memory-failure.c 35 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341
  1. /*
  2. * Copyright (C) 2008, 2009 Intel Corporation
  3. * Authors: Andi Kleen, Fengguang Wu
  4. *
  5. * This software may be redistributed and/or modified under the terms of
  6. * the GNU General Public License ("GPL") version 2 only as published by the
  7. * Free Software Foundation.
  8. *
  9. * High level machine check handler. Handles pages reported by the
  10. * hardware as being corrupted usually due to a 2bit ECC memory or cache
  11. * failure.
  12. *
  13. * Handles page cache pages in various states. The tricky part
  14. * here is that we can access any page asynchronous to other VM
  15. * users, because memory failures could happen anytime and anywhere,
  16. * possibly violating some of their assumptions. This is why this code
  17. * has to be extremely careful. Generally it tries to use normal locking
  18. * rules, as in get the standard locks, even if that means the
  19. * error handling takes potentially a long time.
  20. *
  21. * The operation to map back from RMAP chains to processes has to walk
  22. * the complete process list and has non linear complexity with the number
  23. * mappings. In short it can be quite slow. But since memory corruptions
  24. * are rare we hope to get away with this.
  25. */
  26. /*
  27. * Notebook:
  28. * - hugetlb needs more code
  29. * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
  30. * - pass bad pages to kdump next kernel
  31. */
  32. #define DEBUG 1 /* remove me in 2.6.34 */
  33. #include <linux/kernel.h>
  34. #include <linux/mm.h>
  35. #include <linux/page-flags.h>
  36. #include <linux/kernel-page-flags.h>
  37. #include <linux/sched.h>
  38. #include <linux/ksm.h>
  39. #include <linux/rmap.h>
  40. #include <linux/pagemap.h>
  41. #include <linux/swap.h>
  42. #include <linux/backing-dev.h>
  43. #include <linux/migrate.h>
  44. #include <linux/page-isolation.h>
  45. #include <linux/suspend.h>
  46. #include <linux/slab.h>
  47. #include <linux/hugetlb.h>
  48. #include "internal.h"
  49. int sysctl_memory_failure_early_kill __read_mostly = 0;
  50. int sysctl_memory_failure_recovery __read_mostly = 1;
  51. atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
  52. #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
  53. u32 hwpoison_filter_enable = 0;
  54. u32 hwpoison_filter_dev_major = ~0U;
  55. u32 hwpoison_filter_dev_minor = ~0U;
  56. u64 hwpoison_filter_flags_mask;
  57. u64 hwpoison_filter_flags_value;
  58. EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
  59. EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
  60. EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
  61. EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
  62. EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
  63. static int hwpoison_filter_dev(struct page *p)
  64. {
  65. struct address_space *mapping;
  66. dev_t dev;
  67. if (hwpoison_filter_dev_major == ~0U &&
  68. hwpoison_filter_dev_minor == ~0U)
  69. return 0;
  70. /*
  71. * page_mapping() does not accept slab page
  72. */
  73. if (PageSlab(p))
  74. return -EINVAL;
  75. mapping = page_mapping(p);
  76. if (mapping == NULL || mapping->host == NULL)
  77. return -EINVAL;
  78. dev = mapping->host->i_sb->s_dev;
  79. if (hwpoison_filter_dev_major != ~0U &&
  80. hwpoison_filter_dev_major != MAJOR(dev))
  81. return -EINVAL;
  82. if (hwpoison_filter_dev_minor != ~0U &&
  83. hwpoison_filter_dev_minor != MINOR(dev))
  84. return -EINVAL;
  85. return 0;
  86. }
  87. static int hwpoison_filter_flags(struct page *p)
  88. {
  89. if (!hwpoison_filter_flags_mask)
  90. return 0;
  91. if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
  92. hwpoison_filter_flags_value)
  93. return 0;
  94. else
  95. return -EINVAL;
  96. }
  97. /*
  98. * This allows stress tests to limit test scope to a collection of tasks
  99. * by putting them under some memcg. This prevents killing unrelated/important
  100. * processes such as /sbin/init. Note that the target task may share clean
  101. * pages with init (eg. libc text), which is harmless. If the target task
  102. * share _dirty_ pages with another task B, the test scheme must make sure B
  103. * is also included in the memcg. At last, due to race conditions this filter
  104. * can only guarantee that the page either belongs to the memcg tasks, or is
  105. * a freed page.
  106. */
  107. #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
  108. u64 hwpoison_filter_memcg;
  109. EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
  110. static int hwpoison_filter_task(struct page *p)
  111. {
  112. struct mem_cgroup *mem;
  113. struct cgroup_subsys_state *css;
  114. unsigned long ino;
  115. if (!hwpoison_filter_memcg)
  116. return 0;
  117. mem = try_get_mem_cgroup_from_page(p);
  118. if (!mem)
  119. return -EINVAL;
  120. css = mem_cgroup_css(mem);
  121. /* root_mem_cgroup has NULL dentries */
  122. if (!css->cgroup->dentry)
  123. return -EINVAL;
  124. ino = css->cgroup->dentry->d_inode->i_ino;
  125. css_put(css);
  126. if (ino != hwpoison_filter_memcg)
  127. return -EINVAL;
  128. return 0;
  129. }
  130. #else
  131. static int hwpoison_filter_task(struct page *p) { return 0; }
  132. #endif
  133. int hwpoison_filter(struct page *p)
  134. {
  135. if (!hwpoison_filter_enable)
  136. return 0;
  137. if (hwpoison_filter_dev(p))
  138. return -EINVAL;
  139. if (hwpoison_filter_flags(p))
  140. return -EINVAL;
  141. if (hwpoison_filter_task(p))
  142. return -EINVAL;
  143. return 0;
  144. }
  145. #else
  146. int hwpoison_filter(struct page *p)
  147. {
  148. return 0;
  149. }
  150. #endif
  151. EXPORT_SYMBOL_GPL(hwpoison_filter);
  152. /*
  153. * Send all the processes who have the page mapped an ``action optional''
  154. * signal.
