ar9003_mci.c 39 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464
  1. /*
  2. * Copyright (c) 2008-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/export.h>
  17. #include "hw.h"
  18. #include "ar9003_phy.h"
  19. #include "ar9003_mci.h"
  20. static void ar9003_mci_reset_req_wakeup(struct ath_hw *ah)
  21. {
  22. if (!AR_SREV_9462_20(ah))
  23. return;
  24. REG_RMW_FIELD(ah, AR_MCI_COMMAND2,
  25. AR_MCI_COMMAND2_RESET_REQ_WAKEUP, 1);
  26. udelay(1);
  27. REG_RMW_FIELD(ah, AR_MCI_COMMAND2,
  28. AR_MCI_COMMAND2_RESET_REQ_WAKEUP, 0);
  29. }
  30. static int ar9003_mci_wait_for_interrupt(struct ath_hw *ah, u32 address,
  31. u32 bit_position, int time_out)
  32. {
  33. struct ath_common *common = ath9k_hw_common(ah);
  34. while (time_out) {
  35. if (REG_READ(ah, address) & bit_position) {
  36. REG_WRITE(ah, address, bit_position);
  37. if (address == AR_MCI_INTERRUPT_RX_MSG_RAW) {
  38. if (bit_position &
  39. AR_MCI_INTERRUPT_RX_MSG_REQ_WAKE)
  40. ar9003_mci_reset_req_wakeup(ah);
  41. if (bit_position &
  42. (AR_MCI_INTERRUPT_RX_MSG_SYS_SLEEPING |
  43. AR_MCI_INTERRUPT_RX_MSG_SYS_WAKING))
  44. REG_WRITE(ah, AR_MCI_INTERRUPT_RAW,
  45. AR_MCI_INTERRUPT_REMOTE_SLEEP_UPDATE);
  46. REG_WRITE(ah, AR_MCI_INTERRUPT_RAW,
  47. AR_MCI_INTERRUPT_RX_MSG);
  48. }
  49. break;
  50. }
  51. udelay(10);
  52. time_out -= 10;
  53. if (time_out < 0)
  54. break;
  55. }
  56. if (time_out <= 0) {
  57. ath_dbg(common, ATH_DBG_MCI,
  58. "MCI Wait for Reg 0x%08x = 0x%08x timeout.\n",
  59. address, bit_position);
  60. ath_dbg(common, ATH_DBG_MCI,
  61. "MCI INT_RAW = 0x%08x, RX_MSG_RAW = 0x%08x",
  62. REG_READ(ah, AR_MCI_INTERRUPT_RAW),
  63. REG_READ(ah, AR_MCI_INTERRUPT_RX_MSG_RAW));
  64. time_out = 0;
  65. }
  66. return time_out;
  67. }
  68. void ar9003_mci_remote_reset(struct ath_hw *ah, bool wait_done)
  69. {
  70. u32 payload[4] = { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffff00};
  71. ar9003_mci_send_message(ah, MCI_REMOTE_RESET, 0, payload, 16,
  72. wait_done, false);
  73. udelay(5);
  74. }
  75. void ar9003_mci_send_lna_transfer(struct ath_hw *ah, bool wait_done)
  76. {
  77. u32 payload = 0x00000000;
  78. ar9003_mci_send_message(ah, MCI_LNA_TRANS, 0, &payload, 1,
  79. wait_done, false);
  80. }
  81. static void ar9003_mci_send_req_wake(struct ath_hw *ah, bool wait_done)
  82. {
  83. ar9003_mci_send_message(ah, MCI_REQ_WAKE, MCI_FLAG_DISABLE_TIMESTAMP,
  84. NULL, 0, wait_done, false);
  85. udelay(5);
  86. }
  87. void ar9003_mci_send_sys_waking(struct ath_hw *ah, bool wait_done)
  88. {
  89. ar9003_mci_send_message(ah, MCI_SYS_WAKING, MCI_FLAG_DISABLE_TIMESTAMP,
  90. NULL, 0, wait_done, false);
  91. }
  92. static void ar9003_mci_send_lna_take(struct ath_hw *ah, bool wait_done)
  93. {
  94. u32 payload = 0x70000000;
  95. ar9003_mci_send_message(ah, MCI_LNA_TAKE, 0, &payload, 1,
  96. wait_done, false);
  97. }
  98. static void ar9003_mci_send_sys_sleeping(struct ath_hw *ah, bool wait_done)
  99. {
  100. ar9003_mci_send_message(ah, MCI_SYS_SLEEPING,
  101. MCI_FLAG_DISABLE_TIMESTAMP,
  102. NULL, 0, wait_done, false);
  103. }
  104. static void ar9003_mci_send_coex_version_query(struct ath_hw *ah,
  105. bool wait_done)
  106. {
  107. struct ath_common *common = ath9k_hw_common(ah);
  108. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  109. u32 payload[4] = {0, 0, 0, 0};
  110. if (!mci->bt_version_known &&
  111. (mci->bt_state != MCI_BT_SLEEP)) {
  112. ath_dbg(common, ATH_DBG_MCI, "MCI Send Coex version query\n");
  113. MCI_GPM_SET_TYPE_OPCODE(payload,
  114. MCI_GPM_COEX_AGENT, MCI_GPM_COEX_VERSION_QUERY);
  115. ar9003_mci_send_message(ah, MCI_GPM, 0, payload, 16,
  116. wait_done, true);
  117. }
  118. }
  119. static void ar9003_mci_send_coex_version_response(struct ath_hw *ah,
  120. bool wait_done)
  121. {
  122. struct ath_common *common = ath9k_hw_common(ah);
  123. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  124. u32 payload[4] = {0, 0, 0, 0};
  125. ath_dbg(common, ATH_DBG_MCI, "MCI Send Coex version response\n");
  126. MCI_GPM_SET_TYPE_OPCODE(payload, MCI_GPM_COEX_AGENT,
  127. MCI_GPM_COEX_VERSION_RESPONSE);
  128. *(((u8 *)payload) + MCI_GPM_COEX_B_MAJOR_VERSION) =
  129. mci->wlan_ver_major;
  130. *(((u8 *)payload) + MCI_GPM_COEX_B_MINOR_VERSION) =
  131. mci->wlan_ver_minor;
  132. ar9003_mci_send_message(ah, MCI_GPM, 0, payload, 16, wait_done, true);
  133. }
  134. static void ar9003_mci_send_coex_wlan_channels(struct ath_hw *ah,
  135. bool wait_done)
  136. {
  137. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  138. u32 *payload = &mci->wlan_channels[0];
  139. if ((mci->wlan_channels_update == true) &&
  140. (mci->bt_state != MCI_BT_SLEEP)) {
  141. MCI_GPM_SET_TYPE_OPCODE(payload,
  142. MCI_GPM_COEX_AGENT, MCI_GPM_COEX_WLAN_CHANNELS);
  143. ar9003_mci_send_message(ah, MCI_GPM, 0, payload, 16,
  144. wait_done, true);
  145. MCI_GPM_SET_TYPE_OPCODE(payload, 0xff, 0xff);
  146. }
  147. }
  148. static void ar9003_mci_send_coex_bt_status_query(struct ath_hw *ah,
  149. bool wait_done, u8 query_type)
  150. {
  151. struct ath_common *common = ath9k_hw_common(ah);
  152. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  153. u32 payload[4] = {0, 0, 0, 0};
  154. bool query_btinfo = !!(query_type & (MCI_GPM_COEX_QUERY_BT_ALL_INFO |
  155. MCI_GPM_COEX_QUERY_BT_TOPOLOGY));
  156. if (mci->bt_state != MCI_BT_SLEEP) {
  157. ath_dbg(common, ATH_DBG_MCI,
  158. "MCI Send Coex BT Status Query 0x%02X\n", query_type);
  159. MCI_GPM_SET_TYPE_OPCODE(payload,
  160. MCI_GPM_COEX_AGENT, MCI_GPM_COEX_STATUS_QUERY);
  161. *(((u8 *)payload) + MCI_GPM_COEX_B_BT_BITMAP) = query_type;
  162. /*
  163. * If bt_status_query message is not sent successfully,
  164. * then need_flush_btinfo should be set again.
