raid5.c 60 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232
  1. /*
  2. * raid5.c : Multiple Devices driver for Linux
  3. * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
  4. * Copyright (C) 1999, 2000 Ingo Molnar
  5. *
  6. * RAID-5 management functions.
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2, or (at your option)
  11. * any later version.
  12. *
  13. * You should have received a copy of the GNU General Public License
  14. * (for example /usr/src/linux/COPYING); if not, write to the Free
  15. * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  16. */
  17. #include <linux/config.h>
  18. #include <linux/module.h>
  19. #include <linux/slab.h>
  20. #include <linux/raid/raid5.h>
  21. #include <linux/highmem.h>
  22. #include <linux/bitops.h>
  23. #include <asm/atomic.h>
  24. #include <linux/raid/bitmap.h>
  25. /*
  26. * Stripe cache
  27. */
  28. #define NR_STRIPES 256
  29. #define STRIPE_SIZE PAGE_SIZE
  30. #define STRIPE_SHIFT (PAGE_SHIFT - 9)
  31. #define STRIPE_SECTORS (STRIPE_SIZE>>9)
  32. #define IO_THRESHOLD 1
  33. #define HASH_PAGES 1
  34. #define HASH_PAGES_ORDER 0
  35. #define NR_HASH (HASH_PAGES * PAGE_SIZE / sizeof(struct stripe_head *))
  36. #define HASH_MASK (NR_HASH - 1)
  37. #define stripe_hash(conf, sect) ((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK])
  38. /* bio's attached to a stripe+device for I/O are linked together in bi_sector
  39. * order without overlap. There may be several bio's per stripe+device, and
  40. * a bio could span several devices.
  41. * When walking this list for a particular stripe+device, we must never proceed
  42. * beyond a bio that extends past this device, as the next bio might no longer
  43. * be valid.
  44. * This macro is used to determine the 'next' bio in the list, given the sector
  45. * of the current stripe+device
  46. */
  47. #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
  48. /*
  49. * The following can be used to debug the driver
  50. */
  51. #define RAID5_DEBUG 0
  52. #define RAID5_PARANOIA 1
  53. #if RAID5_PARANOIA && defined(CONFIG_SMP)
  54. # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
  55. #else
  56. # define CHECK_DEVLOCK()
  57. #endif
  58. #define PRINTK(x...) ((void)(RAID5_DEBUG && printk(x)))
  59. #if RAID5_DEBUG
  60. #define inline
  61. #define __inline__
  62. #endif
  63. static void print_raid5_conf (raid5_conf_t *conf);
  64. static inline void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
  65. {
  66. if (atomic_dec_and_test(&sh->count)) {
  67. if (!list_empty(&sh->lru))
  68. BUG();
  69. if (atomic_read(&conf->active_stripes)==0)
  70. BUG();
  71. if (test_bit(STRIPE_HANDLE, &sh->state)) {
  72. if (test_bit(STRIPE_DELAYED, &sh->state))
  73. list_add_tail(&sh->lru, &conf->delayed_list);
  74. else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
  75. conf->seq_write == sh->bm_seq)
  76. list_add_tail(&sh->lru, &conf->bitmap_list);
  77. else {
  78. clear_bit(STRIPE_BIT_DELAY, &sh->state);
  79. list_add_tail(&sh->lru, &conf->handle_list);
  80. }
  81. md_wakeup_thread(conf->mddev->thread);
  82. } else {
  83. if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
  84. atomic_dec(&conf->preread_active_stripes);
  85. if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
  86. md_wakeup_thread(conf->mddev->thread);
  87. }
  88. list_add_tail(&sh->lru, &conf->inactive_list);
  89. atomic_dec(&conf->active_stripes);
  90. if (!conf->inactive_blocked ||
  91. atomic_read(&conf->active_stripes) < (NR_STRIPES*3/4))
  92. wake_up(&conf->wait_for_stripe);
  93. }
  94. }
  95. }
  96. static void release_stripe(struct stripe_head *sh)
  97. {
  98. raid5_conf_t *conf = sh->raid_conf;
  99. unsigned long flags;
  100. spin_lock_irqsave(&conf->device_lock, flags);
  101. __release_stripe(conf, sh);
  102. spin_unlock_irqrestore(&conf->device_lock, flags);
  103. }
  104. static void remove_hash(struct stripe_head *sh)
  105. {
  106. PRINTK("remove_hash(), stripe %llu\n", (unsigned long long)sh->sector);
  107. if (sh->hash_pprev) {
  108. if (sh->hash_next)
  109. sh->hash_next->hash_pprev = sh->hash_pprev;
  110. *sh->hash_pprev = sh->hash_next;
  111. sh->hash_pprev = NULL;
  112. }
  113. }
  114. static __inline__ void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
  115. {
  116. struct stripe_head **shp = &stripe_hash(conf, sh->sector);
  117. PRINTK("insert_hash(), stripe %llu\n", (unsigned long long)sh->sector);
  118. CHECK_DEVLOCK();
  119. if ((sh->hash_next = *shp) != NULL)
  120. (*shp)->hash_pprev = &sh->hash_next;
  121. *shp = sh;
  122. sh->hash_pprev = shp;
  123. }
  124. /* find an idle stripe, make sure it is unhashed, and return it. */
  125. static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
  126. {
  127. struct stripe_head *sh = NULL;
  128. struct list_head *first;
  129. CHECK_DEVLOCK();
  130. if (list_empty(&conf->inactive_list))
  131. goto out;
  132. first = conf->inactive_list.next;
  133. sh = list_entry(first, struct stripe_head, lru);
  134. list_del_init(first);
  135. remove_hash(sh);
  136. atomic_inc(&conf->active_stripes);
  137. out:
  138. return sh;
  139. }
  140. static void shrink_buffers(struct stripe_head *sh, int num)
  141. {
  142. struct page *p;
  143. int i;
  144. for (i=0; i<num ; i++) {
  145. p = sh->dev[i].page;
  146. if (!p)
  147. continue;
  148. sh->dev[i].page = NULL;
  149. page_cache_release(p);
  150. }
  151. }
  152. static int grow_buffers(struct stripe_head *sh, int num)
  153. {
  154. int i;
  155. for (i=0; i<num; i++) {
  156. struct page *page;
  157. if (!(page = alloc_page(GFP_KERNEL))) {
  158. return 1;
  159. }
  160. sh->dev[i].page = page;
  161. }
  162. return 0;
  163. }
  164. static void raid5_build_block (struct stripe_head *sh, int i);
  165. static inline void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx)
  166. {
  167. raid5_conf_t *conf = sh->raid_conf;
  168. int disks = conf->raid_disks, i;
  169. if (atomic_read(&sh->count) != 0)
  170. BUG();
  171. if (test_bit(STRIPE_HANDLE, &sh->state))
  172. BUG();
  173. CHECK_DEVLOCK();
  174. PRINTK("init_stripe called, stripe %llu\n",
  175. (unsigned long long)sh->sector);
  176. remove_hash(sh);
  177. sh->sector = sector;
  178. sh->pd_idx = pd_idx;
  179. sh->state = 0;
  180. for (i=disks; i--; ) {
  181. struct r5dev *dev = &sh->dev[i];
  182. if (dev->toread || dev->towrite || dev->written ||
  183. test_bit(R5_LOCKED, &dev->flags)) {
  184. printk("sector=%llx i=%d %p %p %p %d\n",
  185. (unsigned long long)sh->sector, i, dev->toread,
  186. dev->towrite, dev->written,
  187. test_bit(R5_LOCKED, &dev->flags));
  188. BUG();
  189. }
  190. dev->flags = 0;
  191. raid5_build_block(sh, i);
  192. }
  193. insert_hash(conf, sh);
  194. }
  195. static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector)
  196. {
  197. struct stripe_head *sh;
  198. CHECK_DEVLOCK();
  199. PRINTK("__find_stripe, sector %llu\n", (unsigned long long)sector);
  200. for (sh = stripe_hash(conf, sector); sh; sh = sh->hash_next)
  201. if (sh->sector == sector)
  202. return sh;
  203. PRINTK("__stripe %llu not in cache\n", (unsigned long long)sector);
  204. return NULL;
  205. }
  206. static void unplug_slaves(mddev_t *mddev);
  207. static void raid5_unplug_device(request_queue_t *q);
  208. static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector,
  209. int pd_idx, int noblock)
  210. {
  211. struct stripe_head *sh;
  212. PRINTK("get_stripe, sector %llu\n", (unsigned long long)sector);
  213. spin_lock_irq(&conf->device_lock);
  214. do {
  215. wait_event_lock_irq(conf->wait_for_stripe,
  216. conf->quiesce == 0,
  217. conf->device_lock, /* nothing */);
  218. sh = __find_stripe(conf, sector);
  219. if (!sh) {
  220. if (!conf->inactive_blocked)
  221. sh = get_free_stripe(conf);
  222. if (noblock && sh == NULL)
  223. break;
  224. if (!sh) {
  225. conf->inactive_blocked = 1;
  226. wait_event_lock_irq(conf->wait_for_stripe,
  227. !list_empty(&conf->inactive_list) &&
  228. (atomic_read(&conf->active_stripes) < (NR_STRIPES *3/4)
  229. || !conf->inactive_blocked),
  230. conf->device_lock,
  231. unplug_slaves(conf->mddev);
  232. );
  233. conf->inactive_blocked = 0;
  234. } else
  235. init_stripe(sh, sector, pd_idx);
  236. } else {
  237. if (atomic_read(&sh->count)) {
  238. if (!list_empty(&sh->lru))
  239. BUG();
  240. } else {
  241. if (!test_bit(STRIPE_HANDLE, &sh->state))
  242. atomic_inc(&conf->active_stripes);
  243. if (list_empty(&sh->lru))
  244. BUG();
  245. list_del_init(&sh->lru);
  246. }
  247. }
  248. } while (sh == NULL);
  249. if (sh)
  250. atomic_inc(&sh->count);
