61. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  62. #define CR4_RESERVED_BITS \
  63. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  64. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  65. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  66. | X86_CR4_OSXSAVE \
  67. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  68. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  69. #define KVM_MAX_MCE_BANKS 32
  70. #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
  71. /* EFER defaults:
  72. * - enable syscall per default because its emulated by KVM
  73. * - enable LME and LMA per default on 64 bit KVM
  74. */
  75. #ifdef CONFIG_X86_64
  76. static
  77. u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
  78. #else
  79. static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
  80. #endif
  81. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  82. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  83. static void update_cr8_intercept(struct kvm_vcpu *vcpu);
  84. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  85. struct kvm_cpuid_entry2 __user *entries);
  86. struct kvm_x86_ops *kvm_x86_ops;
  87. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  88. int ignore_msrs = 0;
  89. module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
  90. #define KVM_NR_SHARED_MSRS 16
  91. struct kvm_shared_msrs_global {
  92. int nr;
  93. u32 msrs[KVM_NR_SHARED_MSRS];
  94. };
  95. struct kvm_shared_msrs {
  96. struct user_return_notifier urn;
  97. bool registered;
  98. struct kvm_shared_msr_values {
  99. u64 host;
  100. u64 curr;
  101. } values[KVM_NR_SHARED_MSRS];
  102. };
  103. static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
  104. static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
  105. struct kvm_stats_debugfs_item debugfs_entries[] = {
  106. { "pf_fixed", VCPU_STAT(pf_fixed) },
  107. { "pf_guest", VCPU_STAT(pf_guest) },
  108. { "tlb_flush", VCPU_STAT(tlb_flush) },
  109. { "invlpg", VCPU_STAT(invlpg) },
  110. { "exits", VCPU_STAT(exits) },
  111. { "io_exits", VCPU_STAT(io_exits) },
  112. { "mmio_exits", VCPU_STAT(mmio_exits) },
  113. { "signal_exits", VCPU_STAT(signal_exits) },
  114. { "irq_window", VCPU_STAT(irq_window_exits) },
  115. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  116. { "halt_exits", VCPU_STAT(halt_exits) },
  117. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  118. { "hypercalls", VCPU_STAT(hypercalls) },
  119. { "request_irq", VCPU_STAT(request_irq_exits) },
  120. { "irq_exits", VCPU_STAT(irq_exits) },
  121. { "host_state_reload", VCPU_STAT(host_state_reload) },
  122. { "efer_reload", VCPU_STAT(efer_reload) },
  123. { "fpu_reload", VCPU_STAT(fpu_reload) },
  124. { "insn_emulation", VCPU_STAT(insn_emulation) },
  125. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  126. { "irq_injections", VCPU_STAT(irq_injections) },
  127. { "nmi_injections", VCPU_STAT(nmi_injections) },
  128. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  129. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  130. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  131. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  132. { "mmu_flooded", VM_STAT(mmu_flooded) },
  133. { "mmu_recycled", VM_STAT(mmu_recycled) },
  134. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  135. { "mmu_unsync", VM_STAT(mmu_unsync) },
  136. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  137. { "largepages", VM_STAT(lpages) },
  138. { NULL }
  139. };
  140. u64 __read_mostly host_xcr0;
  141. static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
  142. {
  143. int i;
  144. for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
  145. vcpu->arch.apf.gfns[i] = ~0;
  146. }
  147. static void kvm_on_user_return(struct user_return_notifier *urn)
  148. {
  149. unsigned slot;
  150. struct kvm_shared_msrs *locals
  151. = container_of(urn, struct kvm_shared_msrs, urn);
  152. struct kvm_shared_msr_values *values;
  153. for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
  154. values = &locals->values[slot];
  155. if (values->host != values->curr) {
  156. wrmsrl(shared_msrs_global.msrs[slot], values->host);
  157. values->curr = values->host;
  158. }
  159. }
  160. locals->registered = false;
  161. user_return_notifier_unregister(urn);
  162. }
  163. static void shared_msr_update(unsigned slot, u32 msr)
  164. {
  165. struct kvm_shared_msrs *smsr;
  166. u64 value;
  167. smsr = &__get_cpu_var(shared_msrs);
  168. /* only read, and nobody should modify it at this time,
  169. * so don't need lock */
  170. if (slot >= shared_msrs_global.nr) {
  171. printk(KERN_ERR "kvm: invalid MSR slot!");
  172. return;
  173. }
  174. rdmsrl_safe(msr, &value);
  175. smsr->values[slot].host = value;
  176. smsr->values[slot].curr = value;
  177. }
  178. void kvm_define_shared_msr(unsigned slot, u32 msr)
  179. {
  180. if (slot >= shared_msrs_global.nr)
  181. shared_msrs_global.nr = slot + 1;
  182. shared_msrs_global.msrs[slot] = msr;
  183. /* we need ensured the shared_msr_global have been updated */
  184. smp_wmb();
  185. }
  186. EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
  187. static void kvm_shared_msr_cpu_online(void)
  188. {
  189. unsigned i;
  190. for (i = 0; i < shared_msrs_global.nr; ++i)
  191. shared_msr_update(i, shared_msrs_global.msrs[i]);
  192. }
  193. void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
  194. {
  195. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  196. if (((value ^ smsr->values[slot].curr) & mask) == 0)
  197. return;
  198. smsr->values[slot].curr = value;
  199. wrmsrl(shared_msrs_global.msrs[slot], value);
  200. if (!smsr->registered) {
  201. smsr->urn.on_user_return = kvm_on_user_return;
  202. user_return_notifier_register(&smsr->urn);
  203. smsr->registered = true;
  204. }
  205. }
  206. EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
  207. static void drop_user_return_notifiers(void *ignore)
  208. {
  209. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  210. if (smsr->registered)
  211. kvm_on_user_return(&smsr->urn);
  212. }
  213. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  214. {
  215. if (irqchip_in_kernel(vcpu->kvm))
  216. return vcpu->arch.apic_base;
  217. else
  218. return vcpu->arch.apic_base;
  219. }
  220. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  221. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  222. {
  223. /* TODO: reserve bits check */
  224. if (irqchip_in_kernel(vcpu->kvm))
  225. kvm_lapic_set_base(vcpu, data);
  226. else
  227. vcpu->arch.apic_base = data;
  228. }
  229. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  230. #define EXCPT_BENIGN 0
  231. #define EXCPT_CONTRIBUTORY 1
  232. #define EXCPT_PF 2
  233. static int exception_class(int vector)
  234. {
  235. switch (vector) {
  236. case PF_VECTOR:
  237. return EXCPT_PF;
  238. case DE_VECTOR:
  239. case TS_VECTOR:
  240. case NP_VECTOR:
  241. case SS_VECTOR:
  242. case GP_VECTOR:
  243. return EXCPT_CONTRIBUTORY;
  244. default:
  245. break;
  246. }
  247. return EXCPT_BENIGN;
  248. }
  249. static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
  250. unsigned nr, bool has_error, u32 error_code,
  251. bool reinject)
  252. {
  253. u32 prev_nr;
  254. int class1, class2;
  255. kvm_make_request(KVM_REQ_EVENT, vcpu);
  256. if (!vcpu->arch.exception.pending) {
  257. queue:
  258. vcpu->arch.exception.pending = true;
  259. vcpu->arch.exception.has_error_code = has_error;
  260. vcpu->arch.exception.nr = nr;
  261. vcpu->arch.exception.error_code = error_code;
  262. vcpu->arch.exception.reinject = reinject;
  263. return;
  264. }
  265. /* to check exception */
  266. prev_nr = vcpu->arch.exception.nr;
  267. if (prev_nr == DF_VECTOR) {
  268. /* triple fault -> shutdown */
  269. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  270. return;
  271. }
  272. class1 = exception_class(prev_nr);
  273. class2 = exception_class(nr);
  274. if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
  275. || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
  276. /* generate double fault per SDM Table 5-5 */
  277. vcpu->arch.exception.pending = true;
  278. vcpu->arch.exception.has_error_code = true;
  279. vcpu->arch.exception.nr = DF_VECTOR;
  280. vcpu->arch.exception.error_code = 0;
  281. } else
  282. /* replace previous exception with a new one in a hope
  283. that instruction re-execution will regenerate lost
  284. exception */
  285. goto queue;
  286. }
  287. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  288. {
  289. kvm_multiple_exception(vcpu, nr, false, 0, false);
  290. }
  291. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  292. void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  293. {
  294. kvm_multiple_exception(vcpu, nr, false, 0, true);
  295. }
  296. EXPORT_SYMBOL_GPL(kvm_requeue_exception);
  297. void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
  298. {
  299. if (err)
  300. kvm_inject_gp(vcpu, 0);
  301. else
  302. kvm_x86_ops->skip_emulated_instruction(vcpu);
  303. }
  304. EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
  305. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
  306. {
  307. ++vcpu->stat.pf_guest;
  308. vcpu->arch.cr2 = fault->address;
  309. kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
  310. }
  311. void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
  312. {
  313. if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
  314. vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
  315. else
  316. vcpu->arch.mmu.inject_page_fault(vcpu, fault);
  317. }
  318. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  319. {
  320. kvm_make_request(KVM_REQ_EVENT, vcpu);
  321. vcpu->arch.nmi_pending = 1;
  322. }
  323. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  324. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  325. {
  326. kvm_multiple_exception(vcpu, nr, true, error_code, false);
  327. }
  328. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  329. void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  330. {
  331. kvm_multiple_exception(vcpu, nr, true, error_code, true);
  332. }
  333. EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
  334. /*
  335. * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
  336. * a #GP and return false.
  337. */
  338. bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
  339. {
  340. if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
  341. return true;
  342. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  343. return false;
  344. }
  345. EXPORT_SYMBOL_GPL(kvm_require_cpl);
  346. /*
  347. * This function will be used to read from the physical memory of the currently
  348. * running guest. The difference to kvm_read_guest_page is that this function
  349. * can read from guest physical or from the guest's guest physical memory.
  350. */
  351. int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
  352. gfn_t ngfn, void *data, int offset, int len,
  353. u32 access)
  354. {
  355. gfn_t real_gfn;
  356. gpa_t ngpa;
  357. ngpa = gfn_to_gpa(ngfn);
  358. real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
  359. if (real_gfn == UNMAPPED_GVA)
  360. return -EFAULT;
  361. real_gfn = gpa_to_gfn(real_gfn);
  362. return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
  363. }
  364. EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
  365. int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
  366. void *data, int offset, int len, u32 access)
  367. {
  368. return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
  369. data, offset, len, access);
  370. }
  371. /*
  372. * Load the pae pdptrs. Return true is they are all valid.
  373. */
  374. int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
  375. {
  376. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  377. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  378. int i;
  379. int ret;
  380. u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
  381. ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
  382. offset * sizeof(u64), sizeof(pdpte),
  383. PFERR_USER_MASK|PFERR_WRITE_MASK);
  384. if (ret < 0) {
  385. ret = 0;
  386. goto out;
  387. }
  388. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  389. if (is_present_gpte(pdpte[i]) &&
  390. (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
  391. ret = 0;
  392. goto out;
  393. }
  394. }
  395. ret = 1;
  396. memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
  397. __set_bit(VCPU_EXREG_PDPTR,
  398. (unsigned long *)&vcpu->arch.regs_avail);
  399. __set_bit(VCPU_EXREG_PDPTR,
  400. (unsigned long *)&vcpu->arch.regs_dirty);
  401. out:
  402. return ret;
  403. }
  404. EXPORT_SYMBOL_GPL(load_pdptrs);
  405. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  406. {
  407. u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
  408. bool changed = true;
  409. int offset;
  410. gfn_t gfn;
  411. int r;
  412. if (is_long_mode(vcpu) || !is_pae(vcpu))
  413. return false;
  414. if (!test_bit(VCPU_EXREG_PDPTR,
  415. (unsigned long *)&vcpu->arch.regs_avail))
  416. return true;
  417. gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
  418. offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
  419. r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
  420. PFERR_USER_MASK | PFERR_WRITE_MASK);
  421. if (r < 0)
  422. goto out;
  423. changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
  424. out:
  425. return changed;
  426. }
  427. int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  428. {
  429. unsigned long old_cr0 = kvm_read_cr0(vcpu);
  430. unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
  431. X86_CR0_CD | X86_CR0_NW;
  432. cr0 |= X86_CR0_ET;
  433. #ifdef CONFIG_X86_64
  434. if (cr0 & 0xffffffff00000000UL)
  435. return 1;
  436. #endif
  437. cr0 &= ~CR0_RESERVED_BITS;
  438. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
  439. return 1;
  440. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
  441. return 1;
  442. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  443. #ifdef CONFIG_X86_64
  444. if ((vcpu->arch.efer & EFER_LME)) {
  445. int cs_db, cs_l;
  446. if (!is_pae(vcpu))
  447. return 1;
  448. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  449. if (cs_l)
  450. return 1;
  451. } else
  452. #endif
  453. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
  454. kvm_read_cr3(vcpu)))
  455. return 1;
  456. }
  457. kvm_x86_ops->set_cr0(vcpu, cr0);
  458. if ((cr0 ^ old_cr0) & X86_CR0_PG) {
  459. kvm_clear_async_pf_completion_queue(vcpu);
  460. kvm_async_pf_hash_reset(vcpu);
  461. }
  462. if ((cr0 ^ old_cr0) & update_bits)
  463. kvm_mmu_reset_context(vcpu);
  464. return 0;
  465. }
  466. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  467. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  468. {
  469. (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
  470. }
  471. EXPORT_SYMBOL_GPL(kvm_lmsw);
  472. int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
  473. {
  474. u64 xcr0;
  475. /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
  476. if (index != XCR_XFEATURE_ENABLED_MASK)
  477. return 1;
  478. xcr0 = xcr;
  479. if (kvm_x86_ops->get_cpl(vcpu) != 0)
  480. return 1;
  481. if (!(xcr0 & XSTATE_FP))
  482. return 1;
  483. if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
  484. return 1;
  485. if (xcr0 & ~host_xcr0)
  486. return 1;
  487. vcpu->arch.xcr0 = xcr0;
  488. vcpu->guest_xcr0_loaded = 0;
  489. return 0;
  490. }
  491. int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
  492. {
  493. if (__kvm_set_xcr(vcpu, index, xcr)) {
  494. kvm_inject_gp(vcpu, 0);
  495. return 1;
  496. }
  497. return 0;
  498. }
  499. EXPORT_SYMBOL_GPL(kvm_set_xcr);
  500. static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
  501. {
  502. struct kvm_cpuid_entry2 *best;
  503. best = kvm_find_cpuid_entry(vcpu, 1, 0);
  504. return best && (best->ecx & bit(X86_FEATURE_XSAVE));
  505. }
  506. static void update_cpuid(struct kvm_vcpu *vcpu)
  507. {
  508. struct kvm_cpuid_entry2 *best;
  509. best = kvm_find_cpuid_entry(vcpu, 1, 0);
  510. if (!best)
  511. return;
  512. /* Update OSXSAVE bit */
  513. if (cpu_has_xsave && best->function == 0x1) {
  514. best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
  515. if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
  516. best->ecx |= bit(X86_FEATURE_OSXSAVE);
  517. }
  518. }
  519. int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  520. {
  521. unsigned long old_cr4 = kvm_read_cr4(vcpu);
  522. unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
  523. if (cr4 & CR4_RESERVED_BITS)
  524. return 1;
  525. if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
  526. return 1;
  527. if (is_long_mode(vcpu)) {
  528. if (!(cr4 & X86_CR4_PAE))
  529. return 1;
  530. } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
  531. && ((cr4 ^ old_cr4) & pdptr_bits)
  532. && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
  533. kvm_read_cr3(vcpu)))
  534. return 1;
  535. if (cr4 & X86_CR4_VMXE)
  536. return 1;
  537. kvm_x86_ops->set_cr4(vcpu, cr4);
  538. if ((cr4 ^ old_cr4) & pdptr_bits)
  539. kvm_mmu_reset_context(vcpu);
  540. if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
  541. update_cpuid(vcpu);
  542. return 0;
  543. }
  544. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  545. int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  546. {
  547. if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
  548. kvm_mmu_sync_roots(vcpu);
  549. kvm_mmu_flush_tlb(vcpu);
  550. return 0;
  551. }
  552. if (is_long_mode(vcpu)) {
  553. if (cr3 & CR3_L_MODE_RESERVED_BITS)
  554. return 1;
  555. } else {
  556. if (is_pae(vcpu)) {
  557. if (cr3 & CR3_PAE_RESERVED_BITS)
  558. return 1;
  559. if (is_paging(vcpu) &&
  560. !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
  561. return 1;
  562. }
  563. /*
  564. * We don't check reserved bits in nonpae mode, because
  565. * this isn't enforced, and VMware depends on this.
  566. */
  567. }
  568. /*
  569. * Does the new cr3 value map to physical memory? (Note, we
  570. * catch an invalid cr3 even in real-mode, because it would
  571. * cause trouble later on when we turn on paging anyway.)
  572. *
  573. * A real CPU would silently accept an invalid cr3 and would
  574. * attempt to use it - with largely undefined (and often hard
  575. * to debug) behavior on the guest side.
  576. */
  577. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  578. return 1;
  579. vcpu->arch.cr3 = cr3;
  580. __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
  581. vcpu->arch.mmu.new_cr3(vcpu);
  582. return 0;
  583. }
  584. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  585. int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  586. {
  587. if (cr8 & CR8_RESERVED_BITS)
  588. return 1;
  589. if (irqchip_in_kernel(vcpu->kvm))
  590. kvm_lapic_set_tpr(vcpu, cr8);
  591. else
  592. vcpu->arch.cr8 = cr8;
  593. return 0;
  594. }
  595. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  596. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  597. {
  598. if (irqchip_in_kernel(vcpu->kvm))
  599. return kvm_lapic_get_cr8(vcpu);
  600. else
  601. return vcpu->arch.cr8;
  602. }
  603. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  604. static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
  605. {
  606. switch (dr) {
  607. case 0 ... 3:
  608. vcpu->arch.db[dr] = val;
  609. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
  610. vcpu->arch.eff_db[dr] = val;
  611. break;
  612. case 4:
  613. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  614. return 1; /* #UD */
  615. /* fall through */
  616. case 6:
  617. if (val & 0xffffffff00000000ULL)
  618. return -1; /* #GP */
  619. vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
  620. break;
  621. case 5:
  622. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  623. return 1; /* #UD */
  624. /* fall through */
  625. default: /* 7 */
  626. if (val & 0xffffffff00000000ULL)
  627. return -1; /* #GP */
  628. vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
  629. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
  630. kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
  631. vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
  632. }
  633. break;
  634. }
  635. return 0;
  636. }
  637. int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
  638. {
  639. int res;
  640. res = __kvm_set_dr(vcpu, dr, val);
  641. if (res > 0)
  642. kvm_queue_exception(vcpu, UD_VECTOR);
  643. else if (res < 0)
  644. kvm_inject_gp(vcpu, 0);
  645. return res;
  646. }
  647. EXPORT_SYMBOL_GPL(kvm_set_dr);
  648. static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
  649. {
  650. switch (dr) {
  651. case 0 ... 3:
  652. *val = vcpu->arch.db[dr];
  653. break;
  654. case 4:
  655. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  656. return 1;
  657. /* fall through */
  658. case 6:
  659. *val = vcpu->arch.dr6;
  660. break;
  661. case 5:
  662. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  663. return 1;
  664. /* fall through */
  665. default: /* 7 */
  666. *val = vcpu->arch.dr7;
  667. break;
  668. }
  669. return 0;
  670. }
  671. int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
  672. {
  673. if (_kvm_get_dr(vcpu, dr, val)) {
  674. kvm_queue_exception(vcpu, UD_VECTOR);
  675. return 1;
  676. }
  677. return 0;
  678. }
  679. EXPORT_SYMBOL_GPL(kvm_get_dr);
  680. /*
  681. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  682. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  683. *
  684. * This list is modified at module load time to reflect the
  685. * capabilities of the host cpu. This capabilities test skips MSRs that are
  686. * kvm-specific. Those are put in the beginning of the list.
  687. */
  688. #define KVM_SAVE_MSRS_BEGIN 8
  689. static u32 msrs_to_save[] = {
  690. MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  691. MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
  692. HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
  693. HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN,
  694. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  695. MSR_STAR,
  696. #ifdef CONFIG_X86_64
  697. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  698. #endif
  699. MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
  700. };
  701. static unsigned num_msrs_to_save;
  702. static u32 emulated_msrs[] = {
  703. MSR_IA32_MISC_ENABLE,
  704. MSR_IA32_MCG_STATUS,
  705. MSR_IA32_MCG_CTL,
  706. };
  707. static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
  708. {
  709. u64 old_efer = vcpu->arch.efer;
  710. if (efer & efer_reserved_bits)
  711. return 1;
  712. if (is_paging(vcpu)
  713. && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
  714. return 1;
  715. if (efer & EFER_FFXSR) {
  716. struct kvm_cpuid_entry2 *feat;
  717. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  718. if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
  719. return 1;
  720. }
  721. if (efer & EFER_SVME) {
  722. struct kvm_cpuid_entry2 *feat;
  723. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  724. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
  725. return 1;
  726. }
  727. efer &= ~EFER_LMA;
  728. efer |= vcpu->arch.efer & EFER_LMA;
  729. kvm_x86_ops->set_efer(vcpu, efer);
  730. vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
  731. /* Update reserved bits */
  732. if ((efer ^ old_efer) & EFER_NX)
  733. kvm_mmu_reset_context(vcpu);
  734. return 0;
  735. }
  736. void kvm_enable_efer_bits(u64 mask)
  737. {
  738. efer_reserved_bits &= ~mask;
  739. }
  740. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  741. /*
  742. * Writes msr value into into the appropriate "register".
  743. * Returns 0 on success, non-0 otherwise.
  744. * Assumes vcpu_load() was already called.
  745. */
  746. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  747. {
  748. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  749. }
  750. /*
  751. * Adapt set_msr() to msr_io()'s calling convention
  752. */
  753. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  754. {
  755. return kvm_set_msr(vcpu, index, *data);
  756. }
  757. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  758. {
  759. int version;
  760. int r;
  761. struct pvclock_wall_clock wc;
  762. struct timespec boot;
  763. if (!wall_clock)
  764. return;
  765. r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
  766. if (r)
  767. return;
  768. if (version & 1)
  769. ++version; /* first time write, random junk */
  770. ++version;
  771. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  772. /*
  773. * The guest calculates current wall clock time by adding
  774. * system time (updated by kvm_guest_time_update below) to the
  775. * wall clock specified here. guest system time equals host
  776. * system time for us, thus we must fill in host boot time here.