  155. */
  156. static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno,
  157. unsigned long pfn)
  158. {
  159. struct siginfo si;
  160. int ret;
  161. printk(KERN_ERR
  162. "MCE %#lx: Killing %s:%d early due to hardware memory corruption\n",
  163. pfn, t->comm, t->pid);
  164. si.si_signo = SIGBUS;
  165. si.si_errno = 0;
  166. si.si_code = BUS_MCEERR_AO;
  167. si.si_addr = (void *)addr;
  168. #ifdef __ARCH_SI_TRAPNO
  169. si.si_trapno = trapno;
  170. #endif
  171. si.si_addr_lsb = PAGE_SHIFT;
  172. /*
  173. * Don't use force here, it's convenient if the signal
  174. * can be temporarily blocked.
  175. * This could cause a loop when the user sets SIGBUS
  176. * to SIG_IGN, but hopefully noone will do that?
  177. */
  178. ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
  179. if (ret < 0)
  180. printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
  181. t->comm, t->pid, ret);
  182. return ret;
  183. }
  184. /*
  185. * When a unknown page type is encountered drain as many buffers as possible
  186. * in the hope to turn the page into a LRU or free page, which we can handle.
  187. */
  188. void shake_page(struct page *p, int access)
  189. {
  190. if (!PageSlab(p)) {
  191. lru_add_drain_all();
  192. if (PageLRU(p))
  193. return;
  194. drain_all_pages();
  195. if (PageLRU(p) || is_free_buddy_page(p))
  196. return;
  197. }
  198. /*
  199. * Only all shrink_slab here (which would also
  200. * shrink other caches) if access is not potentially fatal.
  201. */
  202. if (access) {
  203. int nr;
  204. do {
  205. nr = shrink_slab(1000, GFP_KERNEL, 1000);
  206. if (page_count(p) == 0)
  207. break;
  208. } while (nr > 10);
  209. }
  210. }
  211. EXPORT_SYMBOL_GPL(shake_page);
  212. /*
  213. * Kill all processes that have a poisoned page mapped and then isolate
  214. * the page.
  215. *
  216. * General strategy:
  217. * Find all processes having the page mapped and kill them.
  218. * But we keep a page reference around so that the page is not
  219. * actually freed yet.
  220. * Then stash the page away
  221. *
  222. * There's no convenient way to get back to mapped processes
  223. * from the VMAs. So do a brute-force search over all
  224. * running processes.
  225. *
  226. * Remember that machine checks are not common (or rather
  227. * if they are common you have other problems), so this shouldn't
  228. * be a performance issue.
  229. *
  230. * Also there are some races possible while we get from the
  231. * error detection to actually handle it.
  232. */
  233. struct to_kill {
  234. struct list_head nd;
  235. struct task_struct *tsk;
  236. unsigned long addr;
  237. unsigned addr_valid:1;
  238. };
  239. /*
  240. * Failure handling: if we can't find or can't kill a process there's
  241. * not much we can do. We just print a message and ignore otherwise.
  242. */
  243. /*
  244. * Schedule a process for later kill.
  245. * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
  246. * TBD would GFP_NOIO be enough?
  247. */
  248. static void add_to_kill(struct task_struct *tsk, struct page *p,
  249. struct vm_area_struct *vma,
  250. struct list_head *to_kill,
  251. struct to_kill **tkc)
  252. {
  253. struct to_kill *tk;
  254. if (*tkc) {
  255. tk = *tkc;
  256. *tkc = NULL;
  257. } else {
  258. tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
  259. if (!tk) {
  260. printk(KERN_ERR
  261. "MCE: Out of memory while machine check handling\n");
  262. return;
  263. }
  264. }
  265. tk->addr = page_address_in_vma(p, vma);
  266. tk->addr_valid = 1;
  267. /*
  268. * In theory we don't have to kill when the page was
  269. * munmaped. But it could be also a mremap. Since that's
  270. * likely very rare kill anyways just out of paranoia, but use
  271. * a SIGKILL because the error is not contained anymore.
  272. */
  273. if (tk->addr == -EFAULT) {
  274. pr_debug("MCE: Unable to find user space address %lx in %s\n",
  275. page_to_pfn(p), tsk->comm);
  276. tk->addr_valid = 0;
  277. }
  278. get_task_struct(tsk);
  279. tk->tsk = tsk;
  280. list_add_tail(&tk->nd, to_kill);
  281. }
  282. /*
  283. * Kill the processes that have been collected earlier.
  284. *
  285. * Only do anything when DOIT is set, otherwise just free the list
  286. * (this is used for clean pages which do not need killing)
  287. * Also when FAIL is set do a force kill because something went
  288. * wrong earlier.
  289. */
  290. static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno,
  291. int fail, unsigned long pfn)
  292. {
  293. struct to_kill *tk, *next;
  294. list_for_each_entry_safe (tk, next, to_kill, nd) {
  295. if (doit) {
  296. /*
  297. * In case something went wrong with munmapping
  298. * make sure the process doesn't catch the
  299. * signal and then access the memory. Just kill it.
