tx.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966
  1. /******************************************************************************
  2. *
  3. * Copyright(c) 2003 - 2012 Intel Corporation. All rights reserved.
  4. *
  5. * Portions of this file are derived from the ipw3945 project, as well
  6. * as portions of the ieee80211 subsystem header files.
  7. *
  8. * This program is free software; you can redistribute it and/or modify it
  9. * under the terms of version 2 of the GNU General Public License as
  10. * published by the Free Software Foundation.
  11. *
  12. * This program is distributed in the hope that it will be useful, but WITHOUT
  13. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  15. * more details.
  16. *
  17. * You should have received a copy of the GNU General Public License along with
  18. * this program; if not, write to the Free Software Foundation, Inc.,
  19. * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
  20. *
  21. * The full GNU General Public License is included in this distribution in the
  22. * file called LICENSE.
  23. *
  24. * Contact Information:
  25. * Intel Linux Wireless <ilw@linux.intel.com>
  26. * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  27. *
  28. *****************************************************************************/
  29. #include <linux/etherdevice.h>
  30. #include <linux/slab.h>
  31. #include <linux/sched.h>
  32. #include "iwl-debug.h"
  33. #include "iwl-csr.h"
  34. #include "iwl-prph.h"
  35. #include "iwl-io.h"
  36. #include "iwl-op-mode.h"
  37. #include "internal.h"
  38. /* FIXME: need to abstract out TX command (once we know what it looks like) */
  39. #include "dvm/commands.h"
  40. #define IWL_TX_CRC_SIZE 4
  41. #define IWL_TX_DELIMITER_SIZE 4
  42. /**
  43. * iwl_trans_txq_update_byte_cnt_tbl - Set up entry in Tx byte-count array
  44. */
  45. void iwl_trans_txq_update_byte_cnt_tbl(struct iwl_trans *trans,
  46. struct iwl_tx_queue *txq,
  47. u16 byte_cnt)
  48. {
  49. struct iwlagn_scd_bc_tbl *scd_bc_tbl;
  50. struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
  51. int write_ptr = txq->q.write_ptr;
  52. int txq_id = txq->q.id;
  53. u8 sec_ctl = 0;
  54. u8 sta_id = 0;
  55. u16 len = byte_cnt + IWL_TX_CRC_SIZE + IWL_TX_DELIMITER_SIZE;
  56. __le16 bc_ent;
  57. struct iwl_tx_cmd *tx_cmd =
  58. (void *) txq->entries[txq->q.write_ptr].cmd->payload;
  59. scd_bc_tbl = trans_pcie->scd_bc_tbls.addr;
  60. WARN_ON(len > 0xFFF || write_ptr >= TFD_QUEUE_SIZE_MAX);
  61. sta_id = tx_cmd->sta_id;
  62. sec_ctl = tx_cmd->sec_ctl;
  63. switch (sec_ctl & TX_CMD_SEC_MSK) {
  64. case TX_CMD_SEC_CCM:
  65. len += CCMP_MIC_LEN;
  66. break;
  67. case TX_CMD_SEC_TKIP:
  68. len += TKIP_ICV_LEN;
  69. break;
  70. case TX_CMD_SEC_WEP:
  71. len += WEP_IV_LEN + WEP_ICV_LEN;
  72. break;
  73. }
  74. bc_ent = cpu_to_le16((len & 0xFFF) | (sta_id << 12));
  75. scd_bc_tbl[txq_id].tfd_offset[write_ptr] = bc_ent;
  76. if (write_ptr < TFD_QUEUE_SIZE_BC_DUP)
  77. scd_bc_tbl[txq_id].
  78. tfd_offset[TFD_QUEUE_SIZE_MAX + write_ptr] = bc_ent;
  79. }
  80. /**
  81. * iwl_txq_update_write_ptr - Send new write index to hardware
  82. */
  83. void iwl_txq_update_write_ptr(struct iwl_trans *trans, struct iwl_tx_queue *txq)
  84. {
  85. u32 reg = 0;
  86. int txq_id = txq->q.id;
  87. if (txq->need_update == 0)
  88. return;
  89. if (trans->cfg->base_params->shadow_reg_enable) {
  90. /* shadow register enabled */
  91. iwl_write32(trans, HBUS_TARG_WRPTR,
  92. txq->q.write_ptr | (txq_id << 8));
  93. } else {
  94. struct iwl_trans_pcie *trans_pcie =
  95. IWL_TRANS_GET_PCIE_TRANS(trans);
  96. /* if we're trying to save power */
  97. if (test_bit(STATUS_TPOWER_PMI, &trans_pcie->status)) {
  98. /* wake up nic if it's powered down ...
  99. * uCode will wake up, and interrupt us again, so next
  100. * time we'll skip this part. */
  101. reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
  102. if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
  103. IWL_DEBUG_INFO(trans,
  104. "Tx queue %d requesting wakeup,"
  105. " GP1 = 0x%x\n", txq_id, reg);
  106. iwl_set_bit(trans, CSR_GP_CNTRL,
  107. CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
  108. return;
  109. }
  110. iwl_write_direct32(trans, HBUS_TARG_WRPTR,
  111. txq->q.write_ptr | (txq_id << 8));
  112. /*
  113. * else not in power-save mode,
  114. * uCode will never sleep when we're
  115. * trying to tx (during RFKILL, we're not trying to tx).