  165. */
  166. if (!ar9003_mci_send_message(ah, MCI_GPM, 0, payload, 16,
  167. wait_done, true)) {
  168. if (query_btinfo) {
  169. mci->need_flush_btinfo = true;
  170. ath_dbg(common, ATH_DBG_MCI,
  171. "MCI send bt_status_query fail, "
  172. "set flush flag again\n");
  173. }
  174. }
  175. if (query_btinfo)
  176. mci->query_bt = false;
  177. }
  178. }
  179. void ar9003_mci_send_coex_halt_bt_gpm(struct ath_hw *ah, bool halt,
  180. bool wait_done)
  181. {
  182. struct ath_common *common = ath9k_hw_common(ah);
  183. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  184. u32 payload[4] = {0, 0, 0, 0};
  185. ath_dbg(common, ATH_DBG_MCI, "MCI Send Coex %s BT GPM.\n",
  186. (halt) ? "halt" : "unhalt");
  187. MCI_GPM_SET_TYPE_OPCODE(payload,
  188. MCI_GPM_COEX_AGENT, MCI_GPM_COEX_HALT_BT_GPM);
  189. if (halt) {
  190. mci->query_bt = true;
  191. /* Send next unhalt no matter halt sent or not */
  192. mci->unhalt_bt_gpm = true;
  193. mci->need_flush_btinfo = true;
  194. *(((u8 *)payload) + MCI_GPM_COEX_B_HALT_STATE) =
  195. MCI_GPM_COEX_BT_GPM_HALT;
  196. } else
  197. *(((u8 *)payload) + MCI_GPM_COEX_B_HALT_STATE) =
  198. MCI_GPM_COEX_BT_GPM_UNHALT;
  199. ar9003_mci_send_message(ah, MCI_GPM, 0, payload, 16, wait_done, true);
  200. }
  201. static void ar9003_mci_prep_interface(struct ath_hw *ah)
  202. {
  203. struct ath_common *common = ath9k_hw_common(ah);
  204. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  205. u32 saved_mci_int_en;
  206. u32 mci_timeout = 150;
  207. mci->bt_state = MCI_BT_SLEEP;
  208. saved_mci_int_en = REG_READ(ah, AR_MCI_INTERRUPT_EN);
  209. REG_WRITE(ah, AR_MCI_INTERRUPT_EN, 0);
  210. REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_RAW,
  211. REG_READ(ah, AR_MCI_INTERRUPT_RX_MSG_RAW));
  212. REG_WRITE(ah, AR_MCI_INTERRUPT_RAW,
  213. REG_READ(ah, AR_MCI_INTERRUPT_RAW));
  214. /* Remote Reset */
  215. ath_dbg(common, ATH_DBG_MCI, "MCI Reset sequence start\n");
  216. ath_dbg(common, ATH_DBG_MCI, "MCI send REMOTE_RESET\n");
  217. ar9003_mci_remote_reset(ah, true);
  218. /*
  219. * This delay is required for the reset delay worst case value 255 in
  220. * MCI_COMMAND2 register
  221. */
  222. if (AR_SREV_9462_10(ah))
  223. udelay(252);
  224. ath_dbg(common, ATH_DBG_MCI, "MCI Send REQ_WAKE to remoter(BT)\n");
  225. ar9003_mci_send_req_wake(ah, true);
  226. if (ar9003_mci_wait_for_interrupt(ah, AR_MCI_INTERRUPT_RX_MSG_RAW,
  227. AR_MCI_INTERRUPT_RX_MSG_SYS_WAKING, 500)) {
  228. ath_dbg(common, ATH_DBG_MCI,
  229. "MCI SYS_WAKING from remote(BT)\n");
  230. mci->bt_state = MCI_BT_AWAKE;
  231. if (AR_SREV_9462_10(ah))
  232. udelay(10);
  233. /*
  234. * we don't need to send more remote_reset at this moment.
  235. * If BT receive first remote_reset, then BT HW will
  236. * be cleaned up and will be able to receive req_wake
  237. * and BT HW will respond sys_waking.
  238. * In this case, WLAN will receive BT's HW sys_waking.
  239. * Otherwise, if BT SW missed initial remote_reset,
  240. * that remote_reset will still clean up BT MCI RX,
  241. * and the req_wake will wake BT up,
  242. * and BT SW will respond this req_wake with a remote_reset and
  243. * sys_waking. In this case, WLAN will receive BT's SW
  244. * sys_waking. In either case, BT's RX is cleaned up. So we
  245. * don't need to reply BT's remote_reset now, if any.
  246. * Similarly, if in any case, WLAN can receive BT's sys_waking,
  247. * that means WLAN's RX is also fine.
  248. */
  249. /* Send SYS_WAKING to BT */
  250. ath_dbg(common, ATH_DBG_MCI,
  251. "MCI send SW SYS_WAKING to remote BT\n");
  252. ar9003_mci_send_sys_waking(ah, true);
  253. udelay(10);
  254. /*
  255. * Set BT priority interrupt value to be 0xff to
  256. * avoid having too many BT PRIORITY interrupts.
  257. */
  258. REG_WRITE(ah, AR_MCI_BT_PRI0, 0xFFFFFFFF);
  259. REG_WRITE(ah, AR_MCI_BT_PRI1, 0xFFFFFFFF);
  260. REG_WRITE(ah, AR_MCI_BT_PRI2, 0xFFFFFFFF);
  261. REG_WRITE(ah, AR_MCI_BT_PRI3, 0xFFFFFFFF);
  262. REG_WRITE(ah, AR_MCI_BT_PRI, 0X000000FF);
  263. /*
  264. * A contention reset will be received after send out
  265. * sys_waking. Also BT priority interrupt bits will be set.
  266. * Clear those bits before the next step.
  267. */
  268. REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_RAW,
  269. AR_MCI_INTERRUPT_RX_MSG_CONT_RST);
  270. REG_WRITE(ah, AR_MCI_INTERRUPT_RAW,
  271. AR_MCI_INTERRUPT_BT_PRI);
  272. if (AR_SREV_9462_10(ah) || mci->is_2g) {
  273. /* Send LNA_TRANS */
  274. ath_dbg(common, ATH_DBG_MCI,
  275. "MCI send LNA_TRANS to BT\n");
  276. ar9003_mci_send_lna_transfer(ah, true);
  277. udelay(5);
  278. }
  279. if (AR_SREV_9462_10(ah) || (mci->is_2g &&
  280. !mci->update_2g5g)) {
  281. if (ar9003_mci_wait_for_interrupt(ah,
  282. AR_MCI_INTERRUPT_RX_MSG_RAW,
  283. AR_MCI_INTERRUPT_RX_MSG_LNA_INFO,
  284. mci_timeout))
  285. ath_dbg(common, ATH_DBG_MCI,
  286. "MCI WLAN has control over the LNA & "
  287. "BT obeys it\n");
  288. else
  289. ath_dbg(common, ATH_DBG_MCI,
  290. "MCI BT didn't respond to"
  291. "LNA_TRANS\n");
  292. }
  293. if (AR_SREV_9462_10(ah)) {
  294. /* Send another remote_reset to deassert BT clk_req. */
  295. ath_dbg(common, ATH_DBG_MCI,
  296. "MCI another remote_reset to "
  297. "deassert clk_req\n");
  298. ar9003_mci_remote_reset(ah, true);
  299. udelay(252);
  300. }
  301. }
  302. /* Clear the extra redundant SYS_WAKING from BT */
  303. if ((mci->bt_state == MCI_BT_AWAKE) &&
  304. (REG_READ_FIELD(ah, AR_MCI_INTERRUPT_RX_MSG_RAW,
  305. AR_MCI_INTERRUPT_RX_MSG_SYS_WAKING)) &&
  306. (REG_READ_FIELD(ah, AR_MCI_INTERRUPT_RX_MSG_RAW,
  307. AR_MCI_INTERRUPT_RX_MSG_SYS_SLEEPING) == 0)) {
  308. REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_RAW,
  309. AR_MCI_INTERRUPT_RX_MSG_SYS_WAKING);
  310. REG_WRITE(ah, AR_MCI_INTERRUPT_RAW,
  311. AR_MCI_INTERRUPT_REMOTE_SLEEP_UPDATE);
  312. }
  313. REG_WRITE(ah, AR_MCI_INTERRUPT_EN, saved_mci_int_en);
  314. }
  315. void ar9003_mci_disable_interrupt(struct ath_hw *ah)
  316. {
  317. REG_WRITE(ah, AR_MCI_INTERRUPT_EN, 0);
