core.c 181 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583
  1. /*
  2. * kernel/sched/core.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/unistd.h>
  65. #include <linux/pagemap.h>
  66. #include <linux/hrtimer.h>
  67. #include <linux/tick.h>
  68. #include <linux/debugfs.h>
  69. #include <linux/ctype.h>
  70. #include <linux/ftrace.h>
  71. #include <linux/slab.h>
  72. #include <linux/init_task.h>
  73. #include <linux/binfmts.h>
  74. #include <linux/context_tracking.h>
  75. #include <asm/switch_to.h>
  76. #include <asm/tlb.h>
  77. #include <asm/irq_regs.h>
  78. #include <asm/mutex.h>
  79. #ifdef CONFIG_PARAVIRT
  80. #include <asm/paravirt.h>
  81. #endif
  82. #include "sched.h"
  83. #include "../workqueue_internal.h"
  84. #include "../smpboot.h"
  85. #define CREATE_TRACE_POINTS
  86. #include <trace/events/sched.h>
  87. void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
  88. {
  89. unsigned long delta;
  90. ktime_t soft, hard, now;
  91. for (;;) {
  92. if (hrtimer_active(period_timer))
  93. break;
  94. now = hrtimer_cb_get_time(period_timer);
  95. hrtimer_forward(period_timer, now, period);
  96. soft = hrtimer_get_softexpires(period_timer);
  97. hard = hrtimer_get_expires(period_timer);
  98. delta = ktime_to_ns(ktime_sub(hard, soft));
  99. __hrtimer_start_range_ns(period_timer, soft, delta,
  100. HRTIMER_MODE_ABS_PINNED, 0);
  101. }
  102. }
  103. DEFINE_MUTEX(sched_domains_mutex);
  104. DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  105. static void update_rq_clock_task(struct rq *rq, s64 delta);
  106. void update_rq_clock(struct rq *rq)
  107. {
  108. s64 delta;
  109. if (rq->skip_clock_update > 0)
  110. return;
  111. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  112. rq->clock += delta;
  113. update_rq_clock_task(rq, delta);
  114. }
  115. /*
  116. * Debugging: various feature bits
  117. */
  118. #define SCHED_FEAT(name, enabled) \
  119. (1UL << __SCHED_FEAT_##name) * enabled |
  120. const_debug unsigned int sysctl_sched_features =
  121. #include "features.h"
  122. 0;
  123. #undef SCHED_FEAT
  124. #ifdef CONFIG_SCHED_DEBUG
  125. #define SCHED_FEAT(name, enabled) \
  126. #name ,
  127. static const char * const sched_feat_names[] = {
  128. #include "features.h"
  129. };
  130. #undef SCHED_FEAT
  131. static int sched_feat_show(struct seq_file *m, void *v)
  132. {
  133. int i;
  134. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  135. if (!(sysctl_sched_features & (1UL << i)))
  136. seq_puts(m, "NO_");
  137. seq_printf(m, "%s ", sched_feat_names[i]);
  138. }
  139. seq_puts(m, "\n");
  140. return 0;
  141. }
  142. #ifdef HAVE_JUMP_LABEL
  143. #define jump_label_key__true STATIC_KEY_INIT_TRUE
  144. #define jump_label_key__false STATIC_KEY_INIT_FALSE
  145. #define SCHED_FEAT(name, enabled) \
  146. jump_label_key__##enabled ,
  147. struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
  148. #include "features.h"
  149. };
  150. #undef SCHED_FEAT
  151. static void sched_feat_disable(int i)
  152. {
  153. if (static_key_enabled(&sched_feat_keys[i]))
  154. static_key_slow_dec(&sched_feat_keys[i]);
  155. }
  156. static void sched_feat_enable(int i)
  157. {
  158. if (!static_key_enabled(&sched_feat_keys[i]))
  159. static_key_slow_inc(&sched_feat_keys[i]);
  160. }
  161. #else
  162. static void sched_feat_disable(int i) { };
  163. static void sched_feat_enable(int i) { };
  164. #endif /* HAVE_JUMP_LABEL */
  165. static int sched_feat_set(char *cmp)
  166. {
  167. int i;
  168. int neg = 0;
  169. if (strncmp(cmp, "NO_", 3) == 0) {
  170. neg = 1;
  171. cmp += 3;
  172. }
  173. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  174. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  175. if (neg) {
  176. sysctl_sched_features &= ~(1UL << i);
  177. sched_feat_disable(i);
  178. } else {
  179. sysctl_sched_features |= (1UL << i);
  180. sched_feat_enable(i);
  181. }
  182. break;
  183. }
  184. }
  185. return i;
  186. }
  187. static ssize_t
  188. sched_feat_write(struct file *filp, const char __user *ubuf,
  189. size_t cnt, loff_t *ppos)
  190. {
  191. char buf[64];
  192. char *cmp;
  193. int i;
  194. if (cnt > 63)
  195. cnt = 63;
  196. if (copy_from_user(&buf, ubuf, cnt))
  197. return -EFAULT;
  198. buf[cnt] = 0;
  199. cmp = strstrip(buf);
  200. i = sched_feat_set(cmp);
  201. if (i == __SCHED_FEAT_NR)
  202. return -EINVAL;
  203. *ppos += cnt;
  204. return cnt;
  205. }
  206. static int sched_feat_open(struct inode *inode, struct file *filp)
  207. {
  208. return single_open(filp, sched_feat_show, NULL);
  209. }
  210. static const struct file_operations sched_feat_fops = {
  211. .open = sched_feat_open,
  212. .write = sched_feat_write,
  213. .read = seq_read,
  214. .llseek = seq_lseek,
  215. .release = single_release,
  216. };
  217. static __init int sched_init_debug(void)
  218. {
  219. debugfs_create_file("sched_features", 0644, NULL, NULL,
  220. &sched_feat_fops);
  221. return 0;
  222. }
  223. late_initcall(sched_init_debug);
  224. #endif /* CONFIG_SCHED_DEBUG */
  225. /*
  226. * Number of tasks to iterate in a single balance run.
  227. * Limited because this is done with IRQs disabled.
  228. */
  229. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  230. /*
  231. * period over which we average the RT time consumption, measured
  232. * in ms.
  233. *
  234. * default: 1s
  235. */
  236. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  237. /*
  238. * period over which we measure -rt task cpu usage in us.
  239. * default: 1s
  240. */
  241. unsigned int sysctl_sched_rt_period = 1000000;
  242. __read_mostly int scheduler_running;
  243. /*
  244. * part of the period that we allow rt tasks to run in us.
  245. * default: 0.95s
  246. */
  247. int sysctl_sched_rt_runtime = 950000;
  248. /*
  249. * __task_rq_lock - lock the rq @p resides on.
  250. */
  251. static inline struct rq *__task_rq_lock(struct task_struct *p)
  252. __acquires(rq->lock)
  253. {
  254. struct rq *rq;
  255. lockdep_assert_held(&p->pi_lock);
  256. for (;;) {
  257. rq = task_rq(p);
  258. raw_spin_lock(&rq->lock);
  259. if (likely(rq == task_rq(p)))
  260. return rq;
  261. raw_spin_unlock(&rq->lock);
  262. }
  263. }
  264. /*
  265. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  266. */
  267. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  268. __acquires(p->pi_lock)
  269. __acquires(rq->lock)
  270. {
  271. struct rq *rq;
  272. for (;;) {
  273. raw_spin_lock_irqsave(&p->pi_lock, *flags);
  274. rq = task_rq(p);
  275. raw_spin_lock(&rq->lock);
  276. if (likely(rq == task_rq(p)))
  277. return rq;
  278. raw_spin_unlock(&rq->lock);
  279. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  280. }
  281. }
  282. static void __task_rq_unlock(struct rq *rq)
  283. __releases(rq->lock)
  284. {
  285. raw_spin_unlock(&rq->lock);
  286. }
  287. static inline void
  288. task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
  289. __releases(rq->lock)
  290. __releases(p->pi_lock)
  291. {
  292. raw_spin_unlock(&rq->lock);
  293. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  294. }
  295. /*
  296. * this_rq_lock - lock this runqueue and disable interrupts.
  297. */
  298. static struct rq *this_rq_lock(void)
  299. __acquires(rq->lock)
  300. {
  301. struct rq *rq;
  302. local_irq_disable();
  303. rq = this_rq();
  304. raw_spin_lock(&rq->lock);
  305. return rq;
  306. }
  307. #ifdef CONFIG_SCHED_HRTICK
  308. /*
  309. * Use HR-timers to deliver accurate preemption points.
  310. */
  311. static void hrtick_clear(struct rq *rq)
  312. {
  313. if (hrtimer_active(&rq->hrtick_timer))
  314. hrtimer_cancel(&rq->hrtick_timer);
  315. }
  316. /*
  317. * High-resolution timer tick.
  318. * Runs from hardirq context with interrupts disabled.
  319. */
  320. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  321. {
  322. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  323. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  324. raw_spin_lock(&rq->lock);
  325. update_rq_clock(rq);
  326. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  327. raw_spin_unlock(&rq->lock);
  328. return HRTIMER_NORESTART;
  329. }
  330. #ifdef CONFIG_SMP
  331. static int __hrtick_restart(struct rq *rq)
  332. {
  333. struct hrtimer *timer = &rq->hrtick_timer;
  334. ktime_t time = hrtimer_get_softexpires(timer);
  335. return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
  336. }
  337. /*
  338. * called from hardirq (IPI) context
  339. */
  340. static void __hrtick_start(void *arg)
  341. {
  342. struct rq *rq = arg;
  343. raw_spin_lock(&rq->lock);
  344. __hrtick_restart(rq);
  345. rq->hrtick_csd_pending = 0;
  346. raw_spin_unlock(&rq->lock);
  347. }
  348. /*
  349. * Called to set the hrtick timer state.
  350. *
  351. * called with rq->lock held and irqs disabled
  352. */
  353. void hrtick_start(struct rq *rq, u64 delay)
  354. {
  355. struct hrtimer *timer = &rq->hrtick_timer;
  356. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  357. hrtimer_set_expires(timer, time);
  358. if (rq == this_rq()) {
  359. __hrtick_restart(rq);
  360. } else if (!rq->hrtick_csd_pending) {
  361. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  362. rq->hrtick_csd_pending = 1;
  363. }
  364. }
  365. static int
  366. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  367. {
  368. int cpu = (int)(long)hcpu;
  369. switch (action) {
  370. case CPU_UP_CANCELED:
  371. case CPU_UP_CANCELED_FROZEN:
  372. case CPU_DOWN_PREPARE:
  373. case CPU_DOWN_PREPARE_FROZEN:
  374. case CPU_DEAD:
  375. case CPU_DEAD_FROZEN:
  376. hrtick_clear(cpu_rq(cpu));
  377. return NOTIFY_OK;
  378. }
  379. return NOTIFY_DONE;
  380. }
  381. static __init void init_hrtick(void)
  382. {
  383. hotcpu_notifier(hotplug_hrtick, 0);
  384. }
  385. #else
  386. /*
  387. * Called to set the hrtick timer state.
  388. *
  389. * called with rq->lock held and irqs disabled
  390. */
  391. void hrtick_start(struct rq *rq, u64 delay)
  392. {
  393. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  394. HRTIMER_MODE_REL_PINNED, 0);
  395. }
  396. static inline void init_hrtick(void)
  397. {
  398. }
  399. #endif /* CONFIG_SMP */
  400. static void init_rq_hrtick(struct rq *rq)
  401. {
  402. #ifdef CONFIG_SMP
  403. rq->hrtick_csd_pending = 0;
  404. rq->hrtick_csd.flags = 0;
  405. rq->hrtick_csd.func = __hrtick_start;
  406. rq->hrtick_csd.info = rq;
  407. #endif
  408. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  409. rq->hrtick_timer.function = hrtick;
  410. }
  411. #else /* CONFIG_SCHED_HRTICK */
  412. static inline void hrtick_clear(struct rq *rq)
  413. {
  414. }
  415. static inline void init_rq_hrtick(struct rq *rq)
  416. {
  417. }
  418. static inline void init_hrtick(void)
  419. {
  420. }
  421. #endif /* CONFIG_SCHED_HRTICK */
  422. /*
  423. * resched_task - mark a task 'to be rescheduled now'.
  424. *
  425. * On UP this means the setting of the need_resched flag, on SMP it
  426. * might also involve a cross-CPU call to trigger the scheduler on
  427. * the target CPU.
  428. */
  429. void resched_task(struct task_struct *p)
  430. {
  431. int cpu;
  432. lockdep_assert_held(&task_rq(p)->lock);
  433. if (test_tsk_need_resched(p))
  434. return;
  435. set_tsk_need_resched(p);
  436. cpu = task_cpu(p);
  437. if (cpu == smp_processor_id()) {
  438. set_preempt_need_resched();
  439. return;
  440. }
  441. /* NEED_RESCHED must be visible before we test polling */
  442. smp_mb();
  443. if (!tsk_is_polling(p))
  444. smp_send_reschedule(cpu);
  445. }
  446. void resched_cpu(int cpu)
  447. {
  448. struct rq *rq = cpu_rq(cpu);
  449. unsigned long flags;
  450. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  451. return;
  452. resched_task(cpu_curr(cpu));
  453. raw_spin_unlock_irqrestore(&rq->lock, flags);
  454. }
  455. #ifdef CONFIG_SMP
  456. #ifdef CONFIG_NO_HZ_COMMON
  457. /*
  458. * In the semi idle case, use the nearest busy cpu for migrating timers
  459. * from an idle cpu. This is good for power-savings.
  460. *
  461. * We don't do similar optimization for completely idle system, as
  462. * selecting an idle cpu will add more delays to the timers than intended
  463. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  464. */
  465. int get_nohz_timer_target(void)
  466. {
  467. int cpu = smp_processor_id();
  468. int i;
  469. struct sched_domain *sd;
  470. rcu_read_lock();
  471. for_each_domain(cpu, sd) {
  472. for_each_cpu(i, sched_domain_span(sd)) {
  473. if (!idle_cpu(i)) {
  474. cpu = i;
  475. goto unlock;
  476. }
  477. }
  478. }
  479. unlock:
  480. rcu_read_unlock();
  481. return cpu;
  482. }
  483. /*
  484. * When add_timer_on() enqueues a timer into the timer wheel of an
  485. * idle CPU then this timer might expire before the next timer event
  486. * which is scheduled to wake up that CPU. In case of a completely
  487. * idle system the next event might even be infinite time into the
  488. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  489. * leaves the inner idle loop so the newly added timer is taken into
  490. * account when the CPU goes back to idle and evaluates the timer
  491. * wheel for the next timer event.
  492. */
  493. static void wake_up_idle_cpu(int cpu)
  494. {
  495. struct rq *rq = cpu_rq(cpu);
  496. if (cpu == smp_processor_id())
  497. return;
  498. /*
  499. * This is safe, as this function is called with the timer
  500. * wheel base lock of (cpu) held. When the CPU is on the way
  501. * to idle and has not yet set rq->curr to idle then it will
  502. * be serialized on the timer wheel base lock and take the new
  503. * timer into account automatically.
  504. */
  505. if (rq->curr != rq->idle)
  506. return;
  507. /*
  508. * We can set TIF_RESCHED on the idle task of the other CPU
  509. * lockless. The worst case is that the other CPU runs the
  510. * idle task through an additional NOOP schedule()
  511. */
  512. set_tsk_need_resched(rq->idle);
  513. /* NEED_RESCHED must be visible before we test polling */
  514. smp_mb();
  515. if (!tsk_is_polling(rq->idle))
  516. smp_send_reschedule(cpu);
  517. }
  518. static bool wake_up_full_nohz_cpu(int cpu)
  519. {
  520. if (tick_nohz_full_cpu(cpu)) {
  521. if (cpu != smp_processor_id() ||
  522. tick_nohz_tick_stopped())
  523. smp_send_reschedule(cpu);
  524. return true;
  525. }
  526. return false;
  527. }
  528. void wake_up_nohz_cpu(int cpu)
  529. {
  530. if (!wake_up_full_nohz_cpu(cpu))
  531. wake_up_idle_cpu(cpu);
  532. }
  533. static inline bool got_nohz_idle_kick(void)
  534. {
  535. int cpu = smp_processor_id();
  536. if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
  537. return false;
  538. if (idle_cpu(cpu) && !need_resched())
  539. return true;
  540. /*
  541. * We can't run Idle Load Balance on this CPU for this time so we
  542. * cancel it and clear NOHZ_BALANCE_KICK
  543. */
  544. clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
  545. return false;
  546. }
  547. #else /* CONFIG_NO_HZ_COMMON */
  548. static inline bool got_nohz_idle_kick(void)
  549. {
  550. return false;
  551. }
  552. #endif /* CONFIG_NO_HZ_COMMON */
  553. #ifdef CONFIG_NO_HZ_FULL
  554. bool sched_can_stop_tick(void)
  555. {
  556. struct rq *rq;
  557. rq = this_rq();
  558. /* Make sure rq->nr_running update is visible after the IPI */
  559. smp_rmb();
  560. /* More than one running task need preemption */
  561. if (rq->nr_running > 1)
  562. return false;
  563. return true;
  564. }
  565. #endif /* CONFIG_NO_HZ_FULL */
  566. void sched_avg_update(struct rq *rq)
  567. {
  568. s64 period = sched_avg_period();
  569. while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
  570. /*
  571. * Inline assembly required to prevent the compiler
  572. * optimising this loop into a divmod call.
  573. * See __iter_div_u64_rem() for another example of this.
  574. */
  575. asm("" : "+rm" (rq->age_stamp));
  576. rq->age_stamp += period;
  577. rq->rt_avg /= 2;
  578. }
  579. }
  580. #endif /* CONFIG_SMP */
  581. #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
  582. (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
  583. /*
  584. * Iterate task_group tree rooted at *from, calling @down when first entering a
  585. * node and @up when leaving it for the final time.
  586. *
  587. * Caller must hold rcu_lock or sufficient equivalent.
  588. */
  589. int walk_tg_tree_from(struct task_group *from,
  590. tg_visitor down, tg_visitor up, void *data)
  591. {
  592. struct task_group *parent, *child;
  593. int ret;
  594. parent = from;
  595. down:
  596. ret = (*down)(parent, data);
  597. if (ret)
  598. goto out;
  599. list_for_each_entry_rcu(child, &parent->children, siblings) {
  600. parent = child;
  601. goto down;
  602. up:
  603. continue;
  604. }
  605. ret = (*up)(parent, data);
  606. if (ret || parent == from)
  607. goto out;
  608. child = parent;
  609. parent = parent->parent;
  610. if (parent)
  611. goto up;
  612. out:
  613. return ret;
  614. }
  615. int tg_nop(struct task_group *tg, void *data)
  616. {
  617. return 0;
  618. }
  619. #endif
  620. static void set_load_weight(struct task_struct *p)
  621. {
  622. int prio = p->static_prio - MAX_RT_PRIO;
  623. struct load_weight *load = &p->se.load;
  624. /*
  625. * SCHED_IDLE tasks get minimal weight:
  626. */
  627. if (p->policy == SCHED_IDLE) {
  628. load->weight = scale_load(WEIGHT_IDLEPRIO);
  629. load->inv_weight = WMULT_IDLEPRIO;
  630. return;
  631. }
  632. load->weight = scale_load(prio_to_weight[prio]);
  633. load->inv_weight = prio_to_wmult[prio];
  634. }
  635. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  636. {
  637. update_rq_clock(rq);
  638. sched_info_queued(rq, p);
  639. p->sched_class->enqueue_task(rq, p, flags);
  640. }
  641. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  642. {
  643. update_rq_clock(rq);
  644. sched_info_dequeued(rq, p);
  645. p->sched_class->dequeue_task(rq, p, flags);
  646. }
  647. void activate_task(struct rq *rq, struct task_struct *p, int flags)
  648. {
  649. if (task_contributes_to_load(p))
  650. rq->nr_uninterruptible--;
  651. enqueue_task(rq, p, flags);
  652. }
  653. void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  654. {
  655. if (task_contributes_to_load(p))
  656. rq->nr_uninterruptible++;
  657. dequeue_task(rq, p, flags);
  658. }
  659. static void update_rq_clock_task(struct rq *rq, s64 delta)
  660. {
  661. /*
  662. * In theory, the compile should just see 0 here, and optimize out the call
  663. * to sched_rt_avg_update. But I don't trust it...
  664. */
  665. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  666. s64 steal = 0, irq_delta = 0;
  667. #endif
  668. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  669. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  670. /*
  671. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  672. * this case when a previous update_rq_clock() happened inside a
  673. * {soft,}irq region.
  674. *
  675. * When this happens, we stop ->clock_task and only update the
  676. * prev_irq_time stamp to account for the part that fit, so that a next
  677. * update will consume the rest. This ensures ->clock_task is
  678. * monotonic.
  679. *
  680. * It does however cause some slight miss-attribution of {soft,}irq
  681. * time, a more accurate solution would be to update the irq_time using
  682. * the current rq->clock timestamp, except that would require using
  683. * atomic ops.
  684. */
  685. if (irq_delta > delta)
  686. irq_delta = delta;
  687. rq->prev_irq_time += irq_delta;
  688. delta -= irq_delta;
  689. #endif
  690. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  691. if (static_key_false((&paravirt_steal_rq_enabled))) {
  692. u64 st;
  693. steal = paravirt_steal_clock(cpu_of(rq));
  694. steal -= rq->prev_steal_time_rq;
  695. if (unlikely(steal > delta))
  696. steal = delta;
  697. st = steal_ticks(steal);
  698. steal = st * TICK_NSEC;
  699. rq->prev_steal_time_rq += steal;
  700. delta -= steal;
  701. }
  702. #endif
  703. rq->clock_task += delta;
  704. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  705. if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
  706. sched_rt_avg_update(rq, irq_delta + steal);
  707. #endif
  708. }
  709. void sched_set_stop_task(int cpu, struct task_struct *stop)
  710. {
  711. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  712. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  713. if (stop) {
  714. /*
  715. * Make it appear like a SCHED_FIFO task, its something
  716. * userspace knows about and won't get confused about.
  717. *
  718. * Also, it will make PI more or less work without too
  719. * much confusion -- but then, stop work should not
  720. * rely on PI working anyway.
  721. */
  722. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  723. stop->sched_class = &stop_sched_class;
  724. }
  725. cpu_rq(cpu)->stop = stop;
  726. if (old_stop) {
  727. /*
  728. * Reset it back to a normal scheduling class so that
  729. * it can die in pieces.
  730. */
  731. old_stop->sched_class = &rt_sched_class;
  732. }
  733. }
  734. /*
  735. * __normal_prio - return the priority that is based on the static prio
  736. */
  737. static inline int __normal_prio(struct task_struct *p)
  738. {
  739. return p->static_prio;
  740. }
  741. /*
  742. * Calculate the expected normal priority: i.e. priority
  743. * without taking RT-inheritance into account. Might be
  744. * boosted by interactivity modifiers. Changes upon fork,
  745. * setprio syscalls, and whenever the interactivity
  746. * estimator recalculates.
  747. */
  748. static inline int normal_prio(struct task_struct *p)
  749. {
  750. int prio;
  751. if (task_has_rt_policy(p))
  752. prio = MAX_RT_PRIO-1 - p->rt_priority;
  753. else
  754. prio = __normal_prio(p);
  755. return prio;
  756. }
  757. /*
  758. * Calculate the current priority, i.e. the priority
  759. * taken into account by the scheduler. This value might
  760. * be boosted by RT tasks, or might be boosted by
  761. * interactivity modifiers. Will be RT if the task got
  762. * RT-boosted. If not then it returns p->normal_prio.
  763. */
  764. static int effective_prio(struct task_struct *p)
  765. {
  766. p->normal_prio = normal_prio(p);
  767. /*
  768. * If we are RT tasks or we were boosted to RT priority,
  769. * keep the priority unchanged. Otherwise, update priority
  770. * to the normal priority:
  771. */
  772. if (!rt_prio(p->prio))
  773. return p->normal_prio;
  774. return p->prio;
  775. }
  776. /**
  777. * task_curr - is this task currently executing on a CPU?
  778. * @p: the task in question.
  779. *
  780. * Return: 1 if the task is currently executing. 0 otherwise.
  781. */
  782. inline int task_curr(const struct task_struct *p)
  783. {
  784. return cpu_curr(task_cpu(p)) == p;
  785. }
  786. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  787. const struct sched_class *prev_class,
  788. int oldprio)
  789. {
  790. if (prev_class != p->sched_class) {
  791. if (prev_class->switched_from)
  792. prev_class->switched_from(rq, p);
  793. p->sched_class->switched_to(rq, p);
  794. } else if (oldprio != p->prio)
  795. p->sched_class->prio_changed(rq, p, oldprio);
  796. }
  797. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  798. {
  799. const struct sched_class *class;
  800. if (p->sched_class == rq->curr->sched_class) {
  801. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  802. } else {
  803. for_each_class(class) {
  804. if (class == rq->curr->sched_class)
  805. break;
  806. if (class == p->sched_class) {
  807. resched_task(rq->curr);
  808. break;
  809. }
  810. }
  811. }
  812. /*
  813. * A queue event has occurred, and we're going to schedule. In
  814. * this case, we can save a useless back to back clock update.
  815. */
  816. if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
  817. rq->skip_clock_update = 1;
  818. }
  819. #ifdef CONFIG_SMP
  820. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  821. {
  822. #ifdef CONFIG_SCHED_DEBUG
  823. /*
  824. * We should never call set_task_cpu() on a blocked task,
  825. * ttwu() will sort out the placement.
  826. */
  827. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  828. !(task_preempt_count(p) & PREEMPT_ACTIVE));
  829. #ifdef CONFIG_LOCKDEP
  830. /*
  831. * The caller should hold either p->pi_lock or rq->lock, when changing
  832. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  833. *
  834. * sched_move_task() holds both and thus holding either pins the cgroup,
  835. * see task_group().
  836. *
  837. * Furthermore, all task_rq users should acquire both locks, see
  838. * task_rq_lock().
  839. */
  840. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  841. lockdep_is_held(&task_rq(p)->lock)));
  842. #endif
  843. #endif
  844. trace_sched_migrate_task(p, new_cpu);
  845. if (task_cpu(p) != new_cpu) {
  846. if (p->sched_class->migrate_task_rq)
  847. p->sched_class->migrate_task_rq(p, new_cpu);
  848. p->se.nr_migrations++;
  849. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
  850. }
  851. __set_task_cpu(p, new_cpu);
  852. }
  853. struct migration_arg {
  854. struct task_struct *task;
  855. int dest_cpu;
  856. };
  857. static int migration_cpu_stop(void *data);
  858. /*
  859. * wait_task_inactive - wait for a thread to unschedule.
  860. *
  861. * If @match_state is nonzero, it's the @p->state value just checked and
  862. * not expected to change. If it changes, i.e. @p might have woken up,
  863. * then return zero. When we succeed in waiting for @p to be off its CPU,
  864. * we return a positive number (its total switch count). If a second call
  865. * a short while later returns the same number, the caller can be sure that
  866. * @p has remained unscheduled the whole time.
  867. *
  868. * The caller must ensure that the task *will* unschedule sometime soon,
  869. * else this function might spin for a *long* time. This function can't
  870. * be called with interrupts off, or it may introduce deadlock with
  871. * smp_call_function() if an IPI is sent by the same process we are
  872. * waiting to become inactive.
  873. */
  874. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  875. {
  876. unsigned long flags;
  877. int running, on_rq;
  878. unsigned long ncsw;
  879. struct rq *rq;
  880. for (;;) {
  881. /*
  882. * We do the initial early heuristics without holding
  883. * any task-queue locks at all. We'll only try to get
  884. * the runqueue lock when things look like they will
  885. * work out!
  886. */
  887. rq = task_rq(p);
  888. /*
  889. * If the task is actively running on another CPU
  890. * still, just relax and busy-wait without holding
  891. * any locks.
  892. *
  893. * NOTE! Since we don't hold any locks, it's not
  894. * even sure that "rq" stays as the right runqueue!
  895. * But we don't care, since "task_running()" will
  896. * return false if the runqueue has changed and p
  897. * is actually now running somewhere else!
  898. */
  899. while (task_running(rq, p)) {
  900. if (match_state && unlikely(p->state != match_state))
  901. return 0;
  902. cpu_relax();
  903. }
  904. /*
  905. * Ok, time to look more closely! We need the rq
  906. * lock now, to be *sure*. If we're wrong, we'll
  907. * just go back and repeat.