  116. */
  117. } else
  118. iwl_write32(trans, HBUS_TARG_WRPTR,
  119. txq->q.write_ptr | (txq_id << 8));
  120. }
  121. txq->need_update = 0;
  122. }
  123. static inline dma_addr_t iwl_tfd_tb_get_addr(struct iwl_tfd *tfd, u8 idx)
  124. {
  125. struct iwl_tfd_tb *tb = &tfd->tbs[idx];
  126. dma_addr_t addr = get_unaligned_le32(&tb->lo);
  127. if (sizeof(dma_addr_t) > sizeof(u32))
  128. addr |=
  129. ((dma_addr_t)(le16_to_cpu(tb->hi_n_len) & 0xF) << 16) << 16;
  130. return addr;
  131. }
  132. static inline u16 iwl_tfd_tb_get_len(struct iwl_tfd *tfd, u8 idx)
  133. {
  134. struct iwl_tfd_tb *tb = &tfd->tbs[idx];
  135. return le16_to_cpu(tb->hi_n_len) >> 4;
  136. }
  137. static inline void iwl_tfd_set_tb(struct iwl_tfd *tfd, u8 idx,
  138. dma_addr_t addr, u16 len)
  139. {
  140. struct iwl_tfd_tb *tb = &tfd->tbs[idx];
  141. u16 hi_n_len = len << 4;
  142. put_unaligned_le32(addr, &tb->lo);
  143. if (sizeof(dma_addr_t) > sizeof(u32))
  144. hi_n_len |= ((addr >> 16) >> 16) & 0xF;
  145. tb->hi_n_len = cpu_to_le16(hi_n_len);
  146. tfd->num_tbs = idx + 1;
  147. }
  148. static inline u8 iwl_tfd_get_num_tbs(struct iwl_tfd *tfd)
  149. {
  150. return tfd->num_tbs & 0x1f;
  151. }
  152. static void iwl_unmap_tfd(struct iwl_trans *trans, struct iwl_cmd_meta *meta,
  153. struct iwl_tfd *tfd, enum dma_data_direction dma_dir)
  154. {
  155. int i;
  156. int num_tbs;
  157. /* Sanity check on number of chunks */
  158. num_tbs = iwl_tfd_get_num_tbs(tfd);
  159. if (num_tbs >= IWL_NUM_OF_TBS) {
  160. IWL_ERR(trans, "Too many chunks: %i\n", num_tbs);
  161. /* @todo issue fatal error, it is quite serious situation */
  162. return;
  163. }
  164. /* Unmap tx_cmd */
  165. if (num_tbs)
  166. dma_unmap_single(trans->dev,
  167. dma_unmap_addr(meta, mapping),
  168. dma_unmap_len(meta, len),
  169. DMA_BIDIRECTIONAL);
  170. /* Unmap chunks, if any. */
  171. for (i = 1; i < num_tbs; i++)
  172. dma_unmap_single(trans->dev, iwl_tfd_tb_get_addr(tfd, i),
  173. iwl_tfd_tb_get_len(tfd, i), dma_dir);
  174. tfd->num_tbs = 0;
  175. }
  176. /**
  177. * iwl_txq_free_tfd - Free all chunks referenced by TFD [txq->q.read_ptr]
  178. * @trans - transport private data
  179. * @txq - tx queue
  180. * @dma_dir - the direction of the DMA mapping
  181. *
  182. * Does NOT advance any TFD circular buffer read/write indexes
  183. * Does NOT free the TFD itself (which is within circular buffer)
  184. */
  185. void iwl_txq_free_tfd(struct iwl_trans *trans, struct iwl_tx_queue *txq,
  186. enum dma_data_direction dma_dir)
  187. {
  188. struct iwl_tfd *tfd_tmp = txq->tfds;
  189. /* rd_ptr is bounded by n_bd and idx is bounded by n_window */
  190. int rd_ptr = txq->q.read_ptr;
  191. int idx = get_cmd_index(&txq->q, rd_ptr);
  192. lockdep_assert_held(&txq->lock);
  193. /* We have only q->n_window txq->entries, but we use q->n_bd tfds */
  194. iwl_unmap_tfd(trans, &txq->entries[idx].meta, &tfd_tmp[rd_ptr],
  195. dma_dir);
  196. /* free SKB */
  197. if (txq->entries) {
  198. struct sk_buff *skb;
  199. skb = txq->entries[idx].skb;
  200. /* Can be called from irqs-disabled context
  201. * If skb is not NULL, it means that the whole queue is being
  202. * freed and that the queue is not empty - free the skb
  203. */
  204. if (skb) {
  205. iwl_op_mode_free_skb(trans->op_mode, skb);
  206. txq->entries[idx].skb = NULL;
  207. }
  208. }
  209. }
  210. int iwlagn_txq_attach_buf_to_tfd(struct iwl_trans *trans,
  211. struct iwl_tx_queue *txq,
  212. dma_addr_t addr, u16 len,
  213. u8 reset)
  214. {
  215. struct iwl_queue *q;
  216. struct iwl_tfd *tfd, *tfd_tmp;
  217. u32 num_tbs;
  218. q = &txq->q;
  219. tfd_tmp = txq->tfds;
