tda18271.c 29 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048
  1. /*
  2. tda18271.c - driver for the Philips / NXP TDA18271 silicon tuner
  3. Copyright (C) 2007 Michael Krufky (mkrufky@linuxtv.org)
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the Free Software
  14. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  15. */
  16. #include <linux/i2c.h>
  17. #include <linux/delay.h>
  18. #include <linux/videodev2.h>
  19. #include "tda18271.h"
  20. static int debug;
  21. module_param(debug, int, 0644);
  22. MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
  23. #define dprintk(level, fmt, arg...) do {\
  24. if (debug >= level) \
  25. printk(KERN_DEBUG "%s: " fmt, __FUNCTION__, ##arg); } while (0)
  26. #define R_ID 0x00 /* ID byte */
  27. #define R_TM 0x01 /* Thermo byte */
  28. #define R_PL 0x02 /* Power level byte */
  29. #define R_EP1 0x03 /* Easy Prog byte 1 */
  30. #define R_EP2 0x04 /* Easy Prog byte 2 */
  31. #define R_EP3 0x05 /* Easy Prog byte 3 */
  32. #define R_EP4 0x06 /* Easy Prog byte 4 */
  33. #define R_EP5 0x07 /* Easy Prog byte 5 */
  34. #define R_CPD 0x08 /* Cal Post-Divider byte */
  35. #define R_CD1 0x09 /* Cal Divider byte 1 */
  36. #define R_CD2 0x0a /* Cal Divider byte 2 */
  37. #define R_CD3 0x0b /* Cal Divider byte 3 */
  38. #define R_MPD 0x0c /* Main Post-Divider byte */
  39. #define R_MD1 0x0d /* Main Divider byte 1 */
  40. #define R_MD2 0x0e /* Main Divider byte 2 */
  41. #define R_MD3 0x0f /* Main Divider byte 3 */
  42. #define R_EB1 0x10 /* Extended byte 1 */
  43. #define R_EB2 0x11 /* Extended byte 2 */
  44. #define R_EB3 0x12 /* Extended byte 3 */
  45. #define R_EB4 0x13 /* Extended byte 4 */
  46. #define R_EB5 0x14 /* Extended byte 5 */
  47. #define R_EB6 0x15 /* Extended byte 6 */
  48. #define R_EB7 0x16 /* Extended byte 7 */
  49. #define R_EB8 0x17 /* Extended byte 8 */
  50. #define R_EB9 0x18 /* Extended byte 9 */
  51. #define R_EB10 0x19 /* Extended byte 10 */
  52. #define R_EB11 0x1a /* Extended byte 11 */
  53. #define R_EB12 0x1b /* Extended byte 12 */
  54. #define R_EB13 0x1c /* Extended byte 13 */
  55. #define R_EB14 0x1d /* Extended byte 14 */
  56. #define R_EB15 0x1e /* Extended byte 15 */
  57. #define R_EB16 0x1f /* Extended byte 16 */
  58. #define R_EB17 0x20 /* Extended byte 17 */
  59. #define R_EB18 0x21 /* Extended byte 18 */
  60. #define R_EB19 0x22 /* Extended byte 19 */
  61. #define R_EB20 0x23 /* Extended byte 20 */
  62. #define R_EB21 0x24 /* Extended byte 21 */
  63. #define R_EB22 0x25 /* Extended byte 22 */
  64. #define R_EB23 0x26 /* Extended byte 23 */
  65. struct tda18271_pll_map {
  66. u32 lomax;
  67. u8 pd; /* post div */
  68. u8 d; /* div */
  69. };
  70. static struct tda18271_pll_map tda18271_main_pll[] = {
  71. { .lomax = 32000, .pd = 0x5f, .d = 0xf0 },
  72. { .lomax = 35000, .pd = 0x5e, .d = 0xe0 },
  73. { .lomax = 37000, .pd = 0x5d, .d = 0xd0 },
  74. { .lomax = 41000, .pd = 0x5c, .d = 0xc0 },
  75. { .lomax = 44000, .pd = 0x5b, .d = 0xb0 },
  76. { .lomax = 49000, .pd = 0x5a, .d = 0xa0 },
  77. { .lomax = 54000, .pd = 0x59, .d = 0x90 },
  78. { .lomax = 61000, .pd = 0x58, .d = 0x80 },
  79. { .lomax = 65000, .pd = 0x4f, .d = 0x78 },
  80. { .lomax = 70000, .pd = 0x4e, .d = 0x70 },
  81. { .lomax = 75000, .pd = 0x4d, .d = 0x68 },
  82. { .lomax = 82000, .pd = 0x4c, .d = 0x60 },
  83. { .lomax = 89000, .pd = 0x4b, .d = 0x58 },
  84. { .lomax = 98000, .pd = 0x4a, .d = 0x50 },
  85. { .lomax = 109000, .pd = 0x49, .d = 0x48 },
  86. { .lomax = 123000, .pd = 0x48, .d = 0x40 },
  87. { .lomax = 131000, .pd = 0x3f, .d = 0x3c },
  88. { .lomax = 141000, .pd = 0x3e, .d = 0x38 },
  89. { .lomax = 151000, .pd = 0x3d, .d = 0x34 },
  90. { .lomax = 164000, .pd = 0x3c, .d = 0x30 },
  91. { .lomax = 179000, .pd = 0x3b, .d = 0x2c },
  92. { .lomax = 197000, .pd = 0x3a, .d = 0x28 },
  93. { .lomax = 219000, .pd = 0x39, .d = 0x24 },
  94. { .lomax = 246000, .pd = 0x38, .d = 0x20 },
  95. { .lomax = 263000, .pd = 0x2f, .d = 0x1e },
  96. { .lomax = 282000, .pd = 0x2e, .d = 0x1c },
  97. { .lomax = 303000, .pd = 0x2d, .d = 0x1a },