  300. */
  301. if (fail || tk->addr_valid == 0) {
  302. printk(KERN_ERR
  303. "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
  304. pfn, tk->tsk->comm, tk->tsk->pid);
  305. force_sig(SIGKILL, tk->tsk);
  306. }
  307. /*
  308. * In theory the process could have mapped
  309. * something else on the address in-between. We could
  310. * check for that, but we need to tell the
  311. * process anyways.
  312. */
  313. else if (kill_proc_ao(tk->tsk, tk->addr, trapno,
  314. pfn) < 0)
  315. printk(KERN_ERR
  316. "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
  317. pfn, tk->tsk->comm, tk->tsk->pid);
  318. }
  319. put_task_struct(tk->tsk);
  320. kfree(tk);
  321. }
  322. }
  323. static int task_early_kill(struct task_struct *tsk)
  324. {
  325. if (!tsk->mm)
  326. return 0;
  327. if (tsk->flags & PF_MCE_PROCESS)
  328. return !!(tsk->flags & PF_MCE_EARLY);
  329. return sysctl_memory_failure_early_kill;
  330. }
  331. /*
  332. * Collect processes when the error hit an anonymous page.
  333. */
  334. static void collect_procs_anon(struct page *page, struct list_head *to_kill,
  335. struct to_kill **tkc)
  336. {
  337. struct vm_area_struct *vma;
  338. struct task_struct *tsk;
  339. struct anon_vma *av;
  340. read_lock(&tasklist_lock);
  341. av = page_lock_anon_vma(page);
  342. if (av == NULL) /* Not actually mapped anymore */
  343. goto out;
  344. for_each_process (tsk) {
  345. struct anon_vma_chain *vmac;
  346. if (!task_early_kill(tsk))
  347. continue;
  348. list_for_each_entry(vmac, &av->head, same_anon_vma) {
  349. vma = vmac->vma;
  350. if (!page_mapped_in_vma(page, vma))
  351. continue;
  352. if (vma->vm_mm == tsk->mm)
  353. add_to_kill(tsk, page, vma, to_kill, tkc);
  354. }
  355. }
  356. page_unlock_anon_vma(av);
  357. out:
  358. read_unlock(&tasklist_lock);
  359. }
  360. /*
  361. * Collect processes when the error hit a file mapped page.
  362. */
  363. static void collect_procs_file(struct page *page, struct list_head *to_kill,
  364. struct to_kill **tkc)
  365. {
  366. struct vm_area_struct *vma;
  367. struct task_struct *tsk;
  368. struct prio_tree_iter iter;
  369. struct address_space *mapping = page->mapping;
  370. /*
  371. * A note on the locking order between the two locks.
  372. * We don't rely on this particular order.
  373. * If you have some other code that needs a different order
  374. * feel free to switch them around. Or add a reverse link
  375. * from mm_struct to task_struct, then this could be all
  376. * done without taking tasklist_lock and looping over all tasks.
  377. */
  378. read_lock(&tasklist_lock);
  379. spin_lock(&mapping->i_mmap_lock);
  380. for_each_process(tsk) {
  381. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  382. if (!task_early_kill(tsk))
  383. continue;
  384. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
  385. pgoff) {
  386. /*
  387. * Send early kill signal to tasks where a vma covers
  388. * the page but the corrupted page is not necessarily
  389. * mapped it in its pte.
  390. * Assume applications who requested early kill want
  391. * to be informed of all such data corruptions.
  392. */
  393. if (vma->vm_mm == tsk->mm)
  394. add_to_kill(tsk, page, vma, to_kill, tkc);
  395. }
  396. }
  397. spin_unlock(&mapping->i_mmap_lock);
  398. read_unlock(&tasklist_lock);
  399. }
  400. /*
  401. * Collect the processes who have the corrupted page mapped to kill.
  402. * This is done in two steps for locking reasons.
  403. * First preallocate one tokill structure outside the spin locks,
  404. * so that we can kill at least one process reasonably reliable.
  405. */
  406. static void collect_procs(struct page *page, struct list_head *tokill)
  407. {
  408. struct to_kill *tk;
  409. if (!page->mapping)
  410. return;
  411. tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
  412. if (!tk)
  413. return;
  414. if (PageAnon(page))
  415. collect_procs_anon(page, tokill, &tk);
  416. else
  417. collect_procs_file(page, tokill, &tk);
  418. kfree(tk);
  419. }
  420. /*
  421. * Error handlers for various types of pages.
  422. */
  423. enum outcome {
  424. IGNORED, /* Error: cannot be handled */
  425. FAILED, /* Error: handling failed */
  426. DELAYED, /* Will be handled later */
  427. RECOVERED, /* Successfully recovered */
  428. };
  429. static const char *action_name[] = {
  430. [IGNORED] = "Ignored",
  431. [FAILED] = "Failed",
  432. [DELAYED] = "Delayed",
  433. [RECOVERED] = "Recovered",
  434. };
  435. /*
  436. * XXX: It is possible that a page is isolated from LRU cache,
  437. * and then kept in swap cache or failed to remove from page cache.
  438. * The page count will stop it from being freed by unpoison.
  439. * Stress tests should be aware of this memory leak problem.
  440. */
  441. static int delete_from_lru_cache(struct page *p)
  442. {
  443. if (!isolate_lru_page(p)) {
  444. /*
  445. * Clear sensible page flags, so that the buddy system won't
  446. * complain when the page is unpoison-and-freed.
  447. */
  448. ClearPageActive(p);
  449. ClearPageUnevictable(p);
  450. /*
  451. * drop the page count elevated by isolate_lru_page()
  452. */
  453. page_cache_release(p);
  454. return 0;
  455. }
  456. return -EIO;
  457. }
  458. /*
  459. * Error hit kernel page.
