bnx2.c 200 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314
  1. /* bnx2.c: Broadcom NX2 network driver.
  2. *
  3. * Copyright (c) 2004-2009 Broadcom Corporation
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation.
  8. *
  9. * Written by: Michael Chan (mchan@broadcom.com)
  10. */
  11. #include <linux/module.h>
  12. #include <linux/moduleparam.h>
  13. #include <linux/kernel.h>
  14. #include <linux/timer.h>
  15. #include <linux/errno.h>
  16. #include <linux/ioport.h>
  17. #include <linux/slab.h>
  18. #include <linux/vmalloc.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pci.h>
  21. #include <linux/init.h>
  22. #include <linux/netdevice.h>
  23. #include <linux/etherdevice.h>
  24. #include <linux/skbuff.h>
  25. #include <linux/dma-mapping.h>
  26. #include <linux/bitops.h>
  27. #include <asm/io.h>
  28. #include <asm/irq.h>
  29. #include <linux/delay.h>
  30. #include <asm/byteorder.h>
  31. #include <asm/page.h>
  32. #include <linux/time.h>
  33. #include <linux/ethtool.h>
  34. #include <linux/mii.h>
  35. #include <linux/if_vlan.h>
  36. #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
  37. #define BCM_VLAN 1
  38. #endif
  39. #include <net/ip.h>
  40. #include <net/tcp.h>
  41. #include <net/checksum.h>
  42. #include <linux/workqueue.h>
  43. #include <linux/crc32.h>
  44. #include <linux/prefetch.h>
  45. #include <linux/cache.h>
  46. #include <linux/firmware.h>
  47. #include <linux/log2.h>
  48. #include <linux/list.h>
  49. #if defined(CONFIG_CNIC) || defined(CONFIG_CNIC_MODULE)
  50. #define BCM_CNIC 1
  51. #include "cnic_if.h"
  52. #endif
  53. #include "bnx2.h"
  54. #include "bnx2_fw.h"
  55. #define DRV_MODULE_NAME "bnx2"
  56. #define PFX DRV_MODULE_NAME ": "
  57. #define DRV_MODULE_VERSION "2.0.1"
  58. #define DRV_MODULE_RELDATE "May 6, 2009"
  59. #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-4.6.16.fw"
  60. #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-4.6.16.fw"
  61. #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-4.6.17.fw"
  62. #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-4.6.15.fw"
  63. #define RUN_AT(x) (jiffies + (x))
  64. /* Time in jiffies before concluding the transmitter is hung. */
  65. #define TX_TIMEOUT (5*HZ)
  66. static char version[] __devinitdata =
  67. "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  68. MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
  69. MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
  70. MODULE_LICENSE("GPL");
  71. MODULE_VERSION(DRV_MODULE_VERSION);
  72. MODULE_FIRMWARE(FW_MIPS_FILE_06);
  73. MODULE_FIRMWARE(FW_RV2P_FILE_06);
  74. MODULE_FIRMWARE(FW_MIPS_FILE_09);
  75. MODULE_FIRMWARE(FW_RV2P_FILE_09);
  76. static int disable_msi = 0;
  77. module_param(disable_msi, int, 0);
  78. MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
  79. typedef enum {
  80. BCM5706 = 0,
  81. NC370T,
  82. NC370I,
  83. BCM5706S,
  84. NC370F,
  85. BCM5708,
  86. BCM5708S,
  87. BCM5709,
  88. BCM5709S,
  89. BCM5716,
  90. BCM5716S,
  91. } board_t;
  92. /* indexed by board_t, above */
  93. static struct {
  94. char *name;
  95. } board_info[] __devinitdata = {
  96. { "Broadcom NetXtreme II BCM5706 1000Base-T" },
  97. { "HP NC370T Multifunction Gigabit Server Adapter" },
  98. { "HP NC370i Multifunction Gigabit Server Adapter" },
  99. { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
  100. { "HP NC370F Multifunction Gigabit Server Adapter" },
  101. { "Broadcom NetXtreme II BCM5708 1000Base-T" },
  102. { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
  103. { "Broadcom NetXtreme II BCM5709 1000Base-T" },
  104. { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
  105. { "Broadcom NetXtreme II BCM5716 1000Base-T" },
  106. { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
  107. };
  108. static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl) = {
  109. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  110. PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
  111. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  112. PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
  113. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  114. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
  115. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
  116. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
  117. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  118. PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
  119. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  120. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
  121. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
  122. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
  123. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
  124. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
  125. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709S,
  126. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709S },
  127. { PCI_VENDOR_ID_BROADCOM, 0x163b,
  128. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716 },
  129. { PCI_VENDOR_ID_BROADCOM, 0x163c,
  130. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716S },
  131. { 0, }
  132. };
  133. static struct flash_spec flash_table[] =
  134. {
  135. #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
  136. #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
  137. /* Slow EEPROM */
  138. {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
  139. BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  140. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  141. "EEPROM - slow"},
  142. /* Expansion entry 0001 */
  143. {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
  144. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  145. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  146. "Entry 0001"},
  147. /* Saifun SA25F010 (non-buffered flash) */
  148. /* strap, cfg1, & write1 need updates */
  149. {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
  150. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  151. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
  152. "Non-buffered flash (128kB)"},
  153. /* Saifun SA25F020 (non-buffered flash) */
  154. /* strap, cfg1, & write1 need updates */
  155. {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
  156. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  157. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
  158. "Non-buffered flash (256kB)"},
  159. /* Expansion entry 0100 */
  160. {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
  161. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  162. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  163. "Entry 0100"},
  164. /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
  165. {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
  166. NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  167. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
  168. "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
  169. /* Entry 0110: ST M45PE20 (non-buffered flash)*/
  170. {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
  171. NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  172. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
  173. "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
  174. /* Saifun SA25F005 (non-buffered flash) */
  175. /* strap, cfg1, & write1 need updates */
  176. {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
  177. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  178. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
  179. "Non-buffered flash (64kB)"},
  180. /* Fast EEPROM */
  181. {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
  182. BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  183. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  184. "EEPROM - fast"},
  185. /* Expansion entry 1001 */
  186. {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
  187. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  188. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  189. "Entry 1001"},
  190. /* Expansion entry 1010 */
  191. {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
  192. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  193. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  194. "Entry 1010"},
  195. /* ATMEL AT45DB011B (buffered flash) */
  196. {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
  197. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  198. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
  199. "Buffered flash (128kB)"},
  200. /* Expansion entry 1100 */
  201. {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
  202. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  203. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  204. "Entry 1100"},
  205. /* Expansion entry 1101 */
  206. {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
  207. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  208. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  209. "Entry 1101"},
  210. /* Ateml Expansion entry 1110 */
  211. {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
  212. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  213. BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
  214. "Entry 1110 (Atmel)"},
  215. /* ATMEL AT45DB021B (buffered flash) */
  216. {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
  217. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  218. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
  219. "Buffered flash (256kB)"},
  220. };
  221. static struct flash_spec flash_5709 = {
  222. .flags = BNX2_NV_BUFFERED,
  223. .page_bits = BCM5709_FLASH_PAGE_BITS,
  224. .page_size = BCM5709_FLASH_PAGE_SIZE,
  225. .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
  226. .total_size = BUFFERED_FLASH_TOTAL_SIZE*2,
  227. .name = "5709 Buffered flash (256kB)",
  228. };
  229. MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
  230. static inline u32 bnx2_tx_avail(struct bnx2 *bp, struct bnx2_tx_ring_info *txr)
  231. {
  232. u32 diff;
  233. smp_mb();
  234. /* The ring uses 256 indices for 255 entries, one of them
  235. * needs to be skipped.
  236. */
  237. diff = txr->tx_prod - txr->tx_cons;
  238. if (unlikely(diff >= TX_DESC_CNT)) {
  239. diff &= 0xffff;
  240. if (diff == TX_DESC_CNT)
  241. diff = MAX_TX_DESC_CNT;
  242. }
  243. return (bp->tx_ring_size - diff);
  244. }
  245. static u32
  246. bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
  247. {
  248. u32 val;
  249. spin_lock_bh(&bp->indirect_lock);
  250. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  251. val = REG_RD(bp, BNX2_PCICFG_REG_WINDOW);
  252. spin_unlock_bh(&bp->indirect_lock);
  253. return val;
  254. }
  255. static void
  256. bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
  257. {
  258. spin_lock_bh(&bp->indirect_lock);
  259. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  260. REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
  261. spin_unlock_bh(&bp->indirect_lock);
  262. }
  263. static void
  264. bnx2_shmem_wr(struct bnx2 *bp, u32 offset, u32 val)
  265. {
  266. bnx2_reg_wr_ind(bp, bp->shmem_base + offset, val);
  267. }
  268. static u32
  269. bnx2_shmem_rd(struct bnx2 *bp, u32 offset)
  270. {
  271. return (bnx2_reg_rd_ind(bp, bp->shmem_base + offset));
  272. }
  273. static void
  274. bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
  275. {
  276. offset += cid_addr;
  277. spin_lock_bh(&bp->indirect_lock);
  278. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  279. int i;
  280. REG_WR(bp, BNX2_CTX_CTX_DATA, val);
  281. REG_WR(bp, BNX2_CTX_CTX_CTRL,
  282. offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
  283. for (i = 0; i < 5; i++) {
  284. val = REG_RD(bp, BNX2_CTX_CTX_CTRL);
  285. if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
  286. break;
  287. udelay(5);
  288. }
  289. } else {
  290. REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
  291. REG_WR(bp, BNX2_CTX_DATA, val);
  292. }
  293. spin_unlock_bh(&bp->indirect_lock);
  294. }
  295. #ifdef BCM_CNIC
  296. static int
  297. bnx2_drv_ctl(struct net_device *dev, struct drv_ctl_info *info)
  298. {
  299. struct bnx2 *bp = netdev_priv(dev);
  300. struct drv_ctl_io *io = &info->data.io;
  301. switch (info->cmd) {
  302. case DRV_CTL_IO_WR_CMD:
  303. bnx2_reg_wr_ind(bp, io->offset, io->data);
  304. break;
  305. case DRV_CTL_IO_RD_CMD:
  306. io->data = bnx2_reg_rd_ind(bp, io->offset);
  307. break;
  308. case DRV_CTL_CTX_WR_CMD:
  309. bnx2_ctx_wr(bp, io->cid_addr, io->offset, io->data);
  310. break;
  311. default:
  312. return -EINVAL;
  313. }
  314. return 0;
  315. }
  316. static void bnx2_setup_cnic_irq_info(struct bnx2 *bp)
  317. {
  318. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  319. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  320. int sb_id;
  321. if (bp->flags & BNX2_FLAG_USING_MSIX) {
  322. cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
  323. bnapi->cnic_present = 0;
  324. sb_id = bp->irq_nvecs;
  325. cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
  326. } else {
  327. cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
  328. bnapi->cnic_tag = bnapi->last_status_idx;
  329. bnapi->cnic_present = 1;
  330. sb_id = 0;
  331. cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
  332. }
  333. cp->irq_arr[0].vector = bp->irq_tbl[sb_id].vector;
  334. cp->irq_arr[0].status_blk = (void *)
  335. ((unsigned long) bnapi->status_blk.msi +
  336. (BNX2_SBLK_MSIX_ALIGN_SIZE * sb_id));
  337. cp->irq_arr[0].status_blk_num = sb_id;
  338. cp->num_irq = 1;
  339. }
  340. static int bnx2_register_cnic(struct net_device *dev, struct cnic_ops *ops,
  341. void *data)
  342. {
  343. struct bnx2 *bp = netdev_priv(dev);
  344. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  345. if (ops == NULL)
  346. return -EINVAL;
  347. if (cp->drv_state & CNIC_DRV_STATE_REGD)
  348. return -EBUSY;
  349. bp->cnic_data = data;
  350. rcu_assign_pointer(bp->cnic_ops, ops);
  351. cp->num_irq = 0;
  352. cp->drv_state = CNIC_DRV_STATE_REGD;
  353. bnx2_setup_cnic_irq_info(bp);
  354. return 0;
  355. }
  356. static int bnx2_unregister_cnic(struct net_device *dev)
  357. {
  358. struct bnx2 *bp = netdev_priv(dev);
  359. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  360. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  361. cp->drv_state = 0;
  362. bnapi->cnic_present = 0;
  363. rcu_assign_pointer(bp->cnic_ops, NULL);
  364. synchronize_rcu();
  365. return 0;
  366. }
  367. struct cnic_eth_dev *bnx2_cnic_probe(struct net_device *dev)
  368. {
  369. struct bnx2 *bp = netdev_priv(dev);
  370. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  371. cp->drv_owner = THIS_MODULE;
  372. cp->chip_id = bp->chip_id;
  373. cp->pdev = bp->pdev;
  374. cp->io_base = bp->regview;
  375. cp->drv_ctl = bnx2_drv_ctl;
  376. cp->drv_register_cnic = bnx2_register_cnic;
  377. cp->drv_unregister_cnic = bnx2_unregister_cnic;
  378. return cp;
  379. }
  380. EXPORT_SYMBOL(bnx2_cnic_probe);
  381. static void
  382. bnx2_cnic_stop(struct bnx2 *bp)
  383. {
  384. struct cnic_ops *c_ops;
  385. struct cnic_ctl_info info;
  386. rcu_read_lock();
  387. c_ops = rcu_dereference(bp->cnic_ops);
  388. if (c_ops) {
  389. info.cmd = CNIC_CTL_STOP_CMD;
  390. c_ops->cnic_ctl(bp->cnic_data, &info);
  391. }
  392. rcu_read_unlock();
  393. }
  394. static void
  395. bnx2_cnic_start(struct bnx2 *bp)
  396. {
  397. struct cnic_ops *c_ops;
  398. struct cnic_ctl_info info;
  399. rcu_read_lock();
  400. c_ops = rcu_dereference(bp->cnic_ops);
  401. if (c_ops) {
  402. if (!(bp->flags & BNX2_FLAG_USING_MSIX)) {
  403. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  404. bnapi->cnic_tag = bnapi->last_status_idx;
  405. }
  406. info.cmd = CNIC_CTL_START_CMD;
  407. c_ops->cnic_ctl(bp->cnic_data, &info);
  408. }
  409. rcu_read_unlock();
  410. }
  411. #else
  412. static void
  413. bnx2_cnic_stop(struct bnx2 *bp)
  414. {
  415. }
  416. static void
  417. bnx2_cnic_start(struct bnx2 *bp)
  418. {
  419. }
  420. #endif
  421. static int
  422. bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
  423. {
  424. u32 val1;
  425. int i, ret;
  426. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  427. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  428. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  429. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  430. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  431. udelay(40);
  432. }
  433. val1 = (bp->phy_addr << 21) | (reg << 16) |
  434. BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
  435. BNX2_EMAC_MDIO_COMM_START_BUSY;
  436. REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  437. for (i = 0; i < 50; i++) {
  438. udelay(10);
  439. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  440. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  441. udelay(5);
  442. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  443. val1 &= BNX2_EMAC_MDIO_COMM_DATA;
  444. break;
  445. }
  446. }
  447. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
  448. *val = 0x0;
  449. ret = -EBUSY;
  450. }
  451. else {
  452. *val = val1;
  453. ret = 0;
  454. }
  455. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  456. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  457. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  458. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  459. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  460. udelay(40);
  461. }
  462. return ret;
  463. }
  464. static int
  465. bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
  466. {
  467. u32 val1;
  468. int i, ret;
  469. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  470. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  471. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  472. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  473. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  474. udelay(40);
  475. }
  476. val1 = (bp->phy_addr << 21) | (reg << 16) | val |
  477. BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
  478. BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
  479. REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  480. for (i = 0; i < 50; i++) {
  481. udelay(10);
  482. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  483. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  484. udelay(5);
  485. break;
  486. }
  487. }
  488. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
  489. ret = -EBUSY;
  490. else
  491. ret = 0;
  492. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  493. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  494. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  495. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  496. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  497. udelay(40);
  498. }
  499. return ret;
  500. }
  501. static void
  502. bnx2_disable_int(struct bnx2 *bp)
  503. {
  504. int i;
  505. struct bnx2_napi *bnapi;
  506. for (i = 0; i < bp->irq_nvecs; i++) {
  507. bnapi = &bp->bnx2_napi[i];
  508. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  509. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  510. }
  511. REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  512. }
  513. static void
  514. bnx2_enable_int(struct bnx2 *bp)
  515. {
  516. int i;
  517. struct bnx2_napi *bnapi;
  518. for (i = 0; i < bp->irq_nvecs; i++) {
  519. bnapi = &bp->bnx2_napi[i];
  520. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  521. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  522. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  523. bnapi->last_status_idx);
  524. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  525. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  526. bnapi->last_status_idx);
  527. }
  528. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  529. }
  530. static void
  531. bnx2_disable_int_sync(struct bnx2 *bp)
  532. {
  533. int i;
  534. atomic_inc(&bp->intr_sem);
  535. if (!netif_running(bp->dev))
  536. return;
  537. bnx2_disable_int(bp);
  538. for (i = 0; i < bp->irq_nvecs; i++)
  539. synchronize_irq(bp->irq_tbl[i].vector);
  540. }
  541. static void
  542. bnx2_napi_disable(struct bnx2 *bp)
  543. {
  544. int i;
  545. for (i = 0; i < bp->irq_nvecs; i++)
  546. napi_disable(&bp->bnx2_napi[i].napi);
  547. }
  548. static void
  549. bnx2_napi_enable(struct bnx2 *bp)
  550. {
  551. int i;
  552. for (i = 0; i < bp->irq_nvecs; i++)
  553. napi_enable(&bp->bnx2_napi[i].napi);
  554. }
  555. static void
  556. bnx2_netif_stop(struct bnx2 *bp)
  557. {
  558. bnx2_cnic_stop(bp);
  559. bnx2_disable_int_sync(bp);
  560. if (netif_running(bp->dev)) {
  561. bnx2_napi_disable(bp);
  562. netif_tx_disable(bp->dev);
  563. bp->dev->trans_start = jiffies; /* prevent tx timeout */
  564. }
  565. }
  566. static void
  567. bnx2_netif_start(struct bnx2 *bp)
  568. {
  569. if (atomic_dec_and_test(&bp->intr_sem)) {
  570. if (netif_running(bp->dev)) {
  571. netif_tx_wake_all_queues(bp->dev);
  572. bnx2_napi_enable(bp);
  573. bnx2_enable_int(bp);
  574. bnx2_cnic_start(bp);
  575. }
  576. }
  577. }
  578. static void
  579. bnx2_free_tx_mem(struct bnx2 *bp)
  580. {
  581. int i;
  582. for (i = 0; i < bp->num_tx_rings; i++) {
  583. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  584. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  585. if (txr->tx_desc_ring) {
  586. pci_free_consistent(bp->pdev, TXBD_RING_SIZE,
  587. txr->tx_desc_ring,
  588. txr->tx_desc_mapping);
  589. txr->tx_desc_ring = NULL;
  590. }
  591. kfree(txr->tx_buf_ring);
  592. txr->tx_buf_ring = NULL;
  593. }
  594. }
  595. static void
  596. bnx2_free_rx_mem(struct bnx2 *bp)
  597. {
  598. int i;
  599. for (i = 0; i < bp->num_rx_rings; i++) {
  600. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  601. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  602. int j;
  603. for (j = 0; j < bp->rx_max_ring; j++) {
  604. if (rxr->rx_desc_ring[j])
  605. pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
  606. rxr->rx_desc_ring[j],
  607. rxr->rx_desc_mapping[j]);
  608. rxr->rx_desc_ring[j] = NULL;
  609. }
  610. vfree(rxr->rx_buf_ring);
  611. rxr->rx_buf_ring = NULL;
  612. for (j = 0; j < bp->rx_max_pg_ring; j++) {
  613. if (rxr->rx_pg_desc_ring[j])
  614. pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
  615. rxr->rx_pg_desc_ring[j],
  616. rxr->rx_pg_desc_mapping[j]);
  617. rxr->rx_pg_desc_ring[j] = NULL;
  618. }
  619. vfree(rxr->rx_pg_ring);
  620. rxr->rx_pg_ring = NULL;
  621. }
  622. }
  623. static int
  624. bnx2_alloc_tx_mem(struct bnx2 *bp)
  625. {
  626. int i;
  627. for (i = 0; i < bp->num_tx_rings; i++) {
  628. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  629. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  630. txr->tx_buf_ring = kzalloc(SW_TXBD_RING_SIZE, GFP_KERNEL);
  631. if (txr->tx_buf_ring == NULL)
  632. return -ENOMEM;
  633. txr->tx_desc_ring =
  634. pci_alloc_consistent(bp->pdev, TXBD_RING_SIZE,
  635. &txr->tx_desc_mapping);
  636. if (txr->tx_desc_ring == NULL)
  637. return -ENOMEM;
  638. }
  639. return 0;
  640. }
  641. static int
  642. bnx2_alloc_rx_mem(struct bnx2 *bp)
  643. {
  644. int i;
  645. for (i = 0; i < bp->num_rx_rings; i++) {
  646. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  647. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  648. int j;
  649. rxr->rx_buf_ring =
  650. vmalloc(SW_RXBD_RING_SIZE * bp->rx_max_ring);
  651. if (rxr->rx_buf_ring == NULL)
  652. return -ENOMEM;
  653. memset(rxr->rx_buf_ring, 0,
  654. SW_RXBD_RING_SIZE * bp->rx_max_ring);
  655. for (j = 0; j < bp->rx_max_ring; j++) {
  656. rxr->rx_desc_ring[j] =
  657. pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
  658. &rxr->rx_desc_mapping[j]);
  659. if (rxr->rx_desc_ring[j] == NULL)
  660. return -ENOMEM;
  661. }
  662. if (bp->rx_pg_ring_size) {
  663. rxr->rx_pg_ring = vmalloc(SW_RXPG_RING_SIZE *
  664. bp->rx_max_pg_ring);
  665. if (rxr->rx_pg_ring == NULL)
  666. return -ENOMEM;
  667. memset(rxr->rx_pg_ring, 0, SW_RXPG_RING_SIZE *
  668. bp->rx_max_pg_ring);
  669. }
  670. for (j = 0; j < bp->rx_max_pg_ring; j++) {
  671. rxr->rx_pg_desc_ring[j] =
  672. pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
  673. &rxr->rx_pg_desc_mapping[j]);
  674. if (rxr->rx_pg_desc_ring[j] == NULL)
  675. return -ENOMEM;
  676. }
  677. }
  678. return 0;
  679. }
  680. static void
  681. bnx2_free_mem(struct bnx2 *bp)
  682. {
  683. int i;
  684. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  685. bnx2_free_tx_mem(bp);
  686. bnx2_free_rx_mem(bp);
  687. for (i = 0; i < bp->ctx_pages; i++) {
  688. if (bp->ctx_blk[i]) {
  689. pci_free_consistent(bp->pdev, BCM_PAGE_SIZE,
  690. bp->ctx_blk[i],
  691. bp->ctx_blk_mapping[i]);
  692. bp->ctx_blk[i] = NULL;
  693. }
  694. }
  695. if (bnapi->status_blk.msi) {
  696. pci_free_consistent(bp->pdev, bp->status_stats_size,
  697. bnapi->status_blk.msi,
  698. bp->status_blk_mapping);
  699. bnapi->status_blk.msi = NULL;
  700. bp->stats_blk = NULL;
  701. }
  702. }
  703. static int
  704. bnx2_alloc_mem(struct bnx2 *bp)
  705. {
  706. int i, status_blk_size, err;
  707. struct bnx2_napi *bnapi;
  708. void *status_blk;
  709. /* Combine status and statistics blocks into one allocation. */
  710. status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
  711. if (bp->flags & BNX2_FLAG_MSIX_CAP)
  712. status_blk_size = L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC *
  713. BNX2_SBLK_MSIX_ALIGN_SIZE);
  714. bp->status_stats_size = status_blk_size +
  715. sizeof(struct statistics_block);
  716. status_blk = pci_alloc_consistent(bp->pdev, bp->status_stats_size,
  717. &bp->status_blk_mapping);
  718. if (status_blk == NULL)
  719. goto alloc_mem_err;
  720. memset(status_blk, 0, bp->status_stats_size);
  721. bnapi = &bp->bnx2_napi[0];
  722. bnapi->status_blk.msi = status_blk;
  723. bnapi->hw_tx_cons_ptr =
  724. &bnapi->status_blk.msi->status_tx_quick_consumer_index0;
  725. bnapi->hw_rx_cons_ptr =
  726. &bnapi->status_blk.msi->status_rx_quick_consumer_index0;
  727. if (bp->flags & BNX2_FLAG_MSIX_CAP) {
  728. for (i = 1; i < BNX2_MAX_MSIX_VEC; i++) {
  729. struct status_block_msix *sblk;
  730. bnapi = &bp->bnx2_napi[i];
  731. sblk = (void *) (status_blk +
  732. BNX2_SBLK_MSIX_ALIGN_SIZE * i);
  733. bnapi->status_blk.msix = sblk;
  734. bnapi->hw_tx_cons_ptr =
  735. &sblk->status_tx_quick_consumer_index;
  736. bnapi->hw_rx_cons_ptr =
  737. &sblk->status_rx_quick_consumer_index;
  738. bnapi->int_num = i << 24;
  739. }
  740. }
  741. bp->stats_blk = status_blk + status_blk_size;
  742. bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
  743. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  744. bp->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
  745. if (bp->ctx_pages == 0)
  746. bp->ctx_pages = 1;
  747. for (i = 0; i < bp->ctx_pages; i++) {
  748. bp->ctx_blk[i] = pci_alloc_consistent(bp->pdev,
  749. BCM_PAGE_SIZE,
  750. &bp->ctx_blk_mapping[i]);
  751. if (bp->ctx_blk[i] == NULL)
  752. goto alloc_mem_err;
  753. }
  754. }
  755. err = bnx2_alloc_rx_mem(bp);
  756. if (err)
  757. goto alloc_mem_err;
  758. err = bnx2_alloc_tx_mem(bp);
  759. if (err)
  760. goto alloc_mem_err;
  761. return 0;
  762. alloc_mem_err:
  763. bnx2_free_mem(bp);
  764. return -ENOMEM;
  765. }
  766. static void
  767. bnx2_report_fw_link(struct bnx2 *bp)
  768. {
  769. u32 fw_link_status = 0;
  770. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  771. return;
  772. if (bp->link_up) {
  773. u32 bmsr;
  774. switch (bp->line_speed) {
  775. case SPEED_10:
  776. if (bp->duplex == DUPLEX_HALF)
  777. fw_link_status = BNX2_LINK_STATUS_10HALF;
  778. else
  779. fw_link_status = BNX2_LINK_STATUS_10FULL;
  780. break;
  781. case SPEED_100:
  782. if (bp->duplex == DUPLEX_HALF)
  783. fw_link_status = BNX2_LINK_STATUS_100HALF;
  784. else
  785. fw_link_status = BNX2_LINK_STATUS_100FULL;
  786. break;
  787. case SPEED_1000:
  788. if (bp->duplex == DUPLEX_HALF)
  789. fw_link_status = BNX2_LINK_STATUS_1000HALF;
  790. else
  791. fw_link_status = BNX2_LINK_STATUS_1000FULL;
  792. break;
  793. case SPEED_2500:
  794. if (bp->duplex == DUPLEX_HALF)
  795. fw_link_status = BNX2_LINK_STATUS_2500HALF;
  796. else
  797. fw_link_status = BNX2_LINK_STATUS_2500FULL;
  798. break;
  799. }
  800. fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
  801. if (bp->autoneg) {
  802. fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
  803. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  804. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  805. if (!(bmsr & BMSR_ANEGCOMPLETE) ||
  806. bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)
  807. fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
  808. else
  809. fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
  810. }
  811. }
  812. else
  813. fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
  814. bnx2_shmem_wr(bp, BNX2_LINK_STATUS, fw_link_status);
  815. }
  816. static char *
  817. bnx2_xceiver_str(struct bnx2 *bp)
  818. {
  819. return ((bp->phy_port == PORT_FIBRE) ? "SerDes" :
  820. ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) ? "Remote Copper" :
  821. "Copper"));
  822. }
  823. static void
  824. bnx2_report_link(struct bnx2 *bp)
  825. {
  826. if (bp->link_up) {
  827. netif_carrier_on(bp->dev);
  828. printk(KERN_INFO PFX "%s NIC %s Link is Up, ", bp->dev->name,
  829. bnx2_xceiver_str(bp));
  830. printk("%d Mbps ", bp->line_speed);
  831. if (bp->duplex == DUPLEX_FULL)
  832. printk("full duplex");
  833. else
  834. printk("half duplex");
  835. if (bp->flow_ctrl) {
  836. if (bp->flow_ctrl & FLOW_CTRL_RX) {
  837. printk(", receive ");
  838. if (bp->flow_ctrl & FLOW_CTRL_TX)
  839. printk("& transmit ");
  840. }
  841. else {
  842. printk(", transmit ");
  843. }
  844. printk("flow control ON");
  845. }
  846. printk("\n");
  847. }
  848. else {
  849. netif_carrier_off(bp->dev);
  850. printk(KERN_ERR PFX "%s NIC %s Link is Down\n", bp->dev->name,
  851. bnx2_xceiver_str(bp));
  852. }
  853. bnx2_report_fw_link(bp);
  854. }
  855. static void
  856. bnx2_resolve_flow_ctrl(struct bnx2 *bp)
  857. {
  858. u32 local_adv, remote_adv;
  859. bp->flow_ctrl = 0;
  860. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  861. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  862. if (bp->duplex == DUPLEX_FULL) {
  863. bp->flow_ctrl = bp->req_flow_ctrl;
  864. }
  865. return;
  866. }
  867. if (bp->duplex != DUPLEX_FULL) {
  868. return;
  869. }
  870. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  871. (CHIP_NUM(bp) == CHIP_NUM_5708)) {
  872. u32 val;
  873. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  874. if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
  875. bp->flow_ctrl |= FLOW_CTRL_TX;
  876. if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
  877. bp->flow_ctrl |= FLOW_CTRL_RX;
  878. return;
  879. }
  880. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  881. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  882. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  883. u32 new_local_adv = 0;
  884. u32 new_remote_adv = 0;
  885. if (local_adv & ADVERTISE_1000XPAUSE)
  886. new_local_adv |= ADVERTISE_PAUSE_CAP;
  887. if (local_adv & ADVERTISE_1000XPSE_ASYM)
  888. new_local_adv |= ADVERTISE_PAUSE_ASYM;
  889. if (remote_adv & ADVERTISE_1000XPAUSE)
  890. new_remote_adv |= ADVERTISE_PAUSE_CAP;
  891. if (remote_adv & ADVERTISE_1000XPSE_ASYM)
  892. new_remote_adv |= ADVERTISE_PAUSE_ASYM;
  893. local_adv = new_local_adv;
  894. remote_adv = new_remote_adv;
  895. }
  896. /* See Table 28B-3 of 802.3ab-1999 spec. */
  897. if (local_adv & ADVERTISE_PAUSE_CAP) {
  898. if(local_adv & ADVERTISE_PAUSE_ASYM) {
  899. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  900. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  901. }
  902. else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