  98. { .lomax = 329000, .pd = 0x2c, .d = 0x18 },
  99. { .lomax = 359000, .pd = 0x2b, .d = 0x16 },
  100. { .lomax = 395000, .pd = 0x2a, .d = 0x14 },
  101. { .lomax = 438000, .pd = 0x29, .d = 0x12 },
  102. { .lomax = 493000, .pd = 0x28, .d = 0x10 },
  103. { .lomax = 526000, .pd = 0x1f, .d = 0x0f },
  104. { .lomax = 564000, .pd = 0x1e, .d = 0x0e },
  105. { .lomax = 607000, .pd = 0x1d, .d = 0x0d },
  106. { .lomax = 658000, .pd = 0x1c, .d = 0x0c },
  107. { .lomax = 718000, .pd = 0x1b, .d = 0x0b },
  108. { .lomax = 790000, .pd = 0x1a, .d = 0x0a },
  109. { .lomax = 877000, .pd = 0x19, .d = 0x09 },
  110. { .lomax = 987000, .pd = 0x18, .d = 0x08 },
  111. { .lomax = 0, .pd = 0x00, .d = 0x00 }, /* end */
  112. };
  113. static struct tda18271_pll_map tda18271_cal_pll[] = {
  114. { .lomax = 33000, .pd = 0xdd, .d = 0xd0 },
  115. { .lomax = 36000, .pd = 0xdc, .d = 0xc0 },
  116. { .lomax = 40000, .pd = 0xdb, .d = 0xb0 },
  117. { .lomax = 44000, .pd = 0xda, .d = 0xa0 },
  118. { .lomax = 49000, .pd = 0xd9, .d = 0x90 },
  119. { .lomax = 55000, .pd = 0xd8, .d = 0x80 },
  120. { .lomax = 63000, .pd = 0xd3, .d = 0x70 },
  121. { .lomax = 67000, .pd = 0xcd, .d = 0x68 },
  122. { .lomax = 73000, .pd = 0xcc, .d = 0x60 },
  123. { .lomax = 80000, .pd = 0xcb, .d = 0x58 },
  124. { .lomax = 88000, .pd = 0xca, .d = 0x50 },
  125. { .lomax = 98000, .pd = 0xc9, .d = 0x48 },
  126. { .lomax = 110000, .pd = 0xc8, .d = 0x40 },
  127. { .lomax = 126000, .pd = 0xc3, .d = 0x38 },
  128. { .lomax = 135000, .pd = 0xbd, .d = 0x34 },
  129. { .lomax = 147000, .pd = 0xbc, .d = 0x30 },
  130. { .lomax = 160000, .pd = 0xbb, .d = 0x2c },
  131. { .lomax = 176000, .pd = 0xba, .d = 0x28 },
  132. { .lomax = 196000, .pd = 0xb9, .d = 0x24 },
  133. { .lomax = 220000, .pd = 0xb8, .d = 0x20 },
  134. { .lomax = 252000, .pd = 0xb3, .d = 0x1c },
  135. { .lomax = 271000, .pd = 0xad, .d = 0x1a },
  136. { .lomax = 294000, .pd = 0xac, .d = 0x18 },
  137. { .lomax = 321000, .pd = 0xab, .d = 0x16 },
  138. { .lomax = 353000, .pd = 0xaa, .d = 0x14 },
  139. { .lomax = 392000, .pd = 0xa9, .d = 0x12 },
  140. { .lomax = 441000, .pd = 0xa8, .d = 0x10 },
  141. { .lomax = 505000, .pd = 0xa3, .d = 0x0e },
  142. { .lomax = 543000, .pd = 0x9d, .d = 0x0d },
  143. { .lomax = 589000, .pd = 0x9c, .d = 0x0c },
  144. { .lomax = 642000, .pd = 0x9b, .d = 0x0b },
  145. { .lomax = 707000, .pd = 0x9a, .d = 0x0a },
  146. { .lomax = 785000, .pd = 0x99, .d = 0x09 },
  147. { .lomax = 883000, .pd = 0x98, .d = 0x08 },
  148. { .lomax = 1010000, .pd = 0x93, .d = 0x07 },
  149. { .lomax = 0, .pd = 0x00, .d = 0x00 }, /* end */
  150. };
  151. struct tda18271_map {
  152. u32 rfmax;
  153. u8 val;
  154. };
  155. static struct tda18271_map tda18271_bp_filter[] = {
  156. { .rfmax = 62000, .val = 0x00 },
  157. { .rfmax = 84000, .val = 0x01 },
  158. { .rfmax = 100000, .val = 0x02 },
  159. { .rfmax = 140000, .val = 0x03 },
  160. { .rfmax = 170000, .val = 0x04 },
  161. { .rfmax = 180000, .val = 0x05 },
  162. { .rfmax = 865000, .val = 0x06 },
  163. { .rfmax = 0, .val = 0x00 }, /* end */
  164. };
  165. static struct tda18271_map tda18271_km[] = {
  166. { .rfmax = 61100, .val = 0x74 },
  167. { .rfmax = 350000, .val = 0x40 },
  168. { .rfmax = 720000, .val = 0x30 },
  169. { .rfmax = 865000, .val = 0x40 },
  170. { .rfmax = 0, .val = 0x00 }, /* end */
  171. };
  172. static struct tda18271_map tda18271_rf_band[] = {
  173. { .rfmax = 47900, .val = 0x00 },
  174. { .rfmax = 61100, .val = 0x01 },
  175. /* { .rfmax = 152600, .val = 0x02 }, */
  176. { .rfmax = 121200, .val = 0x02 },
  177. { .rfmax = 164700, .val = 0x03 },
  178. { .rfmax = 203500, .val = 0x04 },
  179. { .rfmax = 457800, .val = 0x05 },
  180. { .rfmax = 865000, .val = 0x06 },
  181. { .rfmax = 0, .val = 0x00 }, /* end */
  182. };
  183. static struct tda18271_map tda18271_gain_taper[] = {
  184. { .rfmax = 45400, .val = 0x1f },
  185. { .rfmax = 45800, .val = 0x1e },
  186. { .rfmax = 46200, .val = 0x1d },
  187. { .rfmax = 46700, .val = 0x1c },
  188. { .rfmax = 47100, .val = 0x1b },
  189. { .rfmax = 47500, .val = 0x1a },