  318. REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
  319. }
  320. void ar9003_mci_enable_interrupt(struct ath_hw *ah)
  321. {
  322. REG_WRITE(ah, AR_MCI_INTERRUPT_EN, AR_MCI_INTERRUPT_DEFAULT);
  323. REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
  324. AR_MCI_INTERRUPT_RX_MSG_DEFAULT);
  325. }
  326. bool ar9003_mci_check_int(struct ath_hw *ah, u32 ints)
  327. {
  328. u32 intr;
  329. intr = REG_READ(ah, AR_MCI_INTERRUPT_RX_MSG_RAW);
  330. return ((intr & ints) == ints);
  331. }
  332. void ar9003_mci_get_interrupt(struct ath_hw *ah, u32 *raw_intr,
  333. u32 *rx_msg_intr)
  334. {
  335. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  336. *raw_intr = mci->raw_intr;
  337. *rx_msg_intr = mci->rx_msg_intr;
  338. /* Clean int bits after the values are read. */
  339. mci->raw_intr = 0;
  340. mci->rx_msg_intr = 0;
  341. }
  342. EXPORT_SYMBOL(ar9003_mci_get_interrupt);
  343. void ar9003_mci_2g5g_changed(struct ath_hw *ah, bool is_2g)
  344. {
  345. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  346. if (!mci->update_2g5g &&
  347. (mci->is_2g != is_2g))
  348. mci->update_2g5g = true;
  349. mci->is_2g = is_2g;
  350. }
  351. static bool ar9003_mci_is_gpm_valid(struct ath_hw *ah, u32 msg_index)
  352. {
  353. struct ath_common *common = ath9k_hw_common(ah);
  354. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  355. u32 *payload;
  356. u32 recv_type, offset;
  357. if (msg_index == MCI_GPM_INVALID)
  358. return false;
  359. offset = msg_index << 4;
  360. payload = (u32 *)(mci->gpm_buf + offset);
  361. recv_type = MCI_GPM_TYPE(payload);
  362. if (recv_type == MCI_GPM_RSVD_PATTERN) {
  363. ath_dbg(common, ATH_DBG_MCI, "MCI Skip RSVD GPM\n");
  364. return false;
  365. }
  366. return true;
  367. }
  368. static void ar9003_mci_observation_set_up(struct ath_hw *ah)
  369. {
  370. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  371. if (mci->config & ATH_MCI_CONFIG_MCI_OBS_MCI) {
  372. ath9k_hw_cfg_output(ah, 3,
  373. AR_GPIO_OUTPUT_MUX_AS_MCI_WLAN_DATA);
  374. ath9k_hw_cfg_output(ah, 2, AR_GPIO_OUTPUT_MUX_AS_MCI_WLAN_CLK);
  375. ath9k_hw_cfg_output(ah, 1, AR_GPIO_OUTPUT_MUX_AS_MCI_BT_DATA);
  376. ath9k_hw_cfg_output(ah, 0, AR_GPIO_OUTPUT_MUX_AS_MCI_BT_CLK);
  377. } else if (mci->config & ATH_MCI_CONFIG_MCI_OBS_TXRX) {
  378. ath9k_hw_cfg_output(ah, 3, AR_GPIO_OUTPUT_MUX_AS_WL_IN_TX);
  379. ath9k_hw_cfg_output(ah, 2, AR_GPIO_OUTPUT_MUX_AS_WL_IN_RX);
  380. ath9k_hw_cfg_output(ah, 1, AR_GPIO_OUTPUT_MUX_AS_BT_IN_TX);
  381. ath9k_hw_cfg_output(ah, 0, AR_GPIO_OUTPUT_MUX_AS_BT_IN_RX);
  382. ath9k_hw_cfg_output(ah, 5, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
  383. } else if (mci->config & ATH_MCI_CONFIG_MCI_OBS_BT) {
  384. ath9k_hw_cfg_output(ah, 3, AR_GPIO_OUTPUT_MUX_AS_BT_IN_TX);
  385. ath9k_hw_cfg_output(ah, 2, AR_GPIO_OUTPUT_MUX_AS_BT_IN_RX);
  386. ath9k_hw_cfg_output(ah, 1, AR_GPIO_OUTPUT_MUX_AS_MCI_BT_DATA);
  387. ath9k_hw_cfg_output(ah, 0, AR_GPIO_OUTPUT_MUX_AS_MCI_BT_CLK);
  388. } else
  389. return;
  390. REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
  391. if (AR_SREV_9462_20_OR_LATER(ah)) {
  392. REG_RMW_FIELD(ah, AR_PHY_GLB_CONTROL,
  393. AR_GLB_DS_JTAG_DISABLE, 1);
  394. REG_RMW_FIELD(ah, AR_PHY_GLB_CONTROL,
  395. AR_GLB_WLAN_UART_INTF_EN, 0);
  396. REG_SET_BIT(ah, AR_GLB_GPIO_CONTROL,
  397. ATH_MCI_CONFIG_MCI_OBS_GPIO);
  398. }
  399. REG_RMW_FIELD(ah, AR_BTCOEX_CTRL2, AR_BTCOEX_CTRL2_GPIO_OBS_SEL, 0);
  400. REG_RMW_FIELD(ah, AR_BTCOEX_CTRL2, AR_BTCOEX_CTRL2_MAC_BB_OBS_SEL, 1);
  401. REG_WRITE(ah, AR_OBS, 0x4b);
  402. REG_RMW_FIELD(ah, AR_DIAG_SW, AR_DIAG_OBS_PT_SEL1, 0x03);
  403. REG_RMW_FIELD(ah, AR_DIAG_SW, AR_DIAG_OBS_PT_SEL2, 0x01);
  404. REG_RMW_FIELD(ah, AR_MACMISC, AR_MACMISC_MISC_OBS_BUS_LSB, 0x02);
  405. REG_RMW_FIELD(ah, AR_MACMISC, AR_MACMISC_MISC_OBS_BUS_MSB, 0x03);
  406. REG_RMW_FIELD(ah, AR_PHY_TEST_CTL_STATUS,
  407. AR_PHY_TEST_CTL_DEBUGPORT_SEL, 0x07);
  408. }
  409. static bool ar9003_mci_send_coex_bt_flags(struct ath_hw *ah, bool wait_done,
  410. u8 opcode, u32 bt_flags)
  411. {
  412. struct ath_common *common = ath9k_hw_common(ah);
  413. u32 pld[4] = {0, 0, 0, 0};
  414. MCI_GPM_SET_TYPE_OPCODE(pld,
  415. MCI_GPM_COEX_AGENT, MCI_GPM_COEX_BT_UPDATE_FLAGS);
  416. *(((u8 *)pld) + MCI_GPM_COEX_B_BT_FLAGS_OP) = opcode;
  417. *(((u8 *)pld) + MCI_GPM_COEX_W_BT_FLAGS + 0) = bt_flags & 0xFF;
  418. *(((u8 *)pld) + MCI_GPM_COEX_W_BT_FLAGS + 1) = (bt_flags >> 8) & 0xFF;
  419. *(((u8 *)pld) + MCI_GPM_COEX_W_BT_FLAGS + 2) = (bt_flags >> 16) & 0xFF;
  420. *(((u8 *)pld) + MCI_GPM_COEX_W_BT_FLAGS + 3) = (bt_flags >> 24) & 0xFF;
  421. ath_dbg(common, ATH_DBG_MCI,
  422. "MCI BT_MCI_FLAGS: Send Coex BT Update Flags %s 0x%08x\n",
  423. (opcode == MCI_GPM_COEX_BT_FLAGS_READ) ? "READ" :
  424. ((opcode == MCI_GPM_COEX_BT_FLAGS_SET) ? "SET" : "CLEAR"),
  425. bt_flags);
  426. return ar9003_mci_send_message(ah, MCI_GPM, 0, pld, 16,
  427. wait_done, true);
  428. }
  429. void ar9003_mci_reset(struct ath_hw *ah, bool en_int, bool is_2g,
  430. bool is_full_sleep)
  431. {
  432. struct ath_common *common = ath9k_hw_common(ah);
  433. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  434. u32 regval, thresh;
  435. ath_dbg(common, ATH_DBG_MCI, "MCI full_sleep = %d, is_2g = %d\n",
  436. is_full_sleep, is_2g);
  437. /*
  438. * GPM buffer and scheduling message buffer are not allocated
  439. */
  440. if (!mci->gpm_addr && !mci->sched_addr) {
  441. ath_dbg(common, ATH_DBG_MCI,
  442. "MCI GPM and schedule buffers are not allocated");
  443. return;
  444. }
  445. if (REG_READ(ah, AR_BTCOEX_CTRL) == 0xdeadbeef) {
  446. ath_dbg(common, ATH_DBG_MCI,
  447. "MCI it's deadbeef, quit mci_reset\n");
  448. return;
  449. }
  450. /* Program MCI DMA related registers */
  451. REG_WRITE(ah, AR_MCI_GPM_0, mci->gpm_addr);
  452. REG_WRITE(ah, AR_MCI_GPM_1, mci->gpm_len);
  453. REG_WRITE(ah, AR_MCI_SCHD_TABLE_0, mci->sched_addr);
  454. /*
  455. * To avoid MCI state machine be affected by incoming remote MCI msgs,
  456. * MCI mode will be enabled later, right before reset the MCI TX and RX.