  777. */
  778. getboottime(&boot);
  779. wc.sec = boot.tv_sec;
  780. wc.nsec = boot.tv_nsec;
  781. wc.version = version;
  782. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  783. version++;
  784. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  785. }
  786. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  787. {
  788. uint32_t quotient, remainder;
  789. /* Don't try to replace with do_div(), this one calculates
  790. * "(dividend << 32) / divisor" */
  791. __asm__ ( "divl %4"
  792. : "=a" (quotient), "=d" (remainder)
  793. : "0" (0), "1" (dividend), "r" (divisor) );
  794. return quotient;
  795. }
  796. static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
  797. s8 *pshift, u32 *pmultiplier)
  798. {
  799. uint64_t scaled64;
  800. int32_t shift = 0;
  801. uint64_t tps64;
  802. uint32_t tps32;
  803. tps64 = base_khz * 1000LL;
  804. scaled64 = scaled_khz * 1000LL;
  805. while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
  806. tps64 >>= 1;
  807. shift--;
  808. }
  809. tps32 = (uint32_t)tps64;
  810. while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
  811. if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
  812. scaled64 >>= 1;
  813. else
  814. tps32 <<= 1;
  815. shift++;
  816. }
  817. *pshift = shift;
  818. *pmultiplier = div_frac(scaled64, tps32);
  819. pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
  820. __func__, base_khz, scaled_khz, shift, *pmultiplier);
  821. }
  822. static inline u64 get_kernel_ns(void)
  823. {
  824. struct timespec ts;
  825. WARN_ON(preemptible());
  826. ktime_get_ts(&ts);
  827. monotonic_to_bootbased(&ts);
  828. return timespec_to_ns(&ts);
  829. }
  830. static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
  831. unsigned long max_tsc_khz;
  832. static inline int kvm_tsc_changes_freq(void)
  833. {
  834. int cpu = get_cpu();
  835. int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
  836. cpufreq_quick_get(cpu) != 0;
  837. put_cpu();
  838. return ret;
  839. }
  840. static inline u64 nsec_to_cycles(u64 nsec)
  841. {
  842. u64 ret;
  843. WARN_ON(preemptible());
  844. if (kvm_tsc_changes_freq())
  845. printk_once(KERN_WARNING
  846. "kvm: unreliable cycle conversion on adjustable rate TSC\n");
  847. ret = nsec * __this_cpu_read(cpu_tsc_khz);
  848. do_div(ret, USEC_PER_SEC);
  849. return ret;
  850. }
  851. static void kvm_arch_set_tsc_khz(struct kvm *kvm, u32 this_tsc_khz)
  852. {
  853. /* Compute a scale to convert nanoseconds in TSC cycles */
  854. kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
  855. &kvm->arch.virtual_tsc_shift,
  856. &kvm->arch.virtual_tsc_mult);
  857. kvm->arch.virtual_tsc_khz = this_tsc_khz;
  858. }
  859. static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
  860. {
  861. u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.last_tsc_nsec,
  862. vcpu->kvm->arch.virtual_tsc_mult,
  863. vcpu->kvm->arch.virtual_tsc_shift);
  864. tsc += vcpu->arch.last_tsc_write;
  865. return tsc;
  866. }
  867. void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
  868. {
  869. struct kvm *kvm = vcpu->kvm;
  870. u64 offset, ns, elapsed;
  871. unsigned long flags;
  872. s64 sdiff;
  873. raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
  874. offset = data - native_read_tsc();
  875. ns = get_kernel_ns();
  876. elapsed = ns - kvm->arch.last_tsc_nsec;
  877. sdiff = data - kvm->arch.last_tsc_write;
  878. if (sdiff < 0)
  879. sdiff = -sdiff;
  880. /*
  881. * Special case: close write to TSC within 5 seconds of
  882. * another CPU is interpreted as an attempt to synchronize
  883. * The 5 seconds is to accommodate host load / swapping as
  884. * well as any reset of TSC during the boot process.
  885. *
  886. * In that case, for a reliable TSC, we can match TSC offsets,
  887. * or make a best guest using elapsed value.
  888. */
  889. if (sdiff < nsec_to_cycles(5ULL * NSEC_PER_SEC) &&
  890. elapsed < 5ULL * NSEC_PER_SEC) {
  891. if (!check_tsc_unstable()) {
  892. offset = kvm->arch.last_tsc_offset;
  893. pr_debug("kvm: matched tsc offset for %llu\n", data);
  894. } else {
  895. u64 delta = nsec_to_cycles(elapsed);
  896. offset += delta;
  897. pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
  898. }
  899. ns = kvm->arch.last_tsc_nsec;
  900. }
  901. kvm->arch.last_tsc_nsec = ns;
  902. kvm->arch.last_tsc_write = data;
  903. kvm->arch.last_tsc_offset = offset;
  904. kvm_x86_ops->write_tsc_offset(vcpu, offset);
  905. raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
  906. /* Reset of TSC must disable overshoot protection below */
  907. vcpu->arch.hv_clock.tsc_timestamp = 0;
  908. vcpu->arch.last_tsc_write = data;
  909. vcpu->arch.last_tsc_nsec = ns;
  910. }
  911. EXPORT_SYMBOL_GPL(kvm_write_tsc);
  912. static int kvm_guest_time_update(struct kvm_vcpu *v)
  913. {
  914. unsigned long flags;
  915. struct kvm_vcpu_arch *vcpu = &v->arch;
  916. void *shared_kaddr;
  917. unsigned long this_tsc_khz;
  918. s64 kernel_ns, max_kernel_ns;
  919. u64 tsc_timestamp;
  920. /* Keep irq disabled to prevent changes to the clock */
  921. local_irq_save(flags);
  922. kvm_get_msr(v, MSR_IA32_TSC, &tsc_timestamp);
  923. kernel_ns = get_kernel_ns();
  924. this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
  925. if (unlikely(this_tsc_khz == 0)) {
  926. local_irq_restore(flags);
  927. kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
  928. return 1;
  929. }
  930. /*
  931. * We may have to catch up the TSC to match elapsed wall clock
  932. * time for two reasons, even if kvmclock is used.
  933. * 1) CPU could have been running below the maximum TSC rate
  934. * 2) Broken TSC compensation resets the base at each VCPU
  935. * entry to avoid unknown leaps of TSC even when running
  936. * again on the same CPU. This may cause apparent elapsed
  937. * time to disappear, and the guest to stand still or run
  938. * very slowly.
  939. */
  940. if (vcpu->tsc_catchup) {
  941. u64 tsc = compute_guest_tsc(v, kernel_ns);
  942. if (tsc > tsc_timestamp) {
  943. kvm_x86_ops->adjust_tsc_offset(v, tsc - tsc_timestamp);
  944. tsc_timestamp = tsc;
  945. }
  946. }
  947. local_irq_restore(flags);
  948. if (!vcpu->time_page)
  949. return 0;
  950. /*
  951. * Time as measured by the TSC may go backwards when resetting the base
  952. * tsc_timestamp. The reason for this is that the TSC resolution is
  953. * higher than the resolution of the other clock scales. Thus, many
  954. * possible measurments of the TSC correspond to one measurement of any
  955. * other clock, and so a spread of values is possible. This is not a
  956. * problem for the computation of the nanosecond clock; with TSC rates
  957. * around 1GHZ, there can only be a few cycles which correspond to one
  958. * nanosecond value, and any path through this code will inevitably
  959. * take longer than that. However, with the kernel_ns value itself,
  960. * the precision may be much lower, down to HZ granularity. If the
  961. * first sampling of TSC against kernel_ns ends in the low part of the
  962. * range, and the second in the high end of the range, we can get:
  963. *
  964. * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
  965. *
  966. * As the sampling errors potentially range in the thousands of cycles,
  967. * it is possible such a time value has already been observed by the
  968. * guest. To protect against this, we must compute the system time as
  969. * observed by the guest and ensure the new system time is greater.
  970. */
  971. max_kernel_ns = 0;
  972. if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
  973. max_kernel_ns = vcpu->last_guest_tsc -
  974. vcpu->hv_clock.tsc_timestamp;
  975. max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
  976. vcpu->hv_clock.tsc_to_system_mul,
  977. vcpu->hv_clock.tsc_shift);
  978. max_kernel_ns += vcpu->last_kernel_ns;
  979. }
  980. if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
  981. kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
  982. &vcpu->hv_clock.tsc_shift,
  983. &vcpu->hv_clock.tsc_to_system_mul);
  984. vcpu->hw_tsc_khz = this_tsc_khz;
  985. }
  986. if (max_kernel_ns > kernel_ns)
  987. kernel_ns = max_kernel_ns;
  988. /* With all the info we got, fill in the values */
  989. vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
  990. vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
  991. vcpu->last_kernel_ns = kernel_ns;
  992. vcpu->last_guest_tsc = tsc_timestamp;
  993. vcpu->hv_clock.flags = 0;
  994. /*
  995. * The interface expects us to write an even number signaling that the
  996. * update is finished. Since the guest won't see the intermediate
  997. * state, we just increase by 2 at the end.
  998. */
  999. vcpu->hv_clock.version += 2;
  1000. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  1001. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  1002. sizeof(vcpu->hv_clock));
  1003. kunmap_atomic(shared_kaddr, KM_USER0);
  1004. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  1005. return 0;
  1006. }
  1007. static bool msr_mtrr_valid(unsigned msr)
  1008. {
  1009. switch (msr) {
  1010. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  1011. case MSR_MTRRfix64K_00000:
  1012. case MSR_MTRRfix16K_80000:
  1013. case MSR_MTRRfix16K_A0000:
  1014. case MSR_MTRRfix4K_C0000:
  1015. case MSR_MTRRfix4K_C8000:
  1016. case MSR_MTRRfix4K_D0000:
  1017. case MSR_MTRRfix4K_D8000:
  1018. case MSR_MTRRfix4K_E0000:
  1019. case MSR_MTRRfix4K_E8000:
  1020. case MSR_MTRRfix4K_F0000:
  1021. case MSR_MTRRfix4K_F8000:
  1022. case MSR_MTRRdefType:
  1023. case MSR_IA32_CR_PAT:
  1024. return true;
  1025. case 0x2f8:
  1026. return true;
  1027. }
  1028. return false;
  1029. }
  1030. static bool valid_pat_type(unsigned t)
  1031. {
  1032. return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
  1033. }
  1034. static bool valid_mtrr_type(unsigned t)
  1035. {
  1036. return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
  1037. }
  1038. static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1039. {
  1040. int i;
  1041. if (!msr_mtrr_valid(msr))
  1042. return false;
  1043. if (msr == MSR_IA32_CR_PAT) {
  1044. for (i = 0; i < 8; i++)
  1045. if (!valid_pat_type((data >> (i * 8)) & 0xff))
  1046. return false;
  1047. return true;
  1048. } else if (msr == MSR_MTRRdefType) {
  1049. if (data & ~0xcff)
  1050. return false;
  1051. return valid_mtrr_type(data & 0xff);
  1052. } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
  1053. for (i = 0; i < 8 ; i++)
  1054. if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
  1055. return false;
  1056. return true;
  1057. }
  1058. /* variable MTRRs */
  1059. return valid_mtrr_type(data & 0xff);
  1060. }
  1061. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1062. {
  1063. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  1064. if (!mtrr_valid(vcpu, msr, data))
  1065. return 1;
  1066. if (msr == MSR_MTRRdefType) {
  1067. vcpu->arch.mtrr_state.def_type = data;
  1068. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  1069. } else if (msr == MSR_MTRRfix64K_00000)
  1070. p[0] = data;
  1071. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  1072. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  1073. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  1074. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  1075. else if (msr == MSR_IA32_CR_PAT)
  1076. vcpu->arch.pat = data;
  1077. else { /* Variable MTRRs */
  1078. int idx, is_mtrr_mask;
  1079. u64 *pt;
  1080. idx = (msr - 0x200) / 2;
  1081. is_mtrr_mask = msr - 0x200 - 2 * idx;
  1082. if (!is_mtrr_mask)
  1083. pt =
  1084. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  1085. else
  1086. pt =
  1087. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  1088. *pt = data;
  1089. }
  1090. kvm_mmu_reset_context(vcpu);
  1091. return 0;
  1092. }
  1093. static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1094. {
  1095. u64 mcg_cap = vcpu->arch.mcg_cap;
  1096. unsigned bank_num = mcg_cap & 0xff;
  1097. switch (msr) {
  1098. case MSR_IA32_MCG_STATUS:
  1099. vcpu->arch.mcg_status = data;
  1100. break;
  1101. case MSR_IA32_MCG_CTL:
  1102. if (!(mcg_cap & MCG_CTL_P))
  1103. return 1;
  1104. if (data != 0 && data != ~(u64)0)
  1105. return -1;
  1106. vcpu->arch.mcg_ctl = data;
  1107. break;
  1108. default:
  1109. if (msr >= MSR_IA32_MC0_CTL &&
  1110. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  1111. u32 offset = msr - MSR_IA32_MC0_CTL;
  1112. /* only 0 or all 1s can be written to IA32_MCi_CTL
  1113. * some Linux kernels though clear bit 10 in bank 4 to
  1114. * workaround a BIOS/GART TBL issue on AMD K8s, ignore
  1115. * this to avoid an uncatched #GP in the guest
  1116. */
  1117. if ((offset & 0x3) == 0 &&
  1118. data != 0 && (data | (1 << 10)) != ~(u64)0)
  1119. return -1;
  1120. vcpu->arch.mce_banks[offset] = data;
  1121. break;
  1122. }
  1123. return 1;
  1124. }
  1125. return 0;
  1126. }
  1127. static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
  1128. {
  1129. struct kvm *kvm = vcpu->kvm;
  1130. int lm = is_long_mode(vcpu);
  1131. u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
  1132. : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
  1133. u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
  1134. : kvm->arch.xen_hvm_config.blob_size_32;
  1135. u32 page_num = data & ~PAGE_MASK;
  1136. u64 page_addr = data & PAGE_MASK;
  1137. u8 *page;
  1138. int r;
  1139. r = -E2BIG;
  1140. if (page_num >= blob_size)
  1141. goto out;
  1142. r = -ENOMEM;
  1143. page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  1144. if (!page)
  1145. goto out;
  1146. r = -EFAULT;
  1147. if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
  1148. goto out_free;
  1149. if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
  1150. goto out_free;
  1151. r = 0;
  1152. out_free:
  1153. kfree(page);
  1154. out:
  1155. return r;
  1156. }
  1157. static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
  1158. {
  1159. return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
  1160. }
  1161. static bool kvm_hv_msr_partition_wide(u32 msr)
  1162. {
  1163. bool r = false;
  1164. switch (msr) {
  1165. case HV_X64_MSR_GUEST_OS_ID:
  1166. case HV_X64_MSR_HYPERCALL:
  1167. r = true;
  1168. break;
  1169. }
  1170. return r;
  1171. }
  1172. static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1173. {
  1174. struct kvm *kvm = vcpu->kvm;
  1175. switch (msr) {
  1176. case HV_X64_MSR_GUEST_OS_ID:
  1177. kvm->arch.hv_guest_os_id = data;
  1178. /* setting guest os id to zero disables hypercall page */
  1179. if (!kvm->arch.hv_guest_os_id)
  1180. kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
  1181. break;
  1182. case HV_X64_MSR_HYPERCALL: {
  1183. u64 gfn;
  1184. unsigned long addr;
  1185. u8 instructions[4];
  1186. /* if guest os id is not set hypercall should remain disabled */
  1187. if (!kvm->arch.hv_guest_os_id)
  1188. break;
  1189. if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
  1190. kvm->arch.hv_hypercall = data;
  1191. break;
  1192. }
  1193. gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
  1194. addr = gfn_to_hva(kvm, gfn);
  1195. if (kvm_is_error_hva(addr))
  1196. return 1;
  1197. kvm_x86_ops->patch_hypercall(vcpu, instructions);
  1198. ((unsigned char *)instructions)[3] = 0xc3; /* ret */
  1199. if (copy_to_user((void __user *)addr, instructions, 4))
  1200. return 1;
  1201. kvm->arch.hv_hypercall = data;
  1202. break;
  1203. }
  1204. default:
  1205. pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  1206. "data 0x%llx\n", msr, data);
  1207. return 1;
  1208. }
  1209. return 0;
  1210. }
  1211. static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1212. {
  1213. switch (msr) {
  1214. case HV_X64_MSR_APIC_ASSIST_PAGE: {
  1215. unsigned long addr;
  1216. if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
  1217. vcpu->arch.hv_vapic = data;
  1218. break;
  1219. }
  1220. addr = gfn_to_hva(vcpu->kvm, data >>
  1221. HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
  1222. if (kvm_is_error_hva(addr))
  1223. return 1;
  1224. if (clear_user((void __user *)addr, PAGE_SIZE))
  1225. return 1;
  1226. vcpu->arch.hv_vapic = data;
  1227. break;
  1228. }
  1229. case HV_X64_MSR_EOI:
  1230. return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
  1231. case HV_X64_MSR_ICR:
  1232. return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
  1233. case HV_X64_MSR_TPR:
  1234. return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
  1235. default:
  1236. pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  1237. "data 0x%llx\n", msr, data);
  1238. return 1;
  1239. }
  1240. return 0;
  1241. }
  1242. static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
  1243. {
  1244. gpa_t gpa = data & ~0x3f;
  1245. /* Bits 2:5 are resrved, Should be zero */
  1246. if (data & 0x3c)
  1247. return 1;
  1248. vcpu->arch.apf.msr_val = data;
  1249. if (!(data & KVM_ASYNC_PF_ENABLED)) {
  1250. kvm_clear_async_pf_completion_queue(vcpu);
  1251. kvm_async_pf_hash_reset(vcpu);
  1252. return 0;
  1253. }
  1254. if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
  1255. return 1;
  1256. vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
  1257. kvm_async_pf_wakeup_all(vcpu);
  1258. return 0;
  1259. }
  1260. static void kvmclock_reset(struct kvm_vcpu *vcpu)
  1261. {
  1262. if (vcpu->arch.time_page) {
  1263. kvm_release_page_dirty(vcpu->arch.time_page);
  1264. vcpu->arch.time_page = NULL;
  1265. }
  1266. }
  1267. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1268. {
  1269. switch (msr) {
  1270. case MSR_EFER:
  1271. return set_efer(vcpu, data);
  1272. case MSR_K7_HWCR:
  1273. data &= ~(u64)0x40; /* ignore flush filter disable */
  1274. data &= ~(u64)0x100; /* ignore ignne emulation enable */
  1275. if (data != 0) {
  1276. pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
  1277. data);
  1278. return 1;
  1279. }
  1280. break;
  1281. case MSR_FAM10H_MMIO_CONF_BASE:
  1282. if (data != 0) {
  1283. pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
  1284. "0x%llx\n", data);
  1285. return 1;
  1286. }
  1287. break;
  1288. case MSR_AMD64_NB_CFG:
  1289. break;
  1290. case MSR_IA32_DEBUGCTLMSR:
  1291. if (!data) {
  1292. /* We support the non-activated case already */
  1293. break;
  1294. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  1295. /* Values other than LBR and BTF are vendor-specific,
  1296. thus reserved and should throw a #GP */
  1297. return 1;
  1298. }
  1299. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  1300. __func__, data);
  1301. break;
  1302. case MSR_IA32_UCODE_REV:
  1303. case MSR_IA32_UCODE_WRITE:
  1304. case MSR_VM_HSAVE_PA:
  1305. case MSR_AMD64_PATCH_LOADER:
  1306. break;
  1307. case 0x200 ... 0x2ff:
  1308. return set_msr_mtrr(vcpu, msr, data);
  1309. case MSR_IA32_APICBASE:
  1310. kvm_set_apic_base(vcpu, data);
  1311. break;
  1312. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1313. return kvm_x2apic_msr_write(vcpu, msr, data);
  1314. case MSR_IA32_MISC_ENABLE:
  1315. vcpu->arch.ia32_misc_enable_msr = data;
  1316. break;
  1317. case MSR_KVM_WALL_CLOCK_NEW:
  1318. case MSR_KVM_WALL_CLOCK:
  1319. vcpu->kvm->arch.wall_clock = data;
  1320. kvm_write_wall_clock(vcpu->kvm, data);
  1321. break;
  1322. case MSR_KVM_SYSTEM_TIME_NEW:
  1323. case MSR_KVM_SYSTEM_TIME: {
  1324. kvmclock_reset(vcpu);
  1325. vcpu->arch.time = data;
  1326. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  1327. /* we verify if the enable bit is set... */
  1328. if (!(data & 1))
  1329. break;
  1330. /* ...but clean it before doing the actual write */
  1331. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  1332. vcpu->arch.time_page =
  1333. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  1334. if (is_error_page(vcpu->arch.time_page)) {
  1335. kvm_release_page_clean(vcpu->arch.time_page);
  1336. vcpu->arch.time_page = NULL;
  1337. }
  1338. break;
  1339. }
  1340. case MSR_KVM_ASYNC_PF_EN:
  1341. if (kvm_pv_enable_async_pf(vcpu, data))
  1342. return 1;
  1343. break;
  1344. case MSR_IA32_MCG_CTL:
  1345. case MSR_IA32_MCG_STATUS:
  1346. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1347. return set_msr_mce(vcpu, msr, data);
  1348. /* Performance counters are not protected by a CPUID bit,
  1349. * so we should check all of them in the generic path for the sake of
  1350. * cross vendor migration.
  1351. * Writing a zero into the event select MSRs disables them,
  1352. * which we perfectly emulate ;-). Any other value should be at least
  1353. * reported, some guests depend on them.
  1354. */
  1355. case MSR_P6_EVNTSEL0:
  1356. case MSR_P6_EVNTSEL1:
  1357. case MSR_K7_EVNTSEL0:
  1358. case MSR_K7_EVNTSEL1:
  1359. case MSR_K7_EVNTSEL2:
  1360. case MSR_K7_EVNTSEL3:
  1361. if (data != 0)
  1362. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1363. "0x%x data 0x%llx\n", msr, data);
  1364. break;
  1365. /* at least RHEL 4 unconditionally writes to the perfctr registers,
  1366. * so we ignore writes to make it happy.
  1367. */
  1368. case MSR_P6_PERFCTR0:
  1369. case MSR_P6_PERFCTR1:
  1370. case MSR_K7_PERFCTR0:
  1371. case MSR_K7_PERFCTR1:
  1372. case MSR_K7_PERFCTR2:
  1373. case MSR_K7_PERFCTR3:
  1374. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1375. "0x%x data 0x%llx\n", msr, data);
  1376. break;
  1377. case MSR_K7_CLK_CTL:
  1378. /*
  1379. * Ignore all writes to this no longer documented MSR.
  1380. * Writes are only relevant for old K7 processors,
  1381. * all pre-dating SVM, but a recommended workaround from
  1382. * AMD for these chips. It is possible to speicify the
  1383. * affected processor models on the command line, hence
  1384. * the need to ignore the workaround.
  1385. */
  1386. break;
  1387. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  1388. if (kvm_hv_msr_partition_wide(msr)) {
  1389. int r;
  1390. mutex_lock(&vcpu->kvm->lock);
  1391. r = set_msr_hyperv_pw(vcpu, msr, data);
  1392. mutex_unlock(&vcpu->kvm->lock);
  1393. return r;
  1394. } else
  1395. return set_msr_hyperv(vcpu, msr, data);
  1396. break;
  1397. case MSR_IA32_BBL_CR_CTL3:
  1398. /* Drop writes to this legacy MSR -- see rdmsr
  1399. * counterpart for further detail.
  1400. */
  1401. pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
  1402. break;
  1403. default:
  1404. if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
  1405. return xen_hvm_config(vcpu, data);
  1406. if (!ignore_msrs) {
  1407. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
  1408. msr, data);
  1409. return 1;
  1410. } else {
  1411. pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
  1412. msr, data);
  1413. break;
  1414. }
  1415. }
  1416. return 0;
  1417. }
  1418. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1419. /*
  1420. * Reads an msr value (of 'msr_index') into 'pdata'.
  1421. * Returns 0 on success, non-0 otherwise.
  1422. * Assumes vcpu_load() was already called.