  220. tfd = &tfd_tmp[q->write_ptr];
  221. if (reset)
  222. memset(tfd, 0, sizeof(*tfd));
  223. num_tbs = iwl_tfd_get_num_tbs(tfd);
  224. /* Each TFD can point to a maximum 20 Tx buffers */
  225. if (num_tbs >= IWL_NUM_OF_TBS) {
  226. IWL_ERR(trans, "Error can not send more than %d chunks\n",
  227. IWL_NUM_OF_TBS);
  228. return -EINVAL;
  229. }
  230. if (WARN_ON(addr & ~DMA_BIT_MASK(36)))
  231. return -EINVAL;
  232. if (unlikely(addr & ~IWL_TX_DMA_MASK))
  233. IWL_ERR(trans, "Unaligned address = %llx\n",
  234. (unsigned long long)addr);
  235. iwl_tfd_set_tb(tfd, num_tbs, addr, len);
  236. return 0;
  237. }
  238. /*************** DMA-QUEUE-GENERAL-FUNCTIONS *****
  239. * DMA services
  240. *
  241. * Theory of operation
  242. *
  243. * A Tx or Rx queue resides in host DRAM, and is comprised of a circular buffer
  244. * of buffer descriptors, each of which points to one or more data buffers for
  245. * the device to read from or fill. Driver and device exchange status of each
  246. * queue via "read" and "write" pointers. Driver keeps minimum of 2 empty
  247. * entries in each circular buffer, to protect against confusing empty and full
  248. * queue states.
  249. *
  250. * The device reads or writes the data in the queues via the device's several
  251. * DMA/FIFO channels. Each queue is mapped to a single DMA channel.
  252. *
  253. * For Tx queue, there are low mark and high mark limits. If, after queuing
  254. * the packet for Tx, free space become < low mark, Tx queue stopped. When
  255. * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
  256. * Tx queue resumed.
  257. *
  258. ***************************************************/
  259. int iwl_queue_space(const struct iwl_queue *q)
  260. {
  261. int s = q->read_ptr - q->write_ptr;
  262. if (q->read_ptr > q->write_ptr)
  263. s -= q->n_bd;
  264. if (s <= 0)
  265. s += q->n_window;
  266. /* keep some reserve to not confuse empty and full situations */
  267. s -= 2;
  268. if (s < 0)
  269. s = 0;
  270. return s;
  271. }
  272. /**
  273. * iwl_queue_init - Initialize queue's high/low-water and read/write indexes
  274. */
  275. int iwl_queue_init(struct iwl_queue *q, int count, int slots_num, u32 id)
  276. {
  277. q->n_bd = count;
  278. q->n_window = slots_num;
  279. q->id = id;
  280. /* count must be power-of-two size, otherwise iwl_queue_inc_wrap
  281. * and iwl_queue_dec_wrap are broken. */
  282. if (WARN_ON(!is_power_of_2(count)))
  283. return -EINVAL;
  284. /* slots_num must be power-of-two size, otherwise
  285. * get_cmd_index is broken. */
  286. if (WARN_ON(!is_power_of_2(slots_num)))
  287. return -EINVAL;
  288. q->low_mark = q->n_window / 4;
  289. if (q->low_mark < 4)
  290. q->low_mark = 4;
  291. q->high_mark = q->n_window / 8;
  292. if (q->high_mark < 2)
  293. q->high_mark = 2;
  294. q->write_ptr = q->read_ptr = 0;
  295. return 0;
  296. }
  297. static void iwlagn_txq_inval_byte_cnt_tbl(struct iwl_trans *trans,
  298. struct iwl_tx_queue *txq)
  299. {
  300. struct iwl_trans_pcie *trans_pcie =
  301. IWL_TRANS_GET_PCIE_TRANS(trans);
  302. struct iwlagn_scd_bc_tbl *scd_bc_tbl = trans_pcie->scd_bc_tbls.addr;
  303. int txq_id = txq->q.id;
  304. int read_ptr = txq->q.read_ptr;
  305. u8 sta_id = 0;
  306. __le16 bc_ent;
  307. struct iwl_tx_cmd *tx_cmd =
  308. (void *)txq->entries[txq->q.read_ptr].cmd->payload;
  309. WARN_ON(read_ptr >= TFD_QUEUE_SIZE_MAX);
  310. if (txq_id != trans_pcie->cmd_queue)
  311. sta_id = tx_cmd->sta_id;
  312. bc_ent = cpu_to_le16(1 | (sta_id << 12));
  313. scd_bc_tbl[txq_id].tfd_offset[read_ptr] = bc_ent;
  314. if (read_ptr < TFD_QUEUE_SIZE_BC_DUP)
  315. scd_bc_tbl[txq_id].