  457. */
  458. regval = SM(1, AR_BTCOEX_CTRL_AR9462_MODE) |
  459. SM(1, AR_BTCOEX_CTRL_WBTIMER_EN) |
  460. SM(1, AR_BTCOEX_CTRL_PA_SHARED) |
  461. SM(1, AR_BTCOEX_CTRL_LNA_SHARED) |
  462. SM(2, AR_BTCOEX_CTRL_NUM_ANTENNAS) |
  463. SM(3, AR_BTCOEX_CTRL_RX_CHAIN_MASK) |
  464. SM(0, AR_BTCOEX_CTRL_1_CHAIN_ACK) |
  465. SM(0, AR_BTCOEX_CTRL_1_CHAIN_BCN) |
  466. SM(0, AR_BTCOEX_CTRL_ONE_STEP_LOOK_AHEAD_EN);
  467. if (is_2g && (AR_SREV_9462_20(ah)) &&
  468. !(mci->config & ATH_MCI_CONFIG_DISABLE_OSLA)) {
  469. regval |= SM(1, AR_BTCOEX_CTRL_ONE_STEP_LOOK_AHEAD_EN);
  470. ath_dbg(common, ATH_DBG_MCI,
  471. "MCI sched one step look ahead\n");
  472. if (!(mci->config &
  473. ATH_MCI_CONFIG_DISABLE_AGGR_THRESH)) {
  474. thresh = MS(mci->config,
  475. ATH_MCI_CONFIG_AGGR_THRESH);
  476. thresh &= 7;
  477. regval |= SM(1,
  478. AR_BTCOEX_CTRL_TIME_TO_NEXT_BT_THRESH_EN);
  479. regval |= SM(thresh, AR_BTCOEX_CTRL_AGGR_THRESH);
  480. REG_RMW_FIELD(ah, AR_MCI_SCHD_TABLE_2,
  481. AR_MCI_SCHD_TABLE_2_HW_BASED, 1);
  482. REG_RMW_FIELD(ah, AR_MCI_SCHD_TABLE_2,
  483. AR_MCI_SCHD_TABLE_2_MEM_BASED, 1);
  484. } else
  485. ath_dbg(common, ATH_DBG_MCI,
  486. "MCI sched aggr thresh: off\n");
  487. } else
  488. ath_dbg(common, ATH_DBG_MCI,
  489. "MCI SCHED one step look ahead off\n");
  490. if (AR_SREV_9462_10(ah))
  491. regval |= SM(1, AR_BTCOEX_CTRL_SPDT_ENABLE_10);
  492. REG_WRITE(ah, AR_BTCOEX_CTRL, regval);
  493. if (AR_SREV_9462_20(ah)) {
  494. REG_SET_BIT(ah, AR_PHY_GLB_CONTROL,
  495. AR_BTCOEX_CTRL_SPDT_ENABLE);
  496. REG_RMW_FIELD(ah, AR_BTCOEX_CTRL3,
  497. AR_BTCOEX_CTRL3_CONT_INFO_TIMEOUT, 20);
  498. }
  499. REG_RMW_FIELD(ah, AR_BTCOEX_CTRL2, AR_BTCOEX_CTRL2_RX_DEWEIGHT, 1);
  500. REG_RMW_FIELD(ah, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX, 0);
  501. thresh = MS(mci->config, ATH_MCI_CONFIG_CLK_DIV);
  502. REG_RMW_FIELD(ah, AR_MCI_TX_CTRL, AR_MCI_TX_CTRL_CLK_DIV, thresh);
  503. REG_SET_BIT(ah, AR_BTCOEX_CTRL, AR_BTCOEX_CTRL_MCI_MODE_EN);
  504. /* Resetting the Rx and Tx paths of MCI */
  505. regval = REG_READ(ah, AR_MCI_COMMAND2);
  506. regval |= SM(1, AR_MCI_COMMAND2_RESET_TX);
  507. REG_WRITE(ah, AR_MCI_COMMAND2, regval);
  508. udelay(1);
  509. regval &= ~SM(1, AR_MCI_COMMAND2_RESET_TX);
  510. REG_WRITE(ah, AR_MCI_COMMAND2, regval);
  511. if (is_full_sleep) {
  512. ar9003_mci_mute_bt(ah);
  513. udelay(100);
  514. }
  515. regval |= SM(1, AR_MCI_COMMAND2_RESET_RX);
  516. REG_WRITE(ah, AR_MCI_COMMAND2, regval);
  517. udelay(1);
  518. regval &= ~SM(1, AR_MCI_COMMAND2_RESET_RX);
  519. REG_WRITE(ah, AR_MCI_COMMAND2, regval);
  520. ar9003_mci_state(ah, MCI_STATE_INIT_GPM_OFFSET, NULL);
  521. REG_WRITE(ah, AR_MCI_MSG_ATTRIBUTES_TABLE,
  522. (SM(0xe801, AR_MCI_MSG_ATTRIBUTES_TABLE_INVALID_HDR) |
  523. SM(0x0000, AR_MCI_MSG_ATTRIBUTES_TABLE_CHECKSUM)));
  524. REG_CLR_BIT(ah, AR_MCI_TX_CTRL,
  525. AR_MCI_TX_CTRL_DISABLE_LNA_UPDATE);
  526. if (AR_SREV_9462_20_OR_LATER(ah))
  527. ar9003_mci_observation_set_up(ah);
  528. mci->ready = true;
  529. ar9003_mci_prep_interface(ah);
  530. if (en_int)
  531. ar9003_mci_enable_interrupt(ah);
  532. }
  533. void ar9003_mci_mute_bt(struct ath_hw *ah)
  534. {
  535. struct ath_common *common = ath9k_hw_common(ah);
  536. /* disable all MCI messages */
  537. REG_WRITE(ah, AR_MCI_MSG_ATTRIBUTES_TABLE, 0xffff0000);
  538. REG_WRITE(ah, AR_BTCOEX_WL_WEIGHTS0, 0xffffffff);
  539. REG_WRITE(ah, AR_BTCOEX_WL_WEIGHTS1, 0xffffffff);
  540. REG_WRITE(ah, AR_BTCOEX_WL_WEIGHTS2, 0xffffffff);
  541. REG_WRITE(ah, AR_BTCOEX_WL_WEIGHTS3, 0xffffffff);
  542. REG_SET_BIT(ah, AR_MCI_TX_CTRL, AR_MCI_TX_CTRL_DISABLE_LNA_UPDATE);
  543. /* wait pending HW messages to flush out */
  544. udelay(10);
  545. /*
  546. * Send LNA_TAKE and SYS_SLEEPING when
  547. * 1. reset not after resuming from full sleep
  548. * 2. before reset MCI RX, to quiet BT and avoid MCI RX misalignment
  549. */
  550. ath_dbg(common, ATH_DBG_MCI, "MCI Send LNA take\n");
  551. ar9003_mci_send_lna_take(ah, true);
  552. udelay(5);
  553. ath_dbg(common, ATH_DBG_MCI, "MCI Send sys sleeping\n");
  554. ar9003_mci_send_sys_sleeping(ah, true);
  555. }
  556. void ar9003_mci_sync_bt_state(struct ath_hw *ah)
  557. {
  558. struct ath_common *common = ath9k_hw_common(ah);
  559. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  560. u32 cur_bt_state;
  561. cur_bt_state = ar9003_mci_state(ah, MCI_STATE_REMOTE_SLEEP, NULL);
  562. if (mci->bt_state != cur_bt_state) {
  563. ath_dbg(common, ATH_DBG_MCI,
  564. "MCI BT state mismatches. old: %d, new: %d\n",
  565. mci->bt_state, cur_bt_state);
  566. mci->bt_state = cur_bt_state;
  567. }
  568. if (mci->bt_state != MCI_BT_SLEEP) {
  569. ar9003_mci_send_coex_version_query(ah, true);
  570. ar9003_mci_send_coex_wlan_channels(ah, true);
  571. if (mci->unhalt_bt_gpm == true) {
  572. ath_dbg(common, ATH_DBG_MCI, "MCI unhalt BT GPM");
  573. ar9003_mci_send_coex_halt_bt_gpm(ah, false, true);
  574. }
  575. }
  576. }
  577. static void ar9003_mci_send_2g5g_status(struct ath_hw *ah, bool wait_done)
  578. {
  579. struct ath_common *common = ath9k_hw_common(ah);
  580. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  581. u32 new_flags, to_set, to_clear;
  582. if (AR_SREV_9462_20(ah) &&
  583. mci->update_2g5g &&
  584. (mci->bt_state != MCI_BT_SLEEP)) {
  585. if (mci->is_2g) {
  586. new_flags = MCI_2G_FLAGS;
  587. to_clear = MCI_2G_FLAGS_CLEAR_MASK;
  588. to_set = MCI_2G_FLAGS_SET_MASK;
  589. } else {