  1423. */
  1424. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1425. {
  1426. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  1427. }
  1428. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1429. {
  1430. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  1431. if (!msr_mtrr_valid(msr))
  1432. return 1;
  1433. if (msr == MSR_MTRRdefType)
  1434. *pdata = vcpu->arch.mtrr_state.def_type +
  1435. (vcpu->arch.mtrr_state.enabled << 10);
  1436. else if (msr == MSR_MTRRfix64K_00000)
  1437. *pdata = p[0];
  1438. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  1439. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  1440. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  1441. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  1442. else if (msr == MSR_IA32_CR_PAT)
  1443. *pdata = vcpu->arch.pat;
  1444. else { /* Variable MTRRs */
  1445. int idx, is_mtrr_mask;
  1446. u64 *pt;
  1447. idx = (msr - 0x200) / 2;
  1448. is_mtrr_mask = msr - 0x200 - 2 * idx;
  1449. if (!is_mtrr_mask)
  1450. pt =
  1451. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  1452. else
  1453. pt =
  1454. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  1455. *pdata = *pt;
  1456. }
  1457. return 0;
  1458. }
  1459. static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1460. {
  1461. u64 data;
  1462. u64 mcg_cap = vcpu->arch.mcg_cap;
  1463. unsigned bank_num = mcg_cap & 0xff;
  1464. switch (msr) {
  1465. case MSR_IA32_P5_MC_ADDR:
  1466. case MSR_IA32_P5_MC_TYPE:
  1467. data = 0;
  1468. break;
  1469. case MSR_IA32_MCG_CAP:
  1470. data = vcpu->arch.mcg_cap;
  1471. break;
  1472. case MSR_IA32_MCG_CTL:
  1473. if (!(mcg_cap & MCG_CTL_P))
  1474. return 1;
  1475. data = vcpu->arch.mcg_ctl;
  1476. break;
  1477. case MSR_IA32_MCG_STATUS:
  1478. data = vcpu->arch.mcg_status;
  1479. break;
  1480. default:
  1481. if (msr >= MSR_IA32_MC0_CTL &&
  1482. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  1483. u32 offset = msr - MSR_IA32_MC0_CTL;
  1484. data = vcpu->arch.mce_banks[offset];
  1485. break;
  1486. }
  1487. return 1;
  1488. }
  1489. *pdata = data;
  1490. return 0;
  1491. }
  1492. static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1493. {
  1494. u64 data = 0;
  1495. struct kvm *kvm = vcpu->kvm;
  1496. switch (msr) {
  1497. case HV_X64_MSR_GUEST_OS_ID:
  1498. data = kvm->arch.hv_guest_os_id;
  1499. break;
  1500. case HV_X64_MSR_HYPERCALL:
  1501. data = kvm->arch.hv_hypercall;
  1502. break;
  1503. default:
  1504. pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1505. return 1;
  1506. }
  1507. *pdata = data;
  1508. return 0;
  1509. }
  1510. static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1511. {
  1512. u64 data = 0;
  1513. switch (msr) {
  1514. case HV_X64_MSR_VP_INDEX: {
  1515. int r;
  1516. struct kvm_vcpu *v;
  1517. kvm_for_each_vcpu(r, v, vcpu->kvm)
  1518. if (v == vcpu)
  1519. data = r;
  1520. break;
  1521. }
  1522. case HV_X64_MSR_EOI:
  1523. return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
  1524. case HV_X64_MSR_ICR:
  1525. return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
  1526. case HV_X64_MSR_TPR:
  1527. return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
  1528. default:
  1529. pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1530. return 1;
  1531. }
  1532. *pdata = data;
  1533. return 0;
  1534. }
  1535. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1536. {
  1537. u64 data;
  1538. switch (msr) {
  1539. case MSR_IA32_PLATFORM_ID:
  1540. case MSR_IA32_UCODE_REV:
  1541. case MSR_IA32_EBL_CR_POWERON:
  1542. case MSR_IA32_DEBUGCTLMSR:
  1543. case MSR_IA32_LASTBRANCHFROMIP:
  1544. case MSR_IA32_LASTBRANCHTOIP:
  1545. case MSR_IA32_LASTINTFROMIP:
  1546. case MSR_IA32_LASTINTTOIP:
  1547. case MSR_K8_SYSCFG:
  1548. case MSR_K7_HWCR:
  1549. case MSR_VM_HSAVE_PA:
  1550. case MSR_P6_PERFCTR0:
  1551. case MSR_P6_PERFCTR1:
  1552. case MSR_P6_EVNTSEL0:
  1553. case MSR_P6_EVNTSEL1:
  1554. case MSR_K7_EVNTSEL0:
  1555. case MSR_K7_PERFCTR0:
  1556. case MSR_K8_INT_PENDING_MSG:
  1557. case MSR_AMD64_NB_CFG:
  1558. case MSR_FAM10H_MMIO_CONF_BASE:
  1559. data = 0;
  1560. break;
  1561. case MSR_MTRRcap:
  1562. data = 0x500 | KVM_NR_VAR_MTRR;
  1563. break;
  1564. case 0x200 ... 0x2ff:
  1565. return get_msr_mtrr(vcpu, msr, pdata);
  1566. case 0xcd: /* fsb frequency */
  1567. data = 3;
  1568. break;
  1569. /*
  1570. * MSR_EBC_FREQUENCY_ID
  1571. * Conservative value valid for even the basic CPU models.
  1572. * Models 0,1: 000 in bits 23:21 indicating a bus speed of
  1573. * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
  1574. * and 266MHz for model 3, or 4. Set Core Clock
  1575. * Frequency to System Bus Frequency Ratio to 1 (bits
  1576. * 31:24) even though these are only valid for CPU
  1577. * models > 2, however guests may end up dividing or
  1578. * multiplying by zero otherwise.
  1579. */
  1580. case MSR_EBC_FREQUENCY_ID:
  1581. data = 1 << 24;
  1582. break;
  1583. case MSR_IA32_APICBASE:
  1584. data = kvm_get_apic_base(vcpu);
  1585. break;
  1586. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1587. return kvm_x2apic_msr_read(vcpu, msr, pdata);
  1588. break;
  1589. case MSR_IA32_MISC_ENABLE:
  1590. data = vcpu->arch.ia32_misc_enable_msr;
  1591. break;
  1592. case MSR_IA32_PERF_STATUS:
  1593. /* TSC increment by tick */
  1594. data = 1000ULL;
  1595. /* CPU multiplier */
  1596. data |= (((uint64_t)4ULL) << 40);
  1597. break;
  1598. case MSR_EFER:
  1599. data = vcpu->arch.efer;
  1600. break;
  1601. case MSR_KVM_WALL_CLOCK:
  1602. case MSR_KVM_WALL_CLOCK_NEW:
  1603. data = vcpu->kvm->arch.wall_clock;
  1604. break;
  1605. case MSR_KVM_SYSTEM_TIME:
  1606. case MSR_KVM_SYSTEM_TIME_NEW:
  1607. data = vcpu->arch.time;
  1608. break;
  1609. case MSR_KVM_ASYNC_PF_EN:
  1610. data = vcpu->arch.apf.msr_val;
  1611. break;
  1612. case MSR_IA32_P5_MC_ADDR:
  1613. case MSR_IA32_P5_MC_TYPE:
  1614. case MSR_IA32_MCG_CAP:
  1615. case MSR_IA32_MCG_CTL:
  1616. case MSR_IA32_MCG_STATUS:
  1617. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1618. return get_msr_mce(vcpu, msr, pdata);
  1619. case MSR_K7_CLK_CTL:
  1620. /*
  1621. * Provide expected ramp-up count for K7. All other
  1622. * are set to zero, indicating minimum divisors for
  1623. * every field.
  1624. *
  1625. * This prevents guest kernels on AMD host with CPU
  1626. * type 6, model 8 and higher from exploding due to
  1627. * the rdmsr failing.
  1628. */
  1629. data = 0x20000000;
  1630. break;
  1631. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  1632. if (kvm_hv_msr_partition_wide(msr)) {
  1633. int r;
  1634. mutex_lock(&vcpu->kvm->lock);
  1635. r = get_msr_hyperv_pw(vcpu, msr, pdata);
  1636. mutex_unlock(&vcpu->kvm->lock);
  1637. return r;
  1638. } else
  1639. return get_msr_hyperv(vcpu, msr, pdata);
  1640. break;
  1641. case MSR_IA32_BBL_CR_CTL3:
  1642. /* This legacy MSR exists but isn't fully documented in current
  1643. * silicon. It is however accessed by winxp in very narrow
  1644. * scenarios where it sets bit #19, itself documented as
  1645. * a "reserved" bit. Best effort attempt to source coherent
  1646. * read data here should the balance of the register be
  1647. * interpreted by the guest:
  1648. *
  1649. * L2 cache control register 3: 64GB range, 256KB size,
  1650. * enabled, latency 0x1, configured
  1651. */
  1652. data = 0xbe702111;
  1653. break;
  1654. default:
  1655. if (!ignore_msrs) {
  1656. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  1657. return 1;
  1658. } else {
  1659. pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
  1660. data = 0;
  1661. }
  1662. break;
  1663. }
  1664. *pdata = data;
  1665. return 0;
  1666. }
  1667. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1668. /*
  1669. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1670. *
  1671. * @return number of msrs set successfully.
  1672. */
  1673. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1674. struct kvm_msr_entry *entries,
  1675. int (*do_msr)(struct kvm_vcpu *vcpu,
  1676. unsigned index, u64 *data))
  1677. {
  1678. int i, idx;
  1679. idx = srcu_read_lock(&vcpu->kvm->srcu);
  1680. for (i = 0; i < msrs->nmsrs; ++i)
  1681. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1682. break;
  1683. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  1684. return i;
  1685. }
  1686. /*
  1687. * Read or write a bunch of msrs. Parameters are user addresses.
  1688. *
  1689. * @return number of msrs set successfully.
  1690. */
  1691. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1692. int (*do_msr)(struct kvm_vcpu *vcpu,
  1693. unsigned index, u64 *data),
  1694. int writeback)
  1695. {
  1696. struct kvm_msrs msrs;
  1697. struct kvm_msr_entry *entries;
  1698. int r, n;
  1699. unsigned size;
  1700. r = -EFAULT;
  1701. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1702. goto out;
  1703. r = -E2BIG;
  1704. if (msrs.nmsrs >= MAX_IO_MSRS)
  1705. goto out;
  1706. r = -ENOMEM;
  1707. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1708. entries = kmalloc(size, GFP_KERNEL);
  1709. if (!entries)
  1710. goto out;
  1711. r = -EFAULT;
  1712. if (copy_from_user(entries, user_msrs->entries, size))
  1713. goto out_free;
  1714. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1715. if (r < 0)
  1716. goto out_free;
  1717. r = -EFAULT;
  1718. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1719. goto out_free;
  1720. r = n;
  1721. out_free:
  1722. kfree(entries);
  1723. out:
  1724. return r;
  1725. }
  1726. int kvm_dev_ioctl_check_extension(long ext)
  1727. {
  1728. int r;
  1729. switch (ext) {
  1730. case KVM_CAP_IRQCHIP:
  1731. case KVM_CAP_HLT:
  1732. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  1733. case KVM_CAP_SET_TSS_ADDR:
  1734. case KVM_CAP_EXT_CPUID:
  1735. case KVM_CAP_CLOCKSOURCE:
  1736. case KVM_CAP_PIT:
  1737. case KVM_CAP_NOP_IO_DELAY:
  1738. case KVM_CAP_MP_STATE:
  1739. case KVM_CAP_SYNC_MMU:
  1740. case KVM_CAP_USER_NMI:
  1741. case KVM_CAP_REINJECT_CONTROL:
  1742. case KVM_CAP_IRQ_INJECT_STATUS:
  1743. case KVM_CAP_ASSIGN_DEV_IRQ:
  1744. case KVM_CAP_IRQFD:
  1745. case KVM_CAP_IOEVENTFD:
  1746. case KVM_CAP_PIT2:
  1747. case KVM_CAP_PIT_STATE2:
  1748. case KVM_CAP_SET_IDENTITY_MAP_ADDR:
  1749. case KVM_CAP_XEN_HVM:
  1750. case KVM_CAP_ADJUST_CLOCK:
  1751. case KVM_CAP_VCPU_EVENTS:
  1752. case KVM_CAP_HYPERV:
  1753. case KVM_CAP_HYPERV_VAPIC:
  1754. case KVM_CAP_HYPERV_SPIN:
  1755. case KVM_CAP_PCI_SEGMENT:
  1756. case KVM_CAP_DEBUGREGS:
  1757. case KVM_CAP_X86_ROBUST_SINGLESTEP:
  1758. case KVM_CAP_XSAVE:
  1759. case KVM_CAP_ASYNC_PF:
  1760. r = 1;
  1761. break;
  1762. case KVM_CAP_COALESCED_MMIO:
  1763. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  1764. break;
  1765. case KVM_CAP_VAPIC:
  1766. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  1767. break;
  1768. case KVM_CAP_NR_VCPUS:
  1769. r = KVM_MAX_VCPUS;
  1770. break;
  1771. case KVM_CAP_NR_MEMSLOTS:
  1772. r = KVM_MEMORY_SLOTS;
  1773. break;
  1774. case KVM_CAP_PV_MMU: /* obsolete */
  1775. r = 0;
  1776. break;
  1777. case KVM_CAP_IOMMU:
  1778. r = iommu_found();
  1779. break;
  1780. case KVM_CAP_MCE:
  1781. r = KVM_MAX_MCE_BANKS;
  1782. break;
  1783. case KVM_CAP_XCRS:
  1784. r = cpu_has_xsave;
  1785. break;
  1786. default:
  1787. r = 0;
  1788. break;
  1789. }
  1790. return r;
  1791. }
  1792. long kvm_arch_dev_ioctl(struct file *filp,
  1793. unsigned int ioctl, unsigned long arg)
  1794. {
  1795. void __user *argp = (void __user *)arg;
  1796. long r;
  1797. switch (ioctl) {
  1798. case KVM_GET_MSR_INDEX_LIST: {
  1799. struct kvm_msr_list __user *user_msr_list = argp;
  1800. struct kvm_msr_list msr_list;
  1801. unsigned n;
  1802. r = -EFAULT;
  1803. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1804. goto out;
  1805. n = msr_list.nmsrs;
  1806. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  1807. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1808. goto out;
  1809. r = -E2BIG;
  1810. if (n < msr_list.nmsrs)
  1811. goto out;
  1812. r = -EFAULT;
  1813. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1814. num_msrs_to_save * sizeof(u32)))
  1815. goto out;
  1816. if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
  1817. &emulated_msrs,
  1818. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  1819. goto out;
  1820. r = 0;
  1821. break;
  1822. }
  1823. case KVM_GET_SUPPORTED_CPUID: {
  1824. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1825. struct kvm_cpuid2 cpuid;
  1826. r = -EFAULT;
  1827. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1828. goto out;
  1829. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  1830. cpuid_arg->entries);
  1831. if (r)
  1832. goto out;
  1833. r = -EFAULT;
  1834. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1835. goto out;
  1836. r = 0;
  1837. break;
  1838. }
  1839. case KVM_X86_GET_MCE_CAP_SUPPORTED: {
  1840. u64 mce_cap;
  1841. mce_cap = KVM_MCE_CAP_SUPPORTED;
  1842. r = -EFAULT;
  1843. if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
  1844. goto out;
  1845. r = 0;
  1846. break;
  1847. }
  1848. default:
  1849. r = -EINVAL;
  1850. }
  1851. out:
  1852. return r;
  1853. }
  1854. static void wbinvd_ipi(void *garbage)
  1855. {
  1856. wbinvd();
  1857. }
  1858. static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
  1859. {
  1860. return vcpu->kvm->arch.iommu_domain &&
  1861. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
  1862. }
  1863. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1864. {
  1865. /* Address WBINVD may be executed by guest */
  1866. if (need_emulate_wbinvd(vcpu)) {
  1867. if (kvm_x86_ops->has_wbinvd_exit())
  1868. cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
  1869. else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
  1870. smp_call_function_single(vcpu->cpu,
  1871. wbinvd_ipi, NULL, 1);
  1872. }
  1873. kvm_x86_ops->vcpu_load(vcpu, cpu);
  1874. if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
  1875. /* Make sure TSC doesn't go backwards */
  1876. s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
  1877. native_read_tsc() - vcpu->arch.last_host_tsc;
  1878. if (tsc_delta < 0)
  1879. mark_tsc_unstable("KVM discovered backwards TSC");
  1880. if (check_tsc_unstable()) {
  1881. kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
  1882. vcpu->arch.tsc_catchup = 1;
  1883. }
  1884. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  1885. if (vcpu->cpu != cpu)
  1886. kvm_migrate_timers(vcpu);
  1887. vcpu->cpu = cpu;
  1888. }
  1889. }
  1890. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1891. {
  1892. kvm_x86_ops->vcpu_put(vcpu);
  1893. kvm_put_guest_fpu(vcpu);
  1894. vcpu->arch.last_host_tsc = native_read_tsc();
  1895. }
  1896. static int is_efer_nx(void)
  1897. {
  1898. unsigned long long efer = 0;
  1899. rdmsrl_safe(MSR_EFER, &efer);
  1900. return efer & EFER_NX;
  1901. }
  1902. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  1903. {
  1904. int i;
  1905. struct kvm_cpuid_entry2 *e, *entry;
  1906. entry = NULL;
  1907. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  1908. e = &vcpu->arch.cpuid_entries[i];
  1909. if (e->function == 0x80000001) {
  1910. entry = e;
  1911. break;
  1912. }
  1913. }
  1914. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  1915. entry->edx &= ~(1 << 20);
  1916. printk(KERN_INFO "kvm: guest NX capability removed\n");
  1917. }
  1918. }
  1919. /* when an old userspace process fills a new kernel module */
  1920. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  1921. struct kvm_cpuid *cpuid,
  1922. struct kvm_cpuid_entry __user *entries)
  1923. {
  1924. int r, i;
  1925. struct kvm_cpuid_entry *cpuid_entries;
  1926. r = -E2BIG;
  1927. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1928. goto out;
  1929. r = -ENOMEM;
  1930. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  1931. if (!cpuid_entries)
  1932. goto out;
  1933. r = -EFAULT;
  1934. if (copy_from_user(cpuid_entries, entries,
  1935. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  1936. goto out_free;
  1937. for (i = 0; i < cpuid->nent; i++) {
  1938. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  1939. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  1940. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  1941. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  1942. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  1943. vcpu->arch.cpuid_entries[i].index = 0;
  1944. vcpu->arch.cpuid_entries[i].flags = 0;
  1945. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  1946. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  1947. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  1948. }
  1949. vcpu->arch.cpuid_nent = cpuid->nent;
  1950. cpuid_fix_nx_cap(vcpu);
  1951. r = 0;
  1952. kvm_apic_set_version(vcpu);
  1953. kvm_x86_ops->cpuid_update(vcpu);
  1954. update_cpuid(vcpu);
  1955. out_free:
  1956. vfree(cpuid_entries);
  1957. out:
  1958. return r;
  1959. }
  1960. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  1961. struct kvm_cpuid2 *cpuid,
  1962. struct kvm_cpuid_entry2 __user *entries)
  1963. {
  1964. int r;
  1965. r = -E2BIG;
  1966. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1967. goto out;
  1968. r = -EFAULT;
  1969. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  1970. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  1971. goto out;
  1972. vcpu->arch.cpuid_nent = cpuid->nent;
  1973. kvm_apic_set_version(vcpu);
  1974. kvm_x86_ops->cpuid_update(vcpu);
  1975. update_cpuid(vcpu);
  1976. return 0;
  1977. out:
  1978. return r;
  1979. }
  1980. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  1981. struct kvm_cpuid2 *cpuid,
  1982. struct kvm_cpuid_entry2 __user *entries)
  1983. {
  1984. int r;
  1985. r = -E2BIG;
  1986. if (cpuid->nent < vcpu->arch.cpuid_nent)
  1987. goto out;
  1988. r = -EFAULT;
  1989. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  1990. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  1991. goto out;
  1992. return 0;
  1993. out:
  1994. cpuid->nent = vcpu->arch.cpuid_nent;
  1995. return r;
  1996. }
  1997. static void cpuid_mask(u32 *word, int wordnum)
  1998. {
  1999. *word &= boot_cpu_data.x86_capability[wordnum];
  2000. }
  2001. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  2002. u32 index)
  2003. {
  2004. entry->function = function;
  2005. entry->index = index;
  2006. cpuid_count(entry->function, entry->index,
  2007. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  2008. entry->flags = 0;
  2009. }
  2010. #define F(x) bit(X86_FEATURE_##x)
  2011. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  2012. u32 index, int *nent, int maxnent)
  2013. {
  2014. unsigned f_nx = is_efer_nx() ? F(NX) : 0;
  2015. #ifdef CONFIG_X86_64
  2016. unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
  2017. ? F(GBPAGES) : 0;
  2018. unsigned f_lm = F(LM);
  2019. #else
  2020. unsigned f_gbpages = 0;
  2021. unsigned f_lm = 0;
  2022. #endif
  2023. unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
  2024. /* cpuid 1.edx */
  2025. const u32 kvm_supported_word0_x86_features =
  2026. F(FPU) | F(VME) | F(DE) | F(PSE) |
  2027. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  2028. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
  2029. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  2030. F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
  2031. 0 /* Reserved, DS, ACPI */ | F(MMX) |
  2032. F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
  2033. 0 /* HTT, TM, Reserved, PBE */;
  2034. /* cpuid 0x80000001.edx */
  2035. const u32 kvm_supported_word1_x86_features =
  2036. F(FPU) | F(VME) | F(DE) | F(PSE) |
  2037. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  2038. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
  2039. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  2040. F(PAT) | F(PSE36) | 0 /* Reserved */ |
  2041. f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
  2042. F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
  2043. 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
  2044. /* cpuid 1.ecx */
  2045. const u32 kvm_supported_word4_x86_features =
  2046. F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
  2047. 0 /* DS-CPL, VMX, SMX, EST */ |
  2048. 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
  2049. 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
  2050. 0 /* Reserved, DCA */ | F(XMM4_1) |
  2051. F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
  2052. 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
  2053. F(F16C);
  2054. /* cpuid 0x80000001.ecx */
  2055. const u32 kvm_supported_word6_x86_features =
  2056. F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
  2057. F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
  2058. F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(XOP) |
  2059. 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
  2060. /* all calls to cpuid_count() should be made on the same cpu */
  2061. get_cpu();
  2062. do_cpuid_1_ent(entry, function, index);
  2063. ++*nent;
  2064. switch (function) {
  2065. case 0:
  2066. entry->eax = min(entry->eax, (u32)0xd);
  2067. break;
  2068. case 1:
  2069. entry->edx &= kvm_supported_word0_x86_features;
  2070. cpuid_mask(&entry->edx, 0);
  2071. entry->ecx &= kvm_supported_word4_x86_features;
  2072. cpuid_mask(&entry->ecx, 4);
  2073. /* we support x2apic emulation even if host does not support
  2074. * it since we emulate x2apic in software */
  2075. entry->ecx |= F(X2APIC);
  2076. break;
  2077. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  2078. * may return different values. This forces us to get_cpu() before
  2079. * issuing the first command, and also to emulate this annoying behavior
  2080. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  2081. case 2: {
  2082. int t, times = entry->eax & 0xff;
  2083. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  2084. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  2085. for (t = 1; t < times && *nent < maxnent; ++t) {
  2086. do_cpuid_1_ent(&entry[t], function, 0);
  2087. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  2088. ++*nent;
  2089. }
  2090. break;
  2091. }
  2092. /* function 4 and 0xb have additional index. */
  2093. case 4: {
  2094. int i, cache_type;
  2095. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2096. /* read more entries until cache_type is zero */
  2097. for (i = 1; *nent < maxnent; ++i) {
  2098. cache_type = entry[i - 1].eax & 0x1f;
  2099. if (!cache_type)
  2100. break;
  2101. do_cpuid_1_ent(&entry[i], function, i);
  2102. entry[i].flags |=
  2103. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2104. ++*nent;
  2105. }
  2106. break;
  2107. }
  2108. case 0xb: {
  2109. int i, level_type;
  2110. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2111. /* read more entries until level_type is zero */
  2112. for (i = 1; *nent < maxnent; ++i) {
  2113. level_type = entry[i - 1].ecx & 0xff00;
  2114. if (!level_type)
  2115. break;
  2116. do_cpuid_1_ent(&entry[i], function, i);
  2117. entry[i].flags |=
  2118. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2119. ++*nent;
  2120. }
  2121. break;
  2122. }
  2123. case 0xd: {
  2124. int i;
  2125. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2126. for (i = 1; *nent < maxnent && i < 64; ++i) {
  2127. if (entry[i].eax == 0)
  2128. continue;