  460. * Do nothing, try to be lucky and not touch this instead. For a few cases we
  461. * could be more sophisticated.
  462. */
  463. static int me_kernel(struct page *p, unsigned long pfn)
  464. {
  465. return IGNORED;
  466. }
  467. /*
  468. * Page in unknown state. Do nothing.
  469. */
  470. static int me_unknown(struct page *p, unsigned long pfn)
  471. {
  472. printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
  473. return FAILED;
  474. }
  475. /*
  476. * Clean (or cleaned) page cache page.
  477. */
  478. static int me_pagecache_clean(struct page *p, unsigned long pfn)
  479. {
  480. int err;
  481. int ret = FAILED;
  482. struct address_space *mapping;
  483. delete_from_lru_cache(p);
  484. /*
  485. * For anonymous pages we're done the only reference left
  486. * should be the one m_f() holds.
  487. */
  488. if (PageAnon(p))
  489. return RECOVERED;
  490. /*
  491. * Now truncate the page in the page cache. This is really
  492. * more like a "temporary hole punch"
  493. * Don't do this for block devices when someone else
  494. * has a reference, because it could be file system metadata
  495. * and that's not safe to truncate.
  496. */
  497. mapping = page_mapping(p);
  498. if (!mapping) {
  499. /*
  500. * Page has been teared down in the meanwhile
  501. */
  502. return FAILED;
  503. }
  504. /*
  505. * Truncation is a bit tricky. Enable it per file system for now.
  506. *
  507. * Open: to take i_mutex or not for this? Right now we don't.
  508. */
  509. if (mapping->a_ops->error_remove_page) {
  510. err = mapping->a_ops->error_remove_page(mapping, p);
  511. if (err != 0) {
  512. printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
  513. pfn, err);
  514. } else if (page_has_private(p) &&
  515. !try_to_release_page(p, GFP_NOIO)) {
  516. pr_debug("MCE %#lx: failed to release buffers\n", pfn);
  517. } else {
  518. ret = RECOVERED;
  519. }
  520. } else {
  521. /*
  522. * If the file system doesn't support it just invalidate
  523. * This fails on dirty or anything with private pages
  524. */
  525. if (invalidate_inode_page(p))
  526. ret = RECOVERED;
  527. else
  528. printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
  529. pfn);
  530. }
  531. return ret;
  532. }
  533. /*
  534. * Dirty cache page page
  535. * Issues: when the error hit a hole page the error is not properly
  536. * propagated.
  537. */
  538. static int me_pagecache_dirty(struct page *p, unsigned long pfn)
  539. {
  540. struct address_space *mapping = page_mapping(p);
  541. SetPageError(p);
  542. /* TBD: print more information about the file. */
  543. if (mapping) {
  544. /*
  545. * IO error will be reported by write(), fsync(), etc.
  546. * who check the mapping.
  547. * This way the application knows that something went
  548. * wrong with its dirty file data.
  549. *
  550. * There's one open issue:
  551. *
  552. * The EIO will be only reported on the next IO
  553. * operation and then cleared through the IO map.
  554. * Normally Linux has two mechanisms to pass IO error
  555. * first through the AS_EIO flag in the address space
  556. * and then through the PageError flag in the page.
  557. * Since we drop pages on memory failure handling the
  558. * only mechanism open to use is through AS_AIO.
  559. *
  560. * This has the disadvantage that it gets cleared on
  561. * the first operation that returns an error, while
  562. * the PageError bit is more sticky and only cleared
  563. * when the page is reread or dropped. If an
  564. * application assumes it will always get error on
  565. * fsync, but does other operations on the fd before
  566. * and the page is dropped inbetween then the error
  567. * will not be properly reported.
  568. *
  569. * This can already happen even without hwpoisoned
  570. * pages: first on metadata IO errors (which only
  571. * report through AS_EIO) or when the page is dropped
  572. * at the wrong time.
  573. *
  574. * So right now we assume that the application DTRT on
  575. * the first EIO, but we're not worse than other parts
  576. * of the kernel.
  577. */
  578. mapping_set_error(mapping, EIO);
  579. }
  580. return me_pagecache_clean(p, pfn);
  581. }
  582. /*
  583. * Clean and dirty swap cache.
  584. *
  585. * Dirty swap cache page is tricky to handle. The page could live both in page
  586. * cache and swap cache(ie. page is freshly swapped in). So it could be
  587. * referenced concurrently by 2 types of PTEs:
  588. * normal PTEs and swap PTEs. We try to handle them consistently by calling
  589. * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
  590. * and then
  591. * - clear dirty bit to prevent IO
  592. * - remove from LRU
  593. * - but keep in the swap cache, so that when we return to it on
  594. * a later page fault, we know the application is accessing
  595. * corrupted data and shall be killed (we installed simple
  596. * interception code in do_swap_page to catch it).
  597. *
  598. * Clean swap cache pages can be directly isolated. A later page fault will
  599. * bring in the known good data from disk.
  600. */
  601. static int me_swapcache_dirty(struct page *p, unsigned long pfn)
  602. {
  603. ClearPageDirty(p);
  604. /* Trigger EIO in shmem: */
  605. ClearPageUptodate(p);
  606. if (!delete_from_lru_cache(p))
  607. return DELAYED;
  608. else
  609. return FAILED;
  610. }
  611. static int me_swapcache_clean(struct page *p, unsigned long pfn)
  612. {
  613. delete_from_swap_cache(p);
  614. if (!delete_from_lru_cache(p))
  615. return RECOVERED;
  616. else
  617. return FAILED;
  618. }
  619. /*
  620. * Huge pages. Needs work.