  251. spin_unlock_irq(&conf->device_lock);
  252. return sh;
  253. }
  254. static int grow_one_stripe(raid5_conf_t *conf)
  255. {
  256. struct stripe_head *sh;
  257. sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
  258. if (!sh)
  259. return 0;
  260. memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
  261. sh->raid_conf = conf;
  262. spin_lock_init(&sh->lock);
  263. if (grow_buffers(sh, conf->raid_disks)) {
  264. shrink_buffers(sh, conf->raid_disks);
  265. kmem_cache_free(conf->slab_cache, sh);
  266. return 0;
  267. }
  268. /* we just created an active stripe so... */
  269. atomic_set(&sh->count, 1);
  270. atomic_inc(&conf->active_stripes);
  271. INIT_LIST_HEAD(&sh->lru);
  272. release_stripe(sh);
  273. return 1;
  274. }
  275. static int grow_stripes(raid5_conf_t *conf, int num)
  276. {
  277. kmem_cache_t *sc;
  278. int devs = conf->raid_disks;
  279. sprintf(conf->cache_name, "raid5/%s", mdname(conf->mddev));
  280. sc = kmem_cache_create(conf->cache_name,
  281. sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
  282. 0, 0, NULL, NULL);
  283. if (!sc)
  284. return 1;
  285. conf->slab_cache = sc;
  286. while (num--) {
  287. if (!grow_one_stripe(conf))
  288. return 1;
  289. }
  290. return 0;
  291. }
  292. static int drop_one_stripe(raid5_conf_t *conf)
  293. {
  294. struct stripe_head *sh;
  295. spin_lock_irq(&conf->device_lock);
  296. sh = get_free_stripe(conf);
  297. spin_unlock_irq(&conf->device_lock);
  298. if (!sh)
  299. return 0;
  300. if (atomic_read(&sh->count))
  301. BUG();
  302. shrink_buffers(sh, conf->raid_disks);
  303. kmem_cache_free(conf->slab_cache, sh);
  304. atomic_dec(&conf->active_stripes);
  305. return 1;
  306. }
  307. static void shrink_stripes(raid5_conf_t *conf)
  308. {
  309. while (drop_one_stripe(conf))
  310. ;
  311. kmem_cache_destroy(conf->slab_cache);
  312. conf->slab_cache = NULL;
  313. }
  314. static int raid5_end_read_request(struct bio * bi, unsigned int bytes_done,
  315. int error)
  316. {
  317. struct stripe_head *sh = bi->bi_private;
  318. raid5_conf_t *conf = sh->raid_conf;
  319. int disks = conf->raid_disks, i;
  320. int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
  321. if (bi->bi_size)
  322. return 1;
  323. for (i=0 ; i<disks; i++)
  324. if (bi == &sh->dev[i].req)
  325. break;
  326. PRINTK("end_read_request %llu/%d, count: %d, uptodate %d.\n",
  327. (unsigned long long)sh->sector, i, atomic_read(&sh->count),
  328. uptodate);
  329. if (i == disks) {
  330. BUG();
  331. return 0;
  332. }
  333. if (uptodate) {
  334. #if 0
  335. struct bio *bio;
  336. unsigned long flags;
  337. spin_lock_irqsave(&conf->device_lock, flags);
  338. /* we can return a buffer if we bypassed the cache or
  339. * if the top buffer is not in highmem. If there are
  340. * multiple buffers, leave the extra work to
  341. * handle_stripe
  342. */
  343. buffer = sh->bh_read[i];
  344. if (buffer &&
  345. (!PageHighMem(buffer->b_page)
  346. || buffer->b_page == bh->b_page )
  347. ) {
  348. sh->bh_read[i] = buffer->b_reqnext;
  349. buffer->b_reqnext = NULL;
  350. } else
  351. buffer = NULL;
  352. spin_unlock_irqrestore(&conf->device_lock, flags);
  353. if (sh->bh_page[i]==bh->b_page)
  354. set_buffer_uptodate(bh);
  355. if (buffer) {
  356. if (buffer->b_page != bh->b_page)
  357. memcpy(buffer->b_data, bh->b_data, bh->b_size);
  358. buffer->b_end_io(buffer, 1);
  359. }
  360. #else
  361. set_bit(R5_UPTODATE, &sh->dev[i].flags);
  362. #endif
  363. if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
  364. printk("R5: read error corrected!!\n");
  365. clear_bit(R5_ReadError, &sh->dev[i].flags);
  366. clear_bit(R5_ReWrite, &sh->dev[i].flags);
  367. }
  368. if (atomic_read(&conf->disks[i].rdev->read_errors))
  369. atomic_set(&conf->disks[i].rdev->read_errors, 0);
  370. } else {
  371. int retry = 0;
  372. clear_bit(R5_UPTODATE, &sh->dev[i].flags);
  373. atomic_inc(&conf->disks[i].rdev->read_errors);
  374. if (conf->mddev->degraded)
  375. printk("R5: read error not correctable.\n");
  376. else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
  377. /* Oh, no!!! */
  378. printk("R5: read error NOT corrected!!\n");
  379. else if (atomic_read(&conf->disks[i].rdev->read_errors)
  380. > conf->max_nr_stripes)
  381. printk("raid5: Too many read errors, failing device.\n");
  382. else
  383. retry = 1;
  384. if (retry)
  385. set_bit(R5_ReadError, &sh->dev[i].flags);
  386. else {
  387. clear_bit(R5_ReadError, &sh->dev[i].flags);
  388. clear_bit(R5_ReWrite, &sh->dev[i].flags);
  389. md_error(conf->mddev, conf->disks[i].rdev);
  390. }
  391. }
  392. rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
  393. #if 0
  394. /* must restore b_page before unlocking buffer... */
  395. if (sh->bh_page[i] != bh->b_page) {
  396. bh->b_page = sh->bh_page[i];
  397. bh->b_data = page_address(bh->b_page);
  398. clear_buffer_uptodate(bh);
  399. }
  400. #endif
  401. clear_bit(R5_LOCKED, &sh->dev[i].flags);
  402. set_bit(STRIPE_HANDLE, &sh->state);
  403. release_stripe(sh);
  404. return 0;
  405. }
  406. static int raid5_end_write_request (struct bio *bi, unsigned int bytes_done,
  407. int error)
  408. {
  409. struct stripe_head *sh = bi->bi_private;
  410. raid5_conf_t *conf = sh->raid_conf;
  411. int disks = conf->raid_disks, i;
  412. unsigned long flags;
  413. int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
  414. if (bi->bi_size)
  415. return 1;
  416. for (i=0 ; i<disks; i++)
  417. if (bi == &sh->dev[i].req)
  418. break;
  419. PRINTK("end_write_request %llu/%d, count %d, uptodate: %d.\n",
  420. (unsigned long long)sh->sector, i, atomic_read(&sh->count),
  421. uptodate);
  422. if (i == disks) {
  423. BUG();
  424. return 0;
  425. }
  426. spin_lock_irqsave(&conf->device_lock, flags);
  427. if (!uptodate)
  428. md_error(conf->mddev, conf->disks[i].rdev);
  429. rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
  430. clear_bit(R5_LOCKED, &sh->dev[i].flags);
  431. set_bit(STRIPE_HANDLE, &sh->state);
  432. __release_stripe(conf, sh);
  433. spin_unlock_irqrestore(&conf->device_lock, flags);
  434. return 0;
  435. }
  436. static sector_t compute_blocknr(struct stripe_head *sh, int i);
  437. static void raid5_build_block (struct stripe_head *sh, int i)
  438. {
  439. struct r5dev *dev = &sh->dev[i];
  440. bio_init(&dev->req);
  441. dev->req.bi_io_vec = &dev->vec;
  442. dev->req.bi_vcnt++;
  443. dev->req.bi_max_vecs++;
  444. dev->vec.bv_page = dev->page;
  445. dev->vec.bv_len = STRIPE_SIZE;
  446. dev->vec.bv_offset = 0;
  447. dev->req.bi_sector = sh->sector;
  448. dev->req.bi_private = sh;
  449. dev->flags = 0;
  450. if (i != sh->pd_idx)
  451. dev->sector = compute_blocknr(sh, i);
  452. }
  453. static void error(mddev_t *mddev, mdk_rdev_t *rdev)
  454. {
  455. char b[BDEVNAME_SIZE];
  456. raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
  457. PRINTK("raid5: error called\n");
  458. if (!test_bit(Faulty, &rdev->flags)) {
  459. mddev->sb_dirty = 1;
  460. if (test_bit(In_sync, &rdev->flags)) {
  461. conf->working_disks--;
  462. mddev->degraded++;
  463. conf->failed_disks++;
  464. clear_bit(In_sync, &rdev->flags);
  465. /*
  466. * if recovery was running, make sure it aborts.
  467. */
  468. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  469. }
  470. set_bit(Faulty, &rdev->flags);
  471. printk (KERN_ALERT
  472. "raid5: Disk failure on %s, disabling device."
  473. " Operation continuing on %d devices\n",
  474. bdevname(rdev->bdev,b), conf->working_disks);
  475. }
  476. }
  477. /*
  478. * Input: a 'big' sector number,
  479. * Output: index of the data and parity disk, and the sector # in them.
  480. */
  481. static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
  482. unsigned int data_disks, unsigned int * dd_idx,
  483. unsigned int * pd_idx, raid5_conf_t *conf)
  484. {
  485. long stripe;
  486. unsigned long chunk_number;
  487. unsigned int chunk_offset;
  488. sector_t new_sector;
  489. int sectors_per_chunk = conf->chunk_size >> 9;
  490. /* First compute the information on this sector */
  491. /*
  492. * Compute the chunk number and the sector offset inside the chunk
  493. */
  494. chunk_offset = sector_div(r_sector, sectors_per_chunk);
  495. chunk_number = r_sector;
  496. BUG_ON(r_sector != chunk_number);
  497. /*
  498. * Compute the stripe number
  499. */
  500. stripe = chunk_number / data_disks;
  501. /*
  502. * Compute the data disk and parity disk indexes inside the stripe
  503. */
  504. *dd_idx = chunk_number % data_disks;
  505. /*
  506. * Select the parity disk based on the user selected algorithm.