  908. */
  909. rq = task_rq_lock(p, &flags);
  910. trace_sched_wait_task(p);
  911. running = task_running(rq, p);
  912. on_rq = p->on_rq;
  913. ncsw = 0;
  914. if (!match_state || p->state == match_state)
  915. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  916. task_rq_unlock(rq, p, &flags);
  917. /*
  918. * If it changed from the expected state, bail out now.
  919. */
  920. if (unlikely(!ncsw))
  921. break;
  922. /*
  923. * Was it really running after all now that we
  924. * checked with the proper locks actually held?
  925. *
  926. * Oops. Go back and try again..
  927. */
  928. if (unlikely(running)) {
  929. cpu_relax();
  930. continue;
  931. }
  932. /*
  933. * It's not enough that it's not actively running,
  934. * it must be off the runqueue _entirely_, and not
  935. * preempted!
  936. *
  937. * So if it was still runnable (but just not actively
  938. * running right now), it's preempted, and we should
  939. * yield - it could be a while.
  940. */
  941. if (unlikely(on_rq)) {
  942. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  943. set_current_state(TASK_UNINTERRUPTIBLE);
  944. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  945. continue;
  946. }
  947. /*
  948. * Ahh, all good. It wasn't running, and it wasn't
  949. * runnable, which means that it will never become
  950. * running in the future either. We're all done!
  951. */
  952. break;
  953. }
  954. return ncsw;
  955. }
  956. /***
  957. * kick_process - kick a running thread to enter/exit the kernel
  958. * @p: the to-be-kicked thread
  959. *
  960. * Cause a process which is running on another CPU to enter
  961. * kernel-mode, without any delay. (to get signals handled.)
  962. *
  963. * NOTE: this function doesn't have to take the runqueue lock,
  964. * because all it wants to ensure is that the remote task enters
  965. * the kernel. If the IPI races and the task has been migrated
  966. * to another CPU then no harm is done and the purpose has been
  967. * achieved as well.
  968. */
  969. void kick_process(struct task_struct *p)
  970. {
  971. int cpu;
  972. preempt_disable();
  973. cpu = task_cpu(p);
  974. if ((cpu != smp_processor_id()) && task_curr(p))
  975. smp_send_reschedule(cpu);
  976. preempt_enable();
  977. }
  978. EXPORT_SYMBOL_GPL(kick_process);
  979. #endif /* CONFIG_SMP */
  980. #ifdef CONFIG_SMP
  981. /*
  982. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  983. */
  984. static int select_fallback_rq(int cpu, struct task_struct *p)
  985. {
  986. int nid = cpu_to_node(cpu);
  987. const struct cpumask *nodemask = NULL;
  988. enum { cpuset, possible, fail } state = cpuset;
  989. int dest_cpu;
  990. /*
  991. * If the node that the cpu is on has been offlined, cpu_to_node()
  992. * will return -1. There is no cpu on the node, and we should
  993. * select the cpu on the other node.
  994. */
  995. if (nid != -1) {
  996. nodemask = cpumask_of_node(nid);
  997. /* Look for allowed, online CPU in same node. */
  998. for_each_cpu(dest_cpu, nodemask) {
  999. if (!cpu_online(dest_cpu))
  1000. continue;
  1001. if (!cpu_active(dest_cpu))
  1002. continue;
  1003. if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  1004. return dest_cpu;
  1005. }
  1006. }
  1007. for (;;) {
  1008. /* Any allowed, online CPU? */
  1009. for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
  1010. if (!cpu_online(dest_cpu))
  1011. continue;
  1012. if (!cpu_active(dest_cpu))
  1013. continue;
  1014. goto out;
  1015. }
  1016. switch (state) {
  1017. case cpuset:
  1018. /* No more Mr. Nice Guy. */
  1019. cpuset_cpus_allowed_fallback(p);
  1020. state = possible;
  1021. break;
  1022. case possible:
  1023. do_set_cpus_allowed(p, cpu_possible_mask);
  1024. state = fail;
  1025. break;
  1026. case fail:
  1027. BUG();
  1028. break;
  1029. }
  1030. }
  1031. out:
  1032. if (state != cpuset) {
  1033. /*
  1034. * Don't tell them about moving exiting tasks or
  1035. * kernel threads (both mm NULL), since they never
  1036. * leave kernel.
  1037. */
  1038. if (p->mm && printk_ratelimit()) {
  1039. printk_sched("process %d (%s) no longer affine to cpu%d\n",
  1040. task_pid_nr(p), p->comm, cpu);
  1041. }
  1042. }
  1043. return dest_cpu;
  1044. }
  1045. /*
  1046. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  1047. */
  1048. static inline
  1049. int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
  1050. {
  1051. int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
  1052. /*
  1053. * In order not to call set_task_cpu() on a blocking task we need
  1054. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1055. * cpu.
  1056. *
  1057. * Since this is common to all placement strategies, this lives here.
  1058. *
  1059. * [ this allows ->select_task() to simply return task_cpu(p) and
  1060. * not worry about this generic constraint ]
  1061. */
  1062. if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
  1063. !cpu_online(cpu)))
  1064. cpu = select_fallback_rq(task_cpu(p), p);
  1065. return cpu;
  1066. }
  1067. static void update_avg(u64 *avg, u64 sample)
  1068. {
  1069. s64 diff = sample - *avg;
  1070. *avg += diff >> 3;
  1071. }
  1072. #endif
  1073. static void
  1074. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  1075. {
  1076. #ifdef CONFIG_SCHEDSTATS
  1077. struct rq *rq = this_rq();
  1078. #ifdef CONFIG_SMP
  1079. int this_cpu = smp_processor_id();
  1080. if (cpu == this_cpu) {
  1081. schedstat_inc(rq, ttwu_local);
  1082. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1083. } else {
  1084. struct sched_domain *sd;
  1085. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1086. rcu_read_lock();
  1087. for_each_domain(this_cpu, sd) {
  1088. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1089. schedstat_inc(sd, ttwu_wake_remote);
  1090. break;
  1091. }
  1092. }
  1093. rcu_read_unlock();
  1094. }
  1095. if (wake_flags & WF_MIGRATED)
  1096. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1097. #endif /* CONFIG_SMP */
  1098. schedstat_inc(rq, ttwu_count);
  1099. schedstat_inc(p, se.statistics.nr_wakeups);
  1100. if (wake_flags & WF_SYNC)
  1101. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1102. #endif /* CONFIG_SCHEDSTATS */
  1103. }
  1104. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  1105. {
  1106. activate_task(rq, p, en_flags);
  1107. p->on_rq = 1;
  1108. /* if a worker is waking up, notify workqueue */
  1109. if (p->flags & PF_WQ_WORKER)
  1110. wq_worker_waking_up(p, cpu_of(rq));
  1111. }
  1112. /*
  1113. * Mark the task runnable and perform wakeup-preemption.
  1114. */
  1115. static void
  1116. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1117. {
  1118. check_preempt_curr(rq, p, wake_flags);
  1119. trace_sched_wakeup(p, true);
  1120. p->state = TASK_RUNNING;
  1121. #ifdef CONFIG_SMP
  1122. if (p->sched_class->task_woken)
  1123. p->sched_class->task_woken(rq, p);
  1124. if (rq->idle_stamp) {
  1125. u64 delta = rq_clock(rq) - rq->idle_stamp;
  1126. u64 max = 2*rq->max_idle_balance_cost;
  1127. update_avg(&rq->avg_idle, delta);
  1128. if (rq->avg_idle > max)
  1129. rq->avg_idle = max;
  1130. rq->idle_stamp = 0;
  1131. }
  1132. #endif
  1133. }
  1134. static void
  1135. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  1136. {
  1137. #ifdef CONFIG_SMP
  1138. if (p->sched_contributes_to_load)
  1139. rq->nr_uninterruptible--;
  1140. #endif
  1141. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  1142. ttwu_do_wakeup(rq, p, wake_flags);
  1143. }
  1144. /*
  1145. * Called in case the task @p isn't fully descheduled from its runqueue,
  1146. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  1147. * since all we need to do is flip p->state to TASK_RUNNING, since
  1148. * the task is still ->on_rq.
  1149. */
  1150. static int ttwu_remote(struct task_struct *p, int wake_flags)
  1151. {
  1152. struct rq *rq;
  1153. int ret = 0;
  1154. rq = __task_rq_lock(p);
  1155. if (p->on_rq) {
  1156. /* check_preempt_curr() may use rq clock */
  1157. update_rq_clock(rq);
  1158. ttwu_do_wakeup(rq, p, wake_flags);
  1159. ret = 1;
  1160. }
  1161. __task_rq_unlock(rq);
  1162. return ret;
  1163. }
  1164. #ifdef CONFIG_SMP
  1165. static void sched_ttwu_pending(void)
  1166. {
  1167. struct rq *rq = this_rq();
  1168. struct llist_node *llist = llist_del_all(&rq->wake_list);
  1169. struct task_struct *p;
  1170. raw_spin_lock(&rq->lock);
  1171. while (llist) {
  1172. p = llist_entry(llist, struct task_struct, wake_entry);
  1173. llist = llist_next(llist);
  1174. ttwu_do_activate(rq, p, 0);
  1175. }
  1176. raw_spin_unlock(&rq->lock);
  1177. }
  1178. void scheduler_ipi(void)
  1179. {
  1180. /*
  1181. * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
  1182. * TIF_NEED_RESCHED remotely (for the first time) will also send
  1183. * this IPI.
  1184. */
  1185. if (tif_need_resched())
  1186. set_preempt_need_resched();
  1187. if (llist_empty(&this_rq()->wake_list)
  1188. && !tick_nohz_full_cpu(smp_processor_id())
  1189. && !got_nohz_idle_kick())
  1190. return;
  1191. /*
  1192. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  1193. * traditionally all their work was done from the interrupt return
  1194. * path. Now that we actually do some work, we need to make sure
  1195. * we do call them.
  1196. *
  1197. * Some archs already do call them, luckily irq_enter/exit nest
  1198. * properly.
  1199. *
  1200. * Arguably we should visit all archs and update all handlers,
  1201. * however a fair share of IPIs are still resched only so this would
  1202. * somewhat pessimize the simple resched case.
  1203. */
  1204. irq_enter();
  1205. tick_nohz_full_check();
  1206. sched_ttwu_pending();
  1207. /*
  1208. * Check if someone kicked us for doing the nohz idle load balance.
  1209. */
  1210. if (unlikely(got_nohz_idle_kick())) {
  1211. this_rq()->idle_balance = 1;
  1212. raise_softirq_irqoff(SCHED_SOFTIRQ);
  1213. }
  1214. irq_exit();
  1215. }
  1216. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  1217. {
  1218. if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
  1219. smp_send_reschedule(cpu);
  1220. }
  1221. bool cpus_share_cache(int this_cpu, int that_cpu)
  1222. {
  1223. return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
  1224. }
  1225. #endif /* CONFIG_SMP */
  1226. static void ttwu_queue(struct task_struct *p, int cpu)
  1227. {
  1228. struct rq *rq = cpu_rq(cpu);
  1229. #if defined(CONFIG_SMP)
  1230. if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
  1231. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  1232. ttwu_queue_remote(p, cpu);
  1233. return;
  1234. }
  1235. #endif
  1236. raw_spin_lock(&rq->lock);
  1237. ttwu_do_activate(rq, p, 0);
  1238. raw_spin_unlock(&rq->lock);
  1239. }
  1240. /**
  1241. * try_to_wake_up - wake up a thread
  1242. * @p: the thread to be awakened
  1243. * @state: the mask of task states that can be woken
  1244. * @wake_flags: wake modifier flags (WF_*)
  1245. *
  1246. * Put it on the run-queue if it's not already there. The "current"
  1247. * thread is always on the run-queue (except when the actual
  1248. * re-schedule is in progress), and as such you're allowed to do
  1249. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1250. * runnable without the overhead of this.
  1251. *
  1252. * Return: %true if @p was woken up, %false if it was already running.
  1253. * or @state didn't match @p's state.
  1254. */
  1255. static int
  1256. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  1257. {
  1258. unsigned long flags;
  1259. int cpu, success = 0;
  1260. /*
  1261. * If we are going to wake up a thread waiting for CONDITION we
  1262. * need to ensure that CONDITION=1 done by the caller can not be
  1263. * reordered with p->state check below. This pairs with mb() in
  1264. * set_current_state() the waiting thread does.
  1265. */
  1266. smp_mb__before_spinlock();
  1267. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1268. if (!(p->state & state))
  1269. goto out;
  1270. success = 1; /* we're going to change ->state */
  1271. cpu = task_cpu(p);
  1272. if (p->on_rq && ttwu_remote(p, wake_flags))
  1273. goto stat;
  1274. #ifdef CONFIG_SMP
  1275. /*
  1276. * If the owning (remote) cpu is still in the middle of schedule() with
  1277. * this task as prev, wait until its done referencing the task.
  1278. */
  1279. while (p->on_cpu)
  1280. cpu_relax();
  1281. /*
  1282. * Pairs with the smp_wmb() in finish_lock_switch().
  1283. */
  1284. smp_rmb();
  1285. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  1286. p->state = TASK_WAKING;
  1287. if (p->sched_class->task_waking)
  1288. p->sched_class->task_waking(p);
  1289. cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  1290. if (task_cpu(p) != cpu) {
  1291. wake_flags |= WF_MIGRATED;
  1292. set_task_cpu(p, cpu);
  1293. }
  1294. #endif /* CONFIG_SMP */
  1295. ttwu_queue(p, cpu);
  1296. stat:
  1297. ttwu_stat(p, cpu, wake_flags);
  1298. out:
  1299. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1300. return success;
  1301. }
  1302. /**
  1303. * try_to_wake_up_local - try to wake up a local task with rq lock held
  1304. * @p: the thread to be awakened
  1305. *
  1306. * Put @p on the run-queue if it's not already there. The caller must
  1307. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  1308. * the current task.
  1309. */
  1310. static void try_to_wake_up_local(struct task_struct *p)
  1311. {
  1312. struct rq *rq = task_rq(p);
  1313. if (WARN_ON_ONCE(rq != this_rq()) ||
  1314. WARN_ON_ONCE(p == current))
  1315. return;
  1316. lockdep_assert_held(&rq->lock);
  1317. if (!raw_spin_trylock(&p->pi_lock)) {
  1318. raw_spin_unlock(&rq->lock);
  1319. raw_spin_lock(&p->pi_lock);
  1320. raw_spin_lock(&rq->lock);
  1321. }
  1322. if (!(p->state & TASK_NORMAL))
  1323. goto out;
  1324. if (!p->on_rq)
  1325. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1326. ttwu_do_wakeup(rq, p, 0);
  1327. ttwu_stat(p, smp_processor_id(), 0);
  1328. out:
  1329. raw_spin_unlock(&p->pi_lock);
  1330. }
  1331. /**
  1332. * wake_up_process - Wake up a specific process
  1333. * @p: The process to be woken up.
  1334. *
  1335. * Attempt to wake up the nominated process and move it to the set of runnable
  1336. * processes.
  1337. *
  1338. * Return: 1 if the process was woken up, 0 if it was already running.
  1339. *
  1340. * It may be assumed that this function implies a write memory barrier before
  1341. * changing the task state if and only if any tasks are woken up.
  1342. */
  1343. int wake_up_process(struct task_struct *p)
  1344. {
  1345. WARN_ON(task_is_stopped_or_traced(p));
  1346. return try_to_wake_up(p, TASK_NORMAL, 0);
  1347. }
  1348. EXPORT_SYMBOL(wake_up_process);
  1349. int wake_up_state(struct task_struct *p, unsigned int state)
  1350. {
  1351. return try_to_wake_up(p, state, 0);
  1352. }
  1353. /*
  1354. * Perform scheduler related setup for a newly forked process p.
  1355. * p is forked by current.
  1356. *
  1357. * __sched_fork() is basic setup used by init_idle() too:
  1358. */
  1359. static void __sched_fork(struct task_struct *p)
  1360. {
  1361. p->on_rq = 0;
  1362. p->se.on_rq = 0;
  1363. p->se.exec_start = 0;
  1364. p->se.sum_exec_runtime = 0;
  1365. p->se.prev_sum_exec_runtime = 0;
  1366. p->se.nr_migrations = 0;
  1367. p->se.vruntime = 0;
  1368. INIT_LIST_HEAD(&p->se.group_node);
  1369. #ifdef CONFIG_SCHEDSTATS
  1370. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  1371. #endif
  1372. INIT_LIST_HEAD(&p->rt.run_list);
  1373. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1374. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1375. #endif
  1376. #ifdef CONFIG_NUMA_BALANCING
  1377. if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
  1378. p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
  1379. p->mm->numa_next_reset = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
  1380. p->mm->numa_scan_seq = 0;
  1381. }
  1382. p->node_stamp = 0ULL;
  1383. p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
  1384. p->numa_migrate_seq = 1;
  1385. p->numa_scan_period = sysctl_numa_balancing_scan_delay;
  1386. p->numa_preferred_nid = -1;
  1387. p->numa_work.next = &p->numa_work;
  1388. p->numa_faults = NULL;
  1389. p->numa_faults_buffer = NULL;
  1390. #endif /* CONFIG_NUMA_BALANCING */
  1391. }
  1392. #ifdef CONFIG_NUMA_BALANCING
  1393. #ifdef CONFIG_SCHED_DEBUG
  1394. void set_numabalancing_state(bool enabled)
  1395. {
  1396. if (enabled)
  1397. sched_feat_set("NUMA");
  1398. else
  1399. sched_feat_set("NO_NUMA");
  1400. }
  1401. #else
  1402. __read_mostly bool numabalancing_enabled;
  1403. void set_numabalancing_state(bool enabled)
  1404. {
  1405. numabalancing_enabled = enabled;
  1406. }
  1407. #endif /* CONFIG_SCHED_DEBUG */
  1408. #endif /* CONFIG_NUMA_BALANCING */
  1409. /*
  1410. * fork()/clone()-time setup:
  1411. */
  1412. void sched_fork(struct task_struct *p)
  1413. {
  1414. unsigned long flags;
  1415. int cpu = get_cpu();
  1416. __sched_fork(p);
  1417. /*
  1418. * We mark the process as running here. This guarantees that
  1419. * nobody will actually run it, and a signal or other external
  1420. * event cannot wake it up and insert it on the runqueue either.
  1421. */
  1422. p->state = TASK_RUNNING;
  1423. /*
  1424. * Make sure we do not leak PI boosting priority to the child.
  1425. */
  1426. p->prio = current->normal_prio;
  1427. /*
  1428. * Revert to default priority/policy on fork if requested.
  1429. */
  1430. if (unlikely(p->sched_reset_on_fork)) {
  1431. if (task_has_rt_policy(p)) {
  1432. p->policy = SCHED_NORMAL;
  1433. p->static_prio = NICE_TO_PRIO(0);
  1434. p->rt_priority = 0;
  1435. } else if (PRIO_TO_NICE(p->static_prio) < 0)
  1436. p->static_prio = NICE_TO_PRIO(0);
  1437. p->prio = p->normal_prio = __normal_prio(p);
  1438. set_load_weight(p);
  1439. /*
  1440. * We don't need the reset flag anymore after the fork. It has
  1441. * fulfilled its duty:
  1442. */
  1443. p->sched_reset_on_fork = 0;
  1444. }
  1445. if (!rt_prio(p->prio))
  1446. p->sched_class = &fair_sched_class;
  1447. if (p->sched_class->task_fork)
  1448. p->sched_class->task_fork(p);
  1449. /*
  1450. * The child is not yet in the pid-hash so no cgroup attach races,
  1451. * and the cgroup is pinned to this child due to cgroup_fork()
  1452. * is ran before sched_fork().
  1453. *
  1454. * Silence PROVE_RCU.
  1455. */
  1456. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1457. set_task_cpu(p, cpu);
  1458. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1459. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1460. if (likely(sched_info_on()))
  1461. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1462. #endif
  1463. #if defined(CONFIG_SMP)
  1464. p->on_cpu = 0;
  1465. #endif
  1466. init_task_preempt_count(p);
  1467. #ifdef CONFIG_SMP
  1468. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  1469. #endif
  1470. put_cpu();
  1471. }
  1472. /*
  1473. * wake_up_new_task - wake up a newly created task for the first time.
  1474. *
  1475. * This function will do some initial scheduler statistics housekeeping
  1476. * that must be done for every newly created context, then puts the task
  1477. * on the runqueue and wakes it.
  1478. */
  1479. void wake_up_new_task(struct task_struct *p)
  1480. {
  1481. unsigned long flags;
  1482. struct rq *rq;
  1483. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1484. #ifdef CONFIG_SMP
  1485. /*
  1486. * Fork balancing, do it here and not earlier because:
  1487. * - cpus_allowed can change in the fork path
  1488. * - any previously selected cpu might disappear through hotplug
  1489. */
  1490. set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
  1491. #endif
  1492. /* Initialize new task's runnable average */
  1493. init_task_runnable_average(p);
  1494. rq = __task_rq_lock(p);
  1495. activate_task(rq, p, 0);
  1496. p->on_rq = 1;
  1497. trace_sched_wakeup_new(p, true);
  1498. check_preempt_curr(rq, p, WF_FORK);
  1499. #ifdef CONFIG_SMP
  1500. if (p->sched_class->task_woken)
  1501. p->sched_class->task_woken(rq, p);
  1502. #endif
  1503. task_rq_unlock(rq, p, &flags);
  1504. }
  1505. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1506. /**
  1507. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  1508. * @notifier: notifier struct to register
  1509. */
  1510. void preempt_notifier_register(struct preempt_notifier *notifier)
  1511. {
  1512. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1513. }
  1514. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1515. /**
  1516. * preempt_notifier_unregister - no longer interested in preemption notifications
  1517. * @notifier: notifier struct to unregister
  1518. *
  1519. * This is safe to call from within a preemption notifier.
  1520. */
  1521. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1522. {
  1523. hlist_del(&notifier->link);
  1524. }
  1525. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1526. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1527. {
  1528. struct preempt_notifier *notifier;
  1529. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  1530. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1531. }
  1532. static void
  1533. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1534. struct task_struct *next)
  1535. {
  1536. struct preempt_notifier *notifier;
  1537. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  1538. notifier->ops->sched_out(notifier, next);
  1539. }
  1540. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  1541. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1542. {
  1543. }
  1544. static void
  1545. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1546. struct task_struct *next)
  1547. {
  1548. }
  1549. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  1550. /**
  1551. * prepare_task_switch - prepare to switch tasks
  1552. * @rq: the runqueue preparing to switch
  1553. * @prev: the current task that is being switched out
  1554. * @next: the task we are going to switch to.
  1555. *
  1556. * This is called with the rq lock held and interrupts off. It must
  1557. * be paired with a subsequent finish_task_switch after the context
  1558. * switch.
  1559. *
  1560. * prepare_task_switch sets up locking and calls architecture specific
  1561. * hooks.
  1562. */
  1563. static inline void
  1564. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1565. struct task_struct *next)
  1566. {
  1567. trace_sched_switch(prev, next);
  1568. sched_info_switch(rq, prev, next);
  1569. perf_event_task_sched_out(prev, next);
  1570. fire_sched_out_preempt_notifiers(prev, next);
  1571. prepare_lock_switch(rq, next);
  1572. prepare_arch_switch(next);
  1573. }
  1574. /**
  1575. * finish_task_switch - clean up after a task-switch
  1576. * @rq: runqueue associated with task-switch
  1577. * @prev: the thread we just switched away from.
  1578. *
  1579. * finish_task_switch must be called after the context switch, paired
  1580. * with a prepare_task_switch call before the context switch.
  1581. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1582. * and do any other architecture-specific cleanup actions.
  1583. *
  1584. * Note that we may have delayed dropping an mm in context_switch(). If
  1585. * so, we finish that here outside of the runqueue lock. (Doing it
  1586. * with the lock held can cause deadlocks; see schedule() for
  1587. * details.)
  1588. */
  1589. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1590. __releases(rq->lock)
  1591. {
  1592. struct mm_struct *mm = rq->prev_mm;
  1593. long prev_state;
  1594. rq->prev_mm = NULL;
  1595. /*
  1596. * A task struct has one reference for the use as "current".
  1597. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1598. * schedule one last time. The schedule call will never return, and
  1599. * the scheduled task must drop that reference.
  1600. * The test for TASK_DEAD must occur while the runqueue locks are
  1601. * still held, otherwise prev could be scheduled on another cpu, die
  1602. * there before we look at prev->state, and then the reference would
  1603. * be dropped twice.
  1604. * Manfred Spraul <manfred@colorfullife.com>
  1605. */
  1606. prev_state = prev->state;
  1607. vtime_task_switch(prev);
  1608. finish_arch_switch(prev);
  1609. perf_event_task_sched_in(prev, current);
  1610. finish_lock_switch(rq, prev);
  1611. finish_arch_post_lock_switch();
  1612. fire_sched_in_preempt_notifiers(current);
  1613. if (mm)
  1614. mmdrop(mm);
  1615. if (unlikely(prev_state == TASK_DEAD)) {
  1616. task_numa_free(prev);
  1617. /*
  1618. * Remove function-return probe instances associated with this
  1619. * task and put them back on the free list.
  1620. */
  1621. kprobe_flush_task(prev);
  1622. put_task_struct(prev);
  1623. }
  1624. tick_nohz_task_switch(current);
  1625. }
  1626. #ifdef CONFIG_SMP
  1627. /* assumes rq->lock is held */
  1628. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  1629. {
  1630. if (prev->sched_class->pre_schedule)
  1631. prev->sched_class->pre_schedule(rq, prev);
  1632. }
  1633. /* rq->lock is NOT held, but preemption is disabled */
  1634. static inline void post_schedule(struct rq *rq)
  1635. {
  1636. if (rq->post_schedule) {
  1637. unsigned long flags;
  1638. raw_spin_lock_irqsave(&rq->lock, flags);
  1639. if (rq->curr->sched_class->post_schedule)
  1640. rq->curr->sched_class->post_schedule(rq);
  1641. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1642. rq->post_schedule = 0;
  1643. }
  1644. }
  1645. #else
  1646. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  1647. {
  1648. }
  1649. static inline void post_schedule(struct rq *rq)
  1650. {
  1651. }
  1652. #endif
  1653. /**
  1654. * schedule_tail - first thing a freshly forked thread must call.
  1655. * @prev: the thread we just switched away from.
  1656. */
  1657. asmlinkage void schedule_tail(struct task_struct *prev)
  1658. __releases(rq->lock)
  1659. {
  1660. struct rq *rq = this_rq();
  1661. finish_task_switch(rq, prev);
  1662. /*
  1663. * FIXME: do we need to worry about rq being invalidated by the
  1664. * task_switch?
  1665. */
  1666. post_schedule(rq);
  1667. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1668. /* In this case, finish_task_switch does not reenable preemption */
  1669. preempt_enable();
  1670. #endif
  1671. if (current->set_child_tid)
  1672. put_user(task_pid_vnr(current), current->set_child_tid);
  1673. }
  1674. /*
  1675. * context_switch - switch to the new MM and the new
  1676. * thread's register state.
  1677. */
  1678. static inline void
  1679. context_switch(struct rq *rq, struct task_struct *prev,
  1680. struct task_struct *next)
  1681. {
  1682. struct mm_struct *mm, *oldmm;
  1683. prepare_task_switch(rq, prev, next);
  1684. mm = next->mm;
  1685. oldmm = prev->active_mm;
  1686. /*
  1687. * For paravirt, this is coupled with an exit in switch_to to
  1688. * combine the page table reload and the switch backend into
  1689. * one hypercall.
  1690. */
  1691. arch_start_context_switch(prev);
  1692. if (!mm) {
  1693. next->active_mm = oldmm;
  1694. atomic_inc(&oldmm->mm_count);
  1695. enter_lazy_tlb(oldmm, next);
  1696. } else
  1697. switch_mm(oldmm, mm, next);
  1698. if (!prev->mm) {
  1699. prev->active_mm = NULL;
  1700. rq->prev_mm = oldmm;
  1701. }
  1702. /*
  1703. * Since the runqueue lock will be released by the next
  1704. * task (which is an invalid locking op but in the case
  1705. * of the scheduler it's an obvious special-case), so we
  1706. * do an early lockdep release here:
  1707. */
  1708. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1709. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1710. #endif
  1711. context_tracking_task_switch(prev, next);
  1712. /* Here we just switch the register state and the stack. */
  1713. switch_to(prev, next, prev);
  1714. barrier();
  1715. /*
  1716. * this_rq must be evaluated again because prev may have moved
  1717. * CPUs since it called schedule(), thus the 'rq' on its stack
  1718. * frame will be invalid.