  621. * Issues:
  622. * No rmap support so we cannot find the original mapper. In theory could walk
  623. * all MMs and look for the mappings, but that would be non atomic and racy.
  624. * Need rmap for hugepages for this. Alternatively we could employ a heuristic,
  625. * like just walking the current process and hoping it has it mapped (that
  626. * should be usually true for the common "shared database cache" case)
  627. * Should handle free huge pages and dequeue them too, but this needs to
  628. * handle huge page accounting correctly.
  629. */
  630. static int me_huge_page(struct page *p, unsigned long pfn)
  631. {
  632. return FAILED;
  633. }
  634. /*
  635. * Various page states we can handle.
  636. *
  637. * A page state is defined by its current page->flags bits.
  638. * The table matches them in order and calls the right handler.
  639. *
  640. * This is quite tricky because we can access page at any time
  641. * in its live cycle, so all accesses have to be extremly careful.
  642. *
  643. * This is not complete. More states could be added.
  644. * For any missing state don't attempt recovery.
  645. */
  646. #define dirty (1UL << PG_dirty)
  647. #define sc (1UL << PG_swapcache)
  648. #define unevict (1UL << PG_unevictable)
  649. #define mlock (1UL << PG_mlocked)
  650. #define writeback (1UL << PG_writeback)
  651. #define lru (1UL << PG_lru)
  652. #define swapbacked (1UL << PG_swapbacked)
  653. #define head (1UL << PG_head)
  654. #define tail (1UL << PG_tail)
  655. #define compound (1UL << PG_compound)
  656. #define slab (1UL << PG_slab)
  657. #define reserved (1UL << PG_reserved)
  658. static struct page_state {
  659. unsigned long mask;
  660. unsigned long res;
  661. char *msg;
  662. int (*action)(struct page *p, unsigned long pfn);
  663. } error_states[] = {
  664. { reserved, reserved, "reserved kernel", me_kernel },
  665. /*
  666. * free pages are specially detected outside this table:
  667. * PG_buddy pages only make a small fraction of all free pages.
  668. */
  669. /*
  670. * Could in theory check if slab page is free or if we can drop
  671. * currently unused objects without touching them. But just
  672. * treat it as standard kernel for now.
  673. */
  674. { slab, slab, "kernel slab", me_kernel },
  675. #ifdef CONFIG_PAGEFLAGS_EXTENDED
  676. { head, head, "huge", me_huge_page },
  677. { tail, tail, "huge", me_huge_page },
  678. #else
  679. { compound, compound, "huge", me_huge_page },
  680. #endif
  681. { sc|dirty, sc|dirty, "swapcache", me_swapcache_dirty },
  682. { sc|dirty, sc, "swapcache", me_swapcache_clean },
  683. { unevict|dirty, unevict|dirty, "unevictable LRU", me_pagecache_dirty},
  684. { unevict, unevict, "unevictable LRU", me_pagecache_clean},
  685. { mlock|dirty, mlock|dirty, "mlocked LRU", me_pagecache_dirty },
  686. { mlock, mlock, "mlocked LRU", me_pagecache_clean },
  687. { lru|dirty, lru|dirty, "LRU", me_pagecache_dirty },
  688. { lru|dirty, lru, "clean LRU", me_pagecache_clean },
  689. /*
  690. * Catchall entry: must be at end.
  691. */
  692. { 0, 0, "unknown page state", me_unknown },
  693. };
  694. #undef dirty
  695. #undef sc
  696. #undef unevict
  697. #undef mlock
  698. #undef writeback
  699. #undef lru
  700. #undef swapbacked
  701. #undef head
  702. #undef tail
  703. #undef compound
  704. #undef slab
  705. #undef reserved
  706. static void action_result(unsigned long pfn, char *msg, int result)
  707. {
  708. struct page *page = pfn_to_page(pfn);
  709. printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
  710. pfn,
  711. PageDirty(page) ? "dirty " : "",
  712. msg, action_name[result]);
  713. }
  714. static int page_action(struct page_state *ps, struct page *p,
  715. unsigned long pfn)
  716. {
  717. int result;
  718. int count;
  719. result = ps->action(p, pfn);
  720. action_result(pfn, ps->msg, result);
  721. count = page_count(p) - 1;
  722. if (ps->action == me_swapcache_dirty && result == DELAYED)
  723. count--;
  724. if (count != 0) {
  725. printk(KERN_ERR
  726. "MCE %#lx: %s page still referenced by %d users\n",
  727. pfn, ps->msg, count);
  728. result = FAILED;
  729. }
  730. /* Could do more checks here if page looks ok */
  731. /*
  732. * Could adjust zone counters here to correct for the missing page.
  733. */
  734. return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
  735. }
  736. #define N_UNMAP_TRIES 5
  737. /*
  738. * Do all that is necessary to remove user space mappings. Unmap
  739. * the pages and send SIGBUS to the processes if the data was dirty.
  740. */
  741. static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
  742. int trapno)
  743. {
  744. enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
  745. struct address_space *mapping;
  746. LIST_HEAD(tokill);
  747. int ret;
  748. int i;
  749. int kill = 1;
  750. struct page *hpage = compound_head(p);
  751. if (PageReserved(p) || PageSlab(p))
  752. return SWAP_SUCCESS;
  753. /*
  754. * This check implies we don't kill processes if their pages
  755. * are in the swap cache early. Those are always late kills.
