scan.c 31 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231
  1. /*
  2. * cfg80211 scan result handling
  3. *
  4. * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
  5. */
  6. #include <linux/kernel.h>
  7. #include <linux/slab.h>
  8. #include <linux/module.h>
  9. #include <linux/netdevice.h>
  10. #include <linux/wireless.h>
  11. #include <linux/nl80211.h>
  12. #include <linux/etherdevice.h>
  13. #include <net/arp.h>
  14. #include <net/cfg80211.h>
  15. #include <net/cfg80211-wext.h>
  16. #include <net/iw_handler.h>
  17. #include "core.h"
  18. #include "nl80211.h"
  19. #include "wext-compat.h"
  20. #define IEEE80211_SCAN_RESULT_EXPIRE (15 * HZ)
  21. void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev, bool leak)
  22. {
  23. struct cfg80211_scan_request *request;
  24. struct net_device *dev;
  25. #ifdef CONFIG_CFG80211_WEXT
  26. union iwreq_data wrqu;
  27. #endif
  28. ASSERT_RDEV_LOCK(rdev);
  29. request = rdev->scan_req;
  30. if (!request)
  31. return;
  32. dev = request->dev;
  33. /*
  34. * This must be before sending the other events!
  35. * Otherwise, wpa_supplicant gets completely confused with
  36. * wext events.
  37. */
  38. cfg80211_sme_scan_done(dev);
  39. if (request->aborted)
  40. nl80211_send_scan_aborted(rdev, dev);
  41. else
  42. nl80211_send_scan_done(rdev, dev);
  43. #ifdef CONFIG_CFG80211_WEXT
  44. if (!request->aborted) {
  45. memset(&wrqu, 0, sizeof(wrqu));
  46. wireless_send_event(dev, SIOCGIWSCAN, &wrqu, NULL);
  47. }
  48. #endif
  49. dev_put(dev);
  50. rdev->scan_req = NULL;
  51. /*
  52. * OK. If this is invoked with "leak" then we can't
  53. * free this ... but we've cleaned it up anyway. The
  54. * driver failed to call the scan_done callback, so
  55. * all bets are off, it might still be trying to use
  56. * the scan request or not ... if it accesses the dev
  57. * in there (it shouldn't anyway) then it may crash.
  58. */
  59. if (!leak)
  60. kfree(request);
  61. }
  62. void __cfg80211_scan_done(struct work_struct *wk)
  63. {
  64. struct cfg80211_registered_device *rdev;
  65. rdev = container_of(wk, struct cfg80211_registered_device,
  66. scan_done_wk);
  67. cfg80211_lock_rdev(rdev);
  68. ___cfg80211_scan_done(rdev, false);
  69. cfg80211_unlock_rdev(rdev);
  70. }
  71. void cfg80211_scan_done(struct cfg80211_scan_request *request, bool aborted)
  72. {
  73. WARN_ON(request != wiphy_to_dev(request->wiphy)->scan_req);
  74. request->aborted = aborted;
  75. queue_work(cfg80211_wq, &wiphy_to_dev(request->wiphy)->scan_done_wk);
  76. }
  77. EXPORT_SYMBOL(cfg80211_scan_done);
  78. void __cfg80211_sched_scan_results(struct work_struct *wk)
  79. {
  80. struct cfg80211_registered_device *rdev;
  81. rdev = container_of(wk, struct cfg80211_registered_device,
  82. sched_scan_results_wk);
  83. mutex_lock(&rdev->sched_scan_mtx);
  84. /* we don't have sched_scan_req anymore if the scan is stopping */
  85. if (rdev->sched_scan_req)
  86. nl80211_send_sched_scan_results(rdev,
  87. rdev->sched_scan_req->dev);
  88. mutex_unlock(&rdev->sched_scan_mtx);
  89. }
  90. void cfg80211_sched_scan_results(struct wiphy *wiphy)
  91. {
  92. /* ignore if we're not scanning */
  93. if (wiphy_to_dev(wiphy)->sched_scan_req)
  94. queue_work(cfg80211_wq,
  95. &wiphy_to_dev(wiphy)->sched_scan_results_wk);
  96. }
  97. EXPORT_SYMBOL(cfg80211_sched_scan_results);
  98. void cfg80211_sched_scan_stopped(struct wiphy *wiphy)
  99. {
  100. struct cfg80211_registered_device *rdev = wiphy_to_dev(wiphy);
  101. mutex_lock(&rdev->sched_scan_mtx);
  102. __cfg80211_stop_sched_scan(rdev, true);
  103. mutex_unlock(&rdev->sched_scan_mtx);
  104. }
  105. EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
  106. int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
  107. bool driver_initiated)
  108. {
  109. struct net_device *dev;
  110. lockdep_assert_held(&rdev->sched_scan_mtx);
  111. if (!rdev->sched_scan_req)
  112. return -ENOENT;
  113. dev = rdev->sched_scan_req->dev;
  114. if (!driver_initiated) {
  115. int err = rdev->ops->sched_scan_stop(&rdev->wiphy, dev);
  116. if (err)
  117. return err;
  118. }
  119. nl80211_send_sched_scan(rdev, dev, NL80211_CMD_SCHED_SCAN_STOPPED);
  120. kfree(rdev->sched_scan_req);
  121. rdev->sched_scan_req = NULL;
  122. return 0;
  123. }
  124. static void bss_release(struct kref *ref)
  125. {
  126. struct cfg80211_internal_bss *bss;
  127. bss = container_of(ref, struct cfg80211_internal_bss, ref);
  128. if (bss->pub.free_priv)
  129. bss->pub.free_priv(&bss->pub);
  130. if (bss->beacon_ies_allocated)
  131. kfree(bss->pub.beacon_ies);
  132. if (bss->proberesp_ies_allocated)
  133. kfree(bss->pub.proberesp_ies);
  134. BUG_ON(atomic_read(&bss->hold));
  135. kfree(bss);
  136. }
