s3c-hsotg.c 85 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270
  1. /* linux/drivers/usb/gadget/s3c-hsotg.c
  2. *
  3. * Copyright 2008 Openmoko, Inc.
  4. * Copyright 2008 Simtec Electronics
  5. * Ben Dooks <ben@simtec.co.uk>
  6. * http://armlinux.simtec.co.uk/
  7. *
  8. * S3C USB2.0 High-speed / OtG driver
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License version 2 as
  12. * published by the Free Software Foundation.
  13. */
  14. #include <linux/kernel.h>
  15. #include <linux/module.h>
  16. #include <linux/spinlock.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/platform_device.h>
  19. #include <linux/dma-mapping.h>
  20. #include <linux/debugfs.h>
  21. #include <linux/seq_file.h>
  22. #include <linux/delay.h>
  23. #include <linux/io.h>
  24. #include <linux/usb/ch9.h>
  25. #include <linux/usb/gadget.h>
  26. #include <mach/map.h>
  27. #include <plat/regs-usb-hsotg-phy.h>
  28. #include <plat/regs-usb-hsotg.h>
  29. #include <plat/regs-sys.h>
  30. #include <plat/udc-hs.h>
  31. #define DMA_ADDR_INVALID (~((dma_addr_t)0))
  32. /* EP0_MPS_LIMIT
  33. *
  34. * Unfortunately there seems to be a limit of the amount of data that can
  35. * be transfered by IN transactions on EP0. This is either 127 bytes or 3
  36. * packets (which practially means 1 packet and 63 bytes of data) when the
  37. * MPS is set to 64.
  38. *
  39. * This means if we are wanting to move >127 bytes of data, we need to
  40. * split the transactions up, but just doing one packet at a time does
  41. * not work (this may be an implicit DATA0 PID on first packet of the
  42. * transaction) and doing 2 packets is outside the controller's limits.
  43. *
  44. * If we try to lower the MPS size for EP0, then no transfers work properly
  45. * for EP0, and the system will fail basic enumeration. As no cause for this
  46. * has currently been found, we cannot support any large IN transfers for
  47. * EP0.
  48. */
  49. #define EP0_MPS_LIMIT 64
  50. struct s3c_hsotg;
  51. struct s3c_hsotg_req;
  52. /**
  53. * struct s3c_hsotg_ep - driver endpoint definition.
  54. * @ep: The gadget layer representation of the endpoint.
  55. * @name: The driver generated name for the endpoint.
  56. * @queue: Queue of requests for this endpoint.
  57. * @parent: Reference back to the parent device structure.
  58. * @req: The current request that the endpoint is processing. This is
  59. * used to indicate an request has been loaded onto the endpoint
  60. * and has yet to be completed (maybe due to data move, or simply
  61. * awaiting an ack from the core all the data has been completed).
  62. * @debugfs: File entry for debugfs file for this endpoint.
  63. * @lock: State lock to protect contents of endpoint.
  64. * @dir_in: Set to true if this endpoint is of the IN direction, which
  65. * means that it is sending data to the Host.
  66. * @index: The index for the endpoint registers.
  67. * @name: The name array passed to the USB core.
  68. * @halted: Set if the endpoint has been halted.
  69. * @periodic: Set if this is a periodic ep, such as Interrupt
  70. * @sent_zlp: Set if we've sent a zero-length packet.
  71. * @total_data: The total number of data bytes done.
  72. * @fifo_size: The size of the FIFO (for periodic IN endpoints)
  73. * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
  74. * @last_load: The offset of data for the last start of request.
  75. * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
  76. *
  77. * This is the driver's state for each registered enpoint, allowing it
  78. * to keep track of transactions that need doing. Each endpoint has a
  79. * lock to protect the state, to try and avoid using an overall lock
  80. * for the host controller as much as possible.
  81. *
  82. * For periodic IN endpoints, we have fifo_size and fifo_load to try
  83. * and keep track of the amount of data in the periodic FIFO for each
  84. * of these as we don't have a status register that tells us how much
  85. * is in each of them.
  86. */
  87. struct s3c_hsotg_ep {
  88. struct usb_ep ep;
  89. struct list_head queue;
  90. struct s3c_hsotg *parent;
  91. struct s3c_hsotg_req *req;
  92. struct dentry *debugfs;
  93. spinlock_t lock;
  94. unsigned long total_data;
  95. unsigned int size_loaded;
  96. unsigned int last_load;
  97. unsigned int fifo_load;
  98. unsigned short fifo_size;
  99. unsigned char dir_in;
  100. unsigned char index;
  101. unsigned int halted:1;
  102. unsigned int periodic:1;
  103. unsigned int sent_zlp:1;
  104. char name[10];
  105. };
  106. #define S3C_HSOTG_EPS (8+1) /* limit to 9 for the moment */
  107. /**
  108. * struct s3c_hsotg - driver state.
  109. * @dev: The parent device supplied to the probe function
  110. * @driver: USB gadget driver
  111. * @plat: The platform specific configuration data.
  112. * @regs: The memory area mapped for accessing registers.
  113. * @regs_res: The resource that was allocated when claiming register space.
  114. * @irq: The IRQ number we are using
  115. * @debug_root: root directrory for debugfs.
  116. * @debug_file: main status file for debugfs.
  117. * @debug_fifo: FIFO status file for debugfs.
  118. * @ep0_reply: Request used for ep0 reply.
  119. * @ep0_buff: Buffer for EP0 reply data, if needed.
  120. * @ctrl_buff: Buffer for EP0 control requests.
  121. * @ctrl_req: Request for EP0 control packets.
  122. * @eps: The endpoints being supplied to the gadget framework
  123. */
  124. struct s3c_hsotg {
  125. struct device *dev;
  126. struct usb_gadget_driver *driver;
  127. struct s3c_hsotg_plat *plat;
  128. void __iomem *regs;
  129. struct resource *regs_res;
  130. int irq;
  131. struct dentry *debug_root;
  132. struct dentry *debug_file;
  133. struct dentry *debug_fifo;
  134. struct usb_request *ep0_reply;
  135. struct usb_request *ctrl_req;
  136. u8 ep0_buff[8];
  137. u8 ctrl_buff[8];
  138. struct usb_gadget gadget;
  139. struct s3c_hsotg_ep eps[];
  140. };
  141. /**
  142. * struct s3c_hsotg_req - data transfer request
  143. * @req: The USB gadget request
  144. * @queue: The list of requests for the endpoint this is queued for.
  145. * @in_progress: Has already had size/packets written to core
  146. * @mapped: DMA buffer for this request has been mapped via dma_map_single().
  147. */
  148. struct s3c_hsotg_req {
  149. struct usb_request req;
  150. struct list_head queue;
  151. unsigned char in_progress;
  152. unsigned char mapped;
  153. };
  154. /* conversion functions */
  155. static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
  156. {
  157. return container_of(req, struct s3c_hsotg_req, req);
  158. }
  159. static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
  160. {
  161. return container_of(ep, struct s3c_hsotg_ep, ep);
  162. }
  163. static inline struct s3c_hsotg *to_hsotg(struct usb_gadget *gadget)
  164. {
  165. return container_of(gadget, struct s3c_hsotg, gadget);
  166. }
  167. static inline void __orr32(void __iomem *ptr, u32 val)
  168. {
  169. writel(readl(ptr) | val, ptr);
  170. }
  171. static inline void __bic32(void __iomem *ptr, u32 val)
  172. {
  173. writel(readl(ptr) & ~val, ptr);
  174. }
  175. /* forward decleration of functions */
  176. static void s3c_hsotg_dump(struct s3c_hsotg *hsotg);
  177. /**
  178. * using_dma - return the DMA status of the driver.
  179. * @hsotg: The driver state.
  180. *
  181. * Return true if we're using DMA.
  182. *
  183. * Currently, we have the DMA support code worked into everywhere
  184. * that needs it, but the AMBA DMA implementation in the hardware can
  185. * only DMA from 32bit aligned addresses. This means that gadgets such
  186. * as the CDC Ethernet cannot work as they often pass packets which are
  187. * not 32bit aligned.
  188. *
  189. * Unfortunately the choice to use DMA or not is global to the controller
  190. * and seems to be only settable when the controller is being put through
  191. * a core reset. This means we either need to fix the gadgets to take
  192. * account of DMA alignment, or add bounce buffers (yuerk).
  193. *
  194. * Until this issue is sorted out, we always return 'false'.
  195. */
  196. static inline bool using_dma(struct s3c_hsotg *hsotg)
  197. {
  198. return false; /* support is not complete */
  199. }
  200. /**
  201. * s3c_hsotg_en_gsint - enable one or more of the general interrupt
  202. * @hsotg: The device state
  203. * @ints: A bitmask of the interrupts to enable
  204. */
  205. static void s3c_hsotg_en_gsint(struct s3c_hsotg *hsotg, u32 ints)
  206. {
  207. u32 gsintmsk = readl(hsotg->regs + S3C_GINTMSK);
  208. u32 new_gsintmsk;
  209. new_gsintmsk = gsintmsk | ints;
  210. if (new_gsintmsk != gsintmsk) {
  211. dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
  212. writel(new_gsintmsk, hsotg->regs + S3C_GINTMSK);
  213. }
  214. }
  215. /**
  216. * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
  217. * @hsotg: The device state
  218. * @ints: A bitmask of the interrupts to enable
  219. */
  220. static void s3c_hsotg_disable_gsint(struct s3c_hsotg *hsotg, u32 ints)
  221. {
  222. u32 gsintmsk = readl(hsotg->regs + S3C_GINTMSK);
  223. u32 new_gsintmsk;
  224. new_gsintmsk = gsintmsk & ~ints;
  225. if (new_gsintmsk != gsintmsk)
  226. writel(new_gsintmsk, hsotg->regs + S3C_GINTMSK);
  227. }
  228. /**
  229. * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
  230. * @hsotg: The device state
  231. * @ep: The endpoint index
  232. * @dir_in: True if direction is in.
  233. * @en: The enable value, true to enable
  234. *
  235. * Set or clear the mask for an individual endpoint's interrupt
  236. * request.
  237. */
  238. static void s3c_hsotg_ctrl_epint(struct s3c_hsotg *hsotg,
  239. unsigned int ep, unsigned int dir_in,
  240. unsigned int en)
  241. {
  242. unsigned long flags;
  243. u32 bit = 1 << ep;
  244. u32 daint;
  245. if (!dir_in)
  246. bit <<= 16;
  247. local_irq_save(flags);
  248. daint = readl(hsotg->regs + S3C_DAINTMSK);
  249. if (en)
  250. daint |= bit;
  251. else
  252. daint &= ~bit;
  253. writel(daint, hsotg->regs + S3C_DAINTMSK);
  254. local_irq_restore(flags);
  255. }
  256. /**
  257. * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
  258. * @hsotg: The device instance.
  259. */
  260. static void s3c_hsotg_init_fifo(struct s3c_hsotg *hsotg)
  261. {
  262. /* the ryu 2.6.24 release ahs
  263. writel(0x1C0, hsotg->regs + S3C_GRXFSIZ);
  264. writel(S3C_GNPTXFSIZ_NPTxFStAddr(0x200) |
  265. S3C_GNPTXFSIZ_NPTxFDep(0x1C0),
  266. hsotg->regs + S3C_GNPTXFSIZ);
  267. */
  268. /* set FIFO sizes to 2048/0x1C0 */
  269. writel(2048, hsotg->regs + S3C_GRXFSIZ);
  270. writel(S3C_GNPTXFSIZ_NPTxFStAddr(2048) |
  271. S3C_GNPTXFSIZ_NPTxFDep(0x1C0),
  272. hsotg->regs + S3C_GNPTXFSIZ);
  273. }
  274. /**
  275. * @ep: USB endpoint to allocate request for.
  276. * @flags: Allocation flags
  277. *
  278. * Allocate a new USB request structure appropriate for the specified endpoint
  279. */
  280. struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep, gfp_t flags)
  281. {
  282. struct s3c_hsotg_req *req;
  283. req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
  284. if (!req)
  285. return NULL;
  286. INIT_LIST_HEAD(&req->queue);
  287. req->req.dma = DMA_ADDR_INVALID;
  288. return &req->req;
  289. }
  290. /**
  291. * is_ep_periodic - return true if the endpoint is in periodic mode.
  292. * @hs_ep: The endpoint to query.
  293. *
  294. * Returns true if the endpoint is in periodic mode, meaning it is being
  295. * used for an Interrupt or ISO transfer.
  296. */
  297. static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
  298. {
  299. return hs_ep->periodic;
  300. }
  301. /**
  302. * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
  303. * @hsotg: The device state.
  304. * @hs_ep: The endpoint for the request
  305. * @hs_req: The request being processed.
  306. *
  307. * This is the reverse of s3c_hsotg_map_dma(), called for the completion
  308. * of a request to ensure the buffer is ready for access by the caller.
  309. */
  310. static void s3c_hsotg_unmap_dma(struct s3c_hsotg *hsotg,
  311. struct s3c_hsotg_ep *hs_ep,
  312. struct s3c_hsotg_req *hs_req)
  313. {
  314. struct usb_request *req = &hs_req->req;
  315. enum dma_data_direction dir;
  316. dir = hs_ep->dir_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
  317. /* ignore this if we're not moving any data */
  318. if (hs_req->req.length == 0)
  319. return;
  320. if (hs_req->mapped) {
  321. /* we mapped this, so unmap and remove the dma */
  322. dma_unmap_single(hsotg->dev, req->dma, req->length, dir);
  323. req->dma = DMA_ADDR_INVALID;
  324. hs_req->mapped = 0;
  325. } else {
  326. dma_sync_single(hsotg->dev, req->dma, req->length, dir);
  327. }
  328. }
  329. /**
  330. * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
  331. * @hsotg: The controller state.
  332. * @hs_ep: The endpoint we're going to write for.
  333. * @hs_req: The request to write data for.
  334. *
  335. * This is called when the TxFIFO has some space in it to hold a new
  336. * transmission and we have something to give it. The actual setup of
  337. * the data size is done elsewhere, so all we have to do is to actually
  338. * write the data.
  339. *
  340. * The return value is zero if there is more space (or nothing was done)
  341. * otherwise -ENOSPC is returned if the FIFO space was used up.