  507. */
  508. if (conf->level == 4)
  509. *pd_idx = data_disks;
  510. else switch (conf->algorithm) {
  511. case ALGORITHM_LEFT_ASYMMETRIC:
  512. *pd_idx = data_disks - stripe % raid_disks;
  513. if (*dd_idx >= *pd_idx)
  514. (*dd_idx)++;
  515. break;
  516. case ALGORITHM_RIGHT_ASYMMETRIC:
  517. *pd_idx = stripe % raid_disks;
  518. if (*dd_idx >= *pd_idx)
  519. (*dd_idx)++;
  520. break;
  521. case ALGORITHM_LEFT_SYMMETRIC:
  522. *pd_idx = data_disks - stripe % raid_disks;
  523. *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
  524. break;
  525. case ALGORITHM_RIGHT_SYMMETRIC:
  526. *pd_idx = stripe % raid_disks;
  527. *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
  528. break;
  529. default:
  530. printk("raid5: unsupported algorithm %d\n",
  531. conf->algorithm);
  532. }
  533. /*
  534. * Finally, compute the new sector number
  535. */
  536. new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
  537. return new_sector;
  538. }
  539. static sector_t compute_blocknr(struct stripe_head *sh, int i)
  540. {
  541. raid5_conf_t *conf = sh->raid_conf;
  542. int raid_disks = conf->raid_disks, data_disks = raid_disks - 1;
  543. sector_t new_sector = sh->sector, check;
  544. int sectors_per_chunk = conf->chunk_size >> 9;
  545. sector_t stripe;
  546. int chunk_offset;
  547. int chunk_number, dummy1, dummy2, dd_idx = i;
  548. sector_t r_sector;
  549. chunk_offset = sector_div(new_sector, sectors_per_chunk);
  550. stripe = new_sector;
  551. BUG_ON(new_sector != stripe);
  552. switch (conf->algorithm) {
  553. case ALGORITHM_LEFT_ASYMMETRIC:
  554. case ALGORITHM_RIGHT_ASYMMETRIC:
  555. if (i > sh->pd_idx)
  556. i--;
  557. break;
  558. case ALGORITHM_LEFT_SYMMETRIC:
  559. case ALGORITHM_RIGHT_SYMMETRIC:
  560. if (i < sh->pd_idx)
  561. i += raid_disks;
  562. i -= (sh->pd_idx + 1);
  563. break;
  564. default:
  565. printk("raid5: unsupported algorithm %d\n",
  566. conf->algorithm);
  567. }
  568. chunk_number = stripe * data_disks + i;
  569. r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
  570. check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
  571. if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
  572. printk("compute_blocknr: map not correct\n");
  573. return 0;
  574. }
  575. return r_sector;
  576. }
  577. /*
  578. * Copy data between a page in the stripe cache, and a bio.
  579. * There are no alignment or size guarantees between the page or the
  580. * bio except that there is some overlap.
  581. * All iovecs in the bio must be considered.
  582. */
  583. static void copy_data(int frombio, struct bio *bio,
  584. struct page *page,
  585. sector_t sector)
  586. {
  587. char *pa = page_address(page);
  588. struct bio_vec *bvl;
  589. int i;
  590. int page_offset;
  591. if (bio->bi_sector >= sector)
  592. page_offset = (signed)(bio->bi_sector - sector) * 512;
  593. else
  594. page_offset = (signed)(sector - bio->bi_sector) * -512;
  595. bio_for_each_segment(bvl, bio, i) {
  596. int len = bio_iovec_idx(bio,i)->bv_len;
  597. int clen;
  598. int b_offset = 0;
  599. if (page_offset < 0) {
  600. b_offset = -page_offset;
  601. page_offset += b_offset;
  602. len -= b_offset;
  603. }
  604. if (len > 0 && page_offset + len > STRIPE_SIZE)
  605. clen = STRIPE_SIZE - page_offset;
  606. else clen = len;
  607. if (clen > 0) {
  608. char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
  609. if (frombio)
  610. memcpy(pa+page_offset, ba+b_offset, clen);
  611. else
  612. memcpy(ba+b_offset, pa+page_offset, clen);
  613. __bio_kunmap_atomic(ba, KM_USER0);
  614. }
  615. if (clen < len) /* hit end of page */
  616. break;
  617. page_offset += len;
  618. }
  619. }
  620. #define check_xor() do { \
  621. if (count == MAX_XOR_BLOCKS) { \
  622. xor_block(count, STRIPE_SIZE, ptr); \
  623. count = 1; \
  624. } \
  625. } while(0)
  626. static void compute_block(struct stripe_head *sh, int dd_idx)
  627. {
  628. raid5_conf_t *conf = sh->raid_conf;
  629. int i, count, disks = conf->raid_disks;
  630. void *ptr[MAX_XOR_BLOCKS], *p;
  631. PRINTK("compute_block, stripe %llu, idx %d\n",
  632. (unsigned long long)sh->sector, dd_idx);
  633. ptr[0] = page_address(sh->dev[dd_idx].page);
  634. memset(ptr[0], 0, STRIPE_SIZE);
  635. count = 1;
  636. for (i = disks ; i--; ) {
  637. if (i == dd_idx)
  638. continue;
  639. p = page_address(sh->dev[i].page);
  640. if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
  641. ptr[count++] = p;
  642. else
  643. printk("compute_block() %d, stripe %llu, %d"
  644. " not present\n", dd_idx,
  645. (unsigned long long)sh->sector, i);
  646. check_xor();
  647. }
  648. if (count != 1)
  649. xor_block(count, STRIPE_SIZE, ptr);
  650. set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
  651. }
  652. static void compute_parity(struct stripe_head *sh, int method)
  653. {
  654. raid5_conf_t *conf = sh->raid_conf;
  655. int i, pd_idx = sh->pd_idx, disks = conf->raid_disks, count;
  656. void *ptr[MAX_XOR_BLOCKS];
  657. struct bio *chosen;
  658. PRINTK("compute_parity, stripe %llu, method %d\n",
  659. (unsigned long long)sh->sector, method);
  660. count = 1;
  661. ptr[0] = page_address(sh->dev[pd_idx].page);
  662. switch(method) {
  663. case READ_MODIFY_WRITE:
  664. if (!test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags))
  665. BUG();
  666. for (i=disks ; i-- ;) {
  667. if (i==pd_idx)
  668. continue;
  669. if (sh->dev[i].towrite &&
  670. test_bit(R5_UPTODATE, &sh->dev[i].flags)) {
  671. ptr[count++] = page_address(sh->dev[i].page);
  672. chosen = sh->dev[i].towrite;
  673. sh->dev[i].towrite = NULL;
  674. if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
  675. wake_up(&conf->wait_for_overlap);
  676. if (sh->dev[i].written) BUG();
  677. sh->dev[i].written = chosen;
  678. check_xor();
  679. }
  680. }
  681. break;
  682. case RECONSTRUCT_WRITE:
  683. memset(ptr[0], 0, STRIPE_SIZE);
  684. for (i= disks; i-- ;)
  685. if (i!=pd_idx && sh->dev[i].towrite) {
  686. chosen = sh->dev[i].towrite;
  687. sh->dev[i].towrite = NULL;
  688. if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
  689. wake_up(&conf->wait_for_overlap);
  690. if (sh->dev[i].written) BUG();
  691. sh->dev[i].written = chosen;
  692. }
  693. break;
  694. case CHECK_PARITY:
  695. break;
  696. }
  697. if (count>1) {
  698. xor_block(count, STRIPE_SIZE, ptr);
  699. count = 1;
  700. }
  701. for (i = disks; i--;)
  702. if (sh->dev[i].written) {
  703. sector_t sector = sh->dev[i].sector;
  704. struct bio *wbi = sh->dev[i].written;
  705. while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
  706. copy_data(1, wbi, sh->dev[i].page, sector);
  707. wbi = r5_next_bio(wbi, sector);
  708. }
  709. set_bit(R5_LOCKED, &sh->dev[i].flags);
  710. set_bit(R5_UPTODATE, &sh->dev[i].flags);
  711. }
  712. switch(method) {
  713. case RECONSTRUCT_WRITE:
  714. case CHECK_PARITY:
  715. for (i=disks; i--;)
  716. if (i != pd_idx) {
  717. ptr[count++] = page_address(sh->dev[i].page);
  718. check_xor();
  719. }
  720. break;
  721. case READ_MODIFY_WRITE:
  722. for (i = disks; i--;)
  723. if (sh->dev[i].written) {
  724. ptr[count++] = page_address(sh->dev[i].page);
  725. check_xor();
  726. }
  727. }
  728. if (count != 1)
  729. xor_block(count, STRIPE_SIZE, ptr);
  730. if (method != CHECK_PARITY) {
  731. set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
  732. set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
  733. } else
  734. clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
  735. }
  736. /*
  737. * Each stripe/dev can have one or more bion attached.
  738. * toread/towrite point to the first in a chain.
  739. * The bi_next chain must be in order.
  740. */
  741. static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
  742. {
  743. struct bio **bip;
  744. raid5_conf_t *conf = sh->raid_conf;
  745. int firstwrite=0;
  746. PRINTK("adding bh b#%llu to stripe s#%llu\n",
  747. (unsigned long long)bi->bi_sector,
  748. (unsigned long long)sh->sector);
  749. spin_lock(&sh->lock);
  750. spin_lock_irq(&conf->device_lock);
  751. if (forwrite) {
  752. bip = &sh->dev[dd_idx].towrite;
  753. if (*bip == NULL && sh->dev[dd_idx].written == NULL)
  754. firstwrite = 1;
  755. } else
  756. bip = &sh->dev[dd_idx].toread;
  757. while (*bip && (*bip)->bi_sector < bi->bi_sector) {
  758. if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
  759. goto overlap;
  760. bip = & (*bip)->bi_next;
  761. }
  762. if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
  763. goto overlap;
  764. if (*bip && bi->bi_next && (*bip) != bi->bi_next)
  765. BUG();
  766. if (*bip)
  767. bi->bi_next = *bip;
  768. *bip = bi;
  769. bi->bi_phys_segments ++;
  770. spin_unlock_irq(&conf->device_lock);
  771. spin_unlock(&sh->lock);
  772. PRINTK("added bi b#%llu to stripe s#%llu, disk %d.\n",
  773. (unsigned long long)bi->bi_sector,
  774. (unsigned long long)sh->sector, dd_idx);
  775. if (conf->mddev->bitmap && firstwrite) {
  776. sh->bm_seq = conf->seq_write;
  777. bitmap_startwrite(conf->mddev->bitmap, sh->sector,
  778. STRIPE_SECTORS, 0);
  779. set_bit(STRIPE_BIT_DELAY, &sh->state);
  780. }
  781. if (forwrite) {
  782. /* check if page is covered */
  783. sector_t sector = sh->dev[dd_idx].sector;
  784. for (bi=sh->dev[dd_idx].towrite;
  785. sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
  786. bi && bi->bi_sector <= sector;
  787. bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
  788. if (bi->bi_sector + (bi->bi_size>>9) >= sector)
  789. sector = bi->bi_sector + (bi->bi_size>>9);
  790. }
  791. if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
  792. set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
  793. }
  794. return 1;
  795. overlap:
  796. set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
  797. spin_unlock_irq(&conf->device_lock);
  798. spin_unlock(&sh->lock);
  799. return 0;
  800. }
  801. /*
  802. * handle_stripe - do things to a stripe.