  903. bp->flow_ctrl = FLOW_CTRL_RX;
  904. }
  905. }
  906. else {
  907. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  908. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  909. }
  910. }
  911. }
  912. else if (local_adv & ADVERTISE_PAUSE_ASYM) {
  913. if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
  914. (remote_adv & ADVERTISE_PAUSE_ASYM)) {
  915. bp->flow_ctrl = FLOW_CTRL_TX;
  916. }
  917. }
  918. }
  919. static int
  920. bnx2_5709s_linkup(struct bnx2 *bp)
  921. {
  922. u32 val, speed;
  923. bp->link_up = 1;
  924. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_GP_STATUS);
  925. bnx2_read_phy(bp, MII_BNX2_GP_TOP_AN_STATUS1, &val);
  926. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  927. if ((bp->autoneg & AUTONEG_SPEED) == 0) {
  928. bp->line_speed = bp->req_line_speed;
  929. bp->duplex = bp->req_duplex;
  930. return 0;
  931. }
  932. speed = val & MII_BNX2_GP_TOP_AN_SPEED_MSK;
  933. switch (speed) {
  934. case MII_BNX2_GP_TOP_AN_SPEED_10:
  935. bp->line_speed = SPEED_10;
  936. break;
  937. case MII_BNX2_GP_TOP_AN_SPEED_100:
  938. bp->line_speed = SPEED_100;
  939. break;
  940. case MII_BNX2_GP_TOP_AN_SPEED_1G:
  941. case MII_BNX2_GP_TOP_AN_SPEED_1GKV:
  942. bp->line_speed = SPEED_1000;
  943. break;
  944. case MII_BNX2_GP_TOP_AN_SPEED_2_5G:
  945. bp->line_speed = SPEED_2500;
  946. break;
  947. }
  948. if (val & MII_BNX2_GP_TOP_AN_FD)
  949. bp->duplex = DUPLEX_FULL;
  950. else
  951. bp->duplex = DUPLEX_HALF;
  952. return 0;
  953. }
  954. static int
  955. bnx2_5708s_linkup(struct bnx2 *bp)
  956. {
  957. u32 val;
  958. bp->link_up = 1;
  959. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  960. switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
  961. case BCM5708S_1000X_STAT1_SPEED_10:
  962. bp->line_speed = SPEED_10;
  963. break;
  964. case BCM5708S_1000X_STAT1_SPEED_100:
  965. bp->line_speed = SPEED_100;
  966. break;
  967. case BCM5708S_1000X_STAT1_SPEED_1G:
  968. bp->line_speed = SPEED_1000;
  969. break;
  970. case BCM5708S_1000X_STAT1_SPEED_2G5:
  971. bp->line_speed = SPEED_2500;
  972. break;
  973. }
  974. if (val & BCM5708S_1000X_STAT1_FD)
  975. bp->duplex = DUPLEX_FULL;
  976. else
  977. bp->duplex = DUPLEX_HALF;
  978. return 0;
  979. }
  980. static int
  981. bnx2_5706s_linkup(struct bnx2 *bp)
  982. {
  983. u32 bmcr, local_adv, remote_adv, common;
  984. bp->link_up = 1;
  985. bp->line_speed = SPEED_1000;
  986. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  987. if (bmcr & BMCR_FULLDPLX) {
  988. bp->duplex = DUPLEX_FULL;
  989. }
  990. else {
  991. bp->duplex = DUPLEX_HALF;
  992. }
  993. if (!(bmcr & BMCR_ANENABLE)) {
  994. return 0;
  995. }
  996. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  997. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  998. common = local_adv & remote_adv;
  999. if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
  1000. if (common & ADVERTISE_1000XFULL) {
  1001. bp->duplex = DUPLEX_FULL;
  1002. }
  1003. else {
  1004. bp->duplex = DUPLEX_HALF;
  1005. }
  1006. }
  1007. return 0;
  1008. }
  1009. static int
  1010. bnx2_copper_linkup(struct bnx2 *bp)
  1011. {
  1012. u32 bmcr;
  1013. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1014. if (bmcr & BMCR_ANENABLE) {
  1015. u32 local_adv, remote_adv, common;
  1016. bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
  1017. bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
  1018. common = local_adv & (remote_adv >> 2);
  1019. if (common & ADVERTISE_1000FULL) {
  1020. bp->line_speed = SPEED_1000;
  1021. bp->duplex = DUPLEX_FULL;
  1022. }
  1023. else if (common & ADVERTISE_1000HALF) {
  1024. bp->line_speed = SPEED_1000;
  1025. bp->duplex = DUPLEX_HALF;
  1026. }
  1027. else {
  1028. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  1029. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  1030. common = local_adv & remote_adv;
  1031. if (common & ADVERTISE_100FULL) {
  1032. bp->line_speed = SPEED_100;
  1033. bp->duplex = DUPLEX_FULL;
  1034. }
  1035. else if (common & ADVERTISE_100HALF) {
  1036. bp->line_speed = SPEED_100;
  1037. bp->duplex = DUPLEX_HALF;
  1038. }
  1039. else if (common & ADVERTISE_10FULL) {
  1040. bp->line_speed = SPEED_10;
  1041. bp->duplex = DUPLEX_FULL;
  1042. }
  1043. else if (common & ADVERTISE_10HALF) {
  1044. bp->line_speed = SPEED_10;
  1045. bp->duplex = DUPLEX_HALF;
  1046. }
  1047. else {
  1048. bp->line_speed = 0;
  1049. bp->link_up = 0;
  1050. }
  1051. }
  1052. }
  1053. else {
  1054. if (bmcr & BMCR_SPEED100) {
  1055. bp->line_speed = SPEED_100;
  1056. }
  1057. else {
  1058. bp->line_speed = SPEED_10;
  1059. }
  1060. if (bmcr & BMCR_FULLDPLX) {
  1061. bp->duplex = DUPLEX_FULL;
  1062. }
  1063. else {
  1064. bp->duplex = DUPLEX_HALF;
  1065. }
  1066. }
  1067. return 0;
  1068. }
  1069. static void
  1070. bnx2_init_rx_context(struct bnx2 *bp, u32 cid)
  1071. {
  1072. u32 val, rx_cid_addr = GET_CID_ADDR(cid);
  1073. val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
  1074. val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
  1075. val |= 0x02 << 8;
  1076. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1077. u32 lo_water, hi_water;
  1078. if (bp->flow_ctrl & FLOW_CTRL_TX)
  1079. lo_water = BNX2_L2CTX_LO_WATER_MARK_DEFAULT;
  1080. else
  1081. lo_water = BNX2_L2CTX_LO_WATER_MARK_DIS;
  1082. if (lo_water >= bp->rx_ring_size)
  1083. lo_water = 0;
  1084. hi_water = bp->rx_ring_size / 4;
  1085. if (hi_water <= lo_water)
  1086. lo_water = 0;
  1087. hi_water /= BNX2_L2CTX_HI_WATER_MARK_SCALE;
  1088. lo_water /= BNX2_L2CTX_LO_WATER_MARK_SCALE;
  1089. if (hi_water > 0xf)
  1090. hi_water = 0xf;
  1091. else if (hi_water == 0)
  1092. lo_water = 0;
  1093. val |= lo_water | (hi_water << BNX2_L2CTX_HI_WATER_MARK_SHIFT);
  1094. }
  1095. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_CTX_TYPE, val);
  1096. }
  1097. static void
  1098. bnx2_init_all_rx_contexts(struct bnx2 *bp)
  1099. {
  1100. int i;
  1101. u32 cid;
  1102. for (i = 0, cid = RX_CID; i < bp->num_rx_rings; i++, cid++) {
  1103. if (i == 1)
  1104. cid = RX_RSS_CID;
  1105. bnx2_init_rx_context(bp, cid);
  1106. }
  1107. }
  1108. static void
  1109. bnx2_set_mac_link(struct bnx2 *bp)
  1110. {
  1111. u32 val;
  1112. REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
  1113. if (bp->link_up && (bp->line_speed == SPEED_1000) &&
  1114. (bp->duplex == DUPLEX_HALF)) {
  1115. REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
  1116. }
  1117. /* Configure the EMAC mode register. */
  1118. val = REG_RD(bp, BNX2_EMAC_MODE);
  1119. val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  1120. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  1121. BNX2_EMAC_MODE_25G_MODE);
  1122. if (bp->link_up) {
  1123. switch (bp->line_speed) {
  1124. case SPEED_10:
  1125. if (CHIP_NUM(bp) != CHIP_NUM_5706) {
  1126. val |= BNX2_EMAC_MODE_PORT_MII_10M;
  1127. break;
  1128. }
  1129. /* fall through */
  1130. case SPEED_100:
  1131. val |= BNX2_EMAC_MODE_PORT_MII;
  1132. break;
  1133. case SPEED_2500:
  1134. val |= BNX2_EMAC_MODE_25G_MODE;
  1135. /* fall through */
  1136. case SPEED_1000:
  1137. val |= BNX2_EMAC_MODE_PORT_GMII;
  1138. break;
  1139. }
  1140. }
  1141. else {
  1142. val |= BNX2_EMAC_MODE_PORT_GMII;
  1143. }
  1144. /* Set the MAC to operate in the appropriate duplex mode. */
  1145. if (bp->duplex == DUPLEX_HALF)
  1146. val |= BNX2_EMAC_MODE_HALF_DUPLEX;
  1147. REG_WR(bp, BNX2_EMAC_MODE, val);
  1148. /* Enable/disable rx PAUSE. */
  1149. bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
  1150. if (bp->flow_ctrl & FLOW_CTRL_RX)
  1151. bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
  1152. REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
  1153. /* Enable/disable tx PAUSE. */
  1154. val = REG_RD(bp, BNX2_EMAC_TX_MODE);
  1155. val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
  1156. if (bp->flow_ctrl & FLOW_CTRL_TX)
  1157. val |= BNX2_EMAC_TX_MODE_FLOW_EN;
  1158. REG_WR(bp, BNX2_EMAC_TX_MODE, val);
  1159. /* Acknowledge the interrupt. */
  1160. REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
  1161. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1162. bnx2_init_all_rx_contexts(bp);
  1163. }
  1164. static void
  1165. bnx2_enable_bmsr1(struct bnx2 *bp)
  1166. {
  1167. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1168. (CHIP_NUM(bp) == CHIP_NUM_5709))
  1169. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1170. MII_BNX2_BLK_ADDR_GP_STATUS);
  1171. }
  1172. static void
  1173. bnx2_disable_bmsr1(struct bnx2 *bp)
  1174. {
  1175. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1176. (CHIP_NUM(bp) == CHIP_NUM_5709))
  1177. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1178. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1179. }
  1180. static int
  1181. bnx2_test_and_enable_2g5(struct bnx2 *bp)
  1182. {
  1183. u32 up1;
  1184. int ret = 1;
  1185. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1186. return 0;
  1187. if (bp->autoneg & AUTONEG_SPEED)
  1188. bp->advertising |= ADVERTISED_2500baseX_Full;
  1189. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1190. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1191. bnx2_read_phy(bp, bp->mii_up1, &up1);
  1192. if (!(up1 & BCM5708S_UP1_2G5)) {
  1193. up1 |= BCM5708S_UP1_2G5;
  1194. bnx2_write_phy(bp, bp->mii_up1, up1);
  1195. ret = 0;
  1196. }
  1197. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1198. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1199. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1200. return ret;
  1201. }
  1202. static int
  1203. bnx2_test_and_disable_2g5(struct bnx2 *bp)
  1204. {
  1205. u32 up1;
  1206. int ret = 0;
  1207. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1208. return 0;
  1209. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1210. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1211. bnx2_read_phy(bp, bp->mii_up1, &up1);
  1212. if (up1 & BCM5708S_UP1_2G5) {
  1213. up1 &= ~BCM5708S_UP1_2G5;
  1214. bnx2_write_phy(bp, bp->mii_up1, up1);
  1215. ret = 1;
  1216. }
  1217. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1218. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1219. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1220. return ret;
  1221. }
  1222. static void
  1223. bnx2_enable_forced_2g5(struct bnx2 *bp)
  1224. {
  1225. u32 bmcr;
  1226. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1227. return;
  1228. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1229. u32 val;
  1230. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1231. MII_BNX2_BLK_ADDR_SERDES_DIG);
  1232. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
  1233. val &= ~MII_BNX2_SD_MISC1_FORCE_MSK;
  1234. val |= MII_BNX2_SD_MISC1_FORCE | MII_BNX2_SD_MISC1_FORCE_2_5G;
  1235. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  1236. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1237. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1238. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1239. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1240. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1241. bmcr |= BCM5708S_BMCR_FORCE_2500;
  1242. }
  1243. if (bp->autoneg & AUTONEG_SPEED) {
  1244. bmcr &= ~BMCR_ANENABLE;
  1245. if (bp->req_duplex == DUPLEX_FULL)
  1246. bmcr |= BMCR_FULLDPLX;
  1247. }
  1248. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1249. }
  1250. static void
  1251. bnx2_disable_forced_2g5(struct bnx2 *bp)
  1252. {
  1253. u32 bmcr;
  1254. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1255. return;
  1256. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1257. u32 val;
  1258. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1259. MII_BNX2_BLK_ADDR_SERDES_DIG);
  1260. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
  1261. val &= ~MII_BNX2_SD_MISC1_FORCE;
  1262. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  1263. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1264. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1265. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1266. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1267. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1268. bmcr &= ~BCM5708S_BMCR_FORCE_2500;
  1269. }
  1270. if (bp->autoneg & AUTONEG_SPEED)
  1271. bmcr |= BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_ANRESTART;
  1272. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1273. }
  1274. static void
  1275. bnx2_5706s_force_link_dn(struct bnx2 *bp, int start)
  1276. {
  1277. u32 val;
  1278. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_SERDES_CTL);
  1279. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
  1280. if (start)
  1281. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val & 0xff0f);
  1282. else
  1283. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val | 0xc0);
  1284. }
  1285. static int
  1286. bnx2_set_link(struct bnx2 *bp)
  1287. {
  1288. u32 bmsr;
  1289. u8 link_up;
  1290. if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
  1291. bp->link_up = 1;
  1292. return 0;
  1293. }
  1294. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1295. return 0;
  1296. link_up = bp->link_up;
  1297. bnx2_enable_bmsr1(bp);
  1298. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  1299. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  1300. bnx2_disable_bmsr1(bp);
  1301. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1302. (CHIP_NUM(bp) == CHIP_NUM_5706)) {
  1303. u32 val, an_dbg;
  1304. if (bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN) {
  1305. bnx2_5706s_force_link_dn(bp, 0);
  1306. bp->phy_flags &= ~BNX2_PHY_FLAG_FORCED_DOWN;
  1307. }
  1308. val = REG_RD(bp, BNX2_EMAC_STATUS);
  1309. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  1310. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  1311. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  1312. if ((val & BNX2_EMAC_STATUS_LINK) &&
  1313. !(an_dbg & MISC_SHDW_AN_DBG_NOSYNC))
  1314. bmsr |= BMSR_LSTATUS;
  1315. else
  1316. bmsr &= ~BMSR_LSTATUS;
  1317. }
  1318. if (bmsr & BMSR_LSTATUS) {
  1319. bp->link_up = 1;
  1320. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1321. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  1322. bnx2_5706s_linkup(bp);
  1323. else if (CHIP_NUM(bp) == CHIP_NUM_5708)
  1324. bnx2_5708s_linkup(bp);
  1325. else if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1326. bnx2_5709s_linkup(bp);
  1327. }
  1328. else {
  1329. bnx2_copper_linkup(bp);
  1330. }
  1331. bnx2_resolve_flow_ctrl(bp);
  1332. }
  1333. else {
  1334. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1335. (bp->autoneg & AUTONEG_SPEED))
  1336. bnx2_disable_forced_2g5(bp);
  1337. if (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT) {
  1338. u32 bmcr;
  1339. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1340. bmcr |= BMCR_ANENABLE;
  1341. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1342. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  1343. }
  1344. bp->link_up = 0;
  1345. }
  1346. if (bp->link_up != link_up) {
  1347. bnx2_report_link(bp);
  1348. }
  1349. bnx2_set_mac_link(bp);
  1350. return 0;
  1351. }
  1352. static int
  1353. bnx2_reset_phy(struct bnx2 *bp)
  1354. {
  1355. int i;
  1356. u32 reg;
  1357. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_RESET);
  1358. #define PHY_RESET_MAX_WAIT 100
  1359. for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
  1360. udelay(10);
  1361. bnx2_read_phy(bp, bp->mii_bmcr, &reg);
  1362. if (!(reg & BMCR_RESET)) {
  1363. udelay(20);
  1364. break;
  1365. }
  1366. }
  1367. if (i == PHY_RESET_MAX_WAIT) {
  1368. return -EBUSY;
  1369. }
  1370. return 0;
  1371. }
  1372. static u32
  1373. bnx2_phy_get_pause_adv(struct bnx2 *bp)
  1374. {
  1375. u32 adv = 0;
  1376. if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
  1377. (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
  1378. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1379. adv = ADVERTISE_1000XPAUSE;
  1380. }
  1381. else {
  1382. adv = ADVERTISE_PAUSE_CAP;
  1383. }
  1384. }
  1385. else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
  1386. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1387. adv = ADVERTISE_1000XPSE_ASYM;
  1388. }
  1389. else {
  1390. adv = ADVERTISE_PAUSE_ASYM;
  1391. }
  1392. }
  1393. else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
  1394. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1395. adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
  1396. }
  1397. else {
  1398. adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  1399. }
  1400. }
  1401. return adv;
  1402. }
  1403. static int bnx2_fw_sync(struct bnx2 *, u32, int, int);
  1404. static int
  1405. bnx2_setup_remote_phy(struct bnx2 *bp, u8 port)
  1406. __releases(&bp->phy_lock)
  1407. __acquires(&bp->phy_lock)
  1408. {
  1409. u32 speed_arg = 0, pause_adv;
  1410. pause_adv = bnx2_phy_get_pause_adv(bp);
  1411. if (bp->autoneg & AUTONEG_SPEED) {
  1412. speed_arg |= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG;
  1413. if (bp->advertising & ADVERTISED_10baseT_Half)
  1414. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1415. if (bp->advertising & ADVERTISED_10baseT_Full)
  1416. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1417. if (bp->advertising & ADVERTISED_100baseT_Half)
  1418. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1419. if (bp->advertising & ADVERTISED_100baseT_Full)
  1420. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1421. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1422. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1423. if (bp->advertising & ADVERTISED_2500baseX_Full)
  1424. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1425. } else {
  1426. if (bp->req_line_speed == SPEED_2500)
  1427. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1428. else if (bp->req_line_speed == SPEED_1000)
  1429. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1430. else if (bp->req_line_speed == SPEED_100) {
  1431. if (bp->req_duplex == DUPLEX_FULL)
  1432. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1433. else
  1434. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1435. } else if (bp->req_line_speed == SPEED_10) {
  1436. if (bp->req_duplex == DUPLEX_FULL)
  1437. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1438. else
  1439. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1440. }
  1441. }
  1442. if (pause_adv & (ADVERTISE_1000XPAUSE | ADVERTISE_PAUSE_CAP))
  1443. speed_arg |= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE;
  1444. if (pause_adv & (ADVERTISE_1000XPSE_ASYM | ADVERTISE_PAUSE_ASYM))
  1445. speed_arg |= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE;
  1446. if (port == PORT_TP)
  1447. speed_arg |= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE |
  1448. BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED;
  1449. bnx2_shmem_wr(bp, BNX2_DRV_MB_ARG0, speed_arg);
  1450. spin_unlock_bh(&bp->phy_lock);
  1451. bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_CMD_SET_LINK, 1, 0);
  1452. spin_lock_bh(&bp->phy_lock);
  1453. return 0;
  1454. }
  1455. static int
  1456. bnx2_setup_serdes_phy(struct bnx2 *bp, u8 port)
  1457. __releases(&bp->phy_lock)
  1458. __acquires(&bp->phy_lock)
  1459. {
  1460. u32 adv, bmcr;
  1461. u32 new_adv = 0;
  1462. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1463. return (bnx2_setup_remote_phy(bp, port));
  1464. if (!(bp->autoneg & AUTONEG_SPEED)) {
  1465. u32 new_bmcr;
  1466. int force_link_down = 0;
  1467. if (bp->req_line_speed == SPEED_2500) {
  1468. if (!bnx2_test_and_enable_2g5(bp))
  1469. force_link_down = 1;
  1470. } else if (bp->req_line_speed == SPEED_1000) {
  1471. if (bnx2_test_and_disable_2g5(bp))
  1472. force_link_down = 1;
  1473. }
  1474. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1475. adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
  1476. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1477. new_bmcr = bmcr & ~BMCR_ANENABLE;
  1478. new_bmcr |= BMCR_SPEED1000;
  1479. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1480. if (bp->req_line_speed == SPEED_2500)
  1481. bnx2_enable_forced_2g5(bp);
  1482. else if (bp->req_line_speed == SPEED_1000) {
  1483. bnx2_disable_forced_2g5(bp);
  1484. new_bmcr &= ~0x2000;
  1485. }
  1486. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1487. if (bp->req_line_speed == SPEED_2500)
  1488. new_bmcr |= BCM5708S_BMCR_FORCE_2500;
  1489. else
  1490. new_bmcr = bmcr & ~BCM5708S_BMCR_FORCE_2500;
  1491. }
  1492. if (bp->req_duplex == DUPLEX_FULL) {
  1493. adv |= ADVERTISE_1000XFULL;
  1494. new_bmcr |= BMCR_FULLDPLX;
  1495. }
  1496. else {
  1497. adv |= ADVERTISE_1000XHALF;
  1498. new_bmcr &= ~BMCR_FULLDPLX;
  1499. }
  1500. if ((new_bmcr != bmcr) || (force_link_down)) {
  1501. /* Force a link down visible on the other side */
  1502. if (bp->link_up) {
  1503. bnx2_write_phy(bp, bp->mii_adv, adv &
  1504. ~(ADVERTISE_1000XFULL |
  1505. ADVERTISE_1000XHALF));
  1506. bnx2_write_phy(bp, bp->mii_bmcr, bmcr |
  1507. BMCR_ANRESTART | BMCR_ANENABLE);
  1508. bp->link_up = 0;
  1509. netif_carrier_off(bp->dev);
  1510. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1511. bnx2_report_link(bp);
  1512. }
  1513. bnx2_write_phy(bp, bp->mii_adv, adv);
  1514. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1515. } else {
  1516. bnx2_resolve_flow_ctrl(bp);
  1517. bnx2_set_mac_link(bp);
  1518. }
  1519. return 0;
  1520. }
  1521. bnx2_test_and_enable_2g5(bp);
  1522. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1523. new_adv |= ADVERTISE_1000XFULL;
  1524. new_adv |= bnx2_phy_get_pause_adv(bp);
  1525. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1526. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1527. bp->serdes_an_pending = 0;
  1528. if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
  1529. /* Force a link down visible on the other side */
  1530. if (bp->link_up) {
  1531. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1532. spin_unlock_bh(&bp->phy_lock);
  1533. msleep(20);
  1534. spin_lock_bh(&bp->phy_lock);
  1535. }
  1536. bnx2_write_phy(bp, bp->mii_adv, new_adv);
  1537. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART |
  1538. BMCR_ANENABLE);
  1539. /* Speed up link-up time when the link partner
  1540. * does not autonegotiate which is very common
  1541. * in blade servers. Some blade servers use
  1542. * IPMI for kerboard input and it's important
  1543. * to minimize link disruptions. Autoneg. involves
  1544. * exchanging base pages plus 3 next pages and
  1545. * normally completes in about 120 msec.
  1546. */
  1547. bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
  1548. bp->serdes_an_pending = 1;
  1549. mod_timer(&bp->timer, jiffies + bp->current_interval);
  1550. } else {
  1551. bnx2_resolve_flow_ctrl(bp);
  1552. bnx2_set_mac_link(bp);
  1553. }
  1554. return 0;
  1555. }
  1556. #define ETHTOOL_ALL_FIBRE_SPEED \
  1557. (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
  1558. (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
  1559. (ADVERTISED_1000baseT_Full)
  1560. #define ETHTOOL_ALL_COPPER_SPEED \
  1561. (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
  1562. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
  1563. ADVERTISED_1000baseT_Full)
  1564. #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
  1565. ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
  1566. #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
  1567. static void
  1568. bnx2_set_default_remote_link(struct bnx2 *bp)
  1569. {
  1570. u32 link;
  1571. if (bp->phy_port == PORT_TP)
  1572. link = bnx2_shmem_rd(bp, BNX2_RPHY_COPPER_LINK);
  1573. else
  1574. link = bnx2_shmem_rd(bp, BNX2_RPHY_SERDES_LINK);
  1575. if (link & BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG) {
  1576. bp->req_line_speed = 0;
  1577. bp->autoneg |= AUTONEG_SPEED;
  1578. bp->advertising = ADVERTISED_Autoneg;
  1579. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1580. bp->advertising |= ADVERTISED_10baseT_Half;
  1581. if (link & BNX2_NETLINK_SET_LINK_SPEED_10FULL)
  1582. bp->advertising |= ADVERTISED_10baseT_Full;
  1583. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1584. bp->advertising |= ADVERTISED_100baseT_Half;
  1585. if (link & BNX2_NETLINK_SET_LINK_SPEED_100FULL)
  1586. bp->advertising |= ADVERTISED_100baseT_Full;
  1587. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1588. bp->advertising |= ADVERTISED_1000baseT_Full;
  1589. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1590. bp->advertising |= ADVERTISED_2500baseX_Full;
  1591. } else {
  1592. bp->autoneg = 0;
  1593. bp->advertising = 0;
  1594. bp->req_duplex = DUPLEX_FULL;
  1595. if (link & BNX2_NETLINK_SET_LINK_SPEED_10) {
  1596. bp->req_line_speed = SPEED_10;
  1597. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1598. bp->req_duplex = DUPLEX_HALF;
  1599. }
  1600. if (link & BNX2_NETLINK_SET_LINK_SPEED_100) {
  1601. bp->req_line_speed = SPEED_100;
  1602. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1603. bp->req_duplex = DUPLEX_HALF;
  1604. }
  1605. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1606. bp->req_line_speed = SPEED_1000;
  1607. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1608. bp->req_line_speed = SPEED_2500;
  1609. }
  1610. }
  1611. static void
  1612. bnx2_set_default_link(struct bnx2 *bp)
  1613. {
  1614. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  1615. bnx2_set_default_remote_link(bp);
  1616. return;
  1617. }
  1618. bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
  1619. bp->req_line_speed = 0;
  1620. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1621. u32 reg;
  1622. bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
  1623. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG);
  1624. reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
  1625. if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
  1626. bp->autoneg = 0;
  1627. bp->req_line_speed = bp->line_speed = SPEED_1000;
  1628. bp->req_duplex = DUPLEX_FULL;
  1629. }
  1630. } else
  1631. bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
  1632. }
  1633. static void
  1634. bnx2_send_heart_beat(struct bnx2 *bp)
  1635. {
  1636. u32 msg;
  1637. u32 addr;
  1638. spin_lock(&bp->indirect_lock);
  1639. msg = (u32) (++bp->fw_drv_pulse_wr_seq & BNX2_DRV_PULSE_SEQ_MASK);
  1640. addr = bp->shmem_base + BNX2_DRV_PULSE_MB;
  1641. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, addr);
  1642. REG_WR(bp, BNX2_PCICFG_REG_WINDOW, msg);
  1643. spin_unlock(&bp->indirect_lock);
  1644. }
  1645. static void
  1646. bnx2_remote_phy_event(struct bnx2 *bp)
  1647. {
  1648. u32 msg;
  1649. u8 link_up = bp->link_up;
  1650. u8 old_port;
  1651. msg = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
  1652. if (msg & BNX2_LINK_STATUS_HEART_BEAT_EXPIRED)
  1653. bnx2_send_heart_beat(bp);
  1654. msg &= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED;
  1655. if ((msg & BNX2_LINK_STATUS_LINK_UP) == BNX2_LINK_STATUS_LINK_DOWN)
  1656. bp->link_up = 0;
  1657. else {
  1658. u32 speed;
  1659. bp->link_up = 1;
  1660. speed = msg & BNX2_LINK_STATUS_SPEED_MASK;
  1661. bp->duplex = DUPLEX_FULL;
  1662. switch (speed) {
  1663. case BNX2_LINK_STATUS_10HALF:
  1664. bp->duplex = DUPLEX_HALF;
  1665. case BNX2_LINK_STATUS_10FULL:
  1666. bp->line_speed = SPEED_10;
  1667. break;
  1668. case BNX2_LINK_STATUS_100HALF:
  1669. bp->duplex = DUPLEX_HALF;
  1670. case BNX2_LINK_STATUS_100BASE_T4:
  1671. case BNX2_LINK_STATUS_100FULL:
  1672. bp->line_speed = SPEED_100;
  1673. break;
  1674. case BNX2_LINK_STATUS_1000HALF:
  1675. bp->duplex = DUPLEX_HALF;
  1676. case BNX2_LINK_STATUS_1000FULL:
  1677. bp->line_speed = SPEED_1000;
  1678. break;
  1679. case BNX2_LINK_STATUS_2500HALF:
  1680. bp->duplex = DUPLEX_HALF;
  1681. case BNX2_LINK_STATUS_2500FULL:
  1682. bp->line_speed = SPEED_2500;
  1683. break;
  1684. default:
  1685. bp->line_speed = 0;
  1686. break;
  1687. }
  1688. bp->flow_ctrl = 0;
  1689. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  1690. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  1691. if (bp->duplex == DUPLEX_FULL)
  1692. bp->flow_ctrl = bp->req_flow_ctrl;
  1693. } else {
  1694. if (msg & BNX2_LINK_STATUS_TX_FC_ENABLED)
  1695. bp->flow_ctrl |= FLOW_CTRL_TX;
  1696. if (msg & BNX2_LINK_STATUS_RX_FC_ENABLED)
  1697. bp->flow_ctrl |= FLOW_CTRL_RX;
  1698. }
  1699. old_port = bp->phy_port;
  1700. if (msg & BNX2_LINK_STATUS_SERDES_LINK)
  1701. bp->phy_port = PORT_FIBRE;
  1702. else
  1703. bp->phy_port = PORT_TP;
  1704. if (old_port != bp->phy_port)
  1705. bnx2_set_default_link(bp);
  1706. }
  1707. if (bp->link_up != link_up)
  1708. bnx2_report_link(bp);
  1709. bnx2_set_mac_link(bp);
  1710. }
  1711. static int
  1712. bnx2_set_remote_link(struct bnx2 *bp)
  1713. {
  1714. u32 evt_code;
  1715. evt_code = bnx2_shmem_rd(bp, BNX2_FW_EVT_CODE_MB);
  1716. switch (evt_code) {
  1717. case BNX2_FW_EVT_CODE_LINK_EVENT:
  1718. bnx2_remote_phy_event(bp);
  1719. break;
  1720. case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT:
  1721. default:
  1722. bnx2_send_heart_beat(bp);
  1723. break;
  1724. }
  1725. return 0;
  1726. }
  1727. static int
  1728. bnx2_setup_copper_phy(struct bnx2 *bp)
  1729. __releases(&bp->phy_lock)
  1730. __acquires(&bp->phy_lock)
  1731. {
  1732. u32 bmcr;
  1733. u32 new_bmcr;
  1734. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1735. if (bp->autoneg & AUTONEG_SPEED) {
  1736. u32 adv_reg, adv1000_reg;
  1737. u32 new_adv_reg = 0;
  1738. u32 new_adv1000_reg = 0;
  1739. bnx2_read_phy(bp, bp->mii_adv, &adv_reg);
  1740. adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
  1741. ADVERTISE_PAUSE_ASYM);
  1742. bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
  1743. adv1000_reg &= PHY_ALL_1000_SPEED;
  1744. if (bp->advertising & ADVERTISED_10baseT_Half)
  1745. new_adv_reg |= ADVERTISE_10HALF;
  1746. if (bp->advertising & ADVERTISED_10baseT_Full)
  1747. new_adv_reg |= ADVERTISE_10FULL;
  1748. if (bp->advertising & ADVERTISED_100baseT_Half)
  1749. new_adv_reg |= ADVERTISE_100HALF;
  1750. if (bp->advertising & ADVERTISED_100baseT_Full)
  1751. new_adv_reg |= ADVERTISE_100FULL;
  1752. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1753. new_adv1000_reg |= ADVERTISE_1000FULL;
  1754. new_adv_reg |= ADVERTISE_CSMA;
  1755. new_adv_reg |= bnx2_phy_get_pause_adv(bp);
  1756. if ((adv1000_reg != new_adv1000_reg) ||
  1757. (adv_reg != new_adv_reg) ||
  1758. ((bmcr & BMCR_ANENABLE) == 0)) {
  1759. bnx2_write_phy(bp, bp->mii_adv, new_adv_reg);
  1760. bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg);
  1761. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_ANRESTART |
  1762. BMCR_ANENABLE);
  1763. }
  1764. else if (bp->link_up) {
  1765. /* Flow ctrl may have changed from auto to forced */
  1766. /* or vice-versa. */
  1767. bnx2_resolve_flow_ctrl(bp);
  1768. bnx2_set_mac_link(bp);
  1769. }
  1770. return 0;
  1771. }
  1772. new_bmcr = 0;
  1773. if (bp->req_line_speed == SPEED_100) {
  1774. new_bmcr |= BMCR_SPEED100;
  1775. }
  1776. if (bp->req_duplex == DUPLEX_FULL) {
  1777. new_bmcr |= BMCR_FULLDPLX;
  1778. }
  1779. if (new_bmcr != bmcr) {
  1780. u32 bmsr;
  1781. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1782. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1783. if (bmsr & BMSR_LSTATUS) {
  1784. /* Force link down */
  1785. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1786. spin_unlock_bh(&bp->phy_lock);
  1787. msleep(50);
  1788. spin_lock_bh(&bp->phy_lock);
  1789. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1790. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1791. }
  1792. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1793. /* Normally, the new speed is setup after the link has
  1794. * gone down and up again. In some cases, link will not go
  1795. * down so we need to set up the new speed here.