  316. tfd_offset[TFD_QUEUE_SIZE_MAX + read_ptr] = bc_ent;
  317. }
  318. static int iwl_txq_set_ratid_map(struct iwl_trans *trans, u16 ra_tid,
  319. u16 txq_id)
  320. {
  321. struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
  322. u32 tbl_dw_addr;
  323. u32 tbl_dw;
  324. u16 scd_q2ratid;
  325. scd_q2ratid = ra_tid & SCD_QUEUE_RA_TID_MAP_RATID_MSK;
  326. tbl_dw_addr = trans_pcie->scd_base_addr +
  327. SCD_TRANS_TBL_OFFSET_QUEUE(txq_id);
  328. tbl_dw = iwl_read_targ_mem(trans, tbl_dw_addr);
  329. if (txq_id & 0x1)
  330. tbl_dw = (scd_q2ratid << 16) | (tbl_dw & 0x0000FFFF);
  331. else
  332. tbl_dw = scd_q2ratid | (tbl_dw & 0xFFFF0000);
  333. iwl_write_targ_mem(trans, tbl_dw_addr, tbl_dw);
  334. return 0;
  335. }
  336. static inline void iwl_txq_set_inactive(struct iwl_trans *trans, u16 txq_id)
  337. {
  338. /* Simply stop the queue, but don't change any configuration;
  339. * the SCD_ACT_EN bit is the write-enable mask for the ACTIVE bit. */
  340. iwl_write_prph(trans,
  341. SCD_QUEUE_STATUS_BITS(txq_id),
  342. (0 << SCD_QUEUE_STTS_REG_POS_ACTIVE)|
  343. (1 << SCD_QUEUE_STTS_REG_POS_SCD_ACT_EN));
  344. }
  345. void iwl_trans_pcie_txq_enable(struct iwl_trans *trans, int txq_id, int fifo,
  346. int sta_id, int tid, int frame_limit, u16 ssn)
  347. {
  348. struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
  349. if (test_and_set_bit(txq_id, trans_pcie->queue_used))
  350. WARN_ONCE(1, "queue %d already used - expect issues", txq_id);
  351. /* Stop this Tx queue before configuring it */
  352. iwl_txq_set_inactive(trans, txq_id);
  353. /* Set this queue as a chain-building queue unless it is CMD queue */
  354. if (txq_id != trans_pcie->cmd_queue)
  355. iwl_set_bits_prph(trans, SCD_QUEUECHAIN_SEL, BIT(txq_id));
  356. /* If this queue is mapped to a certain station: it is an AGG queue */
  357. if (sta_id != IWL_INVALID_STATION) {
  358. u16 ra_tid = BUILD_RAxTID(sta_id, tid);
  359. /* Map receiver-address / traffic-ID to this queue */
  360. iwl_txq_set_ratid_map(trans, ra_tid, txq_id);
  361. /* enable aggregations for the queue */
  362. iwl_set_bits_prph(trans, SCD_AGGR_SEL, BIT(txq_id));
  363. } else {
  364. /*
  365. * disable aggregations for the queue, this will also make the
  366. * ra_tid mapping configuration irrelevant since it is now a
  367. * non-AGG queue.
  368. */
  369. iwl_clear_bits_prph(trans, SCD_AGGR_SEL, BIT(txq_id));
  370. }
  371. /* Place first TFD at index corresponding to start sequence number.
  372. * Assumes that ssn_idx is valid (!= 0xFFF) */
  373. trans_pcie->txq[txq_id].q.read_ptr = (ssn & 0xff);
  374. trans_pcie->txq[txq_id].q.write_ptr = (ssn & 0xff);
  375. iwl_write_direct32(trans, HBUS_TARG_WRPTR,
  376. (ssn & 0xff) | (txq_id << 8));
  377. iwl_write_prph(trans, SCD_QUEUE_RDPTR(txq_id), ssn);
  378. /* Set up Tx window size and frame limit for this queue */
  379. iwl_write_targ_mem(trans, trans_pcie->scd_base_addr +
  380. SCD_CONTEXT_QUEUE_OFFSET(txq_id), 0);
  381. iwl_write_targ_mem(trans, trans_pcie->scd_base_addr +
  382. SCD_CONTEXT_QUEUE_OFFSET(txq_id) + sizeof(u32),
  383. ((frame_limit << SCD_QUEUE_CTX_REG2_WIN_SIZE_POS) &
  384. SCD_QUEUE_CTX_REG2_WIN_SIZE_MSK) |
  385. ((frame_limit << SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS) &
  386. SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK));
  387. /* Set up Status area in SRAM, map to Tx DMA/FIFO, activate the queue */
  388. iwl_write_prph(trans, SCD_QUEUE_STATUS_BITS(txq_id),
  389. (1 << SCD_QUEUE_STTS_REG_POS_ACTIVE) |
  390. (fifo << SCD_QUEUE_STTS_REG_POS_TXF) |
  391. (1 << SCD_QUEUE_STTS_REG_POS_WSL) |
  392. SCD_QUEUE_STTS_REG_MSK);
  393. IWL_DEBUG_TX_QUEUES(trans, "Activate queue %d on FIFO %d WrPtr: %d\n",
  394. txq_id, fifo, ssn & 0xff);
  395. }
  396. void iwl_trans_pcie_txq_disable(struct iwl_trans *trans, int txq_id)
  397. {
  398. struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
  399. u32 stts_addr = trans_pcie->scd_base_addr +
  400. SCD_TX_STTS_QUEUE_OFFSET(txq_id);
  401. static const u32 zero_val[4] = {};
  402. if (!test_and_clear_bit(txq_id, trans_pcie->queue_used)) {
  403. WARN_ONCE(1, "queue %d not used", txq_id);
  404. return;
  405. }
  406. iwl_txq_set_inactive(trans, txq_id);
  407. _iwl_write_targ_mem_dwords(trans, stts_addr,
  408. zero_val, ARRAY_SIZE(zero_val));
  409. IWL_DEBUG_TX_QUEUES(trans, "Deactivate queue %d\n", txq_id);
  410. }
  411. /*************** HOST COMMAND QUEUE FUNCTIONS *****/
  412. /**
  413. * iwl_enqueue_hcmd - enqueue a uCode command
  414. * @priv: device private data point
  415. * @cmd: a point to the ucode command structure
  416. *
  417. * The function returns < 0 values to indicate the operation is
  418. * failed. On success, it turns the index (> 0) of command in the
  419. * command queue.