  803. *
  804. * We lock the stripe and then examine the state of various bits
  805. * to see what needs to be done.
  806. * Possible results:
  807. * return some read request which now have data
  808. * return some write requests which are safely on disc
  809. * schedule a read on some buffers
  810. * schedule a write of some buffers
  811. * return confirmation of parity correctness
  812. *
  813. * Parity calculations are done inside the stripe lock
  814. * buffers are taken off read_list or write_list, and bh_cache buffers
  815. * get BH_Lock set before the stripe lock is released.
  816. *
  817. */
  818. static void handle_stripe(struct stripe_head *sh)
  819. {
  820. raid5_conf_t *conf = sh->raid_conf;
  821. int disks = conf->raid_disks;
  822. struct bio *return_bi= NULL;
  823. struct bio *bi;
  824. int i;
  825. int syncing;
  826. int locked=0, uptodate=0, to_read=0, to_write=0, failed=0, written=0;
  827. int non_overwrite = 0;
  828. int failed_num=0;
  829. struct r5dev *dev;
  830. PRINTK("handling stripe %llu, cnt=%d, pd_idx=%d\n",
  831. (unsigned long long)sh->sector, atomic_read(&sh->count),
  832. sh->pd_idx);
  833. spin_lock(&sh->lock);
  834. clear_bit(STRIPE_HANDLE, &sh->state);
  835. clear_bit(STRIPE_DELAYED, &sh->state);
  836. syncing = test_bit(STRIPE_SYNCING, &sh->state);
  837. /* Now to look around and see what can be done */
  838. for (i=disks; i--; ) {
  839. mdk_rdev_t *rdev;
  840. dev = &sh->dev[i];
  841. clear_bit(R5_Insync, &dev->flags);
  842. clear_bit(R5_Syncio, &dev->flags);
  843. PRINTK("check %d: state 0x%lx read %p write %p written %p\n",
  844. i, dev->flags, dev->toread, dev->towrite, dev->written);
  845. /* maybe we can reply to a read */
  846. if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
  847. struct bio *rbi, *rbi2;
  848. PRINTK("Return read for disc %d\n", i);
  849. spin_lock_irq(&conf->device_lock);
  850. rbi = dev->toread;
  851. dev->toread = NULL;
  852. if (test_and_clear_bit(R5_Overlap, &dev->flags))
  853. wake_up(&conf->wait_for_overlap);
  854. spin_unlock_irq(&conf->device_lock);
  855. while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
  856. copy_data(0, rbi, dev->page, dev->sector);
  857. rbi2 = r5_next_bio(rbi, dev->sector);
  858. spin_lock_irq(&conf->device_lock);
  859. if (--rbi->bi_phys_segments == 0) {
  860. rbi->bi_next = return_bi;
  861. return_bi = rbi;
  862. }
  863. spin_unlock_irq(&conf->device_lock);
  864. rbi = rbi2;
  865. }
  866. }
  867. /* now count some things */
  868. if (test_bit(R5_LOCKED, &dev->flags)) locked++;
  869. if (test_bit(R5_UPTODATE, &dev->flags)) uptodate++;
  870. if (dev->toread) to_read++;
  871. if (dev->towrite) {
  872. to_write++;
  873. if (!test_bit(R5_OVERWRITE, &dev->flags))
  874. non_overwrite++;
  875. }
  876. if (dev->written) written++;
  877. rdev = conf->disks[i].rdev; /* FIXME, should I be looking rdev */
  878. if (!rdev || !test_bit(In_sync, &rdev->flags)) {
  879. /* The ReadError flag wil just be confusing now */
  880. clear_bit(R5_ReadError, &dev->flags);
  881. clear_bit(R5_ReWrite, &dev->flags);
  882. }
  883. if (!rdev || !test_bit(In_sync, &rdev->flags)
  884. || test_bit(R5_ReadError, &dev->flags)) {
  885. failed++;
  886. failed_num = i;
  887. } else
  888. set_bit(R5_Insync, &dev->flags);
  889. }
  890. PRINTK("locked=%d uptodate=%d to_read=%d"
  891. " to_write=%d failed=%d failed_num=%d\n",
  892. locked, uptodate, to_read, to_write, failed, failed_num);
  893. /* check if the array has lost two devices and, if so, some requests might
  894. * need to be failed
  895. */
  896. if (failed > 1 && to_read+to_write+written) {
  897. for (i=disks; i--; ) {
  898. int bitmap_end = 0;
  899. if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
  900. mdk_rdev_t *rdev = conf->disks[i].rdev;
  901. if (rdev && test_bit(In_sync, &rdev->flags))
  902. /* multiple read failures in one stripe */
  903. md_error(conf->mddev, rdev);
  904. }
  905. spin_lock_irq(&conf->device_lock);
  906. /* fail all writes first */
  907. bi = sh->dev[i].towrite;
  908. sh->dev[i].towrite = NULL;
  909. if (bi) { to_write--; bitmap_end = 1; }
  910. if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
  911. wake_up(&conf->wait_for_overlap);
  912. while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
  913. struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
  914. clear_bit(BIO_UPTODATE, &bi->bi_flags);
  915. if (--bi->bi_phys_segments == 0) {
  916. md_write_end(conf->mddev);
  917. bi->bi_next = return_bi;
  918. return_bi = bi;
  919. }
  920. bi = nextbi;
  921. }
  922. /* and fail all 'written' */
  923. bi = sh->dev[i].written;
  924. sh->dev[i].written = NULL;
  925. if (bi) bitmap_end = 1;
  926. while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS) {
  927. struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
  928. clear_bit(BIO_UPTODATE, &bi->bi_flags);
  929. if (--bi->bi_phys_segments == 0) {
  930. md_write_end(conf->mddev);
  931. bi->bi_next = return_bi;
  932. return_bi = bi;
  933. }
  934. bi = bi2;
  935. }
  936. /* fail any reads if this device is non-operational */
  937. if (!test_bit(R5_Insync, &sh->dev[i].flags) ||
  938. test_bit(R5_ReadError, &sh->dev[i].flags)) {
  939. bi = sh->dev[i].toread;
  940. sh->dev[i].toread = NULL;
  941. if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
  942. wake_up(&conf->wait_for_overlap);
  943. if (bi) to_read--;
  944. while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
  945. struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
  946. clear_bit(BIO_UPTODATE, &bi->bi_flags);
  947. if (--bi->bi_phys_segments == 0) {
  948. bi->bi_next = return_bi;
  949. return_bi = bi;
  950. }
  951. bi = nextbi;
  952. }
  953. }
  954. spin_unlock_irq(&conf->device_lock);
  955. if (bitmap_end)
  956. bitmap_endwrite(conf->mddev->bitmap, sh->sector,
  957. STRIPE_SECTORS, 0, 0);
  958. }
  959. }
  960. if (failed > 1 && syncing) {
  961. md_done_sync(conf->mddev, STRIPE_SECTORS,0);
  962. clear_bit(STRIPE_SYNCING, &sh->state);
  963. syncing = 0;
  964. }
  965. /* might be able to return some write requests if the parity block
  966. * is safe, or on a failed drive
  967. */
  968. dev = &sh->dev[sh->pd_idx];
  969. if ( written &&
  970. ( (test_bit(R5_Insync, &dev->flags) && !test_bit(R5_LOCKED, &dev->flags) &&
  971. test_bit(R5_UPTODATE, &dev->flags))
  972. || (failed == 1 && failed_num == sh->pd_idx))
  973. ) {
  974. /* any written block on an uptodate or failed drive can be returned.
  975. * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
  976. * never LOCKED, so we don't need to test 'failed' directly.
  977. */
  978. for (i=disks; i--; )
  979. if (sh->dev[i].written) {
  980. dev = &sh->dev[i];
  981. if (!test_bit(R5_LOCKED, &dev->flags) &&
  982. test_bit(R5_UPTODATE, &dev->flags) ) {
  983. /* We can return any write requests */
  984. struct bio *wbi, *wbi2;
  985. int bitmap_end = 0;
  986. PRINTK("Return write for disc %d\n", i);
  987. spin_lock_irq(&conf->device_lock);
  988. wbi = dev->written;
  989. dev->written = NULL;
  990. while (wbi && wbi->bi_sector < dev->sector + STRIPE_SECTORS) {
  991. wbi2 = r5_next_bio(wbi, dev->sector);
  992. if (--wbi->bi_phys_segments == 0) {
  993. md_write_end(conf->mddev);
  994. wbi->bi_next = return_bi;
  995. return_bi = wbi;
  996. }
  997. wbi = wbi2;
  998. }
  999. if (dev->towrite == NULL)
  1000. bitmap_end = 1;
  1001. spin_unlock_irq(&conf->device_lock);
  1002. if (bitmap_end)
  1003. bitmap_endwrite(conf->mddev->bitmap, sh->sector,
  1004. STRIPE_SECTORS,
  1005. !test_bit(STRIPE_DEGRADED, &sh->state), 0);
  1006. }
  1007. }
  1008. }
  1009. /* Now we might consider reading some blocks, either to check/generate
  1010. * parity, or to satisfy requests
  1011. * or to load a block that is being partially written.