  2129. do_cpuid_1_ent(&entry[i], function, i);
  2130. entry[i].flags |=
  2131. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2132. ++*nent;
  2133. }
  2134. break;
  2135. }
  2136. case KVM_CPUID_SIGNATURE: {
  2137. char signature[12] = "KVMKVMKVM\0\0";
  2138. u32 *sigptr = (u32 *)signature;
  2139. entry->eax = 0;
  2140. entry->ebx = sigptr[0];
  2141. entry->ecx = sigptr[1];
  2142. entry->edx = sigptr[2];
  2143. break;
  2144. }
  2145. case KVM_CPUID_FEATURES:
  2146. entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
  2147. (1 << KVM_FEATURE_NOP_IO_DELAY) |
  2148. (1 << KVM_FEATURE_CLOCKSOURCE2) |
  2149. (1 << KVM_FEATURE_ASYNC_PF) |
  2150. (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
  2151. entry->ebx = 0;
  2152. entry->ecx = 0;
  2153. entry->edx = 0;
  2154. break;
  2155. case 0x80000000:
  2156. entry->eax = min(entry->eax, 0x8000001a);
  2157. break;
  2158. case 0x80000001:
  2159. entry->edx &= kvm_supported_word1_x86_features;
  2160. cpuid_mask(&entry->edx, 1);
  2161. entry->ecx &= kvm_supported_word6_x86_features;
  2162. cpuid_mask(&entry->ecx, 6);
  2163. break;
  2164. }
  2165. kvm_x86_ops->set_supported_cpuid(function, entry);
  2166. put_cpu();
  2167. }
  2168. #undef F
  2169. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  2170. struct kvm_cpuid_entry2 __user *entries)
  2171. {
  2172. struct kvm_cpuid_entry2 *cpuid_entries;
  2173. int limit, nent = 0, r = -E2BIG;
  2174. u32 func;
  2175. if (cpuid->nent < 1)
  2176. goto out;
  2177. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  2178. cpuid->nent = KVM_MAX_CPUID_ENTRIES;
  2179. r = -ENOMEM;
  2180. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  2181. if (!cpuid_entries)
  2182. goto out;
  2183. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  2184. limit = cpuid_entries[0].eax;
  2185. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  2186. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  2187. &nent, cpuid->nent);
  2188. r = -E2BIG;
  2189. if (nent >= cpuid->nent)
  2190. goto out_free;
  2191. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  2192. limit = cpuid_entries[nent - 1].eax;
  2193. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  2194. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  2195. &nent, cpuid->nent);
  2196. r = -E2BIG;
  2197. if (nent >= cpuid->nent)
  2198. goto out_free;
  2199. do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
  2200. cpuid->nent);
  2201. r = -E2BIG;
  2202. if (nent >= cpuid->nent)
  2203. goto out_free;
  2204. do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
  2205. cpuid->nent);
  2206. r = -E2BIG;
  2207. if (nent >= cpuid->nent)
  2208. goto out_free;
  2209. r = -EFAULT;
  2210. if (copy_to_user(entries, cpuid_entries,
  2211. nent * sizeof(struct kvm_cpuid_entry2)))
  2212. goto out_free;
  2213. cpuid->nent = nent;
  2214. r = 0;
  2215. out_free:
  2216. vfree(cpuid_entries);
  2217. out:
  2218. return r;
  2219. }
  2220. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  2221. struct kvm_lapic_state *s)
  2222. {
  2223. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  2224. return 0;
  2225. }
  2226. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  2227. struct kvm_lapic_state *s)
  2228. {
  2229. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  2230. kvm_apic_post_state_restore(vcpu);
  2231. update_cr8_intercept(vcpu);
  2232. return 0;
  2233. }
  2234. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  2235. struct kvm_interrupt *irq)
  2236. {
  2237. if (irq->irq < 0 || irq->irq >= 256)
  2238. return -EINVAL;
  2239. if (irqchip_in_kernel(vcpu->kvm))
  2240. return -ENXIO;
  2241. kvm_queue_interrupt(vcpu, irq->irq, false);
  2242. kvm_make_request(KVM_REQ_EVENT, vcpu);
  2243. return 0;
  2244. }
  2245. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  2246. {
  2247. kvm_inject_nmi(vcpu);
  2248. return 0;
  2249. }
  2250. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  2251. struct kvm_tpr_access_ctl *tac)
  2252. {
  2253. if (tac->flags)
  2254. return -EINVAL;
  2255. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  2256. return 0;
  2257. }
  2258. static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
  2259. u64 mcg_cap)
  2260. {
  2261. int r;
  2262. unsigned bank_num = mcg_cap & 0xff, bank;
  2263. r = -EINVAL;
  2264. if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
  2265. goto out;
  2266. if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
  2267. goto out;
  2268. r = 0;
  2269. vcpu->arch.mcg_cap = mcg_cap;
  2270. /* Init IA32_MCG_CTL to all 1s */
  2271. if (mcg_cap & MCG_CTL_P)
  2272. vcpu->arch.mcg_ctl = ~(u64)0;
  2273. /* Init IA32_MCi_CTL to all 1s */
  2274. for (bank = 0; bank < bank_num; bank++)
  2275. vcpu->arch.mce_banks[bank*4] = ~(u64)0;
  2276. out:
  2277. return r;
  2278. }
  2279. static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
  2280. struct kvm_x86_mce *mce)
  2281. {
  2282. u64 mcg_cap = vcpu->arch.mcg_cap;
  2283. unsigned bank_num = mcg_cap & 0xff;
  2284. u64 *banks = vcpu->arch.mce_banks;
  2285. if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
  2286. return -EINVAL;
  2287. /*
  2288. * if IA32_MCG_CTL is not all 1s, the uncorrected error
  2289. * reporting is disabled
  2290. */
  2291. if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
  2292. vcpu->arch.mcg_ctl != ~(u64)0)
  2293. return 0;
  2294. banks += 4 * mce->bank;
  2295. /*
  2296. * if IA32_MCi_CTL is not all 1s, the uncorrected error
  2297. * reporting is disabled for the bank
  2298. */
  2299. if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
  2300. return 0;
  2301. if (mce->status & MCI_STATUS_UC) {
  2302. if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
  2303. !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
  2304. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2305. return 0;
  2306. }
  2307. if (banks[1] & MCI_STATUS_VAL)
  2308. mce->status |= MCI_STATUS_OVER;
  2309. banks[2] = mce->addr;
  2310. banks[3] = mce->misc;
  2311. vcpu->arch.mcg_status = mce->mcg_status;
  2312. banks[1] = mce->status;
  2313. kvm_queue_exception(vcpu, MC_VECTOR);
  2314. } else if (!(banks[1] & MCI_STATUS_VAL)
  2315. || !(banks[1] & MCI_STATUS_UC)) {
  2316. if (banks[1] & MCI_STATUS_VAL)
  2317. mce->status |= MCI_STATUS_OVER;
  2318. banks[2] = mce->addr;
  2319. banks[3] = mce->misc;
  2320. banks[1] = mce->status;
  2321. } else
  2322. banks[1] |= MCI_STATUS_OVER;
  2323. return 0;
  2324. }
  2325. static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
  2326. struct kvm_vcpu_events *events)
  2327. {
  2328. events->exception.injected =
  2329. vcpu->arch.exception.pending &&
  2330. !kvm_exception_is_soft(vcpu->arch.exception.nr);
  2331. events->exception.nr = vcpu->arch.exception.nr;
  2332. events->exception.has_error_code = vcpu->arch.exception.has_error_code;
  2333. events->exception.pad = 0;
  2334. events->exception.error_code = vcpu->arch.exception.error_code;
  2335. events->interrupt.injected =
  2336. vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
  2337. events->interrupt.nr = vcpu->arch.interrupt.nr;
  2338. events->interrupt.soft = 0;
  2339. events->interrupt.shadow =
  2340. kvm_x86_ops->get_interrupt_shadow(vcpu,
  2341. KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
  2342. events->nmi.injected = vcpu->arch.nmi_injected;
  2343. events->nmi.pending = vcpu->arch.nmi_pending;
  2344. events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
  2345. events->nmi.pad = 0;
  2346. events->sipi_vector = vcpu->arch.sipi_vector;
  2347. events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
  2348. | KVM_VCPUEVENT_VALID_SIPI_VECTOR
  2349. | KVM_VCPUEVENT_VALID_SHADOW);
  2350. memset(&events->reserved, 0, sizeof(events->reserved));
  2351. }
  2352. static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
  2353. struct kvm_vcpu_events *events)
  2354. {
  2355. if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
  2356. | KVM_VCPUEVENT_VALID_SIPI_VECTOR
  2357. | KVM_VCPUEVENT_VALID_SHADOW))
  2358. return -EINVAL;
  2359. vcpu->arch.exception.pending = events->exception.injected;
  2360. vcpu->arch.exception.nr = events->exception.nr;
  2361. vcpu->arch.exception.has_error_code = events->exception.has_error_code;
  2362. vcpu->arch.exception.error_code = events->exception.error_code;
  2363. vcpu->arch.interrupt.pending = events->interrupt.injected;
  2364. vcpu->arch.interrupt.nr = events->interrupt.nr;
  2365. vcpu->arch.interrupt.soft = events->interrupt.soft;
  2366. if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
  2367. kvm_x86_ops->set_interrupt_shadow(vcpu,
  2368. events->interrupt.shadow);
  2369. vcpu->arch.nmi_injected = events->nmi.injected;
  2370. if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
  2371. vcpu->arch.nmi_pending = events->nmi.pending;
  2372. kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
  2373. if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
  2374. vcpu->arch.sipi_vector = events->sipi_vector;
  2375. kvm_make_request(KVM_REQ_EVENT, vcpu);
  2376. return 0;
  2377. }
  2378. static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
  2379. struct kvm_debugregs *dbgregs)
  2380. {
  2381. memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
  2382. dbgregs->dr6 = vcpu->arch.dr6;
  2383. dbgregs->dr7 = vcpu->arch.dr7;
  2384. dbgregs->flags = 0;
  2385. memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
  2386. }
  2387. static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
  2388. struct kvm_debugregs *dbgregs)
  2389. {
  2390. if (dbgregs->flags)
  2391. return -EINVAL;
  2392. memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
  2393. vcpu->arch.dr6 = dbgregs->dr6;
  2394. vcpu->arch.dr7 = dbgregs->dr7;
  2395. return 0;
  2396. }
  2397. static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
  2398. struct kvm_xsave *guest_xsave)
  2399. {
  2400. if (cpu_has_xsave)
  2401. memcpy(guest_xsave->region,
  2402. &vcpu->arch.guest_fpu.state->xsave,
  2403. xstate_size);
  2404. else {
  2405. memcpy(guest_xsave->region,
  2406. &vcpu->arch.guest_fpu.state->fxsave,
  2407. sizeof(struct i387_fxsave_struct));
  2408. *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
  2409. XSTATE_FPSSE;
  2410. }
  2411. }
  2412. static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
  2413. struct kvm_xsave *guest_xsave)
  2414. {
  2415. u64 xstate_bv =
  2416. *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
  2417. if (cpu_has_xsave)
  2418. memcpy(&vcpu->arch.guest_fpu.state->xsave,
  2419. guest_xsave->region, xstate_size);
  2420. else {
  2421. if (xstate_bv & ~XSTATE_FPSSE)
  2422. return -EINVAL;
  2423. memcpy(&vcpu->arch.guest_fpu.state->fxsave,
  2424. guest_xsave->region, sizeof(struct i387_fxsave_struct));
  2425. }
  2426. return 0;
  2427. }
  2428. static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
  2429. struct kvm_xcrs *guest_xcrs)
  2430. {
  2431. if (!cpu_has_xsave) {
  2432. guest_xcrs->nr_xcrs = 0;
  2433. return;
  2434. }
  2435. guest_xcrs->nr_xcrs = 1;
  2436. guest_xcrs->flags = 0;
  2437. guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
  2438. guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
  2439. }
  2440. static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
  2441. struct kvm_xcrs *guest_xcrs)
  2442. {
  2443. int i, r = 0;
  2444. if (!cpu_has_xsave)
  2445. return -EINVAL;
  2446. if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
  2447. return -EINVAL;
  2448. for (i = 0; i < guest_xcrs->nr_xcrs; i++)
  2449. /* Only support XCR0 currently */
  2450. if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
  2451. r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
  2452. guest_xcrs->xcrs[0].value);
  2453. break;
  2454. }
  2455. if (r)
  2456. r = -EINVAL;
  2457. return r;
  2458. }
  2459. long kvm_arch_vcpu_ioctl(struct file *filp,
  2460. unsigned int ioctl, unsigned long arg)
  2461. {
  2462. struct kvm_vcpu *vcpu = filp->private_data;
  2463. void __user *argp = (void __user *)arg;
  2464. int r;
  2465. union {
  2466. struct kvm_lapic_state *lapic;
  2467. struct kvm_xsave *xsave;
  2468. struct kvm_xcrs *xcrs;
  2469. void *buffer;
  2470. } u;
  2471. u.buffer = NULL;
  2472. switch (ioctl) {
  2473. case KVM_GET_LAPIC: {
  2474. r = -EINVAL;
  2475. if (!vcpu->arch.apic)
  2476. goto out;
  2477. u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  2478. r = -ENOMEM;
  2479. if (!u.lapic)
  2480. goto out;
  2481. r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
  2482. if (r)
  2483. goto out;
  2484. r = -EFAULT;
  2485. if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
  2486. goto out;
  2487. r = 0;
  2488. break;
  2489. }
  2490. case KVM_SET_LAPIC: {
  2491. r = -EINVAL;
  2492. if (!vcpu->arch.apic)
  2493. goto out;
  2494. u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  2495. r = -ENOMEM;
  2496. if (!u.lapic)
  2497. goto out;
  2498. r = -EFAULT;
  2499. if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
  2500. goto out;
  2501. r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
  2502. if (r)
  2503. goto out;
  2504. r = 0;
  2505. break;
  2506. }
  2507. case KVM_INTERRUPT: {
  2508. struct kvm_interrupt irq;
  2509. r = -EFAULT;
  2510. if (copy_from_user(&irq, argp, sizeof irq))
  2511. goto out;
  2512. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2513. if (r)
  2514. goto out;
  2515. r = 0;
  2516. break;
  2517. }
  2518. case KVM_NMI: {
  2519. r = kvm_vcpu_ioctl_nmi(vcpu);
  2520. if (r)
  2521. goto out;
  2522. r = 0;
  2523. break;
  2524. }
  2525. case KVM_SET_CPUID: {
  2526. struct kvm_cpuid __user *cpuid_arg = argp;
  2527. struct kvm_cpuid cpuid;
  2528. r = -EFAULT;
  2529. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2530. goto out;
  2531. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  2532. if (r)
  2533. goto out;
  2534. break;
  2535. }
  2536. case KVM_SET_CPUID2: {
  2537. struct kvm_cpuid2 __user *cpuid_arg = argp;
  2538. struct kvm_cpuid2 cpuid;
  2539. r = -EFAULT;
  2540. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2541. goto out;
  2542. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  2543. cpuid_arg->entries);
  2544. if (r)
  2545. goto out;
  2546. break;
  2547. }
  2548. case KVM_GET_CPUID2: {
  2549. struct kvm_cpuid2 __user *cpuid_arg = argp;
  2550. struct kvm_cpuid2 cpuid;
  2551. r = -EFAULT;
  2552. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2553. goto out;
  2554. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  2555. cpuid_arg->entries);
  2556. if (r)
  2557. goto out;
  2558. r = -EFAULT;
  2559. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  2560. goto out;
  2561. r = 0;
  2562. break;
  2563. }
  2564. case KVM_GET_MSRS:
  2565. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  2566. break;
  2567. case KVM_SET_MSRS:
  2568. r = msr_io(vcpu, argp, do_set_msr, 0);
  2569. break;
  2570. case KVM_TPR_ACCESS_REPORTING: {
  2571. struct kvm_tpr_access_ctl tac;
  2572. r = -EFAULT;
  2573. if (copy_from_user(&tac, argp, sizeof tac))
  2574. goto out;
  2575. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  2576. if (r)
  2577. goto out;
  2578. r = -EFAULT;
  2579. if (copy_to_user(argp, &tac, sizeof tac))
  2580. goto out;
  2581. r = 0;
  2582. break;
  2583. };
  2584. case KVM_SET_VAPIC_ADDR: {
  2585. struct kvm_vapic_addr va;
  2586. r = -EINVAL;
  2587. if (!irqchip_in_kernel(vcpu->kvm))
  2588. goto out;
  2589. r = -EFAULT;
  2590. if (copy_from_user(&va, argp, sizeof va))
  2591. goto out;
  2592. r = 0;
  2593. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  2594. break;
  2595. }
  2596. case KVM_X86_SETUP_MCE: {
  2597. u64 mcg_cap;
  2598. r = -EFAULT;
  2599. if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
  2600. goto out;
  2601. r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
  2602. break;
  2603. }
  2604. case KVM_X86_SET_MCE: {
  2605. struct kvm_x86_mce mce;
  2606. r = -EFAULT;
  2607. if (copy_from_user(&mce, argp, sizeof mce))
  2608. goto out;
  2609. r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
  2610. break;
  2611. }
  2612. case KVM_GET_VCPU_EVENTS: {
  2613. struct kvm_vcpu_events events;
  2614. kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
  2615. r = -EFAULT;
  2616. if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
  2617. break;
  2618. r = 0;
  2619. break;
  2620. }
  2621. case KVM_SET_VCPU_EVENTS: {
  2622. struct kvm_vcpu_events events;
  2623. r = -EFAULT;
  2624. if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
  2625. break;
  2626. r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
  2627. break;
  2628. }
  2629. case KVM_GET_DEBUGREGS: {
  2630. struct kvm_debugregs dbgregs;
  2631. kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
  2632. r = -EFAULT;
  2633. if (copy_to_user(argp, &dbgregs,
  2634. sizeof(struct kvm_debugregs)))
  2635. break;
  2636. r = 0;
  2637. break;
  2638. }
  2639. case KVM_SET_DEBUGREGS: {
  2640. struct kvm_debugregs dbgregs;
  2641. r = -EFAULT;
  2642. if (copy_from_user(&dbgregs, argp,
  2643. sizeof(struct kvm_debugregs)))
  2644. break;
  2645. r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
  2646. break;
  2647. }
  2648. case KVM_GET_XSAVE: {
  2649. u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
  2650. r = -ENOMEM;
  2651. if (!u.xsave)
  2652. break;
  2653. kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
  2654. r = -EFAULT;
  2655. if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
  2656. break;
  2657. r = 0;
  2658. break;
  2659. }
  2660. case KVM_SET_XSAVE: {
  2661. u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
  2662. r = -ENOMEM;
  2663. if (!u.xsave)
  2664. break;
  2665. r = -EFAULT;
  2666. if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
  2667. break;
  2668. r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
  2669. break;
  2670. }
  2671. case KVM_GET_XCRS: {
  2672. u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
  2673. r = -ENOMEM;
  2674. if (!u.xcrs)
  2675. break;
  2676. kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
  2677. r = -EFAULT;
  2678. if (copy_to_user(argp, u.xcrs,
  2679. sizeof(struct kvm_xcrs)))
  2680. break;
  2681. r = 0;
  2682. break;
  2683. }
  2684. case KVM_SET_XCRS: {
  2685. u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
  2686. r = -ENOMEM;
  2687. if (!u.xcrs)
  2688. break;
  2689. r = -EFAULT;
  2690. if (copy_from_user(u.xcrs, argp,
  2691. sizeof(struct kvm_xcrs)))
  2692. break;
  2693. r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
  2694. break;
  2695. }
  2696. default:
  2697. r = -EINVAL;
  2698. }
  2699. out:
  2700. kfree(u.buffer);
  2701. return r;
  2702. }
  2703. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  2704. {
  2705. int ret;
  2706. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  2707. return -1;
  2708. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  2709. return ret;
  2710. }
  2711. static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
  2712. u64 ident_addr)
  2713. {
  2714. kvm->arch.ept_identity_map_addr = ident_addr;
  2715. return 0;
  2716. }
  2717. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  2718. u32 kvm_nr_mmu_pages)
  2719. {
  2720. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  2721. return -EINVAL;
  2722. mutex_lock(&kvm->slots_lock);
  2723. spin_lock(&kvm->mmu_lock);
  2724. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  2725. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  2726. spin_unlock(&kvm->mmu_lock);
  2727. mutex_unlock(&kvm->slots_lock);
  2728. return 0;
  2729. }
  2730. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  2731. {
  2732. return kvm->arch.n_max_mmu_pages;
  2733. }
  2734. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2735. {
  2736. int r;
  2737. r = 0;
  2738. switch (chip->chip_id) {
  2739. case KVM_IRQCHIP_PIC_MASTER:
  2740. memcpy(&chip->chip.pic,
  2741. &pic_irqchip(kvm)->pics[0],
  2742. sizeof(struct kvm_pic_state));
  2743. break;
  2744. case KVM_IRQCHIP_PIC_SLAVE:
  2745. memcpy(&chip->chip.pic,
  2746. &pic_irqchip(kvm)->pics[1],
  2747. sizeof(struct kvm_pic_state));
  2748. break;
  2749. case KVM_IRQCHIP_IOAPIC:
  2750. r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
  2751. break;
  2752. default:
  2753. r = -EINVAL;
  2754. break;
  2755. }
  2756. return r;
  2757. }
  2758. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2759. {
  2760. int r;
  2761. r = 0;
  2762. switch (chip->chip_id) {
  2763. case KVM_IRQCHIP_PIC_MASTER:
  2764. spin_lock(&pic_irqchip(kvm)->lock);
  2765. memcpy(&pic_irqchip(kvm)->pics[0],
  2766. &chip->chip.pic,
  2767. sizeof(struct kvm_pic_state));
  2768. spin_unlock(&pic_irqchip(kvm)->lock);
  2769. break;
  2770. case KVM_IRQCHIP_PIC_SLAVE:
  2771. spin_lock(&pic_irqchip(kvm)->lock);
  2772. memcpy(&pic_irqchip(kvm)->pics[1],
  2773. &chip->chip.pic,
  2774. sizeof(struct kvm_pic_state));
  2775. spin_unlock(&pic_irqchip(kvm)->lock);
  2776. break;
  2777. case KVM_IRQCHIP_IOAPIC:
  2778. r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
  2779. break;
  2780. default:
  2781. r = -EINVAL;
  2782. break;
  2783. }
  2784. kvm_pic_update_irq(pic_irqchip(kvm));
  2785. return r;
  2786. }
  2787. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2788. {
  2789. int r = 0;
  2790. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2791. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  2792. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2793. return r;
  2794. }
  2795. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2796. {
  2797. int r = 0;
  2798. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2799. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  2800. kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
  2801. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2802. return r;
  2803. }
  2804. static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2805. {
  2806. int r = 0;
  2807. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2808. memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
  2809. sizeof(ps->channels));
  2810. ps->flags = kvm->arch.vpit->pit_state.flags;
  2811. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2812. memset(&ps->reserved, 0, sizeof(ps->reserved));
  2813. return r;
  2814. }
  2815. static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2816. {
  2817. int r = 0, start = 0;
  2818. u32 prev_legacy, cur_legacy;
  2819. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2820. prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2821. cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2822. if (!prev_legacy && cur_legacy)
  2823. start = 1;
  2824. memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
  2825. sizeof(kvm->arch.vpit->pit_state.channels));
  2826. kvm->arch.vpit->pit_state.flags = ps->flags;
  2827. kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
  2828. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2829. return r;
  2830. }
  2831. static int kvm_vm_ioctl_reinject(struct kvm *kvm,
  2832. struct kvm_reinject_control *control)
  2833. {
  2834. if (!kvm->arch.vpit)
  2835. return -ENXIO;
  2836. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2837. kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
  2838. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2839. return 0;
  2840. }
  2841. /*
  2842. * Get (and clear) the dirty memory log for a memory slot.