  342. *
  343. * This routine is only needed for PIO
  344. */
  345. static int s3c_hsotg_write_fifo(struct s3c_hsotg *hsotg,
  346. struct s3c_hsotg_ep *hs_ep,
  347. struct s3c_hsotg_req *hs_req)
  348. {
  349. bool periodic = is_ep_periodic(hs_ep);
  350. u32 gnptxsts = readl(hsotg->regs + S3C_GNPTXSTS);
  351. int buf_pos = hs_req->req.actual;
  352. int to_write = hs_ep->size_loaded;
  353. void *data;
  354. int can_write;
  355. int pkt_round;
  356. to_write -= (buf_pos - hs_ep->last_load);
  357. /* if there's nothing to write, get out early */
  358. if (to_write == 0)
  359. return 0;
  360. if (periodic) {
  361. u32 epsize = readl(hsotg->regs + S3C_DIEPTSIZ(hs_ep->index));
  362. int size_left;
  363. int size_done;
  364. /* work out how much data was loaded so we can calculate
  365. * how much data is left in the fifo. */
  366. size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
  367. dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
  368. __func__, size_left,
  369. hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
  370. /* how much of the data has moved */
  371. size_done = hs_ep->size_loaded - size_left;
  372. /* how much data is left in the fifo */
  373. can_write = hs_ep->fifo_load - size_done;
  374. dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
  375. __func__, can_write);
  376. can_write = hs_ep->fifo_size - can_write;
  377. dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
  378. __func__, can_write);
  379. if (can_write <= 0) {
  380. s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
  381. return -ENOSPC;
  382. }
  383. } else {
  384. if (S3C_GNPTXSTS_NPTxQSpcAvail_GET(gnptxsts) == 0) {
  385. dev_dbg(hsotg->dev,
  386. "%s: no queue slots available (0x%08x)\n",
  387. __func__, gnptxsts);
  388. s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_NPTxFEmp);
  389. return -ENOSPC;
  390. }
  391. can_write = S3C_GNPTXSTS_NPTxFSpcAvail_GET(gnptxsts);
  392. }
  393. dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, mps %d\n",
  394. __func__, gnptxsts, can_write, to_write, hs_ep->ep.maxpacket);
  395. /* limit to 512 bytes of data, it seems at least on the non-periodic
  396. * FIFO, requests of >512 cause the endpoint to get stuck with a
  397. * fragment of the end of the transfer in it.
  398. */
  399. if (can_write > 512)
  400. can_write = 512;
  401. /* see if we can write data */
  402. if (to_write > can_write) {
  403. to_write = can_write;
  404. pkt_round = to_write % hs_ep->ep.maxpacket;
  405. /* Not sure, but we probably shouldn't be writing partial
  406. * packets into the FIFO, so round the write down to an
  407. * exact number of packets.
  408. *
  409. * Note, we do not currently check to see if we can ever
  410. * write a full packet or not to the FIFO.
  411. */
  412. if (pkt_round)
  413. to_write -= pkt_round;
  414. /* enable correct FIFO interrupt to alert us when there
  415. * is more room left. */
  416. s3c_hsotg_en_gsint(hsotg,
  417. periodic ? S3C_GINTSTS_PTxFEmp :
  418. S3C_GINTSTS_NPTxFEmp);
  419. }
  420. dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
  421. to_write, hs_req->req.length, can_write, buf_pos);
  422. if (to_write <= 0)
  423. return -ENOSPC;
  424. hs_req->req.actual = buf_pos + to_write;
  425. hs_ep->total_data += to_write;
  426. if (periodic)
  427. hs_ep->fifo_load += to_write;
  428. to_write = DIV_ROUND_UP(to_write, 4);
  429. data = hs_req->req.buf + buf_pos;
  430. writesl(hsotg->regs + S3C_EPFIFO(hs_ep->index), data, to_write);
  431. return (to_write >= can_write) ? -ENOSPC : 0;
  432. }
  433. /**
  434. * get_ep_limit - get the maximum data legnth for this endpoint
  435. * @hs_ep: The endpoint
  436. *
  437. * Return the maximum data that can be queued in one go on a given endpoint
  438. * so that transfers that are too long can be split.
  439. */
  440. static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
  441. {
  442. int index = hs_ep->index;
  443. unsigned maxsize;
  444. unsigned maxpkt;
  445. if (index != 0) {
  446. maxsize = S3C_DxEPTSIZ_XferSize_LIMIT + 1;
  447. maxpkt = S3C_DxEPTSIZ_PktCnt_LIMIT + 1;
  448. } else {
  449. if (hs_ep->dir_in) {
  450. /* maxsize = S3C_DIEPTSIZ0_XferSize_LIMIT + 1; */
  451. maxsize = 64+64+1;
  452. maxpkt = S3C_DIEPTSIZ0_PktCnt_LIMIT + 1;
  453. } else {
  454. maxsize = 0x3f;
  455. maxpkt = 2;
  456. }
  457. }
  458. /* we made the constant loading easier above by using +1 */
  459. maxpkt--;
  460. maxsize--;
  461. /* constrain by packet count if maxpkts*pktsize is greater
  462. * than the length register size. */
  463. if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
  464. maxsize = maxpkt * hs_ep->ep.maxpacket;
  465. return maxsize;
  466. }
  467. /**
  468. * s3c_hsotg_start_req - start a USB request from an endpoint's queue
  469. * @hsotg: The controller state.
  470. * @hs_ep: The endpoint to process a request for
  471. * @hs_req: The request to start.
  472. * @continuing: True if we are doing more for the current request.
  473. *
  474. * Start the given request running by setting the endpoint registers
  475. * appropriately, and writing any data to the FIFOs.
  476. */
  477. static void s3c_hsotg_start_req(struct s3c_hsotg *hsotg,
  478. struct s3c_hsotg_ep *hs_ep,
  479. struct s3c_hsotg_req *hs_req,
  480. bool continuing)
  481. {
  482. struct usb_request *ureq = &hs_req->req;
  483. int index = hs_ep->index;
  484. int dir_in = hs_ep->dir_in;
  485. u32 epctrl_reg;
  486. u32 epsize_reg;
  487. u32 epsize;
  488. u32 ctrl;
  489. unsigned length;
  490. unsigned packets;
  491. unsigned maxreq;
  492. if (index != 0) {
  493. if (hs_ep->req && !continuing) {
  494. dev_err(hsotg->dev, "%s: active request\n", __func__);
  495. WARN_ON(1);
  496. return;
  497. } else if (hs_ep->req != hs_req && continuing) {
  498. dev_err(hsotg->dev,
  499. "%s: continue different req\n", __func__);
  500. WARN_ON(1);
  501. return;
  502. }
  503. }
  504. epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
  505. epsize_reg = dir_in ? S3C_DIEPTSIZ(index) : S3C_DOEPTSIZ(index);
  506. dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
  507. __func__, readl(hsotg->regs + epctrl_reg), index,
  508. hs_ep->dir_in ? "in" : "out");
  509. length = ureq->length - ureq->actual;
  510. if (0)
  511. dev_dbg(hsotg->dev,
  512. "REQ buf %p len %d dma 0x%08x noi=%d zp=%d snok=%d\n",
  513. ureq->buf, length, ureq->dma,
  514. ureq->no_interrupt, ureq->zero, ureq->short_not_ok);
  515. maxreq = get_ep_limit(hs_ep);
  516. if (length > maxreq) {
  517. int round = maxreq % hs_ep->ep.maxpacket;
  518. dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
  519. __func__, length, maxreq, round);
  520. /* round down to multiple of packets */
  521. if (round)
  522. maxreq -= round;
  523. length = maxreq;
  524. }
  525. if (length)
  526. packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
  527. else
  528. packets = 1; /* send one packet if length is zero. */
  529. if (dir_in && index != 0)
  530. epsize = S3C_DxEPTSIZ_MC(1);
  531. else
  532. epsize = 0;
  533. if (index != 0 && ureq->zero) {
  534. /* test for the packets being exactly right for the
  535. * transfer */
  536. if (length == (packets * hs_ep->ep.maxpacket))
  537. packets++;
  538. }
  539. epsize |= S3C_DxEPTSIZ_PktCnt(packets);
  540. epsize |= S3C_DxEPTSIZ_XferSize(length);
  541. dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
  542. __func__, packets, length, ureq->length, epsize, epsize_reg);
  543. /* store the request as the current one we're doing */
  544. hs_ep->req = hs_req;
  545. /* write size / packets */
  546. writel(epsize, hsotg->regs + epsize_reg);
  547. ctrl = readl(hsotg->regs + epctrl_reg);
  548. if (ctrl & S3C_DxEPCTL_Stall) {
  549. dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
  550. /* not sure what we can do here, if it is EP0 then we should
  551. * get this cleared once the endpoint has transmitted the
  552. * STALL packet, otherwise it needs to be cleared by the
  553. * host.
  554. */
  555. }
  556. if (using_dma(hsotg)) {
  557. unsigned int dma_reg;
  558. /* write DMA address to control register, buffer already
  559. * synced by s3c_hsotg_ep_queue(). */
  560. dma_reg = dir_in ? S3C_DIEPDMA(index) : S3C_DOEPDMA(index);
  561. writel(ureq->dma, hsotg->regs + dma_reg);
  562. dev_dbg(hsotg->dev, "%s: 0x%08x => 0x%08x\n",
  563. __func__, ureq->dma, dma_reg);
  564. }
  565. ctrl |= S3C_DxEPCTL_EPEna; /* ensure ep enabled */
  566. ctrl |= S3C_DxEPCTL_USBActEp;
  567. ctrl |= S3C_DxEPCTL_CNAK; /* clear NAK set by core */
  568. dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
  569. writel(ctrl, hsotg->regs + epctrl_reg);
  570. /* set these, it seems that DMA support increments past the end
  571. * of the packet buffer so we need to calculate the length from
  572. * this information. */
  573. hs_ep->size_loaded = length;
  574. hs_ep->last_load = ureq->actual;
  575. if (dir_in && !using_dma(hsotg)) {
  576. /* set these anyway, we may need them for non-periodic in */
  577. hs_ep->fifo_load = 0;
  578. s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
  579. }
  580. /* clear the INTknTXFEmpMsk when we start request, more as a aide
  581. * to debugging to see what is going on. */
  582. if (dir_in)
  583. writel(S3C_DIEPMSK_INTknTXFEmpMsk,
  584. hsotg->regs + S3C_DIEPINT(index));
  585. /* Note, trying to clear the NAK here causes problems with transmit
  586. * on the S3C6400 ending up with the TXFIFO becomming full. */
  587. /* check ep is enabled */
  588. if (!(readl(hsotg->regs + epctrl_reg) & S3C_DxEPCTL_EPEna))
  589. dev_warn(hsotg->dev,
  590. "ep%d: failed to become enabled (DxEPCTL=0x%08x)?\n",
  591. index, readl(hsotg->regs + epctrl_reg));
  592. dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n",
  593. __func__, readl(hsotg->regs + epctrl_reg));
  594. }
  595. /**
  596. * s3c_hsotg_map_dma - map the DMA memory being used for the request
  597. * @hsotg: The device state.
  598. * @hs_ep: The endpoint the request is on.
  599. * @req: The request being processed.
  600. *
  601. * We've been asked to queue a request, so ensure that the memory buffer
  602. * is correctly setup for DMA. If we've been passed an extant DMA address
  603. * then ensure the buffer has been synced to memory. If our buffer has no
  604. * DMA memory, then we map the memory and mark our request to allow us to
  605. * cleanup on completion.
  606. */
  607. static int s3c_hsotg_map_dma(struct s3c_hsotg *hsotg,
  608. struct s3c_hsotg_ep *hs_ep,
  609. struct usb_request *req)
  610. {
  611. enum dma_data_direction dir;
  612. struct s3c_hsotg_req *hs_req = our_req(req);
  613. dir = hs_ep->dir_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
  614. /* if the length is zero, ignore the DMA data */
  615. if (hs_req->req.length == 0)
  616. return 0;
  617. if (req->dma == DMA_ADDR_INVALID) {
  618. dma_addr_t dma;
  619. dma = dma_map_single(hsotg->dev, req->buf, req->length, dir);
  620. if (unlikely(dma_mapping_error(hsotg->dev, dma)))
  621. goto dma_error;
  622. if (dma & 3) {
  623. dev_err(hsotg->dev, "%s: unaligned dma buffer\n",
  624. __func__);
  625. dma_unmap_single(hsotg->dev, dma, req->length, dir);
  626. return -EINVAL;
  627. }
  628. hs_req->mapped = 1;
  629. req->dma = dma;
  630. } else {
  631. dma_sync_single(hsotg->dev, req->dma, req->length, dir);
  632. hs_req->mapped = 0;
  633. }
  634. return 0;
  635. dma_error:
  636. dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
  637. __func__, req->buf, req->length);
  638. return -EIO;
  639. }
  640. static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
  641. gfp_t gfp_flags)
  642. {
  643. struct s3c_hsotg_req *hs_req = our_req(req);
  644. struct s3c_hsotg_ep *hs_ep = our_ep(ep);
  645. struct s3c_hsotg *hs = hs_ep->parent;
  646. unsigned long irqflags;
  647. bool first;
  648. dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
  649. ep->name, req, req->length, req->buf, req->no_interrupt,
  650. req->zero, req->short_not_ok);
  651. /* initialise status of the request */
  652. INIT_LIST_HEAD(&hs_req->queue);
  653. req->actual = 0;
  654. req->status = -EINPROGRESS;
  655. /* if we're using DMA, sync the buffers as necessary */
  656. if (using_dma(hs)) {
  657. int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
  658. if (ret)
  659. return ret;
  660. }
  661. spin_lock_irqsave(&hs_ep->lock, irqflags);
  662. first = list_empty(&hs_ep->queue);
  663. list_add_tail(&hs_req->queue, &hs_ep->queue);
  664. if (first)
  665. s3c_hsotg_start_req(hs, hs_ep, hs_req, false);
  666. spin_unlock_irqrestore(&hs_ep->lock, irqflags);
  667. return 0;
  668. }
  669. static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
  670. struct usb_request *req)
  671. {
  672. struct s3c_hsotg_req *hs_req = our_req(req);
  673. kfree(hs_req);
  674. }
  675. /**
  676. * s3c_hsotg_complete_oursetup - setup completion callback
  677. * @ep: The endpoint the request was on.
  678. * @req: The request completed.
  679. *
  680. * Called on completion of any requests the driver itself
  681. * submitted that need cleaning up.
  682. */
  683. static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
  684. struct usb_request *req)
  685. {
  686. struct s3c_hsotg_ep *hs_ep = our_ep(ep);
  687. struct s3c_hsotg *hsotg = hs_ep->parent;
  688. dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
  689. s3c_hsotg_ep_free_request(ep, req);
  690. }
  691. /**
  692. * ep_from_windex - convert control wIndex value to endpoint
  693. * @hsotg: The driver state.
  694. * @windex: The control request wIndex field (in host order).