  1012. */
  1013. if (to_read || non_overwrite || (syncing && (uptodate < disks))) {
  1014. for (i=disks; i--;) {
  1015. dev = &sh->dev[i];
  1016. if (!test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
  1017. (dev->toread ||
  1018. (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
  1019. syncing ||
  1020. (failed && (sh->dev[failed_num].toread ||
  1021. (sh->dev[failed_num].towrite && !test_bit(R5_OVERWRITE, &sh->dev[failed_num].flags))))
  1022. )
  1023. ) {
  1024. /* we would like to get this block, possibly
  1025. * by computing it, but we might not be able to
  1026. */
  1027. if (uptodate == disks-1) {
  1028. PRINTK("Computing block %d\n", i);
  1029. compute_block(sh, i);
  1030. uptodate++;
  1031. } else if (test_bit(R5_Insync, &dev->flags)) {
  1032. set_bit(R5_LOCKED, &dev->flags);
  1033. set_bit(R5_Wantread, &dev->flags);
  1034. #if 0
  1035. /* if I am just reading this block and we don't have
  1036. a failed drive, or any pending writes then sidestep the cache */
  1037. if (sh->bh_read[i] && !sh->bh_read[i]->b_reqnext &&
  1038. ! syncing && !failed && !to_write) {
  1039. sh->bh_cache[i]->b_page = sh->bh_read[i]->b_page;
  1040. sh->bh_cache[i]->b_data = sh->bh_read[i]->b_data;
  1041. }
  1042. #endif
  1043. locked++;
  1044. PRINTK("Reading block %d (sync=%d)\n",
  1045. i, syncing);
  1046. if (syncing)
  1047. md_sync_acct(conf->disks[i].rdev->bdev,
  1048. STRIPE_SECTORS);
  1049. }
  1050. }
  1051. }
  1052. set_bit(STRIPE_HANDLE, &sh->state);
  1053. }
  1054. /* now to consider writing and what else, if anything should be read */
  1055. if (to_write) {
  1056. int rmw=0, rcw=0;
  1057. for (i=disks ; i--;) {
  1058. /* would I have to read this buffer for read_modify_write */
  1059. dev = &sh->dev[i];
  1060. if ((dev->towrite || i == sh->pd_idx) &&
  1061. (!test_bit(R5_LOCKED, &dev->flags)
  1062. #if 0
  1063. || sh->bh_page[i]!=bh->b_page
  1064. #endif
  1065. ) &&
  1066. !test_bit(R5_UPTODATE, &dev->flags)) {
  1067. if (test_bit(R5_Insync, &dev->flags)
  1068. /* && !(!mddev->insync && i == sh->pd_idx) */
  1069. )
  1070. rmw++;
  1071. else rmw += 2*disks; /* cannot read it */
  1072. }
  1073. /* Would I have to read this buffer for reconstruct_write */
  1074. if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
  1075. (!test_bit(R5_LOCKED, &dev->flags)
  1076. #if 0
  1077. || sh->bh_page[i] != bh->b_page
  1078. #endif
  1079. ) &&
  1080. !test_bit(R5_UPTODATE, &dev->flags)) {
  1081. if (test_bit(R5_Insync, &dev->flags)) rcw++;
  1082. else rcw += 2*disks;
  1083. }
  1084. }
  1085. PRINTK("for sector %llu, rmw=%d rcw=%d\n",
  1086. (unsigned long long)sh->sector, rmw, rcw);
  1087. set_bit(STRIPE_HANDLE, &sh->state);
  1088. if (rmw < rcw && rmw > 0)
  1089. /* prefer read-modify-write, but need to get some data */
  1090. for (i=disks; i--;) {
  1091. dev = &sh->dev[i];
  1092. if ((dev->towrite || i == sh->pd_idx) &&
  1093. !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
  1094. test_bit(R5_Insync, &dev->flags)) {
  1095. if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
  1096. {
  1097. PRINTK("Read_old block %d for r-m-w\n", i);
  1098. set_bit(R5_LOCKED, &dev->flags);
  1099. set_bit(R5_Wantread, &dev->flags);
  1100. locked++;
  1101. } else {
  1102. set_bit(STRIPE_DELAYED, &sh->state);
  1103. set_bit(STRIPE_HANDLE, &sh->state);
  1104. }
  1105. }
  1106. }
  1107. if (rcw <= rmw && rcw > 0)
  1108. /* want reconstruct write, but need to get some data */
  1109. for (i=disks; i--;) {
  1110. dev = &sh->dev[i];
  1111. if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
  1112. !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
  1113. test_bit(R5_Insync, &dev->flags)) {
  1114. if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
  1115. {
  1116. PRINTK("Read_old block %d for Reconstruct\n", i);
  1117. set_bit(R5_LOCKED, &dev->flags);
  1118. set_bit(R5_Wantread, &dev->flags);
  1119. locked++;
  1120. } else {
  1121. set_bit(STRIPE_DELAYED, &sh->state);
  1122. set_bit(STRIPE_HANDLE, &sh->state);
  1123. }
  1124. }
  1125. }
  1126. /* now if nothing is locked, and if we have enough data, we can start a write request */
  1127. if (locked == 0 && (rcw == 0 ||rmw == 0) &&
  1128. !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
  1129. PRINTK("Computing parity...\n");
  1130. compute_parity(sh, rcw==0 ? RECONSTRUCT_WRITE : READ_MODIFY_WRITE);
  1131. /* now every locked buffer is ready to be written */
  1132. for (i=disks; i--;)
  1133. if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
  1134. PRINTK("Writing block %d\n", i);
  1135. locked++;
  1136. set_bit(R5_Wantwrite, &sh->dev[i].flags);
  1137. if (!test_bit(R5_Insync, &sh->dev[i].flags)
  1138. || (i==sh->pd_idx && failed == 0))
  1139. set_bit(STRIPE_INSYNC, &sh->state);
  1140. }
  1141. if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
  1142. atomic_dec(&conf->preread_active_stripes);
  1143. if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
  1144. md_wakeup_thread(conf->mddev->thread);
  1145. }
  1146. }
  1147. }
  1148. /* maybe we need to check and possibly fix the parity for this stripe
  1149. * Any reads will already have been scheduled, so we just see if enough data
  1150. * is available
  1151. */
  1152. if (syncing && locked == 0 &&
  1153. !test_bit(STRIPE_INSYNC, &sh->state) && failed <= 1) {
  1154. set_bit(STRIPE_HANDLE, &sh->state);
  1155. if (failed == 0) {
  1156. char *pagea;
  1157. if (uptodate != disks)
  1158. BUG();
  1159. compute_parity(sh, CHECK_PARITY);
  1160. uptodate--;
  1161. pagea = page_address(sh->dev[sh->pd_idx].page);
  1162. if ((*(u32*)pagea) == 0 &&
  1163. !memcmp(pagea, pagea+4, STRIPE_SIZE-4)) {
  1164. /* parity is correct (on disc, not in buffer any more) */
  1165. set_bit(STRIPE_INSYNC, &sh->state);
  1166. } else {
  1167. conf->mddev->resync_mismatches += STRIPE_SECTORS;
  1168. if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
  1169. /* don't try to repair!! */
  1170. set_bit(STRIPE_INSYNC, &sh->state);
  1171. }
  1172. }
  1173. if (!test_bit(STRIPE_INSYNC, &sh->state)) {
  1174. if (failed==0)
  1175. failed_num = sh->pd_idx;
  1176. /* should be able to compute the missing block and write it to spare */
  1177. if (!test_bit(R5_UPTODATE, &sh->dev[failed_num].flags)) {
  1178. if (uptodate+1 != disks)
  1179. BUG();
  1180. compute_block(sh, failed_num);
  1181. uptodate++;
  1182. }
  1183. if (uptodate != disks)
  1184. BUG();
  1185. dev = &sh->dev[failed_num];
  1186. set_bit(R5_LOCKED, &dev->flags);
  1187. set_bit(R5_Wantwrite, &dev->flags);
  1188. clear_bit(STRIPE_DEGRADED, &sh->state);
  1189. locked++;
  1190. set_bit(STRIPE_INSYNC, &sh->state);
  1191. set_bit(R5_Syncio, &dev->flags);
  1192. }
  1193. }
  1194. if (syncing && locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
  1195. md_done_sync(conf->mddev, STRIPE_SECTORS,1);
  1196. clear_bit(STRIPE_SYNCING, &sh->state);
  1197. }
  1198. /* If the failed drive is just a ReadError, then we might need to progress
  1199. * the repair/check process
  1200. */
  1201. if (failed == 1 && ! conf->mddev->ro &&
  1202. test_bit(R5_ReadError, &sh->dev[failed_num].flags)
  1203. && !test_bit(R5_LOCKED, &sh->dev[failed_num].flags)
  1204. && test_bit(R5_UPTODATE, &sh->dev[failed_num].flags)
  1205. ) {
  1206. dev = &sh->dev[failed_num];
  1207. if (!test_bit(R5_ReWrite, &dev->flags)) {
  1208. set_bit(R5_Wantwrite, &dev->flags);
  1209. set_bit(R5_ReWrite, &dev->flags);
  1210. set_bit(R5_LOCKED, &dev->flags);
  1211. } else {
  1212. /* let's read it back */
  1213. set_bit(R5_Wantread, &dev->flags);
  1214. set_bit(R5_LOCKED, &dev->flags);
  1215. }
  1216. }
  1217. spin_unlock(&sh->lock);
  1218. while ((bi=return_bi)) {
  1219. int bytes = bi->bi_size;
  1220. return_bi = bi->bi_next;
  1221. bi->bi_next = NULL;
  1222. bi->bi_size = 0;
  1223. bi->bi_end_io(bi, bytes, 0);
  1224. }
  1225. for (i=disks; i-- ;) {
  1226. int rw;
  1227. struct bio *bi;
  1228. mdk_rdev_t *rdev;
  1229. if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
  1230. rw = 1;
  1231. else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
  1232. rw = 0;
  1233. else
  1234. continue;
  1235. bi = &sh->dev[i].req;
  1236. bi->bi_rw = rw;
  1237. if (rw)
  1238. bi->bi_end_io = raid5_end_write_request;
  1239. else
  1240. bi->bi_end_io = raid5_end_read_request;
  1241. rcu_read_lock();
  1242. rdev = rcu_dereference(conf->disks[i].rdev);
  1243. if (rdev && test_bit(Faulty, &rdev->flags))
  1244. rdev = NULL;
  1245. if (rdev)
  1246. atomic_inc(&rdev->nr_pending);
  1247. rcu_read_unlock();
  1248. if (rdev) {
  1249. if (test_bit(R5_Syncio, &sh->dev[i].flags))
  1250. md_sync_acct(rdev->bdev, STRIPE_SECTORS);
  1251. bi->bi_bdev = rdev->bdev;
  1252. PRINTK("for %llu schedule op %ld on disc %d\n",
  1253. (unsigned long long)sh->sector, bi->bi_rw, i);
  1254. atomic_inc(&sh->count);
  1255. bi->bi_sector = sh->sector + rdev->data_offset;
  1256. bi->bi_flags = 1 << BIO_UPTODATE;
  1257. bi->bi_vcnt = 1;