  2843. */
  2844. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  2845. struct kvm_dirty_log *log)
  2846. {
  2847. int r, i;
  2848. struct kvm_memory_slot *memslot;
  2849. unsigned long n;
  2850. unsigned long is_dirty = 0;
  2851. mutex_lock(&kvm->slots_lock);
  2852. r = -EINVAL;
  2853. if (log->slot >= KVM_MEMORY_SLOTS)
  2854. goto out;
  2855. memslot = &kvm->memslots->memslots[log->slot];
  2856. r = -ENOENT;
  2857. if (!memslot->dirty_bitmap)
  2858. goto out;
  2859. n = kvm_dirty_bitmap_bytes(memslot);
  2860. for (i = 0; !is_dirty && i < n/sizeof(long); i++)
  2861. is_dirty = memslot->dirty_bitmap[i];
  2862. /* If nothing is dirty, don't bother messing with page tables. */
  2863. if (is_dirty) {
  2864. struct kvm_memslots *slots, *old_slots;
  2865. unsigned long *dirty_bitmap;
  2866. dirty_bitmap = memslot->dirty_bitmap_head;
  2867. if (memslot->dirty_bitmap == dirty_bitmap)
  2868. dirty_bitmap += n / sizeof(long);
  2869. memset(dirty_bitmap, 0, n);
  2870. r = -ENOMEM;
  2871. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  2872. if (!slots)
  2873. goto out;
  2874. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  2875. slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
  2876. slots->generation++;
  2877. old_slots = kvm->memslots;
  2878. rcu_assign_pointer(kvm->memslots, slots);
  2879. synchronize_srcu_expedited(&kvm->srcu);
  2880. dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
  2881. kfree(old_slots);
  2882. spin_lock(&kvm->mmu_lock);
  2883. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  2884. spin_unlock(&kvm->mmu_lock);
  2885. r = -EFAULT;
  2886. if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
  2887. goto out;
  2888. } else {
  2889. r = -EFAULT;
  2890. if (clear_user(log->dirty_bitmap, n))
  2891. goto out;
  2892. }
  2893. r = 0;
  2894. out:
  2895. mutex_unlock(&kvm->slots_lock);
  2896. return r;
  2897. }
  2898. long kvm_arch_vm_ioctl(struct file *filp,
  2899. unsigned int ioctl, unsigned long arg)
  2900. {
  2901. struct kvm *kvm = filp->private_data;
  2902. void __user *argp = (void __user *)arg;
  2903. int r = -ENOTTY;
  2904. /*
  2905. * This union makes it completely explicit to gcc-3.x
  2906. * that these two variables' stack usage should be
  2907. * combined, not added together.
  2908. */
  2909. union {
  2910. struct kvm_pit_state ps;
  2911. struct kvm_pit_state2 ps2;
  2912. struct kvm_pit_config pit_config;
  2913. } u;
  2914. switch (ioctl) {
  2915. case KVM_SET_TSS_ADDR:
  2916. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  2917. if (r < 0)
  2918. goto out;
  2919. break;
  2920. case KVM_SET_IDENTITY_MAP_ADDR: {
  2921. u64 ident_addr;
  2922. r = -EFAULT;
  2923. if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
  2924. goto out;
  2925. r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
  2926. if (r < 0)
  2927. goto out;
  2928. break;
  2929. }
  2930. case KVM_SET_NR_MMU_PAGES:
  2931. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  2932. if (r)
  2933. goto out;
  2934. break;
  2935. case KVM_GET_NR_MMU_PAGES:
  2936. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  2937. break;
  2938. case KVM_CREATE_IRQCHIP: {
  2939. struct kvm_pic *vpic;
  2940. mutex_lock(&kvm->lock);
  2941. r = -EEXIST;
  2942. if (kvm->arch.vpic)
  2943. goto create_irqchip_unlock;
  2944. r = -ENOMEM;
  2945. vpic = kvm_create_pic(kvm);
  2946. if (vpic) {
  2947. r = kvm_ioapic_init(kvm);
  2948. if (r) {
  2949. mutex_lock(&kvm->slots_lock);
  2950. kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
  2951. &vpic->dev);
  2952. mutex_unlock(&kvm->slots_lock);
  2953. kfree(vpic);
  2954. goto create_irqchip_unlock;
  2955. }
  2956. } else
  2957. goto create_irqchip_unlock;
  2958. smp_wmb();
  2959. kvm->arch.vpic = vpic;
  2960. smp_wmb();
  2961. r = kvm_setup_default_irq_routing(kvm);
  2962. if (r) {
  2963. mutex_lock(&kvm->slots_lock);
  2964. mutex_lock(&kvm->irq_lock);
  2965. kvm_ioapic_destroy(kvm);
  2966. kvm_destroy_pic(kvm);
  2967. mutex_unlock(&kvm->irq_lock);
  2968. mutex_unlock(&kvm->slots_lock);
  2969. }
  2970. create_irqchip_unlock:
  2971. mutex_unlock(&kvm->lock);
  2972. break;
  2973. }
  2974. case KVM_CREATE_PIT:
  2975. u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
  2976. goto create_pit;
  2977. case KVM_CREATE_PIT2:
  2978. r = -EFAULT;
  2979. if (copy_from_user(&u.pit_config, argp,
  2980. sizeof(struct kvm_pit_config)))
  2981. goto out;
  2982. create_pit:
  2983. mutex_lock(&kvm->slots_lock);
  2984. r = -EEXIST;
  2985. if (kvm->arch.vpit)
  2986. goto create_pit_unlock;
  2987. r = -ENOMEM;
  2988. kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
  2989. if (kvm->arch.vpit)
  2990. r = 0;
  2991. create_pit_unlock:
  2992. mutex_unlock(&kvm->slots_lock);
  2993. break;
  2994. case KVM_IRQ_LINE_STATUS:
  2995. case KVM_IRQ_LINE: {
  2996. struct kvm_irq_level irq_event;
  2997. r = -EFAULT;
  2998. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  2999. goto out;
  3000. r = -ENXIO;
  3001. if (irqchip_in_kernel(kvm)) {
  3002. __s32 status;
  3003. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  3004. irq_event.irq, irq_event.level);
  3005. if (ioctl == KVM_IRQ_LINE_STATUS) {
  3006. r = -EFAULT;
  3007. irq_event.status = status;
  3008. if (copy_to_user(argp, &irq_event,
  3009. sizeof irq_event))
  3010. goto out;
  3011. }
  3012. r = 0;
  3013. }
  3014. break;
  3015. }
  3016. case KVM_GET_IRQCHIP: {
  3017. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  3018. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  3019. r = -ENOMEM;
  3020. if (!chip)
  3021. goto out;
  3022. r = -EFAULT;
  3023. if (copy_from_user(chip, argp, sizeof *chip))
  3024. goto get_irqchip_out;
  3025. r = -ENXIO;
  3026. if (!irqchip_in_kernel(kvm))
  3027. goto get_irqchip_out;
  3028. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  3029. if (r)
  3030. goto get_irqchip_out;
  3031. r = -EFAULT;
  3032. if (copy_to_user(argp, chip, sizeof *chip))
  3033. goto get_irqchip_out;
  3034. r = 0;
  3035. get_irqchip_out:
  3036. kfree(chip);
  3037. if (r)
  3038. goto out;
  3039. break;
  3040. }
  3041. case KVM_SET_IRQCHIP: {
  3042. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  3043. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  3044. r = -ENOMEM;
  3045. if (!chip)
  3046. goto out;
  3047. r = -EFAULT;
  3048. if (copy_from_user(chip, argp, sizeof *chip))
  3049. goto set_irqchip_out;
  3050. r = -ENXIO;
  3051. if (!irqchip_in_kernel(kvm))
  3052. goto set_irqchip_out;
  3053. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  3054. if (r)
  3055. goto set_irqchip_out;
  3056. r = 0;
  3057. set_irqchip_out:
  3058. kfree(chip);
  3059. if (r)
  3060. goto out;
  3061. break;
  3062. }
  3063. case KVM_GET_PIT: {
  3064. r = -EFAULT;
  3065. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  3066. goto out;
  3067. r = -ENXIO;
  3068. if (!kvm->arch.vpit)
  3069. goto out;
  3070. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  3071. if (r)
  3072. goto out;
  3073. r = -EFAULT;
  3074. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  3075. goto out;
  3076. r = 0;
  3077. break;
  3078. }
  3079. case KVM_SET_PIT: {
  3080. r = -EFAULT;
  3081. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  3082. goto out;
  3083. r = -ENXIO;
  3084. if (!kvm->arch.vpit)
  3085. goto out;
  3086. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  3087. if (r)
  3088. goto out;
  3089. r = 0;
  3090. break;
  3091. }
  3092. case KVM_GET_PIT2: {
  3093. r = -ENXIO;
  3094. if (!kvm->arch.vpit)
  3095. goto out;
  3096. r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
  3097. if (r)
  3098. goto out;
  3099. r = -EFAULT;
  3100. if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
  3101. goto out;
  3102. r = 0;
  3103. break;
  3104. }
  3105. case KVM_SET_PIT2: {
  3106. r = -EFAULT;
  3107. if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
  3108. goto out;
  3109. r = -ENXIO;
  3110. if (!kvm->arch.vpit)
  3111. goto out;
  3112. r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
  3113. if (r)
  3114. goto out;
  3115. r = 0;
  3116. break;
  3117. }
  3118. case KVM_REINJECT_CONTROL: {
  3119. struct kvm_reinject_control control;
  3120. r = -EFAULT;
  3121. if (copy_from_user(&control, argp, sizeof(control)))
  3122. goto out;
  3123. r = kvm_vm_ioctl_reinject(kvm, &control);
  3124. if (r)
  3125. goto out;
  3126. r = 0;
  3127. break;
  3128. }
  3129. case KVM_XEN_HVM_CONFIG: {
  3130. r = -EFAULT;
  3131. if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
  3132. sizeof(struct kvm_xen_hvm_config)))
  3133. goto out;
  3134. r = -EINVAL;
  3135. if (kvm->arch.xen_hvm_config.flags)
  3136. goto out;
  3137. r = 0;
  3138. break;
  3139. }
  3140. case KVM_SET_CLOCK: {
  3141. struct kvm_clock_data user_ns;
  3142. u64 now_ns;
  3143. s64 delta;
  3144. r = -EFAULT;
  3145. if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
  3146. goto out;
  3147. r = -EINVAL;
  3148. if (user_ns.flags)
  3149. goto out;
  3150. r = 0;
  3151. local_irq_disable();
  3152. now_ns = get_kernel_ns();
  3153. delta = user_ns.clock - now_ns;
  3154. local_irq_enable();
  3155. kvm->arch.kvmclock_offset = delta;
  3156. break;
  3157. }
  3158. case KVM_GET_CLOCK: {
  3159. struct kvm_clock_data user_ns;
  3160. u64 now_ns;
  3161. local_irq_disable();
  3162. now_ns = get_kernel_ns();
  3163. user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
  3164. local_irq_enable();
  3165. user_ns.flags = 0;
  3166. memset(&user_ns.pad, 0, sizeof(user_ns.pad));
  3167. r = -EFAULT;
  3168. if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
  3169. goto out;
  3170. r = 0;
  3171. break;
  3172. }
  3173. default:
  3174. ;
  3175. }
  3176. out:
  3177. return r;
  3178. }
  3179. static void kvm_init_msr_list(void)
  3180. {
  3181. u32 dummy[2];
  3182. unsigned i, j;
  3183. /* skip the first msrs in the list. KVM-specific */
  3184. for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
  3185. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  3186. continue;
  3187. if (j < i)
  3188. msrs_to_save[j] = msrs_to_save[i];
  3189. j++;
  3190. }
  3191. num_msrs_to_save = j;
  3192. }
  3193. static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
  3194. const void *v)
  3195. {
  3196. int handled = 0;
  3197. int n;
  3198. do {
  3199. n = min(len, 8);
  3200. if (!(vcpu->arch.apic &&
  3201. !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
  3202. && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
  3203. break;
  3204. handled += n;
  3205. addr += n;
  3206. len -= n;
  3207. v += n;
  3208. } while (len);
  3209. return handled;
  3210. }
  3211. static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
  3212. {
  3213. int handled = 0;
  3214. int n;
  3215. do {
  3216. n = min(len, 8);
  3217. if (!(vcpu->arch.apic &&
  3218. !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
  3219. && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
  3220. break;
  3221. trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
  3222. handled += n;
  3223. addr += n;
  3224. len -= n;
  3225. v += n;
  3226. } while (len);
  3227. return handled;
  3228. }
  3229. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  3230. struct kvm_segment *var, int seg)
  3231. {
  3232. kvm_x86_ops->set_segment(vcpu, var, seg);
  3233. }
  3234. void kvm_get_segment(struct kvm_vcpu *vcpu,
  3235. struct kvm_segment *var, int seg)
  3236. {
  3237. kvm_x86_ops->get_segment(vcpu, var, seg);
  3238. }
  3239. static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
  3240. {
  3241. return gpa;
  3242. }
  3243. static gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
  3244. {
  3245. gpa_t t_gpa;
  3246. struct x86_exception exception;
  3247. BUG_ON(!mmu_is_nested(vcpu));
  3248. /* NPT walks are always user-walks */
  3249. access |= PFERR_USER_MASK;
  3250. t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
  3251. return t_gpa;
  3252. }
  3253. gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
  3254. struct x86_exception *exception)
  3255. {
  3256. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3257. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
  3258. }
  3259. gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
  3260. struct x86_exception *exception)
  3261. {
  3262. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3263. access |= PFERR_FETCH_MASK;
  3264. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
  3265. }
  3266. gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
  3267. struct x86_exception *exception)
  3268. {
  3269. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3270. access |= PFERR_WRITE_MASK;
  3271. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
  3272. }
  3273. /* uses this to access any guest's mapped memory without checking CPL */
  3274. gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
  3275. struct x86_exception *exception)
  3276. {
  3277. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
  3278. }
  3279. static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
  3280. struct kvm_vcpu *vcpu, u32 access,
  3281. struct x86_exception *exception)
  3282. {
  3283. void *data = val;
  3284. int r = X86EMUL_CONTINUE;
  3285. while (bytes) {
  3286. gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
  3287. exception);
  3288. unsigned offset = addr & (PAGE_SIZE-1);
  3289. unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
  3290. int ret;
  3291. if (gpa == UNMAPPED_GVA)
  3292. return X86EMUL_PROPAGATE_FAULT;
  3293. ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
  3294. if (ret < 0) {
  3295. r = X86EMUL_IO_NEEDED;
  3296. goto out;
  3297. }
  3298. bytes -= toread;
  3299. data += toread;
  3300. addr += toread;
  3301. }
  3302. out:
  3303. return r;
  3304. }
  3305. /* used for instruction fetching */
  3306. static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
  3307. struct kvm_vcpu *vcpu,
  3308. struct x86_exception *exception)
  3309. {
  3310. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3311. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
  3312. access | PFERR_FETCH_MASK,
  3313. exception);
  3314. }
  3315. static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
  3316. struct kvm_vcpu *vcpu,
  3317. struct x86_exception *exception)
  3318. {
  3319. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3320. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
  3321. exception);
  3322. }
  3323. static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
  3324. struct kvm_vcpu *vcpu,
  3325. struct x86_exception *exception)
  3326. {
  3327. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
  3328. }
  3329. static int kvm_write_guest_virt_system(gva_t addr, void *val,
  3330. unsigned int bytes,
  3331. struct kvm_vcpu *vcpu,
  3332. struct x86_exception *exception)
  3333. {
  3334. void *data = val;
  3335. int r = X86EMUL_CONTINUE;
  3336. while (bytes) {
  3337. gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
  3338. PFERR_WRITE_MASK,
  3339. exception);
  3340. unsigned offset = addr & (PAGE_SIZE-1);
  3341. unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
  3342. int ret;
  3343. if (gpa == UNMAPPED_GVA)
  3344. return X86EMUL_PROPAGATE_FAULT;
  3345. ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
  3346. if (ret < 0) {
  3347. r = X86EMUL_IO_NEEDED;
  3348. goto out;
  3349. }
  3350. bytes -= towrite;
  3351. data += towrite;
  3352. addr += towrite;
  3353. }
  3354. out:
  3355. return r;
  3356. }
  3357. static int emulator_read_emulated(unsigned long addr,
  3358. void *val,
  3359. unsigned int bytes,
  3360. struct x86_exception *exception,
  3361. struct kvm_vcpu *vcpu)
  3362. {
  3363. gpa_t gpa;
  3364. int handled;
  3365. if (vcpu->mmio_read_completed) {
  3366. memcpy(val, vcpu->mmio_data, bytes);
  3367. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
  3368. vcpu->mmio_phys_addr, *(u64 *)val);
  3369. vcpu->mmio_read_completed = 0;
  3370. return X86EMUL_CONTINUE;
  3371. }
  3372. gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, exception);
  3373. if (gpa == UNMAPPED_GVA)
  3374. return X86EMUL_PROPAGATE_FAULT;
  3375. /* For APIC access vmexit */
  3376. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3377. goto mmio;
  3378. if (kvm_read_guest_virt(addr, val, bytes, vcpu, exception)
  3379. == X86EMUL_CONTINUE)
  3380. return X86EMUL_CONTINUE;
  3381. mmio:
  3382. /*
  3383. * Is this MMIO handled locally?
  3384. */
  3385. handled = vcpu_mmio_read(vcpu, gpa, bytes, val);
  3386. if (handled == bytes)
  3387. return X86EMUL_CONTINUE;
  3388. gpa += handled;
  3389. bytes -= handled;
  3390. val += handled;
  3391. trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
  3392. vcpu->mmio_needed = 1;
  3393. vcpu->run->exit_reason = KVM_EXIT_MMIO;
  3394. vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
  3395. vcpu->run->mmio.len = vcpu->mmio_size = bytes;
  3396. vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0;
  3397. return X86EMUL_IO_NEEDED;
  3398. }
  3399. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  3400. const void *val, int bytes)
  3401. {
  3402. int ret;
  3403. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  3404. if (ret < 0)
  3405. return 0;
  3406. kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
  3407. return 1;
  3408. }
  3409. static int emulator_write_emulated_onepage(unsigned long addr,
  3410. const void *val,
  3411. unsigned int bytes,
  3412. struct x86_exception *exception,
  3413. struct kvm_vcpu *vcpu)
  3414. {
  3415. gpa_t gpa;
  3416. int handled;
  3417. gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, exception);
  3418. if (gpa == UNMAPPED_GVA)
  3419. return X86EMUL_PROPAGATE_FAULT;
  3420. /* For APIC access vmexit */
  3421. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3422. goto mmio;
  3423. if (emulator_write_phys(vcpu, gpa, val, bytes))
  3424. return X86EMUL_CONTINUE;
  3425. mmio:
  3426. trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
  3427. /*
  3428. * Is this MMIO handled locally?
