af_iucv.c 41 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824
  1. /*
  2. * IUCV protocol stack for Linux on zSeries
  3. *
  4. * Copyright IBM Corp. 2006, 2009
  5. *
  6. * Author(s): Jennifer Hunt <jenhunt@us.ibm.com>
  7. * Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
  8. * PM functions:
  9. * Ursula Braun <ursula.braun@de.ibm.com>
  10. */
  11. #define KMSG_COMPONENT "af_iucv"
  12. #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  13. #include <linux/module.h>
  14. #include <linux/types.h>
  15. #include <linux/list.h>
  16. #include <linux/errno.h>
  17. #include <linux/kernel.h>
  18. #include <linux/sched.h>
  19. #include <linux/slab.h>
  20. #include <linux/skbuff.h>
  21. #include <linux/init.h>
  22. #include <linux/poll.h>
  23. #include <net/sock.h>
  24. #include <asm/ebcdic.h>
  25. #include <asm/cpcmd.h>
  26. #include <linux/kmod.h>
  27. #include <net/iucv/iucv.h>
  28. #include <net/iucv/af_iucv.h>
  29. #define VERSION "1.1"
  30. static char iucv_userid[80];
  31. static const struct proto_ops iucv_sock_ops;
  32. static struct proto iucv_proto = {
  33. .name = "AF_IUCV",
  34. .owner = THIS_MODULE,
  35. .obj_size = sizeof(struct iucv_sock),
  36. };
  37. static struct iucv_interface *pr_iucv;
  38. /* special AF_IUCV IPRM messages */
  39. static const u8 iprm_shutdown[8] =
  40. {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01};
  41. #define TRGCLS_SIZE (sizeof(((struct iucv_message *)0)->class))
  42. /* macros to set/get socket control buffer at correct offset */
  43. #define CB_TAG(skb) ((skb)->cb) /* iucv message tag */
  44. #define CB_TAG_LEN (sizeof(((struct iucv_message *) 0)->tag))
  45. #define CB_TRGCLS(skb) ((skb)->cb + CB_TAG_LEN) /* iucv msg target class */
  46. #define CB_TRGCLS_LEN (TRGCLS_SIZE)
  47. #define __iucv_sock_wait(sk, condition, timeo, ret) \
  48. do { \
  49. DEFINE_WAIT(__wait); \
  50. long __timeo = timeo; \
  51. ret = 0; \
  52. prepare_to_wait(sk_sleep(sk), &__wait, TASK_INTERRUPTIBLE); \
  53. while (!(condition)) { \
  54. if (!__timeo) { \
  55. ret = -EAGAIN; \
  56. break; \
  57. } \
  58. if (signal_pending(current)) { \
  59. ret = sock_intr_errno(__timeo); \
  60. break; \
  61. } \
  62. release_sock(sk); \
  63. __timeo = schedule_timeout(__timeo); \
  64. lock_sock(sk); \
  65. ret = sock_error(sk); \
  66. if (ret) \
  67. break; \
  68. } \
  69. finish_wait(sk_sleep(sk), &__wait); \
  70. } while (0)
  71. #define iucv_sock_wait(sk, condition, timeo) \
  72. ({ \
  73. int __ret = 0; \
  74. if (!(condition)) \
  75. __iucv_sock_wait(sk, condition, timeo, __ret); \
  76. __ret; \
  77. })
  78. static void iucv_sock_kill(struct sock *sk);
  79. static void iucv_sock_close(struct sock *sk);
  80. /* Call Back functions */
  81. static void iucv_callback_rx(struct iucv_path *, struct iucv_message *);
  82. static void iucv_callback_txdone(struct iucv_path *, struct iucv_message *);
  83. static void iucv_callback_connack(struct iucv_path *, u8 ipuser[16]);
  84. static int iucv_callback_connreq(struct iucv_path *, u8 ipvmid[8],
  85. u8 ipuser[16]);
  86. static void iucv_callback_connrej(struct iucv_path *, u8 ipuser[16]);
  87. static void iucv_callback_shutdown(struct iucv_path *, u8 ipuser[16]);
  88. static struct iucv_sock_list iucv_sk_list = {
  89. .lock = __RW_LOCK_UNLOCKED(iucv_sk_list.lock),
  90. .autobind_name = ATOMIC_INIT(0)
  91. };
  92. static struct iucv_handler af_iucv_handler = {
  93. .path_pending = iucv_callback_connreq,
  94. .path_complete = iucv_callback_connack,
  95. .path_severed = iucv_callback_connrej,
  96. .message_pending = iucv_callback_rx,
  97. .message_complete = iucv_callback_txdone,
  98. .path_quiesced = iucv_callback_shutdown,
  99. };
  100. static inline void high_nmcpy(unsigned char *dst, char *src)
  101. {
  102. memcpy(dst, src, 8);
  103. }
  104. static inline void low_nmcpy(unsigned char *dst, char *src)
  105. {
  106. memcpy(&dst[8], src, 8);
  107. }
  108. static int afiucv_pm_prepare(struct device *dev)
  109. {
  110. #ifdef CONFIG_PM_DEBUG
  111. printk(KERN_WARNING "afiucv_pm_prepare\n");
  112. #endif
  113. return 0;
  114. }
  115. static void afiucv_pm_complete(struct device *dev)
  116. {
  117. #ifdef CONFIG_PM_DEBUG
  118. printk(KERN_WARNING "afiucv_pm_complete\n");
  119. #endif
  120. }
  121. /**
  122. * afiucv_pm_freeze() - Freeze PM callback
  123. * @dev: AFIUCV dummy device
  124. *
  125. * Sever all established IUCV communication pathes
  126. */
  127. static int afiucv_pm_freeze(struct device *dev)
  128. {
  129. struct iucv_sock *iucv;
  130. struct sock *sk;
  131. struct hlist_node *node;
  132. int err = 0;
  133. #ifdef CONFIG_PM_DEBUG
  134. printk(KERN_WARNING "afiucv_pm_freeze\n");
  135. #endif
  136. read_lock(&iucv_sk_list.lock);
  137. sk_for_each(sk, node, &iucv_sk_list.head) {
  138. iucv = iucv_sk(sk);
  139. skb_queue_purge(&iucv->send_skb_q);
  140. skb_queue_purge(&iucv->backlog_skb_q);
  141. switch (sk->sk_state) {
  142. case IUCV_SEVERED:
  143. case IUCV_DISCONN:
  144. case IUCV_CLOSING:
  145. case IUCV_CONNECTED:
  146. if (iucv->path) {
  147. err = pr_iucv->path_sever(iucv->path, NULL);
  148. iucv_path_free(iucv->path);
  149. iucv->path = NULL;
  150. }
  151. break;
  152. case IUCV_OPEN:
  153. case IUCV_BOUND:
  154. case IUCV_LISTEN:
  155. case IUCV_CLOSED:
  156. default:
  157. break;
  158. }
  159. }
  160. read_unlock(&iucv_sk_list.lock);
  161. return err;
  162. }
  163. /**
  164. * afiucv_pm_restore_thaw() - Thaw and restore PM callback
  165. * @dev: AFIUCV dummy device
  166. *
  167. * socket clean up after freeze
  168. */
  169. static int afiucv_pm_restore_thaw(struct device *dev)
  170. {
  171. struct sock *sk;
  172. struct hlist_node *node;
  173. #ifdef CONFIG_PM_DEBUG
  174. printk(KERN_WARNING "afiucv_pm_restore_thaw\n");
  175. #endif
  176. read_lock(&iucv_sk_list.lock);
  177. sk_for_each(sk, node, &iucv_sk_list.head) {
  178. switch (sk->sk_state) {
  179. case IUCV_CONNECTED:
  180. sk->sk_err = EPIPE;
  181. sk->sk_state = IUCV_DISCONN;
  182. sk->sk_state_change(sk);
  183. break;
  184. case IUCV_DISCONN:
  185. case IUCV_SEVERED:
  186. case IUCV_CLOSING:
  187. case IUCV_LISTEN:
  188. case IUCV_BOUND:
  189. case IUCV_OPEN:
  190. default:
  191. break;
  192. }
  193. }
  194. read_unlock(&iucv_sk_list.lock);
  195. return 0;
  196. }
  197. static const struct dev_pm_ops afiucv_pm_ops = {
  198. .prepare = afiucv_pm_prepare,
  199. .complete = afiucv_pm_complete,
  200. .freeze = afiucv_pm_freeze,
  201. .thaw = afiucv_pm_restore_thaw,
  202. .restore = afiucv_pm_restore_thaw,
  203. };
  204. static struct device_driver af_iucv_driver = {
  205. .owner = THIS_MODULE,
  206. .name = "afiucv",
  207. .bus = NULL,
  208. .pm = &afiucv_pm_ops,
  209. };
  210. /* dummy device used as trigger for PM functions */
  211. static struct device *af_iucv_dev;
  212. /**
  213. * iucv_msg_length() - Returns the length of an iucv message.