  1258. bi->bi_max_vecs = 1;
  1259. bi->bi_idx = 0;
  1260. bi->bi_io_vec = &sh->dev[i].vec;
  1261. bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
  1262. bi->bi_io_vec[0].bv_offset = 0;
  1263. bi->bi_size = STRIPE_SIZE;
  1264. bi->bi_next = NULL;
  1265. generic_make_request(bi);
  1266. } else {
  1267. if (rw == 1)
  1268. set_bit(STRIPE_DEGRADED, &sh->state);
  1269. PRINTK("skip op %ld on disc %d for sector %llu\n",
  1270. bi->bi_rw, i, (unsigned long long)sh->sector);
  1271. clear_bit(R5_LOCKED, &sh->dev[i].flags);
  1272. set_bit(STRIPE_HANDLE, &sh->state);
  1273. }
  1274. }
  1275. }
  1276. static inline void raid5_activate_delayed(raid5_conf_t *conf)
  1277. {
  1278. if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
  1279. while (!list_empty(&conf->delayed_list)) {
  1280. struct list_head *l = conf->delayed_list.next;
  1281. struct stripe_head *sh;
  1282. sh = list_entry(l, struct stripe_head, lru);
  1283. list_del_init(l);
  1284. clear_bit(STRIPE_DELAYED, &sh->state);
  1285. if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
  1286. atomic_inc(&conf->preread_active_stripes);
  1287. list_add_tail(&sh->lru, &conf->handle_list);
  1288. }
  1289. }
  1290. }
  1291. static inline void activate_bit_delay(raid5_conf_t *conf)
  1292. {
  1293. /* device_lock is held */
  1294. struct list_head head;
  1295. list_add(&head, &conf->bitmap_list);
  1296. list_del_init(&conf->bitmap_list);
  1297. while (!list_empty(&head)) {
  1298. struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
  1299. list_del_init(&sh->lru);
  1300. atomic_inc(&sh->count);
  1301. __release_stripe(conf, sh);
  1302. }
  1303. }
  1304. static void unplug_slaves(mddev_t *mddev)
  1305. {
  1306. raid5_conf_t *conf = mddev_to_conf(mddev);
  1307. int i;
  1308. rcu_read_lock();
  1309. for (i=0; i<mddev->raid_disks; i++) {
  1310. mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
  1311. if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
  1312. request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
  1313. atomic_inc(&rdev->nr_pending);
  1314. rcu_read_unlock();
  1315. if (r_queue->unplug_fn)
  1316. r_queue->unplug_fn(r_queue);
  1317. rdev_dec_pending(rdev, mddev);
  1318. rcu_read_lock();
  1319. }
  1320. }
  1321. rcu_read_unlock();
  1322. }
  1323. static void raid5_unplug_device(request_queue_t *q)
  1324. {
  1325. mddev_t *mddev = q->queuedata;
  1326. raid5_conf_t *conf = mddev_to_conf(mddev);
  1327. unsigned long flags;
  1328. spin_lock_irqsave(&conf->device_lock, flags);
  1329. if (blk_remove_plug(q)) {
  1330. conf->seq_flush++;
  1331. raid5_activate_delayed(conf);
  1332. }
  1333. md_wakeup_thread(mddev->thread);
  1334. spin_unlock_irqrestore(&conf->device_lock, flags);
  1335. unplug_slaves(mddev);
  1336. }
  1337. static int raid5_issue_flush(request_queue_t *q, struct gendisk *disk,
  1338. sector_t *error_sector)
  1339. {
  1340. mddev_t *mddev = q->queuedata;
  1341. raid5_conf_t *conf = mddev_to_conf(mddev);
  1342. int i, ret = 0;
  1343. rcu_read_lock();
  1344. for (i=0; i<mddev->raid_disks && ret == 0; i++) {
  1345. mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
  1346. if (rdev && !test_bit(Faulty, &rdev->flags)) {
  1347. struct block_device *bdev = rdev->bdev;
  1348. request_queue_t *r_queue = bdev_get_queue(bdev);
  1349. if (!r_queue->issue_flush_fn)
  1350. ret = -EOPNOTSUPP;
  1351. else {
  1352. atomic_inc(&rdev->nr_pending);
  1353. rcu_read_unlock();
  1354. ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
  1355. error_sector);
  1356. rdev_dec_pending(rdev, mddev);
  1357. rcu_read_lock();
  1358. }
  1359. }
  1360. }
  1361. rcu_read_unlock();
  1362. return ret;
  1363. }
  1364. static inline void raid5_plug_device(raid5_conf_t *conf)
  1365. {
  1366. spin_lock_irq(&conf->device_lock);
  1367. blk_plug_device(conf->mddev->queue);
  1368. spin_unlock_irq(&conf->device_lock);
  1369. }
  1370. static int make_request (request_queue_t *q, struct bio * bi)
  1371. {
  1372. mddev_t *mddev = q->queuedata;
  1373. raid5_conf_t *conf = mddev_to_conf(mddev);
  1374. const unsigned int raid_disks = conf->raid_disks;
  1375. const unsigned int data_disks = raid_disks - 1;
  1376. unsigned int dd_idx, pd_idx;
  1377. sector_t new_sector;
  1378. sector_t logical_sector, last_sector;
  1379. struct stripe_head *sh;
  1380. const int rw = bio_data_dir(bi);
  1381. if (unlikely(bio_barrier(bi))) {
  1382. bio_endio(bi, bi->bi_size, -EOPNOTSUPP);
  1383. return 0;
  1384. }
  1385. md_write_start(mddev, bi);
  1386. disk_stat_inc(mddev->gendisk, ios[rw]);
  1387. disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
  1388. logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
  1389. last_sector = bi->bi_sector + (bi->bi_size>>9);
  1390. bi->bi_next = NULL;
  1391. bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
  1392. for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
  1393. DEFINE_WAIT(w);
  1394. new_sector = raid5_compute_sector(logical_sector,
  1395. raid_disks, data_disks, &dd_idx, &pd_idx, conf);
  1396. PRINTK("raid5: make_request, sector %llu logical %llu\n",
  1397. (unsigned long long)new_sector,
  1398. (unsigned long long)logical_sector);
  1399. retry:
  1400. prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
  1401. sh = get_active_stripe(conf, new_sector, pd_idx, (bi->bi_rw&RWA_MASK));
  1402. if (sh) {
  1403. if (!add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
  1404. /* Add failed due to overlap. Flush everything
  1405. * and wait a while
  1406. */
  1407. raid5_unplug_device(mddev->queue);
  1408. release_stripe(sh);
  1409. schedule();
  1410. goto retry;
  1411. }
  1412. finish_wait(&conf->wait_for_overlap, &w);
  1413. raid5_plug_device(conf);
  1414. handle_stripe(sh);
  1415. release_stripe(sh);
  1416. } else {
  1417. /* cannot get stripe for read-ahead, just give-up */
  1418. clear_bit(BIO_UPTODATE, &bi->bi_flags);
  1419. finish_wait(&conf->wait_for_overlap, &w);
  1420. break;
  1421. }
  1422. }
  1423. spin_lock_irq(&conf->device_lock);
  1424. if (--bi->bi_phys_segments == 0) {
  1425. int bytes = bi->bi_size;
  1426. if ( bio_data_dir(bi) == WRITE )
  1427. md_write_end(mddev);
  1428. bi->bi_size = 0;
  1429. bi->bi_end_io(bi, bytes, 0);
  1430. }
  1431. spin_unlock_irq(&conf->device_lock);
  1432. return 0;
  1433. }
  1434. /* FIXME go_faster isn't used */
  1435. static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
  1436. {
  1437. raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
  1438. struct stripe_head *sh;
  1439. int sectors_per_chunk = conf->chunk_size >> 9;
  1440. sector_t x;
  1441. unsigned long stripe;
  1442. int chunk_offset;
  1443. int dd_idx, pd_idx;
  1444. sector_t first_sector;
  1445. int raid_disks = conf->raid_disks;
  1446. int data_disks = raid_disks-1;
  1447. sector_t max_sector = mddev->size << 1;
  1448. int sync_blocks;
  1449. if (sector_nr >= max_sector) {
  1450. /* just being told to finish up .. nothing much to do */
  1451. unplug_slaves(mddev);
  1452. if (mddev->curr_resync < max_sector) /* aborted */
  1453. bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
  1454. &sync_blocks, 1);
  1455. else /* compelted sync */
  1456. conf->fullsync = 0;
  1457. bitmap_close_sync(mddev->bitmap);
  1458. return 0;
  1459. }
  1460. /* if there is 1 or more failed drives and we are trying
  1461. * to resync, then assert that we are finished, because there is
  1462. * nothing we can do.
  1463. */
  1464. if (mddev->degraded >= 1 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  1465. sector_t rv = (mddev->size << 1) - sector_nr;
  1466. *skipped = 1;
  1467. return rv;
  1468. }
  1469. if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
  1470. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
  1471. !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
  1472. /* we can skip this block, and probably more */
  1473. sync_blocks /= STRIPE_SECTORS;
  1474. *skipped = 1;
  1475. return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
  1476. }
  1477. x = sector_nr;
  1478. chunk_offset = sector_div(x, sectors_per_chunk);
  1479. stripe = x;
  1480. BUG_ON(x != stripe);
  1481. first_sector = raid5_compute_sector((sector_t)stripe*data_disks*sectors_per_chunk
  1482. + chunk_offset, raid_disks, data_disks, &dd_idx, &pd_idx, conf);
  1483. sh = get_active_stripe(conf, sector_nr, pd_idx, 1);
  1484. if (sh == NULL) {
  1485. sh = get_active_stripe(conf, sector_nr, pd_idx, 0);
  1486. /* make sure we don't swamp the stripe cache if someone else
  1487. * is trying to get access
  1488. */
  1489. schedule_timeout_uninterruptible(1);
  1490. }
  1491. bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 0);
  1492. spin_lock(&sh->lock);
  1493. set_bit(STRIPE_SYNCING, &sh->state);
  1494. clear_bit(STRIPE_INSYNC, &sh->state);
  1495. spin_unlock(&sh->lock);
  1496. handle_stripe(sh);
  1497. release_stripe(sh);
  1498. return STRIPE_SECTORS;
  1499. }
  1500. /*
  1501. * This is our raid5 kernel thread.