  3429. */
  3430. handled = vcpu_mmio_write(vcpu, gpa, bytes, val);
  3431. if (handled == bytes)
  3432. return X86EMUL_CONTINUE;
  3433. gpa += handled;
  3434. bytes -= handled;
  3435. val += handled;
  3436. vcpu->mmio_needed = 1;
  3437. vcpu->run->exit_reason = KVM_EXIT_MMIO;
  3438. vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
  3439. vcpu->run->mmio.len = vcpu->mmio_size = bytes;
  3440. vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1;
  3441. memcpy(vcpu->run->mmio.data, val, bytes);
  3442. return X86EMUL_CONTINUE;
  3443. }
  3444. int emulator_write_emulated(unsigned long addr,
  3445. const void *val,
  3446. unsigned int bytes,
  3447. struct x86_exception *exception,
  3448. struct kvm_vcpu *vcpu)
  3449. {
  3450. /* Crossing a page boundary? */
  3451. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  3452. int rc, now;
  3453. now = -addr & ~PAGE_MASK;
  3454. rc = emulator_write_emulated_onepage(addr, val, now, exception,
  3455. vcpu);
  3456. if (rc != X86EMUL_CONTINUE)
  3457. return rc;
  3458. addr += now;
  3459. val += now;
  3460. bytes -= now;
  3461. }
  3462. return emulator_write_emulated_onepage(addr, val, bytes, exception,
  3463. vcpu);
  3464. }
  3465. #define CMPXCHG_TYPE(t, ptr, old, new) \
  3466. (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
  3467. #ifdef CONFIG_X86_64
  3468. # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
  3469. #else
  3470. # define CMPXCHG64(ptr, old, new) \
  3471. (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
  3472. #endif
  3473. static int emulator_cmpxchg_emulated(unsigned long addr,
  3474. const void *old,
  3475. const void *new,
  3476. unsigned int bytes,
  3477. struct x86_exception *exception,
  3478. struct kvm_vcpu *vcpu)
  3479. {
  3480. gpa_t gpa;
  3481. struct page *page;
  3482. char *kaddr;
  3483. bool exchanged;
  3484. /* guests cmpxchg8b have to be emulated atomically */
  3485. if (bytes > 8 || (bytes & (bytes - 1)))
  3486. goto emul_write;
  3487. gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
  3488. if (gpa == UNMAPPED_GVA ||
  3489. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3490. goto emul_write;
  3491. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  3492. goto emul_write;
  3493. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  3494. if (is_error_page(page)) {
  3495. kvm_release_page_clean(page);
  3496. goto emul_write;
  3497. }
  3498. kaddr = kmap_atomic(page, KM_USER0);
  3499. kaddr += offset_in_page(gpa);
  3500. switch (bytes) {
  3501. case 1:
  3502. exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
  3503. break;
  3504. case 2:
  3505. exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
  3506. break;
  3507. case 4:
  3508. exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
  3509. break;
  3510. case 8:
  3511. exchanged = CMPXCHG64(kaddr, old, new);
  3512. break;
  3513. default:
  3514. BUG();
  3515. }
  3516. kunmap_atomic(kaddr, KM_USER0);
  3517. kvm_release_page_dirty(page);
  3518. if (!exchanged)
  3519. return X86EMUL_CMPXCHG_FAILED;
  3520. kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
  3521. return X86EMUL_CONTINUE;
  3522. emul_write:
  3523. printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
  3524. return emulator_write_emulated(addr, new, bytes, exception, vcpu);
  3525. }
  3526. static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
  3527. {
  3528. /* TODO: String I/O for in kernel device */
  3529. int r;
  3530. if (vcpu->arch.pio.in)
  3531. r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
  3532. vcpu->arch.pio.size, pd);
  3533. else
  3534. r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
  3535. vcpu->arch.pio.port, vcpu->arch.pio.size,
  3536. pd);
  3537. return r;
  3538. }
  3539. static int emulator_pio_in_emulated(int size, unsigned short port, void *val,
  3540. unsigned int count, struct kvm_vcpu *vcpu)
  3541. {
  3542. if (vcpu->arch.pio.count)
  3543. goto data_avail;
  3544. trace_kvm_pio(0, port, size, count);
  3545. vcpu->arch.pio.port = port;
  3546. vcpu->arch.pio.in = 1;
  3547. vcpu->arch.pio.count = count;
  3548. vcpu->arch.pio.size = size;
  3549. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  3550. data_avail:
  3551. memcpy(val, vcpu->arch.pio_data, size * count);
  3552. vcpu->arch.pio.count = 0;
  3553. return 1;
  3554. }
  3555. vcpu->run->exit_reason = KVM_EXIT_IO;
  3556. vcpu->run->io.direction = KVM_EXIT_IO_IN;
  3557. vcpu->run->io.size = size;
  3558. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  3559. vcpu->run->io.count = count;
  3560. vcpu->run->io.port = port;
  3561. return 0;
  3562. }
  3563. static int emulator_pio_out_emulated(int size, unsigned short port,
  3564. const void *val, unsigned int count,
  3565. struct kvm_vcpu *vcpu)
  3566. {
  3567. trace_kvm_pio(1, port, size, count);
  3568. vcpu->arch.pio.port = port;
  3569. vcpu->arch.pio.in = 0;
  3570. vcpu->arch.pio.count = count;
  3571. vcpu->arch.pio.size = size;
  3572. memcpy(vcpu->arch.pio_data, val, size * count);
  3573. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  3574. vcpu->arch.pio.count = 0;
  3575. return 1;
  3576. }
  3577. vcpu->run->exit_reason = KVM_EXIT_IO;
  3578. vcpu->run->io.direction = KVM_EXIT_IO_OUT;
  3579. vcpu->run->io.size = size;
  3580. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  3581. vcpu->run->io.count = count;
  3582. vcpu->run->io.port = port;
  3583. return 0;
  3584. }
  3585. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  3586. {
  3587. return kvm_x86_ops->get_segment_base(vcpu, seg);
  3588. }
  3589. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  3590. {
  3591. kvm_mmu_invlpg(vcpu, address);
  3592. return X86EMUL_CONTINUE;
  3593. }
  3594. int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
  3595. {
  3596. if (!need_emulate_wbinvd(vcpu))
  3597. return X86EMUL_CONTINUE;
  3598. if (kvm_x86_ops->has_wbinvd_exit()) {
  3599. int cpu = get_cpu();
  3600. cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
  3601. smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
  3602. wbinvd_ipi, NULL, 1);
  3603. put_cpu();
  3604. cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
  3605. } else
  3606. wbinvd();
  3607. return X86EMUL_CONTINUE;
  3608. }
  3609. EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
  3610. int emulate_clts(struct kvm_vcpu *vcpu)
  3611. {
  3612. kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
  3613. kvm_x86_ops->fpu_activate(vcpu);
  3614. return X86EMUL_CONTINUE;
  3615. }
  3616. int emulator_get_dr(int dr, unsigned long *dest, struct kvm_vcpu *vcpu)
  3617. {
  3618. return _kvm_get_dr(vcpu, dr, dest);
  3619. }
  3620. int emulator_set_dr(int dr, unsigned long value, struct kvm_vcpu *vcpu)
  3621. {
  3622. return __kvm_set_dr(vcpu, dr, value);
  3623. }
  3624. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  3625. {
  3626. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  3627. }
  3628. static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu)
  3629. {
  3630. unsigned long value;
  3631. switch (cr) {
  3632. case 0:
  3633. value = kvm_read_cr0(vcpu);
  3634. break;
  3635. case 2:
  3636. value = vcpu->arch.cr2;
  3637. break;
  3638. case 3:
  3639. value = kvm_read_cr3(vcpu);
  3640. break;
  3641. case 4:
  3642. value = kvm_read_cr4(vcpu);
  3643. break;
  3644. case 8:
  3645. value = kvm_get_cr8(vcpu);
  3646. break;
  3647. default:
  3648. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3649. return 0;
  3650. }
  3651. return value;
  3652. }
  3653. static int emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu)
  3654. {
  3655. int res = 0;
  3656. switch (cr) {
  3657. case 0:
  3658. res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
  3659. break;
  3660. case 2:
  3661. vcpu->arch.cr2 = val;
  3662. break;
  3663. case 3:
  3664. res = kvm_set_cr3(vcpu, val);
  3665. break;
  3666. case 4:
  3667. res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
  3668. break;
  3669. case 8:
  3670. res = kvm_set_cr8(vcpu, val);
  3671. break;
  3672. default:
  3673. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3674. res = -1;
  3675. }
  3676. return res;
  3677. }
  3678. static int emulator_get_cpl(struct kvm_vcpu *vcpu)
  3679. {
  3680. return kvm_x86_ops->get_cpl(vcpu);
  3681. }
  3682. static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
  3683. {
  3684. kvm_x86_ops->get_gdt(vcpu, dt);
  3685. }
  3686. static void emulator_get_idt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
  3687. {
  3688. kvm_x86_ops->get_idt(vcpu, dt);
  3689. }
  3690. static unsigned long emulator_get_cached_segment_base(int seg,
  3691. struct kvm_vcpu *vcpu)
  3692. {
  3693. return get_segment_base(vcpu, seg);
  3694. }
  3695. static bool emulator_get_cached_descriptor(struct desc_struct *desc, u32 *base3,
  3696. int seg, struct kvm_vcpu *vcpu)
  3697. {
  3698. struct kvm_segment var;
  3699. kvm_get_segment(vcpu, &var, seg);
  3700. if (var.unusable)
  3701. return false;
  3702. if (var.g)
  3703. var.limit >>= 12;
  3704. set_desc_limit(desc, var.limit);
  3705. set_desc_base(desc, (unsigned long)var.base);
  3706. #ifdef CONFIG_X86_64
  3707. if (base3)
  3708. *base3 = var.base >> 32;
  3709. #endif
  3710. desc->type = var.type;
  3711. desc->s = var.s;
  3712. desc->dpl = var.dpl;
  3713. desc->p = var.present;
  3714. desc->avl = var.avl;
  3715. desc->l = var.l;
  3716. desc->d = var.db;
  3717. desc->g = var.g;
  3718. return true;
  3719. }
  3720. static void emulator_set_cached_descriptor(struct desc_struct *desc, u32 base3,
  3721. int seg, struct kvm_vcpu *vcpu)
  3722. {
  3723. struct kvm_segment var;
  3724. /* needed to preserve selector */
  3725. kvm_get_segment(vcpu, &var, seg);
  3726. var.base = get_desc_base(desc);
  3727. #ifdef CONFIG_X86_64
  3728. var.base |= ((u64)base3) << 32;
  3729. #endif
  3730. var.limit = get_desc_limit(desc);
  3731. if (desc->g)
  3732. var.limit = (var.limit << 12) | 0xfff;
  3733. var.type = desc->type;
  3734. var.present = desc->p;
  3735. var.dpl = desc->dpl;
  3736. var.db = desc->d;
  3737. var.s = desc->s;
  3738. var.l = desc->l;
  3739. var.g = desc->g;
  3740. var.avl = desc->avl;
  3741. var.present = desc->p;
  3742. var.unusable = !var.present;
  3743. var.padding = 0;
  3744. kvm_set_segment(vcpu, &var, seg);
  3745. return;
  3746. }
  3747. static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu)
  3748. {
  3749. struct kvm_segment kvm_seg;
  3750. kvm_get_segment(vcpu, &kvm_seg, seg);
  3751. return kvm_seg.selector;
  3752. }
  3753. static void emulator_set_segment_selector(u16 sel, int seg,
  3754. struct kvm_vcpu *vcpu)
  3755. {
  3756. struct kvm_segment kvm_seg;
  3757. kvm_get_segment(vcpu, &kvm_seg, seg);
  3758. kvm_seg.selector = sel;
  3759. kvm_set_segment(vcpu, &kvm_seg, seg);
  3760. }
  3761. static struct x86_emulate_ops emulate_ops = {
  3762. .read_std = kvm_read_guest_virt_system,
  3763. .write_std = kvm_write_guest_virt_system,
  3764. .fetch = kvm_fetch_guest_virt,
  3765. .read_emulated = emulator_read_emulated,
  3766. .write_emulated = emulator_write_emulated,
  3767. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  3768. .pio_in_emulated = emulator_pio_in_emulated,
  3769. .pio_out_emulated = emulator_pio_out_emulated,
  3770. .get_cached_descriptor = emulator_get_cached_descriptor,
  3771. .set_cached_descriptor = emulator_set_cached_descriptor,
  3772. .get_segment_selector = emulator_get_segment_selector,
  3773. .set_segment_selector = emulator_set_segment_selector,
  3774. .get_cached_segment_base = emulator_get_cached_segment_base,
  3775. .get_gdt = emulator_get_gdt,
  3776. .get_idt = emulator_get_idt,
  3777. .get_cr = emulator_get_cr,
  3778. .set_cr = emulator_set_cr,
  3779. .cpl = emulator_get_cpl,
  3780. .get_dr = emulator_get_dr,
  3781. .set_dr = emulator_set_dr,
  3782. .set_msr = kvm_set_msr,
  3783. .get_msr = kvm_get_msr,
  3784. };
  3785. static void cache_all_regs(struct kvm_vcpu *vcpu)
  3786. {
  3787. kvm_register_read(vcpu, VCPU_REGS_RAX);
  3788. kvm_register_read(vcpu, VCPU_REGS_RSP);
  3789. kvm_register_read(vcpu, VCPU_REGS_RIP);
  3790. vcpu->arch.regs_dirty = ~0;
  3791. }
  3792. static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
  3793. {
  3794. u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
  3795. /*
  3796. * an sti; sti; sequence only disable interrupts for the first
  3797. * instruction. So, if the last instruction, be it emulated or
  3798. * not, left the system with the INT_STI flag enabled, it
  3799. * means that the last instruction is an sti. We should not
  3800. * leave the flag on in this case. The same goes for mov ss
  3801. */
  3802. if (!(int_shadow & mask))
  3803. kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
  3804. }
  3805. static void inject_emulated_exception(struct kvm_vcpu *vcpu)
  3806. {
  3807. struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
  3808. if (ctxt->exception.vector == PF_VECTOR)
  3809. kvm_propagate_fault(vcpu, &ctxt->exception);
  3810. else if (ctxt->exception.error_code_valid)
  3811. kvm_queue_exception_e(vcpu, ctxt->exception.vector,
  3812. ctxt->exception.error_code);
  3813. else
  3814. kvm_queue_exception(vcpu, ctxt->exception.vector);
  3815. }
  3816. static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
  3817. {
  3818. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  3819. int cs_db, cs_l;
  3820. cache_all_regs(vcpu);
  3821. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  3822. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  3823. vcpu->arch.emulate_ctxt.eflags = kvm_get_rflags(vcpu);
  3824. vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
  3825. vcpu->arch.emulate_ctxt.mode =
  3826. (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
  3827. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  3828. ? X86EMUL_MODE_VM86 : cs_l
  3829. ? X86EMUL_MODE_PROT64 : cs_db
  3830. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  3831. memset(c, 0, sizeof(struct decode_cache));
  3832. memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
  3833. }
  3834. int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq)
  3835. {
  3836. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  3837. int ret;
  3838. init_emulate_ctxt(vcpu);
  3839. vcpu->arch.emulate_ctxt.decode.op_bytes = 2;
  3840. vcpu->arch.emulate_ctxt.decode.ad_bytes = 2;
  3841. vcpu->arch.emulate_ctxt.decode.eip = vcpu->arch.emulate_ctxt.eip;
  3842. ret = emulate_int_real(&vcpu->arch.emulate_ctxt, &emulate_ops, irq);
  3843. if (ret != X86EMUL_CONTINUE)
  3844. return EMULATE_FAIL;
  3845. vcpu->arch.emulate_ctxt.eip = c->eip;
  3846. memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
  3847. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
  3848. kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  3849. if (irq == NMI_VECTOR)
  3850. vcpu->arch.nmi_pending = false;
  3851. else
  3852. vcpu->arch.interrupt.pending = false;
  3853. return EMULATE_DONE;
  3854. }
  3855. EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
  3856. static int handle_emulation_failure(struct kvm_vcpu *vcpu)
  3857. {
  3858. int r = EMULATE_DONE;
  3859. ++vcpu->stat.insn_emulation_fail;
  3860. trace_kvm_emulate_insn_failed(vcpu);
  3861. if (!is_guest_mode(vcpu)) {
  3862. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  3863. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  3864. vcpu->run->internal.ndata = 0;
  3865. r = EMULATE_FAIL;
  3866. }
  3867. kvm_queue_exception(vcpu, UD_VECTOR);
  3868. return r;
  3869. }
  3870. static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
  3871. {
  3872. gpa_t gpa;
  3873. if (tdp_enabled)
  3874. return false;
  3875. /*
  3876. * if emulation was due to access to shadowed page table
  3877. * and it failed try to unshadow page and re-entetr the
  3878. * guest to let CPU execute the instruction.
  3879. */
  3880. if (kvm_mmu_unprotect_page_virt(vcpu, gva))
  3881. return true;
  3882. gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
  3883. if (gpa == UNMAPPED_GVA)
  3884. return true; /* let cpu generate fault */
  3885. if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
  3886. return true;
  3887. return false;
  3888. }
  3889. int x86_emulate_instruction(struct kvm_vcpu *vcpu,
  3890. unsigned long cr2,
  3891. int emulation_type,
  3892. void *insn,
  3893. int insn_len)
  3894. {
  3895. int r;
  3896. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  3897. kvm_clear_exception_queue(vcpu);
  3898. vcpu->arch.mmio_fault_cr2 = cr2;
  3899. /*
  3900. * TODO: fix emulate.c to use guest_read/write_register
  3901. * instead of direct ->regs accesses, can save hundred cycles
  3902. * on Intel for instructions that don't read/change RSP, for
  3903. * for example.
  3904. */
  3905. cache_all_regs(vcpu);
  3906. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  3907. init_emulate_ctxt(vcpu);
  3908. vcpu->arch.emulate_ctxt.interruptibility = 0;
  3909. vcpu->arch.emulate_ctxt.have_exception = false;
  3910. vcpu->arch.emulate_ctxt.perm_ok = false;
  3911. vcpu->arch.emulate_ctxt.only_vendor_specific_insn
  3912. = emulation_type & EMULTYPE_TRAP_UD;
  3913. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, insn, insn_len);
  3914. trace_kvm_emulate_insn_start(vcpu);
  3915. ++vcpu->stat.insn_emulation;
  3916. if (r) {
  3917. if (emulation_type & EMULTYPE_TRAP_UD)
  3918. return EMULATE_FAIL;
  3919. if (reexecute_instruction(vcpu, cr2))
  3920. return EMULATE_DONE;
  3921. if (emulation_type & EMULTYPE_SKIP)
  3922. return EMULATE_FAIL;
  3923. return handle_emulation_failure(vcpu);
  3924. }
  3925. }
  3926. if (emulation_type & EMULTYPE_SKIP) {
  3927. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
  3928. return EMULATE_DONE;
  3929. }
  3930. /* this is needed for vmware backdor interface to work since it
  3931. changes registers values during IO operation */
  3932. memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
  3933. restart:
  3934. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt);
  3935. if (r == EMULATION_FAILED) {
  3936. if (reexecute_instruction(vcpu, cr2))
  3937. return EMULATE_DONE;
  3938. return handle_emulation_failure(vcpu);
  3939. }
  3940. if (vcpu->arch.emulate_ctxt.have_exception) {
  3941. inject_emulated_exception(vcpu);
  3942. r = EMULATE_DONE;
  3943. } else if (vcpu->arch.pio.count) {
  3944. if (!vcpu->arch.pio.in)
  3945. vcpu->arch.pio.count = 0;
  3946. r = EMULATE_DO_MMIO;
  3947. } else if (vcpu->mmio_needed) {
  3948. if (vcpu->mmio_is_write)
  3949. vcpu->mmio_needed = 0;
  3950. r = EMULATE_DO_MMIO;
  3951. } else if (r == EMULATION_RESTART)
  3952. goto restart;
  3953. else
  3954. r = EMULATE_DONE;
  3955. toggle_interruptibility(vcpu, vcpu->arch.emulate_ctxt.interruptibility);
  3956. kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  3957. kvm_make_request(KVM_REQ_EVENT, vcpu);
  3958. memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
  3959. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
  3960. return r;
  3961. }
  3962. EXPORT_SYMBOL_GPL(x86_emulate_instruction);
  3963. int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
  3964. {
  3965. unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3966. int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu);
  3967. /* do not return to emulator after return from userspace */
  3968. vcpu->arch.pio.count = 0;
  3969. return ret;
  3970. }
  3971. EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
  3972. static void tsc_bad(void *info)
  3973. {
  3974. __this_cpu_write(cpu_tsc_khz, 0);
  3975. }
  3976. static void tsc_khz_changed(void *data)
  3977. {
  3978. struct cpufreq_freqs *freq = data;
  3979. unsigned long khz = 0;
  3980. if (data)
  3981. khz = freq->new;
  3982. else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  3983. khz = cpufreq_quick_get(raw_smp_processor_id());
  3984. if (!khz)
  3985. khz = tsc_khz;
  3986. __this_cpu_write(cpu_tsc_khz, khz);
  3987. }
  3988. static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  3989. void *data)
  3990. {
  3991. struct cpufreq_freqs *freq = data;
  3992. struct kvm *kvm;
  3993. struct kvm_vcpu *vcpu;
  3994. int i, send_ipi = 0;
  3995. /*
  3996. * We allow guests to temporarily run on slowing clocks,
  3997. * provided we notify them after, or to run on accelerating
  3998. * clocks, provided we notify them before. Thus time never
  3999. * goes backwards.
  4000. *
  4001. * However, we have a problem. We can't atomically update
  4002. * the frequency of a given CPU from this function; it is
  4003. * merely a notifier, which can be called from any CPU.
  4004. * Changing the TSC frequency at arbitrary points in time
  4005. * requires a recomputation of local variables related to
  4006. * the TSC for each VCPU. We must flag these local variables
  4007. * to be updated and be sure the update takes place with the
  4008. * new frequency before any guests proceed.
  4009. *
  4010. * Unfortunately, the combination of hotplug CPU and frequency
  4011. * change creates an intractable locking scenario; the order
  4012. * of when these callouts happen is undefined with respect to
  4013. * CPU hotplug, and they can race with each other. As such,
  4014. * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
  4015. * undefined; you can actually have a CPU frequency change take
  4016. * place in between the computation of X and the setting of the
  4017. * variable. To protect against this problem, all updates of
  4018. * the per_cpu tsc_khz variable are done in an interrupt
  4019. * protected IPI, and all callers wishing to update the value
  4020. * must wait for a synchronous IPI to complete (which is trivial
  4021. * if the caller is on the CPU already). This establishes the
  4022. * necessary total order on variable updates.
  4023. *
  4024. * Note that because a guest time update may take place
  4025. * anytime after the setting of the VCPU's request bit, the
  4026. * correct TSC value must be set before the request. However,
  4027. * to ensure the update actually makes it to any guest which
  4028. * starts running in hardware virtualization between the set
  4029. * and the acquisition of the spinlock, we must also ping the
  4030. * CPU after setting the request bit.
  4031. *
  4032. */
  4033. if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
  4034. return 0;
  4035. if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
  4036. return 0;
  4037. smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
  4038. raw_spin_lock(&kvm_lock);
  4039. list_for_each_entry(kvm, &vm_list, vm_list) {
  4040. kvm_for_each_vcpu(i, vcpu, kvm) {
  4041. if (vcpu->cpu != freq->cpu)
  4042. continue;
  4043. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  4044. if (vcpu->cpu != smp_processor_id())
  4045. send_ipi = 1;
  4046. }
  4047. }
  4048. raw_spin_unlock(&kvm_lock);
  4049. if (freq->old < freq->new && send_ipi) {
  4050. /*
  4051. * We upscale the frequency. Must make the guest
  4052. * doesn't see old kvmclock values while running with
  4053. * the new frequency, otherwise we risk the guest sees
  4054. * time go backwards.
  4055. *
  4056. * In case we update the frequency for another cpu
  4057. * (which might be in guest context) send an interrupt
  4058. * to kick the cpu out of guest context. Next time
  4059. * guest context is entered kvmclock will be updated,
  4060. * so the guest will not see stale values.