  756. */
  757. if (!page_mapped(hpage))
  758. return SWAP_SUCCESS;
  759. if (PageKsm(p))
  760. return SWAP_FAIL;
  761. if (PageSwapCache(p)) {
  762. printk(KERN_ERR
  763. "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
  764. ttu |= TTU_IGNORE_HWPOISON;
  765. }
  766. /*
  767. * Propagate the dirty bit from PTEs to struct page first, because we
  768. * need this to decide if we should kill or just drop the page.
  769. * XXX: the dirty test could be racy: set_page_dirty() may not always
  770. * be called inside page lock (it's recommended but not enforced).
  771. */
  772. mapping = page_mapping(hpage);
  773. if (!PageDirty(hpage) && mapping &&
  774. mapping_cap_writeback_dirty(mapping)) {
  775. if (page_mkclean(hpage)) {
  776. SetPageDirty(hpage);
  777. } else {
  778. kill = 0;
  779. ttu |= TTU_IGNORE_HWPOISON;
  780. printk(KERN_INFO
  781. "MCE %#lx: corrupted page was clean: dropped without side effects\n",
  782. pfn);
  783. }
  784. }
  785. /*
  786. * First collect all the processes that have the page
  787. * mapped in dirty form. This has to be done before try_to_unmap,
  788. * because ttu takes the rmap data structures down.
  789. *
  790. * Error handling: We ignore errors here because
  791. * there's nothing that can be done.
  792. */
  793. if (kill)
  794. collect_procs(hpage, &tokill);
  795. /*
  796. * try_to_unmap can fail temporarily due to races.
  797. * Try a few times (RED-PEN better strategy?)
  798. */
  799. for (i = 0; i < N_UNMAP_TRIES; i++) {
  800. ret = try_to_unmap(hpage, ttu);
  801. if (ret == SWAP_SUCCESS)
  802. break;
  803. pr_debug("MCE %#lx: try_to_unmap retry needed %d\n", pfn, ret);
  804. }
  805. if (ret != SWAP_SUCCESS)
  806. printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
  807. pfn, page_mapcount(hpage));
  808. /*
  809. * Now that the dirty bit has been propagated to the
  810. * struct page and all unmaps done we can decide if
  811. * killing is needed or not. Only kill when the page
  812. * was dirty, otherwise the tokill list is merely
  813. * freed. When there was a problem unmapping earlier
  814. * use a more force-full uncatchable kill to prevent
  815. * any accesses to the poisoned memory.
  816. */
  817. kill_procs_ao(&tokill, !!PageDirty(hpage), trapno,
  818. ret != SWAP_SUCCESS, pfn);
  819. return ret;
  820. }
  821. static void set_page_hwpoison_huge_page(struct page *hpage)
  822. {
  823. int i;
  824. int nr_pages = 1 << compound_order(hpage);
  825. for (i = 0; i < nr_pages; i++)
  826. SetPageHWPoison(hpage + i);
  827. }
  828. static void clear_page_hwpoison_huge_page(struct page *hpage)
  829. {
  830. int i;
  831. int nr_pages = 1 << compound_order(hpage);
  832. for (i = 0; i < nr_pages; i++)
  833. ClearPageHWPoison(hpage + i);
  834. }
  835. int __memory_failure(unsigned long pfn, int trapno, int flags)
  836. {
  837. struct page_state *ps;
  838. struct page *p;
  839. struct page *hpage;
  840. int res;
  841. if (!sysctl_memory_failure_recovery)
  842. panic("Memory failure from trap %d on page %lx", trapno, pfn);
  843. if (!pfn_valid(pfn)) {
  844. printk(KERN_ERR
  845. "MCE %#lx: memory outside kernel control\n",
  846. pfn);
  847. return -ENXIO;
  848. }
  849. p = pfn_to_page(pfn);
  850. hpage = compound_head(p);
  851. if (TestSetPageHWPoison(p)) {
  852. printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
  853. return 0;
  854. }
  855. atomic_long_add(1, &mce_bad_pages);
  856. /*
  857. * We need/can do nothing about count=0 pages.
  858. * 1) it's a free page, and therefore in safe hand:
  859. * prep_new_page() will be the gate keeper.
  860. * 2) it's part of a non-compound high order page.
  861. * Implies some kernel user: cannot stop them from
  862. * R/W the page; let's pray that the page has been
  863. * used and will be freed some time later.
  864. * In fact it's dangerous to directly bump up page count from 0,
  865. * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
  866. */
  867. if (!(flags & MF_COUNT_INCREASED) &&
  868. !get_page_unless_zero(hpage)) {
  869. if (is_free_buddy_page(p)) {
  870. action_result(pfn, "free buddy", DELAYED);
  871. return 0;
  872. } else {
  873. action_result(pfn, "high order kernel", IGNORED);
  874. return -EBUSY;
  875. }
  876. }
  877. /*
  878. * We ignore non-LRU pages for good reasons.
  879. * - PG_locked is only well defined for LRU pages and a few others
  880. * - to avoid races with __set_page_locked()
  881. * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
  882. * The check (unnecessarily) ignores LRU pages being isolated and
  883. * walked by the page reclaim code, however that's not a big loss.
  884. */
  885. if (!PageLRU(p) && !PageHuge(p))
  886. shake_page(p, 0);
  887. if (!PageLRU(p) && !PageHuge(p)) {
  888. /*
  889. * shake_page could have turned it free.
  890. */
  891. if (is_free_buddy_page(p)) {
  892. action_result(pfn, "free buddy, 2nd try", DELAYED);
  893. return 0;
  894. }
  895. action_result(pfn, "non LRU", IGNORED);
  896. put_page(p);
  897. return -EBUSY;
  898. }
  899. /*
  900. * Lock the page and wait for writeback to finish.