  190. { .rfmax = 47900, .val = 0x19 },
  191. { .rfmax = 49600, .val = 0x17 },
  192. { .rfmax = 51200, .val = 0x16 },
  193. { .rfmax = 52900, .val = 0x15 },
  194. { .rfmax = 54500, .val = 0x14 },
  195. { .rfmax = 56200, .val = 0x13 },
  196. { .rfmax = 57800, .val = 0x12 },
  197. { .rfmax = 59500, .val = 0x11 },
  198. { .rfmax = 61100, .val = 0x10 },
  199. { .rfmax = 67600, .val = 0x0d },
  200. { .rfmax = 74200, .val = 0x0c },
  201. { .rfmax = 80700, .val = 0x0b },
  202. { .rfmax = 87200, .val = 0x0a },
  203. { .rfmax = 93800, .val = 0x09 },
  204. { .rfmax = 100300, .val = 0x08 },
  205. { .rfmax = 106900, .val = 0x07 },
  206. { .rfmax = 113400, .val = 0x06 },
  207. { .rfmax = 119900, .val = 0x05 },
  208. { .rfmax = 126500, .val = 0x04 },
  209. { .rfmax = 133000, .val = 0x03 },
  210. { .rfmax = 139500, .val = 0x02 },
  211. { .rfmax = 146100, .val = 0x01 },
  212. { .rfmax = 152600, .val = 0x00 },
  213. { .rfmax = 154300, .val = 0x1f },
  214. { .rfmax = 156100, .val = 0x1e },
  215. { .rfmax = 157800, .val = 0x1d },
  216. { .rfmax = 159500, .val = 0x1c },
  217. { .rfmax = 161200, .val = 0x1b },
  218. { .rfmax = 163000, .val = 0x1a },
  219. { .rfmax = 164700, .val = 0x19 },
  220. { .rfmax = 170200, .val = 0x17 },
  221. { .rfmax = 175800, .val = 0x16 },
  222. { .rfmax = 181300, .val = 0x15 },
  223. { .rfmax = 186900, .val = 0x14 },
  224. { .rfmax = 192400, .val = 0x13 },
  225. { .rfmax = 198000, .val = 0x12 },
  226. { .rfmax = 203500, .val = 0x11 },
  227. { .rfmax = 216200, .val = 0x14 },
  228. { .rfmax = 228900, .val = 0x13 },
  229. { .rfmax = 241600, .val = 0x12 },
  230. { .rfmax = 254400, .val = 0x11 },
  231. { .rfmax = 267100, .val = 0x10 },
  232. { .rfmax = 279800, .val = 0x0f },
  233. { .rfmax = 292500, .val = 0x0e },
  234. { .rfmax = 305200, .val = 0x0d },
  235. { .rfmax = 317900, .val = 0x0c },
  236. { .rfmax = 330700, .val = 0x0b },
  237. { .rfmax = 343400, .val = 0x0a },
  238. { .rfmax = 356100, .val = 0x09 },
  239. { .rfmax = 368800, .val = 0x08 },
  240. { .rfmax = 381500, .val = 0x07 },
  241. { .rfmax = 394200, .val = 0x06 },
  242. { .rfmax = 406900, .val = 0x05 },
  243. { .rfmax = 419700, .val = 0x04 },
  244. { .rfmax = 432400, .val = 0x03 },
  245. { .rfmax = 445100, .val = 0x02 },
  246. { .rfmax = 457800, .val = 0x01 },
  247. { .rfmax = 476300, .val = 0x19 },
  248. { .rfmax = 494800, .val = 0x18 },
  249. { .rfmax = 513300, .val = 0x17 },
  250. { .rfmax = 531800, .val = 0x16 },
  251. { .rfmax = 550300, .val = 0x15 },
  252. { .rfmax = 568900, .val = 0x14 },
  253. { .rfmax = 587400, .val = 0x13 },
  254. { .rfmax = 605900, .val = 0x12 },
  255. { .rfmax = 624400, .val = 0x11 },
  256. { .rfmax = 642900, .val = 0x10 },
  257. { .rfmax = 661400, .val = 0x0f },
  258. { .rfmax = 679900, .val = 0x0e },
  259. { .rfmax = 698400, .val = 0x0d },
  260. { .rfmax = 716900, .val = 0x0c },
  261. { .rfmax = 735400, .val = 0x0b },
  262. { .rfmax = 753900, .val = 0x0a },
  263. { .rfmax = 772500, .val = 0x09 },
  264. { .rfmax = 791000, .val = 0x08 },
  265. { .rfmax = 809500, .val = 0x07 },
  266. { .rfmax = 828000, .val = 0x06 },
  267. { .rfmax = 846500, .val = 0x05 },
  268. { .rfmax = 865000, .val = 0x04 },
  269. { .rfmax = 0, .val = 0x00 }, /* end */
  270. };
  271. static struct tda18271_map tda18271_rf_cal[] = {
  272. { .rfmax = 41000, .val = 0x1e },
  273. { .rfmax = 43000, .val = 0x30 },
  274. { .rfmax = 45000, .val = 0x43 },
  275. { .rfmax = 46000, .val = 0x4d },
  276. { .rfmax = 47000, .val = 0x54 },
  277. { .rfmax = 47900, .val = 0x64 },
  278. { .rfmax = 49100, .val = 0x20 },
  279. { .rfmax = 50000, .val = 0x22 },
  280. { .rfmax = 51000, .val = 0x2a },
  281. { .rfmax = 53000, .val = 0x32 },
  282. { .rfmax = 55000, .val = 0x35 },
  283. { .rfmax = 56000, .val = 0x3c },
  284. { .rfmax = 57000, .val = 0x3f },
  285. { .rfmax = 58000, .val = 0x48 },
  286. { .rfmax = 59000, .val = 0x4d },
  287. { .rfmax = 60000, .val = 0x58 },
  288. { .rfmax = 61100, .val = 0x5f },
  289. { .rfmax = 0, .val = 0x00 }, /* end */
  290. };
  291. /*---------------------------------------------------------------------*/