  4061. */
  4062. smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
  4063. }
  4064. return 0;
  4065. }
  4066. static struct notifier_block kvmclock_cpufreq_notifier_block = {
  4067. .notifier_call = kvmclock_cpufreq_notifier
  4068. };
  4069. static int kvmclock_cpu_notifier(struct notifier_block *nfb,
  4070. unsigned long action, void *hcpu)
  4071. {
  4072. unsigned int cpu = (unsigned long)hcpu;
  4073. switch (action) {
  4074. case CPU_ONLINE:
  4075. case CPU_DOWN_FAILED:
  4076. smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
  4077. break;
  4078. case CPU_DOWN_PREPARE:
  4079. smp_call_function_single(cpu, tsc_bad, NULL, 1);
  4080. break;
  4081. }
  4082. return NOTIFY_OK;
  4083. }
  4084. static struct notifier_block kvmclock_cpu_notifier_block = {
  4085. .notifier_call = kvmclock_cpu_notifier,
  4086. .priority = -INT_MAX
  4087. };
  4088. static void kvm_timer_init(void)
  4089. {
  4090. int cpu;
  4091. max_tsc_khz = tsc_khz;
  4092. register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
  4093. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  4094. #ifdef CONFIG_CPU_FREQ
  4095. struct cpufreq_policy policy;
  4096. memset(&policy, 0, sizeof(policy));
  4097. cpu = get_cpu();
  4098. cpufreq_get_policy(&policy, cpu);
  4099. if (policy.cpuinfo.max_freq)
  4100. max_tsc_khz = policy.cpuinfo.max_freq;
  4101. put_cpu();
  4102. #endif
  4103. cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
  4104. CPUFREQ_TRANSITION_NOTIFIER);
  4105. }
  4106. pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
  4107. for_each_online_cpu(cpu)
  4108. smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
  4109. }
  4110. static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
  4111. static int kvm_is_in_guest(void)
  4112. {
  4113. return percpu_read(current_vcpu) != NULL;
  4114. }
  4115. static int kvm_is_user_mode(void)
  4116. {
  4117. int user_mode = 3;
  4118. if (percpu_read(current_vcpu))
  4119. user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
  4120. return user_mode != 0;
  4121. }
  4122. static unsigned long kvm_get_guest_ip(void)
  4123. {
  4124. unsigned long ip = 0;
  4125. if (percpu_read(current_vcpu))
  4126. ip = kvm_rip_read(percpu_read(current_vcpu));
  4127. return ip;
  4128. }
  4129. static struct perf_guest_info_callbacks kvm_guest_cbs = {
  4130. .is_in_guest = kvm_is_in_guest,
  4131. .is_user_mode = kvm_is_user_mode,
  4132. .get_guest_ip = kvm_get_guest_ip,
  4133. };
  4134. void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
  4135. {
  4136. percpu_write(current_vcpu, vcpu);
  4137. }
  4138. EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
  4139. void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
  4140. {
  4141. percpu_write(current_vcpu, NULL);
  4142. }
  4143. EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
  4144. int kvm_arch_init(void *opaque)
  4145. {
  4146. int r;
  4147. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  4148. if (kvm_x86_ops) {
  4149. printk(KERN_ERR "kvm: already loaded the other module\n");
  4150. r = -EEXIST;
  4151. goto out;
  4152. }
  4153. if (!ops->cpu_has_kvm_support()) {
  4154. printk(KERN_ERR "kvm: no hardware support\n");
  4155. r = -EOPNOTSUPP;
  4156. goto out;
  4157. }
  4158. if (ops->disabled_by_bios()) {
  4159. printk(KERN_ERR "kvm: disabled by bios\n");
  4160. r = -EOPNOTSUPP;
  4161. goto out;
  4162. }
  4163. r = kvm_mmu_module_init();
  4164. if (r)
  4165. goto out;
  4166. kvm_init_msr_list();
  4167. kvm_x86_ops = ops;
  4168. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  4169. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  4170. PT_DIRTY_MASK, PT64_NX_MASK, 0);
  4171. kvm_timer_init();
  4172. perf_register_guest_info_callbacks(&kvm_guest_cbs);
  4173. if (cpu_has_xsave)
  4174. host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
  4175. return 0;
  4176. out:
  4177. return r;
  4178. }
  4179. void kvm_arch_exit(void)
  4180. {
  4181. perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
  4182. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  4183. cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
  4184. CPUFREQ_TRANSITION_NOTIFIER);
  4185. unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
  4186. kvm_x86_ops = NULL;
  4187. kvm_mmu_module_exit();
  4188. }
  4189. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  4190. {
  4191. ++vcpu->stat.halt_exits;
  4192. if (irqchip_in_kernel(vcpu->kvm)) {
  4193. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  4194. return 1;
  4195. } else {
  4196. vcpu->run->exit_reason = KVM_EXIT_HLT;
  4197. return 0;
  4198. }
  4199. }
  4200. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  4201. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  4202. unsigned long a1)
  4203. {
  4204. if (is_long_mode(vcpu))
  4205. return a0;
  4206. else
  4207. return a0 | ((gpa_t)a1 << 32);
  4208. }
  4209. int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
  4210. {
  4211. u64 param, ingpa, outgpa, ret;
  4212. uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
  4213. bool fast, longmode;
  4214. int cs_db, cs_l;
  4215. /*
  4216. * hypercall generates UD from non zero cpl and real mode
  4217. * per HYPER-V spec
  4218. */
  4219. if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
  4220. kvm_queue_exception(vcpu, UD_VECTOR);
  4221. return 0;
  4222. }
  4223. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  4224. longmode = is_long_mode(vcpu) && cs_l == 1;
  4225. if (!longmode) {
  4226. param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
  4227. (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
  4228. ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
  4229. (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
  4230. outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
  4231. (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
  4232. }
  4233. #ifdef CONFIG_X86_64
  4234. else {
  4235. param = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4236. ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4237. outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
  4238. }
  4239. #endif
  4240. code = param & 0xffff;
  4241. fast = (param >> 16) & 0x1;
  4242. rep_cnt = (param >> 32) & 0xfff;
  4243. rep_idx = (param >> 48) & 0xfff;
  4244. trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
  4245. switch (code) {
  4246. case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
  4247. kvm_vcpu_on_spin(vcpu);
  4248. break;
  4249. default:
  4250. res = HV_STATUS_INVALID_HYPERCALL_CODE;
  4251. break;
  4252. }
  4253. ret = res | (((u64)rep_done & 0xfff) << 32);
  4254. if (longmode) {
  4255. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  4256. } else {
  4257. kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
  4258. kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
  4259. }
  4260. return 1;
  4261. }
  4262. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  4263. {
  4264. unsigned long nr, a0, a1, a2, a3, ret;
  4265. int r = 1;
  4266. if (kvm_hv_hypercall_enabled(vcpu->kvm))
  4267. return kvm_hv_hypercall(vcpu);
  4268. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4269. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  4270. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4271. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4272. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  4273. trace_kvm_hypercall(nr, a0, a1, a2, a3);
  4274. if (!is_long_mode(vcpu)) {
  4275. nr &= 0xFFFFFFFF;
  4276. a0 &= 0xFFFFFFFF;
  4277. a1 &= 0xFFFFFFFF;
  4278. a2 &= 0xFFFFFFFF;
  4279. a3 &= 0xFFFFFFFF;
  4280. }
  4281. if (kvm_x86_ops->get_cpl(vcpu) != 0) {
  4282. ret = -KVM_EPERM;
  4283. goto out;
  4284. }
  4285. switch (nr) {
  4286. case KVM_HC_VAPIC_POLL_IRQ:
  4287. ret = 0;
  4288. break;
  4289. case KVM_HC_MMU_OP:
  4290. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  4291. break;
  4292. default:
  4293. ret = -KVM_ENOSYS;
  4294. break;
  4295. }
  4296. out:
  4297. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  4298. ++vcpu->stat.hypercalls;
  4299. return r;
  4300. }
  4301. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  4302. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  4303. {
  4304. char instruction[3];
  4305. unsigned long rip = kvm_rip_read(vcpu);
  4306. /*
  4307. * Blow out the MMU to ensure that no other VCPU has an active mapping
  4308. * to ensure that the updated hypercall appears atomically across all
  4309. * VCPUs.
  4310. */
  4311. kvm_mmu_zap_all(vcpu->kvm);
  4312. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  4313. return emulator_write_emulated(rip, instruction, 3, NULL, vcpu);
  4314. }
  4315. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  4316. {
  4317. struct desc_ptr dt = { limit, base };
  4318. kvm_x86_ops->set_gdt(vcpu, &dt);
  4319. }
  4320. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  4321. {
  4322. struct desc_ptr dt = { limit, base };
  4323. kvm_x86_ops->set_idt(vcpu, &dt);
  4324. }
  4325. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  4326. {
  4327. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  4328. int j, nent = vcpu->arch.cpuid_nent;
  4329. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  4330. /* when no next entry is found, the current entry[i] is reselected */
  4331. for (j = i + 1; ; j = (j + 1) % nent) {
  4332. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  4333. if (ej->function == e->function) {
  4334. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  4335. return j;
  4336. }
  4337. }
  4338. return 0; /* silence gcc, even though control never reaches here */
  4339. }
  4340. /* find an entry with matching function, matching index (if needed), and that
  4341. * should be read next (if it's stateful) */
  4342. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  4343. u32 function, u32 index)
  4344. {
  4345. if (e->function != function)
  4346. return 0;
  4347. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  4348. return 0;
  4349. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  4350. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  4351. return 0;
  4352. return 1;
  4353. }
  4354. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  4355. u32 function, u32 index)
  4356. {
  4357. int i;
  4358. struct kvm_cpuid_entry2 *best = NULL;
  4359. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  4360. struct kvm_cpuid_entry2 *e;
  4361. e = &vcpu->arch.cpuid_entries[i];
  4362. if (is_matching_cpuid_entry(e, function, index)) {
  4363. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  4364. move_to_next_stateful_cpuid_entry(vcpu, i);
  4365. best = e;
  4366. break;
  4367. }
  4368. }
  4369. return best;
  4370. }
  4371. EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
  4372. int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
  4373. {
  4374. struct kvm_cpuid_entry2 *best;
  4375. best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
  4376. if (!best || best->eax < 0x80000008)
  4377. goto not_found;
  4378. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  4379. if (best)
  4380. return best->eax & 0xff;
  4381. not_found:
  4382. return 36;
  4383. }
  4384. /*
  4385. * If no match is found, check whether we exceed the vCPU's limit
  4386. * and return the content of the highest valid _standard_ leaf instead.
  4387. * This is to satisfy the CPUID specification.
  4388. */
  4389. static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
  4390. u32 function, u32 index)
  4391. {
  4392. struct kvm_cpuid_entry2 *maxlevel;
  4393. maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
  4394. if (!maxlevel || maxlevel->eax >= function)
  4395. return NULL;
  4396. if (function & 0x80000000) {
  4397. maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
  4398. if (!maxlevel)
  4399. return NULL;
  4400. }
  4401. return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
  4402. }
  4403. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  4404. {
  4405. u32 function, index;
  4406. struct kvm_cpuid_entry2 *best;
  4407. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4408. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4409. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  4410. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  4411. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  4412. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  4413. best = kvm_find_cpuid_entry(vcpu, function, index);
  4414. if (!best)
  4415. best = check_cpuid_limit(vcpu, function, index);
  4416. if (best) {
  4417. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  4418. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  4419. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  4420. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  4421. }
  4422. kvm_x86_ops->skip_emulated_instruction(vcpu);
  4423. trace_kvm_cpuid(function,
  4424. kvm_register_read(vcpu, VCPU_REGS_RAX),
  4425. kvm_register_read(vcpu, VCPU_REGS_RBX),
  4426. kvm_register_read(vcpu, VCPU_REGS_RCX),
  4427. kvm_register_read(vcpu, VCPU_REGS_RDX));
  4428. }
  4429. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  4430. /*
  4431. * Check if userspace requested an interrupt window, and that the
  4432. * interrupt window is open.
  4433. *
  4434. * No need to exit to userspace if we already have an interrupt queued.
  4435. */
  4436. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
  4437. {
  4438. return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
  4439. vcpu->run->request_interrupt_window &&
  4440. kvm_arch_interrupt_allowed(vcpu));
  4441. }
  4442. static void post_kvm_run_save(struct kvm_vcpu *vcpu)
  4443. {
  4444. struct kvm_run *kvm_run = vcpu->run;
  4445. kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  4446. kvm_run->cr8 = kvm_get_cr8(vcpu);
  4447. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  4448. if (irqchip_in_kernel(vcpu->kvm))
  4449. kvm_run->ready_for_interrupt_injection = 1;
  4450. else
  4451. kvm_run->ready_for_interrupt_injection =
  4452. kvm_arch_interrupt_allowed(vcpu) &&
  4453. !kvm_cpu_has_interrupt(vcpu) &&
  4454. !kvm_event_needs_reinjection(vcpu);
  4455. }
  4456. static void vapic_enter(struct kvm_vcpu *vcpu)
  4457. {
  4458. struct kvm_lapic *apic = vcpu->arch.apic;
  4459. struct page *page;
  4460. if (!apic || !apic->vapic_addr)
  4461. return;
  4462. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  4463. vcpu->arch.apic->vapic_page = page;
  4464. }
  4465. static void vapic_exit(struct kvm_vcpu *vcpu)
  4466. {
  4467. struct kvm_lapic *apic = vcpu->arch.apic;
  4468. int idx;
  4469. if (!apic || !apic->vapic_addr)
  4470. return;
  4471. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4472. kvm_release_page_dirty(apic->vapic_page);
  4473. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  4474. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4475. }
  4476. static void update_cr8_intercept(struct kvm_vcpu *vcpu)
  4477. {
  4478. int max_irr, tpr;
  4479. if (!kvm_x86_ops->update_cr8_intercept)
  4480. return;
  4481. if (!vcpu->arch.apic)
  4482. return;
  4483. if (!vcpu->arch.apic->vapic_addr)
  4484. max_irr = kvm_lapic_find_highest_irr(vcpu);
  4485. else
  4486. max_irr = -1;
  4487. if (max_irr != -1)
  4488. max_irr >>= 4;
  4489. tpr = kvm_lapic_get_cr8(vcpu);
  4490. kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
  4491. }
  4492. static void inject_pending_event(struct kvm_vcpu *vcpu)
  4493. {
  4494. /* try to reinject previous events if any */
  4495. if (vcpu->arch.exception.pending) {
  4496. trace_kvm_inj_exception(vcpu->arch.exception.nr,
  4497. vcpu->arch.exception.has_error_code,
  4498. vcpu->arch.exception.error_code);
  4499. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  4500. vcpu->arch.exception.has_error_code,
  4501. vcpu->arch.exception.error_code,
  4502. vcpu->arch.exception.reinject);
  4503. return;
  4504. }
  4505. if (vcpu->arch.nmi_injected) {
  4506. kvm_x86_ops->set_nmi(vcpu);
  4507. return;
  4508. }
  4509. if (vcpu->arch.interrupt.pending) {
  4510. kvm_x86_ops->set_irq(vcpu);
  4511. return;
  4512. }
  4513. /* try to inject new event if pending */
  4514. if (vcpu->arch.nmi_pending) {
  4515. if (kvm_x86_ops->nmi_allowed(vcpu)) {
  4516. vcpu->arch.nmi_pending = false;
  4517. vcpu->arch.nmi_injected = true;
  4518. kvm_x86_ops->set_nmi(vcpu);
  4519. }
  4520. } else if (kvm_cpu_has_interrupt(vcpu)) {
  4521. if (kvm_x86_ops->interrupt_allowed(vcpu)) {
  4522. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
  4523. false);
  4524. kvm_x86_ops->set_irq(vcpu);
  4525. }
  4526. }
  4527. }
  4528. static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
  4529. {
  4530. if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
  4531. !vcpu->guest_xcr0_loaded) {
  4532. /* kvm_set_xcr() also depends on this */
  4533. xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
  4534. vcpu->guest_xcr0_loaded = 1;
  4535. }
  4536. }
  4537. static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
  4538. {
  4539. if (vcpu->guest_xcr0_loaded) {
  4540. if (vcpu->arch.xcr0 != host_xcr0)
  4541. xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
  4542. vcpu->guest_xcr0_loaded = 0;
  4543. }
  4544. }
  4545. static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
  4546. {
  4547. int r;
  4548. bool nmi_pending;
  4549. bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
  4550. vcpu->run->request_interrupt_window;
  4551. if (vcpu->requests) {
  4552. if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
  4553. kvm_mmu_unload(vcpu);
  4554. if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
  4555. __kvm_migrate_timers(vcpu);
  4556. if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
  4557. r = kvm_guest_time_update(vcpu);
  4558. if (unlikely(r))
  4559. goto out;
  4560. }
  4561. if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
  4562. kvm_mmu_sync_roots(vcpu);
  4563. if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
  4564. kvm_x86_ops->tlb_flush(vcpu);
  4565. if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
  4566. vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
  4567. r = 0;
  4568. goto out;
  4569. }
  4570. if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
  4571. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  4572. r = 0;
  4573. goto out;
  4574. }
  4575. if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
  4576. vcpu->fpu_active = 0;
  4577. kvm_x86_ops->fpu_deactivate(vcpu);
  4578. }
  4579. if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
  4580. /* Page is swapped out. Do synthetic halt */
  4581. vcpu->arch.apf.halted = true;
  4582. r = 1;
  4583. goto out;
  4584. }
  4585. }
  4586. r = kvm_mmu_reload(vcpu);
  4587. if (unlikely(r))
  4588. goto out;
  4589. /*
  4590. * An NMI can be injected between local nmi_pending read and
  4591. * vcpu->arch.nmi_pending read inside inject_pending_event().
  4592. * But in that case, KVM_REQ_EVENT will be set, which makes
  4593. * the race described above benign.
  4594. */
  4595. nmi_pending = ACCESS_ONCE(vcpu->arch.nmi_pending);
  4596. if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
  4597. inject_pending_event(vcpu);
  4598. /* enable NMI/IRQ window open exits if needed */
  4599. if (nmi_pending)
  4600. kvm_x86_ops->enable_nmi_window(vcpu);
  4601. else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
  4602. kvm_x86_ops->enable_irq_window(vcpu);
  4603. if (kvm_lapic_enabled(vcpu)) {
  4604. update_cr8_intercept(vcpu);
  4605. kvm_lapic_sync_to_vapic(vcpu);
  4606. }
  4607. }
  4608. preempt_disable();
  4609. kvm_x86_ops->prepare_guest_switch(vcpu);
  4610. if (vcpu->fpu_active)
  4611. kvm_load_guest_fpu(vcpu);
  4612. kvm_load_guest_xcr0(vcpu);
  4613. vcpu->mode = IN_GUEST_MODE;
  4614. /* We should set ->mode before check ->requests,
  4615. * see the comment in make_all_cpus_request.
  4616. */
  4617. smp_mb();
  4618. local_irq_disable();
  4619. if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
  4620. || need_resched() || signal_pending(current)) {
  4621. vcpu->mode = OUTSIDE_GUEST_MODE;
  4622. smp_wmb();
  4623. local_irq_enable();
  4624. preempt_enable();
  4625. kvm_x86_ops->cancel_injection(vcpu);
  4626. r = 1;
  4627. goto out;
  4628. }
  4629. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  4630. kvm_guest_enter();
  4631. if (unlikely(vcpu->arch.switch_db_regs)) {
  4632. set_debugreg(0, 7);
  4633. set_debugreg(vcpu->arch.eff_db[0], 0);
  4634. set_debugreg(vcpu->arch.eff_db[1], 1);
  4635. set_debugreg(vcpu->arch.eff_db[2], 2);
  4636. set_debugreg(vcpu->arch.eff_db[3], 3);
  4637. }
  4638. trace_kvm_entry(vcpu->vcpu_id);
  4639. kvm_x86_ops->run(vcpu);
  4640. /*
  4641. * If the guest has used debug registers, at least dr7
  4642. * will be disabled while returning to the host.
  4643. * If we don't have active breakpoints in the host, we don't
  4644. * care about the messed up debug address registers. But if
  4645. * we have some of them active, restore the old state.
  4646. */
  4647. if (hw_breakpoint_active())
  4648. hw_breakpoint_restore();
  4649. kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
  4650. vcpu->mode = OUTSIDE_GUEST_MODE;
  4651. smp_wmb();
  4652. local_irq_enable();
  4653. ++vcpu->stat.exits;
  4654. /*
  4655. * We must have an instruction between local_irq_enable() and
  4656. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  4657. * the interrupt shadow. The stat.exits increment will do nicely.
  4658. * But we need to prevent reordering, hence this barrier():
  4659. */
  4660. barrier();
  4661. kvm_guest_exit();
  4662. preempt_enable();
  4663. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  4664. /*
  4665. * Profile KVM exit RIPs:
  4666. */
  4667. if (unlikely(prof_on == KVM_PROFILING)) {
  4668. unsigned long rip = kvm_rip_read(vcpu);
  4669. profile_hit(KVM_PROFILING, (void *)rip);
  4670. }
  4671. kvm_lapic_sync_from_vapic(vcpu);
  4672. r = kvm_x86_ops->handle_exit(vcpu);
  4673. out:
  4674. return r;
  4675. }
  4676. static int __vcpu_run(struct kvm_vcpu *vcpu)
  4677. {
  4678. int r;
  4679. struct kvm *kvm = vcpu->kvm;
  4680. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  4681. pr_debug("vcpu %d received sipi with vector # %x\n",
  4682. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  4683. kvm_lapic_reset(vcpu);
  4684. r = kvm_arch_vcpu_reset(vcpu);
  4685. if (r)
  4686. return r;
  4687. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4688. }
  4689. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4690. vapic_enter(vcpu);
  4691. r = 1;
  4692. while (r > 0) {
  4693. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
  4694. !vcpu->arch.apf.halted)
  4695. r = vcpu_enter_guest(vcpu);
  4696. else {
  4697. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4698. kvm_vcpu_block(vcpu);
  4699. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4700. if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
  4701. {
  4702. switch(vcpu->arch.mp_state) {
  4703. case KVM_MP_STATE_HALTED:
  4704. vcpu->arch.mp_state =
  4705. KVM_MP_STATE_RUNNABLE;
  4706. case KVM_MP_STATE_RUNNABLE:
  4707. vcpu->arch.apf.halted = false;
  4708. break;
  4709. case KVM_MP_STATE_SIPI_RECEIVED:
  4710. default:
  4711. r = -EINTR;
  4712. break;
  4713. }
  4714. }
  4715. }
  4716. if (r <= 0)
  4717. break;
  4718. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  4719. if (kvm_cpu_has_pending_timer(vcpu))
  4720. kvm_inject_pending_timer_irqs(vcpu);
  4721. if (dm_request_for_irq_injection(vcpu)) {
  4722. r = -EINTR;
  4723. vcpu->run->exit_reason = KVM_EXIT_INTR;
  4724. ++vcpu->stat.request_irq_exits;
  4725. }
  4726. kvm_check_async_pf_completion(vcpu);
  4727. if (signal_pending(current)) {
  4728. r = -EINTR;
  4729. vcpu->run->exit_reason = KVM_EXIT_INTR;
  4730. ++vcpu->stat.signal_exits;
  4731. }
  4732. if (need_resched()) {
  4733. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4734. kvm_resched(vcpu);
  4735. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4736. }
  4737. }
  4738. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4739. vapic_exit(vcpu);
  4740. return r;
  4741. }
  4742. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  4743. {
  4744. int r;
  4745. sigset_t sigsaved;
  4746. if (!tsk_used_math(current) && init_fpu(current))
  4747. return -ENOMEM;
  4748. if (vcpu->sigset_active)
  4749. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  4750. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  4751. kvm_vcpu_block(vcpu);
  4752. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  4753. r = -EAGAIN;
  4754. goto out;
  4755. }
  4756. /* re-sync apic's tpr */
  4757. if (!irqchip_in_kernel(vcpu->kvm)) {
  4758. if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
  4759. r = -EINVAL;
  4760. goto out;
  4761. }
  4762. }
  4763. if (vcpu->arch.pio.count || vcpu->mmio_needed) {
  4764. if (vcpu->mmio_needed) {
  4765. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  4766. vcpu->mmio_read_completed = 1;
  4767. vcpu->mmio_needed = 0;
  4768. }
  4769. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  4770. r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
  4771. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  4772. if (r != EMULATE_DONE) {
  4773. r = 0;
  4774. goto out;
  4775. }
  4776. }
  4777. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  4778. kvm_register_write(vcpu, VCPU_REGS_RAX,
  4779. kvm_run->hypercall.ret);
  4780. r = __vcpu_run(vcpu);
  4781. out:
  4782. post_kvm_run_save(vcpu);
  4783. if (vcpu->sigset_active)
  4784. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  4785. return r;
  4786. }
  4787. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  4788. {
  4789. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4790. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  4791. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4792. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4793. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  4794. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  4795. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  4796. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  4797. #ifdef CONFIG_X86_64
  4798. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  4799. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  4800. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  4801. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  4802. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  4803. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  4804. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  4805. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  4806. #endif
  4807. regs->rip = kvm_rip_read(vcpu);
  4808. regs->rflags = kvm_get_rflags(vcpu);
  4809. return 0;
  4810. }
  4811. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  4812. {
  4813. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  4814. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  4815. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  4816. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  4817. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  4818. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  4819. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  4820. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  4821. #ifdef CONFIG_X86_64
  4822. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  4823. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  4824. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  4825. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  4826. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  4827. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  4828. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  4829. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  4830. #endif
  4831. kvm_rip_write(vcpu, regs->rip);
  4832. kvm_set_rflags(vcpu, regs->rflags);
  4833. vcpu->arch.exception.pending = false;
  4834. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4835. return 0;
  4836. }
  4837. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  4838. {
  4839. struct kvm_segment cs;
  4840. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4841. *db = cs.db;
  4842. *l = cs.l;
  4843. }
  4844. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  4845. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  4846. struct kvm_sregs *sregs)
  4847. {
  4848. struct desc_ptr dt;
  4849. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  4850. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  4851. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  4852. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  4853. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  4854. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  4855. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  4856. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  4857. kvm_x86_ops->get_idt(vcpu, &dt);
  4858. sregs->idt.limit = dt.size;
  4859. sregs->idt.base = dt.address;
  4860. kvm_x86_ops->get_gdt(vcpu, &dt);
  4861. sregs->gdt.limit = dt.size;
  4862. sregs->gdt.base = dt.address;
  4863. sregs->cr0 = kvm_read_cr0(vcpu);
  4864. sregs->cr2 = vcpu->arch.cr2;
  4865. sregs->cr3 = kvm_read_cr3(vcpu);
  4866. sregs->cr4 = kvm_read_cr4(vcpu);
  4867. sregs->cr8 = kvm_get_cr8(vcpu);
  4868. sregs->efer = vcpu->arch.efer;
  4869. sregs->apic_base = kvm_get_apic_base(vcpu);
  4870. memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
  4871. if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
  4872. set_bit(vcpu->arch.interrupt.nr,
  4873. (unsigned long *)sregs->interrupt_bitmap);
  4874. return 0;
  4875. }
  4876. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  4877. struct kvm_mp_state *mp_state)
  4878. {
  4879. mp_state->mp_state = vcpu->arch.mp_state;
  4880. return 0;
  4881. }
  4882. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  4883. struct kvm_mp_state *mp_state)
  4884. {
  4885. vcpu->arch.mp_state = mp_state->mp_state;
  4886. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4887. return 0;
  4888. }
  4889. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
  4890. bool has_error_code, u32 error_code)
  4891. {
  4892. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  4893. int ret;
  4894. init_emulate_ctxt(vcpu);
  4895. ret = emulator_task_switch(&vcpu->arch.emulate_ctxt,
  4896. tss_selector, reason, has_error_code,
  4897. error_code);
  4898. if (ret)
  4899. return EMULATE_FAIL;
  4900. memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
  4901. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
  4902. kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  4903. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4904. return EMULATE_DONE;
  4905. }
  4906. EXPORT_SYMBOL_GPL(kvm_task_switch);
  4907. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  4908. struct kvm_sregs *sregs)
  4909. {
  4910. int mmu_reset_needed = 0;
  4911. int pending_vec, max_bits, idx;
  4912. struct desc_ptr dt;
  4913. dt.size = sregs->idt.limit;
  4914. dt.address = sregs->idt.base;
  4915. kvm_x86_ops->set_idt(vcpu, &dt);
  4916. dt.size = sregs->gdt.limit;
  4917. dt.address = sregs->gdt.base;
  4918. kvm_x86_ops->set_gdt(vcpu, &dt);
  4919. vcpu->arch.cr2 = sregs->cr2;
  4920. mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
  4921. vcpu->arch.cr3 = sregs->cr3;
  4922. __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
  4923. kvm_set_cr8(vcpu, sregs->cr8);
  4924. mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
  4925. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  4926. kvm_set_apic_base(vcpu, sregs->apic_base);
  4927. mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
  4928. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  4929. vcpu->arch.cr0 = sregs->cr0;
  4930. mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
  4931. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  4932. if (sregs->cr4 & X86_CR4_OSXSAVE)
  4933. update_cpuid(vcpu);
  4934. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4935. if (!is_long_mode(vcpu) && is_pae(vcpu)) {
  4936. load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
  4937. mmu_reset_needed = 1;
  4938. }
  4939. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4940. if (mmu_reset_needed)
  4941. kvm_mmu_reset_context(vcpu);
  4942. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  4943. pending_vec = find_first_bit(
  4944. (const unsigned long *)sregs->interrupt_bitmap, max_bits);
  4945. if (pending_vec < max_bits) {
  4946. kvm_queue_interrupt(vcpu, pending_vec, false);
  4947. pr_debug("Set back pending irq %d\n", pending_vec);
  4948. }
  4949. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  4950. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  4951. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  4952. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  4953. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  4954. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  4955. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  4956. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  4957. update_cr8_intercept(vcpu);
  4958. /* Older userspace won't unhalt the vcpu on reset. */
  4959. if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
  4960. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  4961. !is_protmode(vcpu))
  4962. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4963. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4964. return 0;
  4965. }
  4966. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  4967. struct kvm_guest_debug *dbg)
  4968. {
  4969. unsigned long rflags;
  4970. int i, r;
  4971. if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
  4972. r = -EBUSY;
  4973. if (vcpu->arch.exception.pending)
  4974. goto out;
  4975. if (dbg->control & KVM_GUESTDBG_INJECT_DB)
  4976. kvm_queue_exception(vcpu, DB_VECTOR);
  4977. else
  4978. kvm_queue_exception(vcpu, BP_VECTOR);
  4979. }
  4980. /*
  4981. * Read rflags as long as potentially injected trace flags are still
  4982. * filtered out.