  1502. *
  1503. * We scan the hash table for stripes which can be handled now.
  1504. * During the scan, completed stripes are saved for us by the interrupt
  1505. * handler, so that they will not have to wait for our next wakeup.
  1506. */
  1507. static void raid5d (mddev_t *mddev)
  1508. {
  1509. struct stripe_head *sh;
  1510. raid5_conf_t *conf = mddev_to_conf(mddev);
  1511. int handled;
  1512. PRINTK("+++ raid5d active\n");
  1513. md_check_recovery(mddev);
  1514. handled = 0;
  1515. spin_lock_irq(&conf->device_lock);
  1516. while (1) {
  1517. struct list_head *first;
  1518. if (conf->seq_flush - conf->seq_write > 0) {
  1519. int seq = conf->seq_flush;
  1520. spin_unlock_irq(&conf->device_lock);
  1521. bitmap_unplug(mddev->bitmap);
  1522. spin_lock_irq(&conf->device_lock);
  1523. conf->seq_write = seq;
  1524. activate_bit_delay(conf);
  1525. }
  1526. if (list_empty(&conf->handle_list) &&
  1527. atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD &&
  1528. !blk_queue_plugged(mddev->queue) &&
  1529. !list_empty(&conf->delayed_list))
  1530. raid5_activate_delayed(conf);
  1531. if (list_empty(&conf->handle_list))
  1532. break;
  1533. first = conf->handle_list.next;
  1534. sh = list_entry(first, struct stripe_head, lru);
  1535. list_del_init(first);
  1536. atomic_inc(&sh->count);
  1537. if (atomic_read(&sh->count)!= 1)
  1538. BUG();
  1539. spin_unlock_irq(&conf->device_lock);
  1540. handled++;
  1541. handle_stripe(sh);
  1542. release_stripe(sh);
  1543. spin_lock_irq(&conf->device_lock);
  1544. }
  1545. PRINTK("%d stripes handled\n", handled);
  1546. spin_unlock_irq(&conf->device_lock);
  1547. unplug_slaves(mddev);
  1548. PRINTK("--- raid5d inactive\n");
  1549. }
  1550. static ssize_t
  1551. raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
  1552. {
  1553. raid5_conf_t *conf = mddev_to_conf(mddev);
  1554. if (conf)
  1555. return sprintf(page, "%d\n", conf->max_nr_stripes);
  1556. else
  1557. return 0;
  1558. }
  1559. static ssize_t
  1560. raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
  1561. {
  1562. raid5_conf_t *conf = mddev_to_conf(mddev);
  1563. char *end;
  1564. int new;
  1565. if (len >= PAGE_SIZE)
  1566. return -EINVAL;
  1567. if (!conf)
  1568. return -ENODEV;
  1569. new = simple_strtoul(page, &end, 10);
  1570. if (!*page || (*end && *end != '\n') )
  1571. return -EINVAL;
  1572. if (new <= 16 || new > 32768)
  1573. return -EINVAL;
  1574. while (new < conf->max_nr_stripes) {
  1575. if (drop_one_stripe(conf))
  1576. conf->max_nr_stripes--;
  1577. else
  1578. break;
  1579. }
  1580. while (new > conf->max_nr_stripes) {
  1581. if (grow_one_stripe(conf))
  1582. conf->max_nr_stripes++;
  1583. else break;
  1584. }
  1585. return len;
  1586. }
  1587. static struct md_sysfs_entry
  1588. raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
  1589. raid5_show_stripe_cache_size,
  1590. raid5_store_stripe_cache_size);
  1591. static ssize_t
  1592. stripe_cache_active_show(mddev_t *mddev, char *page)
  1593. {
  1594. raid5_conf_t *conf = mddev_to_conf(mddev);
  1595. if (conf)
  1596. return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
  1597. else
  1598. return 0;
  1599. }
  1600. static struct md_sysfs_entry
  1601. raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
  1602. static struct attribute *raid5_attrs[] = {
  1603. &raid5_stripecache_size.attr,
  1604. &raid5_stripecache_active.attr,
  1605. NULL,
  1606. };
  1607. static struct attribute_group raid5_attrs_group = {
  1608. .name = NULL,
  1609. .attrs = raid5_attrs,
  1610. };
  1611. static int run(mddev_t *mddev)
  1612. {
  1613. raid5_conf_t *conf;
  1614. int raid_disk, memory;
  1615. mdk_rdev_t *rdev;
  1616. struct disk_info *disk;
  1617. struct list_head *tmp;
  1618. if (mddev->level != 5 && mddev->level != 4) {
  1619. printk("raid5: %s: raid level not set to 4/5 (%d)\n", mdname(mddev), mddev->level);
  1620. return -EIO;
  1621. }
  1622. mddev->private = kmalloc (sizeof (raid5_conf_t)
  1623. + mddev->raid_disks * sizeof(struct disk_info),
  1624. GFP_KERNEL);
  1625. if ((conf = mddev->private) == NULL)
  1626. goto abort;
  1627. memset (conf, 0, sizeof (*conf) + mddev->raid_disks * sizeof(struct disk_info) );
  1628. conf->mddev = mddev;
  1629. if ((conf->stripe_hashtbl = (struct stripe_head **) __get_free_pages(GFP_ATOMIC, HASH_PAGES_ORDER)) == NULL)
  1630. goto abort;
  1631. memset(conf->stripe_hashtbl, 0, HASH_PAGES * PAGE_SIZE);
  1632. spin_lock_init(&conf->device_lock);
  1633. init_waitqueue_head(&conf->wait_for_stripe);
  1634. init_waitqueue_head(&conf->wait_for_overlap);
  1635. INIT_LIST_HEAD(&conf->handle_list);
  1636. INIT_LIST_HEAD(&conf->delayed_list);
  1637. INIT_LIST_HEAD(&conf->bitmap_list);
  1638. INIT_LIST_HEAD(&conf->inactive_list);
  1639. atomic_set(&conf->active_stripes, 0);
  1640. atomic_set(&conf->preread_active_stripes, 0);
  1641. PRINTK("raid5: run(%s) called.\n", mdname(mddev));
  1642. ITERATE_RDEV(mddev,rdev,tmp) {
  1643. raid_disk = rdev->raid_disk;
  1644. if (raid_disk >= mddev->raid_disks
  1645. || raid_disk < 0)
  1646. continue;
  1647. disk = conf->disks + raid_disk;
  1648. disk->rdev = rdev;
  1649. if (test_bit(In_sync, &rdev->flags)) {
  1650. char b[BDEVNAME_SIZE];
  1651. printk(KERN_INFO "raid5: device %s operational as raid"
  1652. " disk %d\n", bdevname(rdev->bdev,b),
  1653. raid_disk);
  1654. conf->working_disks++;
  1655. }
  1656. }
  1657. conf->raid_disks = mddev->raid_disks;
  1658. /*
  1659. * 0 for a fully functional array, 1 for a degraded array.