  292. #define TDA18271_NUM_REGS 39
  293. #define TDA18271_ANALOG 0
  294. #define TDA18271_DIGITAL 1
  295. struct tda18271_priv {
  296. u8 i2c_addr;
  297. struct i2c_adapter *i2c_adap;
  298. unsigned char tda18271_regs[TDA18271_NUM_REGS];
  299. int mode;
  300. u32 frequency;
  301. u32 bandwidth;
  302. };
  303. /*---------------------------------------------------------------------*/
  304. static void tda18271_dump_regs(struct dvb_frontend *fe)
  305. {
  306. struct tda18271_priv *priv = fe->tuner_priv;
  307. unsigned char *regs = priv->tda18271_regs;
  308. dprintk(1, "=== TDA18271 REG DUMP ===\n");
  309. dprintk(1, "ID_BYTE = 0x%x\n", 0xff & regs[R_ID]);
  310. dprintk(1, "THERMO_BYTE = 0x%x\n", 0xff & regs[R_TM]);
  311. dprintk(1, "POWER_LEVEL_BYTE = 0x%x\n", 0xff & regs[R_PL]);
  312. dprintk(1, "EASY_PROG_BYTE_1 = 0x%x\n", 0xff & regs[R_EP1]);
  313. dprintk(1, "EASY_PROG_BYTE_2 = 0x%x\n", 0xff & regs[R_EP2]);
  314. dprintk(1, "EASY_PROG_BYTE_3 = 0x%x\n", 0xff & regs[R_EP3]);
  315. dprintk(1, "EASY_PROG_BYTE_4 = 0x%x\n", 0xff & regs[R_EP4]);
  316. dprintk(1, "EASY_PROG_BYTE_5 = 0x%x\n", 0xff & regs[R_EP5]);
  317. dprintk(1, "CAL_POST_DIV_BYTE = 0x%x\n", 0xff & regs[R_CPD]);
  318. dprintk(1, "CAL_DIV_BYTE_1 = 0x%x\n", 0xff & regs[R_CD1]);
  319. dprintk(1, "CAL_DIV_BYTE_2 = 0x%x\n", 0xff & regs[R_CD2]);
  320. dprintk(1, "CAL_DIV_BYTE_3 = 0x%x\n", 0xff & regs[R_CD3]);
  321. dprintk(1, "MAIN_POST_DIV_BYTE = 0x%x\n", 0xff & regs[R_MPD]);
  322. dprintk(1, "MAIN_DIV_BYTE_1 = 0x%x\n", 0xff & regs[R_MD1]);
  323. dprintk(1, "MAIN_DIV_BYTE_2 = 0x%x\n", 0xff & regs[R_MD2]);
  324. dprintk(1, "MAIN_DIV_BYTE_3 = 0x%x\n", 0xff & regs[R_MD3]);
  325. }
  326. static void tda18271_read_regs(struct dvb_frontend *fe)
  327. {
  328. struct tda18271_priv *priv = fe->tuner_priv;
  329. unsigned char *regs = priv->tda18271_regs;
  330. unsigned char buf = 0x00;
  331. int ret;
  332. struct i2c_msg msg[] = {
  333. { .addr = priv->i2c_addr, .flags = 0,
  334. .buf = &buf, .len = 1 },
  335. { .addr = priv->i2c_addr, .flags = I2C_M_RD,
  336. .buf = regs, .len = 16 }
  337. };
  338. if (fe->ops.i2c_gate_ctrl)
  339. fe->ops.i2c_gate_ctrl(fe, 1);
  340. /* read all registers */
  341. ret = i2c_transfer(priv->i2c_adap, msg, 2);
  342. if (fe->ops.i2c_gate_ctrl)
  343. fe->ops.i2c_gate_ctrl(fe, 0);
  344. if (ret != 2)
  345. printk("ERROR: %s: i2c_transfer returned: %d\n",
  346. __FUNCTION__, ret);
  347. if (debug > 1)
  348. tda18271_dump_regs(fe);
  349. }
  350. static void tda18271_write_regs(struct dvb_frontend *fe, int idx, int len)
  351. {
  352. struct tda18271_priv *priv = fe->tuner_priv;
  353. unsigned char *regs = priv->tda18271_regs;
  354. unsigned char buf[TDA18271_NUM_REGS+1];
  355. struct i2c_msg msg = { .addr = priv->i2c_addr, .flags = 0,
  356. .buf = buf, .len = len+1 };
  357. int i, ret;
  358. BUG_ON((len == 0) || (idx+len > sizeof(buf)));
  359. buf[0] = idx;
  360. for (i = 1; i <= len; i++) {
  361. buf[i] = regs[idx-1+i];
  362. }
  363. if (fe->ops.i2c_gate_ctrl)
  364. fe->ops.i2c_gate_ctrl(fe, 1);
  365. /* write registers */
  366. ret = i2c_transfer(priv->i2c_adap, &msg, 1);
  367. if (fe->ops.i2c_gate_ctrl)
  368. fe->ops.i2c_gate_ctrl(fe, 0);
  369. if (ret != 1)
  370. printk(KERN_WARNING "ERROR: %s: i2c_transfer returned: %d\n",
  371. __FUNCTION__, ret);
  372. }
  373. /*---------------------------------------------------------------------*/
  374. static void tda18271_init_regs(struct dvb_frontend *fe)
  375. {
  376. struct tda18271_priv *priv = fe->tuner_priv;
  377. unsigned char *regs = priv->tda18271_regs;
  378. tda18271_read_regs(fe);
  379. /* test IR_CAL_OK to see if we need init */
  380. if ((regs[R_EP1] & 0x08) != 0)
  381. return;
  382. printk(KERN_INFO "tda18271: initializing registers\n");
  383. /* initialize registers */
  384. regs[R_ID] = 0x83;
  385. regs[R_TM] = 0x08;
  386. regs[R_PL] = 0x80;
  387. regs[R_EP1] = 0xc6;
  388. regs[R_EP2] = 0xdf;
  389. regs[R_EP3] = 0x16;
  390. regs[R_EP4] = 0x60;
  391. regs[R_EP5] = 0x80;
  392. regs[R_CPD] = 0x80;