  420. */
  421. static int iwl_enqueue_hcmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd)
  422. {
  423. struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
  424. struct iwl_tx_queue *txq = &trans_pcie->txq[trans_pcie->cmd_queue];
  425. struct iwl_queue *q = &txq->q;
  426. struct iwl_device_cmd *out_cmd;
  427. struct iwl_cmd_meta *out_meta;
  428. dma_addr_t phys_addr;
  429. u32 idx;
  430. u16 copy_size, cmd_size;
  431. bool had_nocopy = false;
  432. int i;
  433. u32 cmd_pos;
  434. copy_size = sizeof(out_cmd->hdr);
  435. cmd_size = sizeof(out_cmd->hdr);
  436. /* need one for the header if the first is NOCOPY */
  437. BUILD_BUG_ON(IWL_MAX_CMD_TFDS > IWL_NUM_OF_TBS - 1);
  438. for (i = 0; i < IWL_MAX_CMD_TFDS; i++) {
  439. if (!cmd->len[i])
  440. continue;
  441. if (cmd->dataflags[i] & IWL_HCMD_DFL_NOCOPY) {
  442. had_nocopy = true;
  443. } else {
  444. /* NOCOPY must not be followed by normal! */
  445. if (WARN_ON(had_nocopy))
  446. return -EINVAL;
  447. copy_size += cmd->len[i];
  448. }
  449. cmd_size += cmd->len[i];
  450. }
  451. /*
  452. * If any of the command structures end up being larger than
  453. * the TFD_MAX_PAYLOAD_SIZE and they aren't dynamically
  454. * allocated into separate TFDs, then we will need to
  455. * increase the size of the buffers.
  456. */
  457. if (WARN(copy_size > TFD_MAX_PAYLOAD_SIZE,
  458. "Command %s (%#x) is too large (%d bytes)\n",
  459. trans_pcie_get_cmd_string(trans_pcie, cmd->id),
  460. cmd->id, copy_size))
  461. return -EINVAL;
  462. spin_lock_bh(&txq->lock);
  463. if (iwl_queue_space(q) < ((cmd->flags & CMD_ASYNC) ? 2 : 1)) {
  464. spin_unlock_bh(&txq->lock);
  465. IWL_ERR(trans, "No space in command queue\n");
  466. iwl_op_mode_cmd_queue_full(trans->op_mode);
  467. return -ENOSPC;
  468. }
  469. idx = get_cmd_index(q, q->write_ptr);
  470. out_cmd = txq->entries[idx].cmd;
  471. out_meta = &txq->entries[idx].meta;
  472. memset(out_meta, 0, sizeof(*out_meta)); /* re-initialize to NULL */
  473. if (cmd->flags & CMD_WANT_SKB)
  474. out_meta->source = cmd;
  475. /* set up the header */
  476. out_cmd->hdr.cmd = cmd->id;
  477. out_cmd->hdr.flags = 0;
  478. out_cmd->hdr.sequence =
  479. cpu_to_le16(QUEUE_TO_SEQ(trans_pcie->cmd_queue) |
  480. INDEX_TO_SEQ(q->write_ptr));
  481. /* and copy the data that needs to be copied */
  482. cmd_pos = offsetof(struct iwl_device_cmd, payload);
  483. for (i = 0; i < IWL_MAX_CMD_TFDS; i++) {
  484. if (!cmd->len[i])
  485. continue;
  486. if (cmd->dataflags[i] & IWL_HCMD_DFL_NOCOPY)
  487. break;
  488. memcpy((u8 *)out_cmd + cmd_pos, cmd->data[i], cmd->len[i]);
  489. cmd_pos += cmd->len[i];
  490. }
  491. WARN_ON_ONCE(txq->entries[idx].copy_cmd);
  492. /*
  493. * since out_cmd will be the source address of the FH, it will write
  494. * the retry count there. So when the user needs to receivce the HCMD
  495. * that corresponds to the response in the response handler, it needs
  496. * to set CMD_WANT_HCMD.
