db8500-prcmu.c 77 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029
  1. /*
  2. * Copyright (C) STMicroelectronics 2009
  3. * Copyright (C) ST-Ericsson SA 2010
  4. *
  5. * License Terms: GNU General Public License v2
  6. * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
  7. * Author: Sundar Iyer <sundar.iyer@stericsson.com>
  8. * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
  9. *
  10. * U8500 PRCM Unit interface driver
  11. *
  12. */
  13. #include <linux/module.h>
  14. #include <linux/kernel.h>
  15. #include <linux/delay.h>
  16. #include <linux/errno.h>
  17. #include <linux/err.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/io.h>
  20. #include <linux/slab.h>
  21. #include <linux/mutex.h>
  22. #include <linux/completion.h>
  23. #include <linux/irq.h>
  24. #include <linux/jiffies.h>
  25. #include <linux/bitops.h>
  26. #include <linux/fs.h>
  27. #include <linux/platform_device.h>
  28. #include <linux/uaccess.h>
  29. #include <linux/mfd/core.h>
  30. #include <linux/mfd/dbx500-prcmu.h>
  31. #include <linux/regulator/db8500-prcmu.h>
  32. #include <linux/regulator/machine.h>
  33. #include <mach/hardware.h>
  34. #include <mach/irqs.h>
  35. #include <mach/db8500-regs.h>
  36. #include <mach/id.h>
  37. #include "dbx500-prcmu-regs.h"
  38. /* Offset for the firmware version within the TCPM */
  39. #define PRCMU_FW_VERSION_OFFSET 0xA4
  40. /* Index of different voltages to be used when accessing AVSData */
  41. #define PRCM_AVS_BASE 0x2FC
  42. #define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
  43. #define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
  44. #define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
  45. #define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
  46. #define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
  47. #define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
  48. #define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
  49. #define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
  50. #define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
  51. #define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
  52. #define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
  53. #define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
  54. #define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
  55. #define PRCM_AVS_VOLTAGE 0
  56. #define PRCM_AVS_VOLTAGE_MASK 0x3f
  57. #define PRCM_AVS_ISSLOWSTARTUP 6
  58. #define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
  59. #define PRCM_AVS_ISMODEENABLE 7
  60. #define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
  61. #define PRCM_BOOT_STATUS 0xFFF
  62. #define PRCM_ROMCODE_A2P 0xFFE
  63. #define PRCM_ROMCODE_P2A 0xFFD
  64. #define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
  65. #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
  66. #define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
  67. #define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
  68. #define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
  69. #define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
  70. #define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
  71. #define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
  72. #define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
  73. #define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
  74. /* Req Mailboxes */
  75. #define PRCM_REQ_MB0 0xFDC /* 12 bytes */
  76. #define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
  77. #define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
  78. #define PRCM_REQ_MB3 0xE4C /* 372 bytes */
  79. #define PRCM_REQ_MB4 0xE48 /* 4 bytes */
  80. #define PRCM_REQ_MB5 0xE44 /* 4 bytes */
  81. /* Ack Mailboxes */
  82. #define PRCM_ACK_MB0 0xE08 /* 52 bytes */
  83. #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
  84. #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
  85. #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
  86. #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
  87. #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
  88. /* Mailbox 0 headers */
  89. #define MB0H_POWER_STATE_TRANS 0
  90. #define MB0H_CONFIG_WAKEUPS_EXE 1
  91. #define MB0H_READ_WAKEUP_ACK 3
  92. #define MB0H_CONFIG_WAKEUPS_SLEEP 4
  93. #define MB0H_WAKEUP_EXE 2
  94. #define MB0H_WAKEUP_SLEEP 5
  95. /* Mailbox 0 REQs */
  96. #define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
  97. #define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
  98. #define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
  99. #define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
  100. #define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
  101. #define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
  102. /* Mailbox 0 ACKs */
  103. #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
  104. #define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
  105. #define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
  106. #define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
  107. #define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
  108. #define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
  109. #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
  110. /* Mailbox 1 headers */
  111. #define MB1H_ARM_APE_OPP 0x0
  112. #define MB1H_RESET_MODEM 0x2
  113. #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
  114. #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
  115. #define MB1H_RELEASE_USB_WAKEUP 0x5
  116. #define MB1H_PLL_ON_OFF 0x6
  117. /* Mailbox 1 Requests */
  118. #define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
  119. #define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
  120. #define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
  121. #define PLL_SOC0_OFF 0x1
  122. #define PLL_SOC0_ON 0x2
  123. #define PLL_SOC1_OFF 0x4
  124. #define PLL_SOC1_ON 0x8
  125. /* Mailbox 1 ACKs */
  126. #define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
  127. #define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
  128. #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
  129. #define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
  130. /* Mailbox 2 headers */
  131. #define MB2H_DPS 0x0
  132. #define MB2H_AUTO_PWR 0x1
  133. /* Mailbox 2 REQs */
  134. #define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
  135. #define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
  136. #define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
  137. #define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
  138. #define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
  139. #define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
  140. #define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
  141. #define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
  142. #define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
  143. #define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
  144. /* Mailbox 2 ACKs */
  145. #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
  146. #define HWACC_PWR_ST_OK 0xFE
  147. /* Mailbox 3 headers */
  148. #define MB3H_ANC 0x0
  149. #define MB3H_SIDETONE 0x1
  150. #define MB3H_SYSCLK 0xE
  151. /* Mailbox 3 Requests */
  152. #define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
  153. #define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
  154. #define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
  155. #define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
  156. #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
  157. #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
  158. #define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
  159. /* Mailbox 4 headers */
  160. #define MB4H_DDR_INIT 0x0
  161. #define MB4H_MEM_ST 0x1
  162. #define MB4H_HOTDOG 0x12
  163. #define MB4H_HOTMON 0x13
  164. #define MB4H_HOT_PERIOD 0x14
  165. #define MB4H_A9WDOG_CONF 0x16
  166. #define MB4H_A9WDOG_EN 0x17
  167. #define MB4H_A9WDOG_DIS 0x18
  168. #define MB4H_A9WDOG_LOAD 0x19
  169. #define MB4H_A9WDOG_KICK 0x20
  170. /* Mailbox 4 Requests */
  171. #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
  172. #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
  173. #define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
  174. #define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
  175. #define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
  176. #define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
  177. #define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
  178. #define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
  179. #define HOTMON_CONFIG_LOW BIT(0)
  180. #define HOTMON_CONFIG_HIGH BIT(1)
  181. #define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
  182. #define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
  183. #define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
  184. #define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
  185. #define A9WDOG_AUTO_OFF_EN BIT(7)
  186. #define A9WDOG_AUTO_OFF_DIS 0
  187. #define A9WDOG_ID_MASK 0xf
  188. /* Mailbox 5 Requests */
  189. #define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
  190. #define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
  191. #define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
  192. #define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
  193. #define PRCMU_I2C_WRITE(slave) \
  194. (((slave) << 1) | (cpu_is_u8500v2() ? BIT(6) : 0))
  195. #define PRCMU_I2C_READ(slave) \
  196. (((slave) << 1) | BIT(0) | (cpu_is_u8500v2() ? BIT(6) : 0))
  197. #define PRCMU_I2C_STOP_EN BIT(3)
  198. /* Mailbox 5 ACKs */
  199. #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
  200. #define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
  201. #define I2C_WR_OK 0x1
  202. #define I2C_RD_OK 0x2
  203. #define NUM_MB 8
  204. #define MBOX_BIT BIT
  205. #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
  206. /*
  207. * Wakeups/IRQs
  208. */
  209. #define WAKEUP_BIT_RTC BIT(0)
  210. #define WAKEUP_BIT_RTT0 BIT(1)
  211. #define WAKEUP_BIT_RTT1 BIT(2)
  212. #define WAKEUP_BIT_HSI0 BIT(3)
  213. #define WAKEUP_BIT_HSI1 BIT(4)
  214. #define WAKEUP_BIT_CA_WAKE BIT(5)
  215. #define WAKEUP_BIT_USB BIT(6)
  216. #define WAKEUP_BIT_ABB BIT(7)
  217. #define WAKEUP_BIT_ABB_FIFO BIT(8)
  218. #define WAKEUP_BIT_SYSCLK_OK BIT(9)
  219. #define WAKEUP_BIT_CA_SLEEP BIT(10)
  220. #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
  221. #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
  222. #define WAKEUP_BIT_ANC_OK BIT(13)
  223. #define WAKEUP_BIT_SW_ERROR BIT(14)
  224. #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
  225. #define WAKEUP_BIT_ARM BIT(17)
  226. #define WAKEUP_BIT_HOTMON_LOW BIT(18)
  227. #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
  228. #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
  229. #define WAKEUP_BIT_GPIO0 BIT(23)
  230. #define WAKEUP_BIT_GPIO1 BIT(24)
  231. #define WAKEUP_BIT_GPIO2 BIT(25)
  232. #define WAKEUP_BIT_GPIO3 BIT(26)
  233. #define WAKEUP_BIT_GPIO4 BIT(27)
  234. #define WAKEUP_BIT_GPIO5 BIT(28)
  235. #define WAKEUP_BIT_GPIO6 BIT(29)
  236. #define WAKEUP_BIT_GPIO7 BIT(30)
  237. #define WAKEUP_BIT_GPIO8 BIT(31)
  238. static struct {
  239. bool valid;
  240. struct prcmu_fw_version version;
  241. } fw_info;
  242. /*
  243. * This vector maps irq numbers to the bits in the bit field used in
  244. * communication with the PRCMU firmware.
  245. *
  246. * The reason for having this is to keep the irq numbers contiguous even though
  247. * the bits in the bit field are not. (The bits also have a tendency to move
  248. * around, to further complicate matters.)
  249. */
  250. #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name) - IRQ_PRCMU_BASE)
  251. #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
  252. static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
  253. IRQ_ENTRY(RTC),
  254. IRQ_ENTRY(RTT0),
  255. IRQ_ENTRY(RTT1),
  256. IRQ_ENTRY(HSI0),
  257. IRQ_ENTRY(HSI1),
  258. IRQ_ENTRY(CA_WAKE),
  259. IRQ_ENTRY(USB),
  260. IRQ_ENTRY(ABB),
  261. IRQ_ENTRY(ABB_FIFO),
  262. IRQ_ENTRY(CA_SLEEP),
  263. IRQ_ENTRY(ARM),
  264. IRQ_ENTRY(HOTMON_LOW),
  265. IRQ_ENTRY(HOTMON_HIGH),
  266. IRQ_ENTRY(MODEM_SW_RESET_REQ),
  267. IRQ_ENTRY(GPIO0),
  268. IRQ_ENTRY(GPIO1),
  269. IRQ_ENTRY(GPIO2),
  270. IRQ_ENTRY(GPIO3),
  271. IRQ_ENTRY(GPIO4),
  272. IRQ_ENTRY(GPIO5),
  273. IRQ_ENTRY(GPIO6),
  274. IRQ_ENTRY(GPIO7),
  275. IRQ_ENTRY(GPIO8)
  276. };
  277. #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
  278. #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
  279. static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
  280. WAKEUP_ENTRY(RTC),
  281. WAKEUP_ENTRY(RTT0),
  282. WAKEUP_ENTRY(RTT1),
  283. WAKEUP_ENTRY(HSI0),
  284. WAKEUP_ENTRY(HSI1),
  285. WAKEUP_ENTRY(USB),
  286. WAKEUP_ENTRY(ABB),
  287. WAKEUP_ENTRY(ABB_FIFO),
  288. WAKEUP_ENTRY(ARM)
  289. };
  290. /*
  291. * mb0_transfer - state needed for mailbox 0 communication.
  292. * @lock: The transaction lock.
  293. * @dbb_events_lock: A lock used to handle concurrent access to (parts of)
  294. * the request data.
  295. * @mask_work: Work structure used for (un)masking wakeup interrupts.
  296. * @req: Request data that need to persist between requests.
  297. */
  298. static struct {
  299. spinlock_t lock;
  300. spinlock_t dbb_irqs_lock;
  301. struct work_struct mask_work;
  302. struct mutex ac_wake_lock;
  303. struct completion ac_wake_work;
  304. struct {
  305. u32 dbb_irqs;
  306. u32 dbb_wakeups;
  307. u32 abb_events;
  308. } req;
  309. } mb0_transfer;
  310. /*
  311. * mb1_transfer - state needed for mailbox 1 communication.
  312. * @lock: The transaction lock.
  313. * @work: The transaction completion structure.
  314. * @ape_opp: The current APE OPP.
  315. * @ack: Reply ("acknowledge") data.
  316. */
  317. static struct {
  318. struct mutex lock;
  319. struct completion work;
  320. u8 ape_opp;
  321. struct {
  322. u8 header;
  323. u8 arm_opp;
  324. u8 ape_opp;
  325. u8 ape_voltage_status;
  326. } ack;
  327. } mb1_transfer;
  328. /*
  329. * mb2_transfer - state needed for mailbox 2 communication.
  330. * @lock: The transaction lock.
  331. * @work: The transaction completion structure.
  332. * @auto_pm_lock: The autonomous power management configuration lock.
  333. * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
  334. * @req: Request data that need to persist between requests.
  335. * @ack: Reply ("acknowledge") data.
  336. */
  337. static struct {
  338. struct mutex lock;
  339. struct completion work;
  340. spinlock_t auto_pm_lock;
  341. bool auto_pm_enabled;
  342. struct {
  343. u8 status;
  344. } ack;
  345. } mb2_transfer;
  346. /*
  347. * mb3_transfer - state needed for mailbox 3 communication.
  348. * @lock: The request lock.
  349. * @sysclk_lock: A lock used to handle concurrent sysclk requests.
  350. * @sysclk_work: Work structure used for sysclk requests.
  351. */
  352. static struct {
  353. spinlock_t lock;
  354. struct mutex sysclk_lock;
  355. struct completion sysclk_work;
  356. } mb3_transfer;
  357. /*
  358. * mb4_transfer - state needed for mailbox 4 communication.
  359. * @lock: The transaction lock.
  360. * @work: The transaction completion structure.
  361. */
  362. static struct {
  363. struct mutex lock;
  364. struct completion work;
  365. } mb4_transfer;
  366. /*
  367. * mb5_transfer - state needed for mailbox 5 communication.
  368. * @lock: The transaction lock.
  369. * @work: The transaction completion structure.
  370. * @ack: Reply ("acknowledge") data.
  371. */
  372. static struct {
  373. struct mutex lock;
  374. struct completion work;
  375. struct {
  376. u8 status;
  377. u8 value;
  378. } ack;
  379. } mb5_transfer;
  380. static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
  381. /* Spinlocks */
  382. static DEFINE_SPINLOCK(clkout_lock);
  383. static DEFINE_SPINLOCK(gpiocr_lock);
  384. /* Global var to runtime determine TCDM base for v2 or v1 */
  385. static __iomem void *tcdm_base;
  386. struct clk_mgt {
  387. void __iomem *reg;
  388. u32 pllsw;
  389. int branch;
  390. bool clk38div;
  391. };
  392. enum {
  393. PLL_RAW,
  394. PLL_FIX,
  395. PLL_DIV
  396. };
  397. static DEFINE_SPINLOCK(clk_mgt_lock);
  398. #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
  399. { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
  400. struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
  401. CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
  402. CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
  403. CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
  404. CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
  405. CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
  406. CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
  407. CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
  408. CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
  409. CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
  410. CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
  411. CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
  412. CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
  413. CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
  414. CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
  415. CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
  416. CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
  417. CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
  418. CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
  419. CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
  420. CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
  421. CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
  422. CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
  423. CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
  424. CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
  425. CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
  426. CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
  427. CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
  428. CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
  429. CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
  430. };
  431. struct dsiclk {
  432. u32 divsel_mask;
  433. u32 divsel_shift;
  434. u32 divsel;
  435. };
  436. static struct dsiclk dsiclk[2] = {
  437. {
  438. .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
  439. .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
  440. .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
  441. },
  442. {
  443. .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
  444. .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
  445. .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
  446. }
  447. };
  448. struct dsiescclk {
  449. u32 en;
  450. u32 div_mask;
  451. u32 div_shift;
  452. };
  453. static struct dsiescclk dsiescclk[3] = {
  454. {
  455. .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
  456. .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
  457. .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
  458. },
  459. {
  460. .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
  461. .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
  462. .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
  463. },
  464. {
  465. .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
  466. .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
  467. .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
  468. }
  469. };
  470. static struct regulator *hwacc_regulator[NUM_HW_ACC];
  471. static struct regulator *hwacc_ret_regulator[NUM_HW_ACC];
  472. static bool hwacc_enabled[NUM_HW_ACC];
  473. static bool hwacc_ret_enabled[NUM_HW_ACC];
  474. static const char *hwacc_regulator_name[NUM_HW_ACC] = {
  475. [HW_ACC_SVAMMDSP] = "hwacc-sva-mmdsp",
  476. [HW_ACC_SVAPIPE] = "hwacc-sva-pipe",
  477. [HW_ACC_SIAMMDSP] = "hwacc-sia-mmdsp",
  478. [HW_ACC_SIAPIPE] = "hwacc-sia-pipe",
  479. [HW_ACC_SGA] = "hwacc-sga",
  480. [HW_ACC_B2R2] = "hwacc-b2r2",
  481. [HW_ACC_MCDE] = "hwacc-mcde",
  482. [HW_ACC_ESRAM1] = "hwacc-esram1",
  483. [HW_ACC_ESRAM2] = "hwacc-esram2",
  484. [HW_ACC_ESRAM3] = "hwacc-esram3",
  485. [HW_ACC_ESRAM4] = "hwacc-esram4",
  486. };
  487. static const char *hwacc_ret_regulator_name[NUM_HW_ACC] = {
  488. [HW_ACC_SVAMMDSP] = "hwacc-sva-mmdsp-ret",
  489. [HW_ACC_SIAMMDSP] = "hwacc-sia-mmdsp-ret",
  490. [HW_ACC_ESRAM1] = "hwacc-esram1-ret",
  491. [HW_ACC_ESRAM2] = "hwacc-esram2-ret",
  492. [HW_ACC_ESRAM3] = "hwacc-esram3-ret",
  493. [HW_ACC_ESRAM4] = "hwacc-esram4-ret",
  494. };
  495. /*
  496. * Used by MCDE to setup all necessary PRCMU registers
  497. */
  498. #define PRCMU_RESET_DSIPLL 0x00004000
  499. #define PRCMU_UNCLAMP_DSIPLL 0x00400800
  500. #define PRCMU_CLK_PLL_DIV_SHIFT 0
  501. #define PRCMU_CLK_PLL_SW_SHIFT 5
  502. #define PRCMU_CLK_38 (1 << 9)
  503. #define PRCMU_CLK_38_SRC (1 << 10)
  504. #define PRCMU_CLK_38_DIV (1 << 11)
  505. /* PLLDIV=12, PLLSW=4 (PLLDDR) */
  506. #define PRCMU_DSI_CLOCK_SETTING 0x0000008C
  507. /* DPI 50000000 Hz */
  508. #define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
  509. (16 << PRCMU_CLK_PLL_DIV_SHIFT))
  510. #define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00
  511. /* D=101, N=1, R=4, SELDIV2=0 */
  512. #define PRCMU_PLLDSI_FREQ_SETTING 0x00040165
  513. #define PRCMU_ENABLE_PLLDSI 0x00000001
  514. #define PRCMU_DISABLE_PLLDSI 0x00000000
  515. #define PRCMU_RELEASE_RESET_DSS 0x0000400C
  516. #define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202
  517. /* ESC clk, div0=1, div1=1, div2=3 */
  518. #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101
  519. #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101
  520. #define PRCMU_DSI_RESET_SW 0x00000007
  521. #define PRCMU_PLLDSI_LOCKP_LOCKED 0x3
  522. int db8500_prcmu_enable_dsipll(void)
  523. {
  524. int i;
  525. /* Clear DSIPLL_RESETN */
  526. writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
  527. /* Unclamp DSIPLL in/out */
  528. writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
  529. /* Set DSI PLL FREQ */
  530. writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
  531. writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
  532. /* Enable Escape clocks */
  533. writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
  534. /* Start DSI PLL */
  535. writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
  536. /* Reset DSI PLL */
  537. writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
  538. for (i = 0; i < 10; i++) {
  539. if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
  540. == PRCMU_PLLDSI_LOCKP_LOCKED)
  541. break;
  542. udelay(100);
  543. }
  544. /* Set DSIPLL_RESETN */
  545. writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
  546. return 0;
  547. }
  548. int db8500_prcmu_disable_dsipll(void)
  549. {
  550. /* Disable dsi pll */
  551. writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
  552. /* Disable escapeclock */
  553. writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
  554. return 0;
  555. }
  556. int db8500_prcmu_set_display_clocks(void)
  557. {
  558. unsigned long flags;
  559. spin_lock_irqsave(&clk_mgt_lock, flags);
  560. /* Grab the HW semaphore. */
  561. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  562. cpu_relax();
  563. writel(PRCMU_DSI_CLOCK_SETTING, PRCM_HDMICLK_MGT);
  564. writel(PRCMU_DSI_LP_CLOCK_SETTING, PRCM_TVCLK_MGT);
  565. writel(PRCMU_DPI_CLOCK_SETTING, PRCM_LCDCLK_MGT);
  566. /* Release the HW semaphore. */
  567. writel(0, PRCM_SEM);
  568. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  569. return 0;
  570. }
  571. /**
  572. * prcmu_enable_spi2 - Enables pin muxing for SPI2 on OtherAlternateC1.
  573. */
  574. void prcmu_enable_spi2(void)
  575. {
  576. u32 reg;
  577. unsigned long flags;
  578. spin_lock_irqsave(&gpiocr_lock, flags);
  579. reg = readl(PRCM_GPIOCR);
  580. writel(reg | PRCM_GPIOCR_SPI2_SELECT, PRCM_GPIOCR);
  581. spin_unlock_irqrestore(&gpiocr_lock, flags);
  582. }
  583. /**
  584. * prcmu_disable_spi2 - Disables pin muxing for SPI2 on OtherAlternateC1.
  585. */
  586. void prcmu_disable_spi2(void)
  587. {
  588. u32 reg;
  589. unsigned long flags;
  590. spin_lock_irqsave(&gpiocr_lock, flags);
  591. reg = readl(PRCM_GPIOCR);
  592. writel(reg & ~PRCM_GPIOCR_SPI2_SELECT, PRCM_GPIOCR);
  593. spin_unlock_irqrestore(&gpiocr_lock, flags);
  594. }
  595. struct prcmu_fw_version *prcmu_get_fw_version(void)
  596. {
  597. return fw_info.valid ? &fw_info.version : NULL;
  598. }
  599. bool prcmu_has_arm_maxopp(void)
  600. {
  601. return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
  602. PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
  603. }
  604. /**
  605. * prcmu_get_boot_status - PRCMU boot status checking
  606. * Returns: the current PRCMU boot status
  607. */
  608. int prcmu_get_boot_status(void)
  609. {
  610. return readb(tcdm_base + PRCM_BOOT_STATUS);
  611. }
  612. /**
  613. * prcmu_set_rc_a2p - This function is used to run few power state sequences
  614. * @val: Value to be set, i.e. transition requested
  615. * Returns: 0 on success, -EINVAL on invalid argument
  616. *
  617. * This function is used to run the following power state sequences -
  618. * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
  619. */
  620. int prcmu_set_rc_a2p(enum romcode_write val)
  621. {
  622. if (val < RDY_2_DS || val > RDY_2_XP70_RST)
  623. return -EINVAL;
  624. writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
  625. return 0;
  626. }
  627. /**
  628. * prcmu_get_rc_p2a - This function is used to get power state sequences
  629. * Returns: the power transition that has last happened
  630. *
  631. * This function can return the following transitions-
  632. * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
  633. */
  634. enum romcode_read prcmu_get_rc_p2a(void)
  635. {
  636. return readb(tcdm_base + PRCM_ROMCODE_P2A);
  637. }
  638. /**
  639. * prcmu_get_current_mode - Return the current XP70 power mode
  640. * Returns: Returns the current AP(ARM) power mode: init,
  641. * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
  642. */
  643. enum ap_pwrst prcmu_get_xp70_current_state(void)
  644. {
  645. return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
  646. }
  647. /**
  648. * prcmu_config_clkout - Configure one of the programmable clock outputs.
  649. * @clkout: The CLKOUT number (0 or 1).
  650. * @source: The clock to be used (one of the PRCMU_CLKSRC_*).
  651. * @div: The divider to be applied.
  652. *
  653. * Configures one of the programmable clock outputs (CLKOUTs).
  654. * @div should be in the range [1,63] to request a configuration, or 0 to
  655. * inform that the configuration is no longer requested.
  656. */
  657. int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
  658. {
  659. static int requests[2];
  660. int r = 0;
  661. unsigned long flags;
  662. u32 val;
  663. u32 bits;
  664. u32 mask;
  665. u32 div_mask;
  666. BUG_ON(clkout > 1);
  667. BUG_ON(div > 63);
  668. BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
  669. if (!div && !requests[clkout])
  670. return -EINVAL;
  671. switch (clkout) {
  672. case 0:
  673. div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
  674. mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
  675. bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
  676. (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
  677. break;
  678. case 1:
  679. div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
  680. mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
  681. PRCM_CLKOCR_CLK1TYPE);
  682. bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
  683. (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
  684. break;
  685. }
  686. bits &= mask;
  687. spin_lock_irqsave(&clkout_lock, flags);
  688. val = readl(PRCM_CLKOCR);
  689. if (val & div_mask) {
  690. if (div) {
  691. if ((val & mask) != bits) {
  692. r = -EBUSY;
  693. goto unlock_and_return;
  694. }
  695. } else {
  696. if ((val & mask & ~div_mask) != bits) {
  697. r = -EINVAL;
  698. goto unlock_and_return;
  699. }
  700. }
  701. }
  702. writel((bits | (val & ~mask)), PRCM_CLKOCR);
  703. requests[clkout] += (div ? 1 : -1);
  704. unlock_and_return:
  705. spin_unlock_irqrestore(&clkout_lock, flags);
  706. return r;
  707. }
  708. int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
  709. {
  710. unsigned long flags;
  711. BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
  712. spin_lock_irqsave(&mb0_transfer.lock, flags);
  713. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
  714. cpu_relax();
  715. writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
  716. writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
  717. writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
  718. writeb((keep_ulp_clk ? 1 : 0),
  719. (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
  720. writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
  721. writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
  722. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  723. return 0;
  724. }
  725. u8 db8500_prcmu_get_power_state_result(void)
  726. {
  727. return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
  728. }
  729. /* This function should only be called while mb0_transfer.lock is held. */
  730. static void config_wakeups(void)
  731. {
  732. const u8 header[2] = {
  733. MB0H_CONFIG_WAKEUPS_EXE,
  734. MB0H_CONFIG_WAKEUPS_SLEEP
  735. };
  736. static u32 last_dbb_events;
  737. static u32 last_abb_events;
  738. u32 dbb_events;
  739. u32 abb_events;
  740. unsigned int i;
  741. dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
  742. dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
  743. abb_events = mb0_transfer.req.abb_events;
  744. if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
  745. return;
  746. for (i = 0; i < 2; i++) {
  747. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
  748. cpu_relax();
  749. writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
  750. writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
  751. writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
  752. writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
  753. }
  754. last_dbb_events = dbb_events;
  755. last_abb_events = abb_events;
  756. }
  757. void db8500_prcmu_enable_wakeups(u32 wakeups)
  758. {
  759. unsigned long flags;
  760. u32 bits;
  761. int i;
  762. BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
  763. for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
  764. if (wakeups & BIT(i))
  765. bits |= prcmu_wakeup_bit[i];
  766. }
  767. spin_lock_irqsave(&mb0_transfer.lock, flags);
  768. mb0_transfer.req.dbb_wakeups = bits;
  769. config_wakeups();
  770. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  771. }
  772. void db8500_prcmu_config_abb_event_readout(u32 abb_events)
  773. {
  774. unsigned long flags;
  775. spin_lock_irqsave(&mb0_transfer.lock, flags);
  776. mb0_transfer.req.abb_events = abb_events;
  777. config_wakeups();
  778. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  779. }
  780. void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
  781. {
  782. if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
  783. *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
  784. else
  785. *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
  786. }
  787. /**
  788. * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
  789. * @opp: The new ARM operating point to which transition is to be made
  790. * Returns: 0 on success, non-zero on failure
  791. *
  792. * This function sets the the operating point of the ARM.
  793. */
  794. int db8500_prcmu_set_arm_opp(u8 opp)
  795. {
  796. int r;
  797. if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
  798. return -EINVAL;
  799. r = 0;
  800. mutex_lock(&mb1_transfer.lock);
  801. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  802. cpu_relax();
  803. writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  804. writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
  805. writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
  806. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  807. wait_for_completion(&mb1_transfer.work);
  808. if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
  809. (mb1_transfer.ack.arm_opp != opp))
  810. r = -EIO;
  811. mutex_unlock(&mb1_transfer.lock);
  812. return r;
  813. }
  814. /**
  815. * db8500_prcmu_get_arm_opp - get the current ARM OPP
  816. *
  817. * Returns: the current ARM OPP
  818. */
  819. int db8500_prcmu_get_arm_opp(void)
  820. {
  821. return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
  822. }
  823. /**
  824. * db8500_prcmu_get_ddr_opp - get the current DDR OPP
  825. *
  826. * Returns: the current DDR OPP
  827. */
  828. int db8500_prcmu_get_ddr_opp(void)
  829. {
  830. return readb(PRCM_DDR_SUBSYS_APE_MINBW);
  831. }
  832. /**
  833. * db8500_set_ddr_opp - set the appropriate DDR OPP
  834. * @opp: The new DDR operating point to which transition is to be made
  835. * Returns: 0 on success, non-zero on failure
  836. *
  837. * This function sets the operating point of the DDR.
  838. */
  839. int db8500_prcmu_set_ddr_opp(u8 opp)
  840. {
  841. if (opp < DDR_100_OPP || opp > DDR_25_OPP)
  842. return -EINVAL;
  843. /* Changing the DDR OPP can hang the hardware pre-v21 */
  844. if (cpu_is_u8500v20_or_later() && !cpu_is_u8500v20())
  845. writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
  846. return 0;
  847. }
  848. /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
  849. static void request_even_slower_clocks(bool enable)
  850. {
  851. void __iomem *clock_reg[] = {
  852. PRCM_ACLK_MGT,
  853. PRCM_DMACLK_MGT
  854. };
  855. unsigned long flags;
  856. unsigned int i;
  857. spin_lock_irqsave(&clk_mgt_lock, flags);
  858. /* Grab the HW semaphore. */
  859. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  860. cpu_relax();
  861. for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
  862. u32 val;
  863. u32 div;
  864. val = readl(clock_reg[i]);
  865. div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
  866. if (enable) {
  867. if ((div <= 1) || (div > 15)) {
  868. pr_err("prcmu: Bad clock divider %d in %s\n",
  869. div, __func__);
  870. goto unlock_and_return;
  871. }
  872. div <<= 1;
  873. } else {
  874. if (div <= 2)
  875. goto unlock_and_return;
  876. div >>= 1;
  877. }
  878. val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
  879. (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
  880. writel(val, clock_reg[i]);
  881. }
  882. unlock_and_return:
  883. /* Release the HW semaphore. */
  884. writel(0, PRCM_SEM);
  885. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  886. }
  887. /**
  888. * db8500_set_ape_opp - set the appropriate APE OPP
  889. * @opp: The new APE operating point to which transition is to be made
  890. * Returns: 0 on success, non-zero on failure
  891. *
  892. * This function sets the operating point of the APE.
  893. */
  894. int db8500_prcmu_set_ape_opp(u8 opp)
  895. {
  896. int r = 0;
  897. if (opp == mb1_transfer.ape_opp)
  898. return 0;
  899. mutex_lock(&mb1_transfer.lock);
  900. if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
  901. request_even_slower_clocks(false);
  902. if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
  903. goto skip_message;
  904. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  905. cpu_relax();
  906. writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  907. writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
  908. writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
  909. (tcdm_base + PRCM_REQ_MB1_APE_OPP));
  910. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  911. wait_for_completion(&mb1_transfer.work);
  912. if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
  913. (mb1_transfer.ack.ape_opp != opp))
  914. r = -EIO;
  915. skip_message:
  916. if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
  917. (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
  918. request_even_slower_clocks(true);
  919. if (!r)
  920. mb1_transfer.ape_opp = opp;
  921. mutex_unlock(&mb1_transfer.lock);
  922. return r;
  923. }
  924. /**
  925. * db8500_prcmu_get_ape_opp - get the current APE OPP
  926. *
  927. * Returns: the current APE OPP
  928. */
  929. int db8500_prcmu_get_ape_opp(void)
  930. {
  931. return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
  932. }
  933. /**
  934. * prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
  935. * @enable: true to request the higher voltage, false to drop a request.
  936. *
  937. * Calls to this function to enable and disable requests must be balanced.
  938. */
  939. int prcmu_request_ape_opp_100_voltage(bool enable)
  940. {
  941. int r = 0;
  942. u8 header;
  943. static unsigned int requests;
  944. mutex_lock(&mb1_transfer.lock);
  945. if (enable) {
  946. if (0 != requests++)
  947. goto unlock_and_return;
  948. header = MB1H_REQUEST_APE_OPP_100_VOLT;
  949. } else {
  950. if (requests == 0) {
  951. r = -EIO;
  952. goto unlock_and_return;
  953. } else if (1 != requests--) {
  954. goto unlock_and_return;
  955. }
  956. header = MB1H_RELEASE_APE_OPP_100_VOLT;
  957. }
  958. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  959. cpu_relax();
  960. writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  961. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  962. wait_for_completion(&mb1_transfer.work);
  963. if ((mb1_transfer.ack.header != header) ||
  964. ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
  965. r = -EIO;
  966. unlock_and_return:
  967. mutex_unlock(&mb1_transfer.lock);
  968. return r;
  969. }
  970. /**
  971. * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
  972. *
  973. * This function releases the power state requirements of a USB wakeup.
  974. */
  975. int prcmu_release_usb_wakeup_state(void)
  976. {
  977. int r = 0;
  978. mutex_lock(&mb1_transfer.lock);
  979. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  980. cpu_relax();
  981. writeb(MB1H_RELEASE_USB_WAKEUP,
  982. (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  983. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  984. wait_for_completion(&mb1_transfer.work);
  985. if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
  986. ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
  987. r = -EIO;
  988. mutex_unlock(&mb1_transfer.lock);
  989. return r;
  990. }
  991. static int request_pll(u8 clock, bool enable)
  992. {
  993. int r = 0;
  994. if (clock == PRCMU_PLLSOC0)
  995. clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
  996. else if (clock == PRCMU_PLLSOC1)
  997. clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
  998. else
  999. return -EINVAL;
  1000. mutex_lock(&mb1_transfer.lock);
  1001. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  1002. cpu_relax();
  1003. writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  1004. writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
  1005. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  1006. wait_for_completion(&mb1_transfer.work);
  1007. if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
  1008. r = -EIO;
  1009. mutex_unlock(&mb1_transfer.lock);
  1010. return r;
  1011. }
  1012. /**
  1013. * prcmu_set_hwacc - set the power state of a h/w accelerator
  1014. * @hwacc_dev: The hardware accelerator (enum hw_acc_dev).
  1015. * @state: The new power state (enum hw_acc_state).
  1016. *
  1017. * This function sets the power state of a hardware accelerator.
  1018. * This function should not be called from interrupt context.
  1019. *
  1020. * NOTE! Deprecated, to be removed when all users switched over to use the
  1021. * regulator framework API.
  1022. */
  1023. int prcmu_set_hwacc(u16 hwacc_dev, u8 state)
  1024. {
  1025. int r = 0;
  1026. bool ram_retention = false;
  1027. bool enable, enable_ret;
  1028. /* check argument */
  1029. BUG_ON(hwacc_dev >= NUM_HW_ACC);
  1030. /* get state of switches */
  1031. enable = hwacc_enabled[hwacc_dev];
  1032. enable_ret = hwacc_ret_enabled[hwacc_dev];
  1033. /* set flag if retention is possible */
  1034. switch (hwacc_dev) {
  1035. case HW_ACC_SVAMMDSP:
  1036. case HW_ACC_SIAMMDSP:
  1037. case HW_ACC_ESRAM1:
  1038. case HW_ACC_ESRAM2:
  1039. case HW_ACC_ESRAM3:
  1040. case HW_ACC_ESRAM4:
  1041. ram_retention = true;
  1042. break;
  1043. }
  1044. /* check argument */
  1045. BUG_ON(state > HW_ON);
  1046. BUG_ON(state == HW_OFF_RAMRET && !ram_retention);
  1047. /* modify enable flags */
  1048. switch (state) {
  1049. case HW_OFF:
  1050. enable_ret = false;
  1051. enable = false;
  1052. break;
  1053. case HW_ON:
  1054. enable = true;
  1055. break;
  1056. case HW_OFF_RAMRET:
  1057. enable_ret = true;
  1058. enable = false;
  1059. break;
  1060. }
  1061. /* get regulator (lazy) */
  1062. if (hwacc_regulator[hwacc_dev] == NULL) {
  1063. hwacc_regulator[hwacc_dev] = regulator_get(NULL,
  1064. hwacc_regulator_name[hwacc_dev]);
  1065. if (IS_ERR(hwacc_regulator[hwacc_dev])) {
  1066. pr_err("prcmu: failed to get supply %s\n",
  1067. hwacc_regulator_name[hwacc_dev]);
  1068. r = PTR_ERR(hwacc_regulator[hwacc_dev]);
  1069. goto out;
  1070. }
  1071. }
  1072. if (ram_retention) {
  1073. if (hwacc_ret_regulator[hwacc_dev] == NULL) {
  1074. hwacc_ret_regulator[hwacc_dev] = regulator_get(NULL,
  1075. hwacc_ret_regulator_name[hwacc_dev]);
  1076. if (IS_ERR(hwacc_ret_regulator[hwacc_dev])) {
  1077. pr_err("prcmu: failed to get supply %s\n",
  1078. hwacc_ret_regulator_name[hwacc_dev]);
  1079. r = PTR_ERR(hwacc_ret_regulator[hwacc_dev]);
  1080. goto out;
  1081. }
  1082. }
  1083. }
  1084. /* set regulators */
  1085. if (ram_retention) {
  1086. if (enable_ret && !hwacc_ret_enabled[hwacc_dev]) {
  1087. r = regulator_enable(hwacc_ret_regulator[hwacc_dev]);
  1088. if (r < 0) {
  1089. pr_err("prcmu_set_hwacc: ret enable failed\n");
  1090. goto out;
  1091. }
  1092. hwacc_ret_enabled[hwacc_dev] = true;
  1093. }
  1094. }
  1095. if (enable && !hwacc_enabled[hwacc_dev]) {
  1096. r = regulator_enable(hwacc_regulator[hwacc_dev]);
  1097. if (r < 0) {
  1098. pr_err("prcmu_set_hwacc: enable failed\n");
  1099. goto out;
  1100. }
  1101. hwacc_enabled[hwacc_dev] = true;
  1102. }
  1103. if (!enable && hwacc_enabled[hwacc_dev]) {
  1104. r = regulator_disable(hwacc_regulator[hwacc_dev]);
  1105. if (r < 0) {
  1106. pr_err("prcmu_set_hwacc: disable failed\n");
  1107. goto out;
  1108. }
  1109. hwacc_enabled[hwacc_dev] = false;
  1110. }
  1111. if (ram_retention) {
  1112. if (!enable_ret && hwacc_ret_enabled[hwacc_dev]) {
  1113. r = regulator_disable(hwacc_ret_regulator[hwacc_dev]);
  1114. if (r < 0) {
  1115. pr_err("prcmu_set_hwacc: ret disable failed\n");
  1116. goto out;
  1117. }
  1118. hwacc_ret_enabled[hwacc_dev] = false;
  1119. }
  1120. }
  1121. out:
  1122. return r;
  1123. }
  1124. EXPORT_SYMBOL(prcmu_set_hwacc);
  1125. /**
  1126. * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
  1127. * @epod_id: The EPOD to set
  1128. * @epod_state: The new EPOD state
  1129. *
  1130. * This function sets the state of a EPOD (power domain). It may not be called
  1131. * from interrupt context.
  1132. */
  1133. int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
  1134. {
  1135. int r = 0;
  1136. bool ram_retention = false;
  1137. int i;
  1138. /* check argument */
  1139. BUG_ON(epod_id >= NUM_EPOD_ID);
  1140. /* set flag if retention is possible */
  1141. switch (epod_id) {
  1142. case EPOD_ID_SVAMMDSP:
  1143. case EPOD_ID_SIAMMDSP:
  1144. case EPOD_ID_ESRAM12:
  1145. case EPOD_ID_ESRAM34:
  1146. ram_retention = true;
  1147. break;
  1148. }
  1149. /* check argument */
  1150. BUG_ON(epod_state > EPOD_STATE_ON);
  1151. BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
  1152. /* get lock */
  1153. mutex_lock(&mb2_transfer.lock);
  1154. /* wait for mailbox */
  1155. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
  1156. cpu_relax();
  1157. /* fill in mailbox */
  1158. for (i = 0; i < NUM_EPOD_ID; i++)
  1159. writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
  1160. writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
  1161. writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
  1162. writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
  1163. /*
  1164. * The current firmware version does not handle errors correctly,
  1165. * and we cannot recover if there is an error.
  1166. * This is expected to change when the firmware is updated.
  1167. */
  1168. if (!wait_for_completion_timeout(&mb2_transfer.work,
  1169. msecs_to_jiffies(20000))) {
  1170. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1171. __func__);
  1172. r = -EIO;
  1173. goto unlock_and_return;
  1174. }
  1175. if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
  1176. r = -EIO;
  1177. unlock_and_return:
  1178. mutex_unlock(&mb2_transfer.lock);
  1179. return r;
  1180. }
  1181. /**
  1182. * prcmu_configure_auto_pm - Configure autonomous power management.
  1183. * @sleep: Configuration for ApSleep.
  1184. * @idle: Configuration for ApIdle.
  1185. */
  1186. void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
  1187. struct prcmu_auto_pm_config *idle)
  1188. {
  1189. u32 sleep_cfg;
  1190. u32 idle_cfg;
  1191. unsigned long flags;
  1192. BUG_ON((sleep == NULL) || (idle == NULL));
  1193. sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
  1194. sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
  1195. sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
  1196. sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
  1197. sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
  1198. sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
  1199. idle_cfg = (idle->sva_auto_pm_enable & 0xF);
  1200. idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
  1201. idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
  1202. idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
  1203. idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
  1204. idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
  1205. spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
  1206. /*
  1207. * The autonomous power management configuration is done through
  1208. * fields in mailbox 2, but these fields are only used as shared
  1209. * variables - i.e. there is no need to send a message.
  1210. */
  1211. writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
  1212. writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
  1213. mb2_transfer.auto_pm_enabled =
  1214. ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
  1215. (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
  1216. (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
  1217. (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
  1218. spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
  1219. }
  1220. EXPORT_SYMBOL(prcmu_configure_auto_pm);
  1221. bool prcmu_is_auto_pm_enabled(void)
  1222. {
  1223. return mb2_transfer.auto_pm_enabled;
  1224. }
  1225. static int request_sysclk(bool enable)
  1226. {
  1227. int r;
  1228. unsigned long flags;
  1229. r = 0;
  1230. mutex_lock(&mb3_transfer.sysclk_lock);
  1231. spin_lock_irqsave(&mb3_transfer.lock, flags);
  1232. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
  1233. cpu_relax();
  1234. writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
  1235. writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
  1236. writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
  1237. spin_unlock_irqrestore(&mb3_transfer.lock, flags);
  1238. /*
  1239. * The firmware only sends an ACK if we want to enable the
  1240. * SysClk, and it succeeds.
  1241. */
  1242. if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
  1243. msecs_to_jiffies(20000))) {
  1244. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1245. __func__);
  1246. r = -EIO;
  1247. }
  1248. mutex_unlock(&mb3_transfer.sysclk_lock);
  1249. return r;
  1250. }
  1251. static int request_timclk(bool enable)
  1252. {
  1253. u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
  1254. if (!enable)
  1255. val |= PRCM_TCR_STOP_TIMERS;
  1256. writel(val, PRCM_TCR);
  1257. return 0;
  1258. }
  1259. static int request_clock(u8 clock, bool enable)
  1260. {
  1261. u32 val;
  1262. unsigned long flags;
  1263. spin_lock_irqsave(&clk_mgt_lock, flags);
  1264. /* Grab the HW semaphore. */
  1265. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  1266. cpu_relax();
  1267. val = readl(clk_mgt[clock].reg);
  1268. if (enable) {
  1269. val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
  1270. } else {
  1271. clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
  1272. val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
  1273. }
  1274. writel(val, clk_mgt[clock].reg);
  1275. /* Release the HW semaphore. */
  1276. writel(0, PRCM_SEM);
  1277. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  1278. return 0;
  1279. }
  1280. static int request_sga_clock(u8 clock, bool enable)
  1281. {
  1282. u32 val;
  1283. int ret;
  1284. if (enable) {
  1285. val = readl(PRCM_CGATING_BYPASS);
  1286. writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
  1287. }
  1288. ret = request_clock(clock, enable);
  1289. if (!ret && !enable) {
  1290. val = readl(PRCM_CGATING_BYPASS);
  1291. writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
  1292. }
  1293. return ret;
  1294. }
  1295. static inline bool plldsi_locked(void)
  1296. {
  1297. return (readl(PRCM_PLLDSI_LOCKP) &
  1298. (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
  1299. PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
  1300. (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
  1301. PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
  1302. }
  1303. static int request_plldsi(bool enable)
  1304. {
  1305. int r = 0;
  1306. u32 val;
  1307. writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
  1308. PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
  1309. PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
  1310. val = readl(PRCM_PLLDSI_ENABLE);
  1311. if (enable)
  1312. val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
  1313. else
  1314. val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
  1315. writel(val, PRCM_PLLDSI_ENABLE);
  1316. if (enable) {
  1317. unsigned int i;
  1318. bool locked = plldsi_locked();
  1319. for (i = 10; !locked && (i > 0); --i) {
  1320. udelay(100);
  1321. locked = plldsi_locked();
  1322. }
  1323. if (locked) {
  1324. writel(PRCM_APE_RESETN_DSIPLL_RESETN,
  1325. PRCM_APE_RESETN_SET);
  1326. } else {
  1327. writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
  1328. PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
  1329. PRCM_MMIP_LS_CLAMP_SET);
  1330. val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
  1331. writel(val, PRCM_PLLDSI_ENABLE);
  1332. r = -EAGAIN;
  1333. }
  1334. } else {
  1335. writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
  1336. }
  1337. return r;
  1338. }
  1339. static int request_dsiclk(u8 n, bool enable)
  1340. {
  1341. u32 val;
  1342. val = readl(PRCM_DSI_PLLOUT_SEL);
  1343. val &= ~dsiclk[n].divsel_mask;
  1344. val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
  1345. dsiclk[n].divsel_shift);
  1346. writel(val, PRCM_DSI_PLLOUT_SEL);
  1347. return 0;
  1348. }
  1349. static int request_dsiescclk(u8 n, bool enable)
  1350. {
  1351. u32 val;
  1352. val = readl(PRCM_DSITVCLK_DIV);
  1353. enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
  1354. writel(val, PRCM_DSITVCLK_DIV);
  1355. return 0;
  1356. }
  1357. /**
  1358. * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
  1359. * @clock: The clock for which the request is made.
  1360. * @enable: Whether the clock should be enabled (true) or disabled (false).
  1361. *
  1362. * This function should only be used by the clock implementation.
  1363. * Do not use it from any other place!
  1364. */
  1365. int db8500_prcmu_request_clock(u8 clock, bool enable)
  1366. {
  1367. if (clock == PRCMU_SGACLK)
  1368. return request_sga_clock(clock, enable);
  1369. else if (clock < PRCMU_NUM_REG_CLOCKS)
  1370. return request_clock(clock, enable);
  1371. else if (clock == PRCMU_TIMCLK)
  1372. return request_timclk(enable);
  1373. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1374. return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
  1375. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1376. return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
  1377. else if (clock == PRCMU_PLLDSI)
  1378. return request_plldsi(enable);
  1379. else if (clock == PRCMU_SYSCLK)
  1380. return request_sysclk(enable);
  1381. else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
  1382. return request_pll(clock, enable);
  1383. else
  1384. return -EINVAL;
  1385. }
  1386. static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
  1387. int branch)
  1388. {
  1389. u64 rate;
  1390. u32 val;
  1391. u32 d;
  1392. u32 div = 1;
  1393. val = readl(reg);
  1394. rate = src_rate;
  1395. rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
  1396. d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
  1397. if (d > 1)
  1398. div *= d;
  1399. d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
  1400. if (d > 1)
  1401. div *= d;
  1402. if (val & PRCM_PLL_FREQ_SELDIV2)
  1403. div *= 2;
  1404. if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
  1405. (val & PRCM_PLL_FREQ_DIV2EN) &&
  1406. ((reg == PRCM_PLLSOC0_FREQ) ||
  1407. (reg == PRCM_PLLDDR_FREQ))))
  1408. div *= 2;
  1409. (void)do_div(rate, div);
  1410. return (unsigned long)rate;
  1411. }
  1412. #define ROOT_CLOCK_RATE 38400000
  1413. static unsigned long clock_rate(u8 clock)
  1414. {
  1415. u32 val;
  1416. u32 pllsw;
  1417. unsigned long rate = ROOT_CLOCK_RATE;
  1418. val = readl(clk_mgt[clock].reg);
  1419. if (val & PRCM_CLK_MGT_CLK38) {
  1420. if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
  1421. rate /= 2;
  1422. return rate;
  1423. }
  1424. val |= clk_mgt[clock].pllsw;
  1425. pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
  1426. if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
  1427. rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
  1428. else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
  1429. rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
  1430. else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
  1431. rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
  1432. else
  1433. return 0;
  1434. if ((clock == PRCMU_SGACLK) &&
  1435. (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
  1436. u64 r = (rate * 10);
  1437. (void)do_div(r, 25);
  1438. return (unsigned long)r;
  1439. }
  1440. val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
  1441. if (val)
  1442. return rate / val;
  1443. else
  1444. return 0;
  1445. }
  1446. static unsigned long dsiclk_rate(u8 n)
  1447. {
  1448. u32 divsel;
  1449. u32 div = 1;
  1450. divsel = readl(PRCM_DSI_PLLOUT_SEL);
  1451. divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
  1452. if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
  1453. divsel = dsiclk[n].divsel;
  1454. switch (divsel) {
  1455. case PRCM_DSI_PLLOUT_SEL_PHI_4:
  1456. div *= 2;
  1457. case PRCM_DSI_PLLOUT_SEL_PHI_2:
  1458. div *= 2;
  1459. case PRCM_DSI_PLLOUT_SEL_PHI:
  1460. return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
  1461. PLL_RAW) / div;
  1462. default:
  1463. return 0;
  1464. }
  1465. }
  1466. static unsigned long dsiescclk_rate(u8 n)
  1467. {
  1468. u32 div;
  1469. div = readl(PRCM_DSITVCLK_DIV);
  1470. div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
  1471. return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
  1472. }
  1473. unsigned long prcmu_clock_rate(u8 clock)
  1474. {
  1475. if (clock < PRCMU_NUM_REG_CLOCKS)
  1476. return clock_rate(clock);
  1477. else if (clock == PRCMU_TIMCLK)
  1478. return ROOT_CLOCK_RATE / 16;
  1479. else if (clock == PRCMU_SYSCLK)
  1480. return ROOT_CLOCK_RATE;
  1481. else if (clock == PRCMU_PLLSOC0)
  1482. return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
  1483. else if (clock == PRCMU_PLLSOC1)
  1484. return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
  1485. else if (clock == PRCMU_PLLDDR)
  1486. return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
  1487. else if (clock == PRCMU_PLLDSI)
  1488. return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
  1489. PLL_RAW);
  1490. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1491. return dsiclk_rate(clock - PRCMU_DSI0CLK);
  1492. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1493. return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
  1494. else
  1495. return 0;
  1496. }
  1497. static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
  1498. {
  1499. if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
  1500. return ROOT_CLOCK_RATE;
  1501. clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
  1502. if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
  1503. return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
  1504. else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
  1505. return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
  1506. else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
  1507. return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
  1508. else
  1509. return 0;
  1510. }
  1511. static u32 clock_divider(unsigned long src_rate, unsigned long rate)
  1512. {
  1513. u32 div;
  1514. div = (src_rate / rate);
  1515. if (div == 0)
  1516. return 1;
  1517. if (rate < (src_rate / div))
  1518. div++;
  1519. return div;
  1520. }
  1521. static long round_clock_rate(u8 clock, unsigned long rate)
  1522. {
  1523. u32 val;
  1524. u32 div;
  1525. unsigned long src_rate;
  1526. long rounded_rate;
  1527. val = readl(clk_mgt[clock].reg);
  1528. src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
  1529. clk_mgt[clock].branch);
  1530. div = clock_divider(src_rate, rate);
  1531. if (val & PRCM_CLK_MGT_CLK38) {
  1532. if (clk_mgt[clock].clk38div) {
  1533. if (div > 2)
  1534. div = 2;
  1535. } else {
  1536. div = 1;
  1537. }
  1538. } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
  1539. u64 r = (src_rate * 10);
  1540. (void)do_div(r, 25);
  1541. if (r <= rate)
  1542. return (unsigned long)r;
  1543. }
  1544. rounded_rate = (src_rate / min(div, (u32)31));
  1545. return rounded_rate;
  1546. }
  1547. #define MIN_PLL_VCO_RATE 600000000ULL
  1548. #define MAX_PLL_VCO_RATE 1680640000ULL
  1549. static long round_plldsi_rate(unsigned long rate)
  1550. {
  1551. long rounded_rate = 0;
  1552. unsigned long src_rate;
  1553. unsigned long rem;
  1554. u32 r;
  1555. src_rate = clock_rate(PRCMU_HDMICLK);
  1556. rem = rate;
  1557. for (r = 7; (rem > 0) && (r > 0); r--) {
  1558. u64 d;
  1559. d = (r * rate);
  1560. (void)do_div(d, src_rate);
  1561. if (d < 6)
  1562. d = 6;
  1563. else if (d > 255)
  1564. d = 255;
  1565. d *= src_rate;
  1566. if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
  1567. ((r * MAX_PLL_VCO_RATE) < (2 * d)))
  1568. continue;
  1569. (void)do_div(d, r);
  1570. if (rate < d) {
  1571. if (rounded_rate == 0)
  1572. rounded_rate = (long)d;
  1573. break;
  1574. }
  1575. if ((rate - d) < rem) {
  1576. rem = (rate - d);
  1577. rounded_rate = (long)d;
  1578. }
  1579. }
  1580. return rounded_rate;
  1581. }
  1582. static long round_dsiclk_rate(unsigned long rate)
  1583. {
  1584. u32 div;
  1585. unsigned long src_rate;
  1586. long rounded_rate;
  1587. src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
  1588. PLL_RAW);
  1589. div = clock_divider(src_rate, rate);
  1590. rounded_rate = (src_rate / ((div > 2) ? 4 : div));
  1591. return rounded_rate;
  1592. }
  1593. static long round_dsiescclk_rate(unsigned long rate)
  1594. {
  1595. u32 div;
  1596. unsigned long src_rate;
  1597. long rounded_rate;
  1598. src_rate = clock_rate(PRCMU_TVCLK);
  1599. div = clock_divider(src_rate, rate);
  1600. rounded_rate = (src_rate / min(div, (u32)255));
  1601. return rounded_rate;
  1602. }
  1603. long prcmu_round_clock_rate(u8 clock, unsigned long rate)
  1604. {
  1605. if (clock < PRCMU_NUM_REG_CLOCKS)
  1606. return round_clock_rate(clock, rate);
  1607. else if (clock == PRCMU_PLLDSI)
  1608. return round_plldsi_rate(rate);
  1609. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1610. return round_dsiclk_rate(rate);
  1611. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1612. return round_dsiescclk_rate(rate);
  1613. else
  1614. return (long)prcmu_clock_rate(clock);
  1615. }
  1616. static void set_clock_rate(u8 clock, unsigned long rate)
  1617. {
  1618. u32 val;
  1619. u32 div;
  1620. unsigned long src_rate;
  1621. unsigned long flags;
  1622. spin_lock_irqsave(&clk_mgt_lock, flags);
  1623. /* Grab the HW semaphore. */
  1624. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  1625. cpu_relax();
  1626. val = readl(clk_mgt[clock].reg);
  1627. src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
  1628. clk_mgt[clock].branch);
  1629. div = clock_divider(src_rate, rate);
  1630. if (val & PRCM_CLK_MGT_CLK38) {
  1631. if (clk_mgt[clock].clk38div) {
  1632. if (div > 1)
  1633. val |= PRCM_CLK_MGT_CLK38DIV;
  1634. else
  1635. val &= ~PRCM_CLK_MGT_CLK38DIV;
  1636. }
  1637. } else if (clock == PRCMU_SGACLK) {
  1638. val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
  1639. PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
  1640. if (div == 3) {
  1641. u64 r = (src_rate * 10);
  1642. (void)do_div(r, 25);
  1643. if (r <= rate) {
  1644. val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
  1645. div = 0;
  1646. }
  1647. }
  1648. val |= min(div, (u32)31);
  1649. } else {
  1650. val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
  1651. val |= min(div, (u32)31);
  1652. }
  1653. writel(val, clk_mgt[clock].reg);
  1654. /* Release the HW semaphore. */
  1655. writel(0, PRCM_SEM);
  1656. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  1657. }
  1658. static int set_plldsi_rate(unsigned long rate)
  1659. {
  1660. unsigned long src_rate;
  1661. unsigned long rem;
  1662. u32 pll_freq = 0;
  1663. u32 r;
  1664. src_rate = clock_rate(PRCMU_HDMICLK);
  1665. rem = rate;
  1666. for (r = 7; (rem > 0) && (r > 0); r--) {
  1667. u64 d;
  1668. u64 hwrate;
  1669. d = (r * rate);
  1670. (void)do_div(d, src_rate);
  1671. if (d < 6)
  1672. d = 6;
  1673. else if (d > 255)
  1674. d = 255;
  1675. hwrate = (d * src_rate);
  1676. if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
  1677. ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
  1678. continue;
  1679. (void)do_div(hwrate, r);
  1680. if (rate < hwrate) {
  1681. if (pll_freq == 0)
  1682. pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
  1683. (r << PRCM_PLL_FREQ_R_SHIFT));
  1684. break;
  1685. }
  1686. if ((rate - hwrate) < rem) {
  1687. rem = (rate - hwrate);
  1688. pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
  1689. (r << PRCM_PLL_FREQ_R_SHIFT));
  1690. }
  1691. }
  1692. if (pll_freq == 0)
  1693. return -EINVAL;
  1694. pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
  1695. writel(pll_freq, PRCM_PLLDSI_FREQ);
  1696. return 0;
  1697. }
  1698. static void set_dsiclk_rate(u8 n, unsigned long rate)
  1699. {
  1700. u32 val;
  1701. u32 div;
  1702. div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
  1703. clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
  1704. dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
  1705. (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
  1706. /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4;
  1707. val = readl(PRCM_DSI_PLLOUT_SEL);
  1708. val &= ~dsiclk[n].divsel_mask;
  1709. val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
  1710. writel(val, PRCM_DSI_PLLOUT_SEL);
  1711. }
  1712. static void set_dsiescclk_rate(u8 n, unsigned long rate)
  1713. {
  1714. u32 val;
  1715. u32 div;
  1716. div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
  1717. val = readl(PRCM_DSITVCLK_DIV);
  1718. val &= ~dsiescclk[n].div_mask;
  1719. val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
  1720. writel(val, PRCM_DSITVCLK_DIV);
  1721. }
  1722. int prcmu_set_clock_rate(u8 clock, unsigned long rate)
  1723. {
  1724. if (clock < PRCMU_NUM_REG_CLOCKS)
  1725. set_clock_rate(clock, rate);
  1726. else if (clock == PRCMU_PLLDSI)
  1727. return set_plldsi_rate(rate);
  1728. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1729. set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
  1730. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1731. set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
  1732. return 0;
  1733. }
  1734. int db8500_prcmu_config_esram0_deep_sleep(u8 state)
  1735. {
  1736. if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
  1737. (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
  1738. return -EINVAL;
  1739. mutex_lock(&mb4_transfer.lock);
  1740. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1741. cpu_relax();
  1742. writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1743. writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
  1744. (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
  1745. writeb(DDR_PWR_STATE_ON,
  1746. (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
  1747. writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
  1748. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1749. wait_for_completion(&mb4_transfer.work);
  1750. mutex_unlock(&mb4_transfer.lock);
  1751. return 0;
  1752. }
  1753. int db8500_prcmu_config_hotdog(u8 threshold)
  1754. {
  1755. mutex_lock(&mb4_transfer.lock);
  1756. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1757. cpu_relax();
  1758. writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
  1759. writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1760. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1761. wait_for_completion(&mb4_transfer.work);
  1762. mutex_unlock(&mb4_transfer.lock);
  1763. return 0;
  1764. }
  1765. int db8500_prcmu_config_hotmon(u8 low, u8 high)
  1766. {
  1767. mutex_lock(&mb4_transfer.lock);
  1768. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1769. cpu_relax();
  1770. writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
  1771. writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
  1772. writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
  1773. (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
  1774. writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1775. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1776. wait_for_completion(&mb4_transfer.work);
  1777. mutex_unlock(&mb4_transfer.lock);
  1778. return 0;
  1779. }
  1780. static int config_hot_period(u16 val)
  1781. {
  1782. mutex_lock(&mb4_transfer.lock);
  1783. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1784. cpu_relax();
  1785. writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
  1786. writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1787. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1788. wait_for_completion(&mb4_transfer.work);
  1789. mutex_unlock(&mb4_transfer.lock);
  1790. return 0;
  1791. }
  1792. int db8500_prcmu_start_temp_sense(u16 cycles32k)
  1793. {
  1794. if (cycles32k == 0xFFFF)
  1795. return -EINVAL;
  1796. return config_hot_period(cycles32k);
  1797. }
  1798. int db8500_prcmu_stop_temp_sense(void)
  1799. {
  1800. return config_hot_period(0xFFFF);
  1801. }
  1802. static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
  1803. {
  1804. mutex_lock(&mb4_transfer.lock);
  1805. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1806. cpu_relax();
  1807. writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
  1808. writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
  1809. writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
  1810. writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
  1811. writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1812. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1813. wait_for_completion(&mb4_transfer.work);
  1814. mutex_unlock(&mb4_transfer.lock);
  1815. return 0;
  1816. }
  1817. int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
  1818. {
  1819. BUG_ON(num == 0 || num > 0xf);
  1820. return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
  1821. sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
  1822. A9WDOG_AUTO_OFF_DIS);
  1823. }
  1824. int db8500_prcmu_enable_a9wdog(u8 id)
  1825. {
  1826. return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
  1827. }
  1828. int db8500_prcmu_disable_a9wdog(u8 id)
  1829. {
  1830. return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
  1831. }
  1832. int db8500_prcmu_kick_a9wdog(u8 id)
  1833. {
  1834. return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
  1835. }
  1836. /*
  1837. * timeout is 28 bit, in ms.
  1838. */
  1839. int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
  1840. {
  1841. return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
  1842. (id & A9WDOG_ID_MASK) |
  1843. /*
  1844. * Put the lowest 28 bits of timeout at
  1845. * offset 4. Four first bits are used for id.
  1846. */
  1847. (u8)((timeout << 4) & 0xf0),
  1848. (u8)((timeout >> 4) & 0xff),
  1849. (u8)((timeout >> 12) & 0xff),
  1850. (u8)((timeout >> 20) & 0xff));
  1851. }
  1852. /**
  1853. * prcmu_abb_read() - Read register value(s) from the ABB.
  1854. * @slave: The I2C slave address.
  1855. * @reg: The (start) register address.
  1856. * @value: The read out value(s).
  1857. * @size: The number of registers to read.
  1858. *
  1859. * Reads register value(s) from the ABB.
  1860. * @size has to be 1 for the current firmware version.
  1861. */
  1862. int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
  1863. {
  1864. int r;
  1865. if (size != 1)
  1866. return -EINVAL;
  1867. mutex_lock(&mb5_transfer.lock);
  1868. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
  1869. cpu_relax();
  1870. writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
  1871. writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
  1872. writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
  1873. writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
  1874. writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
  1875. if (!wait_for_completion_timeout(&mb5_transfer.work,
  1876. msecs_to_jiffies(20000))) {
  1877. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1878. __func__);
  1879. r = -EIO;
  1880. } else {
  1881. r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
  1882. }
  1883. if (!r)
  1884. *value = mb5_transfer.ack.value;
  1885. mutex_unlock(&mb5_transfer.lock);
  1886. return r;
  1887. }
  1888. /**
  1889. * prcmu_abb_write() - Write register value(s) to the ABB.
  1890. * @slave: The I2C slave address.
  1891. * @reg: The (start) register address.
  1892. * @value: The value(s) to write.
  1893. * @size: The number of registers to write.
  1894. *
  1895. * Reads register value(s) from the ABB.
  1896. * @size has to be 1 for the current firmware version.
  1897. */
  1898. int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
  1899. {
  1900. int r;
  1901. if (size != 1)
  1902. return -EINVAL;
  1903. mutex_lock(&mb5_transfer.lock);
  1904. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
  1905. cpu_relax();
  1906. writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
  1907. writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
  1908. writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
  1909. writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
  1910. writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
  1911. if (!wait_for_completion_timeout(&mb5_transfer.work,
  1912. msecs_to_jiffies(20000))) {
  1913. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1914. __func__);
  1915. r = -EIO;
  1916. } else {
  1917. r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
  1918. }
  1919. mutex_unlock(&mb5_transfer.lock);
  1920. return r;
  1921. }
  1922. /**
  1923. * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
  1924. */
  1925. void prcmu_ac_wake_req(void)
  1926. {
  1927. u32 val;
  1928. u32 status;
  1929. mutex_lock(&mb0_transfer.ac_wake_lock);
  1930. val = readl(PRCM_HOSTACCESS_REQ);
  1931. if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
  1932. goto unlock_and_return;
  1933. atomic_set(&ac_wake_req_state, 1);
  1934. retry:
  1935. writel((val | PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ), PRCM_HOSTACCESS_REQ);
  1936. if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
  1937. msecs_to_jiffies(5000))) {
  1938. pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
  1939. __func__);
  1940. goto unlock_and_return;
  1941. }
  1942. /*
  1943. * The modem can generate an AC_WAKE_ACK, and then still go to sleep.
  1944. * As a workaround, we wait, and then check that the modem is indeed
  1945. * awake (in terms of the value of the PRCM_MOD_AWAKE_STATUS
  1946. * register, which may not be the whole truth).
  1947. */
  1948. udelay(400);
  1949. status = (readl(PRCM_MOD_AWAKE_STATUS) & BITS(0, 2));
  1950. if (status != (PRCM_MOD_AWAKE_STATUS_PRCM_MOD_AAPD_AWAKE |
  1951. PRCM_MOD_AWAKE_STATUS_PRCM_MOD_COREPD_AWAKE)) {
  1952. pr_err("prcmu: %s received ack, but modem not awake (0x%X).\n",
  1953. __func__, status);
  1954. udelay(1200);
  1955. writel(val, PRCM_HOSTACCESS_REQ);
  1956. if (wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
  1957. msecs_to_jiffies(5000)))
  1958. goto retry;
  1959. pr_crit("prcmu: %s timed out (5 s) waiting for AC_SLEEP_ACK.\n",
  1960. __func__);
  1961. }
  1962. unlock_and_return:
  1963. mutex_unlock(&mb0_transfer.ac_wake_lock);
  1964. }
  1965. /**
  1966. * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
  1967. */
  1968. void prcmu_ac_sleep_req()
  1969. {
  1970. u32 val;
  1971. mutex_lock(&mb0_transfer.ac_wake_lock);
  1972. val = readl(PRCM_HOSTACCESS_REQ);
  1973. if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
  1974. goto unlock_and_return;
  1975. writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
  1976. PRCM_HOSTACCESS_REQ);
  1977. if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
  1978. msecs_to_jiffies(5000))) {
  1979. pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
  1980. __func__);
  1981. }
  1982. atomic_set(&ac_wake_req_state, 0);
  1983. unlock_and_return:
  1984. mutex_unlock(&mb0_transfer.ac_wake_lock);
  1985. }
  1986. bool db8500_prcmu_is_ac_wake_requested(void)
  1987. {
  1988. return (atomic_read(&ac_wake_req_state) != 0);
  1989. }
  1990. /**
  1991. * db8500_prcmu_system_reset - System reset
  1992. *
  1993. * Saves the reset reason code and then sets the APE_SOFTRST register which
  1994. * fires interrupt to fw
  1995. */
  1996. void db8500_prcmu_system_reset(u16 reset_code)
  1997. {
  1998. writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
  1999. writel(1, PRCM_APE_SOFTRST);
  2000. }
  2001. /**
  2002. * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
  2003. *
  2004. * Retrieves the reset reason code stored by prcmu_system_reset() before
  2005. * last restart.
  2006. */
  2007. u16 db8500_prcmu_get_reset_code(void)
  2008. {
  2009. return readw(tcdm_base + PRCM_SW_RST_REASON);
  2010. }
  2011. /**
  2012. * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
  2013. */
  2014. void db8500_prcmu_modem_reset(void)
  2015. {
  2016. mutex_lock(&mb1_transfer.lock);
  2017. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  2018. cpu_relax();
  2019. writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  2020. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  2021. wait_for_completion(&mb1_transfer.work);
  2022. /*
  2023. * No need to check return from PRCMU as modem should go in reset state
  2024. * This state is already managed by upper layer
  2025. */
  2026. mutex_unlock(&mb1_transfer.lock);
  2027. }
  2028. static void ack_dbb_wakeup(void)
  2029. {
  2030. unsigned long flags;
  2031. spin_lock_irqsave(&mb0_transfer.lock, flags);
  2032. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
  2033. cpu_relax();
  2034. writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
  2035. writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
  2036. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  2037. }
  2038. static inline void print_unknown_header_warning(u8 n, u8 header)
  2039. {
  2040. pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
  2041. header, n);
  2042. }
  2043. static bool read_mailbox_0(void)
  2044. {
  2045. bool r;
  2046. u32 ev;
  2047. unsigned int n;
  2048. u8 header;
  2049. header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
  2050. switch (header) {
  2051. case MB0H_WAKEUP_EXE:
  2052. case MB0H_WAKEUP_SLEEP:
  2053. if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
  2054. ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
  2055. else
  2056. ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
  2057. if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
  2058. complete(&mb0_transfer.ac_wake_work);
  2059. if (ev & WAKEUP_BIT_SYSCLK_OK)
  2060. complete(&mb3_transfer.sysclk_work);
  2061. ev &= mb0_transfer.req.dbb_irqs;
  2062. for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
  2063. if (ev & prcmu_irq_bit[n])
  2064. generic_handle_irq(IRQ_PRCMU_BASE + n);
  2065. }
  2066. r = true;
  2067. break;
  2068. default:
  2069. print_unknown_header_warning(0, header);
  2070. r = false;
  2071. break;
  2072. }
  2073. writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
  2074. return r;
  2075. }
  2076. static bool read_mailbox_1(void)
  2077. {
  2078. mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
  2079. mb1_transfer.ack.arm_opp = readb(tcdm_base +
  2080. PRCM_ACK_MB1_CURRENT_ARM_OPP);
  2081. mb1_transfer.ack.ape_opp = readb(tcdm_base +
  2082. PRCM_ACK_MB1_CURRENT_APE_OPP);
  2083. mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
  2084. PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
  2085. writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
  2086. complete(&mb1_transfer.work);
  2087. return false;
  2088. }
  2089. static bool read_mailbox_2(void)
  2090. {
  2091. mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
  2092. writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
  2093. complete(&mb2_transfer.work);
  2094. return false;
  2095. }
  2096. static bool read_mailbox_3(void)
  2097. {
  2098. writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
  2099. return false;
  2100. }
  2101. static bool read_mailbox_4(void)
  2102. {
  2103. u8 header;
  2104. bool do_complete = true;
  2105. header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
  2106. switch (header) {
  2107. case MB4H_MEM_ST:
  2108. case MB4H_HOTDOG:
  2109. case MB4H_HOTMON:
  2110. case MB4H_HOT_PERIOD:
  2111. case MB4H_A9WDOG_CONF:
  2112. case MB4H_A9WDOG_EN:
  2113. case MB4H_A9WDOG_DIS:
  2114. case MB4H_A9WDOG_LOAD:
  2115. case MB4H_A9WDOG_KICK:
  2116. break;
  2117. default:
  2118. print_unknown_header_warning(4, header);
  2119. do_complete = false;
  2120. break;
  2121. }
  2122. writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
  2123. if (do_complete)
  2124. complete(&mb4_transfer.work);
  2125. return false;
  2126. }
  2127. static bool read_mailbox_5(void)
  2128. {
  2129. mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
  2130. mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
  2131. writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
  2132. complete(&mb5_transfer.work);
  2133. return false;
  2134. }
  2135. static bool read_mailbox_6(void)
  2136. {
  2137. writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
  2138. return false;
  2139. }
  2140. static bool read_mailbox_7(void)
  2141. {
  2142. writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
  2143. return false;
  2144. }
  2145. static bool (* const read_mailbox[NUM_MB])(void) = {
  2146. read_mailbox_0,
  2147. read_mailbox_1,
  2148. read_mailbox_2,
  2149. read_mailbox_3,
  2150. read_mailbox_4,
  2151. read_mailbox_5,
  2152. read_mailbox_6,
  2153. read_mailbox_7
  2154. };
  2155. static irqreturn_t prcmu_irq_handler(int irq, void *data)
  2156. {
  2157. u32 bits;
  2158. u8 n;
  2159. irqreturn_t r;
  2160. bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
  2161. if (unlikely(!bits))
  2162. return IRQ_NONE;
  2163. r = IRQ_HANDLED;
  2164. for (n = 0; bits; n++) {
  2165. if (bits & MBOX_BIT(n)) {
  2166. bits -= MBOX_BIT(n);
  2167. if (read_mailbox[n]())
  2168. r = IRQ_WAKE_THREAD;
  2169. }
  2170. }
  2171. return r;
  2172. }
  2173. static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
  2174. {
  2175. ack_dbb_wakeup();
  2176. return IRQ_HANDLED;
  2177. }
  2178. static void prcmu_mask_work(struct work_struct *work)
  2179. {
  2180. unsigned long flags;
  2181. spin_lock_irqsave(&mb0_transfer.lock, flags);
  2182. config_wakeups();
  2183. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  2184. }
  2185. static void prcmu_irq_mask(struct irq_data *d)
  2186. {
  2187. unsigned long flags;
  2188. spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
  2189. mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
  2190. spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
  2191. if (d->irq != IRQ_PRCMU_CA_SLEEP)
  2192. schedule_work(&mb0_transfer.mask_work);
  2193. }
  2194. static void prcmu_irq_unmask(struct irq_data *d)
  2195. {
  2196. unsigned long flags;
  2197. spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
  2198. mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
  2199. spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
  2200. if (d->irq != IRQ_PRCMU_CA_SLEEP)
  2201. schedule_work(&mb0_transfer.mask_work);
  2202. }
  2203. static void noop(struct irq_data *d)
  2204. {
  2205. }
  2206. static struct irq_chip prcmu_irq_chip = {
  2207. .name = "prcmu",
  2208. .irq_disable = prcmu_irq_mask,
  2209. .irq_ack = noop,
  2210. .irq_mask = prcmu_irq_mask,
  2211. .irq_unmask = prcmu_irq_unmask,
  2212. };
  2213. static char *fw_project_name(u8 project)
  2214. {
  2215. switch (project) {
  2216. case PRCMU_FW_PROJECT_U8500:
  2217. return "U8500";
  2218. case PRCMU_FW_PROJECT_U8500_C2:
  2219. return "U8500 C2";
  2220. case PRCMU_FW_PROJECT_U9500:
  2221. return "U9500";
  2222. case PRCMU_FW_PROJECT_U9500_C2:
  2223. return "U9500 C2";
  2224. default:
  2225. return "Unknown";
  2226. }
  2227. }
  2228. void __init db8500_prcmu_early_init(void)
  2229. {
  2230. unsigned int i;
  2231. if (cpu_is_u8500v2()) {
  2232. void *tcpm_base = ioremap_nocache(U8500_PRCMU_TCPM_BASE, SZ_4K);
  2233. if (tcpm_base != NULL) {
  2234. u32 version;
  2235. version = readl(tcpm_base + PRCMU_FW_VERSION_OFFSET);
  2236. fw_info.version.project = version & 0xFF;
  2237. fw_info.version.api_version = (version >> 8) & 0xFF;
  2238. fw_info.version.func_version = (version >> 16) & 0xFF;
  2239. fw_info.version.errata = (version >> 24) & 0xFF;
  2240. fw_info.valid = true;
  2241. pr_info("PRCMU firmware: %s, version %d.%d.%d\n",
  2242. fw_project_name(fw_info.version.project),
  2243. (version >> 8) & 0xFF, (version >> 16) & 0xFF,
  2244. (version >> 24) & 0xFF);
  2245. iounmap(tcpm_base);
  2246. }
  2247. tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE);
  2248. } else {
  2249. pr_err("prcmu: Unsupported chip version\n");
  2250. BUG();
  2251. }
  2252. spin_lock_init(&mb0_transfer.lock);
  2253. spin_lock_init(&mb0_transfer.dbb_irqs_lock);
  2254. mutex_init(&mb0_transfer.ac_wake_lock);
  2255. init_completion(&mb0_transfer.ac_wake_work);
  2256. mutex_init(&mb1_transfer.lock);
  2257. init_completion(&mb1_transfer.work);
  2258. mb1_transfer.ape_opp = APE_NO_CHANGE;
  2259. mutex_init(&mb2_transfer.lock);
  2260. init_completion(&mb2_transfer.work);
  2261. spin_lock_init(&mb2_transfer.auto_pm_lock);
  2262. spin_lock_init(&mb3_transfer.lock);
  2263. mutex_init(&mb3_transfer.sysclk_lock);
  2264. init_completion(&mb3_transfer.sysclk_work);
  2265. mutex_init(&mb4_transfer.lock);
  2266. init_completion(&mb4_transfer.work);
  2267. mutex_init(&mb5_transfer.lock);
  2268. init_completion(&mb5_transfer.work);
  2269. INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
  2270. /* Initalize irqs. */
  2271. for (i = 0; i < NUM_PRCMU_WAKEUPS; i++) {
  2272. unsigned int irq;
  2273. irq = IRQ_PRCMU_BASE + i;
  2274. irq_set_chip_and_handler(irq, &prcmu_irq_chip,
  2275. handle_simple_irq);
  2276. set_irq_flags(irq, IRQF_VALID);
  2277. }
  2278. }
  2279. static void __init init_prcm_registers(void)
  2280. {
  2281. u32 val;
  2282. val = readl(PRCM_A9PL_FORCE_CLKEN);
  2283. val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
  2284. PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
  2285. writel(val, (PRCM_A9PL_FORCE_CLKEN));
  2286. }
  2287. /*
  2288. * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
  2289. */
  2290. static struct regulator_consumer_supply db8500_vape_consumers[] = {
  2291. REGULATOR_SUPPLY("v-ape", NULL),
  2292. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
  2293. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
  2294. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
  2295. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
  2296. /* "v-mmc" changed to "vcore" in the mainline kernel */
  2297. REGULATOR_SUPPLY("vcore", "sdi0"),
  2298. REGULATOR_SUPPLY("vcore", "sdi1"),
  2299. REGULATOR_SUPPLY("vcore", "sdi2"),
  2300. REGULATOR_SUPPLY("vcore", "sdi3"),
  2301. REGULATOR_SUPPLY("vcore", "sdi4"),
  2302. REGULATOR_SUPPLY("v-dma", "dma40.0"),
  2303. REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
  2304. /* "v-uart" changed to "vcore" in the mainline kernel */
  2305. REGULATOR_SUPPLY("vcore", "uart0"),
  2306. REGULATOR_SUPPLY("vcore", "uart1"),
  2307. REGULATOR_SUPPLY("vcore", "uart2"),
  2308. REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
  2309. REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
  2310. };
  2311. static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
  2312. REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
  2313. /* AV8100 regulator */
  2314. REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
  2315. };
  2316. static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
  2317. REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
  2318. REGULATOR_SUPPLY("vsupply", "mcde"),
  2319. };
  2320. /* SVA MMDSP regulator switch */
  2321. static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
  2322. REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
  2323. };
  2324. /* SVA pipe regulator switch */
  2325. static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
  2326. REGULATOR_SUPPLY("sva-pipe", "cm_control"),
  2327. };
  2328. /* SIA MMDSP regulator switch */
  2329. static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
  2330. REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
  2331. };
  2332. /* SIA pipe regulator switch */
  2333. static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
  2334. REGULATOR_SUPPLY("sia-pipe", "cm_control"),
  2335. };
  2336. static struct regulator_consumer_supply db8500_sga_consumers[] = {
  2337. REGULATOR_SUPPLY("v-mali", NULL),
  2338. };
  2339. /* ESRAM1 and 2 regulator switch */
  2340. static struct regulator_consumer_supply db8500_esram12_consumers[] = {
  2341. REGULATOR_SUPPLY("esram12", "cm_control"),
  2342. };
  2343. /* ESRAM3 and 4 regulator switch */
  2344. static struct regulator_consumer_supply db8500_esram34_consumers[] = {
  2345. REGULATOR_SUPPLY("v-esram34", "mcde"),
  2346. REGULATOR_SUPPLY("esram34", "cm_control"),
  2347. REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
  2348. };
  2349. static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
  2350. [DB8500_REGULATOR_VAPE] = {
  2351. .constraints = {
  2352. .name = "db8500-vape",
  2353. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2354. },
  2355. .consumer_supplies = db8500_vape_consumers,
  2356. .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
  2357. },
  2358. [DB8500_REGULATOR_VARM] = {
  2359. .constraints = {
  2360. .name = "db8500-varm",
  2361. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2362. },
  2363. },
  2364. [DB8500_REGULATOR_VMODEM] = {
  2365. .constraints = {
  2366. .name = "db8500-vmodem",
  2367. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2368. },
  2369. },
  2370. [DB8500_REGULATOR_VPLL] = {
  2371. .constraints = {
  2372. .name = "db8500-vpll",
  2373. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2374. },
  2375. },
  2376. [DB8500_REGULATOR_VSMPS1] = {
  2377. .constraints = {
  2378. .name = "db8500-vsmps1",
  2379. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2380. },
  2381. },
  2382. [DB8500_REGULATOR_VSMPS2] = {
  2383. .constraints = {
  2384. .name = "db8500-vsmps2",
  2385. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2386. },
  2387. .consumer_supplies = db8500_vsmps2_consumers,
  2388. .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
  2389. },
  2390. [DB8500_REGULATOR_VSMPS3] = {
  2391. .constraints = {
  2392. .name = "db8500-vsmps3",
  2393. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2394. },
  2395. },
  2396. [DB8500_REGULATOR_VRF1] = {
  2397. .constraints = {
  2398. .name = "db8500-vrf1",
  2399. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2400. },
  2401. },
  2402. [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
  2403. /* dependency to u8500-vape is handled outside regulator framework */
  2404. .constraints = {
  2405. .name = "db8500-sva-mmdsp",
  2406. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2407. },
  2408. .consumer_supplies = db8500_svammdsp_consumers,
  2409. .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
  2410. },
  2411. [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
  2412. .constraints = {
  2413. /* "ret" means "retention" */
  2414. .name = "db8500-sva-mmdsp-ret",
  2415. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2416. },
  2417. },
  2418. [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
  2419. /* dependency to u8500-vape is handled outside regulator framework */
  2420. .constraints = {
  2421. .name = "db8500-sva-pipe",
  2422. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2423. },
  2424. .consumer_supplies = db8500_svapipe_consumers,
  2425. .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
  2426. },
  2427. [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
  2428. /* dependency to u8500-vape is handled outside regulator framework */
  2429. .constraints = {
  2430. .name = "db8500-sia-mmdsp",
  2431. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2432. },
  2433. .consumer_supplies = db8500_siammdsp_consumers,
  2434. .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
  2435. },
  2436. [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
  2437. .constraints = {
  2438. .name = "db8500-sia-mmdsp-ret",
  2439. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2440. },
  2441. },
  2442. [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
  2443. /* dependency to u8500-vape is handled outside regulator framework */
  2444. .constraints = {
  2445. .name = "db8500-sia-pipe",
  2446. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2447. },
  2448. .consumer_supplies = db8500_siapipe_consumers,
  2449. .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
  2450. },
  2451. [DB8500_REGULATOR_SWITCH_SGA] = {
  2452. .supply_regulator = "db8500-vape",
  2453. .constraints = {
  2454. .name = "db8500-sga",
  2455. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2456. },
  2457. .consumer_supplies = db8500_sga_consumers,
  2458. .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
  2459. },
  2460. [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
  2461. .supply_regulator = "db8500-vape",
  2462. .constraints = {
  2463. .name = "db8500-b2r2-mcde",
  2464. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2465. },
  2466. .consumer_supplies = db8500_b2r2_mcde_consumers,
  2467. .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
  2468. },
  2469. [DB8500_REGULATOR_SWITCH_ESRAM12] = {
  2470. /*
  2471. * esram12 is set in retention and supplied by Vsafe when Vape is off,
  2472. * no need to hold Vape
  2473. */
  2474. .constraints = {
  2475. .name = "db8500-esram12",
  2476. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2477. },
  2478. .consumer_supplies = db8500_esram12_consumers,
  2479. .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
  2480. },
  2481. [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
  2482. .constraints = {
  2483. .name = "db8500-esram12-ret",
  2484. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2485. },
  2486. },
  2487. [DB8500_REGULATOR_SWITCH_ESRAM34] = {
  2488. /*
  2489. * esram34 is set in retention and supplied by Vsafe when Vape