  1660. */
  1661. mddev->degraded = conf->failed_disks = conf->raid_disks - conf->working_disks;
  1662. conf->mddev = mddev;
  1663. conf->chunk_size = mddev->chunk_size;
  1664. conf->level = mddev->level;
  1665. conf->algorithm = mddev->layout;
  1666. conf->max_nr_stripes = NR_STRIPES;
  1667. /* device size must be a multiple of chunk size */
  1668. mddev->size &= ~(mddev->chunk_size/1024 -1);
  1669. mddev->resync_max_sectors = mddev->size << 1;
  1670. if (!conf->chunk_size || conf->chunk_size % 4) {
  1671. printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
  1672. conf->chunk_size, mdname(mddev));
  1673. goto abort;
  1674. }
  1675. if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
  1676. printk(KERN_ERR
  1677. "raid5: unsupported parity algorithm %d for %s\n",
  1678. conf->algorithm, mdname(mddev));
  1679. goto abort;
  1680. }
  1681. if (mddev->degraded > 1) {
  1682. printk(KERN_ERR "raid5: not enough operational devices for %s"
  1683. " (%d/%d failed)\n",
  1684. mdname(mddev), conf->failed_disks, conf->raid_disks);
  1685. goto abort;
  1686. }
  1687. if (mddev->degraded == 1 &&
  1688. mddev->recovery_cp != MaxSector) {
  1689. printk(KERN_ERR
  1690. "raid5: cannot start dirty degraded array for %s\n",
  1691. mdname(mddev));
  1692. goto abort;
  1693. }
  1694. {
  1695. mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
  1696. if (!mddev->thread) {
  1697. printk(KERN_ERR
  1698. "raid5: couldn't allocate thread for %s\n",
  1699. mdname(mddev));
  1700. goto abort;
  1701. }
  1702. }
  1703. memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
  1704. conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
  1705. if (grow_stripes(conf, conf->max_nr_stripes)) {
  1706. printk(KERN_ERR
  1707. "raid5: couldn't allocate %dkB for buffers\n", memory);
  1708. shrink_stripes(conf);
  1709. md_unregister_thread(mddev->thread);
  1710. goto abort;
  1711. } else
  1712. printk(KERN_INFO "raid5: allocated %dkB for %s\n",
  1713. memory, mdname(mddev));
  1714. if (mddev->degraded == 0)
  1715. printk("raid5: raid level %d set %s active with %d out of %d"
  1716. " devices, algorithm %d\n", conf->level, mdname(mddev),
  1717. mddev->raid_disks-mddev->degraded, mddev->raid_disks,
  1718. conf->algorithm);
  1719. else
  1720. printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
  1721. " out of %d devices, algorithm %d\n", conf->level,
  1722. mdname(mddev), mddev->raid_disks - mddev->degraded,
  1723. mddev->raid_disks, conf->algorithm);
  1724. print_raid5_conf(conf);
  1725. /* read-ahead size must cover two whole stripes, which is
  1726. * 2 * (n-1) * chunksize where 'n' is the number of raid devices
  1727. */
  1728. {
  1729. int stripe = (mddev->raid_disks-1) * mddev->chunk_size
  1730. / PAGE_CACHE_SIZE;
  1731. if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
  1732. mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
  1733. }
  1734. /* Ok, everything is just fine now */
  1735. sysfs_create_group(&mddev->kobj, &raid5_attrs_group);
  1736. if (mddev->bitmap)
  1737. mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ;
  1738. mddev->queue->unplug_fn = raid5_unplug_device;
  1739. mddev->queue->issue_flush_fn = raid5_issue_flush;
  1740. mddev->array_size = mddev->size * (mddev->raid_disks - 1);
  1741. return 0;
  1742. abort:
  1743. if (conf) {
  1744. print_raid5_conf(conf);
  1745. if (conf->stripe_hashtbl)
  1746. free_pages((unsigned long) conf->stripe_hashtbl,
  1747. HASH_PAGES_ORDER);
  1748. kfree(conf);
  1749. }
  1750. mddev->private = NULL;
  1751. printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
  1752. return -EIO;
  1753. }
  1754. static int stop(mddev_t *mddev)
  1755. {
  1756. raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
  1757. md_unregister_thread(mddev->thread);
  1758. mddev->thread = NULL;
  1759. shrink_stripes(conf);
  1760. free_pages((unsigned long) conf->stripe_hashtbl, HASH_PAGES_ORDER);
  1761. blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
  1762. sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
  1763. kfree(conf);
  1764. mddev->private = NULL;
  1765. return 0;
  1766. }
  1767. #if RAID5_DEBUG
  1768. static void print_sh (struct stripe_head *sh)
  1769. {
  1770. int i;
  1771. printk("sh %llu, pd_idx %d, state %ld.\n",
  1772. (unsigned long long)sh->sector, sh->pd_idx, sh->state);
  1773. printk("sh %llu, count %d.\n",
  1774. (unsigned long long)sh->sector, atomic_read(&sh->count));
  1775. printk("sh %llu, ", (unsigned long long)sh->sector);
  1776. for (i = 0; i < sh->raid_conf->raid_disks; i++) {
  1777. printk("(cache%d: %p %ld) ",
  1778. i, sh->dev[i].page, sh->dev[i].flags);
  1779. }
  1780. printk("\n");
  1781. }
  1782. static void printall (raid5_conf_t *conf)
  1783. {
  1784. struct stripe_head *sh;
  1785. int i;
  1786. spin_lock_irq(&conf->device_lock);
  1787. for (i = 0; i < NR_HASH; i++) {
  1788. sh = conf->stripe_hashtbl[i];
  1789. for (; sh; sh = sh->hash_next) {
  1790. if (sh->raid_conf != conf)
  1791. continue;
  1792. print_sh(sh);
  1793. }
  1794. }
  1795. spin_unlock_irq(&conf->device_lock);
  1796. }
  1797. #endif
  1798. static void status (struct seq_file *seq, mddev_t *mddev)
  1799. {
  1800. raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
  1801. int i;
  1802. seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
  1803. seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->working_disks);
  1804. for (i = 0; i < conf->raid_disks; i++)
  1805. seq_printf (seq, "%s",
  1806. conf->disks[i].rdev &&
  1807. test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
  1808. seq_printf (seq, "]");
  1809. #if RAID5_DEBUG
  1810. #define D(x) \
  1811. seq_printf (seq, "<"#x":%d>", atomic_read(&conf->x))
  1812. printall(conf);
  1813. #endif
  1814. }
  1815. static void print_raid5_conf (raid5_conf_t *conf)
  1816. {
  1817. int i;
  1818. struct disk_info *tmp;
  1819. printk("RAID5 conf printout:\n");
  1820. if (!conf) {
  1821. printk("(conf==NULL)\n");
  1822. return;
  1823. }
  1824. printk(" --- rd:%d wd:%d fd:%d\n", conf->raid_disks,
  1825. conf->working_disks, conf->failed_disks);
  1826. for (i = 0; i < conf->raid_disks; i++) {
  1827. char b[BDEVNAME_SIZE];
  1828. tmp = conf->disks + i;
  1829. if (tmp->rdev)
  1830. printk(" disk %d, o:%d, dev:%s\n",
  1831. i, !test_bit(Faulty, &tmp->rdev->flags),
  1832. bdevname(tmp->rdev->bdev,b));
  1833. }
  1834. }
  1835. static int raid5_spare_active(mddev_t *mddev)
  1836. {
  1837. int i;
  1838. raid5_conf_t *conf = mddev->private;
  1839. struct disk_info *tmp;
  1840. for (i = 0; i < conf->raid_disks; i++) {
  1841. tmp = conf->disks + i;
  1842. if (tmp->rdev
  1843. && !test_bit(Faulty, &tmp->rdev->flags)
  1844. && !test_bit(In_sync, &tmp->rdev->flags)) {
  1845. mddev->degraded--;
  1846. conf->failed_disks--;
  1847. conf->working_disks++;
  1848. set_bit(In_sync, &tmp->rdev->flags);
  1849. }
  1850. }
  1851. print_raid5_conf(conf);
  1852. return 0;
  1853. }
  1854. static int raid5_remove_disk(mddev_t *mddev, int number)
  1855. {
  1856. raid5_conf_t *conf = mddev->private;
  1857. int err = 0;
  1858. mdk_rdev_t *rdev;
  1859. struct disk_info *p = conf->disks + number;
  1860. print_raid5_conf(conf);
  1861. rdev = p->rdev;
  1862. if (rdev) {
  1863. if (test_bit(In_sync, &rdev->flags) ||
  1864. atomic_read(&rdev->nr_pending)) {
  1865. err = -EBUSY;
  1866. goto abort;
  1867. }
  1868. p->rdev = NULL;
  1869. synchronize_rcu();
  1870. if (atomic_read(&rdev->nr_pending)) {
  1871. /* lost the race, try later */
  1872. err = -EBUSY;
  1873. p->rdev = rdev;
  1874. }
  1875. }
  1876. abort:
  1877. print_raid5_conf(conf);
  1878. return err;
  1879. }
  1880. static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
  1881. {
  1882. raid5_conf_t *conf = mddev->private;
  1883. int found = 0;
  1884. int disk;
  1885. struct disk_info *p;
  1886. if (mddev->degraded > 1)
  1887. /* no point adding a device */
  1888. return 0;
  1889. /*
  1890. * find the disk ...
  1891. */
  1892. for (disk=0; disk < mddev->raid_disks; disk++)
  1893. if ((p=conf->disks + disk)->rdev == NULL) {
  1894. clear_bit(In_sync, &rdev->flags);
  1895. rdev->raid_disk = disk;
  1896. found = 1;
  1897. if (rdev->saved_raid_disk != disk)
  1898. conf->fullsync = 1;
  1899. rcu_assign_pointer(p->rdev, rdev);
  1900. break;
  1901. }
  1902. print_raid5_conf(conf);
  1903. return found;
  1904. }
  1905. static int raid5_resize(mddev_t *mddev, sector_t sectors)
  1906. {
  1907. /* no resync is happening, and there is enough space
  1908. * on all devices, so we can resize.
  1909. * We need to make sure resync covers any new space.
  1910. * If the array is shrinking we should possibly wait until
  1911. * any io in the removed space completes, but it hardly seems
  1912. * worth it.
  1913. */
  1914. sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
  1915. mddev->array_size = (sectors * (mddev->raid_disks-1))>>1;
  1916. set_capacity(mddev->gendisk, mddev->array_size << 1);
  1917. mddev->changed = 1;
  1918. if (sectors/2 > mddev->size && mddev->recovery_cp == MaxSector) {
  1919. mddev->recovery_cp = mddev->size << 1;
  1920. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1921. }
  1922. mddev->size = sectors /2;
  1923. mddev->resync_max_sectors = sectors;
  1924. return 0;
  1925. }
  1926. static void raid5_quiesce(mddev_t *mddev, int state)
  1927. {
  1928. raid5_conf_t *conf = mddev_to_conf(mddev);
  1929. switch(state) {
  1930. case 1: /* stop all writes */
  1931. spin_lock_irq(&conf->device_lock);
  1932. conf->quiesce = 1;
  1933. wait_event_lock_irq(conf->wait_for_stripe,
  1934. atomic_read(&conf->active_stripes) == 0,
  1935. conf->device_lock, /* nothing */);
  1936. spin_unlock_irq(&conf->device_lock);
  1937. break;
  1938. case 0: /* re-enable writes */
  1939. spin_lock_irq(&conf->device_lock);
  1940. conf->quiesce = 0;
  1941. wake_up(&conf->wait_for_stripe);
  1942. spin_unlock_irq(&conf->device_lock);
  1943. break;
  1944. }
  1945. if (mddev->thread) {
  1946. if (mddev->bitmap)
  1947. mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ;
  1948. else
  1949. mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT;
  1950. md_wakeup_thread(mddev->thread);
  1951. }
  1952. }
  1953. static mdk_personality_t raid5_personality=
  1954. {
  1955. .name = "raid5",
  1956. .owner = THIS_MODULE,
  1957. .make_request = make_request,
  1958. .run = run,
  1959. .stop = stop,
  1960. .status = status,
  1961. .error_handler = error,
  1962. .hot_add_disk = raid5_add_disk,
  1963. .hot_remove_disk= raid5_remove_disk,
  1964. .spare_active = raid5_spare_active,
  1965. .sync_request = sync_request,
  1966. .resize = raid5_resize,
  1967. .quiesce = raid5_quiesce,
  1968. };
  1969. static int __init raid5_init (void)
  1970. {
  1971. return register_md_personality (RAID5, &raid5_personality);
  1972. }
  1973. static void raid5_exit (void)
  1974. {
  1975. unregister_md_personality (RAID5);
  1976. }
  1977. module_init(raid5_init);
  1978. module_exit(raid5_exit);
  1979. MODULE_LICENSE("GPL");
  1980. MODULE_ALIAS("md-personality-4"); /* RAID5 */