  497. */
  498. if (cmd->flags & CMD_WANT_HCMD) {
  499. txq->entries[idx].copy_cmd =
  500. kmemdup(out_cmd, cmd_pos, GFP_ATOMIC);
  501. if (unlikely(!txq->entries[idx].copy_cmd)) {
  502. idx = -ENOMEM;
  503. goto out;
  504. }
  505. }
  506. IWL_DEBUG_HC(trans,
  507. "Sending command %s (#%x), seq: 0x%04X, %d bytes at %d[%d]:%d\n",
  508. trans_pcie_get_cmd_string(trans_pcie, out_cmd->hdr.cmd),
  509. out_cmd->hdr.cmd, le16_to_cpu(out_cmd->hdr.sequence),
  510. cmd_size, q->write_ptr, idx, trans_pcie->cmd_queue);
  511. phys_addr = dma_map_single(trans->dev, &out_cmd->hdr, copy_size,
  512. DMA_BIDIRECTIONAL);
  513. if (unlikely(dma_mapping_error(trans->dev, phys_addr))) {
  514. idx = -ENOMEM;
  515. goto out;
  516. }
  517. dma_unmap_addr_set(out_meta, mapping, phys_addr);
  518. dma_unmap_len_set(out_meta, len, copy_size);
  519. iwlagn_txq_attach_buf_to_tfd(trans, txq, phys_addr, copy_size, 1);
  520. for (i = 0; i < IWL_MAX_CMD_TFDS; i++) {
  521. if (!cmd->len[i])
  522. continue;
  523. if (!(cmd->dataflags[i] & IWL_HCMD_DFL_NOCOPY))
  524. continue;
  525. phys_addr = dma_map_single(trans->dev, (void *)cmd->data[i],
  526. cmd->len[i], DMA_BIDIRECTIONAL);
  527. if (dma_mapping_error(trans->dev, phys_addr)) {
  528. iwl_unmap_tfd(trans, out_meta,
  529. &txq->tfds[q->write_ptr],
  530. DMA_BIDIRECTIONAL);
  531. idx = -ENOMEM;
  532. goto out;
  533. }
  534. iwlagn_txq_attach_buf_to_tfd(trans, txq, phys_addr,
  535. cmd->len[i], 0);
  536. }
  537. out_meta->flags = cmd->flags;
  538. txq->need_update = 1;
  539. trace_iwlwifi_dev_hcmd(trans->dev, cmd, cmd_size,
  540. &out_cmd->hdr, copy_size);
  541. /* start timer if queue currently empty */
  542. if (q->read_ptr == q->write_ptr && trans_pcie->wd_timeout)
  543. mod_timer(&txq->stuck_timer, jiffies + trans_pcie->wd_timeout);
  544. /* Increment and update queue's write index */
  545. q->write_ptr = iwl_queue_inc_wrap(q->write_ptr, q->n_bd);
  546. iwl_txq_update_write_ptr(trans, txq);
  547. out:
  548. spin_unlock_bh(&txq->lock);
  549. return idx;
  550. }
  551. static inline void iwl_queue_progress(struct iwl_trans_pcie *trans_pcie,
  552. struct iwl_tx_queue *txq)
  553. {
  554. if (!trans_pcie->wd_timeout)
  555. return;
  556. /*
  557. * if empty delete timer, otherwise move timer forward
  558. * since we're making progress on this queue
  559. */
  560. if (txq->q.read_ptr == txq->q.write_ptr)
  561. del_timer(&txq->stuck_timer);
  562. else
  563. mod_timer(&txq->stuck_timer, jiffies + trans_pcie->wd_timeout);
  564. }
  565. /**
  566. * iwl_hcmd_queue_reclaim - Reclaim TX command queue entries already Tx'd
  567. *
  568. * When FW advances 'R' index, all entries between old and new 'R' index
  569. * need to be reclaimed. As result, some free space forms. If there is
  570. * enough free space (> low mark), wake the stack that feeds us.