  1796. */
  1797. if (bmsr & BMSR_LSTATUS) {
  1798. bp->line_speed = bp->req_line_speed;
  1799. bp->duplex = bp->req_duplex;
  1800. bnx2_resolve_flow_ctrl(bp);
  1801. bnx2_set_mac_link(bp);
  1802. }
  1803. } else {
  1804. bnx2_resolve_flow_ctrl(bp);
  1805. bnx2_set_mac_link(bp);
  1806. }
  1807. return 0;
  1808. }
  1809. static int
  1810. bnx2_setup_phy(struct bnx2 *bp, u8 port)
  1811. __releases(&bp->phy_lock)
  1812. __acquires(&bp->phy_lock)
  1813. {
  1814. if (bp->loopback == MAC_LOOPBACK)
  1815. return 0;
  1816. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1817. return (bnx2_setup_serdes_phy(bp, port));
  1818. }
  1819. else {
  1820. return (bnx2_setup_copper_phy(bp));
  1821. }
  1822. }
  1823. static int
  1824. bnx2_init_5709s_phy(struct bnx2 *bp, int reset_phy)
  1825. {
  1826. u32 val;
  1827. bp->mii_bmcr = MII_BMCR + 0x10;
  1828. bp->mii_bmsr = MII_BMSR + 0x10;
  1829. bp->mii_bmsr1 = MII_BNX2_GP_TOP_AN_STATUS1;
  1830. bp->mii_adv = MII_ADVERTISE + 0x10;
  1831. bp->mii_lpa = MII_LPA + 0x10;
  1832. bp->mii_up1 = MII_BNX2_OVER1G_UP1;
  1833. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_AER);
  1834. bnx2_write_phy(bp, MII_BNX2_AER_AER, MII_BNX2_AER_AER_AN_MMD);
  1835. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1836. if (reset_phy)
  1837. bnx2_reset_phy(bp);
  1838. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_SERDES_DIG);
  1839. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, &val);
  1840. val &= ~MII_BNX2_SD_1000XCTL1_AUTODET;
  1841. val |= MII_BNX2_SD_1000XCTL1_FIBER;
  1842. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, val);
  1843. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1844. bnx2_read_phy(bp, MII_BNX2_OVER1G_UP1, &val);
  1845. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
  1846. val |= BCM5708S_UP1_2G5;
  1847. else
  1848. val &= ~BCM5708S_UP1_2G5;
  1849. bnx2_write_phy(bp, MII_BNX2_OVER1G_UP1, val);
  1850. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_BAM_NXTPG);
  1851. bnx2_read_phy(bp, MII_BNX2_BAM_NXTPG_CTL, &val);
  1852. val |= MII_BNX2_NXTPG_CTL_T2 | MII_BNX2_NXTPG_CTL_BAM;
  1853. bnx2_write_phy(bp, MII_BNX2_BAM_NXTPG_CTL, val);
  1854. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_CL73_USERB0);
  1855. val = MII_BNX2_CL73_BAM_EN | MII_BNX2_CL73_BAM_STA_MGR_EN |
  1856. MII_BNX2_CL73_BAM_NP_AFT_BP_EN;
  1857. bnx2_write_phy(bp, MII_BNX2_CL73_BAM_CTL1, val);
  1858. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1859. return 0;
  1860. }
  1861. static int
  1862. bnx2_init_5708s_phy(struct bnx2 *bp, int reset_phy)
  1863. {
  1864. u32 val;
  1865. if (reset_phy)
  1866. bnx2_reset_phy(bp);
  1867. bp->mii_up1 = BCM5708S_UP1;
  1868. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
  1869. bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
  1870. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1871. bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
  1872. val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
  1873. bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
  1874. bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
  1875. val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
  1876. bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
  1877. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) {
  1878. bnx2_read_phy(bp, BCM5708S_UP1, &val);
  1879. val |= BCM5708S_UP1_2G5;
  1880. bnx2_write_phy(bp, BCM5708S_UP1, val);
  1881. }
  1882. if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
  1883. (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
  1884. (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
  1885. /* increase tx signal amplitude */
  1886. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1887. BCM5708S_BLK_ADDR_TX_MISC);
  1888. bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
  1889. val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
  1890. bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
  1891. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1892. }
  1893. val = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG) &
  1894. BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
  1895. if (val) {
  1896. u32 is_backplane;
  1897. is_backplane = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
  1898. if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
  1899. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1900. BCM5708S_BLK_ADDR_TX_MISC);
  1901. bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
  1902. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1903. BCM5708S_BLK_ADDR_DIG);
  1904. }
  1905. }
  1906. return 0;
  1907. }
  1908. static int
  1909. bnx2_init_5706s_phy(struct bnx2 *bp, int reset_phy)
  1910. {
  1911. if (reset_phy)
  1912. bnx2_reset_phy(bp);
  1913. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  1914. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  1915. REG_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
  1916. if (bp->dev->mtu > 1500) {
  1917. u32 val;
  1918. /* Set extended packet length bit */
  1919. bnx2_write_phy(bp, 0x18, 0x7);
  1920. bnx2_read_phy(bp, 0x18, &val);
  1921. bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
  1922. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1923. bnx2_read_phy(bp, 0x1c, &val);
  1924. bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
  1925. }
  1926. else {
  1927. u32 val;
  1928. bnx2_write_phy(bp, 0x18, 0x7);
  1929. bnx2_read_phy(bp, 0x18, &val);
  1930. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1931. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1932. bnx2_read_phy(bp, 0x1c, &val);
  1933. bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
  1934. }
  1935. return 0;
  1936. }
  1937. static int
  1938. bnx2_init_copper_phy(struct bnx2 *bp, int reset_phy)
  1939. {
  1940. u32 val;
  1941. if (reset_phy)
  1942. bnx2_reset_phy(bp);
  1943. if (bp->phy_flags & BNX2_PHY_FLAG_CRC_FIX) {
  1944. bnx2_write_phy(bp, 0x18, 0x0c00);
  1945. bnx2_write_phy(bp, 0x17, 0x000a);
  1946. bnx2_write_phy(bp, 0x15, 0x310b);
  1947. bnx2_write_phy(bp, 0x17, 0x201f);
  1948. bnx2_write_phy(bp, 0x15, 0x9506);
  1949. bnx2_write_phy(bp, 0x17, 0x401f);
  1950. bnx2_write_phy(bp, 0x15, 0x14e2);
  1951. bnx2_write_phy(bp, 0x18, 0x0400);
  1952. }
  1953. if (bp->phy_flags & BNX2_PHY_FLAG_DIS_EARLY_DAC) {
  1954. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
  1955. MII_BNX2_DSP_EXPAND_REG | 0x8);
  1956. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
  1957. val &= ~(1 << 8);
  1958. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
  1959. }
  1960. if (bp->dev->mtu > 1500) {
  1961. /* Set extended packet length bit */
  1962. bnx2_write_phy(bp, 0x18, 0x7);
  1963. bnx2_read_phy(bp, 0x18, &val);
  1964. bnx2_write_phy(bp, 0x18, val | 0x4000);
  1965. bnx2_read_phy(bp, 0x10, &val);
  1966. bnx2_write_phy(bp, 0x10, val | 0x1);
  1967. }
  1968. else {
  1969. bnx2_write_phy(bp, 0x18, 0x7);
  1970. bnx2_read_phy(bp, 0x18, &val);
  1971. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1972. bnx2_read_phy(bp, 0x10, &val);
  1973. bnx2_write_phy(bp, 0x10, val & ~0x1);
  1974. }
  1975. /* ethernet@wirespeed */
  1976. bnx2_write_phy(bp, 0x18, 0x7007);
  1977. bnx2_read_phy(bp, 0x18, &val);
  1978. bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
  1979. return 0;
  1980. }
  1981. static int
  1982. bnx2_init_phy(struct bnx2 *bp, int reset_phy)
  1983. __releases(&bp->phy_lock)
  1984. __acquires(&bp->phy_lock)
  1985. {
  1986. u32 val;
  1987. int rc = 0;
  1988. bp->phy_flags &= ~BNX2_PHY_FLAG_INT_MODE_MASK;
  1989. bp->phy_flags |= BNX2_PHY_FLAG_INT_MODE_LINK_READY;
  1990. bp->mii_bmcr = MII_BMCR;
  1991. bp->mii_bmsr = MII_BMSR;
  1992. bp->mii_bmsr1 = MII_BMSR;
  1993. bp->mii_adv = MII_ADVERTISE;
  1994. bp->mii_lpa = MII_LPA;
  1995. REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  1996. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1997. goto setup_phy;
  1998. bnx2_read_phy(bp, MII_PHYSID1, &val);
  1999. bp->phy_id = val << 16;
  2000. bnx2_read_phy(bp, MII_PHYSID2, &val);
  2001. bp->phy_id |= val & 0xffff;
  2002. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  2003. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  2004. rc = bnx2_init_5706s_phy(bp, reset_phy);
  2005. else if (CHIP_NUM(bp) == CHIP_NUM_5708)
  2006. rc = bnx2_init_5708s_phy(bp, reset_phy);
  2007. else if (CHIP_NUM(bp) == CHIP_NUM_5709)
  2008. rc = bnx2_init_5709s_phy(bp, reset_phy);
  2009. }
  2010. else {
  2011. rc = bnx2_init_copper_phy(bp, reset_phy);
  2012. }
  2013. setup_phy:
  2014. if (!rc)
  2015. rc = bnx2_setup_phy(bp, bp->phy_port);
  2016. return rc;
  2017. }
  2018. static int
  2019. bnx2_set_mac_loopback(struct bnx2 *bp)
  2020. {
  2021. u32 mac_mode;
  2022. mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
  2023. mac_mode &= ~BNX2_EMAC_MODE_PORT;
  2024. mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
  2025. REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
  2026. bp->link_up = 1;
  2027. return 0;
  2028. }
  2029. static int bnx2_test_link(struct bnx2 *);
  2030. static int
  2031. bnx2_set_phy_loopback(struct bnx2 *bp)
  2032. {
  2033. u32 mac_mode;
  2034. int rc, i;
  2035. spin_lock_bh(&bp->phy_lock);
  2036. rc = bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK | BMCR_FULLDPLX |
  2037. BMCR_SPEED1000);
  2038. spin_unlock_bh(&bp->phy_lock);
  2039. if (rc)
  2040. return rc;
  2041. for (i = 0; i < 10; i++) {
  2042. if (bnx2_test_link(bp) == 0)
  2043. break;
  2044. msleep(100);
  2045. }
  2046. mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
  2047. mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  2048. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  2049. BNX2_EMAC_MODE_25G_MODE);
  2050. mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
  2051. REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
  2052. bp->link_up = 1;
  2053. return 0;
  2054. }
  2055. static int
  2056. bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int ack, int silent)
  2057. {
  2058. int i;
  2059. u32 val;
  2060. bp->fw_wr_seq++;
  2061. msg_data |= bp->fw_wr_seq;
  2062. bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
  2063. if (!ack)
  2064. return 0;
  2065. /* wait for an acknowledgement. */
  2066. for (i = 0; i < (BNX2_FW_ACK_TIME_OUT_MS / 10); i++) {
  2067. msleep(10);
  2068. val = bnx2_shmem_rd(bp, BNX2_FW_MB);
  2069. if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
  2070. break;
  2071. }
  2072. if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
  2073. return 0;
  2074. /* If we timed out, inform the firmware that this is the case. */
  2075. if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
  2076. if (!silent)
  2077. printk(KERN_ERR PFX "fw sync timeout, reset code = "
  2078. "%x\n", msg_data);
  2079. msg_data &= ~BNX2_DRV_MSG_CODE;
  2080. msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
  2081. bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
  2082. return -EBUSY;
  2083. }
  2084. if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
  2085. return -EIO;
  2086. return 0;
  2087. }
  2088. static int
  2089. bnx2_init_5709_context(struct bnx2 *bp)
  2090. {
  2091. int i, ret = 0;
  2092. u32 val;
  2093. val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
  2094. val |= (BCM_PAGE_BITS - 8) << 16;
  2095. REG_WR(bp, BNX2_CTX_COMMAND, val);
  2096. for (i = 0; i < 10; i++) {
  2097. val = REG_RD(bp, BNX2_CTX_COMMAND);
  2098. if (!(val & BNX2_CTX_COMMAND_MEM_INIT))
  2099. break;
  2100. udelay(2);
  2101. }
  2102. if (val & BNX2_CTX_COMMAND_MEM_INIT)
  2103. return -EBUSY;
  2104. for (i = 0; i < bp->ctx_pages; i++) {
  2105. int j;
  2106. if (bp->ctx_blk[i])
  2107. memset(bp->ctx_blk[i], 0, BCM_PAGE_SIZE);
  2108. else
  2109. return -ENOMEM;
  2110. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
  2111. (bp->ctx_blk_mapping[i] & 0xffffffff) |
  2112. BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
  2113. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
  2114. (u64) bp->ctx_blk_mapping[i] >> 32);
  2115. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
  2116. BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
  2117. for (j = 0; j < 10; j++) {
  2118. val = REG_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
  2119. if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
  2120. break;
  2121. udelay(5);
  2122. }
  2123. if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
  2124. ret = -EBUSY;
  2125. break;
  2126. }
  2127. }
  2128. return ret;
  2129. }
  2130. static void
  2131. bnx2_init_context(struct bnx2 *bp)
  2132. {
  2133. u32 vcid;
  2134. vcid = 96;
  2135. while (vcid) {
  2136. u32 vcid_addr, pcid_addr, offset;
  2137. int i;
  2138. vcid--;
  2139. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  2140. u32 new_vcid;
  2141. vcid_addr = GET_PCID_ADDR(vcid);
  2142. if (vcid & 0x8) {
  2143. new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
  2144. }
  2145. else {
  2146. new_vcid = vcid;
  2147. }
  2148. pcid_addr = GET_PCID_ADDR(new_vcid);
  2149. }
  2150. else {
  2151. vcid_addr = GET_CID_ADDR(vcid);
  2152. pcid_addr = vcid_addr;
  2153. }
  2154. for (i = 0; i < (CTX_SIZE / PHY_CTX_SIZE); i++) {
  2155. vcid_addr += (i << PHY_CTX_SHIFT);
  2156. pcid_addr += (i << PHY_CTX_SHIFT);
  2157. REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
  2158. REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
  2159. /* Zero out the context. */
  2160. for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
  2161. bnx2_ctx_wr(bp, vcid_addr, offset, 0);
  2162. }
  2163. }
  2164. }
  2165. static int
  2166. bnx2_alloc_bad_rbuf(struct bnx2 *bp)
  2167. {
  2168. u16 *good_mbuf;
  2169. u32 good_mbuf_cnt;
  2170. u32 val;
  2171. good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
  2172. if (good_mbuf == NULL) {
  2173. printk(KERN_ERR PFX "Failed to allocate memory in "
  2174. "bnx2_alloc_bad_rbuf\n");
  2175. return -ENOMEM;
  2176. }
  2177. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  2178. BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
  2179. good_mbuf_cnt = 0;
  2180. /* Allocate a bunch of mbufs and save the good ones in an array. */
  2181. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
  2182. while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
  2183. bnx2_reg_wr_ind(bp, BNX2_RBUF_COMMAND,
  2184. BNX2_RBUF_COMMAND_ALLOC_REQ);
  2185. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_FW_BUF_ALLOC);
  2186. val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
  2187. /* The addresses with Bit 9 set are bad memory blocks. */
  2188. if (!(val & (1 << 9))) {
  2189. good_mbuf[good_mbuf_cnt] = (u16) val;
  2190. good_mbuf_cnt++;
  2191. }
  2192. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
  2193. }
  2194. /* Free the good ones back to the mbuf pool thus discarding
  2195. * all the bad ones. */
  2196. while (good_mbuf_cnt) {
  2197. good_mbuf_cnt--;
  2198. val = good_mbuf[good_mbuf_cnt];
  2199. val = (val << 9) | val | 1;
  2200. bnx2_reg_wr_ind(bp, BNX2_RBUF_FW_BUF_FREE, val);
  2201. }
  2202. kfree(good_mbuf);
  2203. return 0;
  2204. }
  2205. static void
  2206. bnx2_set_mac_addr(struct bnx2 *bp, u8 *mac_addr, u32 pos)
  2207. {
  2208. u32 val;
  2209. val = (mac_addr[0] << 8) | mac_addr[1];
  2210. REG_WR(bp, BNX2_EMAC_MAC_MATCH0 + (pos * 8), val);
  2211. val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
  2212. (mac_addr[4] << 8) | mac_addr[5];
  2213. REG_WR(bp, BNX2_EMAC_MAC_MATCH1 + (pos * 8), val);
  2214. }
  2215. static inline int
  2216. bnx2_alloc_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
  2217. {
  2218. dma_addr_t mapping;
  2219. struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
  2220. struct rx_bd *rxbd =
  2221. &rxr->rx_pg_desc_ring[RX_RING(index)][RX_IDX(index)];
  2222. struct page *page = alloc_page(GFP_ATOMIC);
  2223. if (!page)
  2224. return -ENOMEM;
  2225. mapping = pci_map_page(bp->pdev, page, 0, PAGE_SIZE,
  2226. PCI_DMA_FROMDEVICE);
  2227. if (pci_dma_mapping_error(bp->pdev, mapping)) {
  2228. __free_page(page);
  2229. return -EIO;
  2230. }
  2231. rx_pg->page = page;
  2232. pci_unmap_addr_set(rx_pg, mapping, mapping);
  2233. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  2234. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  2235. return 0;
  2236. }
  2237. static void
  2238. bnx2_free_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
  2239. {
  2240. struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
  2241. struct page *page = rx_pg->page;
  2242. if (!page)
  2243. return;
  2244. pci_unmap_page(bp->pdev, pci_unmap_addr(rx_pg, mapping), PAGE_SIZE,
  2245. PCI_DMA_FROMDEVICE);
  2246. __free_page(page);
  2247. rx_pg->page = NULL;
  2248. }
  2249. static inline int
  2250. bnx2_alloc_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
  2251. {
  2252. struct sk_buff *skb;
  2253. struct sw_bd *rx_buf = &rxr->rx_buf_ring[index];
  2254. dma_addr_t mapping;
  2255. struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(index)][RX_IDX(index)];
  2256. unsigned long align;
  2257. skb = netdev_alloc_skb(bp->dev, bp->rx_buf_size);
  2258. if (skb == NULL) {
  2259. return -ENOMEM;
  2260. }
  2261. if (unlikely((align = (unsigned long) skb->data & (BNX2_RX_ALIGN - 1))))
  2262. skb_reserve(skb, BNX2_RX_ALIGN - align);
  2263. mapping = pci_map_single(bp->pdev, skb->data, bp->rx_buf_use_size,
  2264. PCI_DMA_FROMDEVICE);
  2265. if (pci_dma_mapping_error(bp->pdev, mapping)) {
  2266. dev_kfree_skb(skb);
  2267. return -EIO;
  2268. }
  2269. rx_buf->skb = skb;
  2270. pci_unmap_addr_set(rx_buf, mapping, mapping);
  2271. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  2272. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  2273. rxr->rx_prod_bseq += bp->rx_buf_use_size;
  2274. return 0;
  2275. }
  2276. static int
  2277. bnx2_phy_event_is_set(struct bnx2 *bp, struct bnx2_napi *bnapi, u32 event)
  2278. {
  2279. struct status_block *sblk = bnapi->status_blk.msi;
  2280. u32 new_link_state, old_link_state;
  2281. int is_set = 1;
  2282. new_link_state = sblk->status_attn_bits & event;
  2283. old_link_state = sblk->status_attn_bits_ack & event;
  2284. if (new_link_state != old_link_state) {
  2285. if (new_link_state)
  2286. REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, event);
  2287. else
  2288. REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, event);
  2289. } else
  2290. is_set = 0;
  2291. return is_set;
  2292. }
  2293. static void
  2294. bnx2_phy_int(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2295. {
  2296. spin_lock(&bp->phy_lock);
  2297. if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_LINK_STATE))
  2298. bnx2_set_link(bp);
  2299. if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_TIMER_ABORT))
  2300. bnx2_set_remote_link(bp);
  2301. spin_unlock(&bp->phy_lock);
  2302. }
  2303. static inline u16
  2304. bnx2_get_hw_tx_cons(struct bnx2_napi *bnapi)
  2305. {
  2306. u16 cons;
  2307. /* Tell compiler that status block fields can change. */
  2308. barrier();
  2309. cons = *bnapi->hw_tx_cons_ptr;
  2310. barrier();
  2311. if (unlikely((cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT))
  2312. cons++;
  2313. return cons;
  2314. }
  2315. static int
  2316. bnx2_tx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
  2317. {
  2318. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2319. u16 hw_cons, sw_cons, sw_ring_cons;
  2320. int tx_pkt = 0, index;
  2321. struct netdev_queue *txq;
  2322. index = (bnapi - bp->bnx2_napi);
  2323. txq = netdev_get_tx_queue(bp->dev, index);
  2324. hw_cons = bnx2_get_hw_tx_cons(bnapi);
  2325. sw_cons = txr->tx_cons;
  2326. while (sw_cons != hw_cons) {
  2327. struct sw_tx_bd *tx_buf;
  2328. struct sk_buff *skb;
  2329. int i, last;
  2330. sw_ring_cons = TX_RING_IDX(sw_cons);
  2331. tx_buf = &txr->tx_buf_ring[sw_ring_cons];
  2332. skb = tx_buf->skb;
  2333. /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
  2334. prefetch(&skb->end);
  2335. /* partial BD completions possible with TSO packets */
  2336. if (tx_buf->is_gso) {
  2337. u16 last_idx, last_ring_idx;
  2338. last_idx = sw_cons + tx_buf->nr_frags + 1;
  2339. last_ring_idx = sw_ring_cons + tx_buf->nr_frags + 1;
  2340. if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
  2341. last_idx++;
  2342. }
  2343. if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
  2344. break;
  2345. }
  2346. }
  2347. skb_dma_unmap(&bp->pdev->dev, skb, DMA_TO_DEVICE);
  2348. tx_buf->skb = NULL;
  2349. last = tx_buf->nr_frags;
  2350. for (i = 0; i < last; i++) {
  2351. sw_cons = NEXT_TX_BD(sw_cons);
  2352. }
  2353. sw_cons = NEXT_TX_BD(sw_cons);
  2354. dev_kfree_skb(skb);
  2355. tx_pkt++;
  2356. if (tx_pkt == budget)
  2357. break;
  2358. if (hw_cons == sw_cons)
  2359. hw_cons = bnx2_get_hw_tx_cons(bnapi);
  2360. }
  2361. txr->hw_tx_cons = hw_cons;
  2362. txr->tx_cons = sw_cons;
  2363. /* Need to make the tx_cons update visible to bnx2_start_xmit()
  2364. * before checking for netif_tx_queue_stopped(). Without the
  2365. * memory barrier, there is a small possibility that bnx2_start_xmit()
  2366. * will miss it and cause the queue to be stopped forever.
  2367. */
  2368. smp_mb();
  2369. if (unlikely(netif_tx_queue_stopped(txq)) &&
  2370. (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
  2371. __netif_tx_lock(txq, smp_processor_id());
  2372. if ((netif_tx_queue_stopped(txq)) &&
  2373. (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh))
  2374. netif_tx_wake_queue(txq);
  2375. __netif_tx_unlock(txq);
  2376. }
  2377. return tx_pkt;
  2378. }
  2379. static void
  2380. bnx2_reuse_rx_skb_pages(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
  2381. struct sk_buff *skb, int count)
  2382. {
  2383. struct sw_pg *cons_rx_pg, *prod_rx_pg;
  2384. struct rx_bd *cons_bd, *prod_bd;
  2385. int i;
  2386. u16 hw_prod, prod;
  2387. u16 cons = rxr->rx_pg_cons;
  2388. cons_rx_pg = &rxr->rx_pg_ring[cons];
  2389. /* The caller was unable to allocate a new page to replace the
  2390. * last one in the frags array, so we need to recycle that page
  2391. * and then free the skb.
  2392. */
  2393. if (skb) {
  2394. struct page *page;
  2395. struct skb_shared_info *shinfo;
  2396. shinfo = skb_shinfo(skb);
  2397. shinfo->nr_frags--;
  2398. page = shinfo->frags[shinfo->nr_frags].page;
  2399. shinfo->frags[shinfo->nr_frags].page = NULL;
  2400. cons_rx_pg->page = page;
  2401. dev_kfree_skb(skb);
  2402. }
  2403. hw_prod = rxr->rx_pg_prod;
  2404. for (i = 0; i < count; i++) {
  2405. prod = RX_PG_RING_IDX(hw_prod);
  2406. prod_rx_pg = &rxr->rx_pg_ring[prod];
  2407. cons_rx_pg = &rxr->rx_pg_ring[cons];
  2408. cons_bd = &rxr->rx_pg_desc_ring[RX_RING(cons)][RX_IDX(cons)];
  2409. prod_bd = &rxr->rx_pg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
  2410. if (prod != cons) {
  2411. prod_rx_pg->page = cons_rx_pg->page;
  2412. cons_rx_pg->page = NULL;
  2413. pci_unmap_addr_set(prod_rx_pg, mapping,
  2414. pci_unmap_addr(cons_rx_pg, mapping));
  2415. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  2416. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  2417. }
  2418. cons = RX_PG_RING_IDX(NEXT_RX_BD(cons));
  2419. hw_prod = NEXT_RX_BD(hw_prod);
  2420. }
  2421. rxr->rx_pg_prod = hw_prod;
  2422. rxr->rx_pg_cons = cons;
  2423. }
  2424. static inline void
  2425. bnx2_reuse_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
  2426. struct sk_buff *skb, u16 cons, u16 prod)
  2427. {
  2428. struct sw_bd *cons_rx_buf, *prod_rx_buf;
  2429. struct rx_bd *cons_bd, *prod_bd;
  2430. cons_rx_buf = &rxr->rx_buf_ring[cons];
  2431. prod_rx_buf = &rxr->rx_buf_ring[prod];
  2432. pci_dma_sync_single_for_device(bp->pdev,
  2433. pci_unmap_addr(cons_rx_buf, mapping),
  2434. BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
  2435. rxr->rx_prod_bseq += bp->rx_buf_use_size;
  2436. prod_rx_buf->skb = skb;
  2437. if (cons == prod)
  2438. return;
  2439. pci_unmap_addr_set(prod_rx_buf, mapping,
  2440. pci_unmap_addr(cons_rx_buf, mapping));
  2441. cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
  2442. prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
  2443. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  2444. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  2445. }
  2446. static int
  2447. bnx2_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, struct sk_buff *skb,
  2448. unsigned int len, unsigned int hdr_len, dma_addr_t dma_addr,
  2449. u32 ring_idx)
  2450. {
  2451. int err;
  2452. u16 prod = ring_idx & 0xffff;
  2453. err = bnx2_alloc_rx_skb(bp, rxr, prod);
  2454. if (unlikely(err)) {
  2455. bnx2_reuse_rx_skb(bp, rxr, skb, (u16) (ring_idx >> 16), prod);
  2456. if (hdr_len) {
  2457. unsigned int raw_len = len + 4;
  2458. int pages = PAGE_ALIGN(raw_len - hdr_len) >> PAGE_SHIFT;
  2459. bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
  2460. }
  2461. return err;
  2462. }
  2463. skb_reserve(skb, BNX2_RX_OFFSET);
  2464. pci_unmap_single(bp->pdev, dma_addr, bp->rx_buf_use_size,
  2465. PCI_DMA_FROMDEVICE);
  2466. if (hdr_len == 0) {
  2467. skb_put(skb, len);
  2468. return 0;
  2469. } else {
  2470. unsigned int i, frag_len, frag_size, pages;
  2471. struct sw_pg *rx_pg;
  2472. u16 pg_cons = rxr->rx_pg_cons;
  2473. u16 pg_prod = rxr->rx_pg_prod;
  2474. frag_size = len + 4 - hdr_len;
  2475. pages = PAGE_ALIGN(frag_size) >> PAGE_SHIFT;
  2476. skb_put(skb, hdr_len);
  2477. for (i = 0; i < pages; i++) {
  2478. dma_addr_t mapping_old;
  2479. frag_len = min(frag_size, (unsigned int) PAGE_SIZE);
  2480. if (unlikely(frag_len <= 4)) {
  2481. unsigned int tail = 4 - frag_len;
  2482. rxr->rx_pg_cons = pg_cons;
  2483. rxr->rx_pg_prod = pg_prod;
  2484. bnx2_reuse_rx_skb_pages(bp, rxr, NULL,
  2485. pages - i);
  2486. skb->len -= tail;
  2487. if (i == 0) {
  2488. skb->tail -= tail;
  2489. } else {
  2490. skb_frag_t *frag =
  2491. &skb_shinfo(skb)->frags[i - 1];
  2492. frag->size -= tail;
  2493. skb->data_len -= tail;
  2494. skb->truesize -= tail;
  2495. }
  2496. return 0;
  2497. }
  2498. rx_pg = &rxr->rx_pg_ring[pg_cons];
  2499. /* Don't unmap yet. If we're unable to allocate a new
  2500. * page, we need to recycle the page and the DMA addr.
  2501. */
  2502. mapping_old = pci_unmap_addr(rx_pg, mapping);
  2503. if (i == pages - 1)
  2504. frag_len -= 4;
  2505. skb_fill_page_desc(skb, i, rx_pg->page, 0, frag_len);
  2506. rx_pg->page = NULL;
  2507. err = bnx2_alloc_rx_page(bp, rxr,
  2508. RX_PG_RING_IDX(pg_prod));
  2509. if (unlikely(err)) {
  2510. rxr->rx_pg_cons = pg_cons;
  2511. rxr->rx_pg_prod = pg_prod;
  2512. bnx2_reuse_rx_skb_pages(bp, rxr, skb,
  2513. pages - i);
  2514. return err;
  2515. }
  2516. pci_unmap_page(bp->pdev, mapping_old,
  2517. PAGE_SIZE, PCI_DMA_FROMDEVICE);
  2518. frag_size -= frag_len;
  2519. skb->data_len += frag_len;
  2520. skb->truesize += frag_len;
  2521. skb->len += frag_len;
  2522. pg_prod = NEXT_RX_BD(pg_prod);
  2523. pg_cons = RX_PG_RING_IDX(NEXT_RX_BD(pg_cons));
  2524. }
  2525. rxr->rx_pg_prod = pg_prod;
  2526. rxr->rx_pg_cons = pg_cons;
  2527. }
  2528. return 0;
  2529. }
  2530. static inline u16
  2531. bnx2_get_hw_rx_cons(struct bnx2_napi *bnapi)
  2532. {
  2533. u16 cons;
  2534. /* Tell compiler that status block fields can change. */
  2535. barrier();
  2536. cons = *bnapi->hw_rx_cons_ptr;
  2537. barrier();
  2538. if (unlikely((cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT))
  2539. cons++;
  2540. return cons;
  2541. }
  2542. static int
  2543. bnx2_rx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
  2544. {
  2545. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2546. u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
  2547. struct l2_fhdr *rx_hdr;
  2548. int rx_pkt = 0, pg_ring_used = 0;
  2549. hw_cons = bnx2_get_hw_rx_cons(bnapi);
  2550. sw_cons = rxr->rx_cons;
  2551. sw_prod = rxr->rx_prod;
  2552. /* Memory barrier necessary as speculative reads of the rx
  2553. * buffer can be ahead of the index in the status block
  2554. */
  2555. rmb();
  2556. while (sw_cons != hw_cons) {
  2557. unsigned int len, hdr_len;
  2558. u32 status;
  2559. struct sw_bd *rx_buf;
  2560. struct sk_buff *skb;
  2561. dma_addr_t dma_addr;
  2562. u16 vtag = 0;
  2563. int hw_vlan __maybe_unused = 0;
  2564. sw_ring_cons = RX_RING_IDX(sw_cons);
  2565. sw_ring_prod = RX_RING_IDX(sw_prod);
  2566. rx_buf = &rxr->rx_buf_ring[sw_ring_cons];
  2567. skb = rx_buf->skb;
  2568. rx_buf->skb = NULL;
  2569. dma_addr = pci_unmap_addr(rx_buf, mapping);
  2570. pci_dma_sync_single_for_cpu(bp->pdev, dma_addr,
  2571. BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH,
  2572. PCI_DMA_FROMDEVICE);
  2573. rx_hdr = (struct l2_fhdr *) skb->data;
  2574. len = rx_hdr->l2_fhdr_pkt_len;
  2575. status = rx_hdr->l2_fhdr_status;
  2576. hdr_len = 0;
  2577. if (status & L2_FHDR_STATUS_SPLIT) {
  2578. hdr_len = rx_hdr->l2_fhdr_ip_xsum;
  2579. pg_ring_used = 1;
  2580. } else if (len > bp->rx_jumbo_thresh) {
  2581. hdr_len = bp->rx_jumbo_thresh;
  2582. pg_ring_used = 1;
  2583. }
  2584. if (unlikely(status & (L2_FHDR_ERRORS_BAD_CRC |
  2585. L2_FHDR_ERRORS_PHY_DECODE |
  2586. L2_FHDR_ERRORS_ALIGNMENT |
  2587. L2_FHDR_ERRORS_TOO_SHORT |
  2588. L2_FHDR_ERRORS_GIANT_FRAME))) {
  2589. bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
  2590. sw_ring_prod);
  2591. if (pg_ring_used) {
  2592. int pages;
  2593. pages = PAGE_ALIGN(len - hdr_len) >> PAGE_SHIFT;
  2594. bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
  2595. }
  2596. goto next_rx;
  2597. }
  2598. len -= 4;
  2599. if (len <= bp->rx_copy_thresh) {
  2600. struct sk_buff *new_skb;
  2601. new_skb = netdev_alloc_skb(bp->dev, len + 6);
  2602. if (new_skb == NULL) {
  2603. bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
  2604. sw_ring_prod);
  2605. goto next_rx;
  2606. }
  2607. /* aligned copy */
  2608. skb_copy_from_linear_data_offset(skb,
  2609. BNX2_RX_OFFSET - 6,
  2610. new_skb->data, len + 6);
  2611. skb_reserve(new_skb, 6);
  2612. skb_put(new_skb, len);
  2613. bnx2_reuse_rx_skb(bp, rxr, skb,
  2614. sw_ring_cons, sw_ring_prod);
  2615. skb = new_skb;
  2616. } else if (unlikely(bnx2_rx_skb(bp, rxr, skb, len, hdr_len,
  2617. dma_addr, (sw_ring_cons << 16) | sw_ring_prod)))
  2618. goto next_rx;
  2619. if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
  2620. !(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
  2621. vtag = rx_hdr->l2_fhdr_vlan_tag;
  2622. #ifdef BCM_VLAN
  2623. if (bp->vlgrp)
  2624. hw_vlan = 1;
  2625. else
  2626. #endif
  2627. {
  2628. struct vlan_ethhdr *ve = (struct vlan_ethhdr *)
  2629. __skb_push(skb, 4);
  2630. memmove(ve, skb->data + 4, ETH_ALEN * 2);
  2631. ve->h_vlan_proto = htons(ETH_P_8021Q);
  2632. ve->h_vlan_TCI = htons(vtag);
  2633. len += 4;
  2634. }
  2635. }
  2636. skb->protocol = eth_type_trans(skb, bp->dev);
  2637. if ((len > (bp->dev->mtu + ETH_HLEN)) &&
  2638. (ntohs(skb->protocol) != 0x8100)) {
  2639. dev_kfree_skb(skb);
  2640. goto next_rx;
  2641. }
  2642. skb->ip_summed = CHECKSUM_NONE;
  2643. if (bp->rx_csum &&
  2644. (status & (L2_FHDR_STATUS_TCP_SEGMENT |
  2645. L2_FHDR_STATUS_UDP_DATAGRAM))) {
  2646. if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
  2647. L2_FHDR_ERRORS_UDP_XSUM)) == 0))
  2648. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2649. }
  2650. skb_record_rx_queue(skb, bnapi - &bp->bnx2_napi[0]);
  2651. #ifdef BCM_VLAN
  2652. if (hw_vlan)
  2653. vlan_hwaccel_receive_skb(skb, bp->vlgrp, vtag);
  2654. else
  2655. #endif
  2656. netif_receive_skb(skb);
  2657. rx_pkt++;
  2658. next_rx:
  2659. sw_cons = NEXT_RX_BD(sw_cons);
  2660. sw_prod = NEXT_RX_BD(sw_prod);
  2661. if ((rx_pkt == budget))
  2662. break;
  2663. /* Refresh hw_cons to see if there is new work */
  2664. if (sw_cons == hw_cons) {
  2665. hw_cons = bnx2_get_hw_rx_cons(bnapi);
  2666. rmb();
  2667. }
  2668. }
  2669. rxr->rx_cons = sw_cons;
  2670. rxr->rx_prod = sw_prod;
  2671. if (pg_ring_used)
  2672. REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
  2673. REG_WR16(bp, rxr->rx_bidx_addr, sw_prod);
  2674. REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
  2675. mmiowb();
  2676. return rx_pkt;
  2677. }
  2678. /* MSI ISR - The only difference between this and the INTx ISR
  2679. * is that the MSI interrupt is always serviced.