  1719. */
  1720. finish_task_switch(this_rq(), prev);
  1721. }
  1722. /*
  1723. * nr_running and nr_context_switches:
  1724. *
  1725. * externally visible scheduler statistics: current number of runnable
  1726. * threads, total number of context switches performed since bootup.
  1727. */
  1728. unsigned long nr_running(void)
  1729. {
  1730. unsigned long i, sum = 0;
  1731. for_each_online_cpu(i)
  1732. sum += cpu_rq(i)->nr_running;
  1733. return sum;
  1734. }
  1735. unsigned long long nr_context_switches(void)
  1736. {
  1737. int i;
  1738. unsigned long long sum = 0;
  1739. for_each_possible_cpu(i)
  1740. sum += cpu_rq(i)->nr_switches;
  1741. return sum;
  1742. }
  1743. unsigned long nr_iowait(void)
  1744. {
  1745. unsigned long i, sum = 0;
  1746. for_each_possible_cpu(i)
  1747. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1748. return sum;
  1749. }
  1750. unsigned long nr_iowait_cpu(int cpu)
  1751. {
  1752. struct rq *this = cpu_rq(cpu);
  1753. return atomic_read(&this->nr_iowait);
  1754. }
  1755. #ifdef CONFIG_SMP
  1756. /*
  1757. * sched_exec - execve() is a valuable balancing opportunity, because at
  1758. * this point the task has the smallest effective memory and cache footprint.
  1759. */
  1760. void sched_exec(void)
  1761. {
  1762. struct task_struct *p = current;
  1763. unsigned long flags;
  1764. int dest_cpu;
  1765. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1766. dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
  1767. if (dest_cpu == smp_processor_id())
  1768. goto unlock;
  1769. if (likely(cpu_active(dest_cpu))) {
  1770. struct migration_arg arg = { p, dest_cpu };
  1771. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1772. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  1773. return;
  1774. }
  1775. unlock:
  1776. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1777. }
  1778. #endif
  1779. DEFINE_PER_CPU(struct kernel_stat, kstat);
  1780. DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
  1781. EXPORT_PER_CPU_SYMBOL(kstat);
  1782. EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
  1783. /*
  1784. * Return any ns on the sched_clock that have not yet been accounted in
  1785. * @p in case that task is currently running.
  1786. *
  1787. * Called with task_rq_lock() held on @rq.
  1788. */
  1789. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  1790. {
  1791. u64 ns = 0;
  1792. if (task_current(rq, p)) {
  1793. update_rq_clock(rq);
  1794. ns = rq_clock_task(rq) - p->se.exec_start;
  1795. if ((s64)ns < 0)
  1796. ns = 0;
  1797. }
  1798. return ns;
  1799. }
  1800. unsigned long long task_delta_exec(struct task_struct *p)
  1801. {
  1802. unsigned long flags;
  1803. struct rq *rq;
  1804. u64 ns = 0;
  1805. rq = task_rq_lock(p, &flags);
  1806. ns = do_task_delta_exec(p, rq);
  1807. task_rq_unlock(rq, p, &flags);
  1808. return ns;
  1809. }
  1810. /*
  1811. * Return accounted runtime for the task.
  1812. * In case the task is currently running, return the runtime plus current's
  1813. * pending runtime that have not been accounted yet.
  1814. */
  1815. unsigned long long task_sched_runtime(struct task_struct *p)
  1816. {
  1817. unsigned long flags;
  1818. struct rq *rq;
  1819. u64 ns = 0;
  1820. rq = task_rq_lock(p, &flags);
  1821. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  1822. task_rq_unlock(rq, p, &flags);
  1823. return ns;
  1824. }
  1825. /*
  1826. * This function gets called by the timer code, with HZ frequency.
  1827. * We call it with interrupts disabled.
  1828. */
  1829. void scheduler_tick(void)
  1830. {
  1831. int cpu = smp_processor_id();
  1832. struct rq *rq = cpu_rq(cpu);
  1833. struct task_struct *curr = rq->curr;
  1834. sched_clock_tick();
  1835. raw_spin_lock(&rq->lock);
  1836. update_rq_clock(rq);
  1837. curr->sched_class->task_tick(rq, curr, 0);
  1838. update_cpu_load_active(rq);
  1839. raw_spin_unlock(&rq->lock);
  1840. perf_event_task_tick();
  1841. #ifdef CONFIG_SMP
  1842. rq->idle_balance = idle_cpu(cpu);
  1843. trigger_load_balance(rq, cpu);
  1844. #endif
  1845. rq_last_tick_reset(rq);
  1846. }
  1847. #ifdef CONFIG_NO_HZ_FULL
  1848. /**
  1849. * scheduler_tick_max_deferment
  1850. *
  1851. * Keep at least one tick per second when a single
  1852. * active task is running because the scheduler doesn't
  1853. * yet completely support full dynticks environment.
  1854. *
  1855. * This makes sure that uptime, CFS vruntime, load
  1856. * balancing, etc... continue to move forward, even
  1857. * with a very low granularity.
  1858. *
  1859. * Return: Maximum deferment in nanoseconds.
  1860. */
  1861. u64 scheduler_tick_max_deferment(void)
  1862. {
  1863. struct rq *rq = this_rq();
  1864. unsigned long next, now = ACCESS_ONCE(jiffies);
  1865. next = rq->last_sched_tick + HZ;
  1866. if (time_before_eq(next, now))
  1867. return 0;
  1868. return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
  1869. }
  1870. #endif
  1871. notrace unsigned long get_parent_ip(unsigned long addr)
  1872. {
  1873. if (in_lock_functions(addr)) {
  1874. addr = CALLER_ADDR2;
  1875. if (in_lock_functions(addr))
  1876. addr = CALLER_ADDR3;
  1877. }
  1878. return addr;
  1879. }
  1880. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  1881. defined(CONFIG_PREEMPT_TRACER))
  1882. void __kprobes preempt_count_add(int val)
  1883. {
  1884. #ifdef CONFIG_DEBUG_PREEMPT
  1885. /*
  1886. * Underflow?
  1887. */
  1888. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  1889. return;
  1890. #endif
  1891. __preempt_count_add(val);
  1892. #ifdef CONFIG_DEBUG_PREEMPT
  1893. /*
  1894. * Spinlock count overflowing soon?
  1895. */
  1896. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  1897. PREEMPT_MASK - 10);
  1898. #endif
  1899. if (preempt_count() == val)
  1900. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  1901. }
  1902. EXPORT_SYMBOL(preempt_count_add);
  1903. void __kprobes preempt_count_sub(int val)
  1904. {
  1905. #ifdef CONFIG_DEBUG_PREEMPT
  1906. /*
  1907. * Underflow?
  1908. */
  1909. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  1910. return;
  1911. /*
  1912. * Is the spinlock portion underflowing?
  1913. */
  1914. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  1915. !(preempt_count() & PREEMPT_MASK)))
  1916. return;
  1917. #endif
  1918. if (preempt_count() == val)
  1919. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  1920. __preempt_count_sub(val);
  1921. }
  1922. EXPORT_SYMBOL(preempt_count_sub);
  1923. #endif
  1924. /*
  1925. * Print scheduling while atomic bug:
  1926. */
  1927. static noinline void __schedule_bug(struct task_struct *prev)
  1928. {
  1929. if (oops_in_progress)
  1930. return;
  1931. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  1932. prev->comm, prev->pid, preempt_count());
  1933. debug_show_held_locks(prev);
  1934. print_modules();
  1935. if (irqs_disabled())
  1936. print_irqtrace_events(prev);
  1937. dump_stack();
  1938. add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
  1939. }
  1940. /*
  1941. * Various schedule()-time debugging checks and statistics:
  1942. */
  1943. static inline void schedule_debug(struct task_struct *prev)
  1944. {
  1945. /*
  1946. * Test if we are atomic. Since do_exit() needs to call into
  1947. * schedule() atomically, we ignore that path for now.
  1948. * Otherwise, whine if we are scheduling when we should not be.
  1949. */
  1950. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  1951. __schedule_bug(prev);
  1952. rcu_sleep_check();
  1953. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  1954. schedstat_inc(this_rq(), sched_count);
  1955. }
  1956. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  1957. {
  1958. if (prev->on_rq || rq->skip_clock_update < 0)
  1959. update_rq_clock(rq);
  1960. prev->sched_class->put_prev_task(rq, prev);
  1961. }
  1962. /*
  1963. * Pick up the highest-prio task:
  1964. */
  1965. static inline struct task_struct *
  1966. pick_next_task(struct rq *rq)
  1967. {
  1968. const struct sched_class *class;
  1969. struct task_struct *p;
  1970. /*
  1971. * Optimization: we know that if all tasks are in
  1972. * the fair class we can call that function directly:
  1973. */
  1974. if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
  1975. p = fair_sched_class.pick_next_task(rq);
  1976. if (likely(p))
  1977. return p;
  1978. }
  1979. for_each_class(class) {
  1980. p = class->pick_next_task(rq);
  1981. if (p)
  1982. return p;
  1983. }
  1984. BUG(); /* the idle class will always have a runnable task */
  1985. }
  1986. /*
  1987. * __schedule() is the main scheduler function.
  1988. *
  1989. * The main means of driving the scheduler and thus entering this function are:
  1990. *
  1991. * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
  1992. *
  1993. * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
  1994. * paths. For example, see arch/x86/entry_64.S.
  1995. *
  1996. * To drive preemption between tasks, the scheduler sets the flag in timer
  1997. * interrupt handler scheduler_tick().
  1998. *
  1999. * 3. Wakeups don't really cause entry into schedule(). They add a
  2000. * task to the run-queue and that's it.
  2001. *
  2002. * Now, if the new task added to the run-queue preempts the current
  2003. * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
  2004. * called on the nearest possible occasion:
  2005. *
  2006. * - If the kernel is preemptible (CONFIG_PREEMPT=y):
  2007. *
  2008. * - in syscall or exception context, at the next outmost
  2009. * preempt_enable(). (this might be as soon as the wake_up()'s
  2010. * spin_unlock()!)
  2011. *
  2012. * - in IRQ context, return from interrupt-handler to
  2013. * preemptible context
  2014. *
  2015. * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
  2016. * then at the next:
  2017. *
  2018. * - cond_resched() call
  2019. * - explicit schedule() call
  2020. * - return from syscall or exception to user-space
  2021. * - return from interrupt-handler to user-space
  2022. */
  2023. static void __sched __schedule(void)
  2024. {
  2025. struct task_struct *prev, *next;
  2026. unsigned long *switch_count;
  2027. struct rq *rq;
  2028. int cpu;
  2029. need_resched:
  2030. preempt_disable();
  2031. cpu = smp_processor_id();
  2032. rq = cpu_rq(cpu);
  2033. rcu_note_context_switch(cpu);
  2034. prev = rq->curr;
  2035. schedule_debug(prev);
  2036. if (sched_feat(HRTICK))
  2037. hrtick_clear(rq);
  2038. /*
  2039. * Make sure that signal_pending_state()->signal_pending() below
  2040. * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
  2041. * done by the caller to avoid the race with signal_wake_up().
  2042. */
  2043. smp_mb__before_spinlock();
  2044. raw_spin_lock_irq(&rq->lock);
  2045. switch_count = &prev->nivcsw;
  2046. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2047. if (unlikely(signal_pending_state(prev->state, prev))) {
  2048. prev->state = TASK_RUNNING;
  2049. } else {
  2050. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  2051. prev->on_rq = 0;
  2052. /*
  2053. * If a worker went to sleep, notify and ask workqueue
  2054. * whether it wants to wake up a task to maintain
  2055. * concurrency.
  2056. */
  2057. if (prev->flags & PF_WQ_WORKER) {
  2058. struct task_struct *to_wakeup;
  2059. to_wakeup = wq_worker_sleeping(prev, cpu);
  2060. if (to_wakeup)
  2061. try_to_wake_up_local(to_wakeup);
  2062. }
  2063. }
  2064. switch_count = &prev->nvcsw;
  2065. }
  2066. pre_schedule(rq, prev);
  2067. if (unlikely(!rq->nr_running))
  2068. idle_balance(cpu, rq);
  2069. put_prev_task(rq, prev);
  2070. next = pick_next_task(rq);
  2071. clear_tsk_need_resched(prev);
  2072. clear_preempt_need_resched();
  2073. rq->skip_clock_update = 0;
  2074. if (likely(prev != next)) {
  2075. rq->nr_switches++;
  2076. rq->curr = next;
  2077. ++*switch_count;
  2078. context_switch(rq, prev, next); /* unlocks the rq */
  2079. /*
  2080. * The context switch have flipped the stack from under us
  2081. * and restored the local variables which were saved when
  2082. * this task called schedule() in the past. prev == current
  2083. * is still correct, but it can be moved to another cpu/rq.
  2084. */
  2085. cpu = smp_processor_id();
  2086. rq = cpu_rq(cpu);
  2087. } else
  2088. raw_spin_unlock_irq(&rq->lock);
  2089. post_schedule(rq);
  2090. sched_preempt_enable_no_resched();
  2091. if (need_resched())
  2092. goto need_resched;
  2093. }
  2094. static inline void sched_submit_work(struct task_struct *tsk)
  2095. {
  2096. if (!tsk->state || tsk_is_pi_blocked(tsk))
  2097. return;
  2098. /*
  2099. * If we are going to sleep and we have plugged IO queued,
  2100. * make sure to submit it to avoid deadlocks.
  2101. */
  2102. if (blk_needs_flush_plug(tsk))
  2103. blk_schedule_flush_plug(tsk);
  2104. }
  2105. asmlinkage void __sched schedule(void)
  2106. {
  2107. struct task_struct *tsk = current;
  2108. sched_submit_work(tsk);
  2109. __schedule();
  2110. }
  2111. EXPORT_SYMBOL(schedule);
  2112. #ifdef CONFIG_CONTEXT_TRACKING
  2113. asmlinkage void __sched schedule_user(void)
  2114. {
  2115. /*
  2116. * If we come here after a random call to set_need_resched(),
  2117. * or we have been woken up remotely but the IPI has not yet arrived,
  2118. * we haven't yet exited the RCU idle mode. Do it here manually until
  2119. * we find a better solution.
  2120. */
  2121. user_exit();
  2122. schedule();
  2123. user_enter();
  2124. }
  2125. #endif
  2126. /**
  2127. * schedule_preempt_disabled - called with preemption disabled
  2128. *
  2129. * Returns with preemption disabled. Note: preempt_count must be 1
  2130. */
  2131. void __sched schedule_preempt_disabled(void)
  2132. {
  2133. sched_preempt_enable_no_resched();
  2134. schedule();
  2135. preempt_disable();
  2136. }
  2137. #ifdef CONFIG_PREEMPT
  2138. /*
  2139. * this is the entry point to schedule() from in-kernel preemption
  2140. * off of preempt_enable. Kernel preemptions off return from interrupt
  2141. * occur there and call schedule directly.
  2142. */
  2143. asmlinkage void __sched notrace preempt_schedule(void)
  2144. {
  2145. /*
  2146. * If there is a non-zero preempt_count or interrupts are disabled,
  2147. * we do not want to preempt the current task. Just return..
  2148. */
  2149. if (likely(!preemptible()))
  2150. return;
  2151. do {
  2152. __preempt_count_add(PREEMPT_ACTIVE);
  2153. __schedule();
  2154. __preempt_count_sub(PREEMPT_ACTIVE);
  2155. /*
  2156. * Check again in case we missed a preemption opportunity
  2157. * between schedule and now.
  2158. */
  2159. barrier();
  2160. } while (need_resched());
  2161. }
  2162. EXPORT_SYMBOL(preempt_schedule);
  2163. /*
  2164. * this is the entry point to schedule() from kernel preemption
  2165. * off of irq context.
  2166. * Note, that this is called and return with irqs disabled. This will
  2167. * protect us against recursive calling from irq.
  2168. */
  2169. asmlinkage void __sched preempt_schedule_irq(void)
  2170. {
  2171. enum ctx_state prev_state;
  2172. /* Catch callers which need to be fixed */
  2173. BUG_ON(preempt_count() || !irqs_disabled());
  2174. prev_state = exception_enter();
  2175. do {
  2176. __preempt_count_add(PREEMPT_ACTIVE);
  2177. local_irq_enable();
  2178. __schedule();
  2179. local_irq_disable();
  2180. __preempt_count_sub(PREEMPT_ACTIVE);
  2181. /*
  2182. * Check again in case we missed a preemption opportunity
  2183. * between schedule and now.
  2184. */
  2185. barrier();
  2186. } while (need_resched());
  2187. exception_exit(prev_state);
  2188. }
  2189. #endif /* CONFIG_PREEMPT */
  2190. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  2191. void *key)
  2192. {
  2193. return try_to_wake_up(curr->private, mode, wake_flags);
  2194. }
  2195. EXPORT_SYMBOL(default_wake_function);
  2196. /*
  2197. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  2198. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  2199. * number) then we wake all the non-exclusive tasks and one exclusive task.
  2200. *
  2201. * There are circumstances in which we can try to wake a task which has already
  2202. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  2203. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  2204. */
  2205. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  2206. int nr_exclusive, int wake_flags, void *key)
  2207. {
  2208. wait_queue_t *curr, *next;
  2209. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  2210. unsigned flags = curr->flags;
  2211. if (curr->func(curr, mode, wake_flags, key) &&
  2212. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  2213. break;
  2214. }
  2215. }
  2216. /**
  2217. * __wake_up - wake up threads blocked on a waitqueue.
  2218. * @q: the waitqueue
  2219. * @mode: which threads
  2220. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  2221. * @key: is directly passed to the wakeup function
  2222. *
  2223. * It may be assumed that this function implies a write memory barrier before
  2224. * changing the task state if and only if any tasks are woken up.
  2225. */
  2226. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  2227. int nr_exclusive, void *key)
  2228. {
  2229. unsigned long flags;
  2230. spin_lock_irqsave(&q->lock, flags);
  2231. __wake_up_common(q, mode, nr_exclusive, 0, key);
  2232. spin_unlock_irqrestore(&q->lock, flags);
  2233. }
  2234. EXPORT_SYMBOL(__wake_up);
  2235. /*
  2236. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  2237. */
  2238. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
  2239. {
  2240. __wake_up_common(q, mode, nr, 0, NULL);
  2241. }
  2242. EXPORT_SYMBOL_GPL(__wake_up_locked);
  2243. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  2244. {
  2245. __wake_up_common(q, mode, 1, 0, key);
  2246. }
  2247. EXPORT_SYMBOL_GPL(__wake_up_locked_key);
  2248. /**
  2249. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  2250. * @q: the waitqueue
  2251. * @mode: which threads
  2252. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  2253. * @key: opaque value to be passed to wakeup targets
  2254. *
  2255. * The sync wakeup differs that the waker knows that it will schedule
  2256. * away soon, so while the target thread will be woken up, it will not
  2257. * be migrated to another CPU - ie. the two threads are 'synchronized'
  2258. * with each other. This can prevent needless bouncing between CPUs.
  2259. *
  2260. * On UP it can prevent extra preemption.
  2261. *
  2262. * It may be assumed that this function implies a write memory barrier before
  2263. * changing the task state if and only if any tasks are woken up.
  2264. */
  2265. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  2266. int nr_exclusive, void *key)
  2267. {
  2268. unsigned long flags;
  2269. int wake_flags = WF_SYNC;
  2270. if (unlikely(!q))
  2271. return;
  2272. if (unlikely(nr_exclusive != 1))
  2273. wake_flags = 0;
  2274. spin_lock_irqsave(&q->lock, flags);
  2275. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  2276. spin_unlock_irqrestore(&q->lock, flags);
  2277. }
  2278. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  2279. /*
  2280. * __wake_up_sync - see __wake_up_sync_key()
  2281. */
  2282. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  2283. {
  2284. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  2285. }
  2286. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  2287. /**
  2288. * complete: - signals a single thread waiting on this completion
  2289. * @x: holds the state of this particular completion
  2290. *
  2291. * This will wake up a single thread waiting on this completion. Threads will be
  2292. * awakened in the same order in which they were queued.
  2293. *
  2294. * See also complete_all(), wait_for_completion() and related routines.
  2295. *
  2296. * It may be assumed that this function implies a write memory barrier before
  2297. * changing the task state if and only if any tasks are woken up.
  2298. */
  2299. void complete(struct completion *x)
  2300. {
  2301. unsigned long flags;
  2302. spin_lock_irqsave(&x->wait.lock, flags);
  2303. x->done++;
  2304. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  2305. spin_unlock_irqrestore(&x->wait.lock, flags);
  2306. }
  2307. EXPORT_SYMBOL(complete);
  2308. /**
  2309. * complete_all: - signals all threads waiting on this completion
  2310. * @x: holds the state of this particular completion
  2311. *
  2312. * This will wake up all threads waiting on this particular completion event.
  2313. *
  2314. * It may be assumed that this function implies a write memory barrier before
  2315. * changing the task state if and only if any tasks are woken up.
  2316. */
  2317. void complete_all(struct completion *x)
  2318. {
  2319. unsigned long flags;
  2320. spin_lock_irqsave(&x->wait.lock, flags);
  2321. x->done += UINT_MAX/2;
  2322. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  2323. spin_unlock_irqrestore(&x->wait.lock, flags);
  2324. }
  2325. EXPORT_SYMBOL(complete_all);
  2326. static inline long __sched
  2327. do_wait_for_common(struct completion *x,
  2328. long (*action)(long), long timeout, int state)
  2329. {
  2330. if (!x->done) {
  2331. DECLARE_WAITQUEUE(wait, current);
  2332. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  2333. do {
  2334. if (signal_pending_state(state, current)) {
  2335. timeout = -ERESTARTSYS;
  2336. break;
  2337. }
  2338. __set_current_state(state);
  2339. spin_unlock_irq(&x->wait.lock);
  2340. timeout = action(timeout);
  2341. spin_lock_irq(&x->wait.lock);
  2342. } while (!x->done && timeout);
  2343. __remove_wait_queue(&x->wait, &wait);
  2344. if (!x->done)
  2345. return timeout;
  2346. }
  2347. x->done--;
  2348. return timeout ?: 1;
  2349. }
  2350. static inline long __sched
  2351. __wait_for_common(struct completion *x,
  2352. long (*action)(long), long timeout, int state)
  2353. {
  2354. might_sleep();
  2355. spin_lock_irq(&x->wait.lock);
  2356. timeout = do_wait_for_common(x, action, timeout, state);
  2357. spin_unlock_irq(&x->wait.lock);
  2358. return timeout;
  2359. }
  2360. static long __sched
  2361. wait_for_common(struct completion *x, long timeout, int state)
  2362. {
  2363. return __wait_for_common(x, schedule_timeout, timeout, state);
  2364. }
  2365. static long __sched
  2366. wait_for_common_io(struct completion *x, long timeout, int state)
  2367. {
  2368. return __wait_for_common(x, io_schedule_timeout, timeout, state);
  2369. }
  2370. /**
  2371. * wait_for_completion: - waits for completion of a task
  2372. * @x: holds the state of this particular completion
  2373. *
  2374. * This waits to be signaled for completion of a specific task. It is NOT
  2375. * interruptible and there is no timeout.
  2376. *
  2377. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  2378. * and interrupt capability. Also see complete().
  2379. */
  2380. void __sched wait_for_completion(struct completion *x)
  2381. {
  2382. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  2383. }
  2384. EXPORT_SYMBOL(wait_for_completion);
  2385. /**
  2386. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  2387. * @x: holds the state of this particular completion
  2388. * @timeout: timeout value in jiffies
  2389. *
  2390. * This waits for either a completion of a specific task to be signaled or for a
  2391. * specified timeout to expire. The timeout is in jiffies. It is not
  2392. * interruptible.
  2393. *
  2394. * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
  2395. * till timeout) if completed.
  2396. */
  2397. unsigned long __sched
  2398. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  2399. {
  2400. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  2401. }
  2402. EXPORT_SYMBOL(wait_for_completion_timeout);
  2403. /**
  2404. * wait_for_completion_io: - waits for completion of a task
  2405. * @x: holds the state of this particular completion
  2406. *
  2407. * This waits to be signaled for completion of a specific task. It is NOT
  2408. * interruptible and there is no timeout. The caller is accounted as waiting
  2409. * for IO.
  2410. */
  2411. void __sched wait_for_completion_io(struct completion *x)
  2412. {
  2413. wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  2414. }
  2415. EXPORT_SYMBOL(wait_for_completion_io);
  2416. /**
  2417. * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
  2418. * @x: holds the state of this particular completion
  2419. * @timeout: timeout value in jiffies
  2420. *
  2421. * This waits for either a completion of a specific task to be signaled or for a
  2422. * specified timeout to expire. The timeout is in jiffies. It is not
  2423. * interruptible. The caller is accounted as waiting for IO.
  2424. *
  2425. * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
  2426. * till timeout) if completed.
  2427. */
  2428. unsigned long __sched
  2429. wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
  2430. {
  2431. return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
  2432. }
  2433. EXPORT_SYMBOL(wait_for_completion_io_timeout);
  2434. /**
  2435. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  2436. * @x: holds the state of this particular completion
  2437. *
  2438. * This waits for completion of a specific task to be signaled. It is
  2439. * interruptible.
  2440. *
  2441. * Return: -ERESTARTSYS if interrupted, 0 if completed.
  2442. */
  2443. int __sched wait_for_completion_interruptible(struct completion *x)
  2444. {
  2445. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  2446. if (t == -ERESTARTSYS)
  2447. return t;
  2448. return 0;
  2449. }
  2450. EXPORT_SYMBOL(wait_for_completion_interruptible);
  2451. /**
  2452. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  2453. * @x: holds the state of this particular completion
  2454. * @timeout: timeout value in jiffies
  2455. *
  2456. * This waits for either a completion of a specific task to be signaled or for a
  2457. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  2458. *
  2459. * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
  2460. * or number of jiffies left till timeout) if completed.
  2461. */
  2462. long __sched
  2463. wait_for_completion_interruptible_timeout(struct completion *x,
  2464. unsigned long timeout)
  2465. {
  2466. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  2467. }
  2468. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  2469. /**
  2470. * wait_for_completion_killable: - waits for completion of a task (killable)
  2471. * @x: holds the state of this particular completion
  2472. *
  2473. * This waits to be signaled for completion of a specific task. It can be
  2474. * interrupted by a kill signal.
  2475. *
  2476. * Return: -ERESTARTSYS if interrupted, 0 if completed.
  2477. */
  2478. int __sched wait_for_completion_killable(struct completion *x)
  2479. {
  2480. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  2481. if (t == -ERESTARTSYS)
  2482. return t;
  2483. return 0;
  2484. }
  2485. EXPORT_SYMBOL(wait_for_completion_killable);
  2486. /**
  2487. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  2488. * @x: holds the state of this particular completion
  2489. * @timeout: timeout value in jiffies
  2490. *
  2491. * This waits for either a completion of a specific task to be
  2492. * signaled or for a specified timeout to expire. It can be
  2493. * interrupted by a kill signal. The timeout is in jiffies.
  2494. *
  2495. * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
  2496. * or number of jiffies left till timeout) if completed.
  2497. */
  2498. long __sched
  2499. wait_for_completion_killable_timeout(struct completion *x,
  2500. unsigned long timeout)
  2501. {
  2502. return wait_for_common(x, timeout, TASK_KILLABLE);
  2503. }
  2504. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  2505. /**
  2506. * try_wait_for_completion - try to decrement a completion without blocking
  2507. * @x: completion structure
  2508. *
  2509. * Return: 0 if a decrement cannot be done without blocking
  2510. * 1 if a decrement succeeded.
  2511. *
  2512. * If a completion is being used as a counting completion,
  2513. * attempt to decrement the counter without blocking. This
  2514. * enables us to avoid waiting if the resource the completion
  2515. * is protecting is not available.