  4983. */
  4984. rflags = kvm_get_rflags(vcpu);
  4985. vcpu->guest_debug = dbg->control;
  4986. if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
  4987. vcpu->guest_debug = 0;
  4988. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  4989. for (i = 0; i < KVM_NR_DB_REGS; ++i)
  4990. vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
  4991. vcpu->arch.switch_db_regs =
  4992. (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
  4993. } else {
  4994. for (i = 0; i < KVM_NR_DB_REGS; i++)
  4995. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  4996. vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
  4997. }
  4998. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  4999. vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
  5000. get_segment_base(vcpu, VCPU_SREG_CS);
  5001. /*
  5002. * Trigger an rflags update that will inject or remove the trace
  5003. * flags.
  5004. */
  5005. kvm_set_rflags(vcpu, rflags);
  5006. kvm_x86_ops->set_guest_debug(vcpu, dbg);
  5007. r = 0;
  5008. out:
  5009. return r;
  5010. }
  5011. /*
  5012. * Translate a guest virtual address to a guest physical address.
  5013. */
  5014. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  5015. struct kvm_translation *tr)
  5016. {
  5017. unsigned long vaddr = tr->linear_address;
  5018. gpa_t gpa;
  5019. int idx;
  5020. idx = srcu_read_lock(&vcpu->kvm->srcu);
  5021. gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
  5022. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  5023. tr->physical_address = gpa;
  5024. tr->valid = gpa != UNMAPPED_GVA;
  5025. tr->writeable = 1;
  5026. tr->usermode = 0;
  5027. return 0;
  5028. }
  5029. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  5030. {
  5031. struct i387_fxsave_struct *fxsave =
  5032. &vcpu->arch.guest_fpu.state->fxsave;
  5033. memcpy(fpu->fpr, fxsave->st_space, 128);
  5034. fpu->fcw = fxsave->cwd;
  5035. fpu->fsw = fxsave->swd;
  5036. fpu->ftwx = fxsave->twd;
  5037. fpu->last_opcode = fxsave->fop;
  5038. fpu->last_ip = fxsave->rip;
  5039. fpu->last_dp = fxsave->rdp;
  5040. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  5041. return 0;
  5042. }
  5043. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  5044. {
  5045. struct i387_fxsave_struct *fxsave =
  5046. &vcpu->arch.guest_fpu.state->fxsave;
  5047. memcpy(fxsave->st_space, fpu->fpr, 128);
  5048. fxsave->cwd = fpu->fcw;
  5049. fxsave->swd = fpu->fsw;
  5050. fxsave->twd = fpu->ftwx;
  5051. fxsave->fop = fpu->last_opcode;
  5052. fxsave->rip = fpu->last_ip;
  5053. fxsave->rdp = fpu->last_dp;
  5054. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  5055. return 0;
  5056. }
  5057. int fx_init(struct kvm_vcpu *vcpu)
  5058. {
  5059. int err;
  5060. err = fpu_alloc(&vcpu->arch.guest_fpu);
  5061. if (err)
  5062. return err;
  5063. fpu_finit(&vcpu->arch.guest_fpu);
  5064. /*
  5065. * Ensure guest xcr0 is valid for loading
  5066. */
  5067. vcpu->arch.xcr0 = XSTATE_FP;
  5068. vcpu->arch.cr0 |= X86_CR0_ET;
  5069. return 0;
  5070. }
  5071. EXPORT_SYMBOL_GPL(fx_init);
  5072. static void fx_free(struct kvm_vcpu *vcpu)
  5073. {
  5074. fpu_free(&vcpu->arch.guest_fpu);
  5075. }
  5076. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  5077. {
  5078. if (vcpu->guest_fpu_loaded)
  5079. return;
  5080. /*
  5081. * Restore all possible states in the guest,
  5082. * and assume host would use all available bits.
  5083. * Guest xcr0 would be loaded later.
  5084. */
  5085. kvm_put_guest_xcr0(vcpu);
  5086. vcpu->guest_fpu_loaded = 1;
  5087. unlazy_fpu(current);
  5088. fpu_restore_checking(&vcpu->arch.guest_fpu);
  5089. trace_kvm_fpu(1);
  5090. }
  5091. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  5092. {
  5093. kvm_put_guest_xcr0(vcpu);
  5094. if (!vcpu->guest_fpu_loaded)
  5095. return;
  5096. vcpu->guest_fpu_loaded = 0;
  5097. fpu_save_init(&vcpu->arch.guest_fpu);
  5098. ++vcpu->stat.fpu_reload;
  5099. kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
  5100. trace_kvm_fpu(0);
  5101. }
  5102. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  5103. {
  5104. kvmclock_reset(vcpu);
  5105. free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
  5106. fx_free(vcpu);
  5107. kvm_x86_ops->vcpu_free(vcpu);
  5108. }
  5109. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  5110. unsigned int id)
  5111. {
  5112. if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
  5113. printk_once(KERN_WARNING
  5114. "kvm: SMP vm created on host with unstable TSC; "
  5115. "guest TSC will not be reliable\n");
  5116. return kvm_x86_ops->vcpu_create(kvm, id);
  5117. }
  5118. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  5119. {
  5120. int r;
  5121. vcpu->arch.mtrr_state.have_fixed = 1;
  5122. vcpu_load(vcpu);
  5123. r = kvm_arch_vcpu_reset(vcpu);
  5124. if (r == 0)
  5125. r = kvm_mmu_setup(vcpu);
  5126. vcpu_put(vcpu);
  5127. if (r < 0)
  5128. goto free_vcpu;
  5129. return 0;
  5130. free_vcpu:
  5131. kvm_x86_ops->vcpu_free(vcpu);
  5132. return r;
  5133. }
  5134. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  5135. {
  5136. vcpu->arch.apf.msr_val = 0;
  5137. vcpu_load(vcpu);
  5138. kvm_mmu_unload(vcpu);
  5139. vcpu_put(vcpu);
  5140. fx_free(vcpu);
  5141. kvm_x86_ops->vcpu_free(vcpu);
  5142. }
  5143. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  5144. {
  5145. vcpu->arch.nmi_pending = false;
  5146. vcpu->arch.nmi_injected = false;
  5147. vcpu->arch.switch_db_regs = 0;
  5148. memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
  5149. vcpu->arch.dr6 = DR6_FIXED_1;
  5150. vcpu->arch.dr7 = DR7_FIXED_1;
  5151. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5152. vcpu->arch.apf.msr_val = 0;
  5153. kvmclock_reset(vcpu);
  5154. kvm_clear_async_pf_completion_queue(vcpu);
  5155. kvm_async_pf_hash_reset(vcpu);
  5156. vcpu->arch.apf.halted = false;
  5157. return kvm_x86_ops->vcpu_reset(vcpu);
  5158. }
  5159. int kvm_arch_hardware_enable(void *garbage)
  5160. {
  5161. struct kvm *kvm;
  5162. struct kvm_vcpu *vcpu;
  5163. int i;
  5164. kvm_shared_msr_cpu_online();
  5165. list_for_each_entry(kvm, &vm_list, vm_list)
  5166. kvm_for_each_vcpu(i, vcpu, kvm)
  5167. if (vcpu->cpu == smp_processor_id())
  5168. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  5169. return kvm_x86_ops->hardware_enable(garbage);
  5170. }
  5171. void kvm_arch_hardware_disable(void *garbage)
  5172. {
  5173. kvm_x86_ops->hardware_disable(garbage);
  5174. drop_user_return_notifiers(garbage);
  5175. }
  5176. int kvm_arch_hardware_setup(void)
  5177. {
  5178. return kvm_x86_ops->hardware_setup();
  5179. }
  5180. void kvm_arch_hardware_unsetup(void)
  5181. {
  5182. kvm_x86_ops->hardware_unsetup();
  5183. }
  5184. void kvm_arch_check_processor_compat(void *rtn)
  5185. {
  5186. kvm_x86_ops->check_processor_compatibility(rtn);
  5187. }
  5188. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  5189. {
  5190. struct page *page;
  5191. struct kvm *kvm;
  5192. int r;
  5193. BUG_ON(vcpu->kvm == NULL);
  5194. kvm = vcpu->kvm;
  5195. vcpu->arch.emulate_ctxt.ops = &emulate_ops;
  5196. vcpu->arch.walk_mmu = &vcpu->arch.mmu;
  5197. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  5198. vcpu->arch.mmu.translate_gpa = translate_gpa;
  5199. vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
  5200. if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
  5201. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  5202. else
  5203. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  5204. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  5205. if (!page) {
  5206. r = -ENOMEM;
  5207. goto fail;
  5208. }
  5209. vcpu->arch.pio_data = page_address(page);
  5210. if (!kvm->arch.virtual_tsc_khz)
  5211. kvm_arch_set_tsc_khz(kvm, max_tsc_khz);
  5212. r = kvm_mmu_create(vcpu);
  5213. if (r < 0)
  5214. goto fail_free_pio_data;
  5215. if (irqchip_in_kernel(kvm)) {
  5216. r = kvm_create_lapic(vcpu);
  5217. if (r < 0)
  5218. goto fail_mmu_destroy;
  5219. }
  5220. vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
  5221. GFP_KERNEL);
  5222. if (!vcpu->arch.mce_banks) {
  5223. r = -ENOMEM;
  5224. goto fail_free_lapic;
  5225. }
  5226. vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
  5227. if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
  5228. goto fail_free_mce_banks;
  5229. kvm_async_pf_hash_reset(vcpu);
  5230. return 0;
  5231. fail_free_mce_banks:
  5232. kfree(vcpu->arch.mce_banks);
  5233. fail_free_lapic:
  5234. kvm_free_lapic(vcpu);
  5235. fail_mmu_destroy:
  5236. kvm_mmu_destroy(vcpu);
  5237. fail_free_pio_data:
  5238. free_page((unsigned long)vcpu->arch.pio_data);
  5239. fail:
  5240. return r;
  5241. }
  5242. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  5243. {
  5244. int idx;
  5245. kfree(vcpu->arch.mce_banks);
  5246. kvm_free_lapic(vcpu);
  5247. idx = srcu_read_lock(&vcpu->kvm->srcu);
  5248. kvm_mmu_destroy(vcpu);
  5249. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  5250. free_page((unsigned long)vcpu->arch.pio_data);
  5251. }
  5252. int kvm_arch_init_vm(struct kvm *kvm)
  5253. {
  5254. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  5255. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  5256. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  5257. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  5258. raw_spin_lock_init(&kvm->arch.tsc_write_lock);
  5259. return 0;
  5260. }
  5261. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  5262. {
  5263. vcpu_load(vcpu);
  5264. kvm_mmu_unload(vcpu);
  5265. vcpu_put(vcpu);
  5266. }
  5267. static void kvm_free_vcpus(struct kvm *kvm)
  5268. {
  5269. unsigned int i;
  5270. struct kvm_vcpu *vcpu;
  5271. /*
  5272. * Unpin any mmu pages first.
  5273. */
  5274. kvm_for_each_vcpu(i, vcpu, kvm) {
  5275. kvm_clear_async_pf_completion_queue(vcpu);
  5276. kvm_unload_vcpu_mmu(vcpu);
  5277. }
  5278. kvm_for_each_vcpu(i, vcpu, kvm)
  5279. kvm_arch_vcpu_free(vcpu);
  5280. mutex_lock(&kvm->lock);
  5281. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  5282. kvm->vcpus[i] = NULL;
  5283. atomic_set(&kvm->online_vcpus, 0);
  5284. mutex_unlock(&kvm->lock);
  5285. }
  5286. void kvm_arch_sync_events(struct kvm *kvm)
  5287. {
  5288. kvm_free_all_assigned_devices(kvm);
  5289. kvm_free_pit(kvm);
  5290. }
  5291. void kvm_arch_destroy_vm(struct kvm *kvm)
  5292. {
  5293. kvm_iommu_unmap_guest(kvm);
  5294. kfree(kvm->arch.vpic);
  5295. kfree(kvm->arch.vioapic);
  5296. kvm_free_vcpus(kvm);
  5297. if (kvm->arch.apic_access_page)
  5298. put_page(kvm->arch.apic_access_page);
  5299. if (kvm->arch.ept_identity_pagetable)
  5300. put_page(kvm->arch.ept_identity_pagetable);
  5301. }
  5302. int kvm_arch_prepare_memory_region(struct kvm *kvm,
  5303. struct kvm_memory_slot *memslot,
  5304. struct kvm_memory_slot old,
  5305. struct kvm_userspace_memory_region *mem,
  5306. int user_alloc)
  5307. {
  5308. int npages = memslot->npages;
  5309. int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
  5310. /* Prevent internal slot pages from being moved by fork()/COW. */
  5311. if (memslot->id >= KVM_MEMORY_SLOTS)
  5312. map_flags = MAP_SHARED | MAP_ANONYMOUS;
  5313. /*To keep backward compatibility with older userspace,
  5314. *x86 needs to hanlde !user_alloc case.
  5315. */
  5316. if (!user_alloc) {
  5317. if (npages && !old.rmap) {
  5318. unsigned long userspace_addr;
  5319. down_write(&current->mm->mmap_sem);
  5320. userspace_addr = do_mmap(NULL, 0,
  5321. npages * PAGE_SIZE,
  5322. PROT_READ | PROT_WRITE,
  5323. map_flags,
  5324. 0);
  5325. up_write(&current->mm->mmap_sem);
  5326. if (IS_ERR((void *)userspace_addr))
  5327. return PTR_ERR((void *)userspace_addr);
  5328. memslot->userspace_addr = userspace_addr;
  5329. }
  5330. }
  5331. return 0;
  5332. }
  5333. void kvm_arch_commit_memory_region(struct kvm *kvm,
  5334. struct kvm_userspace_memory_region *mem,
  5335. struct kvm_memory_slot old,
  5336. int user_alloc)
  5337. {
  5338. int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT;
  5339. if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
  5340. int ret;
  5341. down_write(&current->mm->mmap_sem);
  5342. ret = do_munmap(current->mm, old.userspace_addr,
  5343. old.npages * PAGE_SIZE);
  5344. up_write(&current->mm->mmap_sem);
  5345. if (ret < 0)
  5346. printk(KERN_WARNING
  5347. "kvm_vm_ioctl_set_memory_region: "
  5348. "failed to munmap memory\n");
  5349. }
  5350. if (!kvm->arch.n_requested_mmu_pages)
  5351. nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  5352. spin_lock(&kvm->mmu_lock);
  5353. if (nr_mmu_pages)
  5354. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  5355. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  5356. spin_unlock(&kvm->mmu_lock);
  5357. }
  5358. void kvm_arch_flush_shadow(struct kvm *kvm)
  5359. {
  5360. kvm_mmu_zap_all(kvm);
  5361. kvm_reload_remote_mmus(kvm);
  5362. }
  5363. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  5364. {
  5365. return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
  5366. !vcpu->arch.apf.halted)
  5367. || !list_empty_careful(&vcpu->async_pf.done)
  5368. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  5369. || vcpu->arch.nmi_pending ||
  5370. (kvm_arch_interrupt_allowed(vcpu) &&
  5371. kvm_cpu_has_interrupt(vcpu));
  5372. }
  5373. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  5374. {
  5375. int me;
  5376. int cpu = vcpu->cpu;
  5377. if (waitqueue_active(&vcpu->wq)) {
  5378. wake_up_interruptible(&vcpu->wq);
  5379. ++vcpu->stat.halt_wakeup;
  5380. }
  5381. me = get_cpu();
  5382. if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
  5383. if (kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE)
  5384. smp_send_reschedule(cpu);
  5385. put_cpu();
  5386. }
  5387. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  5388. {
  5389. return kvm_x86_ops->interrupt_allowed(vcpu);
  5390. }
  5391. bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
  5392. {
  5393. unsigned long current_rip = kvm_rip_read(vcpu) +
  5394. get_segment_base(vcpu, VCPU_SREG_CS);
  5395. return current_rip == linear_rip;
  5396. }
  5397. EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
  5398. unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
  5399. {
  5400. unsigned long rflags;
  5401. rflags = kvm_x86_ops->get_rflags(vcpu);
  5402. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  5403. rflags &= ~X86_EFLAGS_TF;
  5404. return rflags;
  5405. }
  5406. EXPORT_SYMBOL_GPL(kvm_get_rflags);
  5407. void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  5408. {
  5409. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
  5410. kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
  5411. rflags |= X86_EFLAGS_TF;
  5412. kvm_x86_ops->set_rflags(vcpu, rflags);
  5413. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5414. }
  5415. EXPORT_SYMBOL_GPL(kvm_set_rflags);
  5416. void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
  5417. {
  5418. int r;
  5419. if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
  5420. is_error_page(work->page))
  5421. return;
  5422. r = kvm_mmu_reload(vcpu);
  5423. if (unlikely(r))
  5424. return;
  5425. if (!vcpu->arch.mmu.direct_map &&
  5426. work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
  5427. return;
  5428. vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
  5429. }
  5430. static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
  5431. {
  5432. return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
  5433. }
  5434. static inline u32 kvm_async_pf_next_probe(u32 key)
  5435. {
  5436. return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
  5437. }
  5438. static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
  5439. {
  5440. u32 key = kvm_async_pf_hash_fn(gfn);
  5441. while (vcpu->arch.apf.gfns[key] != ~0)
  5442. key = kvm_async_pf_next_probe(key);
  5443. vcpu->arch.apf.gfns[key] = gfn;
  5444. }
  5445. static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
  5446. {
  5447. int i;
  5448. u32 key = kvm_async_pf_hash_fn(gfn);
  5449. for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
  5450. (vcpu->arch.apf.gfns[key] != gfn &&
  5451. vcpu->arch.apf.gfns[key] != ~0); i++)
  5452. key = kvm_async_pf_next_probe(key);
  5453. return key;
  5454. }
  5455. bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
  5456. {
  5457. return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
  5458. }
  5459. static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
  5460. {
  5461. u32 i, j, k;
  5462. i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
  5463. while (true) {
  5464. vcpu->arch.apf.gfns[i] = ~0;
  5465. do {
  5466. j = kvm_async_pf_next_probe(j);
  5467. if (vcpu->arch.apf.gfns[j] == ~0)
  5468. return;
  5469. k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
  5470. /*
  5471. * k lies cyclically in ]i,j]
  5472. * | i.k.j |
  5473. * |....j i.k.| or |.k..j i...|
  5474. */
  5475. } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
  5476. vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
  5477. i = j;
  5478. }
  5479. }
  5480. static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
  5481. {
  5482. return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
  5483. sizeof(val));
  5484. }
  5485. void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
  5486. struct kvm_async_pf *work)
  5487. {
  5488. struct x86_exception fault;
  5489. trace_kvm_async_pf_not_present(work->arch.token, work->gva);
  5490. kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
  5491. if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
  5492. (vcpu->arch.apf.send_user_only &&
  5493. kvm_x86_ops->get_cpl(vcpu) == 0))
  5494. kvm_make_request(KVM_REQ_APF_HALT, vcpu);
  5495. else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
  5496. fault.vector = PF_VECTOR;
  5497. fault.error_code_valid = true;
  5498. fault.error_code = 0;
  5499. fault.nested_page_fault = false;
  5500. fault.address = work->arch.token;
  5501. kvm_inject_page_fault(vcpu, &fault);
  5502. }
  5503. }
  5504. void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
  5505. struct kvm_async_pf *work)
  5506. {
  5507. struct x86_exception fault;
  5508. trace_kvm_async_pf_ready(work->arch.token, work->gva);
  5509. if (is_error_page(work->page))
  5510. work->arch.token = ~0; /* broadcast wakeup */
  5511. else
  5512. kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
  5513. if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
  5514. !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
  5515. fault.vector = PF_VECTOR;
  5516. fault.error_code_valid = true;
  5517. fault.error_code = 0;
  5518. fault.nested_page_fault = false;
  5519. fault.address = work->arch.token;
  5520. kvm_inject_page_fault(vcpu, &fault);
  5521. }
  5522. vcpu->arch.apf.halted = false;
  5523. }
  5524. bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
  5525. {
  5526. if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
  5527. return true;
  5528. else
  5529. return !kvm_event_needs_reinjection(vcpu) &&
  5530. kvm_x86_ops->interrupt_allowed(vcpu);
  5531. }
  5532. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
  5533. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
  5534. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
  5535. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
  5536. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
  5537. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
  5538. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
  5539. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
  5540. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
  5541. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
  5542. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
  5543. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);