  571. */
  572. static void iwl_hcmd_queue_reclaim(struct iwl_trans *trans, int txq_id,
  573. int idx)
  574. {
  575. struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
  576. struct iwl_tx_queue *txq = &trans_pcie->txq[txq_id];
  577. struct iwl_queue *q = &txq->q;
  578. int nfreed = 0;
  579. lockdep_assert_held(&txq->lock);
  580. if ((idx >= q->n_bd) || (iwl_queue_used(q, idx) == 0)) {
  581. IWL_ERR(trans,
  582. "%s: Read index for DMA queue txq id (%d), index %d is out of range [0-%d] %d %d.\n",
  583. __func__, txq_id, idx, q->n_bd,
  584. q->write_ptr, q->read_ptr);
  585. return;
  586. }
  587. for (idx = iwl_queue_inc_wrap(idx, q->n_bd); q->read_ptr != idx;
  588. q->read_ptr = iwl_queue_inc_wrap(q->read_ptr, q->n_bd)) {
  589. if (nfreed++ > 0) {
  590. IWL_ERR(trans, "HCMD skipped: index (%d) %d %d\n",
  591. idx, q->write_ptr, q->read_ptr);
  592. iwl_op_mode_nic_error(trans->op_mode);
  593. }
  594. }
  595. iwl_queue_progress(trans_pcie, txq);
  596. }
  597. /**
  598. * iwl_tx_cmd_complete - Pull unused buffers off the queue and reclaim them
  599. * @rxb: Rx buffer to reclaim
  600. * @handler_status: return value of the handler of the command
  601. * (put in setup_rx_handlers)
  602. *
  603. * If an Rx buffer has an async callback associated with it the callback
  604. * will be executed. The attached skb (if present) will only be freed
  605. * if the callback returns 1
  606. */
  607. void iwl_tx_cmd_complete(struct iwl_trans *trans, struct iwl_rx_cmd_buffer *rxb,
  608. int handler_status)
  609. {
  610. struct iwl_rx_packet *pkt = rxb_addr(rxb);
  611. u16 sequence = le16_to_cpu(pkt->hdr.sequence);
  612. int txq_id = SEQ_TO_QUEUE(sequence);
  613. int index = SEQ_TO_INDEX(sequence);
  614. int cmd_index;
  615. struct iwl_device_cmd *cmd;
  616. struct iwl_cmd_meta *meta;
  617. struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
  618. struct iwl_tx_queue *txq = &trans_pcie->txq[trans_pcie->cmd_queue];
  619. /* If a Tx command is being handled and it isn't in the actual
  620. * command queue then there a command routing bug has been introduced
  621. * in the queue management code. */
  622. if (WARN(txq_id != trans_pcie->cmd_queue,
  623. "wrong command queue %d (should be %d), sequence 0x%X readp=%d writep=%d\n",
  624. txq_id, trans_pcie->cmd_queue, sequence,
  625. trans_pcie->txq[trans_pcie->cmd_queue].q.read_ptr,
  626. trans_pcie->txq[trans_pcie->cmd_queue].q.write_ptr)) {
  627. iwl_print_hex_error(trans, pkt, 32);
  628. return;
  629. }
  630. spin_lock(&txq->lock);
  631. cmd_index = get_cmd_index(&txq->q, index);
  632. cmd = txq->entries[cmd_index].cmd;
  633. meta = &txq->entries[cmd_index].meta;
  634. iwl_unmap_tfd(trans, meta, &txq->tfds[index], DMA_BIDIRECTIONAL);
  635. /* Input error checking is done when commands are added to queue. */
  636. if (meta->flags & CMD_WANT_SKB) {
  637. struct page *p = rxb_steal_page(rxb);
  638. meta->source->resp_pkt = pkt;
  639. meta->source->_rx_page_addr = (unsigned long)page_address(p);
  640. meta->source->_rx_page_order = trans_pcie->rx_page_order;
  641. meta->source->handler_status = handler_status;
  642. }
  643. iwl_hcmd_queue_reclaim(trans, txq_id, index);
  644. if (!(meta->flags & CMD_ASYNC)) {
  645. if (!test_bit(STATUS_HCMD_ACTIVE, &trans_pcie->status)) {
  646. IWL_WARN(trans,
  647. "HCMD_ACTIVE already clear for command %s\n",
  648. trans_pcie_get_cmd_string(trans_pcie,
  649. cmd->hdr.cmd));
  650. }
  651. clear_bit(STATUS_HCMD_ACTIVE, &trans_pcie->status);
  652. IWL_DEBUG_INFO(trans, "Clearing HCMD_ACTIVE for command %s\n",
  653. trans_pcie_get_cmd_string(trans_pcie,
  654. cmd->hdr.cmd));
  655. wake_up(&trans->wait_command_queue);
  656. }
  657. meta->flags = 0;
  658. spin_unlock(&txq->lock);
  659. }
  660. #define HOST_COMPLETE_TIMEOUT (2 * HZ)
  661. static int iwl_send_cmd_async(struct iwl_trans *trans, struct iwl_host_cmd *cmd)
  662. {
  663. struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
  664. int ret;
  665. /* An asynchronous command can not expect an SKB to be set. */
  666. if (WARN_ON(cmd->flags & CMD_WANT_SKB))
  667. return -EINVAL;
  668. ret = iwl_enqueue_hcmd(trans, cmd);
  669. if (ret < 0) {
  670. IWL_ERR(trans,
  671. "Error sending %s: enqueue_hcmd failed: %d\n",
  672. trans_pcie_get_cmd_string(trans_pcie, cmd->id), ret);
  673. return ret;
  674. }
  675. return 0;
  676. }
  677. static int iwl_send_cmd_sync(struct iwl_trans *trans, struct iwl_host_cmd *cmd)