  695. *
  696. * Convert the given wIndex into a pointer to an driver endpoint
  697. * structure, or return NULL if it is not a valid endpoint.
  698. */
  699. static struct s3c_hsotg_ep *ep_from_windex(struct s3c_hsotg *hsotg,
  700. u32 windex)
  701. {
  702. struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F];
  703. int dir = (windex & USB_DIR_IN) ? 1 : 0;
  704. int idx = windex & 0x7F;
  705. if (windex >= 0x100)
  706. return NULL;
  707. if (idx > S3C_HSOTG_EPS)
  708. return NULL;
  709. if (idx && ep->dir_in != dir)
  710. return NULL;
  711. return ep;
  712. }
  713. /**
  714. * s3c_hsotg_send_reply - send reply to control request
  715. * @hsotg: The device state
  716. * @ep: Endpoint 0
  717. * @buff: Buffer for request
  718. * @length: Length of reply.
  719. *
  720. * Create a request and queue it on the given endpoint. This is useful as
  721. * an internal method of sending replies to certain control requests, etc.
  722. */
  723. static int s3c_hsotg_send_reply(struct s3c_hsotg *hsotg,
  724. struct s3c_hsotg_ep *ep,
  725. void *buff,
  726. int length)
  727. {
  728. struct usb_request *req;
  729. int ret;
  730. dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
  731. req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
  732. hsotg->ep0_reply = req;
  733. if (!req) {
  734. dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
  735. return -ENOMEM;
  736. }
  737. req->buf = hsotg->ep0_buff;
  738. req->length = length;
  739. req->zero = 1; /* always do zero-length final transfer */
  740. req->complete = s3c_hsotg_complete_oursetup;
  741. if (length)
  742. memcpy(req->buf, buff, length);
  743. else
  744. ep->sent_zlp = 1;
  745. ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
  746. if (ret) {
  747. dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
  748. return ret;
  749. }
  750. return 0;
  751. }
  752. /**
  753. * s3c_hsotg_process_req_status - process request GET_STATUS
  754. * @hsotg: The device state
  755. * @ctrl: USB control request
  756. */
  757. static int s3c_hsotg_process_req_status(struct s3c_hsotg *hsotg,
  758. struct usb_ctrlrequest *ctrl)
  759. {
  760. struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
  761. struct s3c_hsotg_ep *ep;
  762. __le16 reply;
  763. int ret;
  764. dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
  765. if (!ep0->dir_in) {
  766. dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
  767. return -EINVAL;
  768. }
  769. switch (ctrl->bRequestType & USB_RECIP_MASK) {
  770. case USB_RECIP_DEVICE:
  771. reply = cpu_to_le16(0); /* bit 0 => self powered,
  772. * bit 1 => remote wakeup */
  773. break;
  774. case USB_RECIP_INTERFACE:
  775. /* currently, the data result should be zero */
  776. reply = cpu_to_le16(0);
  777. break;
  778. case USB_RECIP_ENDPOINT:
  779. ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
  780. if (!ep)
  781. return -ENOENT;
  782. reply = cpu_to_le16(ep->halted ? 1 : 0);
  783. break;
  784. default:
  785. return 0;
  786. }
  787. if (le16_to_cpu(ctrl->wLength) != 2)
  788. return -EINVAL;
  789. ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
  790. if (ret) {
  791. dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
  792. return ret;
  793. }
  794. return 1;
  795. }
  796. static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);
  797. /**
  798. * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
  799. * @hsotg: The device state
  800. * @ctrl: USB control request
  801. */
  802. static int s3c_hsotg_process_req_feature(struct s3c_hsotg *hsotg,
  803. struct usb_ctrlrequest *ctrl)
  804. {
  805. bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
  806. struct s3c_hsotg_ep *ep;
  807. dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
  808. __func__, set ? "SET" : "CLEAR");
  809. if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
  810. ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
  811. if (!ep) {
  812. dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
  813. __func__, le16_to_cpu(ctrl->wIndex));
  814. return -ENOENT;
  815. }
  816. switch (le16_to_cpu(ctrl->wValue)) {
  817. case USB_ENDPOINT_HALT:
  818. s3c_hsotg_ep_sethalt(&ep->ep, set);
  819. break;
  820. default:
  821. return -ENOENT;
  822. }
  823. } else
  824. return -ENOENT; /* currently only deal with endpoint */
  825. return 1;
  826. }
  827. /**
  828. * s3c_hsotg_process_control - process a control request
  829. * @hsotg: The device state
  830. * @ctrl: The control request received
  831. *
  832. * The controller has received the SETUP phase of a control request, and
  833. * needs to work out what to do next (and whether to pass it on to the
  834. * gadget driver).
  835. */
  836. static void s3c_hsotg_process_control(struct s3c_hsotg *hsotg,
  837. struct usb_ctrlrequest *ctrl)
  838. {
  839. struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
  840. int ret = 0;
  841. u32 dcfg;
  842. ep0->sent_zlp = 0;
  843. dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
  844. ctrl->bRequest, ctrl->bRequestType,
  845. ctrl->wValue, ctrl->wLength);
  846. /* record the direction of the request, for later use when enquing
  847. * packets onto EP0. */
  848. ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0;
  849. dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in);
  850. /* if we've no data with this request, then the last part of the
  851. * transaction is going to implicitly be IN. */
  852. if (ctrl->wLength == 0)
  853. ep0->dir_in = 1;
  854. if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
  855. switch (ctrl->bRequest) {
  856. case USB_REQ_SET_ADDRESS:
  857. dcfg = readl(hsotg->regs + S3C_DCFG);
  858. dcfg &= ~S3C_DCFG_DevAddr_MASK;
  859. dcfg |= ctrl->wValue << S3C_DCFG_DevAddr_SHIFT;
  860. writel(dcfg, hsotg->regs + S3C_DCFG);
  861. dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
  862. ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
  863. return;
  864. case USB_REQ_GET_STATUS:
  865. ret = s3c_hsotg_process_req_status(hsotg, ctrl);
  866. break;
  867. case USB_REQ_CLEAR_FEATURE:
  868. case USB_REQ_SET_FEATURE:
  869. ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
  870. break;
  871. }
  872. }
  873. /* as a fallback, try delivering it to the driver to deal with */
  874. if (ret == 0 && hsotg->driver) {
  875. ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
  876. if (ret < 0)
  877. dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
  878. }
  879. if (ret > 0) {
  880. if (!ep0->dir_in) {
  881. /* need to generate zlp in reply or take data */
  882. /* todo - deal with any data we might be sent? */
  883. ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
  884. }
  885. }
  886. /* the request is either unhandlable, or is not formatted correctly
  887. * so respond with a STALL for the status stage to indicate failure.
  888. */
  889. if (ret < 0) {
  890. u32 reg;
  891. u32 ctrl;
  892. dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
  893. reg = (ep0->dir_in) ? S3C_DIEPCTL0 : S3C_DOEPCTL0;
  894. /* S3C_DxEPCTL_Stall will be cleared by EP once it has
  895. * taken effect, so no need to clear later. */
  896. ctrl = readl(hsotg->regs + reg);
  897. ctrl |= S3C_DxEPCTL_Stall;
  898. ctrl |= S3C_DxEPCTL_CNAK;
  899. writel(ctrl, hsotg->regs + reg);
  900. dev_dbg(hsotg->dev,
  901. "writen DxEPCTL=0x%08x to %08x (DxEPCTL=0x%08x)\n",
  902. ctrl, reg, readl(hsotg->regs + reg));
  903. /* don't belive we need to anything more to get the EP
  904. * to reply with a STALL packet */
  905. }
  906. }
  907. static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg);
  908. /**
  909. * s3c_hsotg_complete_setup - completion of a setup transfer
  910. * @ep: The endpoint the request was on.
  911. * @req: The request completed.
  912. *
  913. * Called on completion of any requests the driver itself submitted for
  914. * EP0 setup packets
  915. */
  916. static void s3c_hsotg_complete_setup(struct usb_ep *ep,
  917. struct usb_request *req)
  918. {
  919. struct s3c_hsotg_ep *hs_ep = our_ep(ep);
  920. struct s3c_hsotg *hsotg = hs_ep->parent;
  921. if (req->status < 0) {
  922. dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
  923. return;
  924. }
  925. if (req->actual == 0)
  926. s3c_hsotg_enqueue_setup(hsotg);
  927. else
  928. s3c_hsotg_process_control(hsotg, req->buf);
  929. }
  930. /**
  931. * s3c_hsotg_enqueue_setup - start a request for EP0 packets
  932. * @hsotg: The device state.
  933. *
  934. * Enqueue a request on EP0 if necessary to received any SETUP packets
  935. * received from the host.
  936. */
  937. static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg)
  938. {
  939. struct usb_request *req = hsotg->ctrl_req;
  940. struct s3c_hsotg_req *hs_req = our_req(req);
  941. int ret;
  942. dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
  943. req->zero = 0;
  944. req->length = 8;
  945. req->buf = hsotg->ctrl_buff;
  946. req->complete = s3c_hsotg_complete_setup;
  947. if (!list_empty(&hs_req->queue)) {
  948. dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
  949. return;
  950. }
  951. hsotg->eps[0].dir_in = 0;
  952. ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC);
  953. if (ret < 0) {
  954. dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
  955. /* Don't think there's much we can do other than watch the
  956. * driver fail. */
  957. }
  958. }
  959. /**
  960. * get_ep_head - return the first request on the endpoint
  961. * @hs_ep: The controller endpoint to get
  962. *
  963. * Get the first request on the endpoint.
  964. */
  965. static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
  966. {
  967. if (list_empty(&hs_ep->queue))
  968. return NULL;
  969. return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
  970. }
  971. /**
  972. * s3c_hsotg_complete_request - complete a request given to us
  973. * @hsotg: The device state.
  974. * @hs_ep: The endpoint the request was on.
  975. * @hs_req: The request to complete.
  976. * @result: The result code (0 => Ok, otherwise errno)
  977. *
  978. * The given request has finished, so call the necessary completion
  979. * if it has one and then look to see if we can start a new request
  980. * on the endpoint.
  981. *
  982. * Note, expects the ep to already be locked as appropriate.
  983. */
  984. static void s3c_hsotg_complete_request(struct s3c_hsotg *hsotg,
  985. struct s3c_hsotg_ep *hs_ep,
  986. struct s3c_hsotg_req *hs_req,
  987. int result)
  988. {
  989. bool restart;
  990. if (!hs_req) {
  991. dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
  992. return;
  993. }
  994. dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
  995. hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
  996. /* only replace the status if we've not already set an error
  997. * from a previous transaction */
  998. if (hs_req->req.status == -EINPROGRESS)
  999. hs_req->req.status = result;
  1000. hs_ep->req = NULL;
  1001. list_del_init(&hs_req->queue);
  1002. if (using_dma(hsotg))
  1003. s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
  1004. /* call the complete request with the locks off, just in case the
  1005. * request tries to queue more work for this endpoint. */
  1006. if (hs_req->req.complete) {
  1007. spin_unlock(&hs_ep->lock);
  1008. hs_req->req.complete(&hs_ep->ep, &hs_req->req);
  1009. spin_lock(&hs_ep->lock);
  1010. }
  1011. /* Look to see if there is anything else to do. Note, the completion
  1012. * of the previous request may have caused a new request to be started
  1013. * so be careful when doing this. */
  1014. if (!hs_ep->req && result >= 0) {
  1015. restart = !list_empty(&hs_ep->queue);
  1016. if (restart) {
  1017. hs_req = get_ep_head(hs_ep);
  1018. s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
  1019. }
  1020. }
  1021. }
  1022. /**
  1023. * s3c_hsotg_complete_request_lock - complete a request given to us (locked)
  1024. * @hsotg: The device state.
  1025. * @hs_ep: The endpoint the request was on.
  1026. * @hs_req: The request to complete.
  1027. * @result: The result code (0 => Ok, otherwise errno)
  1028. *
  1029. * See s3c_hsotg_complete_request(), but called with the endpoint's
  1030. * lock held.
  1031. */
  1032. static void s3c_hsotg_complete_request_lock(struct s3c_hsotg *hsotg,
  1033. struct s3c_hsotg_ep *hs_ep,
  1034. struct s3c_hsotg_req *hs_req,
  1035. int result)
  1036. {
  1037. unsigned long flags;
  1038. spin_lock_irqsave(&hs_ep->lock, flags);
  1039. s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
  1040. spin_unlock_irqrestore(&hs_ep->lock, flags);
  1041. }
  1042. /**
  1043. * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
  1044. * @hsotg: The device state.
  1045. * @ep_idx: The endpoint index for the data
  1046. * @size: The size of data in the fifo, in bytes
  1047. *
  1048. * The FIFO status shows there is data to read from the FIFO for a given
  1049. * endpoint, so sort out whether we need to read the data into a request
  1050. * that has been made for that endpoint.
  1051. */
  1052. static void s3c_hsotg_rx_data(struct s3c_hsotg *hsotg, int ep_idx, int size)
  1053. {
  1054. struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx];
  1055. struct s3c_hsotg_req *hs_req = hs_ep->req;
  1056. void __iomem *fifo = hsotg->regs + S3C_EPFIFO(ep_idx);
  1057. int to_read;
  1058. int max_req;
  1059. int read_ptr;
  1060. if (!hs_req) {
  1061. u32 epctl = readl(hsotg->regs + S3C_DOEPCTL(ep_idx));
  1062. int ptr;
  1063. dev_warn(hsotg->dev,
  1064. "%s: FIFO %d bytes on ep%d but no req (DxEPCTl=0x%08x)\n",
  1065. __func__, size, ep_idx, epctl);
  1066. /* dump the data from the FIFO, we've nothing we can do */
  1067. for (ptr = 0; ptr < size; ptr += 4)
  1068. (void)readl(fifo);
  1069. return;
  1070. }
  1071. spin_lock(&hs_ep->lock);
  1072. to_read = size;
  1073. read_ptr = hs_req->req.actual;
  1074. max_req = hs_req->req.length - read_ptr;
  1075. if (to_read > max_req) {
  1076. /* more data appeared than we where willing
  1077. * to deal with in this request.
  1078. */
  1079. /* currently we don't deal this */
  1080. WARN_ON_ONCE(1);
  1081. }
  1082. dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
  1083. __func__, to_read, max_req, read_ptr, hs_req->req.length);
  1084. hs_ep->total_data += to_read;
  1085. hs_req->req.actual += to_read;
  1086. to_read = DIV_ROUND_UP(to_read, 4);
  1087. /* note, we might over-write the buffer end by 3 bytes depending on
  1088. * alignment of the data. */
  1089. readsl(fifo, hs_req->req.buf + read_ptr, to_read);
  1090. spin_unlock(&hs_ep->lock);
  1091. }
  1092. /**
  1093. * s3c_hsotg_send_zlp - send zero-length packet on control endpoint
  1094. * @hsotg: The device instance
  1095. * @req: The request currently on this endpoint
  1096. *
  1097. * Generate a zero-length IN packet request for terminating a SETUP
  1098. * transaction.