  393. regs[R_CD1] = 0x00;
  394. regs[R_CD2] = 0x00;
  395. regs[R_CD3] = 0x00;
  396. regs[R_MPD] = 0x00;
  397. regs[R_MD1] = 0x00;
  398. regs[R_MD2] = 0x00;
  399. regs[R_MD3] = 0x00;
  400. regs[R_EB1] = 0xff;
  401. regs[R_EB2] = 0x01;
  402. regs[R_EB3] = 0x84;
  403. regs[R_EB4] = 0x41;
  404. regs[R_EB5] = 0x01;
  405. regs[R_EB6] = 0x84;
  406. regs[R_EB7] = 0x40;
  407. regs[R_EB8] = 0x07;
  408. regs[R_EB9] = 0x00;
  409. regs[R_EB10] = 0x00;
  410. regs[R_EB11] = 0x96;
  411. regs[R_EB12] = 0x0f;
  412. regs[R_EB13] = 0xc1;
  413. regs[R_EB14] = 0x00;
  414. regs[R_EB15] = 0x8f;
  415. regs[R_EB16] = 0x00;
  416. regs[R_EB17] = 0x00;
  417. regs[R_EB18] = 0x00;
  418. regs[R_EB19] = 0x00;
  419. regs[R_EB20] = 0x20;
  420. regs[R_EB21] = 0x33;
  421. regs[R_EB22] = 0x48;
  422. regs[R_EB23] = 0xb0;
  423. tda18271_write_regs(fe, 0x00, TDA18271_NUM_REGS);
  424. /* setup AGC1 & AGC2 */
  425. regs[R_EB17] = 0x00;
  426. tda18271_write_regs(fe, R_EB17, 1);
  427. regs[R_EB17] = 0x03;
  428. tda18271_write_regs(fe, R_EB17, 1);
  429. regs[R_EB17] = 0x43;
  430. tda18271_write_regs(fe, R_EB17, 1);
  431. regs[R_EB17] = 0x4c;
  432. tda18271_write_regs(fe, R_EB17, 1);
  433. regs[R_EB20] = 0xa0;
  434. tda18271_write_regs(fe, R_EB20, 1);
  435. regs[R_EB20] = 0xa7;
  436. tda18271_write_regs(fe, R_EB20, 1);
  437. regs[R_EB20] = 0xe7;
  438. tda18271_write_regs(fe, R_EB20, 1);
  439. regs[R_EB20] = 0xec;
  440. tda18271_write_regs(fe, R_EB20, 1);
  441. /* image rejection calibration */
  442. /* low-band */
  443. regs[R_EP3] = 0x1f;
  444. regs[R_EP4] = 0x66;
  445. regs[R_EP5] = 0x81;
  446. regs[R_CPD] = 0xcc;
  447. regs[R_CD1] = 0x6c;
  448. regs[R_CD2] = 0x00;
  449. regs[R_CD3] = 0x00;
  450. regs[R_MPD] = 0xcd;
  451. regs[R_MD1] = 0x77;
  452. regs[R_MD2] = 0x08;
  453. regs[R_MD3] = 0x00;
  454. tda18271_write_regs(fe, R_EP3, 11);
  455. msleep(5); /* pll locking */
  456. regs[R_EP1] = 0xc6;
  457. tda18271_write_regs(fe, R_EP1, 1);
  458. msleep(5); /* wanted low measurement */
  459. regs[R_EP3] = 0x1f;
  460. regs[R_EP4] = 0x66;
  461. regs[R_EP5] = 0x85;
  462. regs[R_CPD] = 0xcb;
  463. regs[R_CD1] = 0x66;
  464. regs[R_CD2] = 0x70;
  465. regs[R_CD3] = 0x00;
  466. tda18271_write_regs(fe, R_EP3, 7);
  467. msleep(5); /* pll locking */
  468. regs[R_EP2] = 0xdf;
  469. tda18271_write_regs(fe, R_EP2, 1);
  470. msleep(30); /* image low optimization completion */
  471. /* mid-band */
  472. regs[R_EP3] = 0x1f;
  473. regs[R_EP4] = 0x66;
  474. regs[R_EP5] = 0x82;
  475. regs[R_CPD] = 0xa8;
  476. regs[R_CD1] = 0x66;
  477. regs[R_CD2] = 0x00;
  478. regs[R_CD3] = 0x00;
  479. regs[R_MPD] = 0xa9;
  480. regs[R_MD1] = 0x73;
  481. regs[R_MD2] = 0x1a;
  482. regs[R_MD3] = 0x00;
  483. tda18271_write_regs(fe, R_EP3, 11);
  484. msleep(5); /* pll locking */
  485. regs[R_EP1] = 0xc6;
  486. tda18271_write_regs(fe, R_EP1, 1);
  487. msleep(5); /* wanted mid measurement */
  488. regs[R_EP3] = 0x1f;
  489. regs[R_EP4] = 0x66;
  490. regs[R_EP5] = 0x86;
  491. regs[R_CPD] = 0xa8;
  492. regs[R_CD1] = 0x66;
  493. regs[R_CD2] = 0xa0;
  494. regs[R_CD3] = 0x00;
  495. tda18271_write_regs(fe, R_EP3, 7);
  496. msleep(5); /* pll locking */
  497. regs[R_EP2] = 0xdf;
  498. tda18271_write_regs(fe, R_EP2, 1);
  499. msleep(30); /* image mid optimization completion */
  500. /* high-band */
  501. regs[R_EP3] = 0x1f;
  502. regs[R_EP4] = 0x66;
  503. regs[R_EP5] = 0x83;
  504. regs[R_CPD] = 0x98;
  505. regs[R_CD1] = 0x65;
  506. regs[R_CD2] = 0x00;
  507. regs[R_CD3] = 0x00;
  508. regs[R_MPD] = 0x99;
  509. regs[R_MD1] = 0x71;
  510. regs[R_MD2] = 0xcd;
  511. regs[R_MD3] = 0x00;
  512. tda18271_write_regs(fe, R_EP3, 11);
  513. msleep(5); /* pll locking */
  514. regs[R_EP1] = 0xc6;
  515. tda18271_write_regs(fe, R_EP1, 1);
  516. msleep(5); /* wanted high measurement */
  517. regs[R_EP3] = 0x1f;
  518. regs[R_EP4] = 0x66;
  519. regs[R_EP5] = 0x87;
  520. regs[R_CPD] = 0x98;
  521. regs[R_CD1] = 0x65;
  522. regs[R_CD2] = 0x50;
  523. regs[R_CD3] = 0x00;
  524. tda18271_write_regs(fe, R_EP3, 7);
  525. msleep(5); /* pll locking */