  901. * It's very difficult to mess with pages currently under IO
  902. * and in many cases impossible, so we just avoid it here.
  903. */
  904. lock_page_nosync(hpage);
  905. /*
  906. * unpoison always clear PG_hwpoison inside page lock
  907. */
  908. if (!PageHWPoison(p)) {
  909. printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
  910. res = 0;
  911. goto out;
  912. }
  913. if (hwpoison_filter(p)) {
  914. if (TestClearPageHWPoison(p))
  915. atomic_long_dec(&mce_bad_pages);
  916. unlock_page(hpage);
  917. put_page(hpage);
  918. return 0;
  919. }
  920. /*
  921. * For error on the tail page, we should set PG_hwpoison
  922. * on the head page to show that the hugepage is hwpoisoned
  923. */
  924. if (PageTail(p) && TestSetPageHWPoison(hpage)) {
  925. action_result(pfn, "hugepage already hardware poisoned",
  926. IGNORED);
  927. unlock_page(hpage);
  928. put_page(hpage);
  929. return 0;
  930. }
  931. /*
  932. * Set PG_hwpoison on all pages in an error hugepage,
  933. * because containment is done in hugepage unit for now.
  934. * Since we have done TestSetPageHWPoison() for the head page with
  935. * page lock held, we can safely set PG_hwpoison bits on tail pages.
  936. */
  937. if (PageHuge(p))
  938. set_page_hwpoison_huge_page(hpage);
  939. wait_on_page_writeback(p);
  940. /*
  941. * Now take care of user space mappings.
  942. * Abort on fail: __remove_from_page_cache() assumes unmapped page.
  943. */
  944. if (hwpoison_user_mappings(p, pfn, trapno) != SWAP_SUCCESS) {
  945. printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
  946. res = -EBUSY;
  947. goto out;
  948. }
  949. /*
  950. * Torn down by someone else?
  951. */
  952. if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
  953. action_result(pfn, "already truncated LRU", IGNORED);
  954. res = -EBUSY;
  955. goto out;
  956. }
  957. res = -EBUSY;
  958. for (ps = error_states;; ps++) {
  959. if ((p->flags & ps->mask) == ps->res) {
  960. res = page_action(ps, p, pfn);
  961. break;
  962. }
  963. }
  964. out:
  965. unlock_page(hpage);
  966. return res;
  967. }
  968. EXPORT_SYMBOL_GPL(__memory_failure);
  969. /**
  970. * memory_failure - Handle memory failure of a page.
  971. * @pfn: Page Number of the corrupted page
  972. * @trapno: Trap number reported in the signal to user space.
  973. *
  974. * This function is called by the low level machine check code
  975. * of an architecture when it detects hardware memory corruption
  976. * of a page. It tries its best to recover, which includes
  977. * dropping pages, killing processes etc.
  978. *
  979. * The function is primarily of use for corruptions that
  980. * happen outside the current execution context (e.g. when
  981. * detected by a background scrubber)
  982. *
  983. * Must run in process context (e.g. a work queue) with interrupts
  984. * enabled and no spinlocks hold.
  985. */
  986. void memory_failure(unsigned long pfn, int trapno)
  987. {
  988. __memory_failure(pfn, trapno, 0);
  989. }
  990. /**
  991. * unpoison_memory - Unpoison a previously poisoned page
  992. * @pfn: Page number of the to be unpoisoned page
  993. *
  994. * Software-unpoison a page that has been poisoned by
  995. * memory_failure() earlier.
  996. *
  997. * This is only done on the software-level, so it only works
  998. * for linux injected failures, not real hardware failures
  999. *
  1000. * Returns 0 for success, otherwise -errno.
  1001. */
  1002. int unpoison_memory(unsigned long pfn)
  1003. {
  1004. struct page *page;
  1005. struct page *p;
  1006. int freeit = 0;
  1007. if (!pfn_valid(pfn))
  1008. return -ENXIO;
  1009. p = pfn_to_page(pfn);
  1010. page = compound_head(p);
  1011. if (!PageHWPoison(p)) {
  1012. pr_debug("MCE: Page was already unpoisoned %#lx\n", pfn);
  1013. return 0;
  1014. }
  1015. if (!get_page_unless_zero(page)) {
  1016. if (TestClearPageHWPoison(p))
  1017. atomic_long_dec(&mce_bad_pages);
  1018. pr_debug("MCE: Software-unpoisoned free page %#lx\n", pfn);
  1019. return 0;
  1020. }
  1021. lock_page_nosync(page);
  1022. /*
  1023. * This test is racy because PG_hwpoison is set outside of page lock.
  1024. * That's acceptable because that won't trigger kernel panic. Instead,
  1025. * the PG_hwpoison page will be caught and isolated on the entrance to
  1026. * the free buddy page pool.
  1027. */
  1028. if (TestClearPageHWPoison(p)) {
  1029. pr_debug("MCE: Software-unpoisoned page %#lx\n", pfn);
  1030. atomic_long_dec(&mce_bad_pages);
  1031. freeit = 1;
  1032. }
  1033. if (PageHuge(p))
  1034. clear_page_hwpoison_huge_page(page);
  1035. unlock_page(page);
  1036. put_page(page);
  1037. if (freeit)
  1038. put_page(page);
  1039. return 0;
  1040. }
  1041. EXPORT_SYMBOL(unpoison_memory);
  1042. static struct page *new_page(struct page *p, unsigned long private, int **x)
  1043. {
  1044. int nid = page_to_nid(p);
  1045. return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
  1046. }
  1047. /*
  1048. * Safely get reference count of an arbitrary page.