  2680. */
  2681. static irqreturn_t
  2682. bnx2_msi(int irq, void *dev_instance)
  2683. {
  2684. struct bnx2_napi *bnapi = dev_instance;
  2685. struct bnx2 *bp = bnapi->bp;
  2686. prefetch(bnapi->status_blk.msi);
  2687. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2688. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2689. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2690. /* Return here if interrupt is disabled. */
  2691. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2692. return IRQ_HANDLED;
  2693. napi_schedule(&bnapi->napi);
  2694. return IRQ_HANDLED;
  2695. }
  2696. static irqreturn_t
  2697. bnx2_msi_1shot(int irq, void *dev_instance)
  2698. {
  2699. struct bnx2_napi *bnapi = dev_instance;
  2700. struct bnx2 *bp = bnapi->bp;
  2701. prefetch(bnapi->status_blk.msi);
  2702. /* Return here if interrupt is disabled. */
  2703. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2704. return IRQ_HANDLED;
  2705. napi_schedule(&bnapi->napi);
  2706. return IRQ_HANDLED;
  2707. }
  2708. static irqreturn_t
  2709. bnx2_interrupt(int irq, void *dev_instance)
  2710. {
  2711. struct bnx2_napi *bnapi = dev_instance;
  2712. struct bnx2 *bp = bnapi->bp;
  2713. struct status_block *sblk = bnapi->status_blk.msi;
  2714. /* When using INTx, it is possible for the interrupt to arrive
  2715. * at the CPU before the status block posted prior to the
  2716. * interrupt. Reading a register will flush the status block.
  2717. * When using MSI, the MSI message will always complete after
  2718. * the status block write.
  2719. */
  2720. if ((sblk->status_idx == bnapi->last_status_idx) &&
  2721. (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
  2722. BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
  2723. return IRQ_NONE;
  2724. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2725. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2726. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2727. /* Read back to deassert IRQ immediately to avoid too many
  2728. * spurious interrupts.
  2729. */
  2730. REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  2731. /* Return here if interrupt is shared and is disabled. */
  2732. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2733. return IRQ_HANDLED;
  2734. if (napi_schedule_prep(&bnapi->napi)) {
  2735. bnapi->last_status_idx = sblk->status_idx;
  2736. __napi_schedule(&bnapi->napi);
  2737. }
  2738. return IRQ_HANDLED;
  2739. }
  2740. static inline int
  2741. bnx2_has_fast_work(struct bnx2_napi *bnapi)
  2742. {
  2743. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2744. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2745. if ((bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons) ||
  2746. (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons))
  2747. return 1;
  2748. return 0;
  2749. }
  2750. #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
  2751. STATUS_ATTN_BITS_TIMER_ABORT)
  2752. static inline int
  2753. bnx2_has_work(struct bnx2_napi *bnapi)
  2754. {
  2755. struct status_block *sblk = bnapi->status_blk.msi;
  2756. if (bnx2_has_fast_work(bnapi))
  2757. return 1;
  2758. #ifdef BCM_CNIC
  2759. if (bnapi->cnic_present && (bnapi->cnic_tag != sblk->status_idx))
  2760. return 1;
  2761. #endif
  2762. if ((sblk->status_attn_bits & STATUS_ATTN_EVENTS) !=
  2763. (sblk->status_attn_bits_ack & STATUS_ATTN_EVENTS))
  2764. return 1;
  2765. return 0;
  2766. }
  2767. static void
  2768. bnx2_chk_missed_msi(struct bnx2 *bp)
  2769. {
  2770. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  2771. u32 msi_ctrl;
  2772. if (bnx2_has_work(bnapi)) {
  2773. msi_ctrl = REG_RD(bp, BNX2_PCICFG_MSI_CONTROL);
  2774. if (!(msi_ctrl & BNX2_PCICFG_MSI_CONTROL_ENABLE))
  2775. return;
  2776. if (bnapi->last_status_idx == bp->idle_chk_status_idx) {
  2777. REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl &
  2778. ~BNX2_PCICFG_MSI_CONTROL_ENABLE);
  2779. REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl);
  2780. bnx2_msi(bp->irq_tbl[0].vector, bnapi);
  2781. }
  2782. }
  2783. bp->idle_chk_status_idx = bnapi->last_status_idx;
  2784. }
  2785. #ifdef BCM_CNIC
  2786. static void bnx2_poll_cnic(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2787. {
  2788. struct cnic_ops *c_ops;
  2789. if (!bnapi->cnic_present)
  2790. return;
  2791. rcu_read_lock();
  2792. c_ops = rcu_dereference(bp->cnic_ops);
  2793. if (c_ops)
  2794. bnapi->cnic_tag = c_ops->cnic_handler(bp->cnic_data,
  2795. bnapi->status_blk.msi);
  2796. rcu_read_unlock();
  2797. }
  2798. #endif
  2799. static void bnx2_poll_link(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2800. {
  2801. struct status_block *sblk = bnapi->status_blk.msi;
  2802. u32 status_attn_bits = sblk->status_attn_bits;
  2803. u32 status_attn_bits_ack = sblk->status_attn_bits_ack;
  2804. if ((status_attn_bits & STATUS_ATTN_EVENTS) !=
  2805. (status_attn_bits_ack & STATUS_ATTN_EVENTS)) {
  2806. bnx2_phy_int(bp, bnapi);
  2807. /* This is needed to take care of transient status
  2808. * during link changes.
  2809. */
  2810. REG_WR(bp, BNX2_HC_COMMAND,
  2811. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  2812. REG_RD(bp, BNX2_HC_COMMAND);
  2813. }
  2814. }
  2815. static int bnx2_poll_work(struct bnx2 *bp, struct bnx2_napi *bnapi,
  2816. int work_done, int budget)
  2817. {
  2818. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2819. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2820. if (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons)
  2821. bnx2_tx_int(bp, bnapi, 0);
  2822. if (bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons)
  2823. work_done += bnx2_rx_int(bp, bnapi, budget - work_done);
  2824. return work_done;
  2825. }
  2826. static int bnx2_poll_msix(struct napi_struct *napi, int budget)
  2827. {
  2828. struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
  2829. struct bnx2 *bp = bnapi->bp;
  2830. int work_done = 0;
  2831. struct status_block_msix *sblk = bnapi->status_blk.msix;
  2832. while (1) {
  2833. work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
  2834. if (unlikely(work_done >= budget))
  2835. break;
  2836. bnapi->last_status_idx = sblk->status_idx;
  2837. /* status idx must be read before checking for more work. */
  2838. rmb();
  2839. if (likely(!bnx2_has_fast_work(bnapi))) {
  2840. napi_complete(napi);
  2841. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  2842. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2843. bnapi->last_status_idx);
  2844. break;
  2845. }
  2846. }
  2847. return work_done;
  2848. }
  2849. static int bnx2_poll(struct napi_struct *napi, int budget)
  2850. {
  2851. struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
  2852. struct bnx2 *bp = bnapi->bp;
  2853. int work_done = 0;
  2854. struct status_block *sblk = bnapi->status_blk.msi;
  2855. while (1) {
  2856. bnx2_poll_link(bp, bnapi);
  2857. work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
  2858. #ifdef BCM_CNIC
  2859. bnx2_poll_cnic(bp, bnapi);
  2860. #endif
  2861. /* bnapi->last_status_idx is used below to tell the hw how
  2862. * much work has been processed, so we must read it before
  2863. * checking for more work.
  2864. */
  2865. bnapi->last_status_idx = sblk->status_idx;
  2866. if (unlikely(work_done >= budget))
  2867. break;
  2868. rmb();
  2869. if (likely(!bnx2_has_work(bnapi))) {
  2870. napi_complete(napi);
  2871. if (likely(bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)) {
  2872. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2873. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2874. bnapi->last_status_idx);
  2875. break;
  2876. }
  2877. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2878. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2879. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  2880. bnapi->last_status_idx);
  2881. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2882. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2883. bnapi->last_status_idx);
  2884. break;
  2885. }
  2886. }
  2887. return work_done;
  2888. }
  2889. /* Called with rtnl_lock from vlan functions and also netif_tx_lock
  2890. * from set_multicast.
  2891. */
  2892. static void
  2893. bnx2_set_rx_mode(struct net_device *dev)
  2894. {
  2895. struct bnx2 *bp = netdev_priv(dev);
  2896. u32 rx_mode, sort_mode;
  2897. struct netdev_hw_addr *ha;
  2898. int i;
  2899. if (!netif_running(dev))
  2900. return;
  2901. spin_lock_bh(&bp->phy_lock);
  2902. rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
  2903. BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
  2904. sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
  2905. #ifdef BCM_VLAN
  2906. if (!bp->vlgrp && (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
  2907. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  2908. #else
  2909. if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
  2910. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  2911. #endif
  2912. if (dev->flags & IFF_PROMISC) {
  2913. /* Promiscuous mode. */
  2914. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  2915. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
  2916. BNX2_RPM_SORT_USER0_PROM_VLAN;
  2917. }
  2918. else if (dev->flags & IFF_ALLMULTI) {
  2919. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2920. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2921. 0xffffffff);
  2922. }
  2923. sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
  2924. }
  2925. else {
  2926. /* Accept one or more multicast(s). */
  2927. struct dev_mc_list *mclist;
  2928. u32 mc_filter[NUM_MC_HASH_REGISTERS];
  2929. u32 regidx;
  2930. u32 bit;
  2931. u32 crc;
  2932. memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
  2933. for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
  2934. i++, mclist = mclist->next) {
  2935. crc = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
  2936. bit = crc & 0xff;
  2937. regidx = (bit & 0xe0) >> 5;
  2938. bit &= 0x1f;
  2939. mc_filter[regidx] |= (1 << bit);
  2940. }
  2941. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2942. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2943. mc_filter[i]);
  2944. }
  2945. sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
  2946. }
  2947. if (dev->uc.count > BNX2_MAX_UNICAST_ADDRESSES) {
  2948. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  2949. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
  2950. BNX2_RPM_SORT_USER0_PROM_VLAN;
  2951. } else if (!(dev->flags & IFF_PROMISC)) {
  2952. /* Add all entries into to the match filter list */
  2953. i = 0;
  2954. list_for_each_entry(ha, &dev->uc.list, list) {
  2955. bnx2_set_mac_addr(bp, ha->addr,
  2956. i + BNX2_START_UNICAST_ADDRESS_INDEX);
  2957. sort_mode |= (1 <<
  2958. (i + BNX2_START_UNICAST_ADDRESS_INDEX));
  2959. i++;
  2960. }
  2961. }
  2962. if (rx_mode != bp->rx_mode) {
  2963. bp->rx_mode = rx_mode;
  2964. REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
  2965. }
  2966. REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  2967. REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
  2968. REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
  2969. spin_unlock_bh(&bp->phy_lock);
  2970. }
  2971. static int __devinit
  2972. check_fw_section(const struct firmware *fw,
  2973. const struct bnx2_fw_file_section *section,
  2974. u32 alignment, bool non_empty)
  2975. {
  2976. u32 offset = be32_to_cpu(section->offset);
  2977. u32 len = be32_to_cpu(section->len);
  2978. if ((offset == 0 && len != 0) || offset >= fw->size || offset & 3)
  2979. return -EINVAL;
  2980. if ((non_empty && len == 0) || len > fw->size - offset ||
  2981. len & (alignment - 1))
  2982. return -EINVAL;
  2983. return 0;
  2984. }
  2985. static int __devinit
  2986. check_mips_fw_entry(const struct firmware *fw,
  2987. const struct bnx2_mips_fw_file_entry *entry)
  2988. {
  2989. if (check_fw_section(fw, &entry->text, 4, true) ||
  2990. check_fw_section(fw, &entry->data, 4, false) ||
  2991. check_fw_section(fw, &entry->rodata, 4, false))
  2992. return -EINVAL;
  2993. return 0;
  2994. }
  2995. static int __devinit
  2996. bnx2_request_firmware(struct bnx2 *bp)
  2997. {
  2998. const char *mips_fw_file, *rv2p_fw_file;
  2999. const struct bnx2_mips_fw_file *mips_fw;
  3000. const struct bnx2_rv2p_fw_file *rv2p_fw;
  3001. int rc;
  3002. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3003. mips_fw_file = FW_MIPS_FILE_09;
  3004. rv2p_fw_file = FW_RV2P_FILE_09;
  3005. } else {
  3006. mips_fw_file = FW_MIPS_FILE_06;
  3007. rv2p_fw_file = FW_RV2P_FILE_06;
  3008. }
  3009. rc = request_firmware(&bp->mips_firmware, mips_fw_file, &bp->pdev->dev);
  3010. if (rc) {
  3011. printk(KERN_ERR PFX "Can't load firmware file \"%s\"\n",
  3012. mips_fw_file);
  3013. return rc;
  3014. }
  3015. rc = request_firmware(&bp->rv2p_firmware, rv2p_fw_file, &bp->pdev->dev);
  3016. if (rc) {
  3017. printk(KERN_ERR PFX "Can't load firmware file \"%s\"\n",
  3018. rv2p_fw_file);
  3019. return rc;
  3020. }
  3021. mips_fw = (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
  3022. rv2p_fw = (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
  3023. if (bp->mips_firmware->size < sizeof(*mips_fw) ||
  3024. check_mips_fw_entry(bp->mips_firmware, &mips_fw->com) ||
  3025. check_mips_fw_entry(bp->mips_firmware, &mips_fw->cp) ||
  3026. check_mips_fw_entry(bp->mips_firmware, &mips_fw->rxp) ||
  3027. check_mips_fw_entry(bp->mips_firmware, &mips_fw->tpat) ||
  3028. check_mips_fw_entry(bp->mips_firmware, &mips_fw->txp)) {
  3029. printk(KERN_ERR PFX "Firmware file \"%s\" is invalid\n",
  3030. mips_fw_file);
  3031. return -EINVAL;
  3032. }
  3033. if (bp->rv2p_firmware->size < sizeof(*rv2p_fw) ||
  3034. check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc1.rv2p, 8, true) ||
  3035. check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc2.rv2p, 8, true)) {
  3036. printk(KERN_ERR PFX "Firmware file \"%s\" is invalid\n",
  3037. rv2p_fw_file);
  3038. return -EINVAL;
  3039. }
  3040. return 0;
  3041. }
  3042. static u32
  3043. rv2p_fw_fixup(u32 rv2p_proc, int idx, u32 loc, u32 rv2p_code)
  3044. {
  3045. switch (idx) {
  3046. case RV2P_P1_FIXUP_PAGE_SIZE_IDX:
  3047. rv2p_code &= ~RV2P_BD_PAGE_SIZE_MSK;
  3048. rv2p_code |= RV2P_BD_PAGE_SIZE;
  3049. break;
  3050. }
  3051. return rv2p_code;
  3052. }
  3053. static int
  3054. load_rv2p_fw(struct bnx2 *bp, u32 rv2p_proc,
  3055. const struct bnx2_rv2p_fw_file_entry *fw_entry)
  3056. {
  3057. u32 rv2p_code_len, file_offset;
  3058. __be32 *rv2p_code;
  3059. int i;
  3060. u32 val, cmd, addr;
  3061. rv2p_code_len = be32_to_cpu(fw_entry->rv2p.len);
  3062. file_offset = be32_to_cpu(fw_entry->rv2p.offset);
  3063. rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
  3064. if (rv2p_proc == RV2P_PROC1) {
  3065. cmd = BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
  3066. addr = BNX2_RV2P_PROC1_ADDR_CMD;
  3067. } else {
  3068. cmd = BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
  3069. addr = BNX2_RV2P_PROC2_ADDR_CMD;
  3070. }
  3071. for (i = 0; i < rv2p_code_len; i += 8) {
  3072. REG_WR(bp, BNX2_RV2P_INSTR_HIGH, be32_to_cpu(*rv2p_code));
  3073. rv2p_code++;
  3074. REG_WR(bp, BNX2_RV2P_INSTR_LOW, be32_to_cpu(*rv2p_code));
  3075. rv2p_code++;
  3076. val = (i / 8) | cmd;
  3077. REG_WR(bp, addr, val);
  3078. }
  3079. rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
  3080. for (i = 0; i < 8; i++) {
  3081. u32 loc, code;
  3082. loc = be32_to_cpu(fw_entry->fixup[i]);
  3083. if (loc && ((loc * 4) < rv2p_code_len)) {
  3084. code = be32_to_cpu(*(rv2p_code + loc - 1));
  3085. REG_WR(bp, BNX2_RV2P_INSTR_HIGH, code);
  3086. code = be32_to_cpu(*(rv2p_code + loc));
  3087. code = rv2p_fw_fixup(rv2p_proc, i, loc, code);
  3088. REG_WR(bp, BNX2_RV2P_INSTR_LOW, code);
  3089. val = (loc / 2) | cmd;
  3090. REG_WR(bp, addr, val);
  3091. }
  3092. }
  3093. /* Reset the processor, un-stall is done later. */
  3094. if (rv2p_proc == RV2P_PROC1) {
  3095. REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
  3096. }
  3097. else {
  3098. REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
  3099. }
  3100. return 0;
  3101. }
  3102. static int
  3103. load_cpu_fw(struct bnx2 *bp, const struct cpu_reg *cpu_reg,
  3104. const struct bnx2_mips_fw_file_entry *fw_entry)
  3105. {
  3106. u32 addr, len, file_offset;
  3107. __be32 *data;
  3108. u32 offset;
  3109. u32 val;
  3110. /* Halt the CPU. */
  3111. val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
  3112. val |= cpu_reg->mode_value_halt;
  3113. bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
  3114. bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
  3115. /* Load the Text area. */
  3116. addr = be32_to_cpu(fw_entry->text.addr);
  3117. len = be32_to_cpu(fw_entry->text.len);
  3118. file_offset = be32_to_cpu(fw_entry->text.offset);
  3119. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3120. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3121. if (len) {
  3122. int j;
  3123. for (j = 0; j < (len / 4); j++, offset += 4)
  3124. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3125. }
  3126. /* Load the Data area. */
  3127. addr = be32_to_cpu(fw_entry->data.addr);
  3128. len = be32_to_cpu(fw_entry->data.len);
  3129. file_offset = be32_to_cpu(fw_entry->data.offset);
  3130. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3131. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3132. if (len) {
  3133. int j;
  3134. for (j = 0; j < (len / 4); j++, offset += 4)
  3135. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3136. }
  3137. /* Load the Read-Only area. */
  3138. addr = be32_to_cpu(fw_entry->rodata.addr);
  3139. len = be32_to_cpu(fw_entry->rodata.len);
  3140. file_offset = be32_to_cpu(fw_entry->rodata.offset);
  3141. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3142. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3143. if (len) {
  3144. int j;
  3145. for (j = 0; j < (len / 4); j++, offset += 4)
  3146. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3147. }
  3148. /* Clear the pre-fetch instruction. */
  3149. bnx2_reg_wr_ind(bp, cpu_reg->inst, 0);
  3150. val = be32_to_cpu(fw_entry->start_addr);
  3151. bnx2_reg_wr_ind(bp, cpu_reg->pc, val);
  3152. /* Start the CPU. */
  3153. val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
  3154. val &= ~cpu_reg->mode_value_halt;
  3155. bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
  3156. bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
  3157. return 0;
  3158. }
  3159. static int
  3160. bnx2_init_cpus(struct bnx2 *bp)
  3161. {
  3162. const struct bnx2_mips_fw_file *mips_fw =
  3163. (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
  3164. const struct bnx2_rv2p_fw_file *rv2p_fw =
  3165. (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
  3166. int rc;
  3167. /* Initialize the RV2P processor. */
  3168. load_rv2p_fw(bp, RV2P_PROC1, &rv2p_fw->proc1);
  3169. load_rv2p_fw(bp, RV2P_PROC2, &rv2p_fw->proc2);
  3170. /* Initialize the RX Processor. */
  3171. rc = load_cpu_fw(bp, &cpu_reg_rxp, &mips_fw->rxp);
  3172. if (rc)
  3173. goto init_cpu_err;
  3174. /* Initialize the TX Processor. */
  3175. rc = load_cpu_fw(bp, &cpu_reg_txp, &mips_fw->txp);
  3176. if (rc)
  3177. goto init_cpu_err;
  3178. /* Initialize the TX Patch-up Processor. */
  3179. rc = load_cpu_fw(bp, &cpu_reg_tpat, &mips_fw->tpat);
  3180. if (rc)
  3181. goto init_cpu_err;
  3182. /* Initialize the Completion Processor. */
  3183. rc = load_cpu_fw(bp, &cpu_reg_com, &mips_fw->com);
  3184. if (rc)
  3185. goto init_cpu_err;
  3186. /* Initialize the Command Processor. */
  3187. rc = load_cpu_fw(bp, &cpu_reg_cp, &mips_fw->cp);
  3188. init_cpu_err:
  3189. return rc;
  3190. }
  3191. static int
  3192. bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
  3193. {
  3194. u16 pmcsr;
  3195. pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
  3196. switch (state) {
  3197. case PCI_D0: {
  3198. u32 val;
  3199. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  3200. (pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
  3201. PCI_PM_CTRL_PME_STATUS);
  3202. if (pmcsr & PCI_PM_CTRL_STATE_MASK)
  3203. /* delay required during transition out of D3hot */
  3204. msleep(20);
  3205. val = REG_RD(bp, BNX2_EMAC_MODE);
  3206. val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
  3207. val &= ~BNX2_EMAC_MODE_MPKT;
  3208. REG_WR(bp, BNX2_EMAC_MODE, val);
  3209. val = REG_RD(bp, BNX2_RPM_CONFIG);
  3210. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  3211. REG_WR(bp, BNX2_RPM_CONFIG, val);
  3212. break;
  3213. }
  3214. case PCI_D3hot: {
  3215. int i;
  3216. u32 val, wol_msg;
  3217. if (bp->wol) {
  3218. u32 advertising;
  3219. u8 autoneg;
  3220. autoneg = bp->autoneg;
  3221. advertising = bp->advertising;
  3222. if (bp->phy_port == PORT_TP) {
  3223. bp->autoneg = AUTONEG_SPEED;
  3224. bp->advertising = ADVERTISED_10baseT_Half |
  3225. ADVERTISED_10baseT_Full |
  3226. ADVERTISED_100baseT_Half |
  3227. ADVERTISED_100baseT_Full |
  3228. ADVERTISED_Autoneg;
  3229. }
  3230. spin_lock_bh(&bp->phy_lock);
  3231. bnx2_setup_phy(bp, bp->phy_port);
  3232. spin_unlock_bh(&bp->phy_lock);
  3233. bp->autoneg = autoneg;
  3234. bp->advertising = advertising;
  3235. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  3236. val = REG_RD(bp, BNX2_EMAC_MODE);
  3237. /* Enable port mode. */
  3238. val &= ~BNX2_EMAC_MODE_PORT;
  3239. val |= BNX2_EMAC_MODE_MPKT_RCVD |
  3240. BNX2_EMAC_MODE_ACPI_RCVD |
  3241. BNX2_EMAC_MODE_MPKT;
  3242. if (bp->phy_port == PORT_TP)
  3243. val |= BNX2_EMAC_MODE_PORT_MII;
  3244. else {
  3245. val |= BNX2_EMAC_MODE_PORT_GMII;
  3246. if (bp->line_speed == SPEED_2500)
  3247. val |= BNX2_EMAC_MODE_25G_MODE;
  3248. }
  3249. REG_WR(bp, BNX2_EMAC_MODE, val);
  3250. /* receive all multicast */
  3251. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  3252. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  3253. 0xffffffff);
  3254. }
  3255. REG_WR(bp, BNX2_EMAC_RX_MODE,
  3256. BNX2_EMAC_RX_MODE_SORT_MODE);
  3257. val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
  3258. BNX2_RPM_SORT_USER0_MC_EN;
  3259. REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  3260. REG_WR(bp, BNX2_RPM_SORT_USER0, val);
  3261. REG_WR(bp, BNX2_RPM_SORT_USER0, val |
  3262. BNX2_RPM_SORT_USER0_ENA);
  3263. /* Need to enable EMAC and RPM for WOL. */
  3264. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  3265. BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
  3266. BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
  3267. BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
  3268. val = REG_RD(bp, BNX2_RPM_CONFIG);
  3269. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  3270. REG_WR(bp, BNX2_RPM_CONFIG, val);
  3271. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  3272. }
  3273. else {
  3274. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  3275. }
  3276. if (!(bp->flags & BNX2_FLAG_NO_WOL))
  3277. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg,
  3278. 1, 0);
  3279. pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
  3280. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  3281. (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
  3282. if (bp->wol)
  3283. pmcsr |= 3;
  3284. }
  3285. else {
  3286. pmcsr |= 3;
  3287. }
  3288. if (bp->wol) {
  3289. pmcsr |= PCI_PM_CTRL_PME_ENABLE;
  3290. }
  3291. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  3292. pmcsr);
  3293. /* No more memory access after this point until
  3294. * device is brought back to D0.
  3295. */
  3296. udelay(50);
  3297. break;
  3298. }
  3299. default:
  3300. return -EINVAL;
  3301. }
  3302. return 0;
  3303. }
  3304. static int
  3305. bnx2_acquire_nvram_lock(struct bnx2 *bp)
  3306. {
  3307. u32 val;
  3308. int j;
  3309. /* Request access to the flash interface. */
  3310. REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
  3311. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3312. val = REG_RD(bp, BNX2_NVM_SW_ARB);
  3313. if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
  3314. break;
  3315. udelay(5);
  3316. }
  3317. if (j >= NVRAM_TIMEOUT_COUNT)
  3318. return -EBUSY;
  3319. return 0;
  3320. }
  3321. static int
  3322. bnx2_release_nvram_lock(struct bnx2 *bp)
  3323. {
  3324. int j;
  3325. u32 val;
  3326. /* Relinquish nvram interface. */
  3327. REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
  3328. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3329. val = REG_RD(bp, BNX2_NVM_SW_ARB);
  3330. if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
  3331. break;
  3332. udelay(5);
  3333. }
  3334. if (j >= NVRAM_TIMEOUT_COUNT)
  3335. return -EBUSY;
  3336. return 0;
  3337. }
  3338. static int
  3339. bnx2_enable_nvram_write(struct bnx2 *bp)
  3340. {
  3341. u32 val;
  3342. val = REG_RD(bp, BNX2_MISC_CFG);
  3343. REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
  3344. if (bp->flash_info->flags & BNX2_NV_WREN) {
  3345. int j;
  3346. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3347. REG_WR(bp, BNX2_NVM_COMMAND,
  3348. BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
  3349. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3350. udelay(5);
  3351. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3352. if (val & BNX2_NVM_COMMAND_DONE)
  3353. break;
  3354. }
  3355. if (j >= NVRAM_TIMEOUT_COUNT)
  3356. return -EBUSY;
  3357. }
  3358. return 0;
  3359. }
  3360. static void
  3361. bnx2_disable_nvram_write(struct bnx2 *bp)
  3362. {
  3363. u32 val;
  3364. val = REG_RD(bp, BNX2_MISC_CFG);
  3365. REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
  3366. }
  3367. static void
  3368. bnx2_enable_nvram_access(struct bnx2 *bp)
  3369. {
  3370. u32 val;
  3371. val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  3372. /* Enable both bits, even on read. */
  3373. REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  3374. val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
  3375. }
  3376. static void
  3377. bnx2_disable_nvram_access(struct bnx2 *bp)
  3378. {
  3379. u32 val;
  3380. val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  3381. /* Disable both bits, even after read. */
  3382. REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  3383. val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
  3384. BNX2_NVM_ACCESS_ENABLE_WR_EN));
  3385. }
  3386. static int
  3387. bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
  3388. {
  3389. u32 cmd;
  3390. int j;
  3391. if (bp->flash_info->flags & BNX2_NV_BUFFERED)
  3392. /* Buffered flash, no erase needed */
  3393. return 0;
  3394. /* Build an erase command */
  3395. cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
  3396. BNX2_NVM_COMMAND_DOIT;
  3397. /* Need to clear DONE bit separately. */
  3398. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3399. /* Address of the NVRAM to read from. */
  3400. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3401. /* Issue an erase command. */
  3402. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3403. /* Wait for completion. */
  3404. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3405. u32 val;
  3406. udelay(5);
  3407. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3408. if (val & BNX2_NVM_COMMAND_DONE)
  3409. break;
  3410. }
  3411. if (j >= NVRAM_TIMEOUT_COUNT)
  3412. return -EBUSY;
  3413. return 0;
  3414. }
  3415. static int
  3416. bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
  3417. {
  3418. u32 cmd;
  3419. int j;
  3420. /* Build the command word. */
  3421. cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
  3422. /* Calculate an offset of a buffered flash, not needed for 5709. */
  3423. if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
  3424. offset = ((offset / bp->flash_info->page_size) <<
  3425. bp->flash_info->page_bits) +
  3426. (offset % bp->flash_info->page_size);
  3427. }
  3428. /* Need to clear DONE bit separately. */
  3429. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3430. /* Address of the NVRAM to read from. */
  3431. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3432. /* Issue a read command. */
  3433. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3434. /* Wait for completion. */
  3435. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3436. u32 val;
  3437. udelay(5);
  3438. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3439. if (val & BNX2_NVM_COMMAND_DONE) {
  3440. __be32 v = cpu_to_be32(REG_RD(bp, BNX2_NVM_READ));
  3441. memcpy(ret_val, &v, 4);
  3442. break;
  3443. }
  3444. }
  3445. if (j >= NVRAM_TIMEOUT_COUNT)
  3446. return -EBUSY;
  3447. return 0;
  3448. }
  3449. static int
  3450. bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
  3451. {
  3452. u32 cmd;
  3453. __be32 val32;
  3454. int j;
  3455. /* Build the command word. */
  3456. cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
  3457. /* Calculate an offset of a buffered flash, not needed for 5709. */
  3458. if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
  3459. offset = ((offset / bp->flash_info->page_size) <<
  3460. bp->flash_info->page_bits) +
  3461. (offset % bp->flash_info->page_size);
  3462. }
  3463. /* Need to clear DONE bit separately. */
  3464. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3465. memcpy(&val32, val, 4);
  3466. /* Write the data. */
  3467. REG_WR(bp, BNX2_NVM_WRITE, be32_to_cpu(val32));
  3468. /* Address of the NVRAM to write to. */
  3469. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3470. /* Issue the write command. */
  3471. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3472. /* Wait for completion. */
  3473. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3474. udelay(5);
  3475. if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
  3476. break;
  3477. }
  3478. if (j >= NVRAM_TIMEOUT_COUNT)
  3479. return -EBUSY;
  3480. return 0;
  3481. }
  3482. static int
  3483. bnx2_init_nvram(struct bnx2 *bp)
  3484. {
  3485. u32 val;
  3486. int j, entry_count, rc = 0;
  3487. struct flash_spec *flash;
  3488. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3489. bp->flash_info = &flash_5709;
  3490. goto get_flash_size;
  3491. }
  3492. /* Determine the selected interface. */
  3493. val = REG_RD(bp, BNX2_NVM_CFG1);
  3494. entry_count = ARRAY_SIZE(flash_table);
  3495. if (val & 0x40000000) {
  3496. /* Flash interface has been reconfigured */
  3497. for (j = 0, flash = &flash_table[0]; j < entry_count;
  3498. j++, flash++) {
  3499. if ((val & FLASH_BACKUP_STRAP_MASK) ==
  3500. (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
  3501. bp->flash_info = flash;
  3502. break;
  3503. }
  3504. }
  3505. }
  3506. else {
  3507. u32 mask;
  3508. /* Not yet been reconfigured */
  3509. if (val & (1 << 23))
  3510. mask = FLASH_BACKUP_STRAP_MASK;
  3511. else
  3512. mask = FLASH_STRAP_MASK;
  3513. for (j = 0, flash = &flash_table[0]; j < entry_count;
  3514. j++, flash++) {
  3515. if ((val & mask) == (flash->strapping & mask)) {
  3516. bp->flash_info = flash;
  3517. /* Request access to the flash interface. */
  3518. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3519. return rc;
  3520. /* Enable access to flash interface */
  3521. bnx2_enable_nvram_access(bp);
  3522. /* Reconfigure the flash interface */
  3523. REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
  3524. REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
  3525. REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
  3526. REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
  3527. /* Disable access to flash interface */
  3528. bnx2_disable_nvram_access(bp);
  3529. bnx2_release_nvram_lock(bp);
  3530. break;
  3531. }
  3532. }
  3533. } /* if (val & 0x40000000) */
  3534. if (j == entry_count) {
  3535. bp->flash_info = NULL;
  3536. printk(KERN_ALERT PFX "Unknown flash/EEPROM type.\n");
  3537. return -ENODEV;
  3538. }
  3539. get_flash_size:
  3540. val = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG2);
  3541. val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
  3542. if (val)
  3543. bp->flash_size = val;
  3544. else
  3545. bp->flash_size = bp->flash_info->total_size;
  3546. return rc;
  3547. }
  3548. static int
  3549. bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
  3550. int buf_size)
  3551. {
  3552. int rc = 0;
  3553. u32 cmd_flags, offset32, len32, extra;
  3554. if (buf_size == 0)
  3555. return 0;
  3556. /* Request access to the flash interface. */
  3557. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3558. return rc;
  3559. /* Enable access to flash interface */
  3560. bnx2_enable_nvram_access(bp);
  3561. len32 = buf_size;
  3562. offset32 = offset;
  3563. extra = 0;
  3564. cmd_flags = 0;
  3565. if (offset32 & 3) {
  3566. u8 buf[4];
  3567. u32 pre_len;
  3568. offset32 &= ~3;
  3569. pre_len = 4 - (offset & 3);
  3570. if (pre_len >= len32) {
  3571. pre_len = len32;
  3572. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  3573. BNX2_NVM_COMMAND_LAST;
  3574. }
  3575. else {
  3576. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3577. }
  3578. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3579. if (rc)
  3580. return rc;
  3581. memcpy(ret_buf, buf + (offset & 3), pre_len);
  3582. offset32 += 4;
  3583. ret_buf += pre_len;
  3584. len32 -= pre_len;
  3585. }
  3586. if (len32 & 3) {
  3587. extra = 4 - (len32 & 3);
  3588. len32 = (len32 + 4) & ~3;
  3589. }
  3590. if (len32 == 4) {
  3591. u8 buf[4];
  3592. if (cmd_flags)
  3593. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3594. else
  3595. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  3596. BNX2_NVM_COMMAND_LAST;
  3597. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3598. memcpy(ret_buf, buf, 4 - extra);
  3599. }
  3600. else if (len32 > 0) {
  3601. u8 buf[4];
  3602. /* Read the first word. */
  3603. if (cmd_flags)
  3604. cmd_flags = 0;
  3605. else
  3606. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3607. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
  3608. /* Advance to the next dword. */
  3609. offset32 += 4;
  3610. ret_buf += 4;
  3611. len32 -= 4;
  3612. while (len32 > 4 && rc == 0) {
  3613. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
  3614. /* Advance to the next dword. */
  3615. offset32 += 4;
  3616. ret_buf += 4;
  3617. len32 -= 4;
  3618. }
  3619. if (rc)
  3620. return rc;
  3621. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3622. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3623. memcpy(ret_buf, buf, 4 - extra);
  3624. }
  3625. /* Disable access to flash interface */
  3626. bnx2_disable_nvram_access(bp);
  3627. bnx2_release_nvram_lock(bp);
  3628. return rc;
  3629. }
  3630. static int
  3631. bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
  3632. int buf_size)
  3633. {
  3634. u32 written, offset32, len32;
  3635. u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
  3636. int rc = 0;
  3637. int align_start, align_end;
  3638. buf = data_buf;
  3639. offset32 = offset;
  3640. len32 = buf_size;
  3641. align_start = align_end = 0;
  3642. if ((align_start = (offset32 & 3))) {
  3643. offset32 &= ~3;
  3644. len32 += align_start;
  3645. if (len32 < 4)
  3646. len32 = 4;
  3647. if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
  3648. return rc;
  3649. }
  3650. if (len32 & 3) {
  3651. align_end = 4 - (len32 & 3);
  3652. len32 += align_end;
  3653. if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4)))
  3654. return rc;
  3655. }
  3656. if (align_start || align_end) {
  3657. align_buf = kmalloc(len32, GFP_KERNEL);
  3658. if (align_buf == NULL)
  3659. return -ENOMEM;
  3660. if (align_start) {
  3661. memcpy(align_buf, start, 4);
  3662. }
  3663. if (align_end) {
  3664. memcpy(align_buf + len32 - 4, end, 4);
  3665. }
  3666. memcpy(align_buf + align_start, data_buf, buf_size);
  3667. buf = align_buf;
  3668. }
  3669. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3670. flash_buffer = kmalloc(264, GFP_KERNEL);
  3671. if (flash_buffer == NULL) {
  3672. rc = -ENOMEM;
  3673. goto nvram_write_end;
  3674. }
  3675. }
  3676. written = 0;
  3677. while ((written < len32) && (rc == 0)) {
  3678. u32 page_start, page_end, data_start, data_end;
  3679. u32 addr, cmd_flags;
  3680. int i;
  3681. /* Find the page_start addr */
  3682. page_start = offset32 + written;
  3683. page_start -= (page_start % bp->flash_info->page_size);
  3684. /* Find the page_end addr */
  3685. page_end = page_start + bp->flash_info->page_size;
  3686. /* Find the data_start addr */
  3687. data_start = (written == 0) ? offset32 : page_start;
  3688. /* Find the data_end addr */
  3689. data_end = (page_end > offset32 + len32) ?