  2516. */
  2517. bool try_wait_for_completion(struct completion *x)
  2518. {
  2519. unsigned long flags;
  2520. int ret = 1;
  2521. spin_lock_irqsave(&x->wait.lock, flags);
  2522. if (!x->done)
  2523. ret = 0;
  2524. else
  2525. x->done--;
  2526. spin_unlock_irqrestore(&x->wait.lock, flags);
  2527. return ret;
  2528. }
  2529. EXPORT_SYMBOL(try_wait_for_completion);
  2530. /**
  2531. * completion_done - Test to see if a completion has any waiters
  2532. * @x: completion structure
  2533. *
  2534. * Return: 0 if there are waiters (wait_for_completion() in progress)
  2535. * 1 if there are no waiters.
  2536. *
  2537. */
  2538. bool completion_done(struct completion *x)
  2539. {
  2540. unsigned long flags;
  2541. int ret = 1;
  2542. spin_lock_irqsave(&x->wait.lock, flags);
  2543. if (!x->done)
  2544. ret = 0;
  2545. spin_unlock_irqrestore(&x->wait.lock, flags);
  2546. return ret;
  2547. }
  2548. EXPORT_SYMBOL(completion_done);
  2549. static long __sched
  2550. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  2551. {
  2552. unsigned long flags;
  2553. wait_queue_t wait;
  2554. init_waitqueue_entry(&wait, current);
  2555. __set_current_state(state);
  2556. spin_lock_irqsave(&q->lock, flags);
  2557. __add_wait_queue(q, &wait);
  2558. spin_unlock(&q->lock);
  2559. timeout = schedule_timeout(timeout);
  2560. spin_lock_irq(&q->lock);
  2561. __remove_wait_queue(q, &wait);
  2562. spin_unlock_irqrestore(&q->lock, flags);
  2563. return timeout;
  2564. }
  2565. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  2566. {
  2567. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  2568. }
  2569. EXPORT_SYMBOL(interruptible_sleep_on);
  2570. long __sched
  2571. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  2572. {
  2573. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  2574. }
  2575. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  2576. void __sched sleep_on(wait_queue_head_t *q)
  2577. {
  2578. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  2579. }
  2580. EXPORT_SYMBOL(sleep_on);
  2581. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  2582. {
  2583. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  2584. }
  2585. EXPORT_SYMBOL(sleep_on_timeout);
  2586. #ifdef CONFIG_RT_MUTEXES
  2587. /*
  2588. * rt_mutex_setprio - set the current priority of a task
  2589. * @p: task
  2590. * @prio: prio value (kernel-internal form)
  2591. *
  2592. * This function changes the 'effective' priority of a task. It does
  2593. * not touch ->normal_prio like __setscheduler().
  2594. *
  2595. * Used by the rt_mutex code to implement priority inheritance logic.
  2596. */
  2597. void rt_mutex_setprio(struct task_struct *p, int prio)
  2598. {
  2599. int oldprio, on_rq, running;
  2600. struct rq *rq;
  2601. const struct sched_class *prev_class;
  2602. BUG_ON(prio < 0 || prio > MAX_PRIO);
  2603. rq = __task_rq_lock(p);
  2604. /*
  2605. * Idle task boosting is a nono in general. There is one
  2606. * exception, when PREEMPT_RT and NOHZ is active:
  2607. *
  2608. * The idle task calls get_next_timer_interrupt() and holds
  2609. * the timer wheel base->lock on the CPU and another CPU wants
  2610. * to access the timer (probably to cancel it). We can safely
  2611. * ignore the boosting request, as the idle CPU runs this code
  2612. * with interrupts disabled and will complete the lock
  2613. * protected section without being interrupted. So there is no
  2614. * real need to boost.
  2615. */
  2616. if (unlikely(p == rq->idle)) {
  2617. WARN_ON(p != rq->curr);
  2618. WARN_ON(p->pi_blocked_on);
  2619. goto out_unlock;
  2620. }
  2621. trace_sched_pi_setprio(p, prio);
  2622. oldprio = p->prio;
  2623. prev_class = p->sched_class;
  2624. on_rq = p->on_rq;
  2625. running = task_current(rq, p);
  2626. if (on_rq)
  2627. dequeue_task(rq, p, 0);
  2628. if (running)
  2629. p->sched_class->put_prev_task(rq, p);
  2630. if (rt_prio(prio))
  2631. p->sched_class = &rt_sched_class;
  2632. else
  2633. p->sched_class = &fair_sched_class;
  2634. p->prio = prio;
  2635. if (running)
  2636. p->sched_class->set_curr_task(rq);
  2637. if (on_rq)
  2638. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  2639. check_class_changed(rq, p, prev_class, oldprio);
  2640. out_unlock:
  2641. __task_rq_unlock(rq);
  2642. }
  2643. #endif
  2644. void set_user_nice(struct task_struct *p, long nice)
  2645. {
  2646. int old_prio, delta, on_rq;
  2647. unsigned long flags;
  2648. struct rq *rq;
  2649. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  2650. return;
  2651. /*
  2652. * We have to be careful, if called from sys_setpriority(),
  2653. * the task might be in the middle of scheduling on another CPU.
  2654. */
  2655. rq = task_rq_lock(p, &flags);
  2656. /*
  2657. * The RT priorities are set via sched_setscheduler(), but we still
  2658. * allow the 'normal' nice value to be set - but as expected
  2659. * it wont have any effect on scheduling until the task is
  2660. * SCHED_FIFO/SCHED_RR:
  2661. */
  2662. if (task_has_rt_policy(p)) {
  2663. p->static_prio = NICE_TO_PRIO(nice);
  2664. goto out_unlock;
  2665. }
  2666. on_rq = p->on_rq;
  2667. if (on_rq)
  2668. dequeue_task(rq, p, 0);
  2669. p->static_prio = NICE_TO_PRIO(nice);
  2670. set_load_weight(p);
  2671. old_prio = p->prio;
  2672. p->prio = effective_prio(p);
  2673. delta = p->prio - old_prio;
  2674. if (on_rq) {
  2675. enqueue_task(rq, p, 0);
  2676. /*
  2677. * If the task increased its priority or is running and
  2678. * lowered its priority, then reschedule its CPU:
  2679. */
  2680. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  2681. resched_task(rq->curr);
  2682. }
  2683. out_unlock:
  2684. task_rq_unlock(rq, p, &flags);
  2685. }
  2686. EXPORT_SYMBOL(set_user_nice);
  2687. /*
  2688. * can_nice - check if a task can reduce its nice value
  2689. * @p: task
  2690. * @nice: nice value
  2691. */
  2692. int can_nice(const struct task_struct *p, const int nice)
  2693. {
  2694. /* convert nice value [19,-20] to rlimit style value [1,40] */
  2695. int nice_rlim = 20 - nice;
  2696. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  2697. capable(CAP_SYS_NICE));
  2698. }
  2699. #ifdef __ARCH_WANT_SYS_NICE
  2700. /*
  2701. * sys_nice - change the priority of the current process.
  2702. * @increment: priority increment
  2703. *
  2704. * sys_setpriority is a more generic, but much slower function that
  2705. * does similar things.
  2706. */
  2707. SYSCALL_DEFINE1(nice, int, increment)
  2708. {
  2709. long nice, retval;
  2710. /*
  2711. * Setpriority might change our priority at the same moment.
  2712. * We don't have to worry. Conceptually one call occurs first
  2713. * and we have a single winner.
  2714. */
  2715. if (increment < -40)
  2716. increment = -40;
  2717. if (increment > 40)
  2718. increment = 40;
  2719. nice = TASK_NICE(current) + increment;
  2720. if (nice < -20)
  2721. nice = -20;
  2722. if (nice > 19)
  2723. nice = 19;
  2724. if (increment < 0 && !can_nice(current, nice))
  2725. return -EPERM;
  2726. retval = security_task_setnice(current, nice);
  2727. if (retval)
  2728. return retval;
  2729. set_user_nice(current, nice);
  2730. return 0;
  2731. }
  2732. #endif
  2733. /**
  2734. * task_prio - return the priority value of a given task.
  2735. * @p: the task in question.
  2736. *
  2737. * Return: The priority value as seen by users in /proc.
  2738. * RT tasks are offset by -200. Normal tasks are centered
  2739. * around 0, value goes from -16 to +15.
  2740. */
  2741. int task_prio(const struct task_struct *p)
  2742. {
  2743. return p->prio - MAX_RT_PRIO;
  2744. }
  2745. /**
  2746. * task_nice - return the nice value of a given task.
  2747. * @p: the task in question.
  2748. *
  2749. * Return: The nice value [ -20 ... 0 ... 19 ].
  2750. */
  2751. int task_nice(const struct task_struct *p)
  2752. {
  2753. return TASK_NICE(p);
  2754. }
  2755. EXPORT_SYMBOL(task_nice);
  2756. /**
  2757. * idle_cpu - is a given cpu idle currently?
  2758. * @cpu: the processor in question.
  2759. *
  2760. * Return: 1 if the CPU is currently idle. 0 otherwise.
  2761. */
  2762. int idle_cpu(int cpu)
  2763. {
  2764. struct rq *rq = cpu_rq(cpu);
  2765. if (rq->curr != rq->idle)
  2766. return 0;
  2767. if (rq->nr_running)
  2768. return 0;
  2769. #ifdef CONFIG_SMP
  2770. if (!llist_empty(&rq->wake_list))
  2771. return 0;
  2772. #endif
  2773. return 1;
  2774. }
  2775. /**
  2776. * idle_task - return the idle task for a given cpu.
  2777. * @cpu: the processor in question.
  2778. *
  2779. * Return: The idle task for the cpu @cpu.
  2780. */
  2781. struct task_struct *idle_task(int cpu)
  2782. {
  2783. return cpu_rq(cpu)->idle;
  2784. }
  2785. /**
  2786. * find_process_by_pid - find a process with a matching PID value.
  2787. * @pid: the pid in question.
  2788. *
  2789. * The task of @pid, if found. %NULL otherwise.
  2790. */
  2791. static struct task_struct *find_process_by_pid(pid_t pid)
  2792. {
  2793. return pid ? find_task_by_vpid(pid) : current;
  2794. }
  2795. /* Actually do priority change: must hold rq lock. */
  2796. static void
  2797. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  2798. {
  2799. p->policy = policy;
  2800. p->rt_priority = prio;
  2801. p->normal_prio = normal_prio(p);
  2802. /* we are holding p->pi_lock already */
  2803. p->prio = rt_mutex_getprio(p);
  2804. if (rt_prio(p->prio))
  2805. p->sched_class = &rt_sched_class;
  2806. else
  2807. p->sched_class = &fair_sched_class;
  2808. set_load_weight(p);
  2809. }
  2810. /*
  2811. * check the target process has a UID that matches the current process's
  2812. */
  2813. static bool check_same_owner(struct task_struct *p)
  2814. {
  2815. const struct cred *cred = current_cred(), *pcred;
  2816. bool match;
  2817. rcu_read_lock();
  2818. pcred = __task_cred(p);
  2819. match = (uid_eq(cred->euid, pcred->euid) ||
  2820. uid_eq(cred->euid, pcred->uid));
  2821. rcu_read_unlock();
  2822. return match;
  2823. }
  2824. static int __sched_setscheduler(struct task_struct *p, int policy,
  2825. const struct sched_param *param, bool user)
  2826. {
  2827. int retval, oldprio, oldpolicy = -1, on_rq, running;
  2828. unsigned long flags;
  2829. const struct sched_class *prev_class;
  2830. struct rq *rq;
  2831. int reset_on_fork;
  2832. /* may grab non-irq protected spin_locks */
  2833. BUG_ON(in_interrupt());
  2834. recheck:
  2835. /* double check policy once rq lock held */
  2836. if (policy < 0) {
  2837. reset_on_fork = p->sched_reset_on_fork;
  2838. policy = oldpolicy = p->policy;
  2839. } else {
  2840. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  2841. policy &= ~SCHED_RESET_ON_FORK;
  2842. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  2843. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  2844. policy != SCHED_IDLE)
  2845. return -EINVAL;
  2846. }
  2847. /*
  2848. * Valid priorities for SCHED_FIFO and SCHED_RR are
  2849. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  2850. * SCHED_BATCH and SCHED_IDLE is 0.
  2851. */
  2852. if (param->sched_priority < 0 ||
  2853. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  2854. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  2855. return -EINVAL;
  2856. if (rt_policy(policy) != (param->sched_priority != 0))
  2857. return -EINVAL;
  2858. /*
  2859. * Allow unprivileged RT tasks to decrease priority:
  2860. */
  2861. if (user && !capable(CAP_SYS_NICE)) {
  2862. if (rt_policy(policy)) {
  2863. unsigned long rlim_rtprio =
  2864. task_rlimit(p, RLIMIT_RTPRIO);
  2865. /* can't set/change the rt policy */
  2866. if (policy != p->policy && !rlim_rtprio)
  2867. return -EPERM;
  2868. /* can't increase priority */
  2869. if (param->sched_priority > p->rt_priority &&
  2870. param->sched_priority > rlim_rtprio)
  2871. return -EPERM;
  2872. }
  2873. /*
  2874. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  2875. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  2876. */
  2877. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  2878. if (!can_nice(p, TASK_NICE(p)))
  2879. return -EPERM;
  2880. }
  2881. /* can't change other user's priorities */
  2882. if (!check_same_owner(p))
  2883. return -EPERM;
  2884. /* Normal users shall not reset the sched_reset_on_fork flag */
  2885. if (p->sched_reset_on_fork && !reset_on_fork)
  2886. return -EPERM;
  2887. }
  2888. if (user) {
  2889. retval = security_task_setscheduler(p);
  2890. if (retval)
  2891. return retval;
  2892. }
  2893. /*
  2894. * make sure no PI-waiters arrive (or leave) while we are
  2895. * changing the priority of the task:
  2896. *
  2897. * To be able to change p->policy safely, the appropriate
  2898. * runqueue lock must be held.
  2899. */
  2900. rq = task_rq_lock(p, &flags);
  2901. /*
  2902. * Changing the policy of the stop threads its a very bad idea
  2903. */
  2904. if (p == rq->stop) {
  2905. task_rq_unlock(rq, p, &flags);
  2906. return -EINVAL;
  2907. }
  2908. /*
  2909. * If not changing anything there's no need to proceed further:
  2910. */
  2911. if (unlikely(policy == p->policy && (!rt_policy(policy) ||
  2912. param->sched_priority == p->rt_priority))) {
  2913. task_rq_unlock(rq, p, &flags);
  2914. return 0;
  2915. }
  2916. #ifdef CONFIG_RT_GROUP_SCHED
  2917. if (user) {
  2918. /*
  2919. * Do not allow realtime tasks into groups that have no runtime
  2920. * assigned.
  2921. */
  2922. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  2923. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  2924. !task_group_is_autogroup(task_group(p))) {
  2925. task_rq_unlock(rq, p, &flags);
  2926. return -EPERM;
  2927. }
  2928. }
  2929. #endif
  2930. /* recheck policy now with rq lock held */
  2931. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  2932. policy = oldpolicy = -1;
  2933. task_rq_unlock(rq, p, &flags);
  2934. goto recheck;
  2935. }
  2936. on_rq = p->on_rq;
  2937. running = task_current(rq, p);
  2938. if (on_rq)
  2939. dequeue_task(rq, p, 0);
  2940. if (running)
  2941. p->sched_class->put_prev_task(rq, p);
  2942. p->sched_reset_on_fork = reset_on_fork;
  2943. oldprio = p->prio;
  2944. prev_class = p->sched_class;
  2945. __setscheduler(rq, p, policy, param->sched_priority);
  2946. if (running)
  2947. p->sched_class->set_curr_task(rq);
  2948. if (on_rq)
  2949. enqueue_task(rq, p, 0);
  2950. check_class_changed(rq, p, prev_class, oldprio);
  2951. task_rq_unlock(rq, p, &flags);
  2952. rt_mutex_adjust_pi(p);
  2953. return 0;
  2954. }
  2955. /**
  2956. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  2957. * @p: the task in question.
  2958. * @policy: new policy.
  2959. * @param: structure containing the new RT priority.
  2960. *
  2961. * Return: 0 on success. An error code otherwise.
  2962. *
  2963. * NOTE that the task may be already dead.
  2964. */
  2965. int sched_setscheduler(struct task_struct *p, int policy,
  2966. const struct sched_param *param)
  2967. {
  2968. return __sched_setscheduler(p, policy, param, true);
  2969. }
  2970. EXPORT_SYMBOL_GPL(sched_setscheduler);
  2971. /**
  2972. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  2973. * @p: the task in question.
  2974. * @policy: new policy.
  2975. * @param: structure containing the new RT priority.
  2976. *
  2977. * Just like sched_setscheduler, only don't bother checking if the
  2978. * current context has permission. For example, this is needed in
  2979. * stop_machine(): we create temporary high priority worker threads,
  2980. * but our caller might not have that capability.
  2981. *
  2982. * Return: 0 on success. An error code otherwise.
  2983. */
  2984. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  2985. const struct sched_param *param)
  2986. {
  2987. return __sched_setscheduler(p, policy, param, false);
  2988. }
  2989. static int
  2990. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  2991. {
  2992. struct sched_param lparam;
  2993. struct task_struct *p;
  2994. int retval;
  2995. if (!param || pid < 0)
  2996. return -EINVAL;
  2997. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  2998. return -EFAULT;
  2999. rcu_read_lock();
  3000. retval = -ESRCH;
  3001. p = find_process_by_pid(pid);
  3002. if (p != NULL)
  3003. retval = sched_setscheduler(p, policy, &lparam);
  3004. rcu_read_unlock();
  3005. return retval;
  3006. }
  3007. /**
  3008. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3009. * @pid: the pid in question.
  3010. * @policy: new policy.
  3011. * @param: structure containing the new RT priority.
  3012. *
  3013. * Return: 0 on success. An error code otherwise.
  3014. */
  3015. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  3016. struct sched_param __user *, param)
  3017. {
  3018. /* negative values for policy are not valid */
  3019. if (policy < 0)
  3020. return -EINVAL;
  3021. return do_sched_setscheduler(pid, policy, param);
  3022. }
  3023. /**
  3024. * sys_sched_setparam - set/change the RT priority of a thread
  3025. * @pid: the pid in question.
  3026. * @param: structure containing the new RT priority.
  3027. *
  3028. * Return: 0 on success. An error code otherwise.
  3029. */
  3030. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3031. {
  3032. return do_sched_setscheduler(pid, -1, param);
  3033. }
  3034. /**
  3035. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3036. * @pid: the pid in question.
  3037. *
  3038. * Return: On success, the policy of the thread. Otherwise, a negative error
  3039. * code.
  3040. */
  3041. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3042. {
  3043. struct task_struct *p;
  3044. int retval;
  3045. if (pid < 0)
  3046. return -EINVAL;
  3047. retval = -ESRCH;
  3048. rcu_read_lock();
  3049. p = find_process_by_pid(pid);
  3050. if (p) {
  3051. retval = security_task_getscheduler(p);
  3052. if (!retval)
  3053. retval = p->policy
  3054. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  3055. }
  3056. rcu_read_unlock();
  3057. return retval;
  3058. }
  3059. /**
  3060. * sys_sched_getparam - get the RT priority of a thread
  3061. * @pid: the pid in question.
  3062. * @param: structure containing the RT priority.
  3063. *
  3064. * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
  3065. * code.
  3066. */
  3067. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  3068. {
  3069. struct sched_param lp;
  3070. struct task_struct *p;
  3071. int retval;
  3072. if (!param || pid < 0)
  3073. return -EINVAL;
  3074. rcu_read_lock();
  3075. p = find_process_by_pid(pid);
  3076. retval = -ESRCH;
  3077. if (!p)
  3078. goto out_unlock;
  3079. retval = security_task_getscheduler(p);
  3080. if (retval)
  3081. goto out_unlock;
  3082. lp.sched_priority = p->rt_priority;
  3083. rcu_read_unlock();
  3084. /*
  3085. * This one might sleep, we cannot do it with a spinlock held ...
  3086. */
  3087. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3088. return retval;
  3089. out_unlock:
  3090. rcu_read_unlock();
  3091. return retval;
  3092. }
  3093. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  3094. {
  3095. cpumask_var_t cpus_allowed, new_mask;
  3096. struct task_struct *p;
  3097. int retval;
  3098. get_online_cpus();
  3099. rcu_read_lock();
  3100. p = find_process_by_pid(pid);
  3101. if (!p) {
  3102. rcu_read_unlock();
  3103. put_online_cpus();
  3104. return -ESRCH;
  3105. }
  3106. /* Prevent p going away */
  3107. get_task_struct(p);
  3108. rcu_read_unlock();
  3109. if (p->flags & PF_NO_SETAFFINITY) {
  3110. retval = -EINVAL;
  3111. goto out_put_task;
  3112. }
  3113. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  3114. retval = -ENOMEM;
  3115. goto out_put_task;
  3116. }
  3117. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  3118. retval = -ENOMEM;
  3119. goto out_free_cpus_allowed;
  3120. }
  3121. retval = -EPERM;
  3122. if (!check_same_owner(p)) {
  3123. rcu_read_lock();
  3124. if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
  3125. rcu_read_unlock();
  3126. goto out_unlock;
  3127. }
  3128. rcu_read_unlock();
  3129. }
  3130. retval = security_task_setscheduler(p);
  3131. if (retval)
  3132. goto out_unlock;
  3133. cpuset_cpus_allowed(p, cpus_allowed);
  3134. cpumask_and(new_mask, in_mask, cpus_allowed);
  3135. again:
  3136. retval = set_cpus_allowed_ptr(p, new_mask);
  3137. if (!retval) {
  3138. cpuset_cpus_allowed(p, cpus_allowed);
  3139. if (!cpumask_subset(new_mask, cpus_allowed)) {
  3140. /*
  3141. * We must have raced with a concurrent cpuset
  3142. * update. Just reset the cpus_allowed to the
  3143. * cpuset's cpus_allowed
  3144. */
  3145. cpumask_copy(new_mask, cpus_allowed);
  3146. goto again;
  3147. }
  3148. }
  3149. out_unlock:
  3150. free_cpumask_var(new_mask);
  3151. out_free_cpus_allowed:
  3152. free_cpumask_var(cpus_allowed);
  3153. out_put_task:
  3154. put_task_struct(p);
  3155. put_online_cpus();
  3156. return retval;
  3157. }
  3158. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3159. struct cpumask *new_mask)
  3160. {
  3161. if (len < cpumask_size())
  3162. cpumask_clear(new_mask);
  3163. else if (len > cpumask_size())
  3164. len = cpumask_size();
  3165. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3166. }
  3167. /**
  3168. * sys_sched_setaffinity - set the cpu affinity of a process
  3169. * @pid: pid of the process
  3170. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3171. * @user_mask_ptr: user-space pointer to the new cpu mask
  3172. *
  3173. * Return: 0 on success. An error code otherwise.
  3174. */
  3175. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  3176. unsigned long __user *, user_mask_ptr)
  3177. {
  3178. cpumask_var_t new_mask;
  3179. int retval;
  3180. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  3181. return -ENOMEM;
  3182. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  3183. if (retval == 0)
  3184. retval = sched_setaffinity(pid, new_mask);
  3185. free_cpumask_var(new_mask);
  3186. return retval;
  3187. }
  3188. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  3189. {
  3190. struct task_struct *p;
  3191. unsigned long flags;
  3192. int retval;
  3193. get_online_cpus();
  3194. rcu_read_lock();
  3195. retval = -ESRCH;
  3196. p = find_process_by_pid(pid);
  3197. if (!p)
  3198. goto out_unlock;
  3199. retval = security_task_getscheduler(p);
  3200. if (retval)
  3201. goto out_unlock;
  3202. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3203. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  3204. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3205. out_unlock:
  3206. rcu_read_unlock();
  3207. put_online_cpus();
  3208. return retval;
  3209. }
  3210. /**
  3211. * sys_sched_getaffinity - get the cpu affinity of a process
  3212. * @pid: pid of the process
  3213. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3214. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3215. *
  3216. * Return: 0 on success. An error code otherwise.
  3217. */
  3218. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  3219. unsigned long __user *, user_mask_ptr)
  3220. {
  3221. int ret;
  3222. cpumask_var_t mask;
  3223. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  3224. return -EINVAL;
  3225. if (len & (sizeof(unsigned long)-1))
  3226. return -EINVAL;
  3227. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  3228. return -ENOMEM;
  3229. ret = sched_getaffinity(pid, mask);
  3230. if (ret == 0) {
  3231. size_t retlen = min_t(size_t, len, cpumask_size());
  3232. if (copy_to_user(user_mask_ptr, mask, retlen))
  3233. ret = -EFAULT;
  3234. else
  3235. ret = retlen;
  3236. }
  3237. free_cpumask_var(mask);
  3238. return ret;
  3239. }
  3240. /**
  3241. * sys_sched_yield - yield the current processor to other threads.
  3242. *
  3243. * This function yields the current CPU to other tasks. If there are no
  3244. * other threads running on this CPU then this function will return.
  3245. *
  3246. * Return: 0.
  3247. */
  3248. SYSCALL_DEFINE0(sched_yield)
  3249. {
  3250. struct rq *rq = this_rq_lock();
  3251. schedstat_inc(rq, yld_count);
  3252. current->sched_class->yield_task(rq);
  3253. /*
  3254. * Since we are going to call schedule() anyway, there's
  3255. * no need to preempt or enable interrupts:
  3256. */
  3257. __release(rq->lock);
  3258. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3259. do_raw_spin_unlock(&rq->lock);
  3260. sched_preempt_enable_no_resched();
  3261. schedule();
  3262. return 0;
  3263. }
  3264. static void __cond_resched(void)
  3265. {
  3266. __preempt_count_add(PREEMPT_ACTIVE);
  3267. __schedule();
  3268. __preempt_count_sub(PREEMPT_ACTIVE);
  3269. }
  3270. int __sched _cond_resched(void)
  3271. {
  3272. if (should_resched()) {
  3273. __cond_resched();
  3274. return 1;
  3275. }
  3276. return 0;
  3277. }
  3278. EXPORT_SYMBOL(_cond_resched);
  3279. /*
  3280. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3281. * call schedule, and on return reacquire the lock.
  3282. *
  3283. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3284. * operations here to prevent schedule() from being called twice (once via
  3285. * spin_unlock(), once by hand).
  3286. */
  3287. int __cond_resched_lock(spinlock_t *lock)
  3288. {
  3289. int resched = should_resched();
  3290. int ret = 0;
  3291. lockdep_assert_held(lock);
  3292. if (spin_needbreak(lock) || resched) {
  3293. spin_unlock(lock);
  3294. if (resched)
  3295. __cond_resched();
  3296. else
  3297. cpu_relax();
  3298. ret = 1;
  3299. spin_lock(lock);
  3300. }
  3301. return ret;
  3302. }
  3303. EXPORT_SYMBOL(__cond_resched_lock);
  3304. int __sched __cond_resched_softirq(void)
  3305. {
  3306. BUG_ON(!in_softirq());
  3307. if (should_resched()) {
  3308. local_bh_enable();
  3309. __cond_resched();
  3310. local_bh_disable();
  3311. return 1;
  3312. }
  3313. return 0;
  3314. }
  3315. EXPORT_SYMBOL(__cond_resched_softirq);
  3316. /**
  3317. * yield - yield the current processor to other threads.
  3318. *
  3319. * Do not ever use this function, there's a 99% chance you're doing it wrong.
  3320. *
  3321. * The scheduler is at all times free to pick the calling task as the most
  3322. * eligible task to run, if removing the yield() call from your code breaks
  3323. * it, its already broken.
  3324. *
  3325. * Typical broken usage is:
  3326. *
  3327. * while (!event)
  3328. * yield();
  3329. *
  3330. * where one assumes that yield() will let 'the other' process run that will
  3331. * make event true. If the current task is a SCHED_FIFO task that will never
  3332. * happen. Never use yield() as a progress guarantee!!
  3333. *
  3334. * If you want to use yield() to wait for something, use wait_event().
  3335. * If you want to use yield() to be 'nice' for others, use cond_resched().
  3336. * If you still want to use yield(), do not!
  3337. */
  3338. void __sched yield(void)
  3339. {
  3340. set_current_state(TASK_RUNNING);
  3341. sys_sched_yield();
  3342. }
  3343. EXPORT_SYMBOL(yield);
  3344. /**
  3345. * yield_to - yield the current processor to another thread in
  3346. * your thread group, or accelerate that thread toward the
  3347. * processor it's on.