  1099. *
  1100. * Note, since we don't write any data to the TxFIFO, then it is
  1101. * currently belived that we do not need to wait for any space in
  1102. * the TxFIFO.
  1103. */
  1104. static void s3c_hsotg_send_zlp(struct s3c_hsotg *hsotg,
  1105. struct s3c_hsotg_req *req)
  1106. {
  1107. u32 ctrl;
  1108. if (!req) {
  1109. dev_warn(hsotg->dev, "%s: no request?\n", __func__);
  1110. return;
  1111. }
  1112. if (req->req.length == 0) {
  1113. hsotg->eps[0].sent_zlp = 1;
  1114. s3c_hsotg_enqueue_setup(hsotg);
  1115. return;
  1116. }
  1117. hsotg->eps[0].dir_in = 1;
  1118. hsotg->eps[0].sent_zlp = 1;
  1119. dev_dbg(hsotg->dev, "sending zero-length packet\n");
  1120. /* issue a zero-sized packet to terminate this */
  1121. writel(S3C_DxEPTSIZ_MC(1) | S3C_DxEPTSIZ_PktCnt(1) |
  1122. S3C_DxEPTSIZ_XferSize(0), hsotg->regs + S3C_DIEPTSIZ(0));
  1123. ctrl = readl(hsotg->regs + S3C_DIEPCTL0);
  1124. ctrl |= S3C_DxEPCTL_CNAK; /* clear NAK set by core */
  1125. ctrl |= S3C_DxEPCTL_EPEna; /* ensure ep enabled */
  1126. ctrl |= S3C_DxEPCTL_USBActEp;
  1127. writel(ctrl, hsotg->regs + S3C_DIEPCTL0);
  1128. }
  1129. /**
  1130. * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
  1131. * @hsotg: The device instance
  1132. * @epnum: The endpoint received from
  1133. * @was_setup: Set if processing a SetupDone event.
  1134. *
  1135. * The RXFIFO has delivered an OutDone event, which means that the data
  1136. * transfer for an OUT endpoint has been completed, either by a short
  1137. * packet or by the finish of a transfer.
  1138. */
  1139. static void s3c_hsotg_handle_outdone(struct s3c_hsotg *hsotg,
  1140. int epnum, bool was_setup)
  1141. {
  1142. struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum];
  1143. struct s3c_hsotg_req *hs_req = hs_ep->req;
  1144. struct usb_request *req = &hs_req->req;
  1145. int result = 0;
  1146. if (!hs_req) {
  1147. dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
  1148. return;
  1149. }
  1150. if (using_dma(hsotg)) {
  1151. u32 epsize = readl(hsotg->regs + S3C_DOEPTSIZ(epnum));
  1152. unsigned size_done;
  1153. unsigned size_left;
  1154. /* Calculate the size of the transfer by checking how much
  1155. * is left in the endpoint size register and then working it
  1156. * out from the amount we loaded for the transfer.
  1157. *
  1158. * We need to do this as DMA pointers are always 32bit aligned
  1159. * so may overshoot/undershoot the transfer.
  1160. */
  1161. size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
  1162. size_done = hs_ep->size_loaded - size_left;
  1163. size_done += hs_ep->last_load;
  1164. req->actual = size_done;
  1165. }
  1166. if (req->actual < req->length && req->short_not_ok) {
  1167. dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
  1168. __func__, req->actual, req->length);
  1169. /* todo - what should we return here? there's no one else
  1170. * even bothering to check the status. */
  1171. }
  1172. if (epnum == 0) {
  1173. if (!was_setup && req->complete != s3c_hsotg_complete_setup)
  1174. s3c_hsotg_send_zlp(hsotg, hs_req);
  1175. }
  1176. s3c_hsotg_complete_request_lock(hsotg, hs_ep, hs_req, result);
  1177. }
  1178. /**
  1179. * s3c_hsotg_read_frameno - read current frame number
  1180. * @hsotg: The device instance
  1181. *
  1182. * Return the current frame number
  1183. */
  1184. static u32 s3c_hsotg_read_frameno(struct s3c_hsotg *hsotg)
  1185. {
  1186. u32 dsts;
  1187. dsts = readl(hsotg->regs + S3C_DSTS);
  1188. dsts &= S3C_DSTS_SOFFN_MASK;
  1189. dsts >>= S3C_DSTS_SOFFN_SHIFT;
  1190. return dsts;
  1191. }
  1192. /**
  1193. * s3c_hsotg_handle_rx - RX FIFO has data
  1194. * @hsotg: The device instance
  1195. *
  1196. * The IRQ handler has detected that the RX FIFO has some data in it
  1197. * that requires processing, so find out what is in there and do the
  1198. * appropriate read.
  1199. *
  1200. * The RXFIFO is a true FIFO, the packets comming out are still in packet
  1201. * chunks, so if you have x packets received on an endpoint you'll get x
  1202. * FIFO events delivered, each with a packet's worth of data in it.
  1203. *
  1204. * When using DMA, we should not be processing events from the RXFIFO
  1205. * as the actual data should be sent to the memory directly and we turn
  1206. * on the completion interrupts to get notifications of transfer completion.
  1207. */
  1208. void s3c_hsotg_handle_rx(struct s3c_hsotg *hsotg)
  1209. {
  1210. u32 grxstsr = readl(hsotg->regs + S3C_GRXSTSP);
  1211. u32 epnum, status, size;
  1212. WARN_ON(using_dma(hsotg));
  1213. epnum = grxstsr & S3C_GRXSTS_EPNum_MASK;
  1214. status = grxstsr & S3C_GRXSTS_PktSts_MASK;
  1215. size = grxstsr & S3C_GRXSTS_ByteCnt_MASK;
  1216. size >>= S3C_GRXSTS_ByteCnt_SHIFT;
  1217. if (1)
  1218. dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
  1219. __func__, grxstsr, size, epnum);
  1220. #define __status(x) ((x) >> S3C_GRXSTS_PktSts_SHIFT)
  1221. switch (status >> S3C_GRXSTS_PktSts_SHIFT) {
  1222. case __status(S3C_GRXSTS_PktSts_GlobalOutNAK):
  1223. dev_dbg(hsotg->dev, "GlobalOutNAK\n");
  1224. break;
  1225. case __status(S3C_GRXSTS_PktSts_OutDone):
  1226. dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
  1227. s3c_hsotg_read_frameno(hsotg));
  1228. if (!using_dma(hsotg))
  1229. s3c_hsotg_handle_outdone(hsotg, epnum, false);
  1230. break;
  1231. case __status(S3C_GRXSTS_PktSts_SetupDone):
  1232. dev_dbg(hsotg->dev,
  1233. "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
  1234. s3c_hsotg_read_frameno(hsotg),
  1235. readl(hsotg->regs + S3C_DOEPCTL(0)));
  1236. s3c_hsotg_handle_outdone(hsotg, epnum, true);
  1237. break;
  1238. case __status(S3C_GRXSTS_PktSts_OutRX):
  1239. s3c_hsotg_rx_data(hsotg, epnum, size);
  1240. break;
  1241. case __status(S3C_GRXSTS_PktSts_SetupRX):
  1242. dev_dbg(hsotg->dev,
  1243. "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
  1244. s3c_hsotg_read_frameno(hsotg),
  1245. readl(hsotg->regs + S3C_DOEPCTL(0)));
  1246. s3c_hsotg_rx_data(hsotg, epnum, size);
  1247. break;
  1248. default:
  1249. dev_warn(hsotg->dev, "%s: unknown status %08x\n",
  1250. __func__, grxstsr);
  1251. s3c_hsotg_dump(hsotg);
  1252. break;
  1253. }
  1254. }
  1255. /**
  1256. * s3c_hsotg_ep0_mps - turn max packet size into register setting
  1257. * @mps: The maximum packet size in bytes.
  1258. */
  1259. static u32 s3c_hsotg_ep0_mps(unsigned int mps)
  1260. {
  1261. switch (mps) {
  1262. case 64:
  1263. return S3C_D0EPCTL_MPS_64;
  1264. case 32:
  1265. return S3C_D0EPCTL_MPS_32;
  1266. case 16:
  1267. return S3C_D0EPCTL_MPS_16;
  1268. case 8:
  1269. return S3C_D0EPCTL_MPS_8;
  1270. }
  1271. /* bad max packet size, warn and return invalid result */
  1272. WARN_ON(1);
  1273. return (u32)-1;
  1274. }
  1275. /**
  1276. * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
  1277. * @hsotg: The driver state.
  1278. * @ep: The index number of the endpoint
  1279. * @mps: The maximum packet size in bytes
  1280. *
  1281. * Configure the maximum packet size for the given endpoint, updating
  1282. * the hardware control registers to reflect this.
  1283. */
  1284. static void s3c_hsotg_set_ep_maxpacket(struct s3c_hsotg *hsotg,
  1285. unsigned int ep, unsigned int mps)
  1286. {
  1287. struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep];
  1288. void __iomem *regs = hsotg->regs;
  1289. u32 mpsval;
  1290. u32 reg;
  1291. if (ep == 0) {
  1292. /* EP0 is a special case */
  1293. mpsval = s3c_hsotg_ep0_mps(mps);
  1294. if (mpsval > 3)
  1295. goto bad_mps;
  1296. } else {
  1297. if (mps >= S3C_DxEPCTL_MPS_LIMIT+1)
  1298. goto bad_mps;
  1299. mpsval = mps;
  1300. }
  1301. hs_ep->ep.maxpacket = mps;
  1302. /* update both the in and out endpoint controldir_ registers, even
  1303. * if one of the directions may not be in use. */
  1304. reg = readl(regs + S3C_DIEPCTL(ep));
  1305. reg &= ~S3C_DxEPCTL_MPS_MASK;
  1306. reg |= mpsval;
  1307. writel(reg, regs + S3C_DIEPCTL(ep));
  1308. reg = readl(regs + S3C_DOEPCTL(ep));
  1309. reg &= ~S3C_DxEPCTL_MPS_MASK;
  1310. reg |= mpsval;
  1311. writel(reg, regs + S3C_DOEPCTL(ep));
  1312. return;
  1313. bad_mps:
  1314. dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
  1315. }
  1316. /**
  1317. * s3c_hsotg_trytx - check to see if anything needs transmitting
  1318. * @hsotg: The driver state
  1319. * @hs_ep: The driver endpoint to check.
  1320. *
  1321. * Check to see if there is a request that has data to send, and if so
  1322. * make an attempt to write data into the FIFO.
  1323. */
  1324. static int s3c_hsotg_trytx(struct s3c_hsotg *hsotg,
  1325. struct s3c_hsotg_ep *hs_ep)
  1326. {
  1327. struct s3c_hsotg_req *hs_req = hs_ep->req;
  1328. if (!hs_ep->dir_in || !hs_req)
  1329. return 0;
  1330. if (hs_req->req.actual < hs_req->req.length) {
  1331. dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
  1332. hs_ep->index);
  1333. return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
  1334. }
  1335. return 0;
  1336. }
  1337. /**
  1338. * s3c_hsotg_complete_in - complete IN transfer
  1339. * @hsotg: The device state.
  1340. * @hs_ep: The endpoint that has just completed.
  1341. *
  1342. * An IN transfer has been completed, update the transfer's state and then
  1343. * call the relevant completion routines.
  1344. */
  1345. static void s3c_hsotg_complete_in(struct s3c_hsotg *hsotg,
  1346. struct s3c_hsotg_ep *hs_ep)
  1347. {
  1348. struct s3c_hsotg_req *hs_req = hs_ep->req;
  1349. u32 epsize = readl(hsotg->regs + S3C_DIEPTSIZ(hs_ep->index));
  1350. int size_left, size_done;
  1351. if (!hs_req) {
  1352. dev_dbg(hsotg->dev, "XferCompl but no req\n");
  1353. return;
  1354. }
  1355. /* Calculate the size of the transfer by checking how much is left
  1356. * in the endpoint size register and then working it out from
  1357. * the amount we loaded for the transfer.
  1358. *
  1359. * We do this even for DMA, as the transfer may have incremented
  1360. * past the end of the buffer (DMA transfers are always 32bit
  1361. * aligned).