  3690. (offset32 + len32) : page_end;
  3691. /* Request access to the flash interface. */
  3692. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3693. goto nvram_write_end;
  3694. /* Enable access to flash interface */
  3695. bnx2_enable_nvram_access(bp);
  3696. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3697. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3698. int j;
  3699. /* Read the whole page into the buffer
  3700. * (non-buffer flash only) */
  3701. for (j = 0; j < bp->flash_info->page_size; j += 4) {
  3702. if (j == (bp->flash_info->page_size - 4)) {
  3703. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3704. }
  3705. rc = bnx2_nvram_read_dword(bp,
  3706. page_start + j,
  3707. &flash_buffer[j],
  3708. cmd_flags);
  3709. if (rc)
  3710. goto nvram_write_end;
  3711. cmd_flags = 0;
  3712. }
  3713. }
  3714. /* Enable writes to flash interface (unlock write-protect) */
  3715. if ((rc = bnx2_enable_nvram_write(bp)) != 0)
  3716. goto nvram_write_end;
  3717. /* Loop to write back the buffer data from page_start to
  3718. * data_start */
  3719. i = 0;
  3720. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3721. /* Erase the page */
  3722. if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
  3723. goto nvram_write_end;
  3724. /* Re-enable the write again for the actual write */
  3725. bnx2_enable_nvram_write(bp);
  3726. for (addr = page_start; addr < data_start;
  3727. addr += 4, i += 4) {
  3728. rc = bnx2_nvram_write_dword(bp, addr,
  3729. &flash_buffer[i], cmd_flags);
  3730. if (rc != 0)
  3731. goto nvram_write_end;
  3732. cmd_flags = 0;
  3733. }
  3734. }
  3735. /* Loop to write the new data from data_start to data_end */
  3736. for (addr = data_start; addr < data_end; addr += 4, i += 4) {
  3737. if ((addr == page_end - 4) ||
  3738. ((bp->flash_info->flags & BNX2_NV_BUFFERED) &&
  3739. (addr == data_end - 4))) {
  3740. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3741. }
  3742. rc = bnx2_nvram_write_dword(bp, addr, buf,
  3743. cmd_flags);
  3744. if (rc != 0)
  3745. goto nvram_write_end;
  3746. cmd_flags = 0;
  3747. buf += 4;
  3748. }
  3749. /* Loop to write back the buffer data from data_end
  3750. * to page_end */
  3751. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3752. for (addr = data_end; addr < page_end;
  3753. addr += 4, i += 4) {
  3754. if (addr == page_end-4) {
  3755. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3756. }
  3757. rc = bnx2_nvram_write_dword(bp, addr,
  3758. &flash_buffer[i], cmd_flags);
  3759. if (rc != 0)
  3760. goto nvram_write_end;
  3761. cmd_flags = 0;
  3762. }
  3763. }
  3764. /* Disable writes to flash interface (lock write-protect) */
  3765. bnx2_disable_nvram_write(bp);
  3766. /* Disable access to flash interface */
  3767. bnx2_disable_nvram_access(bp);
  3768. bnx2_release_nvram_lock(bp);
  3769. /* Increment written */
  3770. written += data_end - data_start;
  3771. }
  3772. nvram_write_end:
  3773. kfree(flash_buffer);
  3774. kfree(align_buf);
  3775. return rc;
  3776. }
  3777. static void
  3778. bnx2_init_fw_cap(struct bnx2 *bp)
  3779. {
  3780. u32 val, sig = 0;
  3781. bp->phy_flags &= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP;
  3782. bp->flags &= ~BNX2_FLAG_CAN_KEEP_VLAN;
  3783. if (!(bp->flags & BNX2_FLAG_ASF_ENABLE))
  3784. bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
  3785. val = bnx2_shmem_rd(bp, BNX2_FW_CAP_MB);
  3786. if ((val & BNX2_FW_CAP_SIGNATURE_MASK) != BNX2_FW_CAP_SIGNATURE)
  3787. return;
  3788. if ((val & BNX2_FW_CAP_CAN_KEEP_VLAN) == BNX2_FW_CAP_CAN_KEEP_VLAN) {
  3789. bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
  3790. sig |= BNX2_DRV_ACK_CAP_SIGNATURE | BNX2_FW_CAP_CAN_KEEP_VLAN;
  3791. }
  3792. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  3793. (val & BNX2_FW_CAP_REMOTE_PHY_CAPABLE)) {
  3794. u32 link;
  3795. bp->phy_flags |= BNX2_PHY_FLAG_REMOTE_PHY_CAP;
  3796. link = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
  3797. if (link & BNX2_LINK_STATUS_SERDES_LINK)
  3798. bp->phy_port = PORT_FIBRE;
  3799. else
  3800. bp->phy_port = PORT_TP;
  3801. sig |= BNX2_DRV_ACK_CAP_SIGNATURE |
  3802. BNX2_FW_CAP_REMOTE_PHY_CAPABLE;
  3803. }
  3804. if (netif_running(bp->dev) && sig)
  3805. bnx2_shmem_wr(bp, BNX2_DRV_ACK_CAP_MB, sig);
  3806. }
  3807. static void
  3808. bnx2_setup_msix_tbl(struct bnx2 *bp)
  3809. {
  3810. REG_WR(bp, BNX2_PCI_GRC_WINDOW_ADDR, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN);
  3811. REG_WR(bp, BNX2_PCI_GRC_WINDOW2_ADDR, BNX2_MSIX_TABLE_ADDR);
  3812. REG_WR(bp, BNX2_PCI_GRC_WINDOW3_ADDR, BNX2_MSIX_PBA_ADDR);
  3813. }
  3814. static int
  3815. bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
  3816. {
  3817. u32 val;
  3818. int i, rc = 0;
  3819. u8 old_port;
  3820. /* Wait for the current PCI transaction to complete before
  3821. * issuing a reset. */
  3822. REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
  3823. BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
  3824. BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
  3825. BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
  3826. BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
  3827. val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
  3828. udelay(5);
  3829. /* Wait for the firmware to tell us it is ok to issue a reset. */
  3830. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1, 1);
  3831. /* Deposit a driver reset signature so the firmware knows that
  3832. * this is a soft reset. */
  3833. bnx2_shmem_wr(bp, BNX2_DRV_RESET_SIGNATURE,
  3834. BNX2_DRV_RESET_SIGNATURE_MAGIC);
  3835. /* Do a dummy read to force the chip to complete all current transaction
  3836. * before we issue a reset. */
  3837. val = REG_RD(bp, BNX2_MISC_ID);
  3838. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3839. REG_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
  3840. REG_RD(bp, BNX2_MISC_COMMAND);
  3841. udelay(5);
  3842. val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3843. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3844. pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, val);
  3845. } else {
  3846. val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3847. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3848. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3849. /* Chip reset. */
  3850. REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
  3851. /* Reading back any register after chip reset will hang the
  3852. * bus on 5706 A0 and A1. The msleep below provides plenty
  3853. * of margin for write posting.
  3854. */
  3855. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  3856. (CHIP_ID(bp) == CHIP_ID_5706_A1))
  3857. msleep(20);
  3858. /* Reset takes approximate 30 usec */
  3859. for (i = 0; i < 10; i++) {
  3860. val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
  3861. if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3862. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
  3863. break;
  3864. udelay(10);
  3865. }
  3866. if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3867. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
  3868. printk(KERN_ERR PFX "Chip reset did not complete\n");
  3869. return -EBUSY;
  3870. }
  3871. }
  3872. /* Make sure byte swapping is properly configured. */
  3873. val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
  3874. if (val != 0x01020304) {
  3875. printk(KERN_ERR PFX "Chip not in correct endian mode\n");
  3876. return -ENODEV;
  3877. }
  3878. /* Wait for the firmware to finish its initialization. */
  3879. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 1, 0);
  3880. if (rc)
  3881. return rc;
  3882. spin_lock_bh(&bp->phy_lock);
  3883. old_port = bp->phy_port;
  3884. bnx2_init_fw_cap(bp);
  3885. if ((bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) &&
  3886. old_port != bp->phy_port)
  3887. bnx2_set_default_remote_link(bp);
  3888. spin_unlock_bh(&bp->phy_lock);
  3889. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  3890. /* Adjust the voltage regular to two steps lower. The default
  3891. * of this register is 0x0000000e. */
  3892. REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
  3893. /* Remove bad rbuf memory from the free pool. */
  3894. rc = bnx2_alloc_bad_rbuf(bp);
  3895. }
  3896. if (bp->flags & BNX2_FLAG_USING_MSIX)
  3897. bnx2_setup_msix_tbl(bp);
  3898. return rc;
  3899. }
  3900. static int
  3901. bnx2_init_chip(struct bnx2 *bp)
  3902. {
  3903. u32 val, mtu;
  3904. int rc, i;
  3905. /* Make sure the interrupt is not active. */
  3906. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  3907. val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
  3908. BNX2_DMA_CONFIG_DATA_WORD_SWAP |
  3909. #ifdef __BIG_ENDIAN
  3910. BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
  3911. #endif
  3912. BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
  3913. DMA_READ_CHANS << 12 |
  3914. DMA_WRITE_CHANS << 16;
  3915. val |= (0x2 << 20) | (1 << 11);
  3916. if ((bp->flags & BNX2_FLAG_PCIX) && (bp->bus_speed_mhz == 133))
  3917. val |= (1 << 23);
  3918. if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
  3919. (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & BNX2_FLAG_PCIX))
  3920. val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
  3921. REG_WR(bp, BNX2_DMA_CONFIG, val);
  3922. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  3923. val = REG_RD(bp, BNX2_TDMA_CONFIG);
  3924. val |= BNX2_TDMA_CONFIG_ONE_DMA;
  3925. REG_WR(bp, BNX2_TDMA_CONFIG, val);
  3926. }
  3927. if (bp->flags & BNX2_FLAG_PCIX) {
  3928. u16 val16;
  3929. pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  3930. &val16);
  3931. pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  3932. val16 & ~PCI_X_CMD_ERO);
  3933. }
  3934. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  3935. BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
  3936. BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
  3937. BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
  3938. /* Initialize context mapping and zero out the quick contexts. The
  3939. * context block must have already been enabled. */
  3940. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3941. rc = bnx2_init_5709_context(bp);
  3942. if (rc)
  3943. return rc;
  3944. } else
  3945. bnx2_init_context(bp);
  3946. if ((rc = bnx2_init_cpus(bp)) != 0)
  3947. return rc;
  3948. bnx2_init_nvram(bp);
  3949. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  3950. val = REG_RD(bp, BNX2_MQ_CONFIG);
  3951. val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
  3952. val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
  3953. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3954. val |= BNX2_MQ_CONFIG_BIN_MQ_MODE;
  3955. if (CHIP_REV(bp) == CHIP_REV_Ax)
  3956. val |= BNX2_MQ_CONFIG_HALT_DIS;
  3957. }
  3958. REG_WR(bp, BNX2_MQ_CONFIG, val);
  3959. val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
  3960. REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
  3961. REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
  3962. val = (BCM_PAGE_BITS - 8) << 24;
  3963. REG_WR(bp, BNX2_RV2P_CONFIG, val);
  3964. /* Configure page size. */
  3965. val = REG_RD(bp, BNX2_TBDR_CONFIG);
  3966. val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
  3967. val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
  3968. REG_WR(bp, BNX2_TBDR_CONFIG, val);
  3969. val = bp->mac_addr[0] +
  3970. (bp->mac_addr[1] << 8) +
  3971. (bp->mac_addr[2] << 16) +
  3972. bp->mac_addr[3] +
  3973. (bp->mac_addr[4] << 8) +
  3974. (bp->mac_addr[5] << 16);
  3975. REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
  3976. /* Program the MTU. Also include 4 bytes for CRC32. */
  3977. mtu = bp->dev->mtu;
  3978. val = mtu + ETH_HLEN + ETH_FCS_LEN;
  3979. if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
  3980. val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
  3981. REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
  3982. if (mtu < 1500)
  3983. mtu = 1500;
  3984. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG, BNX2_RBUF_CONFIG_VAL(mtu));
  3985. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG2, BNX2_RBUF_CONFIG2_VAL(mtu));
  3986. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG3, BNX2_RBUF_CONFIG3_VAL(mtu));
  3987. memset(bp->bnx2_napi[0].status_blk.msi, 0, bp->status_stats_size);
  3988. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++)
  3989. bp->bnx2_napi[i].last_status_idx = 0;
  3990. bp->idle_chk_status_idx = 0xffff;
  3991. bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
  3992. /* Set up how to generate a link change interrupt. */
  3993. REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  3994. REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
  3995. (u64) bp->status_blk_mapping & 0xffffffff);
  3996. REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
  3997. REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
  3998. (u64) bp->stats_blk_mapping & 0xffffffff);
  3999. REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
  4000. (u64) bp->stats_blk_mapping >> 32);
  4001. REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
  4002. (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
  4003. REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
  4004. (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
  4005. REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
  4006. (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
  4007. REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
  4008. REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
  4009. REG_WR(bp, BNX2_HC_COM_TICKS,
  4010. (bp->com_ticks_int << 16) | bp->com_ticks);
  4011. REG_WR(bp, BNX2_HC_CMD_TICKS,
  4012. (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
  4013. if (CHIP_NUM(bp) == CHIP_NUM_5708)
  4014. REG_WR(bp, BNX2_HC_STATS_TICKS, 0);
  4015. else
  4016. REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks);
  4017. REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
  4018. if (CHIP_ID(bp) == CHIP_ID_5706_A1)
  4019. val = BNX2_HC_CONFIG_COLLECT_STATS;
  4020. else {
  4021. val = BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE |
  4022. BNX2_HC_CONFIG_COLLECT_STATS;
  4023. }
  4024. if (bp->irq_nvecs > 1) {
  4025. REG_WR(bp, BNX2_HC_MSIX_BIT_VECTOR,
  4026. BNX2_HC_MSIX_BIT_VECTOR_VAL);
  4027. val |= BNX2_HC_CONFIG_SB_ADDR_INC_128B;
  4028. }
  4029. if (bp->flags & BNX2_FLAG_ONE_SHOT_MSI)
  4030. val |= BNX2_HC_CONFIG_ONE_SHOT;
  4031. REG_WR(bp, BNX2_HC_CONFIG, val);
  4032. for (i = 1; i < bp->irq_nvecs; i++) {
  4033. u32 base = ((i - 1) * BNX2_HC_SB_CONFIG_SIZE) +
  4034. BNX2_HC_SB_CONFIG_1;
  4035. REG_WR(bp, base,
  4036. BNX2_HC_SB_CONFIG_1_TX_TMR_MODE |
  4037. BNX2_HC_SB_CONFIG_1_RX_TMR_MODE |
  4038. BNX2_HC_SB_CONFIG_1_ONE_SHOT);
  4039. REG_WR(bp, base + BNX2_HC_TX_QUICK_CONS_TRIP_OFF,
  4040. (bp->tx_quick_cons_trip_int << 16) |
  4041. bp->tx_quick_cons_trip);
  4042. REG_WR(bp, base + BNX2_HC_TX_TICKS_OFF,
  4043. (bp->tx_ticks_int << 16) | bp->tx_ticks);
  4044. REG_WR(bp, base + BNX2_HC_RX_QUICK_CONS_TRIP_OFF,
  4045. (bp->rx_quick_cons_trip_int << 16) |
  4046. bp->rx_quick_cons_trip);
  4047. REG_WR(bp, base + BNX2_HC_RX_TICKS_OFF,
  4048. (bp->rx_ticks_int << 16) | bp->rx_ticks);
  4049. }
  4050. /* Clear internal stats counters. */
  4051. REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
  4052. REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_EVENTS);
  4053. /* Initialize the receive filter. */
  4054. bnx2_set_rx_mode(bp->dev);
  4055. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4056. val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
  4057. val |= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
  4058. REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
  4059. }
  4060. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
  4061. 1, 0);
  4062. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_DEFAULT);
  4063. REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
  4064. udelay(20);
  4065. bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND);
  4066. return rc;
  4067. }
  4068. static void
  4069. bnx2_clear_ring_states(struct bnx2 *bp)
  4070. {
  4071. struct bnx2_napi *bnapi;
  4072. struct bnx2_tx_ring_info *txr;
  4073. struct bnx2_rx_ring_info *rxr;
  4074. int i;
  4075. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  4076. bnapi = &bp->bnx2_napi[i];
  4077. txr = &bnapi->tx_ring;
  4078. rxr = &bnapi->rx_ring;
  4079. txr->tx_cons = 0;
  4080. txr->hw_tx_cons = 0;
  4081. rxr->rx_prod_bseq = 0;
  4082. rxr->rx_prod = 0;
  4083. rxr->rx_cons = 0;
  4084. rxr->rx_pg_prod = 0;
  4085. rxr->rx_pg_cons = 0;
  4086. }
  4087. }
  4088. static void
  4089. bnx2_init_tx_context(struct bnx2 *bp, u32 cid, struct bnx2_tx_ring_info *txr)
  4090. {
  4091. u32 val, offset0, offset1, offset2, offset3;
  4092. u32 cid_addr = GET_CID_ADDR(cid);
  4093. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4094. offset0 = BNX2_L2CTX_TYPE_XI;
  4095. offset1 = BNX2_L2CTX_CMD_TYPE_XI;
  4096. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
  4097. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
  4098. } else {
  4099. offset0 = BNX2_L2CTX_TYPE;
  4100. offset1 = BNX2_L2CTX_CMD_TYPE;
  4101. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
  4102. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
  4103. }
  4104. val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
  4105. bnx2_ctx_wr(bp, cid_addr, offset0, val);
  4106. val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
  4107. bnx2_ctx_wr(bp, cid_addr, offset1, val);
  4108. val = (u64) txr->tx_desc_mapping >> 32;
  4109. bnx2_ctx_wr(bp, cid_addr, offset2, val);
  4110. val = (u64) txr->tx_desc_mapping & 0xffffffff;
  4111. bnx2_ctx_wr(bp, cid_addr, offset3, val);
  4112. }
  4113. static void
  4114. bnx2_init_tx_ring(struct bnx2 *bp, int ring_num)
  4115. {
  4116. struct tx_bd *txbd;
  4117. u32 cid = TX_CID;
  4118. struct bnx2_napi *bnapi;
  4119. struct bnx2_tx_ring_info *txr;
  4120. bnapi = &bp->bnx2_napi[ring_num];
  4121. txr = &bnapi->tx_ring;
  4122. if (ring_num == 0)
  4123. cid = TX_CID;
  4124. else
  4125. cid = TX_TSS_CID + ring_num - 1;
  4126. bp->tx_wake_thresh = bp->tx_ring_size / 2;
  4127. txbd = &txr->tx_desc_ring[MAX_TX_DESC_CNT];
  4128. txbd->tx_bd_haddr_hi = (u64) txr->tx_desc_mapping >> 32;
  4129. txbd->tx_bd_haddr_lo = (u64) txr->tx_desc_mapping & 0xffffffff;
  4130. txr->tx_prod = 0;
  4131. txr->tx_prod_bseq = 0;
  4132. txr->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
  4133. txr->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
  4134. bnx2_init_tx_context(bp, cid, txr);
  4135. }
  4136. static void
  4137. bnx2_init_rxbd_rings(struct rx_bd *rx_ring[], dma_addr_t dma[], u32 buf_size,
  4138. int num_rings)
  4139. {
  4140. int i;
  4141. struct rx_bd *rxbd;
  4142. for (i = 0; i < num_rings; i++) {
  4143. int j;
  4144. rxbd = &rx_ring[i][0];
  4145. for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) {
  4146. rxbd->rx_bd_len = buf_size;
  4147. rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
  4148. }
  4149. if (i == (num_rings - 1))
  4150. j = 0;
  4151. else
  4152. j = i + 1;
  4153. rxbd->rx_bd_haddr_hi = (u64) dma[j] >> 32;
  4154. rxbd->rx_bd_haddr_lo = (u64) dma[j] & 0xffffffff;
  4155. }
  4156. }
  4157. static void
  4158. bnx2_init_rx_ring(struct bnx2 *bp, int ring_num)
  4159. {
  4160. int i;
  4161. u16 prod, ring_prod;
  4162. u32 cid, rx_cid_addr, val;
  4163. struct bnx2_napi *bnapi = &bp->bnx2_napi[ring_num];
  4164. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4165. if (ring_num == 0)
  4166. cid = RX_CID;
  4167. else
  4168. cid = RX_RSS_CID + ring_num - 1;
  4169. rx_cid_addr = GET_CID_ADDR(cid);
  4170. bnx2_init_rxbd_rings(rxr->rx_desc_ring, rxr->rx_desc_mapping,
  4171. bp->rx_buf_use_size, bp->rx_max_ring);
  4172. bnx2_init_rx_context(bp, cid);
  4173. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4174. val = REG_RD(bp, BNX2_MQ_MAP_L2_5);
  4175. REG_WR(bp, BNX2_MQ_MAP_L2_5, val | BNX2_MQ_MAP_L2_5_ARM);
  4176. }
  4177. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, 0);
  4178. if (bp->rx_pg_ring_size) {
  4179. bnx2_init_rxbd_rings(rxr->rx_pg_desc_ring,
  4180. rxr->rx_pg_desc_mapping,
  4181. PAGE_SIZE, bp->rx_max_pg_ring);
  4182. val = (bp->rx_buf_use_size << 16) | PAGE_SIZE;
  4183. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, val);
  4184. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_RBDC_KEY,
  4185. BNX2_L2CTX_RBDC_JUMBO_KEY - ring_num);
  4186. val = (u64) rxr->rx_pg_desc_mapping[0] >> 32;
  4187. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_HI, val);
  4188. val = (u64) rxr->rx_pg_desc_mapping[0] & 0xffffffff;
  4189. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_LO, val);
  4190. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4191. REG_WR(bp, BNX2_MQ_MAP_L2_3, BNX2_MQ_MAP_L2_3_DEFAULT);
  4192. }
  4193. val = (u64) rxr->rx_desc_mapping[0] >> 32;
  4194. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_HI, val);
  4195. val = (u64) rxr->rx_desc_mapping[0] & 0xffffffff;
  4196. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_LO, val);
  4197. ring_prod = prod = rxr->rx_pg_prod;
  4198. for (i = 0; i < bp->rx_pg_ring_size; i++) {
  4199. if (bnx2_alloc_rx_page(bp, rxr, ring_prod) < 0)
  4200. break;
  4201. prod = NEXT_RX_BD(prod);
  4202. ring_prod = RX_PG_RING_IDX(prod);
  4203. }
  4204. rxr->rx_pg_prod = prod;
  4205. ring_prod = prod = rxr->rx_prod;
  4206. for (i = 0; i < bp->rx_ring_size; i++) {
  4207. if (bnx2_alloc_rx_skb(bp, rxr, ring_prod) < 0)
  4208. break;
  4209. prod = NEXT_RX_BD(prod);
  4210. ring_prod = RX_RING_IDX(prod);
  4211. }
  4212. rxr->rx_prod = prod;
  4213. rxr->rx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BDIDX;
  4214. rxr->rx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BSEQ;
  4215. rxr->rx_pg_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_PG_BDIDX;
  4216. REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
  4217. REG_WR16(bp, rxr->rx_bidx_addr, prod);
  4218. REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
  4219. }
  4220. static void
  4221. bnx2_init_all_rings(struct bnx2 *bp)
  4222. {
  4223. int i;
  4224. u32 val;
  4225. bnx2_clear_ring_states(bp);
  4226. REG_WR(bp, BNX2_TSCH_TSS_CFG, 0);
  4227. for (i = 0; i < bp->num_tx_rings; i++)
  4228. bnx2_init_tx_ring(bp, i);
  4229. if (bp->num_tx_rings > 1)
  4230. REG_WR(bp, BNX2_TSCH_TSS_CFG, ((bp->num_tx_rings - 1) << 24) |
  4231. (TX_TSS_CID << 7));
  4232. REG_WR(bp, BNX2_RLUP_RSS_CONFIG, 0);
  4233. bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ, 0);
  4234. for (i = 0; i < bp->num_rx_rings; i++)
  4235. bnx2_init_rx_ring(bp, i);
  4236. if (bp->num_rx_rings > 1) {
  4237. u32 tbl_32;
  4238. u8 *tbl = (u8 *) &tbl_32;
  4239. bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ,
  4240. BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES);
  4241. for (i = 0; i < BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES; i++) {
  4242. tbl[i % 4] = i % (bp->num_rx_rings - 1);
  4243. if ((i % 4) == 3)
  4244. bnx2_reg_wr_ind(bp,
  4245. BNX2_RXP_SCRATCH_RSS_TBL + i,
  4246. cpu_to_be32(tbl_32));
  4247. }
  4248. val = BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI |
  4249. BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI;
  4250. REG_WR(bp, BNX2_RLUP_RSS_CONFIG, val);
  4251. }
  4252. }
  4253. static u32 bnx2_find_max_ring(u32 ring_size, u32 max_size)
  4254. {
  4255. u32 max, num_rings = 1;
  4256. while (ring_size > MAX_RX_DESC_CNT) {
  4257. ring_size -= MAX_RX_DESC_CNT;
  4258. num_rings++;
  4259. }
  4260. /* round to next power of 2 */
  4261. max = max_size;
  4262. while ((max & num_rings) == 0)
  4263. max >>= 1;
  4264. if (num_rings != max)
  4265. max <<= 1;
  4266. return max;
  4267. }
  4268. static void
  4269. bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
  4270. {
  4271. u32 rx_size, rx_space, jumbo_size;
  4272. /* 8 for CRC and VLAN */
  4273. rx_size = bp->dev->mtu + ETH_HLEN + BNX2_RX_OFFSET + 8;
  4274. rx_space = SKB_DATA_ALIGN(rx_size + BNX2_RX_ALIGN) + NET_SKB_PAD +
  4275. sizeof(struct skb_shared_info);
  4276. bp->rx_copy_thresh = BNX2_RX_COPY_THRESH;
  4277. bp->rx_pg_ring_size = 0;
  4278. bp->rx_max_pg_ring = 0;
  4279. bp->rx_max_pg_ring_idx = 0;
  4280. if ((rx_space > PAGE_SIZE) && !(bp->flags & BNX2_FLAG_JUMBO_BROKEN)) {
  4281. int pages = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
  4282. jumbo_size = size * pages;
  4283. if (jumbo_size > MAX_TOTAL_RX_PG_DESC_CNT)
  4284. jumbo_size = MAX_TOTAL_RX_PG_DESC_CNT;
  4285. bp->rx_pg_ring_size = jumbo_size;
  4286. bp->rx_max_pg_ring = bnx2_find_max_ring(jumbo_size,
  4287. MAX_RX_PG_RINGS);
  4288. bp->rx_max_pg_ring_idx = (bp->rx_max_pg_ring * RX_DESC_CNT) - 1;
  4289. rx_size = BNX2_RX_COPY_THRESH + BNX2_RX_OFFSET;
  4290. bp->rx_copy_thresh = 0;
  4291. }
  4292. bp->rx_buf_use_size = rx_size;
  4293. /* hw alignment */
  4294. bp->rx_buf_size = bp->rx_buf_use_size + BNX2_RX_ALIGN;
  4295. bp->rx_jumbo_thresh = rx_size - BNX2_RX_OFFSET;
  4296. bp->rx_ring_size = size;
  4297. bp->rx_max_ring = bnx2_find_max_ring(size, MAX_RX_RINGS);
  4298. bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1;
  4299. }
  4300. static void
  4301. bnx2_free_tx_skbs(struct bnx2 *bp)
  4302. {
  4303. int i;
  4304. for (i = 0; i < bp->num_tx_rings; i++) {
  4305. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  4306. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  4307. int j;
  4308. if (txr->tx_buf_ring == NULL)
  4309. continue;
  4310. for (j = 0; j < TX_DESC_CNT; ) {
  4311. struct sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
  4312. struct sk_buff *skb = tx_buf->skb;
  4313. if (skb == NULL) {
  4314. j++;
  4315. continue;
  4316. }
  4317. skb_dma_unmap(&bp->pdev->dev, skb, DMA_TO_DEVICE);
  4318. tx_buf->skb = NULL;
  4319. j += skb_shinfo(skb)->nr_frags + 1;
  4320. dev_kfree_skb(skb);
  4321. }
  4322. }
  4323. }
  4324. static void
  4325. bnx2_free_rx_skbs(struct bnx2 *bp)
  4326. {
  4327. int i;
  4328. for (i = 0; i < bp->num_rx_rings; i++) {
  4329. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  4330. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4331. int j;
  4332. if (rxr->rx_buf_ring == NULL)
  4333. return;
  4334. for (j = 0; j < bp->rx_max_ring_idx; j++) {
  4335. struct sw_bd *rx_buf = &rxr->rx_buf_ring[j];
  4336. struct sk_buff *skb = rx_buf->skb;
  4337. if (skb == NULL)
  4338. continue;
  4339. pci_unmap_single(bp->pdev,
  4340. pci_unmap_addr(rx_buf, mapping),
  4341. bp->rx_buf_use_size,
  4342. PCI_DMA_FROMDEVICE);
  4343. rx_buf->skb = NULL;
  4344. dev_kfree_skb(skb);
  4345. }
  4346. for (j = 0; j < bp->rx_max_pg_ring_idx; j++)
  4347. bnx2_free_rx_page(bp, rxr, j);
  4348. }
  4349. }
  4350. static void
  4351. bnx2_free_skbs(struct bnx2 *bp)
  4352. {
  4353. bnx2_free_tx_skbs(bp);
  4354. bnx2_free_rx_skbs(bp);
  4355. }
  4356. static int
  4357. bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
  4358. {