  1049. * Returns 0 for a free page, -EIO for a zero refcount page
  1050. * that is not free, and 1 for any other page type.
  1051. * For 1 the page is returned with increased page count, otherwise not.
  1052. */
  1053. static int get_any_page(struct page *p, unsigned long pfn, int flags)
  1054. {
  1055. int ret;
  1056. if (flags & MF_COUNT_INCREASED)
  1057. return 1;
  1058. /*
  1059. * The lock_system_sleep prevents a race with memory hotplug,
  1060. * because the isolation assumes there's only a single user.
  1061. * This is a big hammer, a better would be nicer.
  1062. */
  1063. lock_system_sleep();
  1064. /*
  1065. * Isolate the page, so that it doesn't get reallocated if it
  1066. * was free.
  1067. */
  1068. set_migratetype_isolate(p);
  1069. if (!get_page_unless_zero(compound_head(p))) {
  1070. if (is_free_buddy_page(p)) {
  1071. pr_debug("get_any_page: %#lx free buddy page\n", pfn);
  1072. /* Set hwpoison bit while page is still isolated */
  1073. SetPageHWPoison(p);
  1074. ret = 0;
  1075. } else {
  1076. pr_debug("get_any_page: %#lx: unknown zero refcount page type %lx\n",
  1077. pfn, p->flags);
  1078. ret = -EIO;
  1079. }
  1080. } else {
  1081. /* Not a free page */
  1082. ret = 1;
  1083. }
  1084. unset_migratetype_isolate(p);
  1085. unlock_system_sleep();
  1086. return ret;
  1087. }
  1088. /**
  1089. * soft_offline_page - Soft offline a page.
  1090. * @page: page to offline
  1091. * @flags: flags. Same as memory_failure().
  1092. *
  1093. * Returns 0 on success, otherwise negated errno.
  1094. *
  1095. * Soft offline a page, by migration or invalidation,
  1096. * without killing anything. This is for the case when
  1097. * a page is not corrupted yet (so it's still valid to access),
  1098. * but has had a number of corrected errors and is better taken
  1099. * out.
  1100. *
  1101. * The actual policy on when to do that is maintained by
  1102. * user space.
  1103. *
  1104. * This should never impact any application or cause data loss,
  1105. * however it might take some time.
  1106. *
  1107. * This is not a 100% solution for all memory, but tries to be
  1108. * ``good enough'' for the majority of memory.
  1109. */
  1110. int soft_offline_page(struct page *page, int flags)
  1111. {
  1112. int ret;
  1113. unsigned long pfn = page_to_pfn(page);
  1114. ret = get_any_page(page, pfn, flags);
  1115. if (ret < 0)
  1116. return ret;
  1117. if (ret == 0)
  1118. goto done;
  1119. /*
  1120. * Page cache page we can handle?
  1121. */
  1122. if (!PageLRU(page)) {
  1123. /*
  1124. * Try to free it.
  1125. */
  1126. put_page(page);
  1127. shake_page(page, 1);
  1128. /*
  1129. * Did it turn free?
  1130. */
  1131. ret = get_any_page(page, pfn, 0);
  1132. if (ret < 0)
  1133. return ret;
  1134. if (ret == 0)
  1135. goto done;
  1136. }
  1137. if (!PageLRU(page)) {
  1138. pr_debug("soft_offline: %#lx: unknown non LRU page type %lx\n",
  1139. pfn, page->flags);
  1140. return -EIO;
  1141. }
  1142. lock_page(page);
  1143. wait_on_page_writeback(page);
  1144. /*
  1145. * Synchronized using the page lock with memory_failure()
  1146. */
  1147. if (PageHWPoison(page)) {
  1148. unlock_page(page);
  1149. put_page(page);
  1150. pr_debug("soft offline: %#lx page already poisoned\n", pfn);
  1151. return -EBUSY;
  1152. }
  1153. /*
  1154. * Try to invalidate first. This should work for
  1155. * non dirty unmapped page cache pages.
  1156. */
  1157. ret = invalidate_inode_page(page);
  1158. unlock_page(page);
  1159. /*
  1160. * Drop count because page migration doesn't like raised
  1161. * counts. The page could get re-allocated, but if it becomes
  1162. * LRU the isolation will just fail.
  1163. * RED-PEN would be better to keep it isolated here, but we
  1164. * would need to fix isolation locking first.
  1165. */
  1166. put_page(page);
  1167. if (ret == 1) {
  1168. ret = 0;
  1169. pr_debug("soft_offline: %#lx: invalidated\n", pfn);
  1170. goto done;
  1171. }
  1172. /*
  1173. * Simple invalidation didn't work.
  1174. * Try to migrate to a new page instead. migrate.c
  1175. * handles a large number of cases for us.
  1176. */
  1177. ret = isolate_lru_page(page);
  1178. if (!ret) {
  1179. LIST_HEAD(pagelist);
  1180. list_add(&page->lru, &pagelist);
  1181. ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0);
  1182. if (ret) {
  1183. pr_debug("soft offline: %#lx: migration failed %d, type %lx\n",
  1184. pfn, ret, page->flags);
  1185. if (ret > 0)
  1186. ret = -EIO;
  1187. }
  1188. } else {
  1189. pr_debug("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
  1190. pfn, ret, page_count(page), page->flags);
  1191. }
  1192. if (ret)
  1193. return ret;
  1194. done:
  1195. atomic_long_add(1, &mce_bad_pages);
  1196. SetPageHWPoison(page);
  1197. /* keep elevated page count for bad page */
  1198. return ret;
  1199. }