  590. new_flags = MCI_5G_FLAGS;
  591. to_clear = MCI_5G_FLAGS_CLEAR_MASK;
  592. to_set = MCI_5G_FLAGS_SET_MASK;
  593. }
  594. ath_dbg(common, ATH_DBG_MCI,
  595. "MCI BT_MCI_FLAGS: %s 0x%08x clr=0x%08x, set=0x%08x\n",
  596. mci->is_2g ? "2G" : "5G", new_flags, to_clear, to_set);
  597. if (to_clear)
  598. ar9003_mci_send_coex_bt_flags(ah, wait_done,
  599. MCI_GPM_COEX_BT_FLAGS_CLEAR, to_clear);
  600. if (to_set)
  601. ar9003_mci_send_coex_bt_flags(ah, wait_done,
  602. MCI_GPM_COEX_BT_FLAGS_SET, to_set);
  603. }
  604. if (AR_SREV_9462_10(ah) && (mci->bt_state != MCI_BT_SLEEP))
  605. mci->update_2g5g = false;
  606. }
  607. static void ar9003_mci_queue_unsent_gpm(struct ath_hw *ah, u8 header,
  608. u32 *payload, bool queue)
  609. {
  610. struct ath_common *common = ath9k_hw_common(ah);
  611. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  612. u8 type, opcode;
  613. if (queue) {
  614. if (payload)
  615. ath_dbg(common, ATH_DBG_MCI,
  616. "MCI ERROR: Send fail: %02x: %02x %02x %02x\n",
  617. header,
  618. *(((u8 *)payload) + 4),
  619. *(((u8 *)payload) + 5),
  620. *(((u8 *)payload) + 6));
  621. else
  622. ath_dbg(common, ATH_DBG_MCI,
  623. "MCI ERROR: Send fail: %02x\n", header);
  624. }
  625. /* check if the message is to be queued */
  626. if (header != MCI_GPM)
  627. return;
  628. type = MCI_GPM_TYPE(payload);
  629. opcode = MCI_GPM_OPCODE(payload);
  630. if (type != MCI_GPM_COEX_AGENT)
  631. return;
  632. switch (opcode) {
  633. case MCI_GPM_COEX_BT_UPDATE_FLAGS:
  634. if (AR_SREV_9462_10(ah))
  635. break;
  636. if (*(((u8 *)payload) + MCI_GPM_COEX_B_BT_FLAGS_OP) ==
  637. MCI_GPM_COEX_BT_FLAGS_READ)
  638. break;
  639. mci->update_2g5g = queue;
  640. if (queue)
  641. ath_dbg(common, ATH_DBG_MCI,
  642. "MCI BT_MCI_FLAGS: 2G5G status <queued> %s.\n",
  643. mci->is_2g ? "2G" : "5G");
  644. else
  645. ath_dbg(common, ATH_DBG_MCI,
  646. "MCI BT_MCI_FLAGS: 2G5G status <sent> %s.\n",
  647. mci->is_2g ? "2G" : "5G");
  648. break;
  649. case MCI_GPM_COEX_WLAN_CHANNELS:
  650. mci->wlan_channels_update = queue;
  651. if (queue)
  652. ath_dbg(common, ATH_DBG_MCI,
  653. "MCI WLAN channel map <queued>\n");
  654. else
  655. ath_dbg(common, ATH_DBG_MCI,
  656. "MCI WLAN channel map <sent>\n");
  657. break;
  658. case MCI_GPM_COEX_HALT_BT_GPM:
  659. if (*(((u8 *)payload) + MCI_GPM_COEX_B_HALT_STATE) ==
  660. MCI_GPM_COEX_BT_GPM_UNHALT) {
  661. mci->unhalt_bt_gpm = queue;
  662. if (queue)
  663. ath_dbg(common, ATH_DBG_MCI,
  664. "MCI UNHALT BT GPM <queued>\n");
  665. else {
  666. mci->halted_bt_gpm = false;
  667. ath_dbg(common, ATH_DBG_MCI,
  668. "MCI UNHALT BT GPM <sent>\n");
  669. }
  670. }
  671. if (*(((u8 *)payload) + MCI_GPM_COEX_B_HALT_STATE) ==
  672. MCI_GPM_COEX_BT_GPM_HALT) {
  673. mci->halted_bt_gpm = !queue;
  674. if (queue)
  675. ath_dbg(common, ATH_DBG_MCI,
  676. "MCI HALT BT GPM <not sent>\n");
  677. else
  678. ath_dbg(common, ATH_DBG_MCI,
  679. "MCI UNHALT BT GPM <sent>\n");
  680. }
  681. break;
  682. default:
  683. break;
  684. }
  685. }
  686. void ar9003_mci_2g5g_switch(struct ath_hw *ah, bool wait_done)
  687. {
  688. struct ath_common *common = ath9k_hw_common(ah);
  689. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  690. if (mci->update_2g5g) {
  691. if (mci->is_2g) {
  692. ar9003_mci_send_2g5g_status(ah, true);
  693. ath_dbg(common, ATH_DBG_MCI, "MCI Send LNA trans\n");
  694. ar9003_mci_send_lna_transfer(ah, true);
  695. udelay(5);
  696. REG_CLR_BIT(ah, AR_MCI_TX_CTRL,
  697. AR_MCI_TX_CTRL_DISABLE_LNA_UPDATE);
  698. if (AR_SREV_9462_20(ah)) {
  699. REG_CLR_BIT(ah, AR_PHY_GLB_CONTROL,
  700. AR_BTCOEX_CTRL_BT_OWN_SPDT_CTRL);
  701. if (!(mci->config &
  702. ATH_MCI_CONFIG_DISABLE_OSLA)) {
  703. REG_SET_BIT(ah, AR_BTCOEX_CTRL,
  704. AR_BTCOEX_CTRL_ONE_STEP_LOOK_AHEAD_EN);
  705. }
  706. }
  707. } else {
  708. ath_dbg(common, ATH_DBG_MCI, "MCI Send LNA take\n");
  709. ar9003_mci_send_lna_take(ah, true);
  710. udelay(5);
  711. REG_SET_BIT(ah, AR_MCI_TX_CTRL,
  712. AR_MCI_TX_CTRL_DISABLE_LNA_UPDATE);
  713. if (AR_SREV_9462_20(ah)) {
  714. REG_SET_BIT(ah, AR_PHY_GLB_CONTROL,
  715. AR_BTCOEX_CTRL_BT_OWN_SPDT_CTRL);
  716. REG_CLR_BIT(ah, AR_BTCOEX_CTRL,
  717. AR_BTCOEX_CTRL_ONE_STEP_LOOK_AHEAD_EN);
  718. }
  719. ar9003_mci_send_2g5g_status(ah, true);
  720. }
  721. }
  722. }
  723. bool ar9003_mci_send_message(struct ath_hw *ah, u8 header, u32 flag,
  724. u32 *payload, u8 len, bool wait_done,
  725. bool check_bt)
  726. {
  727. struct ath_common *common = ath9k_hw_common(ah);
  728. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  729. bool msg_sent = false;
  730. u32 regval;
  731. u32 saved_mci_int_en;
  732. int i;
  733. saved_mci_int_en = REG_READ(ah, AR_MCI_INTERRUPT_EN);
  734. regval = REG_READ(ah, AR_BTCOEX_CTRL);
  735. if ((regval == 0xdeadbeef) || !(regval & AR_BTCOEX_CTRL_MCI_MODE_EN)) {
  736. ath_dbg(common, ATH_DBG_MCI,
  737. "MCI Not sending 0x%x. MCI is not enabled. "
  738. "full_sleep = %d\n", header,
  739. (ah->power_mode == ATH9K_PM_FULL_SLEEP) ? 1 : 0);
  740. ar9003_mci_queue_unsent_gpm(ah, header, payload, true);
  741. return false;
  742. } else if (check_bt && (mci->bt_state == MCI_BT_SLEEP)) {
  743. ath_dbg(common, ATH_DBG_MCI,
  744. "MCI Don't send message 0x%x. BT is in sleep state\n", header);
  745. ar9003_mci_queue_unsent_gpm(ah, header, payload, true);
  746. return false;
  747. }
  748. if (wait_done)
  749. REG_WRITE(ah, AR_MCI_INTERRUPT_EN, 0);