  3348. * @p: target task
  3349. * @preempt: whether task preemption is allowed or not
  3350. *
  3351. * It's the caller's job to ensure that the target task struct
  3352. * can't go away on us before we can do any checks.
  3353. *
  3354. * Return:
  3355. * true (>0) if we indeed boosted the target task.
  3356. * false (0) if we failed to boost the target.
  3357. * -ESRCH if there's no task to yield to.
  3358. */
  3359. bool __sched yield_to(struct task_struct *p, bool preempt)
  3360. {
  3361. struct task_struct *curr = current;
  3362. struct rq *rq, *p_rq;
  3363. unsigned long flags;
  3364. int yielded = 0;
  3365. local_irq_save(flags);
  3366. rq = this_rq();
  3367. again:
  3368. p_rq = task_rq(p);
  3369. /*
  3370. * If we're the only runnable task on the rq and target rq also
  3371. * has only one task, there's absolutely no point in yielding.
  3372. */
  3373. if (rq->nr_running == 1 && p_rq->nr_running == 1) {
  3374. yielded = -ESRCH;
  3375. goto out_irq;
  3376. }
  3377. double_rq_lock(rq, p_rq);
  3378. while (task_rq(p) != p_rq) {
  3379. double_rq_unlock(rq, p_rq);
  3380. goto again;
  3381. }
  3382. if (!curr->sched_class->yield_to_task)
  3383. goto out_unlock;
  3384. if (curr->sched_class != p->sched_class)
  3385. goto out_unlock;
  3386. if (task_running(p_rq, p) || p->state)
  3387. goto out_unlock;
  3388. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  3389. if (yielded) {
  3390. schedstat_inc(rq, yld_count);
  3391. /*
  3392. * Make p's CPU reschedule; pick_next_entity takes care of
  3393. * fairness.
  3394. */
  3395. if (preempt && rq != p_rq)
  3396. resched_task(p_rq->curr);
  3397. }
  3398. out_unlock:
  3399. double_rq_unlock(rq, p_rq);
  3400. out_irq:
  3401. local_irq_restore(flags);
  3402. if (yielded > 0)
  3403. schedule();
  3404. return yielded;
  3405. }
  3406. EXPORT_SYMBOL_GPL(yield_to);
  3407. /*
  3408. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3409. * that process accounting knows that this is a task in IO wait state.
  3410. */
  3411. void __sched io_schedule(void)
  3412. {
  3413. struct rq *rq = raw_rq();
  3414. delayacct_blkio_start();
  3415. atomic_inc(&rq->nr_iowait);
  3416. blk_flush_plug(current);
  3417. current->in_iowait = 1;
  3418. schedule();
  3419. current->in_iowait = 0;
  3420. atomic_dec(&rq->nr_iowait);
  3421. delayacct_blkio_end();
  3422. }
  3423. EXPORT_SYMBOL(io_schedule);
  3424. long __sched io_schedule_timeout(long timeout)
  3425. {
  3426. struct rq *rq = raw_rq();
  3427. long ret;
  3428. delayacct_blkio_start();
  3429. atomic_inc(&rq->nr_iowait);
  3430. blk_flush_plug(current);
  3431. current->in_iowait = 1;
  3432. ret = schedule_timeout(timeout);
  3433. current->in_iowait = 0;
  3434. atomic_dec(&rq->nr_iowait);
  3435. delayacct_blkio_end();
  3436. return ret;
  3437. }
  3438. /**
  3439. * sys_sched_get_priority_max - return maximum RT priority.
  3440. * @policy: scheduling class.
  3441. *
  3442. * Return: On success, this syscall returns the maximum
  3443. * rt_priority that can be used by a given scheduling class.
  3444. * On failure, a negative error code is returned.
  3445. */
  3446. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  3447. {
  3448. int ret = -EINVAL;
  3449. switch (policy) {
  3450. case SCHED_FIFO:
  3451. case SCHED_RR:
  3452. ret = MAX_USER_RT_PRIO-1;
  3453. break;
  3454. case SCHED_NORMAL:
  3455. case SCHED_BATCH:
  3456. case SCHED_IDLE:
  3457. ret = 0;
  3458. break;
  3459. }
  3460. return ret;
  3461. }
  3462. /**
  3463. * sys_sched_get_priority_min - return minimum RT priority.
  3464. * @policy: scheduling class.
  3465. *
  3466. * Return: On success, this syscall returns the minimum
  3467. * rt_priority that can be used by a given scheduling class.
  3468. * On failure, a negative error code is returned.
  3469. */
  3470. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  3471. {
  3472. int ret = -EINVAL;
  3473. switch (policy) {
  3474. case SCHED_FIFO:
  3475. case SCHED_RR:
  3476. ret = 1;
  3477. break;
  3478. case SCHED_NORMAL:
  3479. case SCHED_BATCH:
  3480. case SCHED_IDLE:
  3481. ret = 0;
  3482. }
  3483. return ret;
  3484. }
  3485. /**
  3486. * sys_sched_rr_get_interval - return the default timeslice of a process.
  3487. * @pid: pid of the process.
  3488. * @interval: userspace pointer to the timeslice value.
  3489. *
  3490. * this syscall writes the default timeslice value of a given process
  3491. * into the user-space timespec buffer. A value of '0' means infinity.
  3492. *
  3493. * Return: On success, 0 and the timeslice is in @interval. Otherwise,
  3494. * an error code.
  3495. */
  3496. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  3497. struct timespec __user *, interval)
  3498. {
  3499. struct task_struct *p;
  3500. unsigned int time_slice;
  3501. unsigned long flags;
  3502. struct rq *rq;
  3503. int retval;
  3504. struct timespec t;
  3505. if (pid < 0)
  3506. return -EINVAL;
  3507. retval = -ESRCH;
  3508. rcu_read_lock();
  3509. p = find_process_by_pid(pid);
  3510. if (!p)
  3511. goto out_unlock;
  3512. retval = security_task_getscheduler(p);
  3513. if (retval)
  3514. goto out_unlock;
  3515. rq = task_rq_lock(p, &flags);
  3516. time_slice = p->sched_class->get_rr_interval(rq, p);
  3517. task_rq_unlock(rq, p, &flags);
  3518. rcu_read_unlock();
  3519. jiffies_to_timespec(time_slice, &t);
  3520. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  3521. return retval;
  3522. out_unlock:
  3523. rcu_read_unlock();
  3524. return retval;
  3525. }
  3526. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  3527. void sched_show_task(struct task_struct *p)
  3528. {
  3529. unsigned long free = 0;
  3530. int ppid;
  3531. unsigned state;
  3532. state = p->state ? __ffs(p->state) + 1 : 0;
  3533. printk(KERN_INFO "%-15.15s %c", p->comm,
  3534. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  3535. #if BITS_PER_LONG == 32
  3536. if (state == TASK_RUNNING)
  3537. printk(KERN_CONT " running ");
  3538. else
  3539. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  3540. #else
  3541. if (state == TASK_RUNNING)
  3542. printk(KERN_CONT " running task ");
  3543. else
  3544. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  3545. #endif
  3546. #ifdef CONFIG_DEBUG_STACK_USAGE
  3547. free = stack_not_used(p);
  3548. #endif
  3549. rcu_read_lock();
  3550. ppid = task_pid_nr(rcu_dereference(p->real_parent));
  3551. rcu_read_unlock();
  3552. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  3553. task_pid_nr(p), ppid,
  3554. (unsigned long)task_thread_info(p)->flags);
  3555. print_worker_info(KERN_INFO, p);
  3556. show_stack(p, NULL);
  3557. }
  3558. void show_state_filter(unsigned long state_filter)
  3559. {
  3560. struct task_struct *g, *p;
  3561. #if BITS_PER_LONG == 32
  3562. printk(KERN_INFO
  3563. " task PC stack pid father\n");
  3564. #else
  3565. printk(KERN_INFO
  3566. " task PC stack pid father\n");
  3567. #endif
  3568. rcu_read_lock();
  3569. do_each_thread(g, p) {
  3570. /*
  3571. * reset the NMI-timeout, listing all files on a slow
  3572. * console might take a lot of time:
  3573. */
  3574. touch_nmi_watchdog();
  3575. if (!state_filter || (p->state & state_filter))
  3576. sched_show_task(p);
  3577. } while_each_thread(g, p);
  3578. touch_all_softlockup_watchdogs();
  3579. #ifdef CONFIG_SCHED_DEBUG
  3580. sysrq_sched_debug_show();
  3581. #endif
  3582. rcu_read_unlock();
  3583. /*
  3584. * Only show locks if all tasks are dumped:
  3585. */
  3586. if (!state_filter)
  3587. debug_show_all_locks();
  3588. }
  3589. void init_idle_bootup_task(struct task_struct *idle)
  3590. {
  3591. idle->sched_class = &idle_sched_class;
  3592. }
  3593. /**
  3594. * init_idle - set up an idle thread for a given CPU
  3595. * @idle: task in question
  3596. * @cpu: cpu the idle task belongs to
  3597. *
  3598. * NOTE: this function does not set the idle thread's NEED_RESCHED
  3599. * flag, to make booting more robust.
  3600. */
  3601. void init_idle(struct task_struct *idle, int cpu)
  3602. {
  3603. struct rq *rq = cpu_rq(cpu);
  3604. unsigned long flags;
  3605. raw_spin_lock_irqsave(&rq->lock, flags);
  3606. __sched_fork(idle);
  3607. idle->state = TASK_RUNNING;
  3608. idle->se.exec_start = sched_clock();
  3609. do_set_cpus_allowed(idle, cpumask_of(cpu));
  3610. /*
  3611. * We're having a chicken and egg problem, even though we are
  3612. * holding rq->lock, the cpu isn't yet set to this cpu so the
  3613. * lockdep check in task_group() will fail.
  3614. *
  3615. * Similar case to sched_fork(). / Alternatively we could
  3616. * use task_rq_lock() here and obtain the other rq->lock.
  3617. *
  3618. * Silence PROVE_RCU
  3619. */
  3620. rcu_read_lock();
  3621. __set_task_cpu(idle, cpu);
  3622. rcu_read_unlock();
  3623. rq->curr = rq->idle = idle;
  3624. #if defined(CONFIG_SMP)
  3625. idle->on_cpu = 1;
  3626. #endif
  3627. raw_spin_unlock_irqrestore(&rq->lock, flags);
  3628. /* Set the preempt count _outside_ the spinlocks! */
  3629. init_idle_preempt_count(idle, cpu);
  3630. /*
  3631. * The idle tasks have their own, simple scheduling class:
  3632. */
  3633. idle->sched_class = &idle_sched_class;
  3634. ftrace_graph_init_idle_task(idle, cpu);
  3635. vtime_init_idle(idle, cpu);
  3636. #if defined(CONFIG_SMP)
  3637. sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
  3638. #endif
  3639. }
  3640. #ifdef CONFIG_SMP
  3641. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  3642. {
  3643. if (p->sched_class && p->sched_class->set_cpus_allowed)
  3644. p->sched_class->set_cpus_allowed(p, new_mask);
  3645. cpumask_copy(&p->cpus_allowed, new_mask);
  3646. p->nr_cpus_allowed = cpumask_weight(new_mask);
  3647. }
  3648. /*
  3649. * This is how migration works:
  3650. *
  3651. * 1) we invoke migration_cpu_stop() on the target CPU using
  3652. * stop_one_cpu().
  3653. * 2) stopper starts to run (implicitly forcing the migrated thread
  3654. * off the CPU)
  3655. * 3) it checks whether the migrated task is still in the wrong runqueue.
  3656. * 4) if it's in the wrong runqueue then the migration thread removes
  3657. * it and puts it into the right queue.
  3658. * 5) stopper completes and stop_one_cpu() returns and the migration
  3659. * is done.
  3660. */
  3661. /*
  3662. * Change a given task's CPU affinity. Migrate the thread to a
  3663. * proper CPU and schedule it away if the CPU it's executing on
  3664. * is removed from the allowed bitmask.
  3665. *
  3666. * NOTE: the caller must have a valid reference to the task, the
  3667. * task must not exit() & deallocate itself prematurely. The
  3668. * call is not atomic; no spinlocks may be held.
  3669. */
  3670. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  3671. {
  3672. unsigned long flags;
  3673. struct rq *rq;
  3674. unsigned int dest_cpu;
  3675. int ret = 0;
  3676. rq = task_rq_lock(p, &flags);
  3677. if (cpumask_equal(&p->cpus_allowed, new_mask))
  3678. goto out;
  3679. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  3680. ret = -EINVAL;
  3681. goto out;
  3682. }
  3683. do_set_cpus_allowed(p, new_mask);
  3684. /* Can the task run on the task's current CPU? If so, we're done */
  3685. if (cpumask_test_cpu(task_cpu(p), new_mask))
  3686. goto out;
  3687. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  3688. if (p->on_rq) {
  3689. struct migration_arg arg = { p, dest_cpu };
  3690. /* Need help from migration thread: drop lock and wait. */
  3691. task_rq_unlock(rq, p, &flags);
  3692. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  3693. tlb_migrate_finish(p->mm);
  3694. return 0;
  3695. }
  3696. out:
  3697. task_rq_unlock(rq, p, &flags);
  3698. return ret;
  3699. }
  3700. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  3701. /*
  3702. * Move (not current) task off this cpu, onto dest cpu. We're doing
  3703. * this because either it can't run here any more (set_cpus_allowed()
  3704. * away from this CPU, or CPU going down), or because we're
  3705. * attempting to rebalance this task on exec (sched_exec).
  3706. *
  3707. * So we race with normal scheduler movements, but that's OK, as long
  3708. * as the task is no longer on this CPU.
  3709. *
  3710. * Returns non-zero if task was successfully migrated.
  3711. */
  3712. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  3713. {
  3714. struct rq *rq_dest, *rq_src;
  3715. int ret = 0;
  3716. if (unlikely(!cpu_active(dest_cpu)))
  3717. return ret;
  3718. rq_src = cpu_rq(src_cpu);
  3719. rq_dest = cpu_rq(dest_cpu);
  3720. raw_spin_lock(&p->pi_lock);
  3721. double_rq_lock(rq_src, rq_dest);
  3722. /* Already moved. */
  3723. if (task_cpu(p) != src_cpu)
  3724. goto done;
  3725. /* Affinity changed (again). */
  3726. if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  3727. goto fail;
  3728. /*
  3729. * If we're not on a rq, the next wake-up will ensure we're
  3730. * placed properly.
  3731. */
  3732. if (p->on_rq) {
  3733. dequeue_task(rq_src, p, 0);
  3734. set_task_cpu(p, dest_cpu);
  3735. enqueue_task(rq_dest, p, 0);
  3736. check_preempt_curr(rq_dest, p, 0);
  3737. }
  3738. done:
  3739. ret = 1;
  3740. fail:
  3741. double_rq_unlock(rq_src, rq_dest);
  3742. raw_spin_unlock(&p->pi_lock);
  3743. return ret;
  3744. }
  3745. #ifdef CONFIG_NUMA_BALANCING
  3746. /* Migrate current task p to target_cpu */
  3747. int migrate_task_to(struct task_struct *p, int target_cpu)
  3748. {
  3749. struct migration_arg arg = { p, target_cpu };
  3750. int curr_cpu = task_cpu(p);
  3751. if (curr_cpu == target_cpu)
  3752. return 0;
  3753. if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
  3754. return -EINVAL;
  3755. /* TODO: This is not properly updating schedstats */
  3756. return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
  3757. }
  3758. #endif
  3759. /*
  3760. * migration_cpu_stop - this will be executed by a highprio stopper thread
  3761. * and performs thread migration by bumping thread off CPU then
  3762. * 'pushing' onto another runqueue.
  3763. */
  3764. static int migration_cpu_stop(void *data)
  3765. {
  3766. struct migration_arg *arg = data;
  3767. /*
  3768. * The original target cpu might have gone down and we might
  3769. * be on another cpu but it doesn't matter.
  3770. */
  3771. local_irq_disable();
  3772. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  3773. local_irq_enable();
  3774. return 0;
  3775. }
  3776. #ifdef CONFIG_HOTPLUG_CPU
  3777. /*
  3778. * Ensures that the idle task is using init_mm right before its cpu goes
  3779. * offline.
  3780. */
  3781. void idle_task_exit(void)
  3782. {
  3783. struct mm_struct *mm = current->active_mm;
  3784. BUG_ON(cpu_online(smp_processor_id()));
  3785. if (mm != &init_mm)
  3786. switch_mm(mm, &init_mm, current);
  3787. mmdrop(mm);
  3788. }
  3789. /*
  3790. * Since this CPU is going 'away' for a while, fold any nr_active delta
  3791. * we might have. Assumes we're called after migrate_tasks() so that the
  3792. * nr_active count is stable.
  3793. *
  3794. * Also see the comment "Global load-average calculations".
  3795. */
  3796. static void calc_load_migrate(struct rq *rq)
  3797. {
  3798. long delta = calc_load_fold_active(rq);
  3799. if (delta)
  3800. atomic_long_add(delta, &calc_load_tasks);
  3801. }
  3802. /*
  3803. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  3804. * try_to_wake_up()->select_task_rq().
  3805. *
  3806. * Called with rq->lock held even though we'er in stop_machine() and
  3807. * there's no concurrency possible, we hold the required locks anyway
  3808. * because of lock validation efforts.
  3809. */
  3810. static void migrate_tasks(unsigned int dead_cpu)
  3811. {
  3812. struct rq *rq = cpu_rq(dead_cpu);
  3813. struct task_struct *next, *stop = rq->stop;
  3814. int dest_cpu;
  3815. /*
  3816. * Fudge the rq selection such that the below task selection loop
  3817. * doesn't get stuck on the currently eligible stop task.
  3818. *
  3819. * We're currently inside stop_machine() and the rq is either stuck
  3820. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  3821. * either way we should never end up calling schedule() until we're
  3822. * done here.
  3823. */
  3824. rq->stop = NULL;
  3825. /*
  3826. * put_prev_task() and pick_next_task() sched
  3827. * class method both need to have an up-to-date
  3828. * value of rq->clock[_task]
  3829. */
  3830. update_rq_clock(rq);
  3831. for ( ; ; ) {
  3832. /*
  3833. * There's this thread running, bail when that's the only
  3834. * remaining thread.
  3835. */
  3836. if (rq->nr_running == 1)
  3837. break;
  3838. next = pick_next_task(rq);
  3839. BUG_ON(!next);
  3840. next->sched_class->put_prev_task(rq, next);
  3841. /* Find suitable destination for @next, with force if needed. */
  3842. dest_cpu = select_fallback_rq(dead_cpu, next);
  3843. raw_spin_unlock(&rq->lock);
  3844. __migrate_task(next, dead_cpu, dest_cpu);
  3845. raw_spin_lock(&rq->lock);
  3846. }
  3847. rq->stop = stop;
  3848. }
  3849. #endif /* CONFIG_HOTPLUG_CPU */
  3850. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  3851. static struct ctl_table sd_ctl_dir[] = {
  3852. {
  3853. .procname = "sched_domain",
  3854. .mode = 0555,
  3855. },
  3856. {}
  3857. };
  3858. static struct ctl_table sd_ctl_root[] = {
  3859. {
  3860. .procname = "kernel",
  3861. .mode = 0555,
  3862. .child = sd_ctl_dir,
  3863. },
  3864. {}
  3865. };
  3866. static struct ctl_table *sd_alloc_ctl_entry(int n)
  3867. {
  3868. struct ctl_table *entry =
  3869. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  3870. return entry;
  3871. }
  3872. static void sd_free_ctl_entry(struct ctl_table **tablep)
  3873. {
  3874. struct ctl_table *entry;
  3875. /*
  3876. * In the intermediate directories, both the child directory and
  3877. * procname are dynamically allocated and could fail but the mode
  3878. * will always be set. In the lowest directory the names are
  3879. * static strings and all have proc handlers.
  3880. */
  3881. for (entry = *tablep; entry->mode; entry++) {
  3882. if (entry->child)
  3883. sd_free_ctl_entry(&entry->child);
  3884. if (entry->proc_handler == NULL)
  3885. kfree(entry->procname);
  3886. }
  3887. kfree(*tablep);
  3888. *tablep = NULL;
  3889. }
  3890. static int min_load_idx = 0;
  3891. static int max_load_idx = CPU_LOAD_IDX_MAX-1;
  3892. static void
  3893. set_table_entry(struct ctl_table *entry,
  3894. const char *procname, void *data, int maxlen,
  3895. umode_t mode, proc_handler *proc_handler,
  3896. bool load_idx)
  3897. {
  3898. entry->procname = procname;
  3899. entry->data = data;
  3900. entry->maxlen = maxlen;
  3901. entry->mode = mode;
  3902. entry->proc_handler = proc_handler;
  3903. if (load_idx) {
  3904. entry->extra1 = &min_load_idx;
  3905. entry->extra2 = &max_load_idx;
  3906. }
  3907. }
  3908. static struct ctl_table *
  3909. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  3910. {
  3911. struct ctl_table *table = sd_alloc_ctl_entry(13);
  3912. if (table == NULL)
  3913. return NULL;
  3914. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  3915. sizeof(long), 0644, proc_doulongvec_minmax, false);
  3916. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  3917. sizeof(long), 0644, proc_doulongvec_minmax, false);
  3918. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  3919. sizeof(int), 0644, proc_dointvec_minmax, true);
  3920. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  3921. sizeof(int), 0644, proc_dointvec_minmax, true);
  3922. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  3923. sizeof(int), 0644, proc_dointvec_minmax, true);
  3924. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  3925. sizeof(int), 0644, proc_dointvec_minmax, true);
  3926. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  3927. sizeof(int), 0644, proc_dointvec_minmax, true);
  3928. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  3929. sizeof(int), 0644, proc_dointvec_minmax, false);
  3930. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  3931. sizeof(int), 0644, proc_dointvec_minmax, false);
  3932. set_table_entry(&table[9], "cache_nice_tries",
  3933. &sd->cache_nice_tries,
  3934. sizeof(int), 0644, proc_dointvec_minmax, false);
  3935. set_table_entry(&table[10], "flags", &sd->flags,
  3936. sizeof(int), 0644, proc_dointvec_minmax, false);
  3937. set_table_entry(&table[11], "name", sd->name,
  3938. CORENAME_MAX_SIZE, 0444, proc_dostring, false);
  3939. /* &table[12] is terminator */
  3940. return table;
  3941. }
  3942. static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  3943. {
  3944. struct ctl_table *entry, *table;
  3945. struct sched_domain *sd;
  3946. int domain_num = 0, i;
  3947. char buf[32];
  3948. for_each_domain(cpu, sd)
  3949. domain_num++;
  3950. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  3951. if (table == NULL)
  3952. return NULL;
  3953. i = 0;
  3954. for_each_domain(cpu, sd) {
  3955. snprintf(buf, 32, "domain%d", i);
  3956. entry->procname = kstrdup(buf, GFP_KERNEL);
  3957. entry->mode = 0555;
  3958. entry->child = sd_alloc_ctl_domain_table(sd);
  3959. entry++;
  3960. i++;
  3961. }
  3962. return table;
  3963. }
  3964. static struct ctl_table_header *sd_sysctl_header;
  3965. static void register_sched_domain_sysctl(void)
  3966. {
  3967. int i, cpu_num = num_possible_cpus();
  3968. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  3969. char buf[32];
  3970. WARN_ON(sd_ctl_dir[0].child);
  3971. sd_ctl_dir[0].child = entry;
  3972. if (entry == NULL)
  3973. return;
  3974. for_each_possible_cpu(i) {
  3975. snprintf(buf, 32, "cpu%d", i);
  3976. entry->procname = kstrdup(buf, GFP_KERNEL);
  3977. entry->mode = 0555;
  3978. entry->child = sd_alloc_ctl_cpu_table(i);
  3979. entry++;
  3980. }
  3981. WARN_ON(sd_sysctl_header);
  3982. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  3983. }
  3984. /* may be called multiple times per register */
  3985. static void unregister_sched_domain_sysctl(void)
  3986. {
  3987. if (sd_sysctl_header)
  3988. unregister_sysctl_table(sd_sysctl_header);
  3989. sd_sysctl_header = NULL;
  3990. if (sd_ctl_dir[0].child)
  3991. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  3992. }
  3993. #else
  3994. static void register_sched_domain_sysctl(void)
  3995. {
  3996. }
  3997. static void unregister_sched_domain_sysctl(void)
  3998. {
  3999. }
  4000. #endif
  4001. static void set_rq_online(struct rq *rq)
  4002. {
  4003. if (!rq->online) {
  4004. const struct sched_class *class;
  4005. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4006. rq->online = 1;
  4007. for_each_class(class) {
  4008. if (class->rq_online)
  4009. class->rq_online(rq);
  4010. }
  4011. }
  4012. }
  4013. static void set_rq_offline(struct rq *rq)
  4014. {
  4015. if (rq->online) {
  4016. const struct sched_class *class;
  4017. for_each_class(class) {
  4018. if (class->rq_offline)
  4019. class->rq_offline(rq);
  4020. }
  4021. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4022. rq->online = 0;
  4023. }
  4024. }
  4025. /*
  4026. * migration_call - callback that gets triggered when a CPU is added.
  4027. * Here we can start up the necessary migration thread for the new CPU.
  4028. */
  4029. static int
  4030. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4031. {
  4032. int cpu = (long)hcpu;
  4033. unsigned long flags;
  4034. struct rq *rq = cpu_rq(cpu);
  4035. switch (action & ~CPU_TASKS_FROZEN) {
  4036. case CPU_UP_PREPARE:
  4037. rq->calc_load_update = calc_load_update;
  4038. break;
  4039. case CPU_ONLINE:
  4040. /* Update our root-domain */
  4041. raw_spin_lock_irqsave(&rq->lock, flags);
  4042. if (rq->rd) {
  4043. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4044. set_rq_online(rq);
  4045. }
  4046. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4047. break;
  4048. #ifdef CONFIG_HOTPLUG_CPU
  4049. case CPU_DYING:
  4050. sched_ttwu_pending();
  4051. /* Update our root-domain */
  4052. raw_spin_lock_irqsave(&rq->lock, flags);
  4053. if (rq->rd) {
  4054. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4055. set_rq_offline(rq);
  4056. }
  4057. migrate_tasks(cpu);
  4058. BUG_ON(rq->nr_running != 1); /* the migration thread */
  4059. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4060. break;
  4061. case CPU_DEAD:
  4062. calc_load_migrate(rq);
  4063. break;
  4064. #endif
  4065. }
  4066. update_max_interval();
  4067. return NOTIFY_OK;
  4068. }
  4069. /*
  4070. * Register at high priority so that task migration (migrate_all_tasks)
  4071. * happens before everything else. This has to be lower priority than
  4072. * the notifier in the perf_event subsystem, though.
  4073. */
  4074. static struct notifier_block migration_notifier = {
  4075. .notifier_call = migration_call,
  4076. .priority = CPU_PRI_MIGRATION,
  4077. };
  4078. static int sched_cpu_active(struct notifier_block *nfb,
  4079. unsigned long action, void *hcpu)
  4080. {
  4081. switch (action & ~CPU_TASKS_FROZEN) {
  4082. case CPU_STARTING:
  4083. case CPU_DOWN_FAILED:
  4084. set_cpu_active((long)hcpu, true);
  4085. return NOTIFY_OK;
  4086. default:
  4087. return NOTIFY_DONE;
  4088. }
  4089. }
  4090. static int sched_cpu_inactive(struct notifier_block *nfb,
  4091. unsigned long action, void *hcpu)
  4092. {
  4093. switch (action & ~CPU_TASKS_FROZEN) {
  4094. case CPU_DOWN_PREPARE:
  4095. set_cpu_active((long)hcpu, false);
  4096. return NOTIFY_OK;
  4097. default:
  4098. return NOTIFY_DONE;
  4099. }
  4100. }
  4101. static int __init migration_init(void)
  4102. {
  4103. void *cpu = (void *)(long)smp_processor_id();
  4104. int err;
  4105. /* Initialize migration for the boot CPU */
  4106. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4107. BUG_ON(err == NOTIFY_BAD);
  4108. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4109. register_cpu_notifier(&migration_notifier);
  4110. /* Register cpu active notifiers */
  4111. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  4112. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  4113. return 0;
  4114. }
  4115. early_initcall(migration_init);
  4116. #endif
  4117. #ifdef CONFIG_SMP
  4118. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  4119. #ifdef CONFIG_SCHED_DEBUG
  4120. static __read_mostly int sched_debug_enabled;
  4121. static int __init sched_debug_setup(char *str)
  4122. {
  4123. sched_debug_enabled = 1;
  4124. return 0;
  4125. }
  4126. early_param("sched_debug", sched_debug_setup);
  4127. static inline bool sched_debug(void)
  4128. {
  4129. return sched_debug_enabled;
  4130. }
  4131. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  4132. struct cpumask *groupmask)
  4133. {
  4134. struct sched_group *group = sd->groups;
  4135. char str[256];
  4136. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  4137. cpumask_clear(groupmask);
  4138. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4139. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4140. printk("does not load-balance\n");
  4141. if (sd->parent)
  4142. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4143. " has parent");
  4144. return -1;
  4145. }
  4146. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  4147. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  4148. printk(KERN_ERR "ERROR: domain->span does not contain "
  4149. "CPU%d\n", cpu);
  4150. }
  4151. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  4152. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4153. " CPU%d\n", cpu);
  4154. }
  4155. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4156. do {
  4157. if (!group) {
  4158. printk("\n");
  4159. printk(KERN_ERR "ERROR: group is NULL\n");
  4160. break;
  4161. }
  4162. /*
  4163. * Even though we initialize ->power to something semi-sane,
  4164. * we leave power_orig unset. This allows us to detect if
  4165. * domain iteration is still funny without causing /0 traps.