  1362. */
  1363. size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
  1364. size_done = hs_ep->size_loaded - size_left;
  1365. size_done += hs_ep->last_load;
  1366. if (hs_req->req.actual != size_done)
  1367. dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
  1368. __func__, hs_req->req.actual, size_done);
  1369. hs_req->req.actual = size_done;
  1370. /* if we did all of the transfer, and there is more data left
  1371. * around, then try restarting the rest of the request */
  1372. if (!size_left && hs_req->req.actual < hs_req->req.length) {
  1373. dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
  1374. s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
  1375. } else
  1376. s3c_hsotg_complete_request_lock(hsotg, hs_ep, hs_req, 0);
  1377. }
  1378. /**
  1379. * s3c_hsotg_epint - handle an in/out endpoint interrupt
  1380. * @hsotg: The driver state
  1381. * @idx: The index for the endpoint (0..15)
  1382. * @dir_in: Set if this is an IN endpoint
  1383. *
  1384. * Process and clear any interrupt pending for an individual endpoint
  1385. */
  1386. static void s3c_hsotg_epint(struct s3c_hsotg *hsotg, unsigned int idx,
  1387. int dir_in)
  1388. {
  1389. struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx];
  1390. u32 epint_reg = dir_in ? S3C_DIEPINT(idx) : S3C_DOEPINT(idx);
  1391. u32 epctl_reg = dir_in ? S3C_DIEPCTL(idx) : S3C_DOEPCTL(idx);
  1392. u32 epsiz_reg = dir_in ? S3C_DIEPTSIZ(idx) : S3C_DOEPTSIZ(idx);
  1393. u32 ints;
  1394. u32 clear = 0;
  1395. ints = readl(hsotg->regs + epint_reg);
  1396. dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
  1397. __func__, idx, dir_in ? "in" : "out", ints);
  1398. if (ints & S3C_DxEPINT_XferCompl) {
  1399. dev_dbg(hsotg->dev,
  1400. "%s: XferCompl: DxEPCTL=0x%08x, DxEPTSIZ=%08x\n",
  1401. __func__, readl(hsotg->regs + epctl_reg),
  1402. readl(hsotg->regs + epsiz_reg));
  1403. /* we get OutDone from the FIFO, so we only need to look
  1404. * at completing IN requests here */
  1405. if (dir_in) {
  1406. s3c_hsotg_complete_in(hsotg, hs_ep);
  1407. if (idx == 0)
  1408. s3c_hsotg_enqueue_setup(hsotg);
  1409. } else if (using_dma(hsotg)) {
  1410. /* We're using DMA, we need to fire an OutDone here
  1411. * as we ignore the RXFIFO. */
  1412. s3c_hsotg_handle_outdone(hsotg, idx, false);
  1413. }
  1414. clear |= S3C_DxEPINT_XferCompl;
  1415. }
  1416. if (ints & S3C_DxEPINT_EPDisbld) {
  1417. dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
  1418. clear |= S3C_DxEPINT_EPDisbld;
  1419. }
  1420. if (ints & S3C_DxEPINT_AHBErr) {
  1421. dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
  1422. clear |= S3C_DxEPINT_AHBErr;
  1423. }
  1424. if (ints & S3C_DxEPINT_Setup) { /* Setup or Timeout */
  1425. dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__);
  1426. if (using_dma(hsotg) && idx == 0) {
  1427. /* this is the notification we've received a
  1428. * setup packet. In non-DMA mode we'd get this
  1429. * from the RXFIFO, instead we need to process
  1430. * the setup here. */
  1431. if (dir_in)
  1432. WARN_ON_ONCE(1);
  1433. else
  1434. s3c_hsotg_handle_outdone(hsotg, 0, true);
  1435. }
  1436. clear |= S3C_DxEPINT_Setup;
  1437. }
  1438. if (ints & S3C_DxEPINT_Back2BackSetup) {
  1439. dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
  1440. clear |= S3C_DxEPINT_Back2BackSetup;
  1441. }
  1442. if (dir_in) {
  1443. /* not sure if this is important, but we'll clear it anyway
  1444. */
  1445. if (ints & S3C_DIEPMSK_INTknTXFEmpMsk) {
  1446. dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
  1447. __func__, idx);
  1448. clear |= S3C_DIEPMSK_INTknTXFEmpMsk;
  1449. }
  1450. /* this probably means something bad is happening */
  1451. if (ints & S3C_DIEPMSK_INTknEPMisMsk) {
  1452. dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
  1453. __func__, idx);
  1454. clear |= S3C_DIEPMSK_INTknEPMisMsk;
  1455. }
  1456. }
  1457. writel(clear, hsotg->regs + epint_reg);
  1458. }
  1459. /**
  1460. * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
  1461. * @hsotg: The device state.
  1462. *
  1463. * Handle updating the device settings after the enumeration phase has
  1464. * been completed.
  1465. */
  1466. static void s3c_hsotg_irq_enumdone(struct s3c_hsotg *hsotg)
  1467. {
  1468. u32 dsts = readl(hsotg->regs + S3C_DSTS);
  1469. int ep0_mps = 0, ep_mps;
  1470. /* This should signal the finish of the enumeration phase
  1471. * of the USB handshaking, so we should now know what rate
  1472. * we connected at. */
  1473. dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
  1474. /* note, since we're limited by the size of transfer on EP0, and
  1475. * it seems IN transfers must be a even number of packets we do
  1476. * not advertise a 64byte MPS on EP0. */
  1477. /* catch both EnumSpd_FS and EnumSpd_FS48 */
  1478. switch (dsts & S3C_DSTS_EnumSpd_MASK) {
  1479. case S3C_DSTS_EnumSpd_FS:
  1480. case S3C_DSTS_EnumSpd_FS48:
  1481. hsotg->gadget.speed = USB_SPEED_FULL;
  1482. dev_info(hsotg->dev, "new device is full-speed\n");
  1483. ep0_mps = EP0_MPS_LIMIT;
  1484. ep_mps = 64;
  1485. break;
  1486. case S3C_DSTS_EnumSpd_HS:
  1487. dev_info(hsotg->dev, "new device is high-speed\n");
  1488. hsotg->gadget.speed = USB_SPEED_HIGH;
  1489. ep0_mps = EP0_MPS_LIMIT;
  1490. ep_mps = 512;
  1491. break;
  1492. case S3C_DSTS_EnumSpd_LS:
  1493. hsotg->gadget.speed = USB_SPEED_LOW;
  1494. dev_info(hsotg->dev, "new device is low-speed\n");
  1495. /* note, we don't actually support LS in this driver at the
  1496. * moment, and the documentation seems to imply that it isn't
  1497. * supported by the PHYs on some of the devices.
  1498. */
  1499. break;
  1500. }
  1501. /* we should now know the maximum packet size for an
  1502. * endpoint, so set the endpoints to a default value. */
  1503. if (ep0_mps) {
  1504. int i;
  1505. s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps);
  1506. for (i = 1; i < S3C_HSOTG_EPS; i++)
  1507. s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps);
  1508. }
  1509. /* ensure after enumeration our EP0 is active */
  1510. s3c_hsotg_enqueue_setup(hsotg);
  1511. dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
  1512. readl(hsotg->regs + S3C_DIEPCTL0),
  1513. readl(hsotg->regs + S3C_DOEPCTL0));
  1514. }
  1515. /**
  1516. * kill_all_requests - remove all requests from the endpoint's queue
  1517. * @hsotg: The device state.
  1518. * @ep: The endpoint the requests may be on.
  1519. * @result: The result code to use.
  1520. * @force: Force removal of any current requests
  1521. *
  1522. * Go through the requests on the given endpoint and mark them
  1523. * completed with the given result code.
  1524. */
  1525. static void kill_all_requests(struct s3c_hsotg *hsotg,
  1526. struct s3c_hsotg_ep *ep,
  1527. int result, bool force)
  1528. {
  1529. struct s3c_hsotg_req *req, *treq;
  1530. unsigned long flags;
  1531. spin_lock_irqsave(&ep->lock, flags);
  1532. list_for_each_entry_safe(req, treq, &ep->queue, queue) {
  1533. /* currently, we can't do much about an already
  1534. * running request on an in endpoint */
  1535. if (ep->req == req && ep->dir_in && !force)
  1536. continue;
  1537. s3c_hsotg_complete_request(hsotg, ep, req,
  1538. result);
  1539. }
  1540. spin_unlock_irqrestore(&ep->lock, flags);
  1541. }
  1542. #define call_gadget(_hs, _entry) \
  1543. if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
  1544. (_hs)->driver && (_hs)->driver->_entry) \
  1545. (_hs)->driver->_entry(&(_hs)->gadget);
  1546. /**
  1547. * s3c_hsotg_disconnect_irq - disconnect irq service
  1548. * @hsotg: The device state.
  1549. *
  1550. * A disconnect IRQ has been received, meaning that the host has
  1551. * lost contact with the bus. Remove all current transactions
  1552. * and signal the gadget driver that this has happened.
  1553. */
  1554. static void s3c_hsotg_disconnect_irq(struct s3c_hsotg *hsotg)
  1555. {
  1556. unsigned ep;
  1557. for (ep = 0; ep < S3C_HSOTG_EPS; ep++)
  1558. kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN, true);
  1559. call_gadget(hsotg, disconnect);
  1560. }
  1561. /**
  1562. * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
  1563. * @hsotg: The device state:
  1564. * @periodic: True if this is a periodic FIFO interrupt
  1565. */
  1566. static void s3c_hsotg_irq_fifoempty(struct s3c_hsotg *hsotg, bool periodic)
  1567. {
  1568. struct s3c_hsotg_ep *ep;
  1569. int epno, ret;
  1570. /* look through for any more data to transmit */
  1571. for (epno = 0; epno < S3C_HSOTG_EPS; epno++) {
  1572. ep = &hsotg->eps[epno];
  1573. if (!ep->dir_in)
  1574. continue;
  1575. if ((periodic && !ep->periodic) ||
  1576. (!periodic && ep->periodic))
  1577. continue;
  1578. ret = s3c_hsotg_trytx(hsotg, ep);
  1579. if (ret < 0)
  1580. break;
  1581. }
  1582. }
  1583. static struct s3c_hsotg *our_hsotg;
  1584. /* IRQ flags which will trigger a retry around the IRQ loop */
  1585. #define IRQ_RETRY_MASK (S3C_GINTSTS_NPTxFEmp | \
  1586. S3C_GINTSTS_PTxFEmp | \
  1587. S3C_GINTSTS_RxFLvl)
  1588. /**
  1589. * s3c_hsotg_irq - handle device interrupt
  1590. * @irq: The IRQ number triggered
  1591. * @pw: The pw value when registered the handler.
  1592. */
  1593. static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
  1594. {
  1595. struct s3c_hsotg *hsotg = pw;
  1596. int retry_count = 8;
  1597. u32 gintsts;
  1598. u32 gintmsk;
  1599. irq_retry:
  1600. gintsts = readl(hsotg->regs + S3C_GINTSTS);
  1601. gintmsk = readl(hsotg->regs + S3C_GINTMSK);
  1602. dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
  1603. __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
  1604. gintsts &= gintmsk;
  1605. if (gintsts & S3C_GINTSTS_OTGInt) {
  1606. u32 otgint = readl(hsotg->regs + S3C_GOTGINT);
  1607. dev_info(hsotg->dev, "OTGInt: %08x\n", otgint);
  1608. writel(otgint, hsotg->regs + S3C_GOTGINT);
  1609. writel(S3C_GINTSTS_OTGInt, hsotg->regs + S3C_GINTSTS);
  1610. }
  1611. if (gintsts & S3C_GINTSTS_DisconnInt) {
  1612. dev_dbg(hsotg->dev, "%s: DisconnInt\n", __func__);
  1613. writel(S3C_GINTSTS_DisconnInt, hsotg->regs + S3C_GINTSTS);
  1614. s3c_hsotg_disconnect_irq(hsotg);
  1615. }
  1616. if (gintsts & S3C_GINTSTS_SessReqInt) {
  1617. dev_dbg(hsotg->dev, "%s: SessReqInt\n", __func__);
  1618. writel(S3C_GINTSTS_SessReqInt, hsotg->regs + S3C_GINTSTS);
  1619. }
  1620. if (gintsts & S3C_GINTSTS_EnumDone) {
  1621. s3c_hsotg_irq_enumdone(hsotg);
  1622. writel(S3C_GINTSTS_EnumDone, hsotg->regs + S3C_GINTSTS);
  1623. }
  1624. if (gintsts & S3C_GINTSTS_ConIDStsChng) {
  1625. dev_dbg(hsotg->dev, "ConIDStsChg (DSTS=0x%08x, GOTCTL=%08x)\n",
  1626. readl(hsotg->regs + S3C_DSTS),
  1627. readl(hsotg->regs + S3C_GOTGCTL));
  1628. writel(S3C_GINTSTS_ConIDStsChng, hsotg->regs + S3C_GINTSTS);
  1629. }
  1630. if (gintsts & (S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt)) {
  1631. u32 daint = readl(hsotg->regs + S3C_DAINT);
  1632. u32 daint_out = daint >> S3C_DAINT_OutEP_SHIFT;
  1633. u32 daint_in = daint & ~(daint_out << S3C_DAINT_OutEP_SHIFT);
  1634. int ep;
  1635. dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
  1636. for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) {
  1637. if (daint_out & 1)
  1638. s3c_hsotg_epint(hsotg, ep, 0);
  1639. }
  1640. for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) {
  1641. if (daint_in & 1)
  1642. s3c_hsotg_epint(hsotg, ep, 1);
  1643. }
  1644. writel(daint, hsotg->regs + S3C_DAINT);
  1645. writel(gintsts & (S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt),
  1646. hsotg->regs + S3C_GINTSTS);
  1647. }
  1648. if (gintsts & S3C_GINTSTS_USBRst) {
  1649. dev_info(hsotg->dev, "%s: USBRst\n", __func__);
  1650. dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
  1651. readl(hsotg->regs + S3C_GNPTXSTS));
  1652. kill_all_requests(hsotg, &hsotg->eps[0], -ECONNRESET, true);
  1653. /* it seems after a reset we can end up with a situation
  1654. * where the TXFIFO still has data in it... try flushing
  1655. * it to remove anything that may still be in it.
  1656. */
  1657. if (1) {
  1658. writel(S3C_GRSTCTL_TxFNum(0) | S3C_GRSTCTL_TxFFlsh,
  1659. hsotg->regs + S3C_GRSTCTL);
  1660. dev_info(hsotg->dev, "GNPTXSTS=%08x\n",
  1661. readl(hsotg->regs + S3C_GNPTXSTS));
  1662. }
  1663. s3c_hsotg_enqueue_setup(hsotg);
  1664. writel(S3C_GINTSTS_USBRst, hsotg->regs + S3C_GINTSTS);
  1665. }
  1666. /* check both FIFOs */
  1667. if (gintsts & S3C_GINTSTS_NPTxFEmp) {
  1668. dev_dbg(hsotg->dev, "NPTxFEmp\n");
  1669. /* Disable the interrupt to stop it happening again
  1670. * unless one of these endpoint routines decides that
  1671. * it needs re-enabling */
  1672. s3c_hsotg_disable_gsint(hsotg, S3C_GINTSTS_NPTxFEmp);
  1673. s3c_hsotg_irq_fifoempty(hsotg, false);
  1674. writel(S3C_GINTSTS_NPTxFEmp, hsotg->regs + S3C_GINTSTS);
  1675. }
  1676. if (gintsts & S3C_GINTSTS_PTxFEmp) {
  1677. dev_dbg(hsotg->dev, "PTxFEmp\n");
  1678. /* See note in S3C_GINTSTS_NPTxFEmp */
  1679. s3c_hsotg_disable_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
  1680. s3c_hsotg_irq_fifoempty(hsotg, true);
  1681. writel(S3C_GINTSTS_PTxFEmp, hsotg->regs + S3C_GINTSTS);
  1682. }
  1683. if (gintsts & S3C_GINTSTS_RxFLvl) {
  1684. /* note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
  1685. * we need to retry s3c_hsotg_handle_rx if this is still
  1686. * set. */
  1687. s3c_hsotg_handle_rx(hsotg);
  1688. writel(S3C_GINTSTS_RxFLvl, hsotg->regs + S3C_GINTSTS);
  1689. }
  1690. if (gintsts & S3C_GINTSTS_ModeMis) {
  1691. dev_warn(hsotg->dev, "warning, mode mismatch triggered\n");
  1692. writel(S3C_GINTSTS_ModeMis, hsotg->regs + S3C_GINTSTS);
  1693. }
  1694. if (gintsts & S3C_GINTSTS_USBSusp) {
  1695. dev_info(hsotg->dev, "S3C_GINTSTS_USBSusp\n");
  1696. writel(S3C_GINTSTS_USBSusp, hsotg->regs + S3C_GINTSTS);
  1697. call_gadget(hsotg, suspend);
  1698. }
  1699. if (gintsts & S3C_GINTSTS_WkUpInt) {
  1700. dev_info(hsotg->dev, "S3C_GINTSTS_WkUpIn\n");
  1701. writel(S3C_GINTSTS_WkUpInt, hsotg->regs + S3C_GINTSTS);
  1702. call_gadget(hsotg, resume);
  1703. }
  1704. if (gintsts & S3C_GINTSTS_ErlySusp) {
  1705. dev_dbg(hsotg->dev, "S3C_GINTSTS_ErlySusp\n");
  1706. writel(S3C_GINTSTS_ErlySusp, hsotg->regs + S3C_GINTSTS);
  1707. }
  1708. /* these next two seem to crop-up occasionally causing the core
  1709. * to shutdown the USB transfer, so try clearing them and logging
  1710. * the occurence. */
  1711. if (gintsts & S3C_GINTSTS_GOUTNakEff) {
  1712. dev_info(hsotg->dev, "GOUTNakEff triggered\n");
  1713. s3c_hsotg_dump(hsotg);
  1714. writel(S3C_DCTL_CGOUTNak, hsotg->regs + S3C_DCTL);
  1715. writel(S3C_GINTSTS_GOUTNakEff, hsotg->regs + S3C_GINTSTS);
  1716. }
  1717. if (gintsts & S3C_GINTSTS_GINNakEff) {
  1718. dev_info(hsotg->dev, "GINNakEff triggered\n");
  1719. s3c_hsotg_dump(hsotg);
  1720. writel(S3C_DCTL_CGNPInNAK, hsotg->regs + S3C_DCTL);
  1721. writel(S3C_GINTSTS_GINNakEff, hsotg->regs + S3C_GINTSTS);
  1722. }
  1723. /* if we've had fifo events, we should try and go around the
  1724. * loop again to see if there's any point in returning yet. */
  1725. if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
  1726. goto irq_retry;
  1727. return IRQ_HANDLED;
  1728. }
  1729. /**
  1730. * s3c_hsotg_ep_enable - enable the given endpoint
  1731. * @ep: The USB endpint to configure
  1732. * @desc: The USB endpoint descriptor to configure with.