  750. /* Need to clear SW_MSG_DONE raw bit before wait */
  751. REG_WRITE(ah, AR_MCI_INTERRUPT_RAW,
  752. (AR_MCI_INTERRUPT_SW_MSG_DONE |
  753. AR_MCI_INTERRUPT_MSG_FAIL_MASK));
  754. if (payload) {
  755. for (i = 0; (i * 4) < len; i++)
  756. REG_WRITE(ah, (AR_MCI_TX_PAYLOAD0 + i * 4),
  757. *(payload + i));
  758. }
  759. REG_WRITE(ah, AR_MCI_COMMAND0,
  760. (SM((flag & MCI_FLAG_DISABLE_TIMESTAMP),
  761. AR_MCI_COMMAND0_DISABLE_TIMESTAMP) |
  762. SM(len, AR_MCI_COMMAND0_LEN) |
  763. SM(header, AR_MCI_COMMAND0_HEADER)));
  764. if (wait_done &&
  765. !(ar9003_mci_wait_for_interrupt(ah, AR_MCI_INTERRUPT_RAW,
  766. AR_MCI_INTERRUPT_SW_MSG_DONE, 500)))
  767. ar9003_mci_queue_unsent_gpm(ah, header, payload, true);
  768. else {
  769. ar9003_mci_queue_unsent_gpm(ah, header, payload, false);
  770. msg_sent = true;
  771. }
  772. if (wait_done)
  773. REG_WRITE(ah, AR_MCI_INTERRUPT_EN, saved_mci_int_en);
  774. return msg_sent;
  775. }
  776. EXPORT_SYMBOL(ar9003_mci_send_message);
  777. void ar9003_mci_setup(struct ath_hw *ah, u32 gpm_addr, void *gpm_buf,
  778. u16 len, u32 sched_addr)
  779. {
  780. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  781. void *sched_buf = (void *)((char *) gpm_buf + (sched_addr - gpm_addr));
  782. mci->gpm_addr = gpm_addr;
  783. mci->gpm_buf = gpm_buf;
  784. mci->gpm_len = len;
  785. mci->sched_addr = sched_addr;
  786. mci->sched_buf = sched_buf;
  787. ar9003_mci_reset(ah, true, true, true);
  788. }
  789. EXPORT_SYMBOL(ar9003_mci_setup);
  790. void ar9003_mci_cleanup(struct ath_hw *ah)
  791. {
  792. struct ath_common *common = ath9k_hw_common(ah);
  793. /* Turn off MCI and Jupiter mode. */
  794. REG_WRITE(ah, AR_BTCOEX_CTRL, 0x00);
  795. ath_dbg(common, ATH_DBG_MCI, "MCI ar9003_mci_cleanup\n");
  796. ar9003_mci_disable_interrupt(ah);
  797. }
  798. EXPORT_SYMBOL(ar9003_mci_cleanup);
  799. static void ar9003_mci_process_gpm_extra(struct ath_hw *ah, u8 gpm_type,
  800. u8 gpm_opcode, u32 *p_gpm)
  801. {
  802. struct ath_common *common = ath9k_hw_common(ah);
  803. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  804. u8 *p_data = (u8 *) p_gpm;
  805. if (gpm_type != MCI_GPM_COEX_AGENT)
  806. return;
  807. switch (gpm_opcode) {
  808. case MCI_GPM_COEX_VERSION_QUERY:
  809. ath_dbg(common, ATH_DBG_MCI,
  810. "MCI Recv GPM COEX Version Query\n");
  811. ar9003_mci_send_coex_version_response(ah, true);
  812. break;
  813. case MCI_GPM_COEX_VERSION_RESPONSE:
  814. ath_dbg(common, ATH_DBG_MCI,
  815. "MCI Recv GPM COEX Version Response\n");
  816. mci->bt_ver_major =
  817. *(p_data + MCI_GPM_COEX_B_MAJOR_VERSION);
  818. mci->bt_ver_minor =
  819. *(p_data + MCI_GPM_COEX_B_MINOR_VERSION);
  820. mci->bt_version_known = true;
  821. ath_dbg(common, ATH_DBG_MCI,
  822. "MCI BT Coex version: %d.%d\n",
  823. mci->bt_ver_major,
  824. mci->bt_ver_minor);
  825. break;
  826. case MCI_GPM_COEX_STATUS_QUERY:
  827. ath_dbg(common, ATH_DBG_MCI,
  828. "MCI Recv GPM COEX Status Query = 0x%02X.\n",
  829. *(p_data + MCI_GPM_COEX_B_WLAN_BITMAP));
  830. mci->wlan_channels_update = true;
  831. ar9003_mci_send_coex_wlan_channels(ah, true);
  832. break;
  833. case MCI_GPM_COEX_BT_PROFILE_INFO:
  834. mci->query_bt = true;
  835. ath_dbg(common, ATH_DBG_MCI,
  836. "MCI Recv GPM COEX BT_Profile_Info\n");
  837. break;
  838. case MCI_GPM_COEX_BT_STATUS_UPDATE:
  839. mci->query_bt = true;
  840. ath_dbg(common, ATH_DBG_MCI,
  841. "MCI Recv GPM COEX BT_Status_Update "
  842. "SEQ=%d (drop&query)\n", *(p_gpm + 3));
  843. break;
  844. default:
  845. break;
  846. }
  847. }
  848. u32 ar9003_mci_wait_for_gpm(struct ath_hw *ah, u8 gpm_type,
  849. u8 gpm_opcode, int time_out)
  850. {
  851. struct ath_common *common = ath9k_hw_common(ah);
  852. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  853. u32 *p_gpm = NULL, mismatch = 0, more_data;
  854. u32 offset;
  855. u8 recv_type = 0, recv_opcode = 0;
  856. bool b_is_bt_cal_done = (gpm_type == MCI_GPM_BT_CAL_DONE);
  857. more_data = time_out ? MCI_GPM_NOMORE : MCI_GPM_MORE;
  858. while (time_out > 0) {
  859. if (p_gpm) {
  860. MCI_GPM_RECYCLE(p_gpm);
  861. p_gpm = NULL;
  862. }
  863. if (more_data != MCI_GPM_MORE)
  864. time_out = ar9003_mci_wait_for_interrupt(ah,
  865. AR_MCI_INTERRUPT_RX_MSG_RAW,
  866. AR_MCI_INTERRUPT_RX_MSG_GPM,
  867. time_out);
  868. if (!time_out)
  869. break;
  870. offset = ar9003_mci_state(ah,
  871. MCI_STATE_NEXT_GPM_OFFSET, &more_data);
  872. if (offset == MCI_GPM_INVALID)
  873. continue;
  874. p_gpm = (u32 *) (mci->gpm_buf + offset);
  875. recv_type = MCI_GPM_TYPE(p_gpm);
  876. recv_opcode = MCI_GPM_OPCODE(p_gpm);
  877. if (MCI_GPM_IS_CAL_TYPE(recv_type)) {
  878. if (recv_type == gpm_type) {
  879. if ((gpm_type == MCI_GPM_BT_CAL_DONE) &&
  880. !b_is_bt_cal_done) {
  881. gpm_type = MCI_GPM_BT_CAL_GRANT;
  882. ath_dbg(common, ATH_DBG_MCI,
  883. "MCI Recv BT_CAL_DONE"
  884. "wait BT_CAL_GRANT\n");
  885. continue;
  886. }
  887. break;
  888. }
  889. } else if ((recv_type == gpm_type) &&
  890. (recv_opcode == gpm_opcode))
  891. break;
  892. /* not expected message */
  893. /*
  894. * check if it's cal_grant
  895. *
  896. * When we're waiting for cal_grant in reset routine,
  897. * it's possible that BT sends out cal_request at the
  898. * same time. Since BT's calibration doesn't happen
  899. * that often, we'll let BT completes calibration then
  900. * we continue to wait for cal_grant from BT.