  4166. */
  4167. if (!group->sgp->power_orig) {
  4168. printk(KERN_CONT "\n");
  4169. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4170. "set\n");
  4171. break;
  4172. }
  4173. if (!cpumask_weight(sched_group_cpus(group))) {
  4174. printk(KERN_CONT "\n");
  4175. printk(KERN_ERR "ERROR: empty group\n");
  4176. break;
  4177. }
  4178. if (!(sd->flags & SD_OVERLAP) &&
  4179. cpumask_intersects(groupmask, sched_group_cpus(group))) {
  4180. printk(KERN_CONT "\n");
  4181. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4182. break;
  4183. }
  4184. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  4185. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  4186. printk(KERN_CONT " %s", str);
  4187. if (group->sgp->power != SCHED_POWER_SCALE) {
  4188. printk(KERN_CONT " (cpu_power = %d)",
  4189. group->sgp->power);
  4190. }
  4191. group = group->next;
  4192. } while (group != sd->groups);
  4193. printk(KERN_CONT "\n");
  4194. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  4195. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4196. if (sd->parent &&
  4197. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  4198. printk(KERN_ERR "ERROR: parent span is not a superset "
  4199. "of domain->span\n");
  4200. return 0;
  4201. }
  4202. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4203. {
  4204. int level = 0;
  4205. if (!sched_debug_enabled)
  4206. return;
  4207. if (!sd) {
  4208. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4209. return;
  4210. }
  4211. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4212. for (;;) {
  4213. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  4214. break;
  4215. level++;
  4216. sd = sd->parent;
  4217. if (!sd)
  4218. break;
  4219. }
  4220. }
  4221. #else /* !CONFIG_SCHED_DEBUG */
  4222. # define sched_domain_debug(sd, cpu) do { } while (0)
  4223. static inline bool sched_debug(void)
  4224. {
  4225. return false;
  4226. }
  4227. #endif /* CONFIG_SCHED_DEBUG */
  4228. static int sd_degenerate(struct sched_domain *sd)
  4229. {
  4230. if (cpumask_weight(sched_domain_span(sd)) == 1)
  4231. return 1;
  4232. /* Following flags need at least 2 groups */
  4233. if (sd->flags & (SD_LOAD_BALANCE |
  4234. SD_BALANCE_NEWIDLE |
  4235. SD_BALANCE_FORK |
  4236. SD_BALANCE_EXEC |
  4237. SD_SHARE_CPUPOWER |
  4238. SD_SHARE_PKG_RESOURCES)) {
  4239. if (sd->groups != sd->groups->next)
  4240. return 0;
  4241. }
  4242. /* Following flags don't use groups */
  4243. if (sd->flags & (SD_WAKE_AFFINE))
  4244. return 0;
  4245. return 1;
  4246. }
  4247. static int
  4248. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4249. {
  4250. unsigned long cflags = sd->flags, pflags = parent->flags;
  4251. if (sd_degenerate(parent))
  4252. return 1;
  4253. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  4254. return 0;
  4255. /* Flags needing groups don't count if only 1 group in parent */
  4256. if (parent->groups == parent->groups->next) {
  4257. pflags &= ~(SD_LOAD_BALANCE |
  4258. SD_BALANCE_NEWIDLE |
  4259. SD_BALANCE_FORK |
  4260. SD_BALANCE_EXEC |
  4261. SD_SHARE_CPUPOWER |
  4262. SD_SHARE_PKG_RESOURCES |
  4263. SD_PREFER_SIBLING);
  4264. if (nr_node_ids == 1)
  4265. pflags &= ~SD_SERIALIZE;
  4266. }
  4267. if (~cflags & pflags)
  4268. return 0;
  4269. return 1;
  4270. }
  4271. static void free_rootdomain(struct rcu_head *rcu)
  4272. {
  4273. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  4274. cpupri_cleanup(&rd->cpupri);
  4275. free_cpumask_var(rd->rto_mask);
  4276. free_cpumask_var(rd->online);
  4277. free_cpumask_var(rd->span);
  4278. kfree(rd);
  4279. }
  4280. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  4281. {
  4282. struct root_domain *old_rd = NULL;
  4283. unsigned long flags;
  4284. raw_spin_lock_irqsave(&rq->lock, flags);
  4285. if (rq->rd) {
  4286. old_rd = rq->rd;
  4287. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  4288. set_rq_offline(rq);
  4289. cpumask_clear_cpu(rq->cpu, old_rd->span);
  4290. /*
  4291. * If we dont want to free the old_rt yet then
  4292. * set old_rd to NULL to skip the freeing later
  4293. * in this function:
  4294. */
  4295. if (!atomic_dec_and_test(&old_rd->refcount))
  4296. old_rd = NULL;
  4297. }
  4298. atomic_inc(&rd->refcount);
  4299. rq->rd = rd;
  4300. cpumask_set_cpu(rq->cpu, rd->span);
  4301. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  4302. set_rq_online(rq);
  4303. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4304. if (old_rd)
  4305. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  4306. }
  4307. static int init_rootdomain(struct root_domain *rd)
  4308. {
  4309. memset(rd, 0, sizeof(*rd));
  4310. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  4311. goto out;
  4312. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  4313. goto free_span;
  4314. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  4315. goto free_online;
  4316. if (cpupri_init(&rd->cpupri) != 0)
  4317. goto free_rto_mask;
  4318. return 0;
  4319. free_rto_mask:
  4320. free_cpumask_var(rd->rto_mask);
  4321. free_online:
  4322. free_cpumask_var(rd->online);
  4323. free_span:
  4324. free_cpumask_var(rd->span);
  4325. out:
  4326. return -ENOMEM;
  4327. }
  4328. /*
  4329. * By default the system creates a single root-domain with all cpus as
  4330. * members (mimicking the global state we have today).
  4331. */
  4332. struct root_domain def_root_domain;
  4333. static void init_defrootdomain(void)
  4334. {
  4335. init_rootdomain(&def_root_domain);
  4336. atomic_set(&def_root_domain.refcount, 1);
  4337. }
  4338. static struct root_domain *alloc_rootdomain(void)
  4339. {
  4340. struct root_domain *rd;
  4341. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  4342. if (!rd)
  4343. return NULL;
  4344. if (init_rootdomain(rd) != 0) {
  4345. kfree(rd);
  4346. return NULL;
  4347. }
  4348. return rd;
  4349. }
  4350. static void free_sched_groups(struct sched_group *sg, int free_sgp)
  4351. {
  4352. struct sched_group *tmp, *first;
  4353. if (!sg)
  4354. return;
  4355. first = sg;
  4356. do {
  4357. tmp = sg->next;
  4358. if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
  4359. kfree(sg->sgp);
  4360. kfree(sg);
  4361. sg = tmp;
  4362. } while (sg != first);
  4363. }
  4364. static void free_sched_domain(struct rcu_head *rcu)
  4365. {
  4366. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  4367. /*
  4368. * If its an overlapping domain it has private groups, iterate and
  4369. * nuke them all.
  4370. */
  4371. if (sd->flags & SD_OVERLAP) {
  4372. free_sched_groups(sd->groups, 1);
  4373. } else if (atomic_dec_and_test(&sd->groups->ref)) {
  4374. kfree(sd->groups->sgp);
  4375. kfree(sd->groups);
  4376. }
  4377. kfree(sd);
  4378. }
  4379. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  4380. {
  4381. call_rcu(&sd->rcu, free_sched_domain);
  4382. }
  4383. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  4384. {
  4385. for (; sd; sd = sd->parent)
  4386. destroy_sched_domain(sd, cpu);
  4387. }
  4388. /*
  4389. * Keep a special pointer to the highest sched_domain that has
  4390. * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
  4391. * allows us to avoid some pointer chasing select_idle_sibling().
  4392. *
  4393. * Also keep a unique ID per domain (we use the first cpu number in
  4394. * the cpumask of the domain), this allows us to quickly tell if
  4395. * two cpus are in the same cache domain, see cpus_share_cache().
  4396. */
  4397. DEFINE_PER_CPU(struct sched_domain *, sd_llc);
  4398. DEFINE_PER_CPU(int, sd_llc_size);
  4399. DEFINE_PER_CPU(int, sd_llc_id);
  4400. static void update_top_cache_domain(int cpu)
  4401. {
  4402. struct sched_domain *sd;
  4403. int id = cpu;
  4404. int size = 1;
  4405. sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
  4406. if (sd) {
  4407. id = cpumask_first(sched_domain_span(sd));
  4408. size = cpumask_weight(sched_domain_span(sd));
  4409. }
  4410. rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
  4411. per_cpu(sd_llc_size, cpu) = size;
  4412. per_cpu(sd_llc_id, cpu) = id;
  4413. }
  4414. /*
  4415. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4416. * hold the hotplug lock.
  4417. */
  4418. static void
  4419. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  4420. {
  4421. struct rq *rq = cpu_rq(cpu);
  4422. struct sched_domain *tmp;
  4423. /* Remove the sched domains which do not contribute to scheduling. */
  4424. for (tmp = sd; tmp; ) {
  4425. struct sched_domain *parent = tmp->parent;
  4426. if (!parent)
  4427. break;
  4428. if (sd_parent_degenerate(tmp, parent)) {
  4429. tmp->parent = parent->parent;
  4430. if (parent->parent)
  4431. parent->parent->child = tmp;
  4432. /*
  4433. * Transfer SD_PREFER_SIBLING down in case of a
  4434. * degenerate parent; the spans match for this
  4435. * so the property transfers.
  4436. */
  4437. if (parent->flags & SD_PREFER_SIBLING)
  4438. tmp->flags |= SD_PREFER_SIBLING;
  4439. destroy_sched_domain(parent, cpu);
  4440. } else
  4441. tmp = tmp->parent;
  4442. }
  4443. if (sd && sd_degenerate(sd)) {
  4444. tmp = sd;
  4445. sd = sd->parent;
  4446. destroy_sched_domain(tmp, cpu);
  4447. if (sd)
  4448. sd->child = NULL;
  4449. }
  4450. sched_domain_debug(sd, cpu);
  4451. rq_attach_root(rq, rd);
  4452. tmp = rq->sd;
  4453. rcu_assign_pointer(rq->sd, sd);
  4454. destroy_sched_domains(tmp, cpu);
  4455. update_top_cache_domain(cpu);
  4456. }
  4457. /* cpus with isolated domains */
  4458. static cpumask_var_t cpu_isolated_map;
  4459. /* Setup the mask of cpus configured for isolated domains */
  4460. static int __init isolated_cpu_setup(char *str)
  4461. {
  4462. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  4463. cpulist_parse(str, cpu_isolated_map);
  4464. return 1;
  4465. }
  4466. __setup("isolcpus=", isolated_cpu_setup);
  4467. static const struct cpumask *cpu_cpu_mask(int cpu)
  4468. {
  4469. return cpumask_of_node(cpu_to_node(cpu));
  4470. }
  4471. struct sd_data {
  4472. struct sched_domain **__percpu sd;
  4473. struct sched_group **__percpu sg;
  4474. struct sched_group_power **__percpu sgp;
  4475. };
  4476. struct s_data {
  4477. struct sched_domain ** __percpu sd;
  4478. struct root_domain *rd;
  4479. };
  4480. enum s_alloc {
  4481. sa_rootdomain,
  4482. sa_sd,
  4483. sa_sd_storage,
  4484. sa_none,
  4485. };
  4486. struct sched_domain_topology_level;
  4487. typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
  4488. typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
  4489. #define SDTL_OVERLAP 0x01
  4490. struct sched_domain_topology_level {
  4491. sched_domain_init_f init;
  4492. sched_domain_mask_f mask;
  4493. int flags;
  4494. int numa_level;
  4495. struct sd_data data;
  4496. };
  4497. /*
  4498. * Build an iteration mask that can exclude certain CPUs from the upwards
  4499. * domain traversal.
  4500. *
  4501. * Asymmetric node setups can result in situations where the domain tree is of
  4502. * unequal depth, make sure to skip domains that already cover the entire
  4503. * range.
  4504. *
  4505. * In that case build_sched_domains() will have terminated the iteration early
  4506. * and our sibling sd spans will be empty. Domains should always include the
  4507. * cpu they're built on, so check that.
  4508. *
  4509. */
  4510. static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
  4511. {
  4512. const struct cpumask *span = sched_domain_span(sd);
  4513. struct sd_data *sdd = sd->private;
  4514. struct sched_domain *sibling;
  4515. int i;
  4516. for_each_cpu(i, span) {
  4517. sibling = *per_cpu_ptr(sdd->sd, i);
  4518. if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
  4519. continue;
  4520. cpumask_set_cpu(i, sched_group_mask(sg));
  4521. }
  4522. }
  4523. /*
  4524. * Return the canonical balance cpu for this group, this is the first cpu
  4525. * of this group that's also in the iteration mask.
  4526. */
  4527. int group_balance_cpu(struct sched_group *sg)
  4528. {
  4529. return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
  4530. }
  4531. static int
  4532. build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  4533. {
  4534. struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
  4535. const struct cpumask *span = sched_domain_span(sd);
  4536. struct cpumask *covered = sched_domains_tmpmask;
  4537. struct sd_data *sdd = sd->private;
  4538. struct sched_domain *child;
  4539. int i;
  4540. cpumask_clear(covered);
  4541. for_each_cpu(i, span) {
  4542. struct cpumask *sg_span;
  4543. if (cpumask_test_cpu(i, covered))
  4544. continue;
  4545. child = *per_cpu_ptr(sdd->sd, i);
  4546. /* See the comment near build_group_mask(). */
  4547. if (!cpumask_test_cpu(i, sched_domain_span(child)))
  4548. continue;
  4549. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  4550. GFP_KERNEL, cpu_to_node(cpu));
  4551. if (!sg)
  4552. goto fail;
  4553. sg_span = sched_group_cpus(sg);
  4554. if (child->child) {
  4555. child = child->child;
  4556. cpumask_copy(sg_span, sched_domain_span(child));
  4557. } else
  4558. cpumask_set_cpu(i, sg_span);
  4559. cpumask_or(covered, covered, sg_span);
  4560. sg->sgp = *per_cpu_ptr(sdd->sgp, i);
  4561. if (atomic_inc_return(&sg->sgp->ref) == 1)
  4562. build_group_mask(sd, sg);
  4563. /*
  4564. * Initialize sgp->power such that even if we mess up the
  4565. * domains and no possible iteration will get us here, we won't
  4566. * die on a /0 trap.
  4567. */
  4568. sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
  4569. /*
  4570. * Make sure the first group of this domain contains the
  4571. * canonical balance cpu. Otherwise the sched_domain iteration
  4572. * breaks. See update_sg_lb_stats().
  4573. */
  4574. if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
  4575. group_balance_cpu(sg) == cpu)
  4576. groups = sg;
  4577. if (!first)
  4578. first = sg;
  4579. if (last)
  4580. last->next = sg;
  4581. last = sg;
  4582. last->next = first;
  4583. }
  4584. sd->groups = groups;
  4585. return 0;
  4586. fail:
  4587. free_sched_groups(first, 0);
  4588. return -ENOMEM;
  4589. }
  4590. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  4591. {
  4592. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  4593. struct sched_domain *child = sd->child;
  4594. if (child)
  4595. cpu = cpumask_first(sched_domain_span(child));
  4596. if (sg) {
  4597. *sg = *per_cpu_ptr(sdd->sg, cpu);
  4598. (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
  4599. atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
  4600. }
  4601. return cpu;
  4602. }
  4603. /*
  4604. * build_sched_groups will build a circular linked list of the groups
  4605. * covered by the given span, and will set each group's ->cpumask correctly,
  4606. * and ->cpu_power to 0.
  4607. *
  4608. * Assumes the sched_domain tree is fully constructed
  4609. */
  4610. static int
  4611. build_sched_groups(struct sched_domain *sd, int cpu)
  4612. {
  4613. struct sched_group *first = NULL, *last = NULL;
  4614. struct sd_data *sdd = sd->private;
  4615. const struct cpumask *span = sched_domain_span(sd);
  4616. struct cpumask *covered;
  4617. int i;
  4618. get_group(cpu, sdd, &sd->groups);
  4619. atomic_inc(&sd->groups->ref);
  4620. if (cpu != cpumask_first(span))
  4621. return 0;
  4622. lockdep_assert_held(&sched_domains_mutex);
  4623. covered = sched_domains_tmpmask;
  4624. cpumask_clear(covered);
  4625. for_each_cpu(i, span) {
  4626. struct sched_group *sg;
  4627. int group, j;
  4628. if (cpumask_test_cpu(i, covered))
  4629. continue;
  4630. group = get_group(i, sdd, &sg);
  4631. cpumask_clear(sched_group_cpus(sg));
  4632. sg->sgp->power = 0;
  4633. cpumask_setall(sched_group_mask(sg));
  4634. for_each_cpu(j, span) {
  4635. if (get_group(j, sdd, NULL) != group)
  4636. continue;
  4637. cpumask_set_cpu(j, covered);
  4638. cpumask_set_cpu(j, sched_group_cpus(sg));
  4639. }
  4640. if (!first)
  4641. first = sg;
  4642. if (last)
  4643. last->next = sg;
  4644. last = sg;
  4645. }
  4646. last->next = first;
  4647. return 0;
  4648. }
  4649. /*
  4650. * Initialize sched groups cpu_power.
  4651. *
  4652. * cpu_power indicates the capacity of sched group, which is used while
  4653. * distributing the load between different sched groups in a sched domain.
  4654. * Typically cpu_power for all the groups in a sched domain will be same unless
  4655. * there are asymmetries in the topology. If there are asymmetries, group
  4656. * having more cpu_power will pickup more load compared to the group having
  4657. * less cpu_power.
  4658. */
  4659. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  4660. {
  4661. struct sched_group *sg = sd->groups;
  4662. WARN_ON(!sg);
  4663. do {
  4664. sg->group_weight = cpumask_weight(sched_group_cpus(sg));
  4665. sg = sg->next;
  4666. } while (sg != sd->groups);
  4667. if (cpu != group_balance_cpu(sg))
  4668. return;
  4669. update_group_power(sd, cpu);
  4670. atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
  4671. }
  4672. int __weak arch_sd_sibling_asym_packing(void)
  4673. {
  4674. return 0*SD_ASYM_PACKING;
  4675. }
  4676. /*
  4677. * Initializers for schedule domains
  4678. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  4679. */
  4680. #ifdef CONFIG_SCHED_DEBUG
  4681. # define SD_INIT_NAME(sd, type) sd->name = #type
  4682. #else
  4683. # define SD_INIT_NAME(sd, type) do { } while (0)
  4684. #endif
  4685. #define SD_INIT_FUNC(type) \
  4686. static noinline struct sched_domain * \
  4687. sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
  4688. { \
  4689. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
  4690. *sd = SD_##type##_INIT; \
  4691. SD_INIT_NAME(sd, type); \
  4692. sd->private = &tl->data; \
  4693. return sd; \
  4694. }
  4695. SD_INIT_FUNC(CPU)
  4696. #ifdef CONFIG_SCHED_SMT
  4697. SD_INIT_FUNC(SIBLING)
  4698. #endif
  4699. #ifdef CONFIG_SCHED_MC
  4700. SD_INIT_FUNC(MC)
  4701. #endif
  4702. #ifdef CONFIG_SCHED_BOOK
  4703. SD_INIT_FUNC(BOOK)
  4704. #endif
  4705. static int default_relax_domain_level = -1;
  4706. int sched_domain_level_max;
  4707. static int __init setup_relax_domain_level(char *str)
  4708. {
  4709. if (kstrtoint(str, 0, &default_relax_domain_level))
  4710. pr_warn("Unable to set relax_domain_level\n");
  4711. return 1;
  4712. }
  4713. __setup("relax_domain_level=", setup_relax_domain_level);
  4714. static void set_domain_attribute(struct sched_domain *sd,
  4715. struct sched_domain_attr *attr)
  4716. {
  4717. int request;
  4718. if (!attr || attr->relax_domain_level < 0) {
  4719. if (default_relax_domain_level < 0)
  4720. return;
  4721. else
  4722. request = default_relax_domain_level;
  4723. } else
  4724. request = attr->relax_domain_level;
  4725. if (request < sd->level) {
  4726. /* turn off idle balance on this domain */
  4727. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  4728. } else {
  4729. /* turn on idle balance on this domain */
  4730. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  4731. }
  4732. }
  4733. static void __sdt_free(const struct cpumask *cpu_map);
  4734. static int __sdt_alloc(const struct cpumask *cpu_map);
  4735. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  4736. const struct cpumask *cpu_map)
  4737. {
  4738. switch (what) {
  4739. case sa_rootdomain:
  4740. if (!atomic_read(&d->rd->refcount))
  4741. free_rootdomain(&d->rd->rcu); /* fall through */
  4742. case sa_sd:
  4743. free_percpu(d->sd); /* fall through */
  4744. case sa_sd_storage:
  4745. __sdt_free(cpu_map); /* fall through */
  4746. case sa_none:
  4747. break;
  4748. }
  4749. }
  4750. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  4751. const struct cpumask *cpu_map)
  4752. {
  4753. memset(d, 0, sizeof(*d));
  4754. if (__sdt_alloc(cpu_map))
  4755. return sa_sd_storage;
  4756. d->sd = alloc_percpu(struct sched_domain *);
  4757. if (!d->sd)
  4758. return sa_sd_storage;
  4759. d->rd = alloc_rootdomain();
  4760. if (!d->rd)
  4761. return sa_sd;
  4762. return sa_rootdomain;
  4763. }
  4764. /*
  4765. * NULL the sd_data elements we've used to build the sched_domain and
  4766. * sched_group structure so that the subsequent __free_domain_allocs()
  4767. * will not free the data we're using.
  4768. */
  4769. static void claim_allocations(int cpu, struct sched_domain *sd)
  4770. {
  4771. struct sd_data *sdd = sd->private;
  4772. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  4773. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  4774. if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
  4775. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  4776. if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
  4777. *per_cpu_ptr(sdd->sgp, cpu) = NULL;
  4778. }
  4779. #ifdef CONFIG_SCHED_SMT
  4780. static const struct cpumask *cpu_smt_mask(int cpu)
  4781. {
  4782. return topology_thread_cpumask(cpu);
  4783. }
  4784. #endif
  4785. /*
  4786. * Topology list, bottom-up.
  4787. */
  4788. static struct sched_domain_topology_level default_topology[] = {
  4789. #ifdef CONFIG_SCHED_SMT
  4790. { sd_init_SIBLING, cpu_smt_mask, },
  4791. #endif
  4792. #ifdef CONFIG_SCHED_MC
  4793. { sd_init_MC, cpu_coregroup_mask, },
  4794. #endif
  4795. #ifdef CONFIG_SCHED_BOOK
  4796. { sd_init_BOOK, cpu_book_mask, },
  4797. #endif
  4798. { sd_init_CPU, cpu_cpu_mask, },
  4799. { NULL, },
  4800. };
  4801. static struct sched_domain_topology_level *sched_domain_topology = default_topology;
  4802. #define for_each_sd_topology(tl) \
  4803. for (tl = sched_domain_topology; tl->init; tl++)
  4804. #ifdef CONFIG_NUMA
  4805. static int sched_domains_numa_levels;
  4806. static int *sched_domains_numa_distance;
  4807. static struct cpumask ***sched_domains_numa_masks;
  4808. static int sched_domains_curr_level;
  4809. static inline int sd_local_flags(int level)
  4810. {
  4811. if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
  4812. return 0;
  4813. return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
  4814. }
  4815. static struct sched_domain *
  4816. sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
  4817. {
  4818. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
  4819. int level = tl->numa_level;
  4820. int sd_weight = cpumask_weight(
  4821. sched_domains_numa_masks[level][cpu_to_node(cpu)]);
  4822. *sd = (struct sched_domain){
  4823. .min_interval = sd_weight,
  4824. .max_interval = 2*sd_weight,
  4825. .busy_factor = 32,
  4826. .imbalance_pct = 125,
  4827. .cache_nice_tries = 2,
  4828. .busy_idx = 3,
  4829. .idle_idx = 2,
  4830. .newidle_idx = 0,
  4831. .wake_idx = 0,
  4832. .forkexec_idx = 0,
  4833. .flags = 1*SD_LOAD_BALANCE
  4834. | 1*SD_BALANCE_NEWIDLE
  4835. | 0*SD_BALANCE_EXEC
  4836. | 0*SD_BALANCE_FORK
  4837. | 0*SD_BALANCE_WAKE
  4838. | 0*SD_WAKE_AFFINE
  4839. | 0*SD_SHARE_CPUPOWER
  4840. | 0*SD_SHARE_PKG_RESOURCES
  4841. | 1*SD_SERIALIZE
  4842. | 0*SD_PREFER_SIBLING
  4843. | 1*SD_NUMA
  4844. | sd_local_flags(level)
  4845. ,
  4846. .last_balance = jiffies,
  4847. .balance_interval = sd_weight,
  4848. };
  4849. SD_INIT_NAME(sd, NUMA);
  4850. sd->private = &tl->data;
  4851. /*
  4852. * Ugly hack to pass state to sd_numa_mask()...
  4853. */
  4854. sched_domains_curr_level = tl->numa_level;
  4855. return sd;
  4856. }
  4857. static const struct cpumask *sd_numa_mask(int cpu)
  4858. {
  4859. return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
  4860. }
  4861. static void sched_numa_warn(const char *str)
  4862. {
  4863. static int done = false;
  4864. int i,j;
  4865. if (done)
  4866. return;
  4867. done = true;
  4868. printk(KERN_WARNING "ERROR: %s\n\n", str);
  4869. for (i = 0; i < nr_node_ids; i++) {
  4870. printk(KERN_WARNING " ");
  4871. for (j = 0; j < nr_node_ids; j++)
  4872. printk(KERN_CONT "%02d ", node_distance(i,j));
  4873. printk(KERN_CONT "\n");
  4874. }
  4875. printk(KERN_WARNING "\n");
  4876. }
  4877. static bool find_numa_distance(int distance)
  4878. {
  4879. int i;
  4880. if (distance == node_distance(0, 0))
  4881. return true;
  4882. for (i = 0; i < sched_domains_numa_levels; i++) {
  4883. if (sched_domains_numa_distance[i] == distance)
  4884. return true;
  4885. }
  4886. return false;
  4887. }
  4888. static void sched_init_numa(void)
  4889. {
  4890. int next_distance, curr_distance = node_distance(0, 0);
  4891. struct sched_domain_topology_level *tl;
  4892. int level = 0;
  4893. int i, j, k;
  4894. sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
  4895. if (!sched_domains_numa_distance)
  4896. return;
  4897. /*
  4898. * O(nr_nodes^2) deduplicating selection sort -- in order to find the
  4899. * unique distances in the node_distance() table.
  4900. *
  4901. * Assumes node_distance(0,j) includes all distances in
  4902. * node_distance(i,j) in order to avoid cubic time.