  4359. int rc;
  4360. rc = bnx2_reset_chip(bp, reset_code);
  4361. bnx2_free_skbs(bp);
  4362. if (rc)
  4363. return rc;
  4364. if ((rc = bnx2_init_chip(bp)) != 0)
  4365. return rc;
  4366. bnx2_init_all_rings(bp);
  4367. return 0;
  4368. }
  4369. static int
  4370. bnx2_init_nic(struct bnx2 *bp, int reset_phy)
  4371. {
  4372. int rc;
  4373. if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
  4374. return rc;
  4375. spin_lock_bh(&bp->phy_lock);
  4376. bnx2_init_phy(bp, reset_phy);
  4377. bnx2_set_link(bp);
  4378. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4379. bnx2_remote_phy_event(bp);
  4380. spin_unlock_bh(&bp->phy_lock);
  4381. return 0;
  4382. }
  4383. static int
  4384. bnx2_shutdown_chip(struct bnx2 *bp)
  4385. {
  4386. u32 reset_code;
  4387. if (bp->flags & BNX2_FLAG_NO_WOL)
  4388. reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
  4389. else if (bp->wol)
  4390. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  4391. else
  4392. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  4393. return bnx2_reset_chip(bp, reset_code);
  4394. }
  4395. static int
  4396. bnx2_test_registers(struct bnx2 *bp)
  4397. {
  4398. int ret;
  4399. int i, is_5709;
  4400. static const struct {
  4401. u16 offset;
  4402. u16 flags;
  4403. #define BNX2_FL_NOT_5709 1
  4404. u32 rw_mask;
  4405. u32 ro_mask;
  4406. } reg_tbl[] = {
  4407. { 0x006c, 0, 0x00000000, 0x0000003f },
  4408. { 0x0090, 0, 0xffffffff, 0x00000000 },
  4409. { 0x0094, 0, 0x00000000, 0x00000000 },
  4410. { 0x0404, BNX2_FL_NOT_5709, 0x00003f00, 0x00000000 },
  4411. { 0x0418, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4412. { 0x041c, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4413. { 0x0420, BNX2_FL_NOT_5709, 0x00000000, 0x80ffffff },
  4414. { 0x0424, BNX2_FL_NOT_5709, 0x00000000, 0x00000000 },
  4415. { 0x0428, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  4416. { 0x0450, BNX2_FL_NOT_5709, 0x00000000, 0x0000ffff },
  4417. { 0x0454, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4418. { 0x0458, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4419. { 0x0808, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4420. { 0x0854, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4421. { 0x0868, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4422. { 0x086c, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4423. { 0x0870, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4424. { 0x0874, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4425. { 0x0c00, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  4426. { 0x0c04, BNX2_FL_NOT_5709, 0x00000000, 0x03ff0001 },
  4427. { 0x0c08, BNX2_FL_NOT_5709, 0x0f0ff073, 0x00000000 },
  4428. { 0x1000, 0, 0x00000000, 0x00000001 },
  4429. { 0x1004, BNX2_FL_NOT_5709, 0x00000000, 0x000f0001 },
  4430. { 0x1408, 0, 0x01c00800, 0x00000000 },
  4431. { 0x149c, 0, 0x8000ffff, 0x00000000 },
  4432. { 0x14a8, 0, 0x00000000, 0x000001ff },
  4433. { 0x14ac, 0, 0x0fffffff, 0x10000000 },
  4434. { 0x14b0, 0, 0x00000002, 0x00000001 },
  4435. { 0x14b8, 0, 0x00000000, 0x00000000 },
  4436. { 0x14c0, 0, 0x00000000, 0x00000009 },
  4437. { 0x14c4, 0, 0x00003fff, 0x00000000 },
  4438. { 0x14cc, 0, 0x00000000, 0x00000001 },
  4439. { 0x14d0, 0, 0xffffffff, 0x00000000 },
  4440. { 0x1800, 0, 0x00000000, 0x00000001 },
  4441. { 0x1804, 0, 0x00000000, 0x00000003 },
  4442. { 0x2800, 0, 0x00000000, 0x00000001 },
  4443. { 0x2804, 0, 0x00000000, 0x00003f01 },
  4444. { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
  4445. { 0x2810, 0, 0xffff0000, 0x00000000 },
  4446. { 0x2814, 0, 0xffff0000, 0x00000000 },
  4447. { 0x2818, 0, 0xffff0000, 0x00000000 },
  4448. { 0x281c, 0, 0xffff0000, 0x00000000 },
  4449. { 0x2834, 0, 0xffffffff, 0x00000000 },
  4450. { 0x2840, 0, 0x00000000, 0xffffffff },
  4451. { 0x2844, 0, 0x00000000, 0xffffffff },
  4452. { 0x2848, 0, 0xffffffff, 0x00000000 },
  4453. { 0x284c, 0, 0xf800f800, 0x07ff07ff },
  4454. { 0x2c00, 0, 0x00000000, 0x00000011 },
  4455. { 0x2c04, 0, 0x00000000, 0x00030007 },
  4456. { 0x3c00, 0, 0x00000000, 0x00000001 },
  4457. { 0x3c04, 0, 0x00000000, 0x00070000 },
  4458. { 0x3c08, 0, 0x00007f71, 0x07f00000 },
  4459. { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
  4460. { 0x3c10, 0, 0xffffffff, 0x00000000 },
  4461. { 0x3c14, 0, 0x00000000, 0xffffffff },
  4462. { 0x3c18, 0, 0x00000000, 0xffffffff },
  4463. { 0x3c1c, 0, 0xfffff000, 0x00000000 },
  4464. { 0x3c20, 0, 0xffffff00, 0x00000000 },
  4465. { 0x5004, 0, 0x00000000, 0x0000007f },
  4466. { 0x5008, 0, 0x0f0007ff, 0x00000000 },
  4467. { 0x5c00, 0, 0x00000000, 0x00000001 },
  4468. { 0x5c04, 0, 0x00000000, 0x0003000f },
  4469. { 0x5c08, 0, 0x00000003, 0x00000000 },
  4470. { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
  4471. { 0x5c10, 0, 0x00000000, 0xffffffff },
  4472. { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
  4473. { 0x5c84, 0, 0x00000000, 0x0000f333 },
  4474. { 0x5c88, 0, 0x00000000, 0x00077373 },
  4475. { 0x5c8c, 0, 0x00000000, 0x0007f737 },
  4476. { 0x6808, 0, 0x0000ff7f, 0x00000000 },
  4477. { 0x680c, 0, 0xffffffff, 0x00000000 },
  4478. { 0x6810, 0, 0xffffffff, 0x00000000 },
  4479. { 0x6814, 0, 0xffffffff, 0x00000000 },
  4480. { 0x6818, 0, 0xffffffff, 0x00000000 },
  4481. { 0x681c, 0, 0xffffffff, 0x00000000 },
  4482. { 0x6820, 0, 0x00ff00ff, 0x00000000 },
  4483. { 0x6824, 0, 0x00ff00ff, 0x00000000 },
  4484. { 0x6828, 0, 0x00ff00ff, 0x00000000 },
  4485. { 0x682c, 0, 0x03ff03ff, 0x00000000 },
  4486. { 0x6830, 0, 0x03ff03ff, 0x00000000 },
  4487. { 0x6834, 0, 0x03ff03ff, 0x00000000 },
  4488. { 0x6838, 0, 0x03ff03ff, 0x00000000 },
  4489. { 0x683c, 0, 0x0000ffff, 0x00000000 },
  4490. { 0x6840, 0, 0x00000ff0, 0x00000000 },
  4491. { 0x6844, 0, 0x00ffff00, 0x00000000 },
  4492. { 0x684c, 0, 0xffffffff, 0x00000000 },
  4493. { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
  4494. { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
  4495. { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
  4496. { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
  4497. { 0x6908, 0, 0x00000000, 0x0001ff0f },
  4498. { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
  4499. { 0xffff, 0, 0x00000000, 0x00000000 },
  4500. };
  4501. ret = 0;
  4502. is_5709 = 0;
  4503. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4504. is_5709 = 1;
  4505. for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
  4506. u32 offset, rw_mask, ro_mask, save_val, val;
  4507. u16 flags = reg_tbl[i].flags;
  4508. if (is_5709 && (flags & BNX2_FL_NOT_5709))
  4509. continue;
  4510. offset = (u32) reg_tbl[i].offset;
  4511. rw_mask = reg_tbl[i].rw_mask;
  4512. ro_mask = reg_tbl[i].ro_mask;
  4513. save_val = readl(bp->regview + offset);
  4514. writel(0, bp->regview + offset);
  4515. val = readl(bp->regview + offset);
  4516. if ((val & rw_mask) != 0) {
  4517. goto reg_test_err;
  4518. }
  4519. if ((val & ro_mask) != (save_val & ro_mask)) {
  4520. goto reg_test_err;
  4521. }
  4522. writel(0xffffffff, bp->regview + offset);
  4523. val = readl(bp->regview + offset);
  4524. if ((val & rw_mask) != rw_mask) {
  4525. goto reg_test_err;
  4526. }
  4527. if ((val & ro_mask) != (save_val & ro_mask)) {
  4528. goto reg_test_err;
  4529. }
  4530. writel(save_val, bp->regview + offset);
  4531. continue;
  4532. reg_test_err:
  4533. writel(save_val, bp->regview + offset);
  4534. ret = -ENODEV;
  4535. break;
  4536. }
  4537. return ret;
  4538. }
  4539. static int
  4540. bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
  4541. {
  4542. static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
  4543. 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
  4544. int i;
  4545. for (i = 0; i < sizeof(test_pattern) / 4; i++) {
  4546. u32 offset;
  4547. for (offset = 0; offset < size; offset += 4) {
  4548. bnx2_reg_wr_ind(bp, start + offset, test_pattern[i]);
  4549. if (bnx2_reg_rd_ind(bp, start + offset) !=
  4550. test_pattern[i]) {
  4551. return -ENODEV;
  4552. }
  4553. }
  4554. }
  4555. return 0;
  4556. }
  4557. static int
  4558. bnx2_test_memory(struct bnx2 *bp)
  4559. {
  4560. int ret = 0;
  4561. int i;
  4562. static struct mem_entry {
  4563. u32 offset;
  4564. u32 len;
  4565. } mem_tbl_5706[] = {
  4566. { 0x60000, 0x4000 },
  4567. { 0xa0000, 0x3000 },
  4568. { 0xe0000, 0x4000 },
  4569. { 0x120000, 0x4000 },
  4570. { 0x1a0000, 0x4000 },
  4571. { 0x160000, 0x4000 },
  4572. { 0xffffffff, 0 },
  4573. },
  4574. mem_tbl_5709[] = {
  4575. { 0x60000, 0x4000 },
  4576. { 0xa0000, 0x3000 },
  4577. { 0xe0000, 0x4000 },
  4578. { 0x120000, 0x4000 },
  4579. { 0x1a0000, 0x4000 },
  4580. { 0xffffffff, 0 },
  4581. };
  4582. struct mem_entry *mem_tbl;
  4583. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4584. mem_tbl = mem_tbl_5709;
  4585. else
  4586. mem_tbl = mem_tbl_5706;
  4587. for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
  4588. if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
  4589. mem_tbl[i].len)) != 0) {
  4590. return ret;
  4591. }
  4592. }
  4593. return ret;
  4594. }
  4595. #define BNX2_MAC_LOOPBACK 0
  4596. #define BNX2_PHY_LOOPBACK 1
  4597. static int
  4598. bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
  4599. {
  4600. unsigned int pkt_size, num_pkts, i;
  4601. struct sk_buff *skb, *rx_skb;
  4602. unsigned char *packet;
  4603. u16 rx_start_idx, rx_idx;
  4604. dma_addr_t map;
  4605. struct tx_bd *txbd;
  4606. struct sw_bd *rx_buf;
  4607. struct l2_fhdr *rx_hdr;
  4608. int ret = -ENODEV;
  4609. struct bnx2_napi *bnapi = &bp->bnx2_napi[0], *tx_napi;
  4610. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  4611. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4612. tx_napi = bnapi;
  4613. txr = &tx_napi->tx_ring;
  4614. rxr = &bnapi->rx_ring;
  4615. if (loopback_mode == BNX2_MAC_LOOPBACK) {
  4616. bp->loopback = MAC_LOOPBACK;
  4617. bnx2_set_mac_loopback(bp);
  4618. }
  4619. else if (loopback_mode == BNX2_PHY_LOOPBACK) {
  4620. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4621. return 0;
  4622. bp->loopback = PHY_LOOPBACK;
  4623. bnx2_set_phy_loopback(bp);
  4624. }
  4625. else
  4626. return -EINVAL;
  4627. pkt_size = min(bp->dev->mtu + ETH_HLEN, bp->rx_jumbo_thresh - 4);
  4628. skb = netdev_alloc_skb(bp->dev, pkt_size);
  4629. if (!skb)
  4630. return -ENOMEM;
  4631. packet = skb_put(skb, pkt_size);
  4632. memcpy(packet, bp->dev->dev_addr, 6);
  4633. memset(packet + 6, 0x0, 8);
  4634. for (i = 14; i < pkt_size; i++)
  4635. packet[i] = (unsigned char) (i & 0xff);
  4636. if (skb_dma_map(&bp->pdev->dev, skb, DMA_TO_DEVICE)) {
  4637. dev_kfree_skb(skb);
  4638. return -EIO;
  4639. }
  4640. map = skb_shinfo(skb)->dma_head;
  4641. REG_WR(bp, BNX2_HC_COMMAND,
  4642. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  4643. REG_RD(bp, BNX2_HC_COMMAND);
  4644. udelay(5);
  4645. rx_start_idx = bnx2_get_hw_rx_cons(bnapi);
  4646. num_pkts = 0;
  4647. txbd = &txr->tx_desc_ring[TX_RING_IDX(txr->tx_prod)];
  4648. txbd->tx_bd_haddr_hi = (u64) map >> 32;
  4649. txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
  4650. txbd->tx_bd_mss_nbytes = pkt_size;
  4651. txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
  4652. num_pkts++;
  4653. txr->tx_prod = NEXT_TX_BD(txr->tx_prod);
  4654. txr->tx_prod_bseq += pkt_size;
  4655. REG_WR16(bp, txr->tx_bidx_addr, txr->tx_prod);
  4656. REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
  4657. udelay(100);
  4658. REG_WR(bp, BNX2_HC_COMMAND,
  4659. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  4660. REG_RD(bp, BNX2_HC_COMMAND);
  4661. udelay(5);
  4662. skb_dma_unmap(&bp->pdev->dev, skb, DMA_TO_DEVICE);
  4663. dev_kfree_skb(skb);
  4664. if (bnx2_get_hw_tx_cons(tx_napi) != txr->tx_prod)
  4665. goto loopback_test_done;
  4666. rx_idx = bnx2_get_hw_rx_cons(bnapi);
  4667. if (rx_idx != rx_start_idx + num_pkts) {
  4668. goto loopback_test_done;
  4669. }
  4670. rx_buf = &rxr->rx_buf_ring[rx_start_idx];
  4671. rx_skb = rx_buf->skb;
  4672. rx_hdr = (struct l2_fhdr *) rx_skb->data;
  4673. skb_reserve(rx_skb, BNX2_RX_OFFSET);
  4674. pci_dma_sync_single_for_cpu(bp->pdev,
  4675. pci_unmap_addr(rx_buf, mapping),
  4676. bp->rx_buf_size, PCI_DMA_FROMDEVICE);
  4677. if (rx_hdr->l2_fhdr_status &
  4678. (L2_FHDR_ERRORS_BAD_CRC |
  4679. L2_FHDR_ERRORS_PHY_DECODE |
  4680. L2_FHDR_ERRORS_ALIGNMENT |
  4681. L2_FHDR_ERRORS_TOO_SHORT |
  4682. L2_FHDR_ERRORS_GIANT_FRAME)) {
  4683. goto loopback_test_done;
  4684. }
  4685. if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
  4686. goto loopback_test_done;
  4687. }
  4688. for (i = 14; i < pkt_size; i++) {
  4689. if (*(rx_skb->data + i) != (unsigned char) (i & 0xff)) {
  4690. goto loopback_test_done;
  4691. }
  4692. }
  4693. ret = 0;
  4694. loopback_test_done:
  4695. bp->loopback = 0;
  4696. return ret;
  4697. }
  4698. #define BNX2_MAC_LOOPBACK_FAILED 1
  4699. #define BNX2_PHY_LOOPBACK_FAILED 2
  4700. #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
  4701. BNX2_PHY_LOOPBACK_FAILED)
  4702. static int
  4703. bnx2_test_loopback(struct bnx2 *bp)
  4704. {
  4705. int rc = 0;
  4706. if (!netif_running(bp->dev))
  4707. return BNX2_LOOPBACK_FAILED;
  4708. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
  4709. spin_lock_bh(&bp->phy_lock);
  4710. bnx2_init_phy(bp, 1);
  4711. spin_unlock_bh(&bp->phy_lock);
  4712. if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
  4713. rc |= BNX2_MAC_LOOPBACK_FAILED;
  4714. if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
  4715. rc |= BNX2_PHY_LOOPBACK_FAILED;
  4716. return rc;
  4717. }
  4718. #define NVRAM_SIZE 0x200
  4719. #define CRC32_RESIDUAL 0xdebb20e3
  4720. static int
  4721. bnx2_test_nvram(struct bnx2 *bp)
  4722. {
  4723. __be32 buf[NVRAM_SIZE / 4];
  4724. u8 *data = (u8 *) buf;
  4725. int rc = 0;
  4726. u32 magic, csum;
  4727. if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
  4728. goto test_nvram_done;
  4729. magic = be32_to_cpu(buf[0]);
  4730. if (magic != 0x669955aa) {
  4731. rc = -ENODEV;
  4732. goto test_nvram_done;
  4733. }
  4734. if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
  4735. goto test_nvram_done;
  4736. csum = ether_crc_le(0x100, data);
  4737. if (csum != CRC32_RESIDUAL) {
  4738. rc = -ENODEV;
  4739. goto test_nvram_done;
  4740. }
  4741. csum = ether_crc_le(0x100, data + 0x100);
  4742. if (csum != CRC32_RESIDUAL) {
  4743. rc = -ENODEV;
  4744. }
  4745. test_nvram_done:
  4746. return rc;
  4747. }
  4748. static int
  4749. bnx2_test_link(struct bnx2 *bp)
  4750. {
  4751. u32 bmsr;
  4752. if (!netif_running(bp->dev))
  4753. return -ENODEV;
  4754. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  4755. if (bp->link_up)
  4756. return 0;
  4757. return -ENODEV;
  4758. }
  4759. spin_lock_bh(&bp->phy_lock);
  4760. bnx2_enable_bmsr1(bp);
  4761. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  4762. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  4763. bnx2_disable_bmsr1(bp);
  4764. spin_unlock_bh(&bp->phy_lock);
  4765. if (bmsr & BMSR_LSTATUS) {
  4766. return 0;
  4767. }
  4768. return -ENODEV;
  4769. }
  4770. static int
  4771. bnx2_test_intr(struct bnx2 *bp)
  4772. {
  4773. int i;
  4774. u16 status_idx;
  4775. if (!netif_running(bp->dev))
  4776. return -ENODEV;
  4777. status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
  4778. /* This register is not touched during run-time. */
  4779. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  4780. REG_RD(bp, BNX2_HC_COMMAND);
  4781. for (i = 0; i < 10; i++) {
  4782. if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
  4783. status_idx) {
  4784. break;
  4785. }
  4786. msleep_interruptible(10);
  4787. }
  4788. if (i < 10)
  4789. return 0;
  4790. return -ENODEV;
  4791. }
  4792. /* Determining link for parallel detection. */
  4793. static int
  4794. bnx2_5706_serdes_has_link(struct bnx2 *bp)
  4795. {
  4796. u32 mode_ctl, an_dbg, exp;
  4797. if (bp->phy_flags & BNX2_PHY_FLAG_NO_PARALLEL)
  4798. return 0;
  4799. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_MODE_CTL);
  4800. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &mode_ctl);
  4801. if (!(mode_ctl & MISC_SHDW_MODE_CTL_SIG_DET))
  4802. return 0;
  4803. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  4804. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  4805. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  4806. if (an_dbg & (MISC_SHDW_AN_DBG_NOSYNC | MISC_SHDW_AN_DBG_RUDI_INVALID))
  4807. return 0;
  4808. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_REG1);
  4809. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
  4810. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
  4811. if (exp & MII_EXPAND_REG1_RUDI_C) /* receiving CONFIG */
  4812. return 0;
  4813. return 1;
  4814. }
  4815. static void
  4816. bnx2_5706_serdes_timer(struct bnx2 *bp)
  4817. {
  4818. int check_link = 1;
  4819. spin_lock(&bp->phy_lock);
  4820. if (bp->serdes_an_pending) {
  4821. bp->serdes_an_pending--;
  4822. check_link = 0;
  4823. } else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  4824. u32 bmcr;
  4825. bp->current_interval = BNX2_TIMER_INTERVAL;
  4826. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4827. if (bmcr & BMCR_ANENABLE) {
  4828. if (bnx2_5706_serdes_has_link(bp)) {
  4829. bmcr &= ~BMCR_ANENABLE;
  4830. bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
  4831. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  4832. bp->phy_flags |= BNX2_PHY_FLAG_PARALLEL_DETECT;
  4833. }
  4834. }
  4835. }
  4836. else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
  4837. (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)) {
  4838. u32 phy2;
  4839. bnx2_write_phy(bp, 0x17, 0x0f01);
  4840. bnx2_read_phy(bp, 0x15, &phy2);
  4841. if (phy2 & 0x20) {
  4842. u32 bmcr;
  4843. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4844. bmcr |= BMCR_ANENABLE;
  4845. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  4846. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  4847. }
  4848. } else
  4849. bp->current_interval = BNX2_TIMER_INTERVAL;
  4850. if (check_link) {
  4851. u32 val;
  4852. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  4853. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
  4854. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
  4855. if (bp->link_up && (val & MISC_SHDW_AN_DBG_NOSYNC)) {
  4856. if (!(bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN)) {
  4857. bnx2_5706s_force_link_dn(bp, 1);
  4858. bp->phy_flags |= BNX2_PHY_FLAG_FORCED_DOWN;
  4859. } else
  4860. bnx2_set_link(bp);
  4861. } else if (!bp->link_up && !(val & MISC_SHDW_AN_DBG_NOSYNC))
  4862. bnx2_set_link(bp);
  4863. }
  4864. spin_unlock(&bp->phy_lock);
  4865. }
  4866. static void
  4867. bnx2_5708_serdes_timer(struct bnx2 *bp)
  4868. {
  4869. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4870. return;
  4871. if ((bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) == 0) {
  4872. bp->serdes_an_pending = 0;
  4873. return;
  4874. }
  4875. spin_lock(&bp->phy_lock);
  4876. if (bp->serdes_an_pending)
  4877. bp->serdes_an_pending--;
  4878. else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  4879. u32 bmcr;
  4880. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4881. if (bmcr & BMCR_ANENABLE) {
  4882. bnx2_enable_forced_2g5(bp);
  4883. bp->current_interval = BNX2_SERDES_FORCED_TIMEOUT;
  4884. } else {
  4885. bnx2_disable_forced_2g5(bp);
  4886. bp->serdes_an_pending = 2;
  4887. bp->current_interval = BNX2_TIMER_INTERVAL;
  4888. }
  4889. } else
  4890. bp->current_interval = BNX2_TIMER_INTERVAL;
  4891. spin_unlock(&bp->phy_lock);
  4892. }
  4893. static void
  4894. bnx2_timer(unsigned long data)
  4895. {
  4896. struct bnx2 *bp = (struct bnx2 *) data;
  4897. if (!netif_running(bp->dev))
  4898. return;
  4899. if (atomic_read(&bp->intr_sem) != 0)
  4900. goto bnx2_restart_timer;
  4901. if ((bp->flags & (BNX2_FLAG_USING_MSI | BNX2_FLAG_ONE_SHOT_MSI)) ==
  4902. BNX2_FLAG_USING_MSI)
  4903. bnx2_chk_missed_msi(bp);
  4904. bnx2_send_heart_beat(bp);
  4905. bp->stats_blk->stat_FwRxDrop =
  4906. bnx2_reg_rd_ind(bp, BNX2_FW_RX_DROP_COUNT);
  4907. /* workaround occasional corrupted counters */
  4908. if (CHIP_NUM(bp) == CHIP_NUM_5708 && bp->stats_ticks)
  4909. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd |
  4910. BNX2_HC_COMMAND_STATS_NOW);
  4911. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  4912. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  4913. bnx2_5706_serdes_timer(bp);
  4914. else
  4915. bnx2_5708_serdes_timer(bp);
  4916. }
  4917. bnx2_restart_timer:
  4918. mod_timer(&bp->timer, jiffies + bp->current_interval);
  4919. }
  4920. static int
  4921. bnx2_request_irq(struct bnx2 *bp)
  4922. {
  4923. unsigned long flags;
  4924. struct bnx2_irq *irq;
  4925. int rc = 0, i;
  4926. if (bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)
  4927. flags = 0;
  4928. else
  4929. flags = IRQF_SHARED;
  4930. for (i = 0; i < bp->irq_nvecs; i++) {
  4931. irq = &bp->irq_tbl[i];
  4932. rc = request_irq(irq->vector, irq->handler, flags, irq->name,
  4933. &bp->bnx2_napi[i]);
  4934. if (rc)
  4935. break;
  4936. irq->requested = 1;
  4937. }
  4938. return rc;
  4939. }
  4940. static void
  4941. bnx2_free_irq(struct bnx2 *bp)
  4942. {
  4943. struct bnx2_irq *irq;
  4944. int i;
  4945. for (i = 0; i < bp->irq_nvecs; i++) {
  4946. irq = &bp->irq_tbl[i];
  4947. if (irq->requested)
  4948. free_irq(irq->vector, &bp->bnx2_napi[i]);
  4949. irq->requested = 0;
  4950. }
  4951. if (bp->flags & BNX2_FLAG_USING_MSI)
  4952. pci_disable_msi(bp->pdev);
  4953. else if (bp->flags & BNX2_FLAG_USING_MSIX)
  4954. pci_disable_msix(bp->pdev);
  4955. bp->flags &= ~(BNX2_FLAG_USING_MSI_OR_MSIX | BNX2_FLAG_ONE_SHOT_MSI);
  4956. }
  4957. static void
  4958. bnx2_enable_msix(struct bnx2 *bp, int msix_vecs)
  4959. {
  4960. int i, rc;
  4961. struct msix_entry msix_ent[BNX2_MAX_MSIX_VEC];
  4962. struct net_device *dev = bp->dev;
  4963. const int len = sizeof(bp->irq_tbl[0].name);
  4964. bnx2_setup_msix_tbl(bp);
  4965. REG_WR(bp, BNX2_PCI_MSIX_CONTROL, BNX2_MAX_MSIX_HW_VEC - 1);
  4966. REG_WR(bp, BNX2_PCI_MSIX_TBL_OFF_BIR, BNX2_PCI_GRC_WINDOW2_BASE);
  4967. REG_WR(bp, BNX2_PCI_MSIX_PBA_OFF_BIT, BNX2_PCI_GRC_WINDOW3_BASE);
  4968. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  4969. msix_ent[i].entry = i;
  4970. msix_ent[i].vector = 0;
  4971. }
  4972. rc = pci_enable_msix(bp->pdev, msix_ent, BNX2_MAX_MSIX_VEC);
  4973. if (rc != 0)
  4974. return;
  4975. bp->irq_nvecs = msix_vecs;
  4976. bp->flags |= BNX2_FLAG_USING_MSIX | BNX2_FLAG_ONE_SHOT_MSI;
  4977. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  4978. bp->irq_tbl[i].vector = msix_ent[i].vector;
  4979. snprintf(bp->irq_tbl[i].name, len, "%s-%d", dev->name, i);
  4980. bp->irq_tbl[i].handler = bnx2_msi_1shot;
  4981. }
  4982. }
  4983. static void
  4984. bnx2_setup_int_mode(struct bnx2 *bp, int dis_msi)
  4985. {
  4986. int cpus = num_online_cpus();
  4987. int msix_vecs = min(cpus + 1, RX_MAX_RINGS);
  4988. bp->irq_tbl[0].handler = bnx2_interrupt;
  4989. strcpy(bp->irq_tbl[0].name, bp->dev->name);
  4990. bp->irq_nvecs = 1;
  4991. bp->irq_tbl[0].vector = bp->pdev->irq;
  4992. if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !dis_msi && cpus > 1)
  4993. bnx2_enable_msix(bp, msix_vecs);
  4994. if ((bp->flags & BNX2_FLAG_MSI_CAP) && !dis_msi &&
  4995. !(bp->flags & BNX2_FLAG_USING_MSIX)) {
  4996. if (pci_enable_msi(bp->pdev) == 0) {
  4997. bp->flags |= BNX2_FLAG_USING_MSI;
  4998. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4999. bp->flags |= BNX2_FLAG_ONE_SHOT_MSI;
  5000. bp->irq_tbl[0].handler = bnx2_msi_1shot;
  5001. } else
  5002. bp->irq_tbl[0].handler = bnx2_msi;
  5003. bp->irq_tbl[0].vector = bp->pdev->irq;
  5004. }
  5005. }
  5006. bp->num_tx_rings = rounddown_pow_of_two(bp->irq_nvecs);
  5007. bp->dev->real_num_tx_queues = bp->num_tx_rings;
  5008. bp->num_rx_rings = bp->irq_nvecs;
  5009. }
  5010. /* Called with rtnl_lock */
  5011. static int
  5012. bnx2_open(struct net_device *dev)
  5013. {
  5014. struct bnx2 *bp = netdev_priv(dev);
  5015. int rc;
  5016. netif_carrier_off(dev);
  5017. bnx2_set_power_state(bp, PCI_D0);
  5018. bnx2_disable_int(bp);
  5019. bnx2_setup_int_mode(bp, disable_msi);
  5020. bnx2_napi_enable(bp);
  5021. rc = bnx2_alloc_mem(bp);
  5022. if (rc)
  5023. goto open_err;
  5024. rc = bnx2_request_irq(bp);
  5025. if (rc)
  5026. goto open_err;
  5027. rc = bnx2_init_nic(bp, 1);
  5028. if (rc)
  5029. goto open_err;
  5030. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5031. atomic_set(&bp->intr_sem, 0);
  5032. bnx2_enable_int(bp);
  5033. if (bp->flags & BNX2_FLAG_USING_MSI) {
  5034. /* Test MSI to make sure it is working
  5035. * If MSI test fails, go back to INTx mode
  5036. */
  5037. if (bnx2_test_intr(bp) != 0) {
  5038. printk(KERN_WARNING PFX "%s: No interrupt was generated"
  5039. " using MSI, switching to INTx mode. Please"
  5040. " report this failure to the PCI maintainer"
  5041. " and include system chipset information.\n",
  5042. bp->dev->name);
  5043. bnx2_disable_int(bp);
  5044. bnx2_free_irq(bp);
  5045. bnx2_setup_int_mode(bp, 1);
  5046. rc = bnx2_init_nic(bp, 0);
  5047. if (!rc)
  5048. rc = bnx2_request_irq(bp);
  5049. if (rc) {
  5050. del_timer_sync(&bp->timer);
  5051. goto open_err;
  5052. }
  5053. bnx2_enable_int(bp);
  5054. }
  5055. }
  5056. if (bp->flags & BNX2_FLAG_USING_MSI)
  5057. printk(KERN_INFO PFX "%s: using MSI\n", dev->name);
  5058. else if (bp->flags & BNX2_FLAG_USING_MSIX)
  5059. printk(KERN_INFO PFX "%s: using MSIX\n", dev->name);
  5060. netif_tx_start_all_queues(dev);
  5061. return 0;
  5062. open_err:
  5063. bnx2_napi_disable(bp);
  5064. bnx2_free_skbs(bp);
  5065. bnx2_free_irq(bp);
  5066. bnx2_free_mem(bp);
  5067. return rc;
  5068. }
  5069. static void
  5070. bnx2_reset_task(struct work_struct *work)
  5071. {
  5072. struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
  5073. if (!netif_running(bp->dev))
  5074. return;
  5075. bnx2_netif_stop(bp);
  5076. bnx2_init_nic(bp, 1);
  5077. atomic_set(&bp->intr_sem, 1);
  5078. bnx2_netif_start(bp);
  5079. }
  5080. static void
  5081. bnx2_tx_timeout(struct net_device *dev)
  5082. {
  5083. struct bnx2 *bp = netdev_priv(dev);
  5084. /* This allows the netif to be shutdown gracefully before resetting */
  5085. schedule_work(&bp->reset_task);
  5086. }
  5087. #ifdef BCM_VLAN
  5088. /* Called with rtnl_lock */
  5089. static void
  5090. bnx2_vlan_rx_register(struct net_device *dev, struct vlan_group *vlgrp)
  5091. {
  5092. struct bnx2 *bp = netdev_priv(dev);
  5093. if (netif_running(dev))
  5094. bnx2_netif_stop(bp);
  5095. bp->vlgrp = vlgrp;
  5096. if (!netif_running(dev))
  5097. return;
  5098. bnx2_set_rx_mode(dev);
  5099. if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
  5100. bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE, 0, 1);
  5101. bnx2_netif_start(bp);
  5102. }
  5103. #endif
  5104. /* Called with netif_tx_lock.
  5105. * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
  5106. * netif_wake_queue().