  901. * Orginal: Wait BT_CAL_GRANT.
  902. * New: Receive BT_CAL_REQ -> send WLAN_CAL_GRANT->wait
  903. * BT_CAL_DONE -> Wait BT_CAL_GRANT.
  904. */
  905. if ((gpm_type == MCI_GPM_BT_CAL_GRANT) &&
  906. (recv_type == MCI_GPM_BT_CAL_REQ)) {
  907. u32 payload[4] = {0, 0, 0, 0};
  908. gpm_type = MCI_GPM_BT_CAL_DONE;
  909. ath_dbg(common, ATH_DBG_MCI,
  910. "MCI Rcv BT_CAL_REQ, send WLAN_CAL_GRANT\n");
  911. MCI_GPM_SET_CAL_TYPE(payload,
  912. MCI_GPM_WLAN_CAL_GRANT);
  913. ar9003_mci_send_message(ah, MCI_GPM, 0, payload, 16,
  914. false, false);
  915. ath_dbg(common, ATH_DBG_MCI,
  916. "MCI now wait for BT_CAL_DONE\n");
  917. continue;
  918. } else {
  919. ath_dbg(common, ATH_DBG_MCI, "MCI GPM subtype"
  920. "not match 0x%x\n", *(p_gpm + 1));
  921. mismatch++;
  922. ar9003_mci_process_gpm_extra(ah, recv_type,
  923. recv_opcode, p_gpm);
  924. }
  925. }
  926. if (p_gpm) {
  927. MCI_GPM_RECYCLE(p_gpm);
  928. p_gpm = NULL;
  929. }
  930. if (time_out <= 0) {
  931. time_out = 0;
  932. ath_dbg(common, ATH_DBG_MCI,
  933. "MCI GPM received timeout, mismatch = %d\n", mismatch);
  934. } else
  935. ath_dbg(common, ATH_DBG_MCI,
  936. "MCI Receive GPM type=0x%x, code=0x%x\n",
  937. gpm_type, gpm_opcode);
  938. while (more_data == MCI_GPM_MORE) {
  939. ath_dbg(common, ATH_DBG_MCI, "MCI discard remaining GPM\n");
  940. offset = ar9003_mci_state(ah, MCI_STATE_NEXT_GPM_OFFSET,
  941. &more_data);
  942. if (offset == MCI_GPM_INVALID)
  943. break;
  944. p_gpm = (u32 *) (mci->gpm_buf + offset);
  945. recv_type = MCI_GPM_TYPE(p_gpm);
  946. recv_opcode = MCI_GPM_OPCODE(p_gpm);
  947. if (!MCI_GPM_IS_CAL_TYPE(recv_type))
  948. ar9003_mci_process_gpm_extra(ah, recv_type,
  949. recv_opcode, p_gpm);
  950. MCI_GPM_RECYCLE(p_gpm);
  951. }
  952. return time_out;
  953. }
  954. u32 ar9003_mci_state(struct ath_hw *ah, u32 state_type, u32 *p_data)
  955. {
  956. struct ath_common *common = ath9k_hw_common(ah);
  957. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  958. u32 value = 0, more_gpm = 0, gpm_ptr;
  959. u8 query_type;
  960. switch (state_type) {
  961. case MCI_STATE_ENABLE:
  962. if (mci->ready) {
  963. value = REG_READ(ah, AR_BTCOEX_CTRL);
  964. if ((value == 0xdeadbeef) || (value == 0xffffffff))
  965. value = 0;
  966. }
  967. value &= AR_BTCOEX_CTRL_MCI_MODE_EN;
  968. break;
  969. case MCI_STATE_INIT_GPM_OFFSET:
  970. value = MS(REG_READ(ah, AR_MCI_GPM_1), AR_MCI_GPM_WRITE_PTR);
  971. ath_dbg(common, ATH_DBG_MCI,
  972. "MCI GPM initial WRITE_PTR=%d\n", value);
  973. mci->gpm_idx = value;
  974. break;
  975. case MCI_STATE_NEXT_GPM_OFFSET:
  976. case MCI_STATE_LAST_GPM_OFFSET:
  977. /*
  978. * This could be useful to avoid new GPM message interrupt which
  979. * may lead to spurious interrupt after power sleep, or multiple
  980. * entry of ath_mci_intr().
  981. * Adding empty GPM check by returning HAL_MCI_GPM_INVALID can
  982. * alleviate this effect, but clearing GPM RX interrupt bit is
  983. * safe, because whether this is called from hw or driver code
  984. * there must be an interrupt bit set/triggered initially
  985. */
  986. REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_RAW,
  987. AR_MCI_INTERRUPT_RX_MSG_GPM);
  988. gpm_ptr = MS(REG_READ(ah, AR_MCI_GPM_1), AR_MCI_GPM_WRITE_PTR);
  989. value = gpm_ptr;
  990. if (value == 0)
  991. value = mci->gpm_len - 1;
  992. else if (value >= mci->gpm_len) {
  993. if (value != 0xFFFF) {
  994. value = 0;
  995. ath_dbg(common, ATH_DBG_MCI, "MCI GPM offset"
  996. "out of range\n");
  997. }
  998. } else
  999. value--;
  1000. if (value == 0xFFFF) {
  1001. value = MCI_GPM_INVALID;
  1002. more_gpm = MCI_GPM_NOMORE;
  1003. ath_dbg(common, ATH_DBG_MCI, "MCI GPM ptr invalid"
  1004. "@ptr=%d, offset=%d, more=GPM_NOMORE\n",
  1005. gpm_ptr, value);
  1006. } else if (state_type == MCI_STATE_NEXT_GPM_OFFSET) {
  1007. if (gpm_ptr == mci->gpm_idx) {
  1008. value = MCI_GPM_INVALID;
  1009. more_gpm = MCI_GPM_NOMORE;
  1010. ath_dbg(common, ATH_DBG_MCI, "MCI GPM message"
  1011. "not available @ptr=%d, @offset=%d,"
  1012. "more=GPM_NOMORE\n", gpm_ptr, value);
  1013. } else {
  1014. for (;;) {
  1015. u32 temp_index;
  1016. /* skip reserved GPM if any */
  1017. if (value != mci->gpm_idx)
  1018. more_gpm = MCI_GPM_MORE;
  1019. else
  1020. more_gpm = MCI_GPM_NOMORE;
  1021. temp_index = mci->gpm_idx;
  1022. mci->gpm_idx++;
  1023. if (mci->gpm_idx >=
  1024. mci->gpm_len)
  1025. mci->gpm_idx = 0;
  1026. ath_dbg(common, ATH_DBG_MCI,
  1027. "MCI GPM message got ptr=%d,"
  1028. "@offset=%d, more=%d\n",
  1029. gpm_ptr, temp_index,
  1030. (more_gpm == MCI_GPM_MORE));
  1031. if (ar9003_mci_is_gpm_valid(ah,
  1032. temp_index)) {
  1033. value = temp_index;
  1034. break;
  1035. }
  1036. if (more_gpm == MCI_GPM_NOMORE) {
  1037. value = MCI_GPM_INVALID;
  1038. break;
  1039. }
  1040. }
  1041. }
  1042. if (p_data)
  1043. *p_data = more_gpm;
  1044. }
  1045. if (value != MCI_GPM_INVALID)
  1046. value <<= 4;
  1047. break;
  1048. case MCI_STATE_LAST_SCHD_MSG_OFFSET:
  1049. value = MS(REG_READ(ah, AR_MCI_RX_STATUS),
  1050. AR_MCI_RX_LAST_SCHD_MSG_INDEX);
  1051. /* Make it in bytes */
  1052. value <<= 4;
  1053. break;
  1054. case MCI_STATE_REMOTE_SLEEP:
  1055. value = MS(REG_READ(ah, AR_MCI_RX_STATUS),
  1056. AR_MCI_RX_REMOTE_SLEEP) ?
  1057. MCI_BT_SLEEP : MCI_BT_AWAKE;
  1058. break;
  1059. case MCI_STATE_CONT_RSSI_POWER:
  1060. value = MS(mci->cont_status, AR_MCI_CONT_RSSI_POWER);
  1061. break;
  1062. case MCI_STATE_CONT_PRIORITY:
  1063. value = MS(mci->cont_status, AR_MCI_CONT_RRIORITY);
  1064. break;
  1065. case MCI_STATE_CONT_TXRX:
  1066. value = MS(mci->cont_status, AR_MCI_CONT_TXRX);
  1067. break;
  1068. case MCI_STATE_BT:
  1069. value = mci->bt_state;
  1070. break;
  1071. case MCI_STATE_SET_BT_SLEEP:
  1072. mci->bt_state = MCI_BT_SLEEP;
  1073. break;
  1074. case MCI_STATE_SET_BT_AWAKE:
  1075. mci->bt_state = MCI_BT_AWAKE;
  1076. ar9003_mci_send_coex_version_query(ah, true);
  1077. ar9003_mci_send_coex_wlan_channels(ah, true);
  1078. if (mci->unhalt_bt_gpm) {
  1079. ath_dbg(common, ATH_DBG_MCI,
  1080. "MCI unhalt BT GPM\n");
  1081. ar9003_mci_send_coex_halt_bt_gpm(ah, false, true);
  1082. }
  1083. ar9003_mci_2g5g_switch(ah, true);
  1084. break;
  1085. case MCI_STATE_SET_BT_CAL_START:
  1086. mci->bt_state = MCI_BT_CAL_START;
  1087. break;
  1088. case MCI_STATE_SET_BT_CAL:
  1089. mci->bt_state = MCI_BT_CAL;
  1090. break;
  1091. case MCI_STATE_RESET_REQ_WAKE:
  1092. ar9003_mci_reset_req_wakeup(ah);
  1093. mci->update_2g5g = true;
  1094. if ((AR_SREV_9462_20_OR_LATER(ah)) &&
  1095. (mci->config & ATH_MCI_CONFIG_MCI_OBS_MASK)) {
  1096. /* Check if we still have control of the GPIOs */
  1097. if ((REG_READ(ah, AR_GLB_GPIO_CONTROL) &
  1098. ATH_MCI_CONFIG_MCI_OBS_GPIO) !=
  1099. ATH_MCI_CONFIG_MCI_OBS_GPIO) {
  1100. ath_dbg(common, ATH_DBG_MCI,
  1101. "MCI reconfigure observation");
  1102. ar9003_mci_observation_set_up(ah);
  1103. }
  1104. }
  1105. break;
  1106. case MCI_STATE_SEND_WLAN_COEX_VERSION:
  1107. ar9003_mci_send_coex_version_response(ah, true);
  1108. break;
  1109. case MCI_STATE_SET_BT_COEX_VERSION:
  1110. if (!p_data)
  1111. ath_dbg(common, ATH_DBG_MCI,
  1112. "MCI Set BT Coex version with NULL data!!\n");
  1113. else {
  1114. mci->bt_ver_major = (*p_data >> 8) & 0xff;
  1115. mci->bt_ver_minor = (*p_data) & 0xff;
  1116. mci->bt_version_known = true;
  1117. ath_dbg(common, ATH_DBG_MCI,
  1118. "MCI BT version set: %d.%d\n",
  1119. mci->bt_ver_major,
  1120. mci->bt_ver_minor);
  1121. }
  1122. break;
  1123. case MCI_STATE_SEND_WLAN_CHANNELS:
  1124. if (p_data) {
  1125. if (((mci->wlan_channels[1] & 0xffff0000) ==
  1126. (*(p_data + 1) & 0xffff0000)) &&
  1127. (mci->wlan_channels[2] == *(p_data + 2)) &&
  1128. (mci->wlan_channels[3] == *(p_data + 3)))
  1129. break;
  1130. mci->wlan_channels[0] = *p_data++;
  1131. mci->wlan_channels[1] = *p_data++;
  1132. mci->wlan_channels[2] = *p_data++;
  1133. mci->wlan_channels[3] = *p_data++;
  1134. }
  1135. mci->wlan_channels_update = true;
  1136. ar9003_mci_send_coex_wlan_channels(ah, true);
  1137. break;
  1138. case MCI_STATE_SEND_VERSION_QUERY:
  1139. ar9003_mci_send_coex_version_query(ah, true);
  1140. break;
  1141. case MCI_STATE_SEND_STATUS_QUERY:
  1142. query_type = (AR_SREV_9462_10(ah)) ?
  1143. MCI_GPM_COEX_QUERY_BT_ALL_INFO :
  1144. MCI_GPM_COEX_QUERY_BT_TOPOLOGY;
  1145. ar9003_mci_send_coex_bt_status_query(ah, true, query_type);
  1146. break;
  1147. case MCI_STATE_NEED_FLUSH_BT_INFO:
  1148. /*
  1149. * btcoex_hw.mci.unhalt_bt_gpm means whether it's
  1150. * needed to send UNHALT message. It's set whenever
  1151. * there's a request to send HALT message.
  1152. * mci_halted_bt_gpm means whether HALT message is sent
  1153. * out successfully.
  1154. *
  1155. * Checking (mci_unhalt_bt_gpm == false) instead of
  1156. * checking (ah->mci_halted_bt_gpm == false) will make
  1157. * sure currently is in UNHALT-ed mode and BT can
  1158. * respond to status query.
  1159. */
  1160. value = (!mci->unhalt_bt_gpm &&
  1161. mci->need_flush_btinfo) ? 1 : 0;
  1162. if (p_data)
  1163. mci->need_flush_btinfo =
  1164. (*p_data != 0) ? true : false;
  1165. break;
  1166. case MCI_STATE_RECOVER_RX:
  1167. ath_dbg(common, ATH_DBG_MCI, "MCI hw RECOVER_RX\n");
  1168. ar9003_mci_prep_interface(ah);
  1169. mci->query_bt = true;
  1170. mci->need_flush_btinfo = true;
  1171. ar9003_mci_send_coex_wlan_channels(ah, true);
  1172. ar9003_mci_2g5g_switch(ah, true);
  1173. break;
  1174. case MCI_STATE_NEED_FTP_STOMP:
  1175. value = !(mci->config & ATH_MCI_CONFIG_DISABLE_FTP_STOMP);
  1176. break;
  1177. case MCI_STATE_NEED_TUNING:
  1178. value = !(mci->config & ATH_MCI_CONFIG_DISABLE_TUNING);
  1179. break;
  1180. default:
  1181. break;
  1182. }
  1183. return value;
  1184. }
  1185. EXPORT_SYMBOL(ar9003_mci_state);