  1733. *
  1734. * This is called from the USB gadget code's usb_ep_enable().
  1735. */
  1736. static int s3c_hsotg_ep_enable(struct usb_ep *ep,
  1737. const struct usb_endpoint_descriptor *desc)
  1738. {
  1739. struct s3c_hsotg_ep *hs_ep = our_ep(ep);
  1740. struct s3c_hsotg *hsotg = hs_ep->parent;
  1741. unsigned long flags;
  1742. int index = hs_ep->index;
  1743. u32 epctrl_reg;
  1744. u32 epctrl;
  1745. u32 mps;
  1746. int dir_in;
  1747. dev_dbg(hsotg->dev,
  1748. "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
  1749. __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
  1750. desc->wMaxPacketSize, desc->bInterval);
  1751. /* not to be called for EP0 */
  1752. WARN_ON(index == 0);
  1753. dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
  1754. if (dir_in != hs_ep->dir_in) {
  1755. dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
  1756. return -EINVAL;
  1757. }
  1758. mps = le16_to_cpu(desc->wMaxPacketSize);
  1759. /* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */
  1760. epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
  1761. epctrl = readl(hsotg->regs + epctrl_reg);
  1762. dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
  1763. __func__, epctrl, epctrl_reg);
  1764. spin_lock_irqsave(&hs_ep->lock, flags);
  1765. epctrl &= ~(S3C_DxEPCTL_EPType_MASK | S3C_DxEPCTL_MPS_MASK);
  1766. epctrl |= S3C_DxEPCTL_MPS(mps);
  1767. /* mark the endpoint as active, otherwise the core may ignore
  1768. * transactions entirely for this endpoint */
  1769. epctrl |= S3C_DxEPCTL_USBActEp;
  1770. /* set the NAK status on the endpoint, otherwise we might try and
  1771. * do something with data that we've yet got a request to process
  1772. * since the RXFIFO will take data for an endpoint even if the
  1773. * size register hasn't been set.
  1774. */
  1775. epctrl |= S3C_DxEPCTL_SNAK;
  1776. /* update the endpoint state */
  1777. hs_ep->ep.maxpacket = mps;
  1778. /* default, set to non-periodic */
  1779. hs_ep->periodic = 0;
  1780. switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
  1781. case USB_ENDPOINT_XFER_ISOC:
  1782. dev_err(hsotg->dev, "no current ISOC support\n");
  1783. return -EINVAL;
  1784. case USB_ENDPOINT_XFER_BULK:
  1785. epctrl |= S3C_DxEPCTL_EPType_Bulk;
  1786. break;
  1787. case USB_ENDPOINT_XFER_INT:
  1788. if (dir_in) {
  1789. /* Allocate our TxFNum by simply using the index
  1790. * of the endpoint for the moment. We could do
  1791. * something better if the host indicates how
  1792. * many FIFOs we are expecting to use. */
  1793. hs_ep->periodic = 1;
  1794. epctrl |= S3C_DxEPCTL_TxFNum(index);
  1795. }
  1796. epctrl |= S3C_DxEPCTL_EPType_Intterupt;
  1797. break;
  1798. case USB_ENDPOINT_XFER_CONTROL:
  1799. epctrl |= S3C_DxEPCTL_EPType_Control;
  1800. break;
  1801. }
  1802. /* for non control endpoints, set PID to D0 */
  1803. if (index)
  1804. epctrl |= S3C_DxEPCTL_SetD0PID;
  1805. dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
  1806. __func__, epctrl);
  1807. writel(epctrl, hsotg->regs + epctrl_reg);
  1808. dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
  1809. __func__, readl(hsotg->regs + epctrl_reg));
  1810. /* enable the endpoint interrupt */
  1811. s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
  1812. spin_unlock_irqrestore(&hs_ep->lock, flags);
  1813. return 0;
  1814. }
  1815. static int s3c_hsotg_ep_disable(struct usb_ep *ep)
  1816. {
  1817. struct s3c_hsotg_ep *hs_ep = our_ep(ep);
  1818. struct s3c_hsotg *hsotg = hs_ep->parent;
  1819. int dir_in = hs_ep->dir_in;
  1820. int index = hs_ep->index;
  1821. unsigned long flags;
  1822. u32 epctrl_reg;
  1823. u32 ctrl;
  1824. dev_info(hsotg->dev, "%s(ep %p)\n", __func__, ep);
  1825. if (ep == &hsotg->eps[0].ep) {
  1826. dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
  1827. return -EINVAL;
  1828. }
  1829. epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
  1830. /* terminate all requests with shutdown */
  1831. kill_all_requests(hsotg, hs_ep, -ESHUTDOWN, false);
  1832. spin_lock_irqsave(&hs_ep->lock, flags);
  1833. ctrl = readl(hsotg->regs + epctrl_reg);
  1834. ctrl &= ~S3C_DxEPCTL_EPEna;
  1835. ctrl &= ~S3C_DxEPCTL_USBActEp;
  1836. ctrl |= S3C_DxEPCTL_SNAK;
  1837. dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
  1838. writel(ctrl, hsotg->regs + epctrl_reg);
  1839. /* disable endpoint interrupts */
  1840. s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
  1841. spin_unlock_irqrestore(&hs_ep->lock, flags);
  1842. return 0;
  1843. }
  1844. /**
  1845. * on_list - check request is on the given endpoint
  1846. * @ep: The endpoint to check.
  1847. * @test: The request to test if it is on the endpoint.
  1848. */
  1849. static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
  1850. {
  1851. struct s3c_hsotg_req *req, *treq;
  1852. list_for_each_entry_safe(req, treq, &ep->queue, queue) {
  1853. if (req == test)
  1854. return true;
  1855. }
  1856. return false;
  1857. }
  1858. static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
  1859. {
  1860. struct s3c_hsotg_req *hs_req = our_req(req);
  1861. struct s3c_hsotg_ep *hs_ep = our_ep(ep);
  1862. struct s3c_hsotg *hs = hs_ep->parent;
  1863. unsigned long flags;
  1864. dev_info(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
  1865. if (hs_req == hs_ep->req) {
  1866. dev_dbg(hs->dev, "%s: already in progress\n", __func__);
  1867. return -EINPROGRESS;
  1868. }
  1869. spin_lock_irqsave(&hs_ep->lock, flags);
  1870. if (!on_list(hs_ep, hs_req)) {
  1871. spin_unlock_irqrestore(&hs_ep->lock, flags);
  1872. return -EINVAL;
  1873. }
  1874. s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
  1875. spin_unlock_irqrestore(&hs_ep->lock, flags);
  1876. return 0;
  1877. }
  1878. static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
  1879. {
  1880. struct s3c_hsotg_ep *hs_ep = our_ep(ep);
  1881. struct s3c_hsotg *hs = hs_ep->parent;
  1882. int index = hs_ep->index;
  1883. unsigned long irqflags;
  1884. u32 epreg;
  1885. u32 epctl;
  1886. dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
  1887. spin_lock_irqsave(&hs_ep->lock, irqflags);
  1888. /* write both IN and OUT control registers */
  1889. epreg = S3C_DIEPCTL(index);
  1890. epctl = readl(hs->regs + epreg);
  1891. if (value)
  1892. epctl |= S3C_DxEPCTL_Stall;
  1893. else
  1894. epctl &= ~S3C_DxEPCTL_Stall;
  1895. writel(epctl, hs->regs + epreg);
  1896. epreg = S3C_DOEPCTL(index);
  1897. epctl = readl(hs->regs + epreg);
  1898. if (value)
  1899. epctl |= S3C_DxEPCTL_Stall;
  1900. else
  1901. epctl &= ~S3C_DxEPCTL_Stall;
  1902. writel(epctl, hs->regs + epreg);
  1903. spin_unlock_irqrestore(&hs_ep->lock, irqflags);
  1904. return 0;
  1905. }
  1906. static struct usb_ep_ops s3c_hsotg_ep_ops = {
  1907. .enable = s3c_hsotg_ep_enable,
  1908. .disable = s3c_hsotg_ep_disable,
  1909. .alloc_request = s3c_hsotg_ep_alloc_request,
  1910. .free_request = s3c_hsotg_ep_free_request,
  1911. .queue = s3c_hsotg_ep_queue,
  1912. .dequeue = s3c_hsotg_ep_dequeue,
  1913. .set_halt = s3c_hsotg_ep_sethalt,
  1914. /* note, don't belive we have any call for the fifo routines */
  1915. };
  1916. /**
  1917. * s3c_hsotg_corereset - issue softreset to the core
  1918. * @hsotg: The device state
  1919. *
  1920. * Issue a soft reset to the core, and await the core finishing it.