  4903. */
  4904. next_distance = curr_distance;
  4905. for (i = 0; i < nr_node_ids; i++) {
  4906. for (j = 0; j < nr_node_ids; j++) {
  4907. for (k = 0; k < nr_node_ids; k++) {
  4908. int distance = node_distance(i, k);
  4909. if (distance > curr_distance &&
  4910. (distance < next_distance ||
  4911. next_distance == curr_distance))
  4912. next_distance = distance;
  4913. /*
  4914. * While not a strong assumption it would be nice to know
  4915. * about cases where if node A is connected to B, B is not
  4916. * equally connected to A.
  4917. */
  4918. if (sched_debug() && node_distance(k, i) != distance)
  4919. sched_numa_warn("Node-distance not symmetric");
  4920. if (sched_debug() && i && !find_numa_distance(distance))
  4921. sched_numa_warn("Node-0 not representative");
  4922. }
  4923. if (next_distance != curr_distance) {
  4924. sched_domains_numa_distance[level++] = next_distance;
  4925. sched_domains_numa_levels = level;
  4926. curr_distance = next_distance;
  4927. } else break;
  4928. }
  4929. /*
  4930. * In case of sched_debug() we verify the above assumption.
  4931. */
  4932. if (!sched_debug())
  4933. break;
  4934. }
  4935. /*
  4936. * 'level' contains the number of unique distances, excluding the
  4937. * identity distance node_distance(i,i).
  4938. *
  4939. * The sched_domains_numa_distance[] array includes the actual distance
  4940. * numbers.
  4941. */
  4942. /*
  4943. * Here, we should temporarily reset sched_domains_numa_levels to 0.
  4944. * If it fails to allocate memory for array sched_domains_numa_masks[][],
  4945. * the array will contain less then 'level' members. This could be
  4946. * dangerous when we use it to iterate array sched_domains_numa_masks[][]
  4947. * in other functions.
  4948. *
  4949. * We reset it to 'level' at the end of this function.
  4950. */
  4951. sched_domains_numa_levels = 0;
  4952. sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
  4953. if (!sched_domains_numa_masks)
  4954. return;
  4955. /*
  4956. * Now for each level, construct a mask per node which contains all
  4957. * cpus of nodes that are that many hops away from us.
  4958. */
  4959. for (i = 0; i < level; i++) {
  4960. sched_domains_numa_masks[i] =
  4961. kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
  4962. if (!sched_domains_numa_masks[i])
  4963. return;
  4964. for (j = 0; j < nr_node_ids; j++) {
  4965. struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
  4966. if (!mask)
  4967. return;
  4968. sched_domains_numa_masks[i][j] = mask;
  4969. for (k = 0; k < nr_node_ids; k++) {
  4970. if (node_distance(j, k) > sched_domains_numa_distance[i])
  4971. continue;
  4972. cpumask_or(mask, mask, cpumask_of_node(k));
  4973. }
  4974. }
  4975. }
  4976. tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
  4977. sizeof(struct sched_domain_topology_level), GFP_KERNEL);
  4978. if (!tl)
  4979. return;
  4980. /*
  4981. * Copy the default topology bits..
  4982. */
  4983. for (i = 0; default_topology[i].init; i++)
  4984. tl[i] = default_topology[i];
  4985. /*
  4986. * .. and append 'j' levels of NUMA goodness.
  4987. */
  4988. for (j = 0; j < level; i++, j++) {
  4989. tl[i] = (struct sched_domain_topology_level){
  4990. .init = sd_numa_init,
  4991. .mask = sd_numa_mask,
  4992. .flags = SDTL_OVERLAP,
  4993. .numa_level = j,
  4994. };
  4995. }
  4996. sched_domain_topology = tl;
  4997. sched_domains_numa_levels = level;
  4998. }
  4999. static void sched_domains_numa_masks_set(int cpu)
  5000. {
  5001. int i, j;
  5002. int node = cpu_to_node(cpu);
  5003. for (i = 0; i < sched_domains_numa_levels; i++) {
  5004. for (j = 0; j < nr_node_ids; j++) {
  5005. if (node_distance(j, node) <= sched_domains_numa_distance[i])
  5006. cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
  5007. }
  5008. }
  5009. }
  5010. static void sched_domains_numa_masks_clear(int cpu)
  5011. {
  5012. int i, j;
  5013. for (i = 0; i < sched_domains_numa_levels; i++) {
  5014. for (j = 0; j < nr_node_ids; j++)
  5015. cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
  5016. }
  5017. }
  5018. /*
  5019. * Update sched_domains_numa_masks[level][node] array when new cpus
  5020. * are onlined.
  5021. */
  5022. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5023. unsigned long action,
  5024. void *hcpu)
  5025. {
  5026. int cpu = (long)hcpu;
  5027. switch (action & ~CPU_TASKS_FROZEN) {
  5028. case CPU_ONLINE:
  5029. sched_domains_numa_masks_set(cpu);
  5030. break;
  5031. case CPU_DEAD:
  5032. sched_domains_numa_masks_clear(cpu);
  5033. break;
  5034. default:
  5035. return NOTIFY_DONE;
  5036. }
  5037. return NOTIFY_OK;
  5038. }
  5039. #else
  5040. static inline void sched_init_numa(void)
  5041. {
  5042. }
  5043. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5044. unsigned long action,
  5045. void *hcpu)
  5046. {
  5047. return 0;
  5048. }
  5049. #endif /* CONFIG_NUMA */
  5050. static int __sdt_alloc(const struct cpumask *cpu_map)
  5051. {
  5052. struct sched_domain_topology_level *tl;
  5053. int j;
  5054. for_each_sd_topology(tl) {
  5055. struct sd_data *sdd = &tl->data;
  5056. sdd->sd = alloc_percpu(struct sched_domain *);
  5057. if (!sdd->sd)
  5058. return -ENOMEM;
  5059. sdd->sg = alloc_percpu(struct sched_group *);
  5060. if (!sdd->sg)
  5061. return -ENOMEM;
  5062. sdd->sgp = alloc_percpu(struct sched_group_power *);
  5063. if (!sdd->sgp)
  5064. return -ENOMEM;
  5065. for_each_cpu(j, cpu_map) {
  5066. struct sched_domain *sd;
  5067. struct sched_group *sg;
  5068. struct sched_group_power *sgp;
  5069. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  5070. GFP_KERNEL, cpu_to_node(j));
  5071. if (!sd)
  5072. return -ENOMEM;
  5073. *per_cpu_ptr(sdd->sd, j) = sd;
  5074. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5075. GFP_KERNEL, cpu_to_node(j));
  5076. if (!sg)
  5077. return -ENOMEM;
  5078. sg->next = sg;
  5079. *per_cpu_ptr(sdd->sg, j) = sg;
  5080. sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
  5081. GFP_KERNEL, cpu_to_node(j));
  5082. if (!sgp)
  5083. return -ENOMEM;
  5084. *per_cpu_ptr(sdd->sgp, j) = sgp;
  5085. }
  5086. }
  5087. return 0;
  5088. }
  5089. static void __sdt_free(const struct cpumask *cpu_map)
  5090. {
  5091. struct sched_domain_topology_level *tl;
  5092. int j;
  5093. for_each_sd_topology(tl) {
  5094. struct sd_data *sdd = &tl->data;
  5095. for_each_cpu(j, cpu_map) {
  5096. struct sched_domain *sd;
  5097. if (sdd->sd) {
  5098. sd = *per_cpu_ptr(sdd->sd, j);
  5099. if (sd && (sd->flags & SD_OVERLAP))
  5100. free_sched_groups(sd->groups, 0);
  5101. kfree(*per_cpu_ptr(sdd->sd, j));
  5102. }
  5103. if (sdd->sg)
  5104. kfree(*per_cpu_ptr(sdd->sg, j));
  5105. if (sdd->sgp)
  5106. kfree(*per_cpu_ptr(sdd->sgp, j));
  5107. }
  5108. free_percpu(sdd->sd);
  5109. sdd->sd = NULL;
  5110. free_percpu(sdd->sg);
  5111. sdd->sg = NULL;
  5112. free_percpu(sdd->sgp);
  5113. sdd->sgp = NULL;
  5114. }
  5115. }
  5116. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  5117. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5118. struct sched_domain *child, int cpu)
  5119. {
  5120. struct sched_domain *sd = tl->init(tl, cpu);
  5121. if (!sd)
  5122. return child;
  5123. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  5124. if (child) {
  5125. sd->level = child->level + 1;
  5126. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  5127. child->parent = sd;
  5128. sd->child = child;
  5129. }
  5130. set_domain_attribute(sd, attr);
  5131. return sd;
  5132. }
  5133. /*
  5134. * Build sched domains for a given set of cpus and attach the sched domains
  5135. * to the individual cpus
  5136. */
  5137. static int build_sched_domains(const struct cpumask *cpu_map,
  5138. struct sched_domain_attr *attr)
  5139. {
  5140. enum s_alloc alloc_state;
  5141. struct sched_domain *sd;
  5142. struct s_data d;
  5143. int i, ret = -ENOMEM;
  5144. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  5145. if (alloc_state != sa_rootdomain)
  5146. goto error;
  5147. /* Set up domains for cpus specified by the cpu_map. */
  5148. for_each_cpu(i, cpu_map) {
  5149. struct sched_domain_topology_level *tl;
  5150. sd = NULL;
  5151. for_each_sd_topology(tl) {
  5152. sd = build_sched_domain(tl, cpu_map, attr, sd, i);
  5153. if (tl == sched_domain_topology)
  5154. *per_cpu_ptr(d.sd, i) = sd;
  5155. if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
  5156. sd->flags |= SD_OVERLAP;
  5157. if (cpumask_equal(cpu_map, sched_domain_span(sd)))
  5158. break;
  5159. }
  5160. }
  5161. /* Build the groups for the domains */
  5162. for_each_cpu(i, cpu_map) {
  5163. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5164. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  5165. if (sd->flags & SD_OVERLAP) {
  5166. if (build_overlap_sched_groups(sd, i))
  5167. goto error;
  5168. } else {
  5169. if (build_sched_groups(sd, i))
  5170. goto error;
  5171. }
  5172. }
  5173. }
  5174. /* Calculate CPU power for physical packages and nodes */
  5175. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  5176. if (!cpumask_test_cpu(i, cpu_map))
  5177. continue;
  5178. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5179. claim_allocations(i, sd);
  5180. init_sched_groups_power(i, sd);
  5181. }
  5182. }
  5183. /* Attach the domains */
  5184. rcu_read_lock();
  5185. for_each_cpu(i, cpu_map) {
  5186. sd = *per_cpu_ptr(d.sd, i);
  5187. cpu_attach_domain(sd, d.rd, i);
  5188. }
  5189. rcu_read_unlock();
  5190. ret = 0;
  5191. error:
  5192. __free_domain_allocs(&d, alloc_state, cpu_map);
  5193. return ret;
  5194. }
  5195. static cpumask_var_t *doms_cur; /* current sched domains */
  5196. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5197. static struct sched_domain_attr *dattr_cur;
  5198. /* attribues of custom domains in 'doms_cur' */
  5199. /*
  5200. * Special case: If a kmalloc of a doms_cur partition (array of
  5201. * cpumask) fails, then fallback to a single sched domain,
  5202. * as determined by the single cpumask fallback_doms.
  5203. */
  5204. static cpumask_var_t fallback_doms;
  5205. /*
  5206. * arch_update_cpu_topology lets virtualized architectures update the
  5207. * cpu core maps. It is supposed to return 1 if the topology changed
  5208. * or 0 if it stayed the same.
  5209. */
  5210. int __attribute__((weak)) arch_update_cpu_topology(void)
  5211. {
  5212. return 0;
  5213. }
  5214. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  5215. {
  5216. int i;
  5217. cpumask_var_t *doms;
  5218. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  5219. if (!doms)
  5220. return NULL;
  5221. for (i = 0; i < ndoms; i++) {
  5222. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  5223. free_sched_domains(doms, i);
  5224. return NULL;
  5225. }
  5226. }
  5227. return doms;
  5228. }
  5229. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  5230. {
  5231. unsigned int i;
  5232. for (i = 0; i < ndoms; i++)
  5233. free_cpumask_var(doms[i]);
  5234. kfree(doms);
  5235. }
  5236. /*
  5237. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5238. * For now this just excludes isolated cpus, but could be used to
  5239. * exclude other special cases in the future.
  5240. */
  5241. static int init_sched_domains(const struct cpumask *cpu_map)
  5242. {
  5243. int err;
  5244. arch_update_cpu_topology();
  5245. ndoms_cur = 1;
  5246. doms_cur = alloc_sched_domains(ndoms_cur);
  5247. if (!doms_cur)
  5248. doms_cur = &fallback_doms;
  5249. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  5250. err = build_sched_domains(doms_cur[0], NULL);
  5251. register_sched_domain_sysctl();
  5252. return err;
  5253. }
  5254. /*
  5255. * Detach sched domains from a group of cpus specified in cpu_map
  5256. * These cpus will now be attached to the NULL domain
  5257. */
  5258. static void detach_destroy_domains(const struct cpumask *cpu_map)
  5259. {
  5260. int i;
  5261. rcu_read_lock();
  5262. for_each_cpu(i, cpu_map)
  5263. cpu_attach_domain(NULL, &def_root_domain, i);
  5264. rcu_read_unlock();
  5265. }
  5266. /* handle null as "default" */
  5267. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  5268. struct sched_domain_attr *new, int idx_new)
  5269. {
  5270. struct sched_domain_attr tmp;
  5271. /* fast path */
  5272. if (!new && !cur)
  5273. return 1;
  5274. tmp = SD_ATTR_INIT;
  5275. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  5276. new ? (new + idx_new) : &tmp,
  5277. sizeof(struct sched_domain_attr));
  5278. }
  5279. /*
  5280. * Partition sched domains as specified by the 'ndoms_new'
  5281. * cpumasks in the array doms_new[] of cpumasks. This compares
  5282. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5283. * It destroys each deleted domain and builds each new domain.
  5284. *
  5285. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  5286. * The masks don't intersect (don't overlap.) We should setup one
  5287. * sched domain for each mask. CPUs not in any of the cpumasks will
  5288. * not be load balanced. If the same cpumask appears both in the
  5289. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5290. * it as it is.
  5291. *
  5292. * The passed in 'doms_new' should be allocated using
  5293. * alloc_sched_domains. This routine takes ownership of it and will
  5294. * free_sched_domains it when done with it. If the caller failed the
  5295. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  5296. * and partition_sched_domains() will fallback to the single partition
  5297. * 'fallback_doms', it also forces the domains to be rebuilt.
  5298. *
  5299. * If doms_new == NULL it will be replaced with cpu_online_mask.
  5300. * ndoms_new == 0 is a special case for destroying existing domains,
  5301. * and it will not create the default domain.
  5302. *
  5303. * Call with hotplug lock held
  5304. */
  5305. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  5306. struct sched_domain_attr *dattr_new)
  5307. {
  5308. int i, j, n;
  5309. int new_topology;
  5310. mutex_lock(&sched_domains_mutex);
  5311. /* always unregister in case we don't destroy any domains */
  5312. unregister_sched_domain_sysctl();
  5313. /* Let architecture update cpu core mappings. */
  5314. new_topology = arch_update_cpu_topology();
  5315. n = doms_new ? ndoms_new : 0;
  5316. /* Destroy deleted domains */
  5317. for (i = 0; i < ndoms_cur; i++) {
  5318. for (j = 0; j < n && !new_topology; j++) {
  5319. if (cpumask_equal(doms_cur[i], doms_new[j])
  5320. && dattrs_equal(dattr_cur, i, dattr_new, j))
  5321. goto match1;
  5322. }
  5323. /* no match - a current sched domain not in new doms_new[] */
  5324. detach_destroy_domains(doms_cur[i]);
  5325. match1:
  5326. ;
  5327. }
  5328. n = ndoms_cur;
  5329. if (doms_new == NULL) {
  5330. n = 0;
  5331. doms_new = &fallback_doms;
  5332. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  5333. WARN_ON_ONCE(dattr_new);
  5334. }
  5335. /* Build new domains */
  5336. for (i = 0; i < ndoms_new; i++) {
  5337. for (j = 0; j < n && !new_topology; j++) {
  5338. if (cpumask_equal(doms_new[i], doms_cur[j])
  5339. && dattrs_equal(dattr_new, i, dattr_cur, j))
  5340. goto match2;
  5341. }
  5342. /* no match - add a new doms_new */
  5343. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  5344. match2:
  5345. ;
  5346. }
  5347. /* Remember the new sched domains */
  5348. if (doms_cur != &fallback_doms)
  5349. free_sched_domains(doms_cur, ndoms_cur);
  5350. kfree(dattr_cur); /* kfree(NULL) is safe */
  5351. doms_cur = doms_new;
  5352. dattr_cur = dattr_new;
  5353. ndoms_cur = ndoms_new;
  5354. register_sched_domain_sysctl();
  5355. mutex_unlock(&sched_domains_mutex);
  5356. }
  5357. static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
  5358. /*
  5359. * Update cpusets according to cpu_active mask. If cpusets are
  5360. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  5361. * around partition_sched_domains().
  5362. *
  5363. * If we come here as part of a suspend/resume, don't touch cpusets because we
  5364. * want to restore it back to its original state upon resume anyway.
  5365. */
  5366. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  5367. void *hcpu)
  5368. {
  5369. switch (action) {
  5370. case CPU_ONLINE_FROZEN:
  5371. case CPU_DOWN_FAILED_FROZEN:
  5372. /*
  5373. * num_cpus_frozen tracks how many CPUs are involved in suspend
  5374. * resume sequence. As long as this is not the last online
  5375. * operation in the resume sequence, just build a single sched
  5376. * domain, ignoring cpusets.
  5377. */
  5378. num_cpus_frozen--;
  5379. if (likely(num_cpus_frozen)) {
  5380. partition_sched_domains(1, NULL, NULL);
  5381. break;
  5382. }
  5383. /*
  5384. * This is the last CPU online operation. So fall through and
  5385. * restore the original sched domains by considering the
  5386. * cpuset configurations.
  5387. */
  5388. case CPU_ONLINE:
  5389. case CPU_DOWN_FAILED:
  5390. cpuset_update_active_cpus(true);
  5391. break;
  5392. default:
  5393. return NOTIFY_DONE;
  5394. }
  5395. return NOTIFY_OK;
  5396. }
  5397. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  5398. void *hcpu)
  5399. {
  5400. switch (action) {
  5401. case CPU_DOWN_PREPARE:
  5402. cpuset_update_active_cpus(false);
  5403. break;
  5404. case CPU_DOWN_PREPARE_FROZEN:
  5405. num_cpus_frozen++;
  5406. partition_sched_domains(1, NULL, NULL);
  5407. break;
  5408. default:
  5409. return NOTIFY_DONE;
  5410. }
  5411. return NOTIFY_OK;
  5412. }
  5413. void __init sched_init_smp(void)
  5414. {
  5415. cpumask_var_t non_isolated_cpus;
  5416. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  5417. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  5418. sched_init_numa();
  5419. get_online_cpus();
  5420. mutex_lock(&sched_domains_mutex);
  5421. init_sched_domains(cpu_active_mask);
  5422. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  5423. if (cpumask_empty(non_isolated_cpus))
  5424. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  5425. mutex_unlock(&sched_domains_mutex);
  5426. put_online_cpus();
  5427. hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
  5428. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  5429. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  5430. init_hrtick();
  5431. /* Move init over to a non-isolated CPU */
  5432. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  5433. BUG();
  5434. sched_init_granularity();
  5435. free_cpumask_var(non_isolated_cpus);
  5436. init_sched_rt_class();
  5437. }
  5438. #else
  5439. void __init sched_init_smp(void)
  5440. {
  5441. sched_init_granularity();
  5442. }
  5443. #endif /* CONFIG_SMP */
  5444. const_debug unsigned int sysctl_timer_migration = 1;
  5445. int in_sched_functions(unsigned long addr)
  5446. {
  5447. return in_lock_functions(addr) ||
  5448. (addr >= (unsigned long)__sched_text_start
  5449. && addr < (unsigned long)__sched_text_end);
  5450. }
  5451. #ifdef CONFIG_CGROUP_SCHED
  5452. /*
  5453. * Default task group.
  5454. * Every task in system belongs to this group at bootup.
  5455. */
  5456. struct task_group root_task_group;
  5457. LIST_HEAD(task_groups);
  5458. #endif
  5459. DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
  5460. void __init sched_init(void)
  5461. {
  5462. int i, j;
  5463. unsigned long alloc_size = 0, ptr;
  5464. #ifdef CONFIG_FAIR_GROUP_SCHED
  5465. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5466. #endif
  5467. #ifdef CONFIG_RT_GROUP_SCHED
  5468. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5469. #endif
  5470. #ifdef CONFIG_CPUMASK_OFFSTACK
  5471. alloc_size += num_possible_cpus() * cpumask_size();
  5472. #endif
  5473. if (alloc_size) {
  5474. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  5475. #ifdef CONFIG_FAIR_GROUP_SCHED
  5476. root_task_group.se = (struct sched_entity **)ptr;
  5477. ptr += nr_cpu_ids * sizeof(void **);
  5478. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  5479. ptr += nr_cpu_ids * sizeof(void **);
  5480. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5481. #ifdef CONFIG_RT_GROUP_SCHED
  5482. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  5483. ptr += nr_cpu_ids * sizeof(void **);
  5484. root_task_group.rt_rq = (struct rt_rq **)ptr;
  5485. ptr += nr_cpu_ids * sizeof(void **);
  5486. #endif /* CONFIG_RT_GROUP_SCHED */
  5487. #ifdef CONFIG_CPUMASK_OFFSTACK
  5488. for_each_possible_cpu(i) {
  5489. per_cpu(load_balance_mask, i) = (void *)ptr;
  5490. ptr += cpumask_size();
  5491. }
  5492. #endif /* CONFIG_CPUMASK_OFFSTACK */
  5493. }
  5494. #ifdef CONFIG_SMP
  5495. init_defrootdomain();
  5496. #endif
  5497. init_rt_bandwidth(&def_rt_bandwidth,
  5498. global_rt_period(), global_rt_runtime());
  5499. #ifdef CONFIG_RT_GROUP_SCHED
  5500. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  5501. global_rt_period(), global_rt_runtime());
  5502. #endif /* CONFIG_RT_GROUP_SCHED */
  5503. #ifdef CONFIG_CGROUP_SCHED
  5504. list_add(&root_task_group.list, &task_groups);
  5505. INIT_LIST_HEAD(&root_task_group.children);
  5506. INIT_LIST_HEAD(&root_task_group.siblings);
  5507. autogroup_init(&init_task);
  5508. #endif /* CONFIG_CGROUP_SCHED */
  5509. for_each_possible_cpu(i) {
  5510. struct rq *rq;
  5511. rq = cpu_rq(i);
  5512. raw_spin_lock_init(&rq->lock);
  5513. rq->nr_running = 0;
  5514. rq->calc_load_active = 0;
  5515. rq->calc_load_update = jiffies + LOAD_FREQ;
  5516. init_cfs_rq(&rq->cfs);
  5517. init_rt_rq(&rq->rt, rq);
  5518. #ifdef CONFIG_FAIR_GROUP_SCHED
  5519. root_task_group.shares = ROOT_TASK_GROUP_LOAD;
  5520. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5521. /*
  5522. * How much cpu bandwidth does root_task_group get?
  5523. *
  5524. * In case of task-groups formed thr' the cgroup filesystem, it
  5525. * gets 100% of the cpu resources in the system. This overall
  5526. * system cpu resource is divided among the tasks of
  5527. * root_task_group and its child task-groups in a fair manner,
  5528. * based on each entity's (task or task-group's) weight
  5529. * (se->load.weight).
  5530. *
  5531. * In other words, if root_task_group has 10 tasks of weight
  5532. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  5533. * then A0's share of the cpu resource is:
  5534. *
  5535. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  5536. *
  5537. * We achieve this by letting root_task_group's tasks sit
  5538. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  5539. */
  5540. init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
  5541. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  5542. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5543. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  5544. #ifdef CONFIG_RT_GROUP_SCHED
  5545. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  5546. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  5547. #endif
  5548. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5549. rq->cpu_load[j] = 0;
  5550. rq->last_load_update_tick = jiffies;
  5551. #ifdef CONFIG_SMP
  5552. rq->sd = NULL;
  5553. rq->rd = NULL;
  5554. rq->cpu_power = SCHED_POWER_SCALE;
  5555. rq->post_schedule = 0;
  5556. rq->active_balance = 0;
  5557. rq->next_balance = jiffies;
  5558. rq->push_cpu = 0;
  5559. rq->cpu = i;
  5560. rq->online = 0;
  5561. rq->idle_stamp = 0;
  5562. rq->avg_idle = 2*sysctl_sched_migration_cost;
  5563. rq->max_idle_balance_cost = sysctl_sched_migration_cost;
  5564. INIT_LIST_HEAD(&rq->cfs_tasks);
  5565. rq_attach_root(rq, &def_root_domain);
  5566. #ifdef CONFIG_NO_HZ_COMMON
  5567. rq->nohz_flags = 0;
  5568. #endif
  5569. #ifdef CONFIG_NO_HZ_FULL
  5570. rq->last_sched_tick = 0;
  5571. #endif
  5572. #endif
  5573. init_rq_hrtick(rq);
  5574. atomic_set(&rq->nr_iowait, 0);
  5575. }
  5576. set_load_weight(&init_task);
  5577. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5578. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5579. #endif
  5580. #ifdef CONFIG_RT_MUTEXES
  5581. plist_head_init(&init_task.pi_waiters);
  5582. #endif
  5583. /*
  5584. * The boot idle thread does lazy MMU switching as well:
  5585. */
  5586. atomic_inc(&init_mm.mm_count);
  5587. enter_lazy_tlb(&init_mm, current);
  5588. /*
  5589. * Make us the idle thread. Technically, schedule() should not be
  5590. * called from this thread, however somewhere below it might be,
  5591. * but because we are the idle thread, we just pick up running again
  5592. * when this runqueue becomes "idle".
  5593. */
  5594. init_idle(current, smp_processor_id());
  5595. calc_load_update = jiffies + LOAD_FREQ;
  5596. /*
  5597. * During early bootup we pretend to be a normal task:
  5598. */
  5599. current->sched_class = &fair_sched_class;
  5600. #ifdef CONFIG_SMP
  5601. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  5602. /* May be allocated at isolcpus cmdline parse time */
  5603. if (cpu_isolated_map == NULL)
  5604. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  5605. idle_thread_set_boot_cpu();
  5606. #endif
  5607. init_sched_fair_class();
  5608. scheduler_running = 1;
  5609. }
  5610. #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
  5611. static inline int preempt_count_equals(int preempt_offset)
  5612. {
  5613. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  5614. return (nested == preempt_offset);
  5615. }
  5616. void __might_sleep(const char *file, int line, int preempt_offset)
  5617. {
  5618. static unsigned long prev_jiffy; /* ratelimiting */
  5619. rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
  5620. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  5621. system_state != SYSTEM_RUNNING || oops_in_progress)
  5622. return;
  5623. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5624. return;
  5625. prev_jiffy = jiffies;
  5626. printk(KERN_ERR
  5627. "BUG: sleeping function called from invalid context at %s:%d\n",
  5628. file, line);
  5629. printk(KERN_ERR
  5630. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  5631. in_atomic(), irqs_disabled(),
  5632. current->pid, current->comm);
  5633. debug_show_held_locks(current);
  5634. if (irqs_disabled())
  5635. print_irqtrace_events(current);
  5636. dump_stack();
  5637. }
  5638. EXPORT_SYMBOL(__might_sleep);
  5639. #endif
  5640. #ifdef CONFIG_MAGIC_SYSRQ
  5641. static void normalize_task(struct rq *rq, struct task_struct *p)
  5642. {
  5643. const struct sched_class *prev_class = p->sched_class;
  5644. int old_prio = p->prio;
  5645. int on_rq;
  5646. on_rq = p->on_rq;
  5647. if (on_rq)
  5648. dequeue_task(rq, p, 0);
  5649. __setscheduler(rq, p, SCHED_NORMAL, 0);
  5650. if (on_rq) {
  5651. enqueue_task(rq, p, 0);
  5652. resched_task(rq->curr);
  5653. }
  5654. check_class_changed(rq, p, prev_class, old_prio);
  5655. }
  5656. void normalize_rt_tasks(void)
  5657. {
  5658. struct task_struct *g, *p;
  5659. unsigned long flags;
  5660. struct rq *rq;
  5661. read_lock_irqsave(&tasklist_lock, flags);
  5662. do_each_thread(g, p) {
  5663. /*
  5664. * Only normalize user tasks:
  5665. */
  5666. if (!p->mm)
  5667. continue;
  5668. p->se.exec_start = 0;
  5669. #ifdef CONFIG_SCHEDSTATS
  5670. p->se.statistics.wait_start = 0;
  5671. p->se.statistics.sleep_start = 0;
  5672. p->se.statistics.block_start = 0;
  5673. #endif
  5674. if (!rt_task(p)) {
  5675. /*
  5676. * Renice negative nice level userspace
  5677. * tasks back to 0:
  5678. */
  5679. if (TASK_NICE(p) < 0 && p->mm)
  5680. set_user_nice(p, 0);
  5681. continue;
  5682. }
  5683. raw_spin_lock(&p->pi_lock);
  5684. rq = __task_rq_lock(p);
  5685. normalize_task(rq, p);
  5686. __task_rq_unlock(rq);
  5687. raw_spin_unlock(&p->pi_lock);
  5688. } while_each_thread(g, p);
  5689. read_unlock_irqrestore(&tasklist_lock, flags);
  5690. }
  5691. #endif /* CONFIG_MAGIC_SYSRQ */
  5692. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  5693. /*
  5694. * These functions are only useful for the IA64 MCA handling, or kdb.