  526. regs[R_EP2] = 0xdf;
  527. tda18271_write_regs(fe, R_EP2, 1);
  528. msleep(30); /* image high optimization completion */
  529. regs[R_EP4] = 0x64;
  530. tda18271_write_regs(fe, R_EP4, 1);
  531. regs[R_EP1] = 0xc6;
  532. tda18271_write_regs(fe, R_EP1, 1);
  533. }
  534. static int tda18271_tune(struct dvb_frontend *fe,
  535. u32 ifc, u32 freq, u32 bw, u8 std)
  536. {
  537. struct tda18271_priv *priv = fe->tuner_priv;
  538. unsigned char *regs = priv->tda18271_regs;
  539. u32 div, N = 0;
  540. int i;
  541. dprintk(1, "freq = %d, ifc = %d\n", freq, ifc);
  542. tda18271_init_regs(fe);
  543. /* RF tracking filter calibration */
  544. /* calculate BP_Filter */
  545. i = 0;
  546. while ((tda18271_bp_filter[i].rfmax * 1000) < freq) {
  547. if (tda18271_bp_filter[i + 1].rfmax == 0)
  548. break;
  549. i++;
  550. }
  551. dprintk(2, "bp filter = 0x%x, i = %d\n", tda18271_bp_filter[i].val, i);
  552. regs[R_EP1] &= ~0x07; /* clear bp filter bits */
  553. regs[R_EP1] |= tda18271_bp_filter[i].val;
  554. tda18271_write_regs(fe, R_EP1, 1);
  555. regs[R_EB4] &= 0x07;
  556. regs[R_EB4] |= 0x60;
  557. tda18271_write_regs(fe, R_EB4, 1);
  558. regs[R_EB7] = 0x60;
  559. tda18271_write_regs(fe, R_EB7, 1);
  560. regs[R_EB14] = 0x00;
  561. tda18271_write_regs(fe, R_EB14, 1);
  562. regs[R_EB20] = 0xcc;
  563. tda18271_write_regs(fe, R_EB20, 1);
  564. /* set CAL mode to RF tracking filter calibration */
  565. regs[R_EB4] |= 0x03;
  566. /* calculate CAL PLL */
  567. switch (priv->mode) {
  568. case TDA18271_ANALOG:
  569. N = freq - 1250000;
  570. break;
  571. case TDA18271_DIGITAL:
  572. N = freq + bw / 2;
  573. break;
  574. }
  575. i = 0;
  576. while ((tda18271_cal_pll[i].lomax * 1000) < N) {
  577. if (tda18271_cal_pll[i + 1].lomax == 0)
  578. break;
  579. i++;
  580. }
  581. dprintk(2, "cal pll, pd = 0x%x, d = 0x%x, i = %d\n",
  582. tda18271_cal_pll[i].pd, tda18271_cal_pll[i].d, i);
  583. regs[R_CPD] = tda18271_cal_pll[i].pd;
  584. div = ((tda18271_cal_pll[i].d * (N / 1000)) << 7) / 125;
  585. regs[R_CD1] = 0xff & (div >> 16);
  586. regs[R_CD2] = 0xff & (div >> 8);
  587. regs[R_CD3] = 0xff & div;
  588. /* calculate MAIN PLL */
  589. switch (priv->mode) {
  590. case TDA18271_ANALOG:
  591. N = freq - 250000;
  592. break;
  593. case TDA18271_DIGITAL:
  594. N = freq + bw / 2 + 1000000;
  595. break;
  596. }
  597. i = 0;
  598. while ((tda18271_main_pll[i].lomax * 1000) < N) {
  599. if (tda18271_main_pll[i + 1].lomax == 0)
  600. break;
  601. i++;
  602. }
  603. dprintk(2, "main pll, pd = 0x%x, d = 0x%x, i = %d\n",
  604. tda18271_main_pll[i].pd, tda18271_main_pll[i].d, i);
  605. regs[R_MPD] = (0x7f & tda18271_main_pll[i].pd);
  606. switch (priv->mode) {
  607. case TDA18271_ANALOG:
  608. regs[R_MPD] &= ~0x08;
  609. break;
  610. case TDA18271_DIGITAL:
  611. regs[R_MPD] |= 0x08;
  612. break;
  613. }
  614. div = ((tda18271_main_pll[i].d * (N / 1000)) << 7) / 125;
  615. regs[R_MD1] = 0xff & (div >> 16);
  616. regs[R_MD2] = 0xff & (div >> 8);
  617. regs[R_MD3] = 0xff & div;
  618. tda18271_write_regs(fe, R_EP3, 11);
  619. msleep(5); /* RF tracking filter calibration initialization */
  620. /* search for K,M,CO for RF Calibration */
  621. i = 0;
  622. while ((tda18271_km[i].rfmax * 1000) < freq) {
  623. if (tda18271_km[i + 1].rfmax == 0)
  624. break;
  625. i++;
  626. }
  627. dprintk(2, "km = 0x%x, i = %d\n", tda18271_km[i].val, i);
  628. regs[R_EB13] &= 0x83;
  629. regs[R_EB13] |= tda18271_km[i].val;
  630. tda18271_write_regs(fe, R_EB13, 1);
  631. /* search for RF_BAND */
  632. i = 0;
  633. while ((tda18271_rf_band[i].rfmax * 1000) < freq) {
  634. if (tda18271_rf_band[i + 1].rfmax == 0)
  635. break;
  636. i++;
  637. }
  638. dprintk(2, "rf band = 0x%x, i = %d\n", tda18271_rf_band[i].val, i);
  639. regs[R_EP2] &= ~0xe0; /* clear rf band bits */
  640. regs[R_EP2] |= (tda18271_rf_band[i].val << 5);
  641. /* search for Gain_Taper */
  642. i = 0;
  643. while ((tda18271_gain_taper[i].rfmax * 1000) < freq) {
  644. if (tda18271_gain_taper[i + 1].rfmax == 0)
  645. break;
  646. i++;