  5107. */
  5108. static int
  5109. bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
  5110. {
  5111. struct bnx2 *bp = netdev_priv(dev);
  5112. dma_addr_t mapping;
  5113. struct tx_bd *txbd;
  5114. struct sw_tx_bd *tx_buf;
  5115. u32 len, vlan_tag_flags, last_frag, mss;
  5116. u16 prod, ring_prod;
  5117. int i;
  5118. struct bnx2_napi *bnapi;
  5119. struct bnx2_tx_ring_info *txr;
  5120. struct netdev_queue *txq;
  5121. struct skb_shared_info *sp;
  5122. /* Determine which tx ring we will be placed on */
  5123. i = skb_get_queue_mapping(skb);
  5124. bnapi = &bp->bnx2_napi[i];
  5125. txr = &bnapi->tx_ring;
  5126. txq = netdev_get_tx_queue(dev, i);
  5127. if (unlikely(bnx2_tx_avail(bp, txr) <
  5128. (skb_shinfo(skb)->nr_frags + 1))) {
  5129. netif_tx_stop_queue(txq);
  5130. printk(KERN_ERR PFX "%s: BUG! Tx ring full when queue awake!\n",
  5131. dev->name);
  5132. return NETDEV_TX_BUSY;
  5133. }
  5134. len = skb_headlen(skb);
  5135. prod = txr->tx_prod;
  5136. ring_prod = TX_RING_IDX(prod);
  5137. vlan_tag_flags = 0;
  5138. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  5139. vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
  5140. }
  5141. #ifdef BCM_VLAN
  5142. if (bp->vlgrp && vlan_tx_tag_present(skb)) {
  5143. vlan_tag_flags |=
  5144. (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
  5145. }
  5146. #endif
  5147. if ((mss = skb_shinfo(skb)->gso_size)) {
  5148. u32 tcp_opt_len;
  5149. struct iphdr *iph;
  5150. vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
  5151. tcp_opt_len = tcp_optlen(skb);
  5152. if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
  5153. u32 tcp_off = skb_transport_offset(skb) -
  5154. sizeof(struct ipv6hdr) - ETH_HLEN;
  5155. vlan_tag_flags |= ((tcp_opt_len >> 2) << 8) |
  5156. TX_BD_FLAGS_SW_FLAGS;
  5157. if (likely(tcp_off == 0))
  5158. vlan_tag_flags &= ~TX_BD_FLAGS_TCP6_OFF0_MSK;
  5159. else {
  5160. tcp_off >>= 3;
  5161. vlan_tag_flags |= ((tcp_off & 0x3) <<
  5162. TX_BD_FLAGS_TCP6_OFF0_SHL) |
  5163. ((tcp_off & 0x10) <<
  5164. TX_BD_FLAGS_TCP6_OFF4_SHL);
  5165. mss |= (tcp_off & 0xc) << TX_BD_TCP6_OFF2_SHL;
  5166. }
  5167. } else {
  5168. iph = ip_hdr(skb);
  5169. if (tcp_opt_len || (iph->ihl > 5)) {
  5170. vlan_tag_flags |= ((iph->ihl - 5) +
  5171. (tcp_opt_len >> 2)) << 8;
  5172. }
  5173. }
  5174. } else
  5175. mss = 0;
  5176. if (skb_dma_map(&bp->pdev->dev, skb, DMA_TO_DEVICE)) {
  5177. dev_kfree_skb(skb);
  5178. return NETDEV_TX_OK;
  5179. }
  5180. sp = skb_shinfo(skb);
  5181. mapping = sp->dma_head;
  5182. tx_buf = &txr->tx_buf_ring[ring_prod];
  5183. tx_buf->skb = skb;
  5184. txbd = &txr->tx_desc_ring[ring_prod];
  5185. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  5186. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  5187. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  5188. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
  5189. last_frag = skb_shinfo(skb)->nr_frags;
  5190. tx_buf->nr_frags = last_frag;
  5191. tx_buf->is_gso = skb_is_gso(skb);
  5192. for (i = 0; i < last_frag; i++) {
  5193. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  5194. prod = NEXT_TX_BD(prod);
  5195. ring_prod = TX_RING_IDX(prod);
  5196. txbd = &txr->tx_desc_ring[ring_prod];
  5197. len = frag->size;
  5198. mapping = sp->dma_maps[i];
  5199. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  5200. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  5201. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  5202. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
  5203. }
  5204. txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
  5205. prod = NEXT_TX_BD(prod);
  5206. txr->tx_prod_bseq += skb->len;
  5207. REG_WR16(bp, txr->tx_bidx_addr, prod);
  5208. REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
  5209. mmiowb();
  5210. txr->tx_prod = prod;
  5211. if (unlikely(bnx2_tx_avail(bp, txr) <= MAX_SKB_FRAGS)) {
  5212. netif_tx_stop_queue(txq);
  5213. if (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)
  5214. netif_tx_wake_queue(txq);
  5215. }
  5216. return NETDEV_TX_OK;
  5217. }
  5218. /* Called with rtnl_lock */
  5219. static int
  5220. bnx2_close(struct net_device *dev)
  5221. {
  5222. struct bnx2 *bp = netdev_priv(dev);
  5223. cancel_work_sync(&bp->reset_task);
  5224. bnx2_disable_int_sync(bp);
  5225. bnx2_napi_disable(bp);
  5226. del_timer_sync(&bp->timer);
  5227. bnx2_shutdown_chip(bp);
  5228. bnx2_free_irq(bp);
  5229. bnx2_free_skbs(bp);
  5230. bnx2_free_mem(bp);
  5231. bp->link_up = 0;
  5232. netif_carrier_off(bp->dev);
  5233. bnx2_set_power_state(bp, PCI_D3hot);
  5234. return 0;
  5235. }
  5236. #define GET_NET_STATS64(ctr) \
  5237. (unsigned long) ((unsigned long) (ctr##_hi) << 32) + \
  5238. (unsigned long) (ctr##_lo)
  5239. #define GET_NET_STATS32(ctr) \
  5240. (ctr##_lo)
  5241. #if (BITS_PER_LONG == 64)
  5242. #define GET_NET_STATS GET_NET_STATS64
  5243. #else
  5244. #define GET_NET_STATS GET_NET_STATS32
  5245. #endif
  5246. static struct net_device_stats *
  5247. bnx2_get_stats(struct net_device *dev)
  5248. {
  5249. struct bnx2 *bp = netdev_priv(dev);
  5250. struct statistics_block *stats_blk = bp->stats_blk;
  5251. struct net_device_stats *net_stats = &dev->stats;
  5252. if (bp->stats_blk == NULL) {
  5253. return net_stats;
  5254. }
  5255. net_stats->rx_packets =
  5256. GET_NET_STATS(stats_blk->stat_IfHCInUcastPkts) +
  5257. GET_NET_STATS(stats_blk->stat_IfHCInMulticastPkts) +
  5258. GET_NET_STATS(stats_blk->stat_IfHCInBroadcastPkts);
  5259. net_stats->tx_packets =
  5260. GET_NET_STATS(stats_blk->stat_IfHCOutUcastPkts) +
  5261. GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts) +
  5262. GET_NET_STATS(stats_blk->stat_IfHCOutBroadcastPkts);
  5263. net_stats->rx_bytes =
  5264. GET_NET_STATS(stats_blk->stat_IfHCInOctets);
  5265. net_stats->tx_bytes =
  5266. GET_NET_STATS(stats_blk->stat_IfHCOutOctets);
  5267. net_stats->multicast =
  5268. GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts);
  5269. net_stats->collisions =
  5270. (unsigned long) stats_blk->stat_EtherStatsCollisions;
  5271. net_stats->rx_length_errors =
  5272. (unsigned long) (stats_blk->stat_EtherStatsUndersizePkts +
  5273. stats_blk->stat_EtherStatsOverrsizePkts);
  5274. net_stats->rx_over_errors =
  5275. (unsigned long) stats_blk->stat_IfInMBUFDiscards;
  5276. net_stats->rx_frame_errors =
  5277. (unsigned long) stats_blk->stat_Dot3StatsAlignmentErrors;
  5278. net_stats->rx_crc_errors =
  5279. (unsigned long) stats_blk->stat_Dot3StatsFCSErrors;
  5280. net_stats->rx_errors = net_stats->rx_length_errors +
  5281. net_stats->rx_over_errors + net_stats->rx_frame_errors +
  5282. net_stats->rx_crc_errors;
  5283. net_stats->tx_aborted_errors =
  5284. (unsigned long) (stats_blk->stat_Dot3StatsExcessiveCollisions +
  5285. stats_blk->stat_Dot3StatsLateCollisions);
  5286. if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
  5287. (CHIP_ID(bp) == CHIP_ID_5708_A0))
  5288. net_stats->tx_carrier_errors = 0;
  5289. else {
  5290. net_stats->tx_carrier_errors =
  5291. (unsigned long)
  5292. stats_blk->stat_Dot3StatsCarrierSenseErrors;
  5293. }
  5294. net_stats->tx_errors =
  5295. (unsigned long)
  5296. stats_blk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors
  5297. +
  5298. net_stats->tx_aborted_errors +
  5299. net_stats->tx_carrier_errors;
  5300. net_stats->rx_missed_errors =
  5301. (unsigned long) (stats_blk->stat_IfInMBUFDiscards +
  5302. stats_blk->stat_FwRxDrop);
  5303. return net_stats;
  5304. }
  5305. /* All ethtool functions called with rtnl_lock */
  5306. static int
  5307. bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5308. {
  5309. struct bnx2 *bp = netdev_priv(dev);
  5310. int support_serdes = 0, support_copper = 0;
  5311. cmd->supported = SUPPORTED_Autoneg;
  5312. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  5313. support_serdes = 1;
  5314. support_copper = 1;
  5315. } else if (bp->phy_port == PORT_FIBRE)
  5316. support_serdes = 1;
  5317. else
  5318. support_copper = 1;
  5319. if (support_serdes) {
  5320. cmd->supported |= SUPPORTED_1000baseT_Full |
  5321. SUPPORTED_FIBRE;
  5322. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
  5323. cmd->supported |= SUPPORTED_2500baseX_Full;
  5324. }
  5325. if (support_copper) {
  5326. cmd->supported |= SUPPORTED_10baseT_Half |
  5327. SUPPORTED_10baseT_Full |
  5328. SUPPORTED_100baseT_Half |
  5329. SUPPORTED_100baseT_Full |
  5330. SUPPORTED_1000baseT_Full |
  5331. SUPPORTED_TP;
  5332. }
  5333. spin_lock_bh(&bp->phy_lock);
  5334. cmd->port = bp->phy_port;
  5335. cmd->advertising = bp->advertising;
  5336. if (bp->autoneg & AUTONEG_SPEED) {
  5337. cmd->autoneg = AUTONEG_ENABLE;
  5338. }
  5339. else {
  5340. cmd->autoneg = AUTONEG_DISABLE;
  5341. }
  5342. if (netif_carrier_ok(dev)) {
  5343. cmd->speed = bp->line_speed;
  5344. cmd->duplex = bp->duplex;
  5345. }
  5346. else {
  5347. cmd->speed = -1;
  5348. cmd->duplex = -1;
  5349. }
  5350. spin_unlock_bh(&bp->phy_lock);
  5351. cmd->transceiver = XCVR_INTERNAL;
  5352. cmd->phy_address = bp->phy_addr;
  5353. return 0;
  5354. }
  5355. static int
  5356. bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5357. {
  5358. struct bnx2 *bp = netdev_priv(dev);
  5359. u8 autoneg = bp->autoneg;
  5360. u8 req_duplex = bp->req_duplex;
  5361. u16 req_line_speed = bp->req_line_speed;
  5362. u32 advertising = bp->advertising;
  5363. int err = -EINVAL;
  5364. spin_lock_bh(&bp->phy_lock);
  5365. if (cmd->port != PORT_TP && cmd->port != PORT_FIBRE)
  5366. goto err_out_unlock;
  5367. if (cmd->port != bp->phy_port &&
  5368. !(bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP))
  5369. goto err_out_unlock;
  5370. /* If device is down, we can store the settings only if the user
  5371. * is setting the currently active port.
  5372. */
  5373. if (!netif_running(dev) && cmd->port != bp->phy_port)
  5374. goto err_out_unlock;
  5375. if (cmd->autoneg == AUTONEG_ENABLE) {
  5376. autoneg |= AUTONEG_SPEED;
  5377. cmd->advertising &= ETHTOOL_ALL_COPPER_SPEED;
  5378. /* allow advertising 1 speed */
  5379. if ((cmd->advertising == ADVERTISED_10baseT_Half) ||
  5380. (cmd->advertising == ADVERTISED_10baseT_Full) ||
  5381. (cmd->advertising == ADVERTISED_100baseT_Half) ||
  5382. (cmd->advertising == ADVERTISED_100baseT_Full)) {
  5383. if (cmd->port == PORT_FIBRE)
  5384. goto err_out_unlock;
  5385. advertising = cmd->advertising;
  5386. } else if (cmd->advertising == ADVERTISED_2500baseX_Full) {
  5387. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ||
  5388. (cmd->port == PORT_TP))
  5389. goto err_out_unlock;
  5390. } else if (cmd->advertising == ADVERTISED_1000baseT_Full)
  5391. advertising = cmd->advertising;
  5392. else if (cmd->advertising == ADVERTISED_1000baseT_Half)
  5393. goto err_out_unlock;
  5394. else {
  5395. if (cmd->port == PORT_FIBRE)
  5396. advertising = ETHTOOL_ALL_FIBRE_SPEED;
  5397. else
  5398. advertising = ETHTOOL_ALL_COPPER_SPEED;
  5399. }
  5400. advertising |= ADVERTISED_Autoneg;
  5401. }
  5402. else {
  5403. if (cmd->port == PORT_FIBRE) {
  5404. if ((cmd->speed != SPEED_1000 &&
  5405. cmd->speed != SPEED_2500) ||
  5406. (cmd->duplex != DUPLEX_FULL))
  5407. goto err_out_unlock;
  5408. if (cmd->speed == SPEED_2500 &&
  5409. !(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  5410. goto err_out_unlock;
  5411. }
  5412. else if (cmd->speed == SPEED_1000 || cmd->speed == SPEED_2500)
  5413. goto err_out_unlock;
  5414. autoneg &= ~AUTONEG_SPEED;
  5415. req_line_speed = cmd->speed;
  5416. req_duplex = cmd->duplex;
  5417. advertising = 0;
  5418. }
  5419. bp->autoneg = autoneg;
  5420. bp->advertising = advertising;
  5421. bp->req_line_speed = req_line_speed;
  5422. bp->req_duplex = req_duplex;
  5423. err = 0;
  5424. /* If device is down, the new settings will be picked up when it is
  5425. * brought up.
  5426. */
  5427. if (netif_running(dev))
  5428. err = bnx2_setup_phy(bp, cmd->port);
  5429. err_out_unlock:
  5430. spin_unlock_bh(&bp->phy_lock);
  5431. return err;
  5432. }
  5433. static void
  5434. bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  5435. {
  5436. struct bnx2 *bp = netdev_priv(dev);
  5437. strcpy(info->driver, DRV_MODULE_NAME);
  5438. strcpy(info->version, DRV_MODULE_VERSION);
  5439. strcpy(info->bus_info, pci_name(bp->pdev));
  5440. strcpy(info->fw_version, bp->fw_version);
  5441. }
  5442. #define BNX2_REGDUMP_LEN (32 * 1024)
  5443. static int
  5444. bnx2_get_regs_len(struct net_device *dev)
  5445. {
  5446. return BNX2_REGDUMP_LEN;
  5447. }
  5448. static void
  5449. bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
  5450. {
  5451. u32 *p = _p, i, offset;
  5452. u8 *orig_p = _p;
  5453. struct bnx2 *bp = netdev_priv(dev);
  5454. u32 reg_boundaries[] = { 0x0000, 0x0098, 0x0400, 0x045c,
  5455. 0x0800, 0x0880, 0x0c00, 0x0c10,
  5456. 0x0c30, 0x0d08, 0x1000, 0x101c,
  5457. 0x1040, 0x1048, 0x1080, 0x10a4,
  5458. 0x1400, 0x1490, 0x1498, 0x14f0,
  5459. 0x1500, 0x155c, 0x1580, 0x15dc,
  5460. 0x1600, 0x1658, 0x1680, 0x16d8,
  5461. 0x1800, 0x1820, 0x1840, 0x1854,
  5462. 0x1880, 0x1894, 0x1900, 0x1984,
  5463. 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
  5464. 0x1c80, 0x1c94, 0x1d00, 0x1d84,
  5465. 0x2000, 0x2030, 0x23c0, 0x2400,
  5466. 0x2800, 0x2820, 0x2830, 0x2850,
  5467. 0x2b40, 0x2c10, 0x2fc0, 0x3058,
  5468. 0x3c00, 0x3c94, 0x4000, 0x4010,
  5469. 0x4080, 0x4090, 0x43c0, 0x4458,
  5470. 0x4c00, 0x4c18, 0x4c40, 0x4c54,
  5471. 0x4fc0, 0x5010, 0x53c0, 0x5444,
  5472. 0x5c00, 0x5c18, 0x5c80, 0x5c90,
  5473. 0x5fc0, 0x6000, 0x6400, 0x6428,
  5474. 0x6800, 0x6848, 0x684c, 0x6860,
  5475. 0x6888, 0x6910, 0x8000 };
  5476. regs->version = 0;
  5477. memset(p, 0, BNX2_REGDUMP_LEN);
  5478. if (!netif_running(bp->dev))
  5479. return;
  5480. i = 0;
  5481. offset = reg_boundaries[0];
  5482. p += offset;
  5483. while (offset < BNX2_REGDUMP_LEN) {
  5484. *p++ = REG_RD(bp, offset);
  5485. offset += 4;
  5486. if (offset == reg_boundaries[i + 1]) {
  5487. offset = reg_boundaries[i + 2];
  5488. p = (u32 *) (orig_p + offset);
  5489. i += 2;
  5490. }
  5491. }
  5492. }
  5493. static void
  5494. bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  5495. {
  5496. struct bnx2 *bp = netdev_priv(dev);
  5497. if (bp->flags & BNX2_FLAG_NO_WOL) {
  5498. wol->supported = 0;
  5499. wol->wolopts = 0;
  5500. }
  5501. else {
  5502. wol->supported = WAKE_MAGIC;
  5503. if (bp->wol)
  5504. wol->wolopts = WAKE_MAGIC;
  5505. else
  5506. wol->wolopts = 0;
  5507. }
  5508. memset(&wol->sopass, 0, sizeof(wol->sopass));
  5509. }
  5510. static int
  5511. bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  5512. {
  5513. struct bnx2 *bp = netdev_priv(dev);
  5514. if (wol->wolopts & ~WAKE_MAGIC)
  5515. return -EINVAL;
  5516. if (wol->wolopts & WAKE_MAGIC) {
  5517. if (bp->flags & BNX2_FLAG_NO_WOL)
  5518. return -EINVAL;
  5519. bp->wol = 1;
  5520. }
  5521. else {
  5522. bp->wol = 0;
  5523. }
  5524. return 0;
  5525. }
  5526. static int
  5527. bnx2_nway_reset(struct net_device *dev)
  5528. {
  5529. struct bnx2 *bp = netdev_priv(dev);
  5530. u32 bmcr;
  5531. if (!netif_running(dev))
  5532. return -EAGAIN;
  5533. if (!(bp->autoneg & AUTONEG_SPEED)) {
  5534. return -EINVAL;
  5535. }
  5536. spin_lock_bh(&bp->phy_lock);
  5537. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  5538. int rc;
  5539. rc = bnx2_setup_remote_phy(bp, bp->phy_port);
  5540. spin_unlock_bh(&bp->phy_lock);
  5541. return rc;
  5542. }
  5543. /* Force a link down visible on the other side */
  5544. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  5545. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  5546. spin_unlock_bh(&bp->phy_lock);
  5547. msleep(20);
  5548. spin_lock_bh(&bp->phy_lock);
  5549. bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
  5550. bp->serdes_an_pending = 1;
  5551. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5552. }
  5553. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  5554. bmcr &= ~BMCR_LOOPBACK;
  5555. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
  5556. spin_unlock_bh(&bp->phy_lock);
  5557. return 0;
  5558. }
  5559. static u32
  5560. bnx2_get_link(struct net_device *dev)
  5561. {
  5562. struct bnx2 *bp = netdev_priv(dev);
  5563. return bp->link_up;
  5564. }
  5565. static int
  5566. bnx2_get_eeprom_len(struct net_device *dev)
  5567. {
  5568. struct bnx2 *bp = netdev_priv(dev);
  5569. if (bp->flash_info == NULL)
  5570. return 0;
  5571. return (int) bp->flash_size;
  5572. }
  5573. static int
  5574. bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  5575. u8 *eebuf)
  5576. {
  5577. struct bnx2 *bp = netdev_priv(dev);
  5578. int rc;
  5579. if (!netif_running(dev))
  5580. return -EAGAIN;
  5581. /* parameters already validated in ethtool_get_eeprom */
  5582. rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
  5583. return rc;
  5584. }
  5585. static int
  5586. bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  5587. u8 *eebuf)
  5588. {
  5589. struct bnx2 *bp = netdev_priv(dev);
  5590. int rc;
  5591. if (!netif_running(dev))
  5592. return -EAGAIN;
  5593. /* parameters already validated in ethtool_set_eeprom */
  5594. rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
  5595. return rc;
  5596. }
  5597. static int
  5598. bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  5599. {
  5600. struct bnx2 *bp = netdev_priv(dev);
  5601. memset(coal, 0, sizeof(struct ethtool_coalesce));
  5602. coal->rx_coalesce_usecs = bp->rx_ticks;
  5603. coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
  5604. coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
  5605. coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
  5606. coal->tx_coalesce_usecs = bp->tx_ticks;
  5607. coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
  5608. coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
  5609. coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
  5610. coal->stats_block_coalesce_usecs = bp->stats_ticks;
  5611. return 0;
  5612. }
  5613. static int
  5614. bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  5615. {
  5616. struct bnx2 *bp = netdev_priv(dev);
  5617. bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
  5618. if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
  5619. bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
  5620. if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
  5621. bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
  5622. if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
  5623. bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
  5624. if (bp->rx_quick_cons_trip_int > 0xff)
  5625. bp->rx_quick_cons_trip_int = 0xff;
  5626. bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
  5627. if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
  5628. bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
  5629. if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
  5630. bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
  5631. if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
  5632. bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
  5633. if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
  5634. 0xff;
  5635. bp->stats_ticks = coal->stats_block_coalesce_usecs;
  5636. if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  5637. if (bp->stats_ticks != 0 && bp->stats_ticks != USEC_PER_SEC)
  5638. bp->stats_ticks = USEC_PER_SEC;
  5639. }
  5640. if (bp->stats_ticks > BNX2_HC_STATS_TICKS_HC_STAT_TICKS)
  5641. bp->stats_ticks = BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  5642. bp->stats_ticks &= BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  5643. if (netif_running(bp->dev)) {
  5644. bnx2_netif_stop(bp);
  5645. bnx2_init_nic(bp, 0);
  5646. bnx2_netif_start(bp);
  5647. }
  5648. return 0;
  5649. }
  5650. static void
  5651. bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  5652. {
  5653. struct bnx2 *bp = netdev_priv(dev);
  5654. ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT;
  5655. ering->rx_mini_max_pending = 0;
  5656. ering->rx_jumbo_max_pending = MAX_TOTAL_RX_PG_DESC_CNT;
  5657. ering->rx_pending = bp->rx_ring_size;
  5658. ering->rx_mini_pending = 0;
  5659. ering->rx_jumbo_pending = bp->rx_pg_ring_size;
  5660. ering->tx_max_pending = MAX_TX_DESC_CNT;
  5661. ering->tx_pending = bp->tx_ring_size;
  5662. }
  5663. static int
  5664. bnx2_change_ring_size(struct bnx2 *bp, u32 rx, u32 tx)
  5665. {
  5666. if (netif_running(bp->dev)) {
  5667. bnx2_netif_stop(bp);
  5668. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
  5669. bnx2_free_skbs(bp);
  5670. bnx2_free_mem(bp);
  5671. }
  5672. bnx2_set_rx_ring_size(bp, rx);
  5673. bp->tx_ring_size = tx;
  5674. if (netif_running(bp->dev)) {
  5675. int rc;
  5676. rc = bnx2_alloc_mem(bp);
  5677. if (!rc)
  5678. rc = bnx2_init_nic(bp, 0);
  5679. if (rc) {
  5680. bnx2_napi_enable(bp);
  5681. dev_close(bp->dev);
  5682. return rc;
  5683. }
  5684. bnx2_netif_start(bp);
  5685. }
  5686. return 0;
  5687. }
  5688. static int
  5689. bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  5690. {
  5691. struct bnx2 *bp = netdev_priv(dev);
  5692. int rc;
  5693. if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) ||
  5694. (ering->tx_pending > MAX_TX_DESC_CNT) ||
  5695. (ering->tx_pending <= MAX_SKB_FRAGS)) {
  5696. return -EINVAL;
  5697. }
  5698. rc = bnx2_change_ring_size(bp, ering->rx_pending, ering->tx_pending);
  5699. return rc;
  5700. }
  5701. static void
  5702. bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  5703. {
  5704. struct bnx2 *bp = netdev_priv(dev);
  5705. epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
  5706. epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
  5707. epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
  5708. }
  5709. static int
  5710. bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  5711. {
  5712. struct bnx2 *bp = netdev_priv(dev);
  5713. bp->req_flow_ctrl = 0;
  5714. if (epause->rx_pause)
  5715. bp->req_flow_ctrl |= FLOW_CTRL_RX;
  5716. if (epause->tx_pause)
  5717. bp->req_flow_ctrl |= FLOW_CTRL_TX;
  5718. if (epause->autoneg) {
  5719. bp->autoneg |= AUTONEG_FLOW_CTRL;
  5720. }
  5721. else {
  5722. bp->autoneg &= ~AUTONEG_FLOW_CTRL;
  5723. }
  5724. if (netif_running(dev)) {
  5725. spin_lock_bh(&bp->phy_lock);
  5726. bnx2_setup_phy(bp, bp->phy_port);
  5727. spin_unlock_bh(&bp->phy_lock);
  5728. }
  5729. return 0;
  5730. }
  5731. static u32
  5732. bnx2_get_rx_csum(struct net_device *dev)
  5733. {
  5734. struct bnx2 *bp = netdev_priv(dev);
  5735. return bp->rx_csum;
  5736. }
  5737. static int
  5738. bnx2_set_rx_csum(struct net_device *dev, u32 data)
  5739. {
  5740. struct bnx2 *bp = netdev_priv(dev);
  5741. bp->rx_csum = data;
  5742. return 0;
  5743. }
  5744. static int
  5745. bnx2_set_tso(struct net_device *dev, u32 data)
  5746. {
  5747. struct bnx2 *bp = netdev_priv(dev);
  5748. if (data) {
  5749. dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
  5750. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  5751. dev->features |= NETIF_F_TSO6;
  5752. } else
  5753. dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
  5754. NETIF_F_TSO_ECN);
  5755. return 0;
  5756. }
  5757. #define BNX2_NUM_STATS 46
  5758. static struct {
  5759. char string[ETH_GSTRING_LEN];
  5760. } bnx2_stats_str_arr[BNX2_NUM_STATS] = {
  5761. { "rx_bytes" },
  5762. { "rx_error_bytes" },
  5763. { "tx_bytes" },
  5764. { "tx_error_bytes" },
  5765. { "rx_ucast_packets" },
  5766. { "rx_mcast_packets" },
  5767. { "rx_bcast_packets" },
  5768. { "tx_ucast_packets" },
  5769. { "tx_mcast_packets" },
  5770. { "tx_bcast_packets" },
  5771. { "tx_mac_errors" },
  5772. { "tx_carrier_errors" },
  5773. { "rx_crc_errors" },
  5774. { "rx_align_errors" },
  5775. { "tx_single_collisions" },
  5776. { "tx_multi_collisions" },
  5777. { "tx_deferred" },
  5778. { "tx_excess_collisions" },
  5779. { "tx_late_collisions" },
  5780. { "tx_total_collisions" },
  5781. { "rx_fragments" },
  5782. { "rx_jabbers" },
  5783. { "rx_undersize_packets" },
  5784. { "rx_oversize_packets" },
  5785. { "rx_64_byte_packets" },
  5786. { "rx_65_to_127_byte_packets" },
  5787. { "rx_128_to_255_byte_packets" },
  5788. { "rx_256_to_511_byte_packets" },
  5789. { "rx_512_to_1023_byte_packets" },
  5790. { "rx_1024_to_1522_byte_packets" },
  5791. { "rx_1523_to_9022_byte_packets" },
  5792. { "tx_64_byte_packets" },
  5793. { "tx_65_to_127_byte_packets" },
  5794. { "tx_128_to_255_byte_packets" },
  5795. { "tx_256_to_511_byte_packets" },
  5796. { "tx_512_to_1023_byte_packets" },
  5797. { "tx_1024_to_1522_byte_packets" },
  5798. { "tx_1523_to_9022_byte_packets" },
  5799. { "rx_xon_frames" },
  5800. { "rx_xoff_frames" },
  5801. { "tx_xon_frames" },
  5802. { "tx_xoff_frames" },
  5803. { "rx_mac_ctrl_frames" },
  5804. { "rx_filtered_packets" },
  5805. { "rx_discards" },
  5806. { "rx_fw_discards" },
  5807. };
  5808. #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
  5809. static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
  5810. STATS_OFFSET32(stat_IfHCInOctets_hi),
  5811. STATS_OFFSET32(stat_IfHCInBadOctets_hi),
  5812. STATS_OFFSET32(stat_IfHCOutOctets_hi),
  5813. STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
  5814. STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
  5815. STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
  5816. STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
  5817. STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
  5818. STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
  5819. STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
  5820. STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
  5821. STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
  5822. STATS_OFFSET32(stat_Dot3StatsFCSErrors),
  5823. STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
  5824. STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
  5825. STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
  5826. STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
  5827. STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
  5828. STATS_OFFSET32(stat_Dot3StatsLateCollisions),
  5829. STATS_OFFSET32(stat_EtherStatsCollisions),
  5830. STATS_OFFSET32(stat_EtherStatsFragments),
  5831. STATS_OFFSET32(stat_EtherStatsJabbers),
  5832. STATS_OFFSET32(stat_EtherStatsUndersizePkts),
  5833. STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
  5834. STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
  5835. STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
  5836. STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
  5837. STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
  5838. STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
  5839. STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
  5840. STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
  5841. STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
  5842. STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
  5843. STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
  5844. STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
  5845. STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
  5846. STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
  5847. STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
  5848. STATS_OFFSET32(stat_XonPauseFramesReceived),
  5849. STATS_OFFSET32(stat_XoffPauseFramesReceived),
  5850. STATS_OFFSET32(stat_OutXonSent),
  5851. STATS_OFFSET32(stat_OutXoffSent),
  5852. STATS_OFFSET32(stat_MacControlFramesReceived),
  5853. STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
  5854. STATS_OFFSET32(stat_IfInMBUFDiscards),
  5855. STATS_OFFSET32(stat_FwRxDrop),
  5856. };
  5857. /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
  5858. * skipped because of errata.