  1921. */
  1922. static int s3c_hsotg_corereset(struct s3c_hsotg *hsotg)
  1923. {
  1924. int timeout;
  1925. u32 grstctl;
  1926. dev_dbg(hsotg->dev, "resetting core\n");
  1927. /* issue soft reset */
  1928. writel(S3C_GRSTCTL_CSftRst, hsotg->regs + S3C_GRSTCTL);
  1929. timeout = 1000;
  1930. do {
  1931. grstctl = readl(hsotg->regs + S3C_GRSTCTL);
  1932. } while (!(grstctl & S3C_GRSTCTL_CSftRst) && timeout-- > 0);
  1933. if (!(grstctl & S3C_GRSTCTL_CSftRst)) {
  1934. dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
  1935. return -EINVAL;
  1936. }
  1937. timeout = 1000;
  1938. while (1) {
  1939. u32 grstctl = readl(hsotg->regs + S3C_GRSTCTL);
  1940. if (timeout-- < 0) {
  1941. dev_info(hsotg->dev,
  1942. "%s: reset failed, GRSTCTL=%08x\n",
  1943. __func__, grstctl);
  1944. return -ETIMEDOUT;
  1945. }
  1946. if (grstctl & S3C_GRSTCTL_CSftRst)
  1947. continue;
  1948. if (!(grstctl & S3C_GRSTCTL_AHBIdle))
  1949. continue;
  1950. break; /* reset done */
  1951. }
  1952. dev_dbg(hsotg->dev, "reset successful\n");
  1953. return 0;
  1954. }
  1955. int usb_gadget_register_driver(struct usb_gadget_driver *driver)
  1956. {
  1957. struct s3c_hsotg *hsotg = our_hsotg;
  1958. int ret;
  1959. if (!hsotg) {
  1960. printk(KERN_ERR "%s: called with no device\n", __func__);
  1961. return -ENODEV;
  1962. }
  1963. if (!driver) {
  1964. dev_err(hsotg->dev, "%s: no driver\n", __func__);
  1965. return -EINVAL;
  1966. }
  1967. if (driver->speed != USB_SPEED_HIGH &&
  1968. driver->speed != USB_SPEED_FULL) {
  1969. dev_err(hsotg->dev, "%s: bad speed\n", __func__);
  1970. }
  1971. if (!driver->bind || !driver->setup) {
  1972. dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
  1973. return -EINVAL;
  1974. }
  1975. WARN_ON(hsotg->driver);
  1976. driver->driver.bus = NULL;
  1977. hsotg->driver = driver;
  1978. hsotg->gadget.dev.driver = &driver->driver;
  1979. hsotg->gadget.dev.dma_mask = hsotg->dev->dma_mask;
  1980. hsotg->gadget.speed = USB_SPEED_UNKNOWN;
  1981. ret = device_add(&hsotg->gadget.dev);
  1982. if (ret) {
  1983. dev_err(hsotg->dev, "failed to register gadget device\n");
  1984. goto err;
  1985. }
  1986. ret = driver->bind(&hsotg->gadget);
  1987. if (ret) {
  1988. dev_err(hsotg->dev, "failed bind %s\n", driver->driver.name);
  1989. hsotg->gadget.dev.driver = NULL;
  1990. hsotg->driver = NULL;
  1991. goto err;
  1992. }
  1993. /* we must now enable ep0 ready for host detection and then
  1994. * set configuration. */
  1995. s3c_hsotg_corereset(hsotg);
  1996. /* set the PLL on, remove the HNP/SRP and set the PHY */
  1997. writel(S3C_GUSBCFG_PHYIf16 | S3C_GUSBCFG_TOutCal(7) |
  1998. (0x5 << 10), hsotg->regs + S3C_GUSBCFG);
  1999. /* looks like soft-reset changes state of FIFOs */
  2000. s3c_hsotg_init_fifo(hsotg);
  2001. __orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);
  2002. writel(1 << 18 | S3C_DCFG_DevSpd_HS, hsotg->regs + S3C_DCFG);
  2003. writel(S3C_GINTSTS_DisconnInt | S3C_GINTSTS_SessReqInt |
  2004. S3C_GINTSTS_ConIDStsChng | S3C_GINTSTS_USBRst |
  2005. S3C_GINTSTS_EnumDone | S3C_GINTSTS_OTGInt |
  2006. S3C_GINTSTS_USBSusp | S3C_GINTSTS_WkUpInt |
  2007. S3C_GINTSTS_GOUTNakEff | S3C_GINTSTS_GINNakEff |
  2008. S3C_GINTSTS_ErlySusp,
  2009. hsotg->regs + S3C_GINTMSK);
  2010. if (using_dma(hsotg))
  2011. writel(S3C_GAHBCFG_GlblIntrEn | S3C_GAHBCFG_DMAEn |
  2012. S3C_GAHBCFG_HBstLen_Incr4,
  2013. hsotg->regs + S3C_GAHBCFG);
  2014. else
  2015. writel(S3C_GAHBCFG_GlblIntrEn, hsotg->regs + S3C_GAHBCFG);
  2016. /* Enabling INTknTXFEmpMsk here seems to be a big mistake, we end
  2017. * up being flooded with interrupts if the host is polling the
  2018. * endpoint to try and read data. */
  2019. writel(S3C_DIEPMSK_TimeOUTMsk | S3C_DIEPMSK_AHBErrMsk |
  2020. S3C_DIEPMSK_INTknEPMisMsk |
  2021. S3C_DIEPMSK_EPDisbldMsk | S3C_DIEPMSK_XferComplMsk,
  2022. hsotg->regs + S3C_DIEPMSK);
  2023. /* don't need XferCompl, we get that from RXFIFO in slave mode. In
  2024. * DMA mode we may need this. */
  2025. writel(S3C_DOEPMSK_SetupMsk | S3C_DOEPMSK_AHBErrMsk |
  2026. S3C_DOEPMSK_EPDisbldMsk |
  2027. (using_dma(hsotg) ? (S3C_DIEPMSK_XferComplMsk |
  2028. S3C_DIEPMSK_TimeOUTMsk) : 0),
  2029. hsotg->regs + S3C_DOEPMSK);
  2030. writel(0, hsotg->regs + S3C_DAINTMSK);
  2031. dev_info(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
  2032. readl(hsotg->regs + S3C_DIEPCTL0),
  2033. readl(hsotg->regs + S3C_DOEPCTL0));
  2034. /* enable in and out endpoint interrupts */
  2035. s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt);
  2036. /* Enable the RXFIFO when in slave mode, as this is how we collect
  2037. * the data. In DMA mode, we get events from the FIFO but also
  2038. * things we cannot process, so do not use it. */
  2039. if (!using_dma(hsotg))
  2040. s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_RxFLvl);
  2041. /* Enable interrupts for EP0 in and out */
  2042. s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
  2043. s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);
  2044. __orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_PWROnPrgDone);
  2045. udelay(10); /* see openiboot */
  2046. __bic32(hsotg->regs + S3C_DCTL, S3C_DCTL_PWROnPrgDone);
  2047. dev_info(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + S3C_DCTL));
  2048. /* S3C_DxEPCTL_USBActEp says RO in manual, but seems to be set by
  2049. writing to the EPCTL register.. */
  2050. /* set to read 1 8byte packet */
  2051. writel(S3C_DxEPTSIZ_MC(1) | S3C_DxEPTSIZ_PktCnt(1) |
  2052. S3C_DxEPTSIZ_XferSize(8), hsotg->regs + DOEPTSIZ0);
  2053. writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
  2054. S3C_DxEPCTL_CNAK | S3C_DxEPCTL_EPEna |
  2055. S3C_DxEPCTL_USBActEp,
  2056. hsotg->regs + S3C_DOEPCTL0);
  2057. /* enable, but don't activate EP0in */
  2058. writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
  2059. S3C_DxEPCTL_USBActEp, hsotg->regs + S3C_DIEPCTL0);
  2060. s3c_hsotg_enqueue_setup(hsotg);
  2061. dev_info(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
  2062. readl(hsotg->regs + S3C_DIEPCTL0),
  2063. readl(hsotg->regs + S3C_DOEPCTL0));
  2064. /* clear global NAKs */
  2065. writel(S3C_DCTL_CGOUTNak | S3C_DCTL_CGNPInNAK,
  2066. hsotg->regs + S3C_DCTL);
  2067. /* remove the soft-disconnect and let's go */
  2068. __bic32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);
  2069. /* report to the user, and return */
  2070. dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
  2071. return 0;
  2072. err:
  2073. hsotg->driver = NULL;
  2074. hsotg->gadget.dev.driver = NULL;
  2075. return ret;
  2076. }
  2077. EXPORT_SYMBOL(usb_gadget_register_driver);
  2078. int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
  2079. {
  2080. struct s3c_hsotg *hsotg = our_hsotg;
  2081. int ep;
  2082. if (!hsotg)
  2083. return -ENODEV;
  2084. if (!driver || driver != hsotg->driver || !driver->unbind)
  2085. return -EINVAL;
  2086. /* all endpoints should be shutdown */
  2087. for (ep = 0; ep < S3C_HSOTG_EPS; ep++)
  2088. s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);
  2089. call_gadget(hsotg, disconnect);
  2090. driver->unbind(&hsotg->gadget);
  2091. hsotg->driver = NULL;
  2092. hsotg->gadget.speed = USB_SPEED_UNKNOWN;
  2093. device_del(&hsotg->gadget.dev);
  2094. dev_info(hsotg->dev, "unregistered gadget driver '%s'\n",
  2095. driver->driver.name);
  2096. return 0;
  2097. }
  2098. EXPORT_SYMBOL(usb_gadget_unregister_driver);
  2099. static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
  2100. {
  2101. return s3c_hsotg_read_frameno(to_hsotg(gadget));
  2102. }
  2103. static struct usb_gadget_ops s3c_hsotg_gadget_ops = {
  2104. .get_frame = s3c_hsotg_gadget_getframe,
  2105. };
  2106. /**
  2107. * s3c_hsotg_initep - initialise a single endpoint
  2108. * @hsotg: The device state.
  2109. * @hs_ep: The endpoint to be initialised.
  2110. * @epnum: The endpoint number
  2111. *
  2112. * Initialise the given endpoint (as part of the probe and device state
  2113. * creation) to give to the gadget driver. Setup the endpoint name, any
  2114. * direction information and other state that may be required.
  2115. */
  2116. static void __devinit s3c_hsotg_initep(struct s3c_hsotg *hsotg,
  2117. struct s3c_hsotg_ep *hs_ep,
  2118. int epnum)
  2119. {
  2120. u32 ptxfifo;
  2121. char *dir;
  2122. if (epnum == 0)
  2123. dir = "";
  2124. else if ((epnum % 2) == 0) {
  2125. dir = "out";
  2126. } else {
  2127. dir = "in";
  2128. hs_ep->dir_in = 1;
  2129. }
  2130. hs_ep->index = epnum;
  2131. snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
  2132. INIT_LIST_HEAD(&hs_ep->queue);
  2133. INIT_LIST_HEAD(&hs_ep->ep.ep_list);
  2134. spin_lock_init(&hs_ep->lock);
  2135. /* add to the list of endpoints known by the gadget driver */
  2136. if (epnum)
  2137. list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
  2138. hs_ep->parent = hsotg;
  2139. hs_ep->ep.name = hs_ep->name;
  2140. hs_ep->ep.maxpacket = epnum ? 512 : EP0_MPS_LIMIT;
  2141. hs_ep->ep.ops = &s3c_hsotg_ep_ops;
  2142. /* Read the FIFO size for the Periodic TX FIFO, even if we're
  2143. * an OUT endpoint, we may as well do this if in future the
  2144. * code is changed to make each endpoint's direction changeable.
  2145. */
  2146. ptxfifo = readl(hsotg->regs + S3C_DPTXFSIZn(epnum));
  2147. hs_ep->fifo_size = S3C_DPTXFSIZn_DPTxFSize_GET(ptxfifo);
  2148. /* if we're using dma, we need to set the next-endpoint pointer
  2149. * to be something valid.
  2150. */
  2151. if (using_dma(hsotg)) {
  2152. u32 next = S3C_DxEPCTL_NextEp((epnum + 1) % 15);
  2153. writel(next, hsotg->regs + S3C_DIEPCTL(epnum));
  2154. writel(next, hsotg->regs + S3C_DOEPCTL(epnum));
  2155. }
  2156. }
  2157. /**
  2158. * s3c_hsotg_otgreset - reset the OtG phy block
  2159. * @hsotg: The host state.
  2160. *
  2161. * Power up the phy, set the basic configuration and start the PHY.
  2162. */
  2163. static void s3c_hsotg_otgreset(struct s3c_hsotg *hsotg)
  2164. {
  2165. u32 osc;
  2166. writel(0, S3C_PHYPWR);
  2167. mdelay(1);
  2168. osc = hsotg->plat->is_osc ? S3C_PHYCLK_EXT_OSC : 0;
  2169. writel(osc | 0x10, S3C_PHYCLK);
  2170. /* issue a full set of resets to the otg and core */
  2171. writel(S3C_RSTCON_PHY, S3C_RSTCON);
  2172. udelay(20); /* at-least 10uS */
  2173. writel(0, S3C_RSTCON);
  2174. }
  2175. static void s3c_hsotg_init(struct s3c_hsotg *hsotg)
  2176. {
  2177. /* unmask subset of endpoint interrupts */
  2178. writel(S3C_DIEPMSK_TimeOUTMsk | S3C_DIEPMSK_AHBErrMsk |
  2179. S3C_DIEPMSK_EPDisbldMsk | S3C_DIEPMSK_XferComplMsk,
  2180. hsotg->regs + S3C_DIEPMSK);
  2181. writel(S3C_DOEPMSK_SetupMsk | S3C_DOEPMSK_AHBErrMsk |
  2182. S3C_DOEPMSK_EPDisbldMsk | S3C_DOEPMSK_XferComplMsk,
  2183. hsotg->regs + S3C_DOEPMSK);
  2184. writel(0, hsotg->regs + S3C_DAINTMSK);
  2185. if (0) {
  2186. /* post global nak until we're ready */
  2187. writel(S3C_DCTL_SGNPInNAK | S3C_DCTL_SGOUTNak,
  2188. hsotg->regs + S3C_DCTL);
  2189. }
  2190. /* setup fifos */
  2191. dev_info(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
  2192. readl(hsotg->regs + S3C_GRXFSIZ),
  2193. readl(hsotg->regs + S3C_GNPTXFSIZ));
  2194. s3c_hsotg_init_fifo(hsotg);
  2195. /* set the PLL on, remove the HNP/SRP and set the PHY */
  2196. writel(S3C_GUSBCFG_PHYIf16 | S3C_GUSBCFG_TOutCal(7) | (0x5 << 10),
  2197. hsotg->regs + S3C_GUSBCFG);
  2198. writel(using_dma(hsotg) ? S3C_GAHBCFG_DMAEn : 0x0,
  2199. hsotg->regs + S3C_GAHBCFG);
  2200. }
  2201. static void s3c_hsotg_dump(struct s3c_hsotg *hsotg)
  2202. {
  2203. struct device *dev = hsotg->dev;
  2204. void __iomem *regs = hsotg->regs;
  2205. u32 val;
  2206. int idx;
  2207. dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
  2208. readl(regs + S3C_DCFG), readl(regs + S3C_DCTL),
  2209. readl(regs + S3C_DIEPMSK));
  2210. dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
  2211. readl(regs + S3C_GAHBCFG), readl(regs + 0x44));
  2212. dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
  2213. readl(regs + S3C_GRXFSIZ), readl(regs + S3C_GNPTXFSIZ));
  2214. /* show periodic fifo settings */
  2215. for (idx = 1; idx <= 15; idx++) {
  2216. val = readl(regs + S3C_DPTXFSIZn(idx));
  2217. dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
  2218. val >> S3C_DPTXFSIZn_DPTxFSize_SHIFT,
  2219. val & S3C_DPTXFSIZn_DPTxFStAddr_MASK);
  2220. }
  2221. for (idx = 0; idx < 15; idx++) {
  2222. dev_info(dev,
  2223. "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
  2224. readl(regs + S3C_DIEPCTL(idx)),
  2225. readl(regs + S3C_DIEPTSIZ(idx)),
  2226. readl(regs + S3C_DIEPDMA(idx)));
  2227. val = readl(regs + S3C_DOEPCTL(idx));
  2228. dev_info(dev,
  2229. "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
  2230. idx, readl(regs + S3C_DOEPCTL(idx)),
  2231. readl(regs + S3C_DOEPTSIZ(idx)),
  2232. readl(regs + S3C_DOEPDMA(idx)));
  2233. }
  2234. dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
  2235. readl(regs + S3C_DVBUSDIS), readl(regs + S3C_DVBUSPULSE));
  2236. }
  2237. /**
  2238. * state_show - debugfs: show overall driver and device state.
  2239. * @seq: The seq file to write to.
  2240. * @v: Unused parameter.
  2241. *
  2242. * This debugfs entry shows the overall state of the hardware and
  2243. * some general information about each of the endpoints available
  2244. * to the system.
  2245. */
  2246. static int state_show(struct seq_file *seq, void *v)
  2247. {
  2248. struct s3c_hsotg *hsotg = seq->private;
  2249. void __iomem *regs = hsotg->regs;
  2250. int idx;
  2251. seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
  2252. readl(regs + S3C_DCFG),
  2253. readl(regs + S3C_DCTL),
  2254. readl(regs + S3C_DSTS));
  2255. seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
  2256. readl(regs + S3C_DIEPMSK), readl(regs + S3C_DOEPMSK));
  2257. seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
  2258. readl(regs + S3C_GINTMSK),
  2259. readl(regs + S3C_GINTSTS));
  2260. seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
  2261. readl(regs + S3C_DAINTMSK),
  2262. readl(regs + S3C_DAINT));
  2263. seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
  2264. readl(regs + S3C_GNPTXSTS),
  2265. readl(regs + S3C_GRXSTSR));
  2266. seq_printf(seq, "\nEndpoint status:\n");
  2267. for (idx = 0; idx < 15; idx++) {
  2268. u32 in, out;
  2269. in = readl(regs + S3C_DIEPCTL(idx));
  2270. out = readl(regs + S3C_DOEPCTL(idx));
  2271. seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
  2272. idx, in, out);
  2273. in = readl(regs + S3C_DIEPTSIZ(idx));
  2274. out = readl(regs + S3C_DOEPTSIZ(idx));
  2275. seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
  2276. in, out);
  2277. seq_printf(seq, "\n");
  2278. }
  2279. return 0;
  2280. }
  2281. static int state_open(struct inode *inode, struct file *file)
  2282. {
  2283. return single_open(file, state_show, inode->i_private);
  2284. }
  2285. static const struct file_operations state_fops = {
  2286. .owner = THIS_MODULE,
  2287. .open = state_open,
  2288. .read = seq_read,
  2289. .llseek = seq_lseek,
  2290. .release = single_release,
  2291. };
  2292. /**
  2293. * fifo_show - debugfs: show the fifo information
  2294. * @seq: The seq_file to write data to.