  647. }
  648. dprintk(2, "gain taper = 0x%x, i = %d\n",
  649. tda18271_gain_taper[i].val, i);
  650. regs[R_EP2] &= ~0x1f; /* clear gain taper bits */
  651. regs[R_EP2] |= tda18271_gain_taper[i].val;
  652. tda18271_write_regs(fe, R_EP2, 1);
  653. tda18271_write_regs(fe, R_EP1, 1);
  654. tda18271_write_regs(fe, R_EP2, 1);
  655. tda18271_write_regs(fe, R_EP1, 1);
  656. regs[R_EB4] &= 0x07;
  657. regs[R_EB4] |= 0x40;
  658. tda18271_write_regs(fe, R_EB4, 1);
  659. regs[R_EB7] = 0x40;
  660. tda18271_write_regs(fe, R_EB7, 1);
  661. msleep(10);
  662. regs[R_EB20] = 0xec;
  663. tda18271_write_regs(fe, R_EB20, 1);
  664. msleep(60); /* RF tracking filter calibration completion */
  665. regs[R_EP4] &= ~0x03; /* set cal mode to normal */
  666. tda18271_write_regs(fe, R_EP4, 1);
  667. tda18271_write_regs(fe, R_EP1, 1);
  668. /* RF tracking filer correction for VHF_Low band */
  669. i = 0;
  670. while ((tda18271_rf_cal[i].rfmax * 1000) < freq) {
  671. if (tda18271_rf_cal[i].rfmax == 0)
  672. break;
  673. i++;
  674. }
  675. dprintk(2, "rf cal = 0x%x, i = %d\n", tda18271_rf_cal[i].val, i);
  676. /* VHF_Low band only */
  677. if (tda18271_rf_cal[i].rfmax != 0) {
  678. regs[R_EB14] = tda18271_rf_cal[i].val;
  679. tda18271_write_regs(fe, R_EB14, 1);
  680. }
  681. /* Channel Configuration */
  682. switch (priv->mode) {
  683. case TDA18271_ANALOG:
  684. regs[R_EB22] = 0x2c;
  685. break;
  686. case TDA18271_DIGITAL:
  687. regs[R_EB22] = 0x37;
  688. break;
  689. }
  690. tda18271_write_regs(fe, R_EB22, 1);
  691. regs[R_EP1] |= 0x40; /* set dis power level on */
  692. /* set standard */
  693. regs[R_EP3] &= ~0x1f; /* clear std bits */
  694. /* see table 22 */
  695. regs[R_EP3] |= std;
  696. /* TO DO: *
  697. * ================ *
  698. * FM radio, 0x18 *
  699. * ATSC 6MHz, 0x1c *
  700. * DVB-T 6MHz, 0x1c *
  701. * DVB-T 7MHz, 0x1d *
  702. * DVB-T 8MHz, 0x1e *
  703. * QAM 6MHz, 0x1d *
  704. * QAM 8MHz, 0x1f */
  705. regs[R_EP4] &= ~0x03; /* set cal mode to normal */
  706. regs[R_EP4] &= ~0x1c; /* clear if level bits */
  707. switch (priv->mode) {
  708. case TDA18271_ANALOG:
  709. regs[R_MPD] &= ~0x80; /* IF notch = 0 */
  710. break;
  711. case TDA18271_DIGITAL:
  712. regs[R_EP4] |= 0x04;
  713. regs[R_MPD] |= 0x80;
  714. break;
  715. }
  716. regs[R_EP4] &= ~0x80; /* turn this bit on only for fm */
  717. /* FIXME: image rejection validity EP5[2:0] */
  718. /* calculate MAIN PLL */
  719. N = freq + ifc;
  720. i = 0;
  721. while ((tda18271_main_pll[i].lomax * 1000) < N) {
  722. if (tda18271_main_pll[i + 1].lomax == 0)
  723. break;
  724. i++;
  725. }
  726. dprintk(2, "main pll, pd = 0x%x, d = 0x%x, i = %d\n",
  727. tda18271_main_pll[i].pd, tda18271_main_pll[i].d, i);
  728. regs[R_MPD] = (0x7f & tda18271_main_pll[i].pd);
  729. switch (priv->mode) {
  730. case TDA18271_ANALOG:
  731. regs[R_MPD] &= ~0x08;
  732. break;
  733. case TDA18271_DIGITAL:
  734. regs[R_MPD] |= 0x08;
  735. break;
  736. }
  737. div = ((tda18271_main_pll[i].d * (N / 1000)) << 7) / 125;
  738. regs[R_MD1] = 0xff & (div >> 16);
  739. regs[R_MD2] = 0xff & (div >> 8);
  740. regs[R_MD3] = 0xff & div;
  741. tda18271_write_regs(fe, R_TM, 15);
  742. msleep(5);
  743. return 0;
  744. }
  745. /* ------------------------------------------------------------------ */
  746. static int tda18271_set_params(struct dvb_frontend *fe,
  747. struct dvb_frontend_parameters *params)
  748. {
  749. struct tda18271_priv *priv = fe->tuner_priv;
  750. u8 std;
  751. u32 bw, sgIF = 0;
  752. u32 freq = params->frequency;
  753. priv->mode = TDA18271_DIGITAL;
  754. /* see table 22 */
  755. if (fe->ops.info.type == FE_ATSC) {
  756. switch (params->u.vsb.modulation) {
  757. case VSB_8:
  758. case VSB_16:
  759. std = 0x1b; /* device-specific (spec says 0x1c) */
  760. sgIF = 5380000;
  761. break;
  762. case QAM_64:
  763. case QAM_256:
  764. std = 0x18; /* device-specific (spec says 0x1d) */
  765. sgIF = 4000000;
  766. break;
  767. default:
  768. printk(KERN_WARNING "%s: modulation not set!\n",
  769. __FUNCTION__);
  770. return -EINVAL;