  5859. */
  5860. static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
  5861. 8,0,8,8,8,8,8,8,8,8,
  5862. 4,0,4,4,4,4,4,4,4,4,
  5863. 4,4,4,4,4,4,4,4,4,4,
  5864. 4,4,4,4,4,4,4,4,4,4,
  5865. 4,4,4,4,4,4,
  5866. };
  5867. static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
  5868. 8,0,8,8,8,8,8,8,8,8,
  5869. 4,4,4,4,4,4,4,4,4,4,
  5870. 4,4,4,4,4,4,4,4,4,4,
  5871. 4,4,4,4,4,4,4,4,4,4,
  5872. 4,4,4,4,4,4,
  5873. };
  5874. #define BNX2_NUM_TESTS 6
  5875. static struct {
  5876. char string[ETH_GSTRING_LEN];
  5877. } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
  5878. { "register_test (offline)" },
  5879. { "memory_test (offline)" },
  5880. { "loopback_test (offline)" },
  5881. { "nvram_test (online)" },
  5882. { "interrupt_test (online)" },
  5883. { "link_test (online)" },
  5884. };
  5885. static int
  5886. bnx2_get_sset_count(struct net_device *dev, int sset)
  5887. {
  5888. switch (sset) {
  5889. case ETH_SS_TEST:
  5890. return BNX2_NUM_TESTS;
  5891. case ETH_SS_STATS:
  5892. return BNX2_NUM_STATS;
  5893. default:
  5894. return -EOPNOTSUPP;
  5895. }
  5896. }
  5897. static void
  5898. bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
  5899. {
  5900. struct bnx2 *bp = netdev_priv(dev);
  5901. bnx2_set_power_state(bp, PCI_D0);
  5902. memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
  5903. if (etest->flags & ETH_TEST_FL_OFFLINE) {
  5904. int i;
  5905. bnx2_netif_stop(bp);
  5906. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
  5907. bnx2_free_skbs(bp);
  5908. if (bnx2_test_registers(bp) != 0) {
  5909. buf[0] = 1;
  5910. etest->flags |= ETH_TEST_FL_FAILED;
  5911. }
  5912. if (bnx2_test_memory(bp) != 0) {
  5913. buf[1] = 1;
  5914. etest->flags |= ETH_TEST_FL_FAILED;
  5915. }
  5916. if ((buf[2] = bnx2_test_loopback(bp)) != 0)
  5917. etest->flags |= ETH_TEST_FL_FAILED;
  5918. if (!netif_running(bp->dev))
  5919. bnx2_shutdown_chip(bp);
  5920. else {
  5921. bnx2_init_nic(bp, 1);
  5922. bnx2_netif_start(bp);
  5923. }
  5924. /* wait for link up */
  5925. for (i = 0; i < 7; i++) {
  5926. if (bp->link_up)
  5927. break;
  5928. msleep_interruptible(1000);
  5929. }
  5930. }
  5931. if (bnx2_test_nvram(bp) != 0) {
  5932. buf[3] = 1;
  5933. etest->flags |= ETH_TEST_FL_FAILED;
  5934. }
  5935. if (bnx2_test_intr(bp) != 0) {
  5936. buf[4] = 1;
  5937. etest->flags |= ETH_TEST_FL_FAILED;
  5938. }
  5939. if (bnx2_test_link(bp) != 0) {
  5940. buf[5] = 1;
  5941. etest->flags |= ETH_TEST_FL_FAILED;
  5942. }
  5943. if (!netif_running(bp->dev))
  5944. bnx2_set_power_state(bp, PCI_D3hot);
  5945. }
  5946. static void
  5947. bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
  5948. {
  5949. switch (stringset) {
  5950. case ETH_SS_STATS:
  5951. memcpy(buf, bnx2_stats_str_arr,
  5952. sizeof(bnx2_stats_str_arr));
  5953. break;
  5954. case ETH_SS_TEST:
  5955. memcpy(buf, bnx2_tests_str_arr,
  5956. sizeof(bnx2_tests_str_arr));
  5957. break;
  5958. }
  5959. }
  5960. static void
  5961. bnx2_get_ethtool_stats(struct net_device *dev,
  5962. struct ethtool_stats *stats, u64 *buf)
  5963. {
  5964. struct bnx2 *bp = netdev_priv(dev);
  5965. int i;
  5966. u32 *hw_stats = (u32 *) bp->stats_blk;
  5967. u8 *stats_len_arr = NULL;
  5968. if (hw_stats == NULL) {
  5969. memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
  5970. return;
  5971. }
  5972. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  5973. (CHIP_ID(bp) == CHIP_ID_5706_A1) ||
  5974. (CHIP_ID(bp) == CHIP_ID_5706_A2) ||
  5975. (CHIP_ID(bp) == CHIP_ID_5708_A0))
  5976. stats_len_arr = bnx2_5706_stats_len_arr;
  5977. else
  5978. stats_len_arr = bnx2_5708_stats_len_arr;
  5979. for (i = 0; i < BNX2_NUM_STATS; i++) {
  5980. if (stats_len_arr[i] == 0) {
  5981. /* skip this counter */
  5982. buf[i] = 0;
  5983. continue;
  5984. }
  5985. if (stats_len_arr[i] == 4) {
  5986. /* 4-byte counter */
  5987. buf[i] = (u64)
  5988. *(hw_stats + bnx2_stats_offset_arr[i]);
  5989. continue;
  5990. }
  5991. /* 8-byte counter */
  5992. buf[i] = (((u64) *(hw_stats +
  5993. bnx2_stats_offset_arr[i])) << 32) +
  5994. *(hw_stats + bnx2_stats_offset_arr[i] + 1);
  5995. }
  5996. }
  5997. static int
  5998. bnx2_phys_id(struct net_device *dev, u32 data)
  5999. {
  6000. struct bnx2 *bp = netdev_priv(dev);
  6001. int i;
  6002. u32 save;
  6003. bnx2_set_power_state(bp, PCI_D0);
  6004. if (data == 0)
  6005. data = 2;
  6006. save = REG_RD(bp, BNX2_MISC_CFG);
  6007. REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
  6008. for (i = 0; i < (data * 2); i++) {
  6009. if ((i % 2) == 0) {
  6010. REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
  6011. }
  6012. else {
  6013. REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
  6014. BNX2_EMAC_LED_1000MB_OVERRIDE |
  6015. BNX2_EMAC_LED_100MB_OVERRIDE |
  6016. BNX2_EMAC_LED_10MB_OVERRIDE |
  6017. BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
  6018. BNX2_EMAC_LED_TRAFFIC);
  6019. }
  6020. msleep_interruptible(500);
  6021. if (signal_pending(current))
  6022. break;
  6023. }
  6024. REG_WR(bp, BNX2_EMAC_LED, 0);
  6025. REG_WR(bp, BNX2_MISC_CFG, save);
  6026. if (!netif_running(dev))
  6027. bnx2_set_power_state(bp, PCI_D3hot);
  6028. return 0;
  6029. }
  6030. static int
  6031. bnx2_set_tx_csum(struct net_device *dev, u32 data)
  6032. {
  6033. struct bnx2 *bp = netdev_priv(dev);
  6034. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  6035. return (ethtool_op_set_tx_ipv6_csum(dev, data));
  6036. else
  6037. return (ethtool_op_set_tx_csum(dev, data));
  6038. }
  6039. static const struct ethtool_ops bnx2_ethtool_ops = {
  6040. .get_settings = bnx2_get_settings,
  6041. .set_settings = bnx2_set_settings,
  6042. .get_drvinfo = bnx2_get_drvinfo,
  6043. .get_regs_len = bnx2_get_regs_len,
  6044. .get_regs = bnx2_get_regs,
  6045. .get_wol = bnx2_get_wol,
  6046. .set_wol = bnx2_set_wol,
  6047. .nway_reset = bnx2_nway_reset,
  6048. .get_link = bnx2_get_link,
  6049. .get_eeprom_len = bnx2_get_eeprom_len,
  6050. .get_eeprom = bnx2_get_eeprom,
  6051. .set_eeprom = bnx2_set_eeprom,
  6052. .get_coalesce = bnx2_get_coalesce,
  6053. .set_coalesce = bnx2_set_coalesce,
  6054. .get_ringparam = bnx2_get_ringparam,
  6055. .set_ringparam = bnx2_set_ringparam,
  6056. .get_pauseparam = bnx2_get_pauseparam,
  6057. .set_pauseparam = bnx2_set_pauseparam,
  6058. .get_rx_csum = bnx2_get_rx_csum,
  6059. .set_rx_csum = bnx2_set_rx_csum,
  6060. .set_tx_csum = bnx2_set_tx_csum,
  6061. .set_sg = ethtool_op_set_sg,
  6062. .set_tso = bnx2_set_tso,
  6063. .self_test = bnx2_self_test,
  6064. .get_strings = bnx2_get_strings,
  6065. .phys_id = bnx2_phys_id,
  6066. .get_ethtool_stats = bnx2_get_ethtool_stats,
  6067. .get_sset_count = bnx2_get_sset_count,
  6068. };
  6069. /* Called with rtnl_lock */
  6070. static int
  6071. bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  6072. {
  6073. struct mii_ioctl_data *data = if_mii(ifr);
  6074. struct bnx2 *bp = netdev_priv(dev);
  6075. int err;
  6076. switch(cmd) {
  6077. case SIOCGMIIPHY:
  6078. data->phy_id = bp->phy_addr;
  6079. /* fallthru */
  6080. case SIOCGMIIREG: {
  6081. u32 mii_regval;
  6082. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  6083. return -EOPNOTSUPP;
  6084. if (!netif_running(dev))
  6085. return -EAGAIN;
  6086. spin_lock_bh(&bp->phy_lock);
  6087. err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
  6088. spin_unlock_bh(&bp->phy_lock);
  6089. data->val_out = mii_regval;
  6090. return err;
  6091. }
  6092. case SIOCSMIIREG:
  6093. if (!capable(CAP_NET_ADMIN))
  6094. return -EPERM;
  6095. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  6096. return -EOPNOTSUPP;
  6097. if (!netif_running(dev))
  6098. return -EAGAIN;
  6099. spin_lock_bh(&bp->phy_lock);
  6100. err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
  6101. spin_unlock_bh(&bp->phy_lock);
  6102. return err;
  6103. default:
  6104. /* do nothing */
  6105. break;
  6106. }
  6107. return -EOPNOTSUPP;
  6108. }
  6109. /* Called with rtnl_lock */
  6110. static int
  6111. bnx2_change_mac_addr(struct net_device *dev, void *p)
  6112. {
  6113. struct sockaddr *addr = p;
  6114. struct bnx2 *bp = netdev_priv(dev);
  6115. if (!is_valid_ether_addr(addr->sa_data))
  6116. return -EINVAL;
  6117. memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
  6118. if (netif_running(dev))
  6119. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  6120. return 0;
  6121. }
  6122. /* Called with rtnl_lock */
  6123. static int
  6124. bnx2_change_mtu(struct net_device *dev, int new_mtu)
  6125. {
  6126. struct bnx2 *bp = netdev_priv(dev);
  6127. if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
  6128. ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
  6129. return -EINVAL;
  6130. dev->mtu = new_mtu;
  6131. return (bnx2_change_ring_size(bp, bp->rx_ring_size, bp->tx_ring_size));
  6132. }
  6133. #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
  6134. static void
  6135. poll_bnx2(struct net_device *dev)
  6136. {
  6137. struct bnx2 *bp = netdev_priv(dev);
  6138. int i;
  6139. for (i = 0; i < bp->irq_nvecs; i++) {
  6140. disable_irq(bp->irq_tbl[i].vector);
  6141. bnx2_interrupt(bp->irq_tbl[i].vector, &bp->bnx2_napi[i]);
  6142. enable_irq(bp->irq_tbl[i].vector);
  6143. }
  6144. }
  6145. #endif
  6146. static void __devinit
  6147. bnx2_get_5709_media(struct bnx2 *bp)
  6148. {
  6149. u32 val = REG_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
  6150. u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
  6151. u32 strap;
  6152. if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
  6153. return;
  6154. else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
  6155. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6156. return;
  6157. }
  6158. if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
  6159. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
  6160. else
  6161. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
  6162. if (PCI_FUNC(bp->pdev->devfn) == 0) {
  6163. switch (strap) {
  6164. case 0x4:
  6165. case 0x5:
  6166. case 0x6:
  6167. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6168. return;
  6169. }
  6170. } else {
  6171. switch (strap) {
  6172. case 0x1:
  6173. case 0x2:
  6174. case 0x4:
  6175. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6176. return;
  6177. }
  6178. }
  6179. }
  6180. static void __devinit
  6181. bnx2_get_pci_speed(struct bnx2 *bp)
  6182. {
  6183. u32 reg;
  6184. reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
  6185. if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
  6186. u32 clkreg;
  6187. bp->flags |= BNX2_FLAG_PCIX;
  6188. clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
  6189. clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
  6190. switch (clkreg) {
  6191. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
  6192. bp->bus_speed_mhz = 133;
  6193. break;
  6194. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
  6195. bp->bus_speed_mhz = 100;
  6196. break;
  6197. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
  6198. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
  6199. bp->bus_speed_mhz = 66;
  6200. break;
  6201. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
  6202. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
  6203. bp->bus_speed_mhz = 50;
  6204. break;
  6205. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
  6206. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
  6207. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
  6208. bp->bus_speed_mhz = 33;
  6209. break;
  6210. }
  6211. }
  6212. else {
  6213. if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
  6214. bp->bus_speed_mhz = 66;
  6215. else
  6216. bp->bus_speed_mhz = 33;
  6217. }
  6218. if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
  6219. bp->flags |= BNX2_FLAG_PCI_32BIT;
  6220. }
  6221. static int __devinit
  6222. bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
  6223. {
  6224. struct bnx2 *bp;
  6225. unsigned long mem_len;
  6226. int rc, i, j;
  6227. u32 reg;
  6228. u64 dma_mask, persist_dma_mask;
  6229. SET_NETDEV_DEV(dev, &pdev->dev);
  6230. bp = netdev_priv(dev);
  6231. bp->flags = 0;
  6232. bp->phy_flags = 0;
  6233. /* enable device (incl. PCI PM wakeup), and bus-mastering */
  6234. rc = pci_enable_device(pdev);
  6235. if (rc) {
  6236. dev_err(&pdev->dev, "Cannot enable PCI device, aborting.\n");
  6237. goto err_out;
  6238. }
  6239. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
  6240. dev_err(&pdev->dev,
  6241. "Cannot find PCI device base address, aborting.\n");
  6242. rc = -ENODEV;
  6243. goto err_out_disable;
  6244. }
  6245. rc = pci_request_regions(pdev, DRV_MODULE_NAME);
  6246. if (rc) {
  6247. dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting.\n");
  6248. goto err_out_disable;
  6249. }
  6250. pci_set_master(pdev);
  6251. pci_save_state(pdev);
  6252. bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
  6253. if (bp->pm_cap == 0) {
  6254. dev_err(&pdev->dev,
  6255. "Cannot find power management capability, aborting.\n");
  6256. rc = -EIO;
  6257. goto err_out_release;
  6258. }
  6259. bp->dev = dev;
  6260. bp->pdev = pdev;
  6261. spin_lock_init(&bp->phy_lock);
  6262. spin_lock_init(&bp->indirect_lock);
  6263. INIT_WORK(&bp->reset_task, bnx2_reset_task);
  6264. dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0);
  6265. mem_len = MB_GET_CID_ADDR(TX_TSS_CID + TX_MAX_TSS_RINGS + 1);
  6266. dev->mem_end = dev->mem_start + mem_len;
  6267. dev->irq = pdev->irq;
  6268. bp->regview = ioremap_nocache(dev->base_addr, mem_len);
  6269. if (!bp->regview) {
  6270. dev_err(&pdev->dev, "Cannot map register space, aborting.\n");
  6271. rc = -ENOMEM;
  6272. goto err_out_release;
  6273. }
  6274. /* Configure byte swap and enable write to the reg_window registers.
  6275. * Rely on CPU to do target byte swapping on big endian systems
  6276. * The chip's target access swapping will not swap all accesses
  6277. */
  6278. pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG,
  6279. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  6280. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
  6281. bnx2_set_power_state(bp, PCI_D0);
  6282. bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
  6283. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  6284. if (pci_find_capability(pdev, PCI_CAP_ID_EXP) == 0) {
  6285. dev_err(&pdev->dev,
  6286. "Cannot find PCIE capability, aborting.\n");
  6287. rc = -EIO;
  6288. goto err_out_unmap;
  6289. }
  6290. bp->flags |= BNX2_FLAG_PCIE;
  6291. if (CHIP_REV(bp) == CHIP_REV_Ax)
  6292. bp->flags |= BNX2_FLAG_JUMBO_BROKEN;
  6293. } else {
  6294. bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
  6295. if (bp->pcix_cap == 0) {
  6296. dev_err(&pdev->dev,
  6297. "Cannot find PCIX capability, aborting.\n");
  6298. rc = -EIO;
  6299. goto err_out_unmap;
  6300. }
  6301. }
  6302. if (CHIP_NUM(bp) == CHIP_NUM_5709 && CHIP_REV(bp) != CHIP_REV_Ax) {
  6303. if (pci_find_capability(pdev, PCI_CAP_ID_MSIX))
  6304. bp->flags |= BNX2_FLAG_MSIX_CAP;
  6305. }
  6306. if (CHIP_ID(bp) != CHIP_ID_5706_A0 && CHIP_ID(bp) != CHIP_ID_5706_A1) {
  6307. if (pci_find_capability(pdev, PCI_CAP_ID_MSI))
  6308. bp->flags |= BNX2_FLAG_MSI_CAP;
  6309. }
  6310. /* 5708 cannot support DMA addresses > 40-bit. */
  6311. if (CHIP_NUM(bp) == CHIP_NUM_5708)
  6312. persist_dma_mask = dma_mask = DMA_BIT_MASK(40);
  6313. else
  6314. persist_dma_mask = dma_mask = DMA_BIT_MASK(64);
  6315. /* Configure DMA attributes. */
  6316. if (pci_set_dma_mask(pdev, dma_mask) == 0) {
  6317. dev->features |= NETIF_F_HIGHDMA;
  6318. rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask);
  6319. if (rc) {
  6320. dev_err(&pdev->dev,
  6321. "pci_set_consistent_dma_mask failed, aborting.\n");
  6322. goto err_out_unmap;
  6323. }
  6324. } else if ((rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
  6325. dev_err(&pdev->dev, "System does not support DMA, aborting.\n");
  6326. goto err_out_unmap;
  6327. }
  6328. if (!(bp->flags & BNX2_FLAG_PCIE))
  6329. bnx2_get_pci_speed(bp);
  6330. /* 5706A0 may falsely detect SERR and PERR. */
  6331. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  6332. reg = REG_RD(bp, PCI_COMMAND);
  6333. reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
  6334. REG_WR(bp, PCI_COMMAND, reg);
  6335. }
  6336. else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
  6337. !(bp->flags & BNX2_FLAG_PCIX)) {
  6338. dev_err(&pdev->dev,
  6339. "5706 A1 can only be used in a PCIX bus, aborting.\n");
  6340. goto err_out_unmap;
  6341. }
  6342. bnx2_init_nvram(bp);
  6343. reg = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_SIGNATURE);
  6344. if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
  6345. BNX2_SHM_HDR_SIGNATURE_SIG) {
  6346. u32 off = PCI_FUNC(pdev->devfn) << 2;
  6347. bp->shmem_base = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_ADDR_0 + off);
  6348. } else
  6349. bp->shmem_base = HOST_VIEW_SHMEM_BASE;
  6350. /* Get the permanent MAC address. First we need to make sure the
  6351. * firmware is actually running.
  6352. */
  6353. reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE);
  6354. if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
  6355. BNX2_DEV_INFO_SIGNATURE_MAGIC) {
  6356. dev_err(&pdev->dev, "Firmware not running, aborting.\n");
  6357. rc = -ENODEV;
  6358. goto err_out_unmap;
  6359. }
  6360. reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_BC_REV);
  6361. for (i = 0, j = 0; i < 3; i++) {
  6362. u8 num, k, skip0;
  6363. num = (u8) (reg >> (24 - (i * 8)));
  6364. for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
  6365. if (num >= k || !skip0 || k == 1) {
  6366. bp->fw_version[j++] = (num / k) + '0';
  6367. skip0 = 0;
  6368. }
  6369. }
  6370. if (i != 2)
  6371. bp->fw_version[j++] = '.';
  6372. }
  6373. reg = bnx2_shmem_rd(bp, BNX2_PORT_FEATURE);
  6374. if (reg & BNX2_PORT_FEATURE_WOL_ENABLED)
  6375. bp->wol = 1;
  6376. if (reg & BNX2_PORT_FEATURE_ASF_ENABLED) {
  6377. bp->flags |= BNX2_FLAG_ASF_ENABLE;
  6378. for (i = 0; i < 30; i++) {
  6379. reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
  6380. if (reg & BNX2_CONDITION_MFW_RUN_MASK)
  6381. break;
  6382. msleep(10);
  6383. }
  6384. }
  6385. reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
  6386. reg &= BNX2_CONDITION_MFW_RUN_MASK;
  6387. if (reg != BNX2_CONDITION_MFW_RUN_UNKNOWN &&
  6388. reg != BNX2_CONDITION_MFW_RUN_NONE) {
  6389. u32 addr = bnx2_shmem_rd(bp, BNX2_MFW_VER_PTR);
  6390. bp->fw_version[j++] = ' ';
  6391. for (i = 0; i < 3; i++) {
  6392. reg = bnx2_reg_rd_ind(bp, addr + i * 4);
  6393. reg = swab32(reg);
  6394. memcpy(&bp->fw_version[j], &reg, 4);
  6395. j += 4;
  6396. }
  6397. }
  6398. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_UPPER);
  6399. bp->mac_addr[0] = (u8) (reg >> 8);
  6400. bp->mac_addr[1] = (u8) reg;
  6401. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_LOWER);
  6402. bp->mac_addr[2] = (u8) (reg >> 24);
  6403. bp->mac_addr[3] = (u8) (reg >> 16);
  6404. bp->mac_addr[4] = (u8) (reg >> 8);
  6405. bp->mac_addr[5] = (u8) reg;
  6406. bp->tx_ring_size = MAX_TX_DESC_CNT;
  6407. bnx2_set_rx_ring_size(bp, 255);
  6408. bp->rx_csum = 1;
  6409. bp->tx_quick_cons_trip_int = 20;
  6410. bp->tx_quick_cons_trip = 20;
  6411. bp->tx_ticks_int = 80;
  6412. bp->tx_ticks = 80;
  6413. bp->rx_quick_cons_trip_int = 6;
  6414. bp->rx_quick_cons_trip = 6;
  6415. bp->rx_ticks_int = 18;
  6416. bp->rx_ticks = 18;
  6417. bp->stats_ticks = USEC_PER_SEC & BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  6418. bp->current_interval = BNX2_TIMER_INTERVAL;
  6419. bp->phy_addr = 1;
  6420. /* Disable WOL support if we are running on a SERDES chip. */
  6421. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  6422. bnx2_get_5709_media(bp);
  6423. else if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT)
  6424. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6425. bp->phy_port = PORT_TP;
  6426. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  6427. bp->phy_port = PORT_FIBRE;
  6428. reg = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
  6429. if (!(reg & BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX)) {
  6430. bp->flags |= BNX2_FLAG_NO_WOL;
  6431. bp->wol = 0;
  6432. }
  6433. if (CHIP_NUM(bp) == CHIP_NUM_5706) {
  6434. /* Don't do parallel detect on this board because of
  6435. * some board problems. The link will not go down
  6436. * if we do parallel detect.
  6437. */
  6438. if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP &&
  6439. pdev->subsystem_device == 0x310c)
  6440. bp->phy_flags |= BNX2_PHY_FLAG_NO_PARALLEL;
  6441. } else {
  6442. bp->phy_addr = 2;
  6443. if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
  6444. bp->phy_flags |= BNX2_PHY_FLAG_2_5G_CAPABLE;
  6445. }
  6446. } else if (CHIP_NUM(bp) == CHIP_NUM_5706 ||
  6447. CHIP_NUM(bp) == CHIP_NUM_5708)
  6448. bp->phy_flags |= BNX2_PHY_FLAG_CRC_FIX;
  6449. else if (CHIP_NUM(bp) == CHIP_NUM_5709 &&
  6450. (CHIP_REV(bp) == CHIP_REV_Ax ||
  6451. CHIP_REV(bp) == CHIP_REV_Bx))
  6452. bp->phy_flags |= BNX2_PHY_FLAG_DIS_EARLY_DAC;
  6453. bnx2_init_fw_cap(bp);
  6454. if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
  6455. (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
  6456. (CHIP_ID(bp) == CHIP_ID_5708_B1) ||
  6457. !(REG_RD(bp, BNX2_PCI_CONFIG_3) & BNX2_PCI_CONFIG_3_VAUX_PRESET)) {
  6458. bp->flags |= BNX2_FLAG_NO_WOL;
  6459. bp->wol = 0;
  6460. }
  6461. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  6462. bp->tx_quick_cons_trip_int =
  6463. bp->tx_quick_cons_trip;
  6464. bp->tx_ticks_int = bp->tx_ticks;
  6465. bp->rx_quick_cons_trip_int =
  6466. bp->rx_quick_cons_trip;
  6467. bp->rx_ticks_int = bp->rx_ticks;
  6468. bp->comp_prod_trip_int = bp->comp_prod_trip;
  6469. bp->com_ticks_int = bp->com_ticks;
  6470. bp->cmd_ticks_int = bp->cmd_ticks;
  6471. }
  6472. /* Disable MSI on 5706 if AMD 8132 bridge is found.
  6473. *
  6474. * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
  6475. * with byte enables disabled on the unused 32-bit word. This is legal
  6476. * but causes problems on the AMD 8132 which will eventually stop
  6477. * responding after a while.
  6478. *
  6479. * AMD believes this incompatibility is unique to the 5706, and
  6480. * prefers to locally disable MSI rather than globally disabling it.
  6481. */
  6482. if (CHIP_NUM(bp) == CHIP_NUM_5706 && disable_msi == 0) {
  6483. struct pci_dev *amd_8132 = NULL;
  6484. while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
  6485. PCI_DEVICE_ID_AMD_8132_BRIDGE,
  6486. amd_8132))) {
  6487. if (amd_8132->revision >= 0x10 &&
  6488. amd_8132->revision <= 0x13) {
  6489. disable_msi = 1;
  6490. pci_dev_put(amd_8132);
  6491. break;
  6492. }
  6493. }
  6494. }
  6495. bnx2_set_default_link(bp);
  6496. bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
  6497. init_timer(&bp->timer);
  6498. bp->timer.expires = RUN_AT(BNX2_TIMER_INTERVAL);
  6499. bp->timer.data = (unsigned long) bp;
  6500. bp->timer.function = bnx2_timer;
  6501. return 0;
  6502. err_out_unmap:
  6503. if (bp->regview) {
  6504. iounmap(bp->regview);
  6505. bp->regview = NULL;
  6506. }
  6507. err_out_release:
  6508. pci_release_regions(pdev);
  6509. err_out_disable:
  6510. pci_disable_device(pdev);
  6511. pci_set_drvdata(pdev, NULL);
  6512. err_out:
  6513. return rc;
  6514. }
  6515. static char * __devinit
  6516. bnx2_bus_string(struct bnx2 *bp, char *str)
  6517. {
  6518. char *s = str;
  6519. if (bp->flags & BNX2_FLAG_PCIE) {
  6520. s += sprintf(s, "PCI Express");
  6521. } else {
  6522. s += sprintf(s, "PCI");
  6523. if (bp->flags & BNX2_FLAG_PCIX)
  6524. s += sprintf(s, "-X");
  6525. if (bp->flags & BNX2_FLAG_PCI_32BIT)
  6526. s += sprintf(s, " 32-bit");
  6527. else
  6528. s += sprintf(s, " 64-bit");
  6529. s += sprintf(s, " %dMHz", bp->bus_speed_mhz);
  6530. }
  6531. return str;
  6532. }
  6533. static void __devinit
  6534. bnx2_init_napi(struct bnx2 *bp)
  6535. {
  6536. int i;
  6537. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  6538. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  6539. int (*poll)(struct napi_struct *, int);
  6540. if (i == 0)
  6541. poll = bnx2_poll;
  6542. else
  6543. poll = bnx2_poll_msix;
  6544. netif_napi_add(bp->dev, &bp->bnx2_napi[i].napi, poll, 64);
  6545. bnapi->bp = bp;
  6546. }
  6547. }
  6548. static const struct net_device_ops bnx2_netdev_ops = {
  6549. .ndo_open = bnx2_open,
  6550. .ndo_start_xmit = bnx2_start_xmit,
  6551. .ndo_stop = bnx2_close,
  6552. .ndo_get_stats = bnx2_get_stats,
  6553. .ndo_set_rx_mode = bnx2_set_rx_mode,
  6554. .ndo_do_ioctl = bnx2_ioctl,
  6555. .ndo_validate_addr = eth_validate_addr,
  6556. .ndo_set_mac_address = bnx2_change_mac_addr,
  6557. .ndo_change_mtu = bnx2_change_mtu,
  6558. .ndo_tx_timeout = bnx2_tx_timeout,
  6559. #ifdef BCM_VLAN
  6560. .ndo_vlan_rx_register = bnx2_vlan_rx_register,
  6561. #endif
  6562. #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
  6563. .ndo_poll_controller = poll_bnx2,
  6564. #endif
  6565. };
  6566. static void inline vlan_features_add(struct net_device *dev, unsigned long flags)
  6567. {
  6568. #ifdef BCM_VLAN
  6569. dev->vlan_features |= flags;
  6570. #endif
  6571. }
  6572. static int __devinit
  6573. bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
  6574. {
  6575. static int version_printed = 0;
  6576. struct net_device *dev = NULL;
  6577. struct bnx2 *bp;
  6578. int rc;
  6579. char str[40];
  6580. if (version_printed++ == 0)
  6581. printk(KERN_INFO "%s", version);
  6582. /* dev zeroed in init_etherdev */
  6583. dev = alloc_etherdev_mq(sizeof(*bp), TX_MAX_RINGS);
  6584. if (!dev)
  6585. return -ENOMEM;
  6586. rc = bnx2_init_board(pdev, dev);
  6587. if (rc < 0) {
  6588. free_netdev(dev);
  6589. return rc;
  6590. }
  6591. dev->netdev_ops = &bnx2_netdev_ops;
  6592. dev->watchdog_timeo = TX_TIMEOUT;
  6593. dev->ethtool_ops = &bnx2_ethtool_ops;
  6594. bp = netdev_priv(dev);
  6595. bnx2_init_napi(bp);
  6596. pci_set_drvdata(pdev, dev);
  6597. rc = bnx2_request_firmware(bp);
  6598. if (rc)
  6599. goto error;
  6600. memcpy(dev->dev_addr, bp->mac_addr, 6);
  6601. memcpy(dev->perm_addr, bp->mac_addr, 6);
  6602. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  6603. vlan_features_add(dev, NETIF_F_IP_CSUM | NETIF_F_SG);
  6604. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  6605. dev->features |= NETIF_F_IPV6_CSUM;
  6606. vlan_features_add(dev, NETIF_F_IPV6_CSUM);
  6607. }
  6608. #ifdef BCM_VLAN
  6609. dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  6610. #endif
  6611. dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
  6612. vlan_features_add(dev, NETIF_F_TSO | NETIF_F_TSO_ECN);
  6613. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  6614. dev->features |= NETIF_F_TSO6;
  6615. vlan_features_add(dev, NETIF_F_TSO6);
  6616. }
  6617. if ((rc = register_netdev(dev))) {
  6618. dev_err(&pdev->dev, "Cannot register net device\n");
  6619. goto error;
  6620. }
  6621. printk(KERN_INFO "%s: %s (%c%d) %s found at mem %lx, "
  6622. "IRQ %d, node addr %pM\n",
  6623. dev->name,
  6624. board_info[ent->driver_data].name,
  6625. ((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
  6626. ((CHIP_ID(bp) & 0x0ff0) >> 4),
  6627. bnx2_bus_string(bp, str),
  6628. dev->base_addr,
  6629. bp->pdev->irq, dev->dev_addr);
  6630. return 0;
  6631. error:
  6632. if (bp->mips_firmware)
  6633. release_firmware(bp->mips_firmware);
  6634. if (bp->rv2p_firmware)
  6635. release_firmware(bp->rv2p_firmware);
  6636. if (bp->regview)
  6637. iounmap(bp->regview);
  6638. pci_release_regions(pdev);
  6639. pci_disable_device(pdev);
  6640. pci_set_drvdata(pdev, NULL);
  6641. free_netdev(dev);
  6642. return rc;
  6643. }
  6644. static void __devexit
  6645. bnx2_remove_one(struct pci_dev *pdev)
  6646. {
  6647. struct net_device *dev = pci_get_drvdata(pdev);
  6648. struct bnx2 *bp = netdev_priv(dev);
  6649. flush_scheduled_work();
  6650. unregister_netdev(dev);
  6651. if (bp->mips_firmware)
  6652. release_firmware(bp->mips_firmware);
  6653. if (bp->rv2p_firmware)
  6654. release_firmware(bp->rv2p_firmware);
  6655. if (bp->regview)
  6656. iounmap(bp->regview);
  6657. free_netdev(dev);
  6658. pci_release_regions(pdev);
  6659. pci_disable_device(pdev);
  6660. pci_set_drvdata(pdev, NULL);
  6661. }
  6662. static int
  6663. bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
  6664. {
  6665. struct net_device *dev = pci_get_drvdata(pdev);
  6666. struct bnx2 *bp = netdev_priv(dev);
  6667. /* PCI register 4 needs to be saved whether netif_running() or not.
  6668. * MSI address and data need to be saved if using MSI and
  6669. * netif_running().
  6670. */
  6671. pci_save_state(pdev);
  6672. if (!netif_running(dev))
  6673. return 0;
  6674. flush_scheduled_work();
  6675. bnx2_netif_stop(bp);
  6676. netif_device_detach(dev);
  6677. del_timer_sync(&bp->timer);
  6678. bnx2_shutdown_chip(bp);
  6679. bnx2_free_skbs(bp);
  6680. bnx2_set_power_state(bp, pci_choose_state(pdev, state));
  6681. return 0;
  6682. }
  6683. static int
  6684. bnx2_resume(struct pci_dev *pdev)
  6685. {
  6686. struct net_device *dev = pci_get_drvdata(pdev);
  6687. struct bnx2 *bp = netdev_priv(dev);
  6688. pci_restore_state(pdev);
  6689. if (!netif_running(dev))
  6690. return 0;
  6691. bnx2_set_power_state(bp, PCI_D0);
  6692. netif_device_attach(dev);
  6693. bnx2_init_nic(bp, 1);
  6694. bnx2_netif_start(bp);
  6695. return 0;
  6696. }
  6697. /**
  6698. * bnx2_io_error_detected - called when PCI error is detected
  6699. * @pdev: Pointer to PCI device
  6700. * @state: The current pci connection state
  6701. *
  6702. * This function is called after a PCI bus error affecting
  6703. * this device has been detected.
  6704. */
  6705. static pci_ers_result_t bnx2_io_error_detected(struct pci_dev *pdev,
  6706. pci_channel_state_t state)
  6707. {
  6708. struct net_device *dev = pci_get_drvdata(pdev);
  6709. struct bnx2 *bp = netdev_priv(dev);
  6710. rtnl_lock();
  6711. netif_device_detach(dev);
  6712. if (state == pci_channel_io_perm_failure) {
  6713. rtnl_unlock();
  6714. return PCI_ERS_RESULT_DISCONNECT;
  6715. }
  6716. if (netif_running(dev)) {
  6717. bnx2_netif_stop(bp);
  6718. del_timer_sync(&bp->timer);
  6719. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
  6720. }
  6721. pci_disable_device(pdev);
  6722. rtnl_unlock();
  6723. /* Request a slot slot reset. */
  6724. return PCI_ERS_RESULT_NEED_RESET;
  6725. }
  6726. /**
  6727. * bnx2_io_slot_reset - called after the pci bus has been reset.
  6728. * @pdev: Pointer to PCI device
  6729. *
  6730. * Restart the card from scratch, as if from a cold-boot.
  6731. */
  6732. static pci_ers_result_t bnx2_io_slot_reset(struct pci_dev *pdev)
  6733. {
  6734. struct net_device *dev = pci_get_drvdata(pdev);
  6735. struct bnx2 *bp = netdev_priv(dev);
  6736. rtnl_lock();
  6737. if (pci_enable_device(pdev)) {
  6738. dev_err(&pdev->dev,
  6739. "Cannot re-enable PCI device after reset.\n");
  6740. rtnl_unlock();
  6741. return PCI_ERS_RESULT_DISCONNECT;
  6742. }
  6743. pci_set_master(pdev);
  6744. pci_restore_state(pdev);
  6745. if (netif_running(dev)) {
  6746. bnx2_set_power_state(bp, PCI_D0);
  6747. bnx2_init_nic(bp, 1);
  6748. }
  6749. rtnl_unlock();
  6750. return PCI_ERS_RESULT_RECOVERED;
  6751. }
  6752. /**
  6753. * bnx2_io_resume - called when traffic can start flowing again.
  6754. * @pdev: Pointer to PCI device
  6755. *
  6756. * This callback is called when the error recovery driver tells us that
  6757. * its OK to resume normal operation.
  6758. */
  6759. static void bnx2_io_resume(struct pci_dev *pdev)
  6760. {
  6761. struct net_device *dev = pci_get_drvdata(pdev);
  6762. struct bnx2 *bp = netdev_priv(dev);
  6763. rtnl_lock();
  6764. if (netif_running(dev))
  6765. bnx2_netif_start(bp);
  6766. netif_device_attach(dev);
  6767. rtnl_unlock();
  6768. }
  6769. static struct pci_error_handlers bnx2_err_handler = {
  6770. .error_detected = bnx2_io_error_detected,
  6771. .slot_reset = bnx2_io_slot_reset,
  6772. .resume = bnx2_io_resume,
  6773. };
  6774. static struct pci_driver bnx2_pci_driver = {
  6775. .name = DRV_MODULE_NAME,
  6776. .id_table = bnx2_pci_tbl,
  6777. .probe = bnx2_init_one,
  6778. .remove = __devexit_p(bnx2_remove_one),
  6779. .suspend = bnx2_suspend,
  6780. .resume = bnx2_resume,
  6781. .err_handler = &bnx2_err_handler,
  6782. };
  6783. static int __init bnx2_init(void)
  6784. {
  6785. return pci_register_driver(&bnx2_pci_driver);
  6786. }
  6787. static void __exit bnx2_cleanup(void)
  6788. {
  6789. pci_unregister_driver(&bnx2_pci_driver);
  6790. }
  6791. module_init(bnx2_init);
  6792. module_exit(bnx2_cleanup);