  2295. * @v: Unused parameter.
  2296. *
  2297. * Show the FIFO information for the overall fifo and all the
  2298. * periodic transmission FIFOs.
  2299. */
  2300. static int fifo_show(struct seq_file *seq, void *v)
  2301. {
  2302. struct s3c_hsotg *hsotg = seq->private;
  2303. void __iomem *regs = hsotg->regs;
  2304. u32 val;
  2305. int idx;
  2306. seq_printf(seq, "Non-periodic FIFOs:\n");
  2307. seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + S3C_GRXFSIZ));
  2308. val = readl(regs + S3C_GNPTXFSIZ);
  2309. seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
  2310. val >> S3C_GNPTXFSIZ_NPTxFDep_SHIFT,
  2311. val & S3C_GNPTXFSIZ_NPTxFStAddr_MASK);
  2312. seq_printf(seq, "\nPeriodic TXFIFOs:\n");
  2313. for (idx = 1; idx <= 15; idx++) {
  2314. val = readl(regs + S3C_DPTXFSIZn(idx));
  2315. seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
  2316. val >> S3C_DPTXFSIZn_DPTxFSize_SHIFT,
  2317. val & S3C_DPTXFSIZn_DPTxFStAddr_MASK);
  2318. }
  2319. return 0;
  2320. }
  2321. static int fifo_open(struct inode *inode, struct file *file)
  2322. {
  2323. return single_open(file, fifo_show, inode->i_private);
  2324. }
  2325. static const struct file_operations fifo_fops = {
  2326. .owner = THIS_MODULE,
  2327. .open = fifo_open,
  2328. .read = seq_read,
  2329. .llseek = seq_lseek,
  2330. .release = single_release,
  2331. };
  2332. static const char *decode_direction(int is_in)
  2333. {
  2334. return is_in ? "in" : "out";
  2335. }
  2336. /**
  2337. * ep_show - debugfs: show the state of an endpoint.
  2338. * @seq: The seq_file to write data to.
  2339. * @v: Unused parameter.
  2340. *
  2341. * This debugfs entry shows the state of the given endpoint (one is
  2342. * registered for each available).
  2343. */
  2344. static int ep_show(struct seq_file *seq, void *v)
  2345. {
  2346. struct s3c_hsotg_ep *ep = seq->private;
  2347. struct s3c_hsotg *hsotg = ep->parent;
  2348. struct s3c_hsotg_req *req;
  2349. void __iomem *regs = hsotg->regs;
  2350. int index = ep->index;
  2351. int show_limit = 15;
  2352. unsigned long flags;
  2353. seq_printf(seq, "Endpoint index %d, named %s, dir %s:\n",
  2354. ep->index, ep->ep.name, decode_direction(ep->dir_in));
  2355. /* first show the register state */
  2356. seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
  2357. readl(regs + S3C_DIEPCTL(index)),
  2358. readl(regs + S3C_DOEPCTL(index)));
  2359. seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
  2360. readl(regs + S3C_DIEPDMA(index)),
  2361. readl(regs + S3C_DOEPDMA(index)));
  2362. seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
  2363. readl(regs + S3C_DIEPINT(index)),
  2364. readl(regs + S3C_DOEPINT(index)));
  2365. seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
  2366. readl(regs + S3C_DIEPTSIZ(index)),
  2367. readl(regs + S3C_DOEPTSIZ(index)));
  2368. seq_printf(seq, "\n");
  2369. seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
  2370. seq_printf(seq, "total_data=%ld\n", ep->total_data);
  2371. seq_printf(seq, "request list (%p,%p):\n",
  2372. ep->queue.next, ep->queue.prev);
  2373. spin_lock_irqsave(&ep->lock, flags);
  2374. list_for_each_entry(req, &ep->queue, queue) {
  2375. if (--show_limit < 0) {
  2376. seq_printf(seq, "not showing more requests...\n");
  2377. break;
  2378. }
  2379. seq_printf(seq, "%c req %p: %d bytes @%p, ",
  2380. req == ep->req ? '*' : ' ',
  2381. req, req->req.length, req->req.buf);
  2382. seq_printf(seq, "%d done, res %d\n",
  2383. req->req.actual, req->req.status);
  2384. }
  2385. spin_unlock_irqrestore(&ep->lock, flags);
  2386. return 0;
  2387. }
  2388. static int ep_open(struct inode *inode, struct file *file)
  2389. {
  2390. return single_open(file, ep_show, inode->i_private);
  2391. }
  2392. static const struct file_operations ep_fops = {
  2393. .owner = THIS_MODULE,
  2394. .open = ep_open,
  2395. .read = seq_read,
  2396. .llseek = seq_lseek,
  2397. .release = single_release,
  2398. };
  2399. /**
  2400. * s3c_hsotg_create_debug - create debugfs directory and files
  2401. * @hsotg: The driver state
  2402. *
  2403. * Create the debugfs files to allow the user to get information
  2404. * about the state of the system. The directory name is created
  2405. * with the same name as the device itself, in case we end up
  2406. * with multiple blocks in future systems.
  2407. */
  2408. static void __devinit s3c_hsotg_create_debug(struct s3c_hsotg *hsotg)
  2409. {
  2410. struct dentry *root;
  2411. unsigned epidx;
  2412. root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
  2413. hsotg->debug_root = root;
  2414. if (IS_ERR(root)) {
  2415. dev_err(hsotg->dev, "cannot create debug root\n");
  2416. return;
  2417. }
  2418. /* create general state file */
  2419. hsotg->debug_file = debugfs_create_file("state", 0444, root,
  2420. hsotg, &state_fops);
  2421. if (IS_ERR(hsotg->debug_file))
  2422. dev_err(hsotg->dev, "%s: failed to create state\n", __func__);
  2423. hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
  2424. hsotg, &fifo_fops);
  2425. if (IS_ERR(hsotg->debug_fifo))
  2426. dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);
  2427. /* create one file for each endpoint */
  2428. for (epidx = 0; epidx < S3C_HSOTG_EPS; epidx++) {
  2429. struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
  2430. ep->debugfs = debugfs_create_file(ep->name, 0444,
  2431. root, ep, &ep_fops);
  2432. if (IS_ERR(ep->debugfs))
  2433. dev_err(hsotg->dev, "failed to create %s debug file\n",
  2434. ep->name);
  2435. }
  2436. }
  2437. /**
  2438. * s3c_hsotg_delete_debug - cleanup debugfs entries
  2439. * @hsotg: The driver state
  2440. *
  2441. * Cleanup (remove) the debugfs files for use on module exit.
  2442. */
  2443. static void __devexit s3c_hsotg_delete_debug(struct s3c_hsotg *hsotg)
  2444. {
  2445. unsigned epidx;
  2446. for (epidx = 0; epidx < S3C_HSOTG_EPS; epidx++) {
  2447. struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
  2448. debugfs_remove(ep->debugfs);
  2449. }
  2450. debugfs_remove(hsotg->debug_file);
  2451. debugfs_remove(hsotg->debug_fifo);
  2452. debugfs_remove(hsotg->debug_root);
  2453. }
  2454. /**
  2455. * s3c_hsotg_gate - set the hardware gate for the block
  2456. * @pdev: The device we bound to
  2457. * @on: On or off.
  2458. *
  2459. * Set the hardware gate setting into the block. If we end up on
  2460. * something other than an S3C64XX, then we might need to change this
  2461. * to using a platform data callback, or some other mechanism.
  2462. */
  2463. static void s3c_hsotg_gate(struct platform_device *pdev, bool on)
  2464. {
  2465. unsigned long flags;
  2466. u32 others;
  2467. local_irq_save(flags);
  2468. others = __raw_readl(S3C64XX_OTHERS);
  2469. if (on)
  2470. others |= S3C64XX_OTHERS_USBMASK;
  2471. else
  2472. others &= ~S3C64XX_OTHERS_USBMASK;
  2473. __raw_writel(others, S3C64XX_OTHERS);
  2474. local_irq_restore(flags);
  2475. }
  2476. struct s3c_hsotg_plat s3c_hsotg_default_pdata;
  2477. static int __devinit s3c_hsotg_probe(struct platform_device *pdev)
  2478. {
  2479. struct s3c_hsotg_plat *plat = pdev->dev.platform_data;
  2480. struct device *dev = &pdev->dev;
  2481. struct s3c_hsotg *hsotg;
  2482. struct resource *res;
  2483. int epnum;
  2484. int ret;
  2485. if (!plat)
  2486. plat = &s3c_hsotg_default_pdata;
  2487. hsotg = kzalloc(sizeof(struct s3c_hsotg) +
  2488. sizeof(struct s3c_hsotg_ep) * S3C_HSOTG_EPS,
  2489. GFP_KERNEL);
  2490. if (!hsotg) {
  2491. dev_err(dev, "cannot get memory\n");
  2492. return -ENOMEM;
  2493. }
  2494. hsotg->dev = dev;
  2495. hsotg->plat = plat;
  2496. platform_set_drvdata(pdev, hsotg);
  2497. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  2498. if (!res) {
  2499. dev_err(dev, "cannot find register resource 0\n");
  2500. ret = -EINVAL;
  2501. goto err_mem;
  2502. }
  2503. hsotg->regs_res = request_mem_region(res->start, resource_size(res),
  2504. dev_name(dev));
  2505. if (!hsotg->regs_res) {
  2506. dev_err(dev, "cannot reserve registers\n");
  2507. ret = -ENOENT;
  2508. goto err_mem;
  2509. }
  2510. hsotg->regs = ioremap(res->start, resource_size(res));
  2511. if (!hsotg->regs) {
  2512. dev_err(dev, "cannot map registers\n");
  2513. ret = -ENXIO;
  2514. goto err_regs_res;
  2515. }
  2516. ret = platform_get_irq(pdev, 0);
  2517. if (ret < 0) {
  2518. dev_err(dev, "cannot find IRQ\n");
  2519. goto err_regs;
  2520. }
  2521. hsotg->irq = ret;
  2522. ret = request_irq(ret, s3c_hsotg_irq, 0, dev_name(dev), hsotg);
  2523. if (ret < 0) {
  2524. dev_err(dev, "cannot claim IRQ\n");
  2525. goto err_regs;
  2526. }
  2527. dev_info(dev, "regs %p, irq %d\n", hsotg->regs, hsotg->irq);
  2528. device_initialize(&hsotg->gadget.dev);
  2529. dev_set_name(&hsotg->gadget.dev, "gadget");
  2530. hsotg->gadget.is_dualspeed = 1;
  2531. hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
  2532. hsotg->gadget.name = dev_name(dev);
  2533. hsotg->gadget.dev.parent = dev;
  2534. hsotg->gadget.dev.dma_mask = dev->dma_mask;
  2535. /* setup endpoint information */
  2536. INIT_LIST_HEAD(&hsotg->gadget.ep_list);
  2537. hsotg->gadget.ep0 = &hsotg->eps[0].ep;
  2538. /* allocate EP0 request */
  2539. hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep,
  2540. GFP_KERNEL);
  2541. if (!hsotg->ctrl_req) {
  2542. dev_err(dev, "failed to allocate ctrl req\n");
  2543. goto err_regs;
  2544. }
  2545. /* reset the system */
  2546. s3c_hsotg_gate(pdev, true);
  2547. s3c_hsotg_otgreset(hsotg);
  2548. s3c_hsotg_corereset(hsotg);
  2549. s3c_hsotg_init(hsotg);
  2550. /* initialise the endpoints now the core has been initialised */
  2551. for (epnum = 0; epnum < S3C_HSOTG_EPS; epnum++)
  2552. s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum);
  2553. s3c_hsotg_create_debug(hsotg);
  2554. s3c_hsotg_dump(hsotg);
  2555. our_hsotg = hsotg;
  2556. return 0;
  2557. err_regs:
  2558. iounmap(hsotg->regs);
  2559. err_regs_res:
  2560. release_resource(hsotg->regs_res);
  2561. kfree(hsotg->regs_res);
  2562. err_mem:
  2563. kfree(hsotg);
  2564. return ret;
  2565. }
  2566. static int __devexit s3c_hsotg_remove(struct platform_device *pdev)
  2567. {
  2568. struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);
  2569. s3c_hsotg_delete_debug(hsotg);
  2570. usb_gadget_unregister_driver(hsotg->driver);
  2571. free_irq(hsotg->irq, hsotg);
  2572. iounmap(hsotg->regs);
  2573. release_resource(hsotg->regs_res);
  2574. kfree(hsotg->regs_res);
  2575. s3c_hsotg_gate(pdev, false);
  2576. kfree(hsotg);
  2577. return 0;
  2578. }
  2579. #if 1
  2580. #define s3c_hsotg_suspend NULL
  2581. #define s3c_hsotg_resume NULL
  2582. #endif
  2583. static struct platform_driver s3c_hsotg_driver = {
  2584. .driver = {
  2585. .name = "s3c-hsotg",
  2586. .owner = THIS_MODULE,
  2587. },
  2588. .probe = s3c_hsotg_probe,
  2589. .remove = __devexit_p(s3c_hsotg_remove),
  2590. .suspend = s3c_hsotg_suspend,
  2591. .resume = s3c_hsotg_resume,
  2592. };
  2593. static int __init s3c_hsotg_modinit(void)
  2594. {
  2595. return platform_driver_register(&s3c_hsotg_driver);
  2596. }
  2597. static void __exit s3c_hsotg_modexit(void)
  2598. {
  2599. platform_driver_unregister(&s3c_hsotg_driver);
  2600. }
  2601. module_init(s3c_hsotg_modinit);
  2602. module_exit(s3c_hsotg_modexit);
  2603. MODULE_DESCRIPTION("Samsung S3C USB High-speed/OtG device");
  2604. MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
  2605. MODULE_LICENSE("GPL");
  2606. MODULE_ALIAS("platform:s3c-hsotg");