  771. }
  772. freq += 1750000; /* Adjust to center (+1.75MHZ) */
  773. bw = 6000000;
  774. } else if (fe->ops.info.type == FE_OFDM) {
  775. switch (params->u.ofdm.bandwidth) {
  776. case BANDWIDTH_6_MHZ:
  777. std = 0x1c;
  778. bw = 6000000;
  779. break;
  780. case BANDWIDTH_7_MHZ:
  781. std = 0x1d;
  782. bw = 7000000;
  783. break;
  784. case BANDWIDTH_8_MHZ:
  785. std = 0x1e;
  786. bw = 8000000;
  787. break;
  788. default:
  789. printk(KERN_WARNING "%s: bandwidth not set!\n",
  790. __FUNCTION__);
  791. return -EINVAL;
  792. }
  793. } else {
  794. printk(KERN_WARNING "%s: modulation type not supported!\n",
  795. __FUNCTION__);
  796. return -EINVAL;
  797. }
  798. return tda18271_tune(fe, sgIF, freq, bw, std);
  799. }
  800. static int tda18271_set_analog_params(struct dvb_frontend *fe,
  801. struct analog_parameters *params)
  802. {
  803. struct tda18271_priv *priv = fe->tuner_priv;
  804. u8 std;
  805. unsigned int sgIF;
  806. char *mode;
  807. priv->mode = TDA18271_ANALOG;
  808. /* see table 22 */
  809. if (params->std & V4L2_STD_MN) {
  810. std = 0x0d;
  811. sgIF = 92;
  812. mode = "MN";
  813. } else if (params->std & V4L2_STD_B) {
  814. std = 0x0e;
  815. sgIF = 108;
  816. mode = "B";
  817. } else if (params->std & V4L2_STD_GH) {
  818. std = 0x0f;
  819. sgIF = 124;
  820. mode = "GH";
  821. } else if (params->std & V4L2_STD_PAL_I) {
  822. std = 0x0f;
  823. sgIF = 124;
  824. mode = "I";
  825. } else if (params->std & V4L2_STD_DK) {
  826. std = 0x0f;
  827. sgIF = 124;
  828. mode = "DK";
  829. } else if (params->std & V4L2_STD_SECAM_L) {
  830. std = 0x0f;
  831. sgIF = 124;
  832. mode = "L";
  833. } else if (params->std & V4L2_STD_SECAM_LC) {
  834. std = 0x0f;
  835. sgIF = 20;
  836. mode = "LC";
  837. } else {
  838. std = 0x0f;
  839. sgIF = 124;
  840. mode = "xx";
  841. }
  842. if (params->mode == V4L2_TUNER_RADIO)
  843. sgIF = 88; /* if frequency is 5.5 MHz */
  844. dprintk(1, "setting tda18271 to system %s\n", mode);
  845. return tda18271_tune(fe, sgIF * 62500, params->frequency * 62500,
  846. 0, std);
  847. }
  848. static int tda18271_release(struct dvb_frontend *fe)
  849. {
  850. kfree(fe->tuner_priv);
  851. fe->tuner_priv = NULL;
  852. return 0;
  853. }
  854. static int tda18271_get_frequency(struct dvb_frontend *fe, u32 *frequency)
  855. {
  856. struct tda18271_priv *priv = fe->tuner_priv;
  857. *frequency = priv->frequency;
  858. return 0;
  859. }
  860. static int tda18271_get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth)
  861. {
  862. struct tda18271_priv *priv = fe->tuner_priv;
  863. *bandwidth = priv->bandwidth;
  864. return 0;
  865. }
  866. static struct dvb_tuner_ops tda18271_tuner_ops = {
  867. .info = {
  868. .name = "NXP TDA18271HD",
  869. .frequency_min = 45000000,
  870. .frequency_max = 864000000,
  871. .frequency_step = 62500
  872. },
  873. .set_params = tda18271_set_params,
  874. .set_analog_params = tda18271_set_analog_params,
  875. .release = tda18271_release,
  876. .get_frequency = tda18271_get_frequency,
  877. .get_bandwidth = tda18271_get_bandwidth,
  878. };
  879. struct dvb_frontend *tda18271_attach(struct dvb_frontend *fe, u8 addr,
  880. struct i2c_adapter *i2c)
  881. {
  882. struct tda18271_priv *priv = NULL;
  883. dprintk(1, "@ 0x%x\n", addr);
  884. priv = kzalloc(sizeof(struct tda18271_priv), GFP_KERNEL);
  885. if (priv == NULL)
  886. return NULL;
  887. priv->i2c_addr = addr;
  888. priv->i2c_adap = i2c;
  889. memcpy(&fe->ops.tuner_ops, &tda18271_tuner_ops,
  890. sizeof(struct dvb_tuner_ops));
  891. fe->tuner_priv = priv;
  892. return fe;
  893. }
  894. EXPORT_SYMBOL_GPL(tda18271_attach);
  895. MODULE_DESCRIPTION("NXP TDA18271HD analog / digital tuner driver");
  896. MODULE_AUTHOR("Michael Krufky <mkrufky@linuxtv.org>");
  897. MODULE_LICENSE("GPL");
  898. /*
  899. * Overrides for Emacs so that we follow Linus's tabbing style.
  900. * ---------------------------------------------------------------------------
  901. * Local variables:
  902. * c-basic-offset: 8
  903. * End:
  904. */