  678. {
  679. struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
  680. int cmd_idx;
  681. int ret;
  682. IWL_DEBUG_INFO(trans, "Attempting to send sync command %s\n",
  683. trans_pcie_get_cmd_string(trans_pcie, cmd->id));
  684. if (WARN_ON(test_and_set_bit(STATUS_HCMD_ACTIVE,
  685. &trans_pcie->status))) {
  686. IWL_ERR(trans, "Command %s: a command is already active!\n",
  687. trans_pcie_get_cmd_string(trans_pcie, cmd->id));
  688. return -EIO;
  689. }
  690. IWL_DEBUG_INFO(trans, "Setting HCMD_ACTIVE for command %s\n",
  691. trans_pcie_get_cmd_string(trans_pcie, cmd->id));
  692. cmd_idx = iwl_enqueue_hcmd(trans, cmd);
  693. if (cmd_idx < 0) {
  694. ret = cmd_idx;
  695. clear_bit(STATUS_HCMD_ACTIVE, &trans_pcie->status);
  696. IWL_ERR(trans,
  697. "Error sending %s: enqueue_hcmd failed: %d\n",
  698. trans_pcie_get_cmd_string(trans_pcie, cmd->id), ret);
  699. return ret;
  700. }
  701. ret = wait_event_timeout(trans->wait_command_queue,
  702. !test_bit(STATUS_HCMD_ACTIVE,
  703. &trans_pcie->status),
  704. HOST_COMPLETE_TIMEOUT);
  705. if (!ret) {
  706. if (test_bit(STATUS_HCMD_ACTIVE, &trans_pcie->status)) {
  707. struct iwl_tx_queue *txq =
  708. &trans_pcie->txq[trans_pcie->cmd_queue];
  709. struct iwl_queue *q = &txq->q;
  710. IWL_ERR(trans,
  711. "Error sending %s: time out after %dms.\n",
  712. trans_pcie_get_cmd_string(trans_pcie, cmd->id),
  713. jiffies_to_msecs(HOST_COMPLETE_TIMEOUT));
  714. IWL_ERR(trans,
  715. "Current CMD queue read_ptr %d write_ptr %d\n",
  716. q->read_ptr, q->write_ptr);
  717. clear_bit(STATUS_HCMD_ACTIVE, &trans_pcie->status);
  718. IWL_DEBUG_INFO(trans,
  719. "Clearing HCMD_ACTIVE for command %s\n",
  720. trans_pcie_get_cmd_string(trans_pcie,
  721. cmd->id));
  722. ret = -ETIMEDOUT;
  723. goto cancel;
  724. }
  725. }
  726. if ((cmd->flags & CMD_WANT_SKB) && !cmd->resp_pkt) {
  727. IWL_ERR(trans, "Error: Response NULL in '%s'\n",
  728. trans_pcie_get_cmd_string(trans_pcie, cmd->id));
  729. ret = -EIO;
  730. goto cancel;
  731. }
  732. return 0;
  733. cancel:
  734. if (cmd->flags & CMD_WANT_SKB) {
  735. /*
  736. * Cancel the CMD_WANT_SKB flag for the cmd in the
  737. * TX cmd queue. Otherwise in case the cmd comes
  738. * in later, it will possibly set an invalid
  739. * address (cmd->meta.source).
  740. */
  741. trans_pcie->txq[trans_pcie->cmd_queue].
  742. entries[cmd_idx].meta.flags &= ~CMD_WANT_SKB;
  743. }
  744. if (cmd->resp_pkt) {
  745. iwl_free_resp(cmd);
  746. cmd->resp_pkt = NULL;
  747. }
  748. return ret;
  749. }
  750. int iwl_trans_pcie_send_cmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd)
  751. {
  752. if (cmd->flags & CMD_ASYNC)
  753. return iwl_send_cmd_async(trans, cmd);
  754. return iwl_send_cmd_sync(trans, cmd);
  755. }
  756. /* Frees buffers until index _not_ inclusive */
  757. int iwl_tx_queue_reclaim(struct iwl_trans *trans, int txq_id, int index,
  758. struct sk_buff_head *skbs)
  759. {
  760. struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
  761. struct iwl_tx_queue *txq = &trans_pcie->txq[txq_id];
  762. struct iwl_queue *q = &txq->q;
  763. int last_to_free;
  764. int freed = 0;
  765. /* This function is not meant to release cmd queue*/
  766. if (WARN_ON(txq_id == trans_pcie->cmd_queue))
  767. return 0;
  768. lockdep_assert_held(&txq->lock);
  769. /*Since we free until index _not_ inclusive, the one before index is
  770. * the last we will free. This one must be used */
  771. last_to_free = iwl_queue_dec_wrap(index, q->n_bd);
  772. if ((index >= q->n_bd) ||
  773. (iwl_queue_used(q, last_to_free) == 0)) {
  774. IWL_ERR(trans,
  775. "%s: Read index for DMA queue txq id (%d), last_to_free %d is out of range [0-%d] %d %d.\n",
  776. __func__, txq_id, last_to_free, q->n_bd,
  777. q->write_ptr, q->read_ptr);
  778. return 0;
  779. }
  780. if (WARN_ON(!skb_queue_empty(skbs)))
  781. return 0;
  782. for (;
  783. q->read_ptr != index;
  784. q->read_ptr = iwl_queue_inc_wrap(q->read_ptr, q->n_bd)) {
  785. if (WARN_ON_ONCE(txq->entries[txq->q.read_ptr].skb == NULL))
  786. continue;
  787. __skb_queue_tail(skbs, txq->entries[txq->q.read_ptr].skb);
  788. txq->entries[txq->q.read_ptr].skb = NULL;
  789. iwlagn_txq_inval_byte_cnt_tbl(trans, txq);
  790. iwl_txq_free_tfd(trans, txq, DMA_TO_DEVICE);
  791. freed++;
  792. }
  793. iwl_queue_progress(trans_pcie, txq);
  794. return freed;
  795. }