  214. * @msg: Pointer to struct iucv_message, MUST NOT be NULL
  215. *
  216. * The function returns the length of the specified iucv message @msg of data
  217. * stored in a buffer and of data stored in the parameter list (PRMDATA).
  218. *
  219. * For IUCV_IPRMDATA, AF_IUCV uses the following convention to transport socket
  220. * data:
  221. * PRMDATA[0..6] socket data (max 7 bytes);
  222. * PRMDATA[7] socket data length value (len is 0xff - PRMDATA[7])
  223. *
  224. * The socket data length is computed by subtracting the socket data length
  225. * value from 0xFF.
  226. * If the socket data len is greater 7, then PRMDATA can be used for special
  227. * notifications (see iucv_sock_shutdown); and further,
  228. * if the socket data len is > 7, the function returns 8.
  229. *
  230. * Use this function to allocate socket buffers to store iucv message data.
  231. */
  232. static inline size_t iucv_msg_length(struct iucv_message *msg)
  233. {
  234. size_t datalen;
  235. if (msg->flags & IUCV_IPRMDATA) {
  236. datalen = 0xff - msg->rmmsg[7];
  237. return (datalen < 8) ? datalen : 8;
  238. }
  239. return msg->length;
  240. }
  241. /**
  242. * iucv_sock_in_state() - check for specific states
  243. * @sk: sock structure
  244. * @state: first iucv sk state
  245. * @state: second iucv sk state
  246. *
  247. * Returns true if the socket in either in the first or second state.
  248. */
  249. static int iucv_sock_in_state(struct sock *sk, int state, int state2)
  250. {
  251. return (sk->sk_state == state || sk->sk_state == state2);
  252. }
  253. /**
  254. * iucv_below_msglim() - function to check if messages can be sent
  255. * @sk: sock structure
  256. *
  257. * Returns true if the send queue length is lower than the message limit.
  258. * Always returns true if the socket is not connected (no iucv path for
  259. * checking the message limit).
  260. */
  261. static inline int iucv_below_msglim(struct sock *sk)
  262. {
  263. struct iucv_sock *iucv = iucv_sk(sk);
  264. if (sk->sk_state != IUCV_CONNECTED)
  265. return 1;
  266. return (skb_queue_len(&iucv->send_skb_q) < iucv->path->msglim);
  267. }
  268. /**
  269. * iucv_sock_wake_msglim() - Wake up thread waiting on msg limit
  270. */
  271. static void iucv_sock_wake_msglim(struct sock *sk)
  272. {
  273. struct socket_wq *wq;
  274. rcu_read_lock();
  275. wq = rcu_dereference(sk->sk_wq);
  276. if (wq_has_sleeper(wq))
  277. wake_up_interruptible_all(&wq->wait);
  278. sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
  279. rcu_read_unlock();
  280. }
  281. /* Timers */
  282. static void iucv_sock_timeout(unsigned long arg)
  283. {
  284. struct sock *sk = (struct sock *)arg;
  285. bh_lock_sock(sk);
  286. sk->sk_err = ETIMEDOUT;
  287. sk->sk_state_change(sk);
  288. bh_unlock_sock(sk);
  289. iucv_sock_kill(sk);
  290. sock_put(sk);
  291. }
  292. static void iucv_sock_clear_timer(struct sock *sk)
  293. {
  294. sk_stop_timer(sk, &sk->sk_timer);
  295. }
  296. static struct sock *__iucv_get_sock_by_name(char *nm)
  297. {
  298. struct sock *sk;
  299. struct hlist_node *node;
  300. sk_for_each(sk, node, &iucv_sk_list.head)
  301. if (!memcmp(&iucv_sk(sk)->src_name, nm, 8))
  302. return sk;
  303. return NULL;
  304. }
  305. static void iucv_sock_destruct(struct sock *sk)
  306. {
  307. skb_queue_purge(&sk->sk_receive_queue);
  308. skb_queue_purge(&sk->sk_write_queue);
  309. }
  310. /* Cleanup Listen */
  311. static void iucv_sock_cleanup_listen(struct sock *parent)
  312. {
  313. struct sock *sk;
  314. /* Close non-accepted connections */
  315. while ((sk = iucv_accept_dequeue(parent, NULL))) {
  316. iucv_sock_close(sk);
  317. iucv_sock_kill(sk);
  318. }
  319. parent->sk_state = IUCV_CLOSED;
  320. }
  321. /* Kill socket (only if zapped and orphaned) */
  322. static void iucv_sock_kill(struct sock *sk)
  323. {
  324. if (!sock_flag(sk, SOCK_ZAPPED) || sk->sk_socket)
  325. return;
  326. iucv_sock_unlink(&iucv_sk_list, sk);
  327. sock_set_flag(sk, SOCK_DEAD);
  328. sock_put(sk);
  329. }
  330. /* Close an IUCV socket */
  331. static void iucv_sock_close(struct sock *sk)
  332. {
  333. unsigned char user_data[16];
  334. struct iucv_sock *iucv = iucv_sk(sk);
  335. unsigned long timeo;
  336. iucv_sock_clear_timer(sk);
  337. lock_sock(sk);
  338. switch (sk->sk_state) {
  339. case IUCV_LISTEN:
  340. iucv_sock_cleanup_listen(sk);
  341. break;
  342. case IUCV_CONNECTED:
  343. case IUCV_DISCONN:
  344. sk->sk_state = IUCV_CLOSING;
  345. sk->sk_state_change(sk);
  346. if (!skb_queue_empty(&iucv->send_skb_q)) {
  347. if (sock_flag(sk, SOCK_LINGER) && sk->sk_lingertime)
  348. timeo = sk->sk_lingertime;
  349. else
  350. timeo = IUCV_DISCONN_TIMEOUT;
  351. iucv_sock_wait(sk,
  352. iucv_sock_in_state(sk, IUCV_CLOSED, 0),
  353. timeo);
  354. }
  355. case IUCV_CLOSING: /* fall through */
  356. sk->sk_state = IUCV_CLOSED;
  357. sk->sk_state_change(sk);
  358. if (iucv->path) {
  359. low_nmcpy(user_data, iucv->src_name);
  360. high_nmcpy(user_data, iucv->dst_name);
  361. ASCEBC(user_data, sizeof(user_data));
  362. pr_iucv->path_sever(iucv->path, user_data);
  363. iucv_path_free(iucv->path);
  364. iucv->path = NULL;
  365. }
  366. sk->sk_err = ECONNRESET;
  367. sk->sk_state_change(sk);
  368. skb_queue_purge(&iucv->send_skb_q);
  369. skb_queue_purge(&iucv->backlog_skb_q);
  370. break;
  371. default:
  372. /* nothing to do here */
  373. break;
  374. }
  375. /* mark socket for deletion by iucv_sock_kill() */
  376. sock_set_flag(sk, SOCK_ZAPPED);
  377. release_sock(sk);
  378. }
  379. static void iucv_sock_init(struct sock *sk, struct sock *parent)
  380. {
  381. if (parent)
  382. sk->sk_type = parent->sk_type;
  383. }
  384. static struct sock *iucv_sock_alloc(struct socket *sock, int proto, gfp_t prio)
  385. {
  386. struct sock *sk;
  387. sk = sk_alloc(&init_net, PF_IUCV, prio, &iucv_proto);
  388. if (!sk)
  389. return NULL;
  390. sock_init_data(sock, sk);
  391. INIT_LIST_HEAD(&iucv_sk(sk)->accept_q);
  392. spin_lock_init(&iucv_sk(sk)->accept_q_lock);
  393. skb_queue_head_init(&iucv_sk(sk)->send_skb_q);
  394. INIT_LIST_HEAD(&iucv_sk(sk)->message_q.list);
  395. spin_lock_init(&iucv_sk(sk)->message_q.lock);
  396. skb_queue_head_init(&iucv_sk(sk)->backlog_skb_q);
  397. iucv_sk(sk)->send_tag = 0;
  398. iucv_sk(sk)->flags = 0;
  399. iucv_sk(sk)->msglimit = IUCV_QUEUELEN_DEFAULT;
  400. iucv_sk(sk)->path = NULL;
  401. memset(&iucv_sk(sk)->src_user_id , 0, 32);
  402. sk->sk_destruct = iucv_sock_destruct;
  403. sk->sk_sndtimeo = IUCV_CONN_TIMEOUT;
  404. sk->sk_allocation = GFP_DMA;
  405. sock_reset_flag(sk, SOCK_ZAPPED);
  406. sk->sk_protocol = proto;
  407. sk->sk_state = IUCV_OPEN;
  408. setup_timer(&sk->sk_timer, iucv_sock_timeout, (unsigned long)sk);
  409. iucv_sock_link(&iucv_sk_list, sk);
  410. return sk;
  411. }
  412. /* Create an IUCV socket */
  413. static int iucv_sock_create(struct net *net, struct socket *sock, int protocol,
  414. int kern)
  415. {
  416. struct sock *sk;
  417. if (protocol && protocol != PF_IUCV)
  418. return -EPROTONOSUPPORT;
  419. sock->state = SS_UNCONNECTED;
  420. switch (sock->type) {
  421. case SOCK_STREAM:
  422. sock->ops = &iucv_sock_ops;
  423. break;
  424. case SOCK_SEQPACKET:
  425. /* currently, proto ops can handle both sk types */
  426. sock->ops = &iucv_sock_ops;
  427. break;
  428. default:
  429. return -ESOCKTNOSUPPORT;
  430. }
  431. sk = iucv_sock_alloc(sock, protocol, GFP_KERNEL);
  432. if (!sk)
  433. return -ENOMEM;
  434. iucv_sock_init(sk, NULL);
  435. return 0;
  436. }
  437. void iucv_sock_link(struct iucv_sock_list *l, struct sock *sk)
  438. {
  439. write_lock_bh(&l->lock);
  440. sk_add_node(sk, &l->head);
  441. write_unlock_bh(&l->lock);
  442. }
  443. void iucv_sock_unlink(struct iucv_sock_list *l, struct sock *sk)
  444. {
  445. write_lock_bh(&l->lock);
  446. sk_del_node_init(sk);
  447. write_unlock_bh(&l->lock);
  448. }
  449. void iucv_accept_enqueue(struct sock *parent, struct sock *sk)
  450. {
  451. unsigned long flags;
  452. struct iucv_sock *par = iucv_sk(parent);
  453. sock_hold(sk);
  454. spin_lock_irqsave(&par->accept_q_lock, flags);
  455. list_add_tail(&iucv_sk(sk)->accept_q, &par->accept_q);
  456. spin_unlock_irqrestore(&par->accept_q_lock, flags);
  457. iucv_sk(sk)->parent = parent;
  458. sk_acceptq_added(parent);
  459. }
  460. void iucv_accept_unlink(struct sock *sk)
  461. {
  462. unsigned long flags;
  463. struct iucv_sock *par = iucv_sk(iucv_sk(sk)->parent);
  464. spin_lock_irqsave(&par->accept_q_lock, flags);
  465. list_del_init(&iucv_sk(sk)->accept_q);
  466. spin_unlock_irqrestore(&par->accept_q_lock, flags);
  467. sk_acceptq_removed(iucv_sk(sk)->parent);
  468. iucv_sk(sk)->parent = NULL;
  469. sock_put(sk);
  470. }
  471. struct sock *iucv_accept_dequeue(struct sock *parent, struct socket *newsock)
  472. {
  473. struct iucv_sock *isk, *n;
  474. struct sock *sk;
  475. list_for_each_entry_safe(isk, n, &iucv_sk(parent)->accept_q, accept_q) {
  476. sk = (struct sock *) isk;
  477. lock_sock(sk);
  478. if (sk->sk_state == IUCV_CLOSED) {
  479. iucv_accept_unlink(sk);
  480. release_sock(sk);
  481. continue;
  482. }
  483. if (sk->sk_state == IUCV_CONNECTED ||
  484. sk->sk_state == IUCV_SEVERED ||
  485. sk->sk_state == IUCV_DISCONN || /* due to PM restore */
  486. !newsock) {
  487. iucv_accept_unlink(sk);
  488. if (newsock)
  489. sock_graft(sk, newsock);
  490. if (sk->sk_state == IUCV_SEVERED)
  491. sk->sk_state = IUCV_DISCONN;
  492. release_sock(sk);
  493. return sk;
  494. }
  495. release_sock(sk);
  496. }
  497. return NULL;
  498. }
  499. /* Bind an unbound socket */
  500. static int iucv_sock_bind(struct socket *sock, struct sockaddr *addr,
  501. int addr_len)
  502. {
  503. struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
  504. struct sock *sk = sock->sk;
  505. struct iucv_sock *iucv;
  506. int err;
  507. /* Verify the input sockaddr */
  508. if (!addr || addr->sa_family != AF_IUCV)
  509. return -EINVAL;
  510. lock_sock(sk);
  511. if (sk->sk_state != IUCV_OPEN) {
  512. err = -EBADFD;
  513. goto done;
  514. }
  515. write_lock_bh(&iucv_sk_list.lock);
  516. iucv = iucv_sk(sk);
  517. if (__iucv_get_sock_by_name(sa->siucv_name)) {
  518. err = -EADDRINUSE;
  519. goto done_unlock;
  520. }
  521. if (iucv->path) {
  522. err = 0;
  523. goto done_unlock;
  524. }
  525. /* Bind the socket */
  526. memcpy(iucv->src_name, sa->siucv_name, 8);
  527. /* Copy the user id */
  528. memcpy(iucv->src_user_id, iucv_userid, 8);
  529. sk->sk_state = IUCV_BOUND;
  530. err = 0;
  531. done_unlock:
  532. /* Release the socket list lock */
  533. write_unlock_bh(&iucv_sk_list.lock);
  534. done:
  535. release_sock(sk);
  536. return err;
  537. }
  538. /* Automatically bind an unbound socket */
  539. static int iucv_sock_autobind(struct sock *sk)
  540. {
  541. struct iucv_sock *iucv = iucv_sk(sk);
  542. char query_buffer[80];
  543. char name[12];
  544. int err = 0;
  545. /* Set the userid and name */
  546. cpcmd("QUERY USERID", query_buffer, sizeof(query_buffer), &err);
  547. if (unlikely(err))
  548. return -EPROTO;
  549. memcpy(iucv->src_user_id, query_buffer, 8);
  550. write_lock_bh(&iucv_sk_list.lock);
  551. sprintf(name, "%08x", atomic_inc_return(&iucv_sk_list.autobind_name));
  552. while (__iucv_get_sock_by_name(name)) {
  553. sprintf(name, "%08x",
  554. atomic_inc_return(&iucv_sk_list.autobind_name));
  555. }
  556. write_unlock_bh(&iucv_sk_list.lock);
  557. memcpy(&iucv->src_name, name, 8);
  558. return err;
  559. }
  560. /* Connect an unconnected socket */
  561. static int iucv_sock_connect(struct socket *sock, struct sockaddr *addr,
  562. int alen, int flags)
  563. {
  564. struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
  565. struct sock *sk = sock->sk;
  566. struct iucv_sock *iucv;
  567. unsigned char user_data[16];
  568. int err;
  569. if (addr->sa_family != AF_IUCV || alen < sizeof(struct sockaddr_iucv))
  570. return -EINVAL;
  571. if (sk->sk_state != IUCV_OPEN && sk->sk_state != IUCV_BOUND)
  572. return -EBADFD;
  573. if (sk->sk_type != SOCK_STREAM && sk->sk_type != SOCK_SEQPACKET)
  574. return -EINVAL;
  575. if (sk->sk_state == IUCV_OPEN) {
  576. err = iucv_sock_autobind(sk);
  577. if (unlikely(err))
  578. return err;
  579. }
  580. lock_sock(sk);
  581. /* Set the destination information */
  582. memcpy(iucv_sk(sk)->dst_user_id, sa->siucv_user_id, 8);
  583. memcpy(iucv_sk(sk)->dst_name, sa->siucv_name, 8);
  584. high_nmcpy(user_data, sa->siucv_name);
  585. low_nmcpy(user_data, iucv_sk(sk)->src_name);
  586. ASCEBC(user_data, sizeof(user_data));
  587. iucv = iucv_sk(sk);
  588. /* Create path. */
  589. iucv->path = iucv_path_alloc(iucv->msglimit,
  590. IUCV_IPRMDATA, GFP_KERNEL);
  591. if (!iucv->path) {
  592. err = -ENOMEM;
  593. goto done;
  594. }
  595. err = pr_iucv->path_connect(iucv->path, &af_iucv_handler,
  596. sa->siucv_user_id, NULL, user_data,
  597. sk);
  598. if (err) {
  599. iucv_path_free(iucv->path);
  600. iucv->path = NULL;
  601. switch (err) {
  602. case 0x0b: /* Target communicator is not logged on */
  603. err = -ENETUNREACH;
  604. break;
  605. case 0x0d: /* Max connections for this guest exceeded */
  606. case 0x0e: /* Max connections for target guest exceeded */
  607. err = -EAGAIN;
  608. break;
  609. case 0x0f: /* Missing IUCV authorization */
  610. err = -EACCES;
  611. break;
  612. default:
  613. err = -ECONNREFUSED;
  614. break;
  615. }
  616. goto done;
  617. }
  618. if (sk->sk_state != IUCV_CONNECTED) {
  619. err = iucv_sock_wait(sk, iucv_sock_in_state(sk, IUCV_CONNECTED,
  620. IUCV_DISCONN),
  621. sock_sndtimeo(sk, flags & O_NONBLOCK));
  622. }
  623. if (sk->sk_state == IUCV_DISCONN) {
  624. err = -ECONNREFUSED;
  625. }
  626. if (err) {
  627. pr_iucv->path_sever(iucv->path, NULL);
  628. iucv_path_free(iucv->path);
  629. iucv->path = NULL;
  630. }
  631. done:
  632. release_sock(sk);
  633. return err;
  634. }
  635. /* Move a socket into listening state. */
  636. static int iucv_sock_listen(struct socket *sock, int backlog)
  637. {
  638. struct sock *sk = sock->sk;
  639. int err;
  640. lock_sock(sk);
  641. err = -EINVAL;
  642. if (sk->sk_state != IUCV_BOUND)
  643. goto done;
  644. if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET)
  645. goto done;
  646. sk->sk_max_ack_backlog = backlog;
  647. sk->sk_ack_backlog = 0;
  648. sk->sk_state = IUCV_LISTEN;
  649. err = 0;
  650. done:
  651. release_sock(sk);
  652. return err;
  653. }
  654. /* Accept a pending connection */
  655. static int iucv_sock_accept(struct socket *sock, struct socket *newsock,
  656. int flags)
  657. {
  658. DECLARE_WAITQUEUE(wait, current);
  659. struct sock *sk = sock->sk, *nsk;
  660. long timeo;
  661. int err = 0;
  662. lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
  663. if (sk->sk_state != IUCV_LISTEN) {
  664. err = -EBADFD;
  665. goto done;
  666. }
  667. timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
  668. /* Wait for an incoming connection */
  669. add_wait_queue_exclusive(sk_sleep(sk), &wait);
  670. while (!(nsk = iucv_accept_dequeue(sk, newsock))) {
  671. set_current_state(TASK_INTERRUPTIBLE);
  672. if (!timeo) {
  673. err = -EAGAIN;
  674. break;
  675. }
  676. release_sock(sk);
  677. timeo = schedule_timeout(timeo);
  678. lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
  679. if (sk->sk_state != IUCV_LISTEN) {
  680. err = -EBADFD;
  681. break;
  682. }
  683. if (signal_pending(current)) {
  684. err = sock_intr_errno(timeo);
  685. break;
  686. }
  687. }
  688. set_current_state(TASK_RUNNING);
  689. remove_wait_queue(sk_sleep(sk), &wait);
  690. if (err)
  691. goto done;
  692. newsock->state = SS_CONNECTED;
  693. done:
  694. release_sock(sk);
  695. return err;
  696. }
  697. static int iucv_sock_getname(struct socket *sock, struct sockaddr *addr,
  698. int *len, int peer)
  699. {
  700. struct sockaddr_iucv *siucv = (struct sockaddr_iucv *) addr;
  701. struct sock *sk = sock->sk;
  702. addr->sa_family = AF_IUCV;
  703. *len = sizeof(struct sockaddr_iucv);
  704. if (peer) {
  705. memcpy(siucv->siucv_user_id, iucv_sk(sk)->dst_user_id, 8);
  706. memcpy(siucv->siucv_name, &iucv_sk(sk)->dst_name, 8);
  707. } else {
  708. memcpy(siucv->siucv_user_id, iucv_sk(sk)->src_user_id, 8);
  709. memcpy(siucv->siucv_name, iucv_sk(sk)->src_name, 8);
  710. }
  711. memset(&siucv->siucv_port, 0, sizeof(siucv->siucv_port));
  712. memset(&siucv->siucv_addr, 0, sizeof(siucv->siucv_addr));
  713. memset(siucv->siucv_nodeid, 0, sizeof(siucv->siucv_nodeid));
  714. return 0;
  715. }
  716. /**
  717. * iucv_send_iprm() - Send socket data in parameter list of an iucv message.
  718. * @path: IUCV path
  719. * @msg: Pointer to a struct iucv_message
  720. * @skb: The socket data to send, skb->len MUST BE <= 7
  721. *
  722. * Send the socket data in the parameter list in the iucv message
  723. * (IUCV_IPRMDATA). The socket data is stored at index 0 to 6 in the parameter
  724. * list and the socket data len at index 7 (last byte).
  725. * See also iucv_msg_length().
  726. *
  727. * Returns the error code from the iucv_message_send() call.
  728. */
  729. static int iucv_send_iprm(struct iucv_path *path, struct iucv_message *msg,
  730. struct sk_buff *skb)
  731. {
  732. u8 prmdata[8];
  733. memcpy(prmdata, (void *) skb->data, skb->len);
  734. prmdata[7] = 0xff - (u8) skb->len;
  735. return pr_iucv->message_send(path, msg, IUCV_IPRMDATA, 0,
  736. (void *) prmdata, 8);
  737. }
  738. static int iucv_sock_sendmsg(struct kiocb *iocb, struct socket *sock,
  739. struct msghdr *msg, size_t len)
  740. {
  741. struct sock *sk = sock->sk;
  742. struct iucv_sock *iucv = iucv_sk(sk);
  743. struct sk_buff *skb;
  744. struct iucv_message txmsg;
  745. struct cmsghdr *cmsg;
  746. int cmsg_done;
  747. long timeo;
  748. char user_id[9];
  749. char appl_id[9];
  750. int err;
  751. int noblock = msg->msg_flags & MSG_DONTWAIT;
  752. err = sock_error(sk);
  753. if (err)
  754. return err;
  755. if (msg->msg_flags & MSG_OOB)
  756. return -EOPNOTSUPP;
  757. /* SOCK_SEQPACKET: we do not support segmented records */
  758. if (sk->sk_type == SOCK_SEQPACKET && !(msg->msg_flags & MSG_EOR))
  759. return -EOPNOTSUPP;
  760. lock_sock(sk);
  761. if (sk->sk_shutdown & SEND_SHUTDOWN) {
  762. err = -EPIPE;
  763. goto out;
  764. }
  765. /* Return if the socket is not in connected state */
  766. if (sk->sk_state != IUCV_CONNECTED) {
  767. err = -ENOTCONN;
  768. goto out;
  769. }
  770. /* initialize defaults */
  771. cmsg_done = 0; /* check for duplicate headers */
  772. txmsg.class = 0;
  773. /* iterate over control messages */
  774. for (cmsg = CMSG_FIRSTHDR(msg); cmsg;
  775. cmsg = CMSG_NXTHDR(msg, cmsg)) {
  776. if (!CMSG_OK(msg, cmsg)) {
  777. err = -EINVAL;
  778. goto out;
  779. }
  780. if (cmsg->cmsg_level != SOL_IUCV)
  781. continue;
  782. if (cmsg->cmsg_type & cmsg_done) {
  783. err = -EINVAL;
  784. goto out;
  785. }
  786. cmsg_done |= cmsg->cmsg_type;
  787. switch (cmsg->cmsg_type) {
  788. case SCM_IUCV_TRGCLS:
  789. if (cmsg->cmsg_len != CMSG_LEN(TRGCLS_SIZE)) {
  790. err = -EINVAL;
  791. goto out;
  792. }
  793. /* set iucv message target class */
  794. memcpy(&txmsg.class,
  795. (void *) CMSG_DATA(cmsg), TRGCLS_SIZE);
  796. break;
  797. default:
  798. err = -EINVAL;
  799. goto out;
  800. break;
  801. }
  802. }
  803. /* allocate one skb for each iucv message:
  804. * this is fine for SOCK_SEQPACKET (unless we want to support
  805. * segmented records using the MSG_EOR flag), but
  806. * for SOCK_STREAM we might want to improve it in future */
  807. skb = sock_alloc_send_skb(sk, len, noblock, &err);
  808. if (!skb)
  809. goto out;
  810. if (memcpy_fromiovec(skb_put(skb, len), msg->msg_iov, len)) {
  811. err = -EFAULT;
  812. goto fail;
  813. }
  814. /* wait if outstanding messages for iucv path has reached */
  815. timeo = sock_sndtimeo(sk, noblock);
  816. err = iucv_sock_wait(sk, iucv_below_msglim(sk), timeo);
  817. if (err)
  818. goto fail;
  819. /* return -ECONNRESET if the socket is no longer connected */
  820. if (sk->sk_state != IUCV_CONNECTED) {
  821. err = -ECONNRESET;
  822. goto fail;
  823. }
  824. /* increment and save iucv message tag for msg_completion cbk */
  825. txmsg.tag = iucv->send_tag++;
  826. memcpy(CB_TAG(skb), &txmsg.tag, CB_TAG_LEN);
  827. skb_queue_tail(&iucv->send_skb_q, skb);
  828. if (((iucv->path->flags & IUCV_IPRMDATA) & iucv->flags)
  829. && skb->len <= 7) {
  830. err = iucv_send_iprm(iucv->path, &txmsg, skb);
  831. /* on success: there is no message_complete callback
  832. * for an IPRMDATA msg; remove skb from send queue */
  833. if (err == 0) {
  834. skb_unlink(skb, &iucv->send_skb_q);
  835. kfree_skb(skb);
  836. }
  837. /* this error should never happen since the
  838. * IUCV_IPRMDATA path flag is set... sever path */
  839. if (err == 0x15) {
  840. pr_iucv->path_sever(iucv->path, NULL);
  841. skb_unlink(skb, &iucv->send_skb_q);
  842. err = -EPIPE;
  843. goto fail;
  844. }
  845. } else
  846. err = pr_iucv->message_send(iucv->path, &txmsg, 0, 0,
  847. (void *) skb->data, skb->len);
  848. if (err) {
  849. if (err == 3) {
  850. user_id[8] = 0;
  851. memcpy(user_id, iucv->dst_user_id, 8);
  852. appl_id[8] = 0;
  853. memcpy(appl_id, iucv->dst_name, 8);
  854. pr_err("Application %s on z/VM guest %s"
  855. " exceeds message limit\n",
  856. appl_id, user_id);
  857. err = -EAGAIN;
  858. } else
  859. err = -EPIPE;
  860. skb_unlink(skb, &iucv->send_skb_q);
  861. goto fail;
  862. }
  863. release_sock(sk);
  864. return len;
  865. fail:
  866. kfree_skb(skb);
  867. out:
  868. release_sock(sk);
  869. return err;
  870. }
  871. /* iucv_fragment_skb() - Fragment a single IUCV message into multiple skb's
  872. *
  873. * Locking: must be called with message_q.lock held
  874. */
  875. static int iucv_fragment_skb(struct sock *sk, struct sk_buff *skb, int len)
  876. {
  877. int dataleft, size, copied = 0;
  878. struct sk_buff *nskb;
  879. dataleft = len;
  880. while (dataleft) {
  881. if (dataleft >= sk->sk_rcvbuf / 4)
  882. size = sk->sk_rcvbuf / 4;
  883. else
  884. size = dataleft;
  885. nskb = alloc_skb(size, GFP_ATOMIC | GFP_DMA);
  886. if (!nskb)
  887. return -ENOMEM;
  888. /* copy target class to control buffer of new skb */
  889. memcpy(CB_TRGCLS(nskb), CB_TRGCLS(skb), CB_TRGCLS_LEN);
  890. /* copy data fragment */
  891. memcpy(nskb->data, skb->data + copied, size);
  892. copied += size;
  893. dataleft -= size;
  894. skb_reset_transport_header(nskb);
  895. skb_reset_network_header(nskb);
  896. nskb->len = size;
  897. skb_queue_tail(&iucv_sk(sk)->backlog_skb_q, nskb);
  898. }
  899. return 0;
  900. }
  901. /* iucv_process_message() - Receive a single outstanding IUCV message
  902. *
  903. * Locking: must be called with message_q.lock held
  904. */
  905. static void iucv_process_message(struct sock *sk, struct sk_buff *skb,
  906. struct iucv_path *path,
  907. struct iucv_message *msg)
  908. {
  909. int rc;
  910. unsigned int len;
  911. len = iucv_msg_length(msg);
  912. /* store msg target class in the second 4 bytes of skb ctrl buffer */
  913. /* Note: the first 4 bytes are reserved for msg tag */
  914. memcpy(CB_TRGCLS(skb), &msg->class, CB_TRGCLS_LEN);
  915. /* check for special IPRM messages (e.g. iucv_sock_shutdown) */
  916. if ((msg->flags & IUCV_IPRMDATA) && len > 7) {
  917. if (memcmp(msg->rmmsg, iprm_shutdown, 8) == 0) {
  918. skb->data = NULL;
  919. skb->len = 0;
  920. }
  921. } else {
  922. rc = pr_iucv->message_receive(path, msg,
  923. msg->flags & IUCV_IPRMDATA,
  924. skb->data, len, NULL);
  925. if (rc) {
  926. kfree_skb(skb);
  927. return;
  928. }
  929. /* we need to fragment iucv messages for SOCK_STREAM only;
  930. * for SOCK_SEQPACKET, it is only relevant if we support
  931. * record segmentation using MSG_EOR (see also recvmsg()) */
  932. if (sk->sk_type == SOCK_STREAM &&
  933. skb->truesize >= sk->sk_rcvbuf / 4) {
  934. rc = iucv_fragment_skb(sk, skb, len);
  935. kfree_skb(skb);
  936. skb = NULL;
  937. if (rc) {
  938. pr_iucv->path_sever(path, NULL);
  939. return;
  940. }
  941. skb = skb_dequeue(&iucv_sk(sk)->backlog_skb_q);
  942. } else {
  943. skb_reset_transport_header(skb);
  944. skb_reset_network_header(skb);
  945. skb->len = len;
  946. }
  947. }
  948. if (sock_queue_rcv_skb(sk, skb))
  949. skb_queue_head(&iucv_sk(sk)->backlog_skb_q, skb);
  950. }
  951. /* iucv_process_message_q() - Process outstanding IUCV messages
  952. *
  953. * Locking: must be called with message_q.lock held
  954. */
  955. static void iucv_process_message_q(struct sock *sk)
  956. {
  957. struct iucv_sock *iucv = iucv_sk(sk);
  958. struct sk_buff *skb;
  959. struct sock_msg_q *p, *n;
  960. list_for_each_entry_safe(p, n, &iucv->message_q.list, list) {
  961. skb = alloc_skb(iucv_msg_length(&p->msg), GFP_ATOMIC | GFP_DMA);
  962. if (!skb)
  963. break;
  964. iucv_process_message(sk, skb, p->path, &p->msg);
  965. list_del(&p->list);
  966. kfree(p);
  967. if (!skb_queue_empty(&iucv->backlog_skb_q))
  968. break;
  969. }
  970. }
  971. static int iucv_sock_recvmsg(struct kiocb *iocb, struct socket *sock,
  972. struct msghdr *msg, size_t len, int flags)
  973. {
  974. int noblock = flags & MSG_DONTWAIT;
  975. struct sock *sk = sock->sk;
  976. struct iucv_sock *iucv = iucv_sk(sk);
  977. unsigned int copied, rlen;
  978. struct sk_buff *skb, *rskb, *cskb;
  979. int err = 0;
  980. if ((sk->sk_state == IUCV_DISCONN || sk->sk_state == IUCV_SEVERED) &&
  981. skb_queue_empty(&iucv->backlog_skb_q) &&
  982. skb_queue_empty(&sk->sk_receive_queue) &&
  983. list_empty(&iucv->message_q.list))
  984. return 0;
  985. if (flags & (MSG_OOB))
  986. return -EOPNOTSUPP;
  987. /* receive/dequeue next skb:
  988. * the function understands MSG_PEEK and, thus, does not dequeue skb */
  989. skb = skb_recv_datagram(sk, flags, noblock, &err);
  990. if (!skb) {
  991. if (sk->sk_shutdown & RCV_SHUTDOWN)
  992. return 0;
  993. return err;
  994. }
  995. rlen = skb->len; /* real length of skb */
  996. copied = min_t(unsigned int, rlen, len);
  997. cskb = skb;
  998. if (memcpy_toiovec(msg->msg_iov, cskb->data, copied)) {
  999. if (!(flags & MSG_PEEK))
  1000. skb_queue_head(&sk->sk_receive_queue, skb);
  1001. return -EFAULT;
  1002. }
  1003. /* SOCK_SEQPACKET: set MSG_TRUNC if recv buf size is too small */
  1004. if (sk->sk_type == SOCK_SEQPACKET) {
  1005. if (copied < rlen)
  1006. msg->msg_flags |= MSG_TRUNC;
  1007. /* each iucv message contains a complete record */
  1008. msg->msg_flags |= MSG_EOR;
  1009. }
  1010. /* create control message to store iucv msg target class:
  1011. * get the trgcls from the control buffer of the skb due to
  1012. * fragmentation of original iucv message. */
  1013. err = put_cmsg(msg, SOL_IUCV, SCM_IUCV_TRGCLS,
  1014. CB_TRGCLS_LEN, CB_TRGCLS(skb));
  1015. if (err) {
  1016. if (!(flags & MSG_PEEK))
  1017. skb_queue_head(&sk->sk_receive_queue, skb);
  1018. return err;
  1019. }
  1020. /* Mark read part of skb as used */
  1021. if (!(flags & MSG_PEEK)) {
  1022. /* SOCK_STREAM: re-queue skb if it contains unreceived data */
  1023. if (sk->sk_type == SOCK_STREAM) {
  1024. skb_pull(skb, copied);
  1025. if (skb->len) {
  1026. skb_queue_head(&sk->sk_receive_queue, skb);
  1027. goto done;
  1028. }
  1029. }
  1030. kfree_skb(skb);
  1031. /* Queue backlog skbs */
  1032. spin_lock_bh(&iucv->message_q.lock);
  1033. rskb = skb_dequeue(&iucv->backlog_skb_q);
  1034. while (rskb) {
  1035. if (sock_queue_rcv_skb(sk, rskb)) {
  1036. skb_queue_head(&iucv->backlog_skb_q,
  1037. rskb);
  1038. break;
  1039. } else {
  1040. rskb = skb_dequeue(&iucv->backlog_skb_q);
  1041. }
  1042. }
  1043. if (skb_queue_empty(&iucv->backlog_skb_q)) {
  1044. if (!list_empty(&iucv->message_q.list))
  1045. iucv_process_message_q(sk);
  1046. }
  1047. spin_unlock_bh(&iucv->message_q.lock);
  1048. }
  1049. done:
  1050. /* SOCK_SEQPACKET: return real length if MSG_TRUNC is set */
  1051. if (sk->sk_type == SOCK_SEQPACKET && (flags & MSG_TRUNC))
  1052. copied = rlen;
  1053. return copied;
  1054. }
  1055. static inline unsigned int iucv_accept_poll(struct sock *parent)
  1056. {
  1057. struct iucv_sock *isk, *n;
  1058. struct sock *sk;
  1059. list_for_each_entry_safe(isk, n, &iucv_sk(parent)->accept_q, accept_q) {
  1060. sk = (struct sock *) isk;
  1061. if (sk->sk_state == IUCV_CONNECTED)
  1062. return POLLIN | POLLRDNORM;
  1063. }
  1064. return 0;
  1065. }
  1066. unsigned int iucv_sock_poll(struct file *file, struct socket *sock,
  1067. poll_table *wait)
  1068. {
  1069. struct sock *sk = sock->sk;
  1070. unsigned int mask = 0;
  1071. sock_poll_wait(file, sk_sleep(sk), wait);
  1072. if (sk->sk_state == IUCV_LISTEN)
  1073. return iucv_accept_poll(sk);
  1074. if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
  1075. mask |= POLLERR;
  1076. if (sk->sk_shutdown & RCV_SHUTDOWN)
  1077. mask |= POLLRDHUP;
  1078. if (sk->sk_shutdown == SHUTDOWN_MASK)
  1079. mask |= POLLHUP;
  1080. if (!skb_queue_empty(&sk->sk_receive_queue) ||
  1081. (sk->sk_shutdown & RCV_SHUTDOWN))
  1082. mask |= POLLIN | POLLRDNORM;
  1083. if (sk->sk_state == IUCV_CLOSED)
  1084. mask |= POLLHUP;
  1085. if (sk->sk_state == IUCV_DISCONN || sk->sk_state == IUCV_SEVERED)
  1086. mask |= POLLIN;
  1087. if (sock_writeable(sk))
  1088. mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
  1089. else
  1090. set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
  1091. return mask;
  1092. }
  1093. static int iucv_sock_shutdown(struct socket *sock, int how)
  1094. {
  1095. struct sock *sk = sock->sk;
  1096. struct iucv_sock *iucv = iucv_sk(sk);
  1097. struct iucv_message txmsg;
  1098. int err = 0;
  1099. how++;
  1100. if ((how & ~SHUTDOWN_MASK) || !how)
  1101. return -EINVAL;
  1102. lock_sock(sk);
  1103. switch (sk->sk_state) {
  1104. case IUCV_DISCONN:
  1105. case IUCV_CLOSING:
  1106. case IUCV_SEVERED:
  1107. case IUCV_CLOSED:
  1108. err = -ENOTCONN;
  1109. goto fail;
  1110. default:
  1111. sk->sk_shutdown |= how;
  1112. break;
  1113. }
  1114. if (how == SEND_SHUTDOWN || how == SHUTDOWN_MASK) {
  1115. txmsg.class = 0;
  1116. txmsg.tag = 0;
  1117. err = pr_iucv->message_send(iucv->path, &txmsg, IUCV_IPRMDATA,
  1118. 0, (void *) iprm_shutdown, 8);
  1119. if (err) {
  1120. switch (err) {
  1121. case 1:
  1122. err = -ENOTCONN;
  1123. break;
  1124. case 2:
  1125. err = -ECONNRESET;
  1126. break;
  1127. default:
  1128. err = -ENOTCONN;
  1129. break;
  1130. }
  1131. }
  1132. }
  1133. if (how == RCV_SHUTDOWN || how == SHUTDOWN_MASK) {
  1134. err = pr_iucv->path_quiesce(iucv->path, NULL);
  1135. if (err)
  1136. err = -ENOTCONN;
  1137. skb_queue_purge(&sk->sk_receive_queue);
  1138. }
  1139. /* Wake up anyone sleeping in poll */
  1140. sk->sk_state_change(sk);
  1141. fail:
  1142. release_sock(sk);
  1143. return err;
  1144. }
  1145. static int iucv_sock_release(struct socket *sock)
  1146. {
  1147. struct sock *sk = sock->sk;
  1148. int err = 0;
  1149. if (!sk)
  1150. return 0;
  1151. iucv_sock_close(sk);
  1152. /* Unregister with IUCV base support */
  1153. if (iucv_sk(sk)->path) {
  1154. pr_iucv->path_sever(iucv_sk(sk)->path, NULL);
  1155. iucv_path_free(iucv_sk(sk)->path);
  1156. iucv_sk(sk)->path = NULL;
  1157. }
  1158. sock_orphan(sk);
  1159. iucv_sock_kill(sk);
  1160. return err;
  1161. }
  1162. /* getsockopt and setsockopt */
  1163. static int iucv_sock_setsockopt(struct socket *sock, int level, int optname,
  1164. char __user *optval, unsigned int optlen)
  1165. {
  1166. struct sock *sk = sock->sk;
  1167. struct iucv_sock *iucv = iucv_sk(sk);
  1168. int val;
  1169. int rc;
  1170. if (level != SOL_IUCV)
  1171. return -ENOPROTOOPT;
  1172. if (optlen < sizeof(int))
  1173. return -EINVAL;
  1174. if (get_user(val, (int __user *) optval))
  1175. return -EFAULT;
  1176. rc = 0;
  1177. lock_sock(sk);
  1178. switch (optname) {
  1179. case SO_IPRMDATA_MSG:
  1180. if (val)
  1181. iucv->flags |= IUCV_IPRMDATA;
  1182. else
  1183. iucv->flags &= ~IUCV_IPRMDATA;
  1184. break;
  1185. case SO_MSGLIMIT:
  1186. switch (sk->sk_state) {
  1187. case IUCV_OPEN:
  1188. case IUCV_BOUND:
  1189. if (val < 1 || val > (u16)(~0))
  1190. rc = -EINVAL;
  1191. else
  1192. iucv->msglimit = val;
  1193. break;
  1194. default:
  1195. rc = -EINVAL;
  1196. break;
  1197. }
  1198. break;
  1199. default:
  1200. rc = -ENOPROTOOPT;
  1201. break;
  1202. }
  1203. release_sock(sk);
  1204. return rc;
  1205. }
  1206. static int iucv_sock_getsockopt(struct socket *sock, int level, int optname,
  1207. char __user *optval, int __user *optlen)
  1208. {
  1209. struct sock *sk = sock->sk;
  1210. struct iucv_sock *iucv = iucv_sk(sk);
  1211. int val, len;
  1212. if (level != SOL_IUCV)
  1213. return -ENOPROTOOPT;
  1214. if (get_user(len, optlen))
  1215. return -EFAULT;
  1216. if (len < 0)
  1217. return -EINVAL;
  1218. len = min_t(unsigned int, len, sizeof(int));
  1219. switch (optname) {
  1220. case SO_IPRMDATA_MSG:
  1221. val = (iucv->flags & IUCV_IPRMDATA) ? 1 : 0;
  1222. break;
  1223. case SO_MSGLIMIT:
  1224. lock_sock(sk);
  1225. val = (iucv->path != NULL) ? iucv->path->msglim /* connected */
  1226. : iucv->msglimit; /* default */
  1227. release_sock(sk);
  1228. break;
  1229. default:
  1230. return -ENOPROTOOPT;
  1231. }
  1232. if (put_user(len, optlen))
  1233. return -EFAULT;
  1234. if (copy_to_user(optval, &val, len))
  1235. return -EFAULT;
  1236. return 0;
  1237. }
  1238. /* Callback wrappers - called from iucv base support */
  1239. static int iucv_callback_connreq(struct iucv_path *path,
  1240. u8 ipvmid[8], u8 ipuser[16])
  1241. {
  1242. unsigned char user_data[16];
  1243. unsigned char nuser_data[16];
  1244. unsigned char src_name[8];
  1245. struct hlist_node *node;
  1246. struct sock *sk, *nsk;
  1247. struct iucv_sock *iucv, *niucv;
  1248. int err;
  1249. memcpy(src_name, ipuser, 8);
  1250. EBCASC(src_name, 8);
  1251. /* Find out if this path belongs to af_iucv. */
  1252. read_lock(&iucv_sk_list.lock);
  1253. iucv = NULL;
  1254. sk = NULL;
  1255. sk_for_each(sk, node, &iucv_sk_list.head)
  1256. if (sk->sk_state == IUCV_LISTEN &&
  1257. !memcmp(&iucv_sk(sk)->src_name, src_name, 8)) {
  1258. /*
  1259. * Found a listening socket with
  1260. * src_name == ipuser[0-7].
  1261. */
  1262. iucv = iucv_sk(sk);
  1263. break;
  1264. }
  1265. read_unlock(&iucv_sk_list.lock);
  1266. if (!iucv)
  1267. /* No socket found, not one of our paths. */
  1268. return -EINVAL;
  1269. bh_lock_sock(sk);
  1270. /* Check if parent socket is listening */
  1271. low_nmcpy(user_data, iucv->src_name);
  1272. high_nmcpy(user_data, iucv->dst_name);
  1273. ASCEBC(user_data, sizeof(user_data));
  1274. if (sk->sk_state != IUCV_LISTEN) {
  1275. err = pr_iucv->path_sever(path, user_data);
  1276. iucv_path_free(path);
  1277. goto fail;
  1278. }
  1279. /* Check for backlog size */
  1280. if (sk_acceptq_is_full(sk)) {
  1281. err = pr_iucv->path_sever(path, user_data);
  1282. iucv_path_free(path);
  1283. goto fail;
  1284. }
  1285. /* Create the new socket */
  1286. nsk = iucv_sock_alloc(NULL, sk->sk_type, GFP_ATOMIC);
  1287. if (!nsk) {
  1288. err = pr_iucv->path_sever(path, user_data);
  1289. iucv_path_free(path);
  1290. goto fail;
  1291. }
  1292. niucv = iucv_sk(nsk);
  1293. iucv_sock_init(nsk, sk);
  1294. /* Set the new iucv_sock */
  1295. memcpy(niucv->dst_name, ipuser + 8, 8);
  1296. EBCASC(niucv->dst_name, 8);
  1297. memcpy(niucv->dst_user_id, ipvmid, 8);
  1298. memcpy(niucv->src_name, iucv->src_name, 8);
  1299. memcpy(niucv->src_user_id, iucv->src_user_id, 8);
  1300. niucv->path = path;
  1301. /* Call iucv_accept */
  1302. high_nmcpy(nuser_data, ipuser + 8);
  1303. memcpy(nuser_data + 8, niucv->src_name, 8);
  1304. ASCEBC(nuser_data + 8, 8);
  1305. /* set message limit for path based on msglimit of accepting socket */
  1306. niucv->msglimit = iucv->msglimit;
  1307. path->msglim = iucv->msglimit;
  1308. err = pr_iucv->path_accept(path, &af_iucv_handler, nuser_data, nsk);
  1309. if (err) {
  1310. err = pr_iucv->path_sever(path, user_data);
  1311. iucv_path_free(path);
  1312. iucv_sock_kill(nsk);
  1313. goto fail;
  1314. }
  1315. iucv_accept_enqueue(sk, nsk);
  1316. /* Wake up accept */
  1317. nsk->sk_state = IUCV_CONNECTED;
  1318. sk->sk_data_ready(sk, 1);
  1319. err = 0;
  1320. fail:
  1321. bh_unlock_sock(sk);
  1322. return 0;
  1323. }
  1324. static void iucv_callback_connack(struct iucv_path *path, u8 ipuser[16])
  1325. {
  1326. struct sock *sk = path->private;
  1327. sk->sk_state = IUCV_CONNECTED;
  1328. sk->sk_state_change(sk);
  1329. }
  1330. static void iucv_callback_rx(struct iucv_path *path, struct iucv_message *msg)
  1331. {
  1332. struct sock *sk = path->private;
  1333. struct iucv_sock *iucv = iucv_sk(sk);
  1334. struct sk_buff *skb;
  1335. struct sock_msg_q *save_msg;
  1336. int len;
  1337. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  1338. pr_iucv->message_reject(path, msg);
  1339. return;
  1340. }
  1341. spin_lock(&iucv->message_q.lock);
  1342. if (!list_empty(&iucv->message_q.list) ||
  1343. !skb_queue_empty(&iucv->backlog_skb_q))
  1344. goto save_message;
  1345. len = atomic_read(&sk->sk_rmem_alloc);
  1346. len += iucv_msg_length(msg) + sizeof(struct sk_buff);
  1347. if (len > sk->sk_rcvbuf)
  1348. goto save_message;
  1349. skb = alloc_skb(iucv_msg_length(msg), GFP_ATOMIC | GFP_DMA);
  1350. if (!skb)
  1351. goto save_message;
  1352. iucv_process_message(sk, skb, path, msg);
  1353. goto out_unlock;
  1354. save_message:
  1355. save_msg = kzalloc(sizeof(struct sock_msg_q), GFP_ATOMIC | GFP_DMA);
  1356. if (!save_msg)
  1357. goto out_unlock;
  1358. save_msg->path = path;
  1359. save_msg->msg = *msg;
  1360. list_add_tail(&save_msg->list, &iucv->message_q.list);
  1361. out_unlock:
  1362. spin_unlock(&iucv->message_q.lock);
  1363. }
  1364. static void iucv_callback_txdone(struct iucv_path *path,
  1365. struct iucv_message *msg)
  1366. {
  1367. struct sock *sk = path->private;
  1368. struct sk_buff *this = NULL;
  1369. struct sk_buff_head *list = &iucv_sk(sk)->send_skb_q;
  1370. struct sk_buff *list_skb = list->next;
  1371. unsigned long flags;
  1372. if (!skb_queue_empty(list)) {
  1373. spin_lock_irqsave(&list->lock, flags);
  1374. while (list_skb != (struct sk_buff *)list) {
  1375. if (!memcmp(&msg->tag, CB_TAG(list_skb), CB_TAG_LEN)) {
  1376. this = list_skb;
  1377. break;
  1378. }
  1379. list_skb = list_skb->next;
  1380. }
  1381. if (this)
  1382. __skb_unlink(this, list);
  1383. spin_unlock_irqrestore(&list->lock, flags);
  1384. if (this) {
  1385. kfree_skb(this);
  1386. /* wake up any process waiting for sending */
  1387. iucv_sock_wake_msglim(sk);
  1388. }
  1389. }
  1390. BUG_ON(!this);
  1391. if (sk->sk_state == IUCV_CLOSING) {
  1392. if (skb_queue_empty(&iucv_sk(sk)->send_skb_q)) {
  1393. sk->sk_state = IUCV_CLOSED;
  1394. sk->sk_state_change(sk);
  1395. }
  1396. }
  1397. }
  1398. static void iucv_callback_connrej(struct iucv_path *path, u8 ipuser[16])
  1399. {
  1400. struct sock *sk = path->private;
  1401. if (!list_empty(&iucv_sk(sk)->accept_q))
  1402. sk->sk_state = IUCV_SEVERED;
  1403. else
  1404. sk->sk_state = IUCV_DISCONN;
  1405. sk->sk_state_change(sk);
  1406. }
  1407. /* called if the other communication side shuts down its RECV direction;
  1408. * in turn, the callback sets SEND_SHUTDOWN to disable sending of data.
  1409. */
  1410. static void iucv_callback_shutdown(struct iucv_path *path, u8 ipuser[16])
  1411. {
  1412. struct sock *sk = path->private;
  1413. bh_lock_sock(sk);
  1414. if (sk->sk_state != IUCV_CLOSED) {
  1415. sk->sk_shutdown |= SEND_SHUTDOWN;
  1416. sk->sk_state_change(sk);
  1417. }
  1418. bh_unlock_sock(sk);
  1419. }
  1420. static const struct proto_ops iucv_sock_ops = {
  1421. .family = PF_IUCV,
  1422. .owner = THIS_MODULE,
  1423. .release = iucv_sock_release,
  1424. .bind = iucv_sock_bind,
  1425. .connect = iucv_sock_connect,
  1426. .listen = iucv_sock_listen,
  1427. .accept = iucv_sock_accept,
  1428. .getname = iucv_sock_getname,
  1429. .sendmsg = iucv_sock_sendmsg,
  1430. .recvmsg = iucv_sock_recvmsg,
  1431. .poll = iucv_sock_poll,
  1432. .ioctl = sock_no_ioctl,
  1433. .mmap = sock_no_mmap,
  1434. .socketpair = sock_no_socketpair,
  1435. .shutdown = iucv_sock_shutdown,
  1436. .setsockopt = iucv_sock_setsockopt,
  1437. .getsockopt = iucv_sock_getsockopt,
  1438. };
  1439. static const struct net_proto_family iucv_sock_family_ops = {
  1440. .family = AF_IUCV,
  1441. .owner = THIS_MODULE,
  1442. .create = iucv_sock_create,
  1443. };
  1444. static int __init afiucv_iucv_init(void)
  1445. {
  1446. int err;
  1447. err = pr_iucv->iucv_register(&af_iucv_handler, 0);
  1448. if (err)
  1449. goto out;
  1450. /* establish dummy device */
  1451. af_iucv_driver.bus = pr_iucv->bus;
  1452. err = driver_register(&af_iucv_driver);
  1453. if (err)
  1454. goto out_iucv;
  1455. af_iucv_dev = kzalloc(sizeof(struct device), GFP_KERNEL);
  1456. if (!af_iucv_dev) {
  1457. err = -ENOMEM;
  1458. goto out_driver;
  1459. }
  1460. dev_set_name(af_iucv_dev, "af_iucv");
  1461. af_iucv_dev->bus = pr_iucv->bus;
  1462. af_iucv_dev->parent = pr_iucv->root;
  1463. af_iucv_dev->release = (void (*)(struct device *))kfree;
  1464. af_iucv_dev->driver = &af_iucv_driver;
  1465. err = device_register(af_iucv_dev);
  1466. if (err)
  1467. goto out_driver;
  1468. return 0;
  1469. out_driver:
  1470. driver_unregister(&af_iucv_driver);
  1471. out_iucv:
  1472. pr_iucv->iucv_unregister(&af_iucv_handler, 0);
  1473. out:
  1474. return err;
  1475. }
  1476. static int __init afiucv_init(void)
  1477. {
  1478. int err;
  1479. if (!MACHINE_IS_VM) {
  1480. pr_err("The af_iucv module cannot be loaded"
  1481. " without z/VM\n");
  1482. err = -EPROTONOSUPPORT;
  1483. goto out;
  1484. }
  1485. cpcmd("QUERY USERID", iucv_userid, sizeof(iucv_userid), &err);
  1486. if (unlikely(err)) {
  1487. WARN_ON(err);
  1488. err = -EPROTONOSUPPORT;
  1489. goto out;
  1490. }
  1491. pr_iucv = try_then_request_module(symbol_get(iucv_if), "iucv");
  1492. if (!pr_iucv) {
  1493. printk(KERN_WARNING "iucv_if lookup failed\n");
  1494. err = -EPROTONOSUPPORT;
  1495. goto out;
  1496. }
  1497. err = proto_register(&iucv_proto, 0);
  1498. if (err)
  1499. goto out;
  1500. err = sock_register(&iucv_sock_family_ops);
  1501. if (err)
  1502. goto out_proto;
  1503. err = afiucv_iucv_init();
  1504. if (err)
  1505. goto out_sock;
  1506. return 0;
  1507. out_sock:
  1508. sock_unregister(PF_IUCV);
  1509. out_proto:
  1510. proto_unregister(&iucv_proto);
  1511. out:
  1512. if (pr_iucv)
  1513. symbol_put(iucv_if);
  1514. return err;
  1515. }
  1516. static void __exit afiucv_exit(void)
  1517. {
  1518. device_unregister(af_iucv_dev);
  1519. driver_unregister(&af_iucv_driver);
  1520. pr_iucv->iucv_unregister(&af_iucv_handler, 0);
  1521. symbol_put(iucv_if);
  1522. sock_unregister(PF_IUCV);
  1523. proto_unregister(&iucv_proto);
  1524. }
  1525. module_init(afiucv_init);
  1526. module_exit(afiucv_exit);
  1527. MODULE_AUTHOR("Jennifer Hunt <jenhunt@us.ibm.com>");
  1528. MODULE_DESCRIPTION("IUCV Sockets ver " VERSION);
  1529. MODULE_VERSION(VERSION);
  1530. MODULE_LICENSE("GPL");
  1531. MODULE_ALIAS_NETPROTO(PF_IUCV);