  137. /* must hold dev->bss_lock! */
  138. void cfg80211_bss_age(struct cfg80211_registered_device *dev,
  139. unsigned long age_secs)
  140. {
  141. struct cfg80211_internal_bss *bss;
  142. unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
  143. list_for_each_entry(bss, &dev->bss_list, list) {
  144. bss->ts -= age_jiffies;
  145. }
  146. }
  147. /* must hold dev->bss_lock! */
  148. static void __cfg80211_unlink_bss(struct cfg80211_registered_device *dev,
  149. struct cfg80211_internal_bss *bss)
  150. {
  151. list_del_init(&bss->list);
  152. rb_erase(&bss->rbn, &dev->bss_tree);
  153. kref_put(&bss->ref, bss_release);
  154. }
  155. /* must hold dev->bss_lock! */
  156. void cfg80211_bss_expire(struct cfg80211_registered_device *dev)
  157. {
  158. struct cfg80211_internal_bss *bss, *tmp;
  159. bool expired = false;
  160. list_for_each_entry_safe(bss, tmp, &dev->bss_list, list) {
  161. if (atomic_read(&bss->hold))
  162. continue;
  163. if (!time_after(jiffies, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE))
  164. continue;
  165. __cfg80211_unlink_bss(dev, bss);
  166. expired = true;
  167. }
  168. if (expired)
  169. dev->bss_generation++;
  170. }
  171. const u8 *cfg80211_find_ie(u8 eid, const u8 *ies, int len)
  172. {
  173. while (len > 2 && ies[0] != eid) {
  174. len -= ies[1] + 2;
  175. ies += ies[1] + 2;
  176. }
  177. if (len < 2)
  178. return NULL;
  179. if (len < 2 + ies[1])
  180. return NULL;
  181. return ies;
  182. }
  183. EXPORT_SYMBOL(cfg80211_find_ie);
  184. const u8 *cfg80211_find_vendor_ie(unsigned int oui, u8 oui_type,
  185. const u8 *ies, int len)
  186. {
  187. struct ieee80211_vendor_ie *ie;
  188. const u8 *pos = ies, *end = ies + len;
  189. int ie_oui;
  190. while (pos < end) {
  191. pos = cfg80211_find_ie(WLAN_EID_VENDOR_SPECIFIC, pos,
  192. end - pos);
  193. if (!pos)
  194. return NULL;
  195. if (end - pos < sizeof(*ie))
  196. return NULL;
  197. ie = (struct ieee80211_vendor_ie *)pos;
  198. ie_oui = ie->oui[0] << 16 | ie->oui[1] << 8 | ie->oui[2];
  199. if (ie_oui == oui && ie->oui_type == oui_type)
  200. return pos;
  201. pos += 2 + ie->len;
  202. }
  203. return NULL;
  204. }
  205. EXPORT_SYMBOL(cfg80211_find_vendor_ie);
  206. static int cmp_ies(u8 num, u8 *ies1, size_t len1, u8 *ies2, size_t len2)
  207. {
  208. const u8 *ie1 = cfg80211_find_ie(num, ies1, len1);
  209. const u8 *ie2 = cfg80211_find_ie(num, ies2, len2);
  210. /* equal if both missing */
  211. if (!ie1 && !ie2)
  212. return 0;
  213. /* sort missing IE before (left of) present IE */
  214. if (!ie1)
  215. return -1;
  216. if (!ie2)
  217. return 1;
  218. /* sort by length first, then by contents */
  219. if (ie1[1] != ie2[1])
  220. return ie2[1] - ie1[1];
  221. return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
  222. }
  223. static bool is_bss(struct cfg80211_bss *a,
  224. const u8 *bssid,
  225. const u8 *ssid, size_t ssid_len)
  226. {
  227. const u8 *ssidie;
  228. if (bssid && compare_ether_addr(a->bssid, bssid))
  229. return false;
  230. if (!ssid)
  231. return true;
  232. ssidie = cfg80211_find_ie(WLAN_EID_SSID,
  233. a->information_elements,
  234. a->len_information_elements);
  235. if (!ssidie)
  236. return false;
  237. if (ssidie[1] != ssid_len)
  238. return false;
  239. return memcmp(ssidie + 2, ssid, ssid_len) == 0;
  240. }
  241. static bool is_mesh_bss(struct cfg80211_bss *a)
  242. {
  243. const u8 *ie;
  244. if (!WLAN_CAPABILITY_IS_STA_BSS(a->capability))
  245. return false;
  246. ie = cfg80211_find_ie(WLAN_EID_MESH_ID,
  247. a->information_elements,
  248. a->len_information_elements);
  249. if (!ie)
  250. return false;
  251. ie = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
  252. a->information_elements,
  253. a->len_information_elements);
  254. if (!ie)
  255. return false;
  256. return true;
  257. }
  258. static bool is_mesh(struct cfg80211_bss *a,
  259. const u8 *meshid, size_t meshidlen,
  260. const u8 *meshcfg)
  261. {
  262. const u8 *ie;
  263. if (!WLAN_CAPABILITY_IS_STA_BSS(a->capability))
  264. return false;
  265. ie = cfg80211_find_ie(WLAN_EID_MESH_ID,
  266. a->information_elements,
  267. a->len_information_elements);
  268. if (!ie)
  269. return false;
  270. if (ie[1] != meshidlen)
  271. return false;
  272. if (memcmp(ie + 2, meshid, meshidlen))
  273. return false;
  274. ie = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
  275. a->information_elements,
  276. a->len_information_elements);
  277. if (!ie)
  278. return false;
  279. if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
  280. return false;
  281. /*
  282. * Ignore mesh capability (last two bytes of the IE) when
  283. * comparing since that may differ between stations taking
  284. * part in the same mesh.
  285. */
  286. return memcmp(ie + 2, meshcfg,
  287. sizeof(struct ieee80211_meshconf_ie) - 2) == 0;
  288. }
  289. static int cmp_bss(struct cfg80211_bss *a,
  290. struct cfg80211_bss *b)
  291. {
  292. int r;
  293. if (a->channel != b->channel)
  294. return b->channel->center_freq - a->channel->center_freq;
  295. if (is_mesh_bss(a) && is_mesh_bss(b)) {
  296. r = cmp_ies(WLAN_EID_MESH_ID,
  297. a->information_elements,
  298. a->len_information_elements,
  299. b->information_elements,
  300. b->len_information_elements);
  301. if (r)
  302. return r;
  303. return cmp_ies(WLAN_EID_MESH_CONFIG,
  304. a->information_elements,
  305. a->len_information_elements,
  306. b->information_elements,
  307. b->len_information_elements);
  308. }
  309. r = memcmp(a->bssid, b->bssid, ETH_ALEN);
  310. if (r)
  311. return r;
  312. return cmp_ies(WLAN_EID_SSID,
  313. a->information_elements,
  314. a->len_information_elements,
  315. b->information_elements,
  316. b->len_information_elements);
  317. }
  318. struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
  319. struct ieee80211_channel *channel,
  320. const u8 *bssid,
  321. const u8 *ssid, size_t ssid_len,
  322. u16 capa_mask, u16 capa_val)
  323. {
  324. struct cfg80211_registered_device *dev = wiphy_to_dev(wiphy);
  325. struct cfg80211_internal_bss *bss, *res = NULL;
  326. unsigned long now = jiffies;
  327. spin_lock_bh(&dev->bss_lock);
  328. list_for_each_entry(bss, &dev->bss_list, list) {
  329. if ((bss->pub.capability & capa_mask) != capa_val)
  330. continue;
  331. if (channel && bss->pub.channel != channel)
  332. continue;
  333. /* Don't get expired BSS structs */
  334. if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
  335. !atomic_read(&bss->hold))
  336. continue;
  337. if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
  338. res = bss;
  339. kref_get(&res->ref);
  340. break;
  341. }
  342. }
  343. spin_unlock_bh(&dev->bss_lock);
  344. if (!res)
  345. return NULL;
  346. return &res->pub;
  347. }
  348. EXPORT_SYMBOL(cfg80211_get_bss);
  349. struct cfg80211_bss *cfg80211_get_mesh(struct wiphy *wiphy,
  350. struct ieee80211_channel *channel,
  351. const u8 *meshid, size_t meshidlen,
  352. const u8 *meshcfg)
  353. {
  354. struct cfg80211_registered_device *dev = wiphy_to_dev(wiphy);
  355. struct cfg80211_internal_bss *bss, *res = NULL;
  356. spin_lock_bh(&dev->bss_lock);
  357. list_for_each_entry(bss, &dev->bss_list, list) {
  358. if (channel && bss->pub.channel != channel)
  359. continue;
  360. if (is_mesh(&bss->pub, meshid, meshidlen, meshcfg)) {
  361. res = bss;
  362. kref_get(&res->ref);
  363. break;
  364. }
  365. }
  366. spin_unlock_bh(&dev->bss_lock);
  367. if (!res)
  368. return NULL;
  369. return &res->pub;
  370. }
  371. EXPORT_SYMBOL(cfg80211_get_mesh);
  372. static void rb_insert_bss(struct cfg80211_registered_device *dev,
  373. struct cfg80211_internal_bss *bss)
  374. {
  375. struct rb_node **p = &dev->bss_tree.rb_node;
  376. struct rb_node *parent = NULL;
  377. struct cfg80211_internal_bss *tbss;
  378. int cmp;
  379. while (*p) {
  380. parent = *p;
  381. tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
  382. cmp = cmp_bss(&bss->pub, &tbss->pub);
  383. if (WARN_ON(!cmp)) {
  384. /* will sort of leak this BSS */
  385. return;
  386. }
  387. if (cmp < 0)
  388. p = &(*p)->rb_left;
  389. else
  390. p = &(*p)->rb_right;
  391. }
  392. rb_link_node(&bss->rbn, parent, p);
  393. rb_insert_color(&bss->rbn, &dev->bss_tree);
  394. }
  395. static struct cfg80211_internal_bss *
  396. rb_find_bss(struct cfg80211_registered_device *dev,
  397. struct cfg80211_internal_bss *res)
  398. {
  399. struct rb_node *n = dev->bss_tree.rb_node;
  400. struct cfg80211_internal_bss *bss;
  401. int r;
  402. while (n) {
  403. bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
  404. r = cmp_bss(&res->pub, &bss->pub);
  405. if (r == 0)
  406. return bss;
  407. else if (r < 0)
  408. n = n->rb_left;
  409. else
  410. n = n->rb_right;
  411. }
  412. return NULL;
  413. }
  414. static struct cfg80211_internal_bss *
  415. cfg80211_bss_update(struct cfg80211_registered_device *dev,
  416. struct cfg80211_internal_bss *res)
  417. {
  418. struct cfg80211_internal_bss *found = NULL;
  419. /*
  420. * The reference to "res" is donated to this function.
  421. */
  422. if (WARN_ON(!res->pub.channel)) {
  423. kref_put(&res->ref, bss_release);
  424. return NULL;
  425. }
  426. res->ts = jiffies;
  427. spin_lock_bh(&dev->bss_lock);
  428. found = rb_find_bss(dev, res);
  429. if (found) {
  430. found->pub.beacon_interval = res->pub.beacon_interval;
  431. found->pub.tsf = res->pub.tsf;
  432. found->pub.signal = res->pub.signal;
  433. found->pub.capability = res->pub.capability;
  434. found->ts = res->ts;
  435. /* Update IEs */
  436. if (res->pub.proberesp_ies) {
  437. size_t used = dev->wiphy.bss_priv_size + sizeof(*res);
  438. size_t ielen = res->pub.len_proberesp_ies;
  439. if (found->pub.proberesp_ies &&
  440. !found->proberesp_ies_allocated &&
  441. ksize(found) >= used + ielen) {
  442. memcpy(found->pub.proberesp_ies,
  443. res->pub.proberesp_ies, ielen);
  444. found->pub.len_proberesp_ies = ielen;
  445. } else {
  446. u8 *ies = found->pub.proberesp_ies;
  447. if (found->proberesp_ies_allocated)
  448. ies = krealloc(ies, ielen, GFP_ATOMIC);
  449. else
  450. ies = kmalloc(ielen, GFP_ATOMIC);
  451. if (ies) {
  452. memcpy(ies, res->pub.proberesp_ies,
  453. ielen);
  454. found->proberesp_ies_allocated = true;
  455. found->pub.proberesp_ies = ies;
  456. found->pub.len_proberesp_ies = ielen;
  457. }
  458. }
  459. /* Override possible earlier Beacon frame IEs */
  460. found->pub.information_elements =
  461. found->pub.proberesp_ies;
  462. found->pub.len_information_elements =
  463. found->pub.len_proberesp_ies;
  464. }
  465. if (res->pub.beacon_ies) {
  466. size_t used = dev->wiphy.bss_priv_size + sizeof(*res);
  467. size_t ielen = res->pub.len_beacon_ies;
  468. bool information_elements_is_beacon_ies =
  469. (found->pub.information_elements ==
  470. found->pub.beacon_ies);
  471. if (found->pub.beacon_ies &&
  472. !found->beacon_ies_allocated &&
  473. ksize(found) >= used + ielen) {
  474. memcpy(found->pub.beacon_ies,
  475. res->pub.beacon_ies, ielen);
  476. found->pub.len_beacon_ies = ielen;
  477. } else {
  478. u8 *ies = found->pub.beacon_ies;
  479. if (found->beacon_ies_allocated)
  480. ies = krealloc(ies, ielen, GFP_ATOMIC);
  481. else
  482. ies = kmalloc(ielen, GFP_ATOMIC);
  483. if (ies) {
  484. memcpy(ies, res->pub.beacon_ies,
  485. ielen);
  486. found->beacon_ies_allocated = true;
  487. found->pub.beacon_ies = ies;
  488. found->pub.len_beacon_ies = ielen;
  489. }
  490. }
  491. /* Override IEs if they were from a beacon before */
  492. if (information_elements_is_beacon_ies) {
  493. found->pub.information_elements =
  494. found->pub.beacon_ies;
  495. found->pub.len_information_elements =
  496. found->pub.len_beacon_ies;
  497. }
  498. }
  499. kref_put(&res->ref, bss_release);
  500. } else {
  501. /* this "consumes" the reference */
  502. list_add_tail(&res->list, &dev->bss_list);
  503. rb_insert_bss(dev, res);
  504. found = res;
  505. }
  506. dev->bss_generation++;
  507. spin_unlock_bh(&dev->bss_lock);
  508. kref_get(&found->ref);
  509. return found;
  510. }
  511. struct cfg80211_bss*
  512. cfg80211_inform_bss(struct wiphy *wiphy,
  513. struct ieee80211_channel *channel,
  514. const u8 *bssid,
  515. u64 timestamp, u16 capability, u16 beacon_interval,
  516. const u8 *ie, size_t ielen,
  517. s32 signal, gfp_t gfp)
  518. {
  519. struct cfg80211_internal_bss *res;
  520. size_t privsz;
  521. if (WARN_ON(!wiphy))
  522. return NULL;
  523. privsz = wiphy->bss_priv_size;
  524. if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
  525. (signal < 0 || signal > 100)))
  526. return NULL;
  527. res = kzalloc(sizeof(*res) + privsz + ielen, gfp);
  528. if (!res)
  529. return NULL;
  530. memcpy(res->pub.bssid, bssid, ETH_ALEN);
  531. res->pub.channel = channel;
  532. res->pub.signal = signal;
  533. res->pub.tsf = timestamp;
  534. res->pub.beacon_interval = beacon_interval;
  535. res->pub.capability = capability;
  536. /*
  537. * Since we do not know here whether the IEs are from a Beacon or Probe
  538. * Response frame, we need to pick one of the options and only use it
  539. * with the driver that does not provide the full Beacon/Probe Response
  540. * frame. Use Beacon frame pointer to avoid indicating that this should
  541. * override the information_elements pointer should we have received an
  542. * earlier indication of Probe Response data.
  543. *
  544. * The initial buffer for the IEs is allocated with the BSS entry and
  545. * is located after the private area.
  546. */
  547. res->pub.beacon_ies = (u8 *)res + sizeof(*res) + privsz;
  548. memcpy(res->pub.beacon_ies, ie, ielen);
  549. res->pub.len_beacon_ies = ielen;
  550. res->pub.information_elements = res->pub.beacon_ies;
  551. res->pub.len_information_elements = res->pub.len_beacon_ies;
  552. kref_init(&res->ref);
  553. res = cfg80211_bss_update(wiphy_to_dev(wiphy), res);
  554. if (!res)
  555. return NULL;
  556. if (res->pub.capability & WLAN_CAPABILITY_ESS)
  557. regulatory_hint_found_beacon(wiphy, channel, gfp);
  558. /* cfg80211_bss_update gives us a referenced result */
  559. return &res->pub;
  560. }
  561. EXPORT_SYMBOL(cfg80211_inform_bss);
  562. struct cfg80211_bss *
  563. cfg80211_inform_bss_frame(struct wiphy *wiphy,
  564. struct ieee80211_channel *channel,
  565. struct ieee80211_mgmt *mgmt, size_t len,
  566. s32 signal, gfp_t gfp)
  567. {
  568. struct cfg80211_internal_bss *res;
  569. size_t ielen = len - offsetof(struct ieee80211_mgmt,
  570. u.probe_resp.variable);
  571. size_t privsz;
  572. if (WARN_ON(!mgmt))
  573. return NULL;
  574. if (WARN_ON(!wiphy))
  575. return NULL;
  576. if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
  577. (signal < 0 || signal > 100)))
  578. return NULL;
  579. if (WARN_ON(len < offsetof(struct ieee80211_mgmt, u.probe_resp.variable)))
  580. return NULL;
  581. privsz = wiphy->bss_priv_size;
  582. res = kzalloc(sizeof(*res) + privsz + ielen, gfp);
  583. if (!res)
  584. return NULL;
  585. memcpy(res->pub.bssid, mgmt->bssid, ETH_ALEN);
  586. res->pub.channel = channel;
  587. res->pub.signal = signal;
  588. res->pub.tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
  589. res->pub.beacon_interval = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
  590. res->pub.capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
  591. /*
  592. * The initial buffer for the IEs is allocated with the BSS entry and
  593. * is located after the private area.
  594. */
  595. if (ieee80211_is_probe_resp(mgmt->frame_control)) {
  596. res->pub.proberesp_ies = (u8 *) res + sizeof(*res) + privsz;
  597. memcpy(res->pub.proberesp_ies, mgmt->u.probe_resp.variable,
  598. ielen);
  599. res->pub.len_proberesp_ies = ielen;
  600. res->pub.information_elements = res->pub.proberesp_ies;
  601. res->pub.len_information_elements = res->pub.len_proberesp_ies;
  602. } else {
  603. res->pub.beacon_ies = (u8 *) res + sizeof(*res) + privsz;
  604. memcpy(res->pub.beacon_ies, mgmt->u.beacon.variable, ielen);
  605. res->pub.len_beacon_ies = ielen;
  606. res->pub.information_elements = res->pub.beacon_ies;
  607. res->pub.len_information_elements = res->pub.len_beacon_ies;
  608. }
  609. kref_init(&res->ref);
  610. res = cfg80211_bss_update(wiphy_to_dev(wiphy), res);
  611. if (!res)
  612. return NULL;
  613. if (res->pub.capability & WLAN_CAPABILITY_ESS)
  614. regulatory_hint_found_beacon(wiphy, channel, gfp);
  615. /* cfg80211_bss_update gives us a referenced result */
  616. return &res->pub;
  617. }
  618. EXPORT_SYMBOL(cfg80211_inform_bss_frame);
  619. void cfg80211_put_bss(struct cfg80211_bss *pub)
  620. {
  621. struct cfg80211_internal_bss *bss;
  622. if (!pub)
  623. return;
  624. bss = container_of(pub, struct cfg80211_internal_bss, pub);
  625. kref_put(&bss->ref, bss_release);
  626. }
  627. EXPORT_SYMBOL(cfg80211_put_bss);
  628. void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
  629. {
  630. struct cfg80211_registered_device *dev = wiphy_to_dev(wiphy);
  631. struct cfg80211_internal_bss *bss;
  632. if (WARN_ON(!pub))
  633. return;
  634. bss = container_of(pub, struct cfg80211_internal_bss, pub);
  635. spin_lock_bh(&dev->bss_lock);
  636. if (!list_empty(&bss->list)) {
  637. __cfg80211_unlink_bss(dev, bss);
  638. dev->bss_generation++;
  639. }
  640. spin_unlock_bh(&dev->bss_lock);
  641. }
  642. EXPORT_SYMBOL(cfg80211_unlink_bss);
  643. #ifdef CONFIG_CFG80211_WEXT
  644. int cfg80211_wext_siwscan(struct net_device *dev,
  645. struct iw_request_info *info,
  646. union iwreq_data *wrqu, char *extra)
  647. {
  648. struct cfg80211_registered_device *rdev;
  649. struct wiphy *wiphy;
  650. struct iw_scan_req *wreq = NULL;
  651. struct cfg80211_scan_request *creq = NULL;
  652. int i, err, n_channels = 0;
  653. enum ieee80211_band band;
  654. if (!netif_running(dev))
  655. return -ENETDOWN;
  656. if (wrqu->data.length == sizeof(struct iw_scan_req))
  657. wreq = (struct iw_scan_req *)extra;
  658. rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
  659. if (IS_ERR(rdev))
  660. return PTR_ERR(rdev);
  661. if (rdev->scan_req) {
  662. err = -EBUSY;
  663. goto out;
  664. }
  665. wiphy = &rdev->wiphy;
  666. /* Determine number of channels, needed to allocate creq */
  667. if (wreq && wreq->num_channels)
  668. n_channels = wreq->num_channels;
  669. else {
  670. for (band = 0; band < IEEE80211_NUM_BANDS; band++)
  671. if (wiphy->bands[band])
  672. n_channels += wiphy->bands[band]->n_channels;
  673. }
  674. creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
  675. n_channels * sizeof(void *),
  676. GFP_ATOMIC);
  677. if (!creq) {
  678. err = -ENOMEM;
  679. goto out;
  680. }
  681. creq->wiphy = wiphy;
  682. creq->dev = dev;
  683. /* SSIDs come after channels */
  684. creq->ssids = (void *)&creq->channels[n_channels];
  685. creq->n_channels = n_channels;
  686. creq->n_ssids = 1;
  687. /* translate "Scan on frequencies" request */
  688. i = 0;
  689. for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
  690. int j;
  691. if (!wiphy->bands[band])
  692. continue;
  693. for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
  694. /* ignore disabled channels */
  695. if (wiphy->bands[band]->channels[j].flags &
  696. IEEE80211_CHAN_DISABLED)
  697. continue;
  698. /* If we have a wireless request structure and the
  699. * wireless request specifies frequencies, then search
  700. * for the matching hardware channel.
  701. */
  702. if (wreq && wreq->num_channels) {
  703. int k;
  704. int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
  705. for (k = 0; k < wreq->num_channels; k++) {
  706. int wext_freq = cfg80211_wext_freq(wiphy, &wreq->channel_list[k]);
  707. if (wext_freq == wiphy_freq)
  708. goto wext_freq_found;
  709. }
  710. goto wext_freq_not_found;
  711. }
  712. wext_freq_found:
  713. creq->channels[i] = &wiphy->bands[band]->channels[j];
  714. i++;
  715. wext_freq_not_found: ;
  716. }
  717. }
  718. /* No channels found? */
  719. if (!i) {
  720. err = -EINVAL;
  721. goto out;
  722. }
  723. /* Set real number of channels specified in creq->channels[] */
  724. creq->n_channels = i;
  725. /* translate "Scan for SSID" request */
  726. if (wreq) {
  727. if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
  728. if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
  729. err = -EINVAL;
  730. goto out;
  731. }
  732. memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
  733. creq->ssids[0].ssid_len = wreq->essid_len;
  734. }
  735. if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
  736. creq->n_ssids = 0;
  737. }
  738. for (i = 0; i < IEEE80211_NUM_BANDS; i++)
  739. if (wiphy->bands[i])
  740. creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
  741. rdev->scan_req = creq;
  742. err = rdev->ops->scan(wiphy, dev, creq);
  743. if (err) {
  744. rdev->scan_req = NULL;
  745. /* creq will be freed below */
  746. } else {
  747. nl80211_send_scan_start(rdev, dev);
  748. /* creq now owned by driver */
  749. creq = NULL;
  750. dev_hold(dev);
  751. }
  752. out:
  753. kfree(creq);
  754. cfg80211_unlock_rdev(rdev);
  755. return err;
  756. }
  757. EXPORT_SYMBOL_GPL(cfg80211_wext_siwscan);
  758. static void ieee80211_scan_add_ies(struct iw_request_info *info,
  759. struct cfg80211_bss *bss,
  760. char **current_ev, char *end_buf)
  761. {
  762. u8 *pos, *end, *next;
  763. struct iw_event iwe;
  764. if (!bss->information_elements ||
  765. !bss->len_information_elements)
  766. return;
  767. /*
  768. * If needed, fragment the IEs buffer (at IE boundaries) into short
  769. * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
  770. */
  771. pos = bss->information_elements;
  772. end = pos + bss->len_information_elements;
  773. while (end - pos > IW_GENERIC_IE_MAX) {
  774. next = pos + 2 + pos[1];
  775. while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
  776. next = next + 2 + next[1];
  777. memset(&iwe, 0, sizeof(iwe));
  778. iwe.cmd = IWEVGENIE;
  779. iwe.u.data.length = next - pos;
  780. *current_ev = iwe_stream_add_point(info, *current_ev,
  781. end_buf, &iwe, pos);
  782. pos = next;
  783. }
  784. if (end > pos) {
  785. memset(&iwe, 0, sizeof(iwe));
  786. iwe.cmd = IWEVGENIE;
  787. iwe.u.data.length = end - pos;
  788. *current_ev = iwe_stream_add_point(info, *current_ev,
  789. end_buf, &iwe, pos);
  790. }
  791. }
  792. static inline unsigned int elapsed_jiffies_msecs(unsigned long start)
  793. {
  794. unsigned long end = jiffies;
  795. if (end >= start)
  796. return jiffies_to_msecs(end - start);
  797. return jiffies_to_msecs(end + (MAX_JIFFY_OFFSET - start) + 1);
  798. }
  799. static char *
  800. ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
  801. struct cfg80211_internal_bss *bss, char *current_ev,
  802. char *end_buf)
  803. {
  804. struct iw_event iwe;
  805. u8 *buf, *cfg, *p;
  806. u8 *ie = bss->pub.information_elements;
  807. int rem = bss->pub.len_information_elements, i, sig;
  808. bool ismesh = false;
  809. memset(&iwe, 0, sizeof(iwe));
  810. iwe.cmd = SIOCGIWAP;
  811. iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
  812. memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
  813. current_ev = iwe_stream_add_event(info, current_ev, end_buf, &iwe,
  814. IW_EV_ADDR_LEN);
  815. memset(&iwe, 0, sizeof(iwe));
  816. iwe.cmd = SIOCGIWFREQ;
  817. iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
  818. iwe.u.freq.e = 0;
  819. current_ev = iwe_stream_add_event(info, current_ev, end_buf, &iwe,
  820. IW_EV_FREQ_LEN);
  821. memset(&iwe, 0, sizeof(iwe));
  822. iwe.cmd = SIOCGIWFREQ;
  823. iwe.u.freq.m = bss->pub.channel->center_freq;
  824. iwe.u.freq.e = 6;
  825. current_ev = iwe_stream_add_event(info, current_ev, end_buf, &iwe,
  826. IW_EV_FREQ_LEN);
  827. if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
  828. memset(&iwe, 0, sizeof(iwe));
  829. iwe.cmd = IWEVQUAL;
  830. iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
  831. IW_QUAL_NOISE_INVALID |
  832. IW_QUAL_QUAL_UPDATED;
  833. switch (wiphy->signal_type) {
  834. case CFG80211_SIGNAL_TYPE_MBM:
  835. sig = bss->pub.signal / 100;
  836. iwe.u.qual.level = sig;
  837. iwe.u.qual.updated |= IW_QUAL_DBM;
  838. if (sig < -110) /* rather bad */
  839. sig = -110;
  840. else if (sig > -40) /* perfect */
  841. sig = -40;
  842. /* will give a range of 0 .. 70 */
  843. iwe.u.qual.qual = sig + 110;
  844. break;
  845. case CFG80211_SIGNAL_TYPE_UNSPEC:
  846. iwe.u.qual.level = bss->pub.signal;
  847. /* will give range 0 .. 100 */
  848. iwe.u.qual.qual = bss->pub.signal;
  849. break;
  850. default:
  851. /* not reached */
  852. break;
  853. }
  854. current_ev = iwe_stream_add_event(info, current_ev, end_buf,
  855. &iwe, IW_EV_QUAL_LEN);
  856. }
  857. memset(&iwe, 0, sizeof(iwe));
  858. iwe.cmd = SIOCGIWENCODE;
  859. if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
  860. iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
  861. else
  862. iwe.u.data.flags = IW_ENCODE_DISABLED;
  863. iwe.u.data.length = 0;
  864. current_ev = iwe_stream_add_point(info, current_ev, end_buf,
  865. &iwe, "");
  866. while (rem >= 2) {
  867. /* invalid data */
  868. if (ie[1] > rem - 2)
  869. break;
  870. switch (ie[0]) {
  871. case WLAN_EID_SSID:
  872. memset(&iwe, 0, sizeof(iwe));
  873. iwe.cmd = SIOCGIWESSID;
  874. iwe.u.data.length = ie[1];
  875. iwe.u.data.flags = 1;
  876. current_ev = iwe_stream_add_point(info, current_ev, end_buf,
  877. &iwe, ie + 2);
  878. break;
  879. case WLAN_EID_MESH_ID:
  880. memset(&iwe, 0, sizeof(iwe));
  881. iwe.cmd = SIOCGIWESSID;
  882. iwe.u.data.length = ie[1];
  883. iwe.u.data.flags = 1;
  884. current_ev = iwe_stream_add_point(info, current_ev, end_buf,
  885. &iwe, ie + 2);
  886. break;
  887. case WLAN_EID_MESH_CONFIG:
  888. ismesh = true;
  889. if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
  890. break;
  891. buf = kmalloc(50, GFP_ATOMIC);
  892. if (!buf)
  893. break;
  894. cfg = ie + 2;
  895. memset(&iwe, 0, sizeof(iwe));
  896. iwe.cmd = IWEVCUSTOM;
  897. sprintf(buf, "Mesh Network Path Selection Protocol ID: "
  898. "0x%02X", cfg[0]);
  899. iwe.u.data.length = strlen(buf);
  900. current_ev = iwe_stream_add_point(info, current_ev,
  901. end_buf,
  902. &iwe, buf);
  903. sprintf(buf, "Path Selection Metric ID: 0x%02X",
  904. cfg[1]);
  905. iwe.u.data.length = strlen(buf);
  906. current_ev = iwe_stream_add_point(info, current_ev,
  907. end_buf,
  908. &iwe, buf);
  909. sprintf(buf, "Congestion Control Mode ID: 0x%02X",
  910. cfg[2]);
  911. iwe.u.data.length = strlen(buf);
  912. current_ev = iwe_stream_add_point(info, current_ev,
  913. end_buf,
  914. &iwe, buf);
  915. sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]);
  916. iwe.u.data.length = strlen(buf);
  917. current_ev = iwe_stream_add_point(info, current_ev,
  918. end_buf,
  919. &iwe, buf);
  920. sprintf(buf, "Authentication ID: 0x%02X", cfg[4]);
  921. iwe.u.data.length = strlen(buf);
  922. current_ev = iwe_stream_add_point(info, current_ev,
  923. end_buf,
  924. &iwe, buf);
  925. sprintf(buf, "Formation Info: 0x%02X", cfg[5]);
  926. iwe.u.data.length = strlen(buf);
  927. current_ev = iwe_stream_add_point(info, current_ev,
  928. end_buf,
  929. &iwe, buf);
  930. sprintf(buf, "Capabilities: 0x%02X", cfg[6]);
  931. iwe.u.data.length = strlen(buf);
  932. current_ev = iwe_stream_add_point(info, current_ev,
  933. end_buf,
  934. &iwe, buf);
  935. kfree(buf);
  936. break;
  937. case WLAN_EID_SUPP_RATES:
  938. case WLAN_EID_EXT_SUPP_RATES:
  939. /* display all supported rates in readable format */
  940. p = current_ev + iwe_stream_lcp_len(info);
  941. memset(&iwe, 0, sizeof(iwe));
  942. iwe.cmd = SIOCGIWRATE;
  943. /* Those two flags are ignored... */
  944. iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
  945. for (i = 0; i < ie[1]; i++) {
  946. iwe.u.bitrate.value =
  947. ((ie[i + 2] & 0x7f) * 500000);
  948. p = iwe_stream_add_value(info, current_ev, p,
  949. end_buf, &iwe, IW_EV_PARAM_LEN);
  950. }
  951. current_ev = p;
  952. break;
  953. }
  954. rem -= ie[1] + 2;
  955. ie += ie[1] + 2;
  956. }
  957. if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
  958. ismesh) {
  959. memset(&iwe, 0, sizeof(iwe));
  960. iwe.cmd = SIOCGIWMODE;
  961. if (ismesh)
  962. iwe.u.mode = IW_MODE_MESH;
  963. else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
  964. iwe.u.mode = IW_MODE_MASTER;
  965. else
  966. iwe.u.mode = IW_MODE_ADHOC;
  967. current_ev = iwe_stream_add_event(info, current_ev, end_buf,
  968. &iwe, IW_EV_UINT_LEN);
  969. }
  970. buf = kmalloc(30, GFP_ATOMIC);
  971. if (buf) {
  972. memset(&iwe, 0, sizeof(iwe));
  973. iwe.cmd = IWEVCUSTOM;
  974. sprintf(buf, "tsf=%016llx", (unsigned long long)(bss->pub.tsf));
  975. iwe.u.data.length = strlen(buf);
  976. current_ev = iwe_stream_add_point(info, current_ev, end_buf,
  977. &iwe, buf);
  978. memset(&iwe, 0, sizeof(iwe));
  979. iwe.cmd = IWEVCUSTOM;
  980. sprintf(buf, " Last beacon: %ums ago",
  981. elapsed_jiffies_msecs(bss->ts));
  982. iwe.u.data.length = strlen(buf);
  983. current_ev = iwe_stream_add_point(info, current_ev,
  984. end_buf, &iwe, buf);
  985. kfree(buf);
  986. }
  987. ieee80211_scan_add_ies(info, &bss->pub, &current_ev, end_buf);
  988. return current_ev;
  989. }
  990. static int ieee80211_scan_results(struct cfg80211_registered_device *dev,
  991. struct iw_request_info *info,
  992. char *buf, size_t len)
  993. {
  994. char *current_ev = buf;
  995. char *end_buf = buf + len;
  996. struct cfg80211_internal_bss *bss;
  997. spin_lock_bh(&dev->bss_lock);
  998. cfg80211_bss_expire(dev);
  999. list_for_each_entry(bss, &dev->bss_list, list) {
  1000. if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
  1001. spin_unlock_bh(&dev->bss_lock);
  1002. return -E2BIG;
  1003. }
  1004. current_ev = ieee80211_bss(&dev->wiphy, info, bss,
  1005. current_ev, end_buf);
  1006. }
  1007. spin_unlock_bh(&dev->bss_lock);
  1008. return current_ev - buf;
  1009. }
  1010. int cfg80211_wext_giwscan(struct net_device *dev,
  1011. struct iw_request_info *info,
  1012. struct iw_point *data, char *extra)
  1013. {
  1014. struct cfg80211_registered_device *rdev;
  1015. int res;
  1016. if (!netif_running(dev))
  1017. return -ENETDOWN;
  1018. rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
  1019. if (IS_ERR(rdev))
  1020. return PTR_ERR(rdev);
  1021. if (rdev->scan_req) {
  1022. res = -EAGAIN;
  1023. goto out;
  1024. }
  1025. res = ieee80211_scan_results(rdev, info, extra, data->length);
  1026. data->length = 0;
  1027. if (res >= 0) {
  1028. data->length = res;
  1029. res = 0;
  1030. }
  1031. out:
  1032. cfg80211_unlock_rdev(rdev);
  1033. return res;
  1034. }
  1035. EXPORT_SYMBOL_GPL(cfg80211_wext_giwscan);
  1036. #endif