  5695. *
  5696. * They can only be called when the whole system has been
  5697. * stopped - every CPU needs to be quiescent, and no scheduling
  5698. * activity can take place. Using them for anything else would
  5699. * be a serious bug, and as a result, they aren't even visible
  5700. * under any other configuration.
  5701. */
  5702. /**
  5703. * curr_task - return the current task for a given cpu.
  5704. * @cpu: the processor in question.
  5705. *
  5706. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5707. *
  5708. * Return: The current task for @cpu.
  5709. */
  5710. struct task_struct *curr_task(int cpu)
  5711. {
  5712. return cpu_curr(cpu);
  5713. }
  5714. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  5715. #ifdef CONFIG_IA64
  5716. /**
  5717. * set_curr_task - set the current task for a given cpu.
  5718. * @cpu: the processor in question.
  5719. * @p: the task pointer to set.
  5720. *
  5721. * Description: This function must only be used when non-maskable interrupts
  5722. * are serviced on a separate stack. It allows the architecture to switch the
  5723. * notion of the current task on a cpu in a non-blocking manner. This function
  5724. * must be called with all CPU's synchronized, and interrupts disabled, the
  5725. * and caller must save the original value of the current task (see
  5726. * curr_task() above) and restore that value before reenabling interrupts and
  5727. * re-starting the system.
  5728. *
  5729. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5730. */
  5731. void set_curr_task(int cpu, struct task_struct *p)
  5732. {
  5733. cpu_curr(cpu) = p;
  5734. }
  5735. #endif
  5736. #ifdef CONFIG_CGROUP_SCHED
  5737. /* task_group_lock serializes the addition/removal of task groups */
  5738. static DEFINE_SPINLOCK(task_group_lock);
  5739. static void free_sched_group(struct task_group *tg)
  5740. {
  5741. free_fair_sched_group(tg);
  5742. free_rt_sched_group(tg);
  5743. autogroup_free(tg);
  5744. kfree(tg);
  5745. }
  5746. /* allocate runqueue etc for a new task group */
  5747. struct task_group *sched_create_group(struct task_group *parent)
  5748. {
  5749. struct task_group *tg;
  5750. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  5751. if (!tg)
  5752. return ERR_PTR(-ENOMEM);
  5753. if (!alloc_fair_sched_group(tg, parent))
  5754. goto err;
  5755. if (!alloc_rt_sched_group(tg, parent))
  5756. goto err;
  5757. return tg;
  5758. err:
  5759. free_sched_group(tg);
  5760. return ERR_PTR(-ENOMEM);
  5761. }
  5762. void sched_online_group(struct task_group *tg, struct task_group *parent)
  5763. {
  5764. unsigned long flags;
  5765. spin_lock_irqsave(&task_group_lock, flags);
  5766. list_add_rcu(&tg->list, &task_groups);
  5767. WARN_ON(!parent); /* root should already exist */
  5768. tg->parent = parent;
  5769. INIT_LIST_HEAD(&tg->children);
  5770. list_add_rcu(&tg->siblings, &parent->children);
  5771. spin_unlock_irqrestore(&task_group_lock, flags);
  5772. }
  5773. /* rcu callback to free various structures associated with a task group */
  5774. static void free_sched_group_rcu(struct rcu_head *rhp)
  5775. {
  5776. /* now it should be safe to free those cfs_rqs */
  5777. free_sched_group(container_of(rhp, struct task_group, rcu));
  5778. }
  5779. /* Destroy runqueue etc associated with a task group */
  5780. void sched_destroy_group(struct task_group *tg)
  5781. {
  5782. /* wait for possible concurrent references to cfs_rqs complete */
  5783. call_rcu(&tg->rcu, free_sched_group_rcu);
  5784. }
  5785. void sched_offline_group(struct task_group *tg)
  5786. {
  5787. unsigned long flags;
  5788. int i;
  5789. /* end participation in shares distribution */
  5790. for_each_possible_cpu(i)
  5791. unregister_fair_sched_group(tg, i);
  5792. spin_lock_irqsave(&task_group_lock, flags);
  5793. list_del_rcu(&tg->list);
  5794. list_del_rcu(&tg->siblings);
  5795. spin_unlock_irqrestore(&task_group_lock, flags);
  5796. }
  5797. /* change task's runqueue when it moves between groups.
  5798. * The caller of this function should have put the task in its new group
  5799. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  5800. * reflect its new group.
  5801. */
  5802. void sched_move_task(struct task_struct *tsk)
  5803. {
  5804. struct task_group *tg;
  5805. int on_rq, running;
  5806. unsigned long flags;
  5807. struct rq *rq;
  5808. rq = task_rq_lock(tsk, &flags);
  5809. running = task_current(rq, tsk);
  5810. on_rq = tsk->on_rq;
  5811. if (on_rq)
  5812. dequeue_task(rq, tsk, 0);
  5813. if (unlikely(running))
  5814. tsk->sched_class->put_prev_task(rq, tsk);
  5815. tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
  5816. lockdep_is_held(&tsk->sighand->siglock)),
  5817. struct task_group, css);
  5818. tg = autogroup_task_group(tsk, tg);
  5819. tsk->sched_task_group = tg;
  5820. #ifdef CONFIG_FAIR_GROUP_SCHED
  5821. if (tsk->sched_class->task_move_group)
  5822. tsk->sched_class->task_move_group(tsk, on_rq);
  5823. else
  5824. #endif
  5825. set_task_rq(tsk, task_cpu(tsk));
  5826. if (unlikely(running))
  5827. tsk->sched_class->set_curr_task(rq);
  5828. if (on_rq)
  5829. enqueue_task(rq, tsk, 0);
  5830. task_rq_unlock(rq, tsk, &flags);
  5831. }
  5832. #endif /* CONFIG_CGROUP_SCHED */
  5833. #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
  5834. static unsigned long to_ratio(u64 period, u64 runtime)
  5835. {
  5836. if (runtime == RUNTIME_INF)
  5837. return 1ULL << 20;
  5838. return div64_u64(runtime << 20, period);
  5839. }
  5840. #endif
  5841. #ifdef CONFIG_RT_GROUP_SCHED
  5842. /*
  5843. * Ensure that the real time constraints are schedulable.
  5844. */
  5845. static DEFINE_MUTEX(rt_constraints_mutex);
  5846. /* Must be called with tasklist_lock held */
  5847. static inline int tg_has_rt_tasks(struct task_group *tg)
  5848. {
  5849. struct task_struct *g, *p;
  5850. do_each_thread(g, p) {
  5851. if (rt_task(p) && task_rq(p)->rt.tg == tg)
  5852. return 1;
  5853. } while_each_thread(g, p);
  5854. return 0;
  5855. }
  5856. struct rt_schedulable_data {
  5857. struct task_group *tg;
  5858. u64 rt_period;
  5859. u64 rt_runtime;
  5860. };
  5861. static int tg_rt_schedulable(struct task_group *tg, void *data)
  5862. {
  5863. struct rt_schedulable_data *d = data;
  5864. struct task_group *child;
  5865. unsigned long total, sum = 0;
  5866. u64 period, runtime;
  5867. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  5868. runtime = tg->rt_bandwidth.rt_runtime;
  5869. if (tg == d->tg) {
  5870. period = d->rt_period;
  5871. runtime = d->rt_runtime;
  5872. }
  5873. /*
  5874. * Cannot have more runtime than the period.
  5875. */
  5876. if (runtime > period && runtime != RUNTIME_INF)
  5877. return -EINVAL;
  5878. /*
  5879. * Ensure we don't starve existing RT tasks.
  5880. */
  5881. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  5882. return -EBUSY;
  5883. total = to_ratio(period, runtime);
  5884. /*
  5885. * Nobody can have more than the global setting allows.
  5886. */
  5887. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  5888. return -EINVAL;
  5889. /*
  5890. * The sum of our children's runtime should not exceed our own.
  5891. */
  5892. list_for_each_entry_rcu(child, &tg->children, siblings) {
  5893. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  5894. runtime = child->rt_bandwidth.rt_runtime;
  5895. if (child == d->tg) {
  5896. period = d->rt_period;
  5897. runtime = d->rt_runtime;
  5898. }
  5899. sum += to_ratio(period, runtime);
  5900. }
  5901. if (sum > total)
  5902. return -EINVAL;
  5903. return 0;
  5904. }
  5905. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  5906. {
  5907. int ret;
  5908. struct rt_schedulable_data data = {
  5909. .tg = tg,
  5910. .rt_period = period,
  5911. .rt_runtime = runtime,
  5912. };
  5913. rcu_read_lock();
  5914. ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
  5915. rcu_read_unlock();
  5916. return ret;
  5917. }
  5918. static int tg_set_rt_bandwidth(struct task_group *tg,
  5919. u64 rt_period, u64 rt_runtime)
  5920. {
  5921. int i, err = 0;
  5922. mutex_lock(&rt_constraints_mutex);
  5923. read_lock(&tasklist_lock);
  5924. err = __rt_schedulable(tg, rt_period, rt_runtime);
  5925. if (err)
  5926. goto unlock;
  5927. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  5928. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  5929. tg->rt_bandwidth.rt_runtime = rt_runtime;
  5930. for_each_possible_cpu(i) {
  5931. struct rt_rq *rt_rq = tg->rt_rq[i];
  5932. raw_spin_lock(&rt_rq->rt_runtime_lock);
  5933. rt_rq->rt_runtime = rt_runtime;
  5934. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  5935. }
  5936. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  5937. unlock:
  5938. read_unlock(&tasklist_lock);
  5939. mutex_unlock(&rt_constraints_mutex);
  5940. return err;
  5941. }
  5942. static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  5943. {
  5944. u64 rt_runtime, rt_period;
  5945. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  5946. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  5947. if (rt_runtime_us < 0)
  5948. rt_runtime = RUNTIME_INF;
  5949. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  5950. }
  5951. static long sched_group_rt_runtime(struct task_group *tg)
  5952. {
  5953. u64 rt_runtime_us;
  5954. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  5955. return -1;
  5956. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  5957. do_div(rt_runtime_us, NSEC_PER_USEC);
  5958. return rt_runtime_us;
  5959. }
  5960. static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  5961. {
  5962. u64 rt_runtime, rt_period;
  5963. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  5964. rt_runtime = tg->rt_bandwidth.rt_runtime;
  5965. if (rt_period == 0)
  5966. return -EINVAL;
  5967. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  5968. }
  5969. static long sched_group_rt_period(struct task_group *tg)
  5970. {
  5971. u64 rt_period_us;
  5972. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  5973. do_div(rt_period_us, NSEC_PER_USEC);
  5974. return rt_period_us;
  5975. }
  5976. static int sched_rt_global_constraints(void)
  5977. {
  5978. u64 runtime, period;
  5979. int ret = 0;
  5980. if (sysctl_sched_rt_period <= 0)
  5981. return -EINVAL;
  5982. runtime = global_rt_runtime();
  5983. period = global_rt_period();
  5984. /*
  5985. * Sanity check on the sysctl variables.
  5986. */
  5987. if (runtime > period && runtime != RUNTIME_INF)
  5988. return -EINVAL;
  5989. mutex_lock(&rt_constraints_mutex);
  5990. read_lock(&tasklist_lock);
  5991. ret = __rt_schedulable(NULL, 0, 0);
  5992. read_unlock(&tasklist_lock);
  5993. mutex_unlock(&rt_constraints_mutex);
  5994. return ret;
  5995. }
  5996. static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  5997. {
  5998. /* Don't accept realtime tasks when there is no way for them to run */
  5999. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  6000. return 0;
  6001. return 1;
  6002. }
  6003. #else /* !CONFIG_RT_GROUP_SCHED */
  6004. static int sched_rt_global_constraints(void)
  6005. {
  6006. unsigned long flags;
  6007. int i;
  6008. if (sysctl_sched_rt_period <= 0)
  6009. return -EINVAL;
  6010. /*
  6011. * There's always some RT tasks in the root group
  6012. * -- migration, kstopmachine etc..
  6013. */
  6014. if (sysctl_sched_rt_runtime == 0)
  6015. return -EBUSY;
  6016. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  6017. for_each_possible_cpu(i) {
  6018. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  6019. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6020. rt_rq->rt_runtime = global_rt_runtime();
  6021. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6022. }
  6023. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  6024. return 0;
  6025. }
  6026. #endif /* CONFIG_RT_GROUP_SCHED */
  6027. int sched_rr_handler(struct ctl_table *table, int write,
  6028. void __user *buffer, size_t *lenp,
  6029. loff_t *ppos)
  6030. {
  6031. int ret;
  6032. static DEFINE_MUTEX(mutex);
  6033. mutex_lock(&mutex);
  6034. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6035. /* make sure that internally we keep jiffies */
  6036. /* also, writing zero resets timeslice to default */
  6037. if (!ret && write) {
  6038. sched_rr_timeslice = sched_rr_timeslice <= 0 ?
  6039. RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
  6040. }
  6041. mutex_unlock(&mutex);
  6042. return ret;
  6043. }
  6044. int sched_rt_handler(struct ctl_table *table, int write,
  6045. void __user *buffer, size_t *lenp,
  6046. loff_t *ppos)
  6047. {
  6048. int ret;
  6049. int old_period, old_runtime;
  6050. static DEFINE_MUTEX(mutex);
  6051. mutex_lock(&mutex);
  6052. old_period = sysctl_sched_rt_period;
  6053. old_runtime = sysctl_sched_rt_runtime;
  6054. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6055. if (!ret && write) {
  6056. ret = sched_rt_global_constraints();
  6057. if (ret) {
  6058. sysctl_sched_rt_period = old_period;
  6059. sysctl_sched_rt_runtime = old_runtime;
  6060. } else {
  6061. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  6062. def_rt_bandwidth.rt_period =
  6063. ns_to_ktime(global_rt_period());
  6064. }
  6065. }
  6066. mutex_unlock(&mutex);
  6067. return ret;
  6068. }
  6069. #ifdef CONFIG_CGROUP_SCHED
  6070. static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
  6071. {
  6072. return css ? container_of(css, struct task_group, css) : NULL;
  6073. }
  6074. static struct cgroup_subsys_state *
  6075. cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
  6076. {
  6077. struct task_group *parent = css_tg(parent_css);
  6078. struct task_group *tg;
  6079. if (!parent) {
  6080. /* This is early initialization for the top cgroup */
  6081. return &root_task_group.css;
  6082. }
  6083. tg = sched_create_group(parent);
  6084. if (IS_ERR(tg))
  6085. return ERR_PTR(-ENOMEM);
  6086. return &tg->css;
  6087. }
  6088. static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
  6089. {
  6090. struct task_group *tg = css_tg(css);
  6091. struct task_group *parent = css_tg(css_parent(css));
  6092. if (parent)
  6093. sched_online_group(tg, parent);
  6094. return 0;
  6095. }
  6096. static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
  6097. {
  6098. struct task_group *tg = css_tg(css);
  6099. sched_destroy_group(tg);
  6100. }
  6101. static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
  6102. {
  6103. struct task_group *tg = css_tg(css);
  6104. sched_offline_group(tg);
  6105. }
  6106. static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
  6107. struct cgroup_taskset *tset)
  6108. {
  6109. struct task_struct *task;
  6110. cgroup_taskset_for_each(task, css, tset) {
  6111. #ifdef CONFIG_RT_GROUP_SCHED
  6112. if (!sched_rt_can_attach(css_tg(css), task))
  6113. return -EINVAL;
  6114. #else
  6115. /* We don't support RT-tasks being in separate groups */
  6116. if (task->sched_class != &fair_sched_class)
  6117. return -EINVAL;
  6118. #endif
  6119. }
  6120. return 0;
  6121. }
  6122. static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
  6123. struct cgroup_taskset *tset)
  6124. {
  6125. struct task_struct *task;
  6126. cgroup_taskset_for_each(task, css, tset)
  6127. sched_move_task(task);
  6128. }
  6129. static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
  6130. struct cgroup_subsys_state *old_css,
  6131. struct task_struct *task)
  6132. {
  6133. /*
  6134. * cgroup_exit() is called in the copy_process() failure path.
  6135. * Ignore this case since the task hasn't ran yet, this avoids
  6136. * trying to poke a half freed task state from generic code.
  6137. */
  6138. if (!(task->flags & PF_EXITING))
  6139. return;
  6140. sched_move_task(task);
  6141. }
  6142. #ifdef CONFIG_FAIR_GROUP_SCHED
  6143. static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
  6144. struct cftype *cftype, u64 shareval)
  6145. {
  6146. return sched_group_set_shares(css_tg(css), scale_load(shareval));
  6147. }
  6148. static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
  6149. struct cftype *cft)
  6150. {
  6151. struct task_group *tg = css_tg(css);
  6152. return (u64) scale_load_down(tg->shares);
  6153. }
  6154. #ifdef CONFIG_CFS_BANDWIDTH
  6155. static DEFINE_MUTEX(cfs_constraints_mutex);
  6156. const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
  6157. const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
  6158. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
  6159. static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
  6160. {
  6161. int i, ret = 0, runtime_enabled, runtime_was_enabled;
  6162. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6163. if (tg == &root_task_group)
  6164. return -EINVAL;
  6165. /*
  6166. * Ensure we have at some amount of bandwidth every period. This is
  6167. * to prevent reaching a state of large arrears when throttled via
  6168. * entity_tick() resulting in prolonged exit starvation.
  6169. */
  6170. if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
  6171. return -EINVAL;
  6172. /*
  6173. * Likewise, bound things on the otherside by preventing insane quota
  6174. * periods. This also allows us to normalize in computing quota
  6175. * feasibility.
  6176. */
  6177. if (period > max_cfs_quota_period)
  6178. return -EINVAL;
  6179. mutex_lock(&cfs_constraints_mutex);
  6180. ret = __cfs_schedulable(tg, period, quota);
  6181. if (ret)
  6182. goto out_unlock;
  6183. runtime_enabled = quota != RUNTIME_INF;
  6184. runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
  6185. account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
  6186. raw_spin_lock_irq(&cfs_b->lock);
  6187. cfs_b->period = ns_to_ktime(period);
  6188. cfs_b->quota = quota;
  6189. __refill_cfs_bandwidth_runtime(cfs_b);
  6190. /* restart the period timer (if active) to handle new period expiry */
  6191. if (runtime_enabled && cfs_b->timer_active) {
  6192. /* force a reprogram */
  6193. cfs_b->timer_active = 0;
  6194. __start_cfs_bandwidth(cfs_b);
  6195. }
  6196. raw_spin_unlock_irq(&cfs_b->lock);
  6197. for_each_possible_cpu(i) {
  6198. struct cfs_rq *cfs_rq = tg->cfs_rq[i];
  6199. struct rq *rq = cfs_rq->rq;
  6200. raw_spin_lock_irq(&rq->lock);
  6201. cfs_rq->runtime_enabled = runtime_enabled;
  6202. cfs_rq->runtime_remaining = 0;
  6203. if (cfs_rq->throttled)
  6204. unthrottle_cfs_rq(cfs_rq);
  6205. raw_spin_unlock_irq(&rq->lock);
  6206. }
  6207. out_unlock:
  6208. mutex_unlock(&cfs_constraints_mutex);
  6209. return ret;
  6210. }
  6211. int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
  6212. {
  6213. u64 quota, period;
  6214. period = ktime_to_ns(tg->cfs_bandwidth.period);
  6215. if (cfs_quota_us < 0)
  6216. quota = RUNTIME_INF;
  6217. else
  6218. quota = (u64)cfs_quota_us * NSEC_PER_USEC;
  6219. return tg_set_cfs_bandwidth(tg, period, quota);
  6220. }
  6221. long tg_get_cfs_quota(struct task_group *tg)
  6222. {
  6223. u64 quota_us;
  6224. if (tg->cfs_bandwidth.quota == RUNTIME_INF)
  6225. return -1;
  6226. quota_us = tg->cfs_bandwidth.quota;
  6227. do_div(quota_us, NSEC_PER_USEC);
  6228. return quota_us;
  6229. }
  6230. int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
  6231. {
  6232. u64 quota, period;
  6233. period = (u64)cfs_period_us * NSEC_PER_USEC;
  6234. quota = tg->cfs_bandwidth.quota;
  6235. return tg_set_cfs_bandwidth(tg, period, quota);
  6236. }
  6237. long tg_get_cfs_period(struct task_group *tg)
  6238. {
  6239. u64 cfs_period_us;
  6240. cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
  6241. do_div(cfs_period_us, NSEC_PER_USEC);
  6242. return cfs_period_us;
  6243. }
  6244. static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
  6245. struct cftype *cft)
  6246. {
  6247. return tg_get_cfs_quota(css_tg(css));
  6248. }
  6249. static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
  6250. struct cftype *cftype, s64 cfs_quota_us)
  6251. {
  6252. return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
  6253. }
  6254. static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
  6255. struct cftype *cft)
  6256. {
  6257. return tg_get_cfs_period(css_tg(css));
  6258. }
  6259. static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
  6260. struct cftype *cftype, u64 cfs_period_us)
  6261. {
  6262. return tg_set_cfs_period(css_tg(css), cfs_period_us);
  6263. }
  6264. struct cfs_schedulable_data {
  6265. struct task_group *tg;
  6266. u64 period, quota;
  6267. };
  6268. /*
  6269. * normalize group quota/period to be quota/max_period
  6270. * note: units are usecs
  6271. */
  6272. static u64 normalize_cfs_quota(struct task_group *tg,
  6273. struct cfs_schedulable_data *d)
  6274. {
  6275. u64 quota, period;
  6276. if (tg == d->tg) {
  6277. period = d->period;
  6278. quota = d->quota;
  6279. } else {
  6280. period = tg_get_cfs_period(tg);
  6281. quota = tg_get_cfs_quota(tg);
  6282. }
  6283. /* note: these should typically be equivalent */
  6284. if (quota == RUNTIME_INF || quota == -1)
  6285. return RUNTIME_INF;
  6286. return to_ratio(period, quota);
  6287. }
  6288. static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
  6289. {
  6290. struct cfs_schedulable_data *d = data;
  6291. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6292. s64 quota = 0, parent_quota = -1;
  6293. if (!tg->parent) {
  6294. quota = RUNTIME_INF;
  6295. } else {
  6296. struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
  6297. quota = normalize_cfs_quota(tg, d);
  6298. parent_quota = parent_b->hierarchal_quota;
  6299. /*
  6300. * ensure max(child_quota) <= parent_quota, inherit when no
  6301. * limit is set
  6302. */
  6303. if (quota == RUNTIME_INF)
  6304. quota = parent_quota;
  6305. else if (parent_quota != RUNTIME_INF && quota > parent_quota)
  6306. return -EINVAL;
  6307. }
  6308. cfs_b->hierarchal_quota = quota;
  6309. return 0;
  6310. }
  6311. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
  6312. {
  6313. int ret;
  6314. struct cfs_schedulable_data data = {
  6315. .tg = tg,
  6316. .period = period,
  6317. .quota = quota,
  6318. };
  6319. if (quota != RUNTIME_INF) {
  6320. do_div(data.period, NSEC_PER_USEC);
  6321. do_div(data.quota, NSEC_PER_USEC);
  6322. }
  6323. rcu_read_lock();
  6324. ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
  6325. rcu_read_unlock();
  6326. return ret;
  6327. }
  6328. static int cpu_stats_show(struct cgroup_subsys_state *css, struct cftype *cft,
  6329. struct cgroup_map_cb *cb)
  6330. {
  6331. struct task_group *tg = css_tg(css);
  6332. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6333. cb->fill(cb, "nr_periods", cfs_b->nr_periods);
  6334. cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
  6335. cb->fill(cb, "throttled_time", cfs_b->throttled_time);
  6336. return 0;
  6337. }
  6338. #endif /* CONFIG_CFS_BANDWIDTH */
  6339. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6340. #ifdef CONFIG_RT_GROUP_SCHED
  6341. static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
  6342. struct cftype *cft, s64 val)
  6343. {
  6344. return sched_group_set_rt_runtime(css_tg(css), val);
  6345. }
  6346. static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
  6347. struct cftype *cft)
  6348. {
  6349. return sched_group_rt_runtime(css_tg(css));
  6350. }
  6351. static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
  6352. struct cftype *cftype, u64 rt_period_us)
  6353. {
  6354. return sched_group_set_rt_period(css_tg(css), rt_period_us);
  6355. }
  6356. static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
  6357. struct cftype *cft)
  6358. {
  6359. return sched_group_rt_period(css_tg(css));
  6360. }
  6361. #endif /* CONFIG_RT_GROUP_SCHED */
  6362. static struct cftype cpu_files[] = {
  6363. #ifdef CONFIG_FAIR_GROUP_SCHED
  6364. {
  6365. .name = "shares",
  6366. .read_u64 = cpu_shares_read_u64,
  6367. .write_u64 = cpu_shares_write_u64,
  6368. },
  6369. #endif
  6370. #ifdef CONFIG_CFS_BANDWIDTH
  6371. {
  6372. .name = "cfs_quota_us",
  6373. .read_s64 = cpu_cfs_quota_read_s64,
  6374. .write_s64 = cpu_cfs_quota_write_s64,
  6375. },
  6376. {
  6377. .name = "cfs_period_us",
  6378. .read_u64 = cpu_cfs_period_read_u64,
  6379. .write_u64 = cpu_cfs_period_write_u64,
  6380. },
  6381. {
  6382. .name = "stat",
  6383. .read_map = cpu_stats_show,
  6384. },
  6385. #endif
  6386. #ifdef CONFIG_RT_GROUP_SCHED
  6387. {
  6388. .name = "rt_runtime_us",
  6389. .read_s64 = cpu_rt_runtime_read,
  6390. .write_s64 = cpu_rt_runtime_write,
  6391. },
  6392. {
  6393. .name = "rt_period_us",
  6394. .read_u64 = cpu_rt_period_read_uint,
  6395. .write_u64 = cpu_rt_period_write_uint,
  6396. },
  6397. #endif
  6398. { } /* terminate */
  6399. };
  6400. struct cgroup_subsys cpu_cgroup_subsys = {
  6401. .name = "cpu",
  6402. .css_alloc = cpu_cgroup_css_alloc,
  6403. .css_free = cpu_cgroup_css_free,
  6404. .css_online = cpu_cgroup_css_online,
  6405. .css_offline = cpu_cgroup_css_offline,
  6406. .can_attach = cpu_cgroup_can_attach,
  6407. .attach = cpu_cgroup_attach,
  6408. .exit = cpu_cgroup_exit,
  6409. .subsys_id = cpu_cgroup_subsys_id,
  6410. .base_cftypes = cpu_files,
  6411. .early_init = 1,
  6412. };
  6413. #endif /* CONFIG_CGROUP_SCHED */
  6414. void dump_cpu_task(int cpu)
  6415. {
  6416. pr_info("Task dump for CPU %d:\n", cpu);
  6417. sched_show_task(cpu_curr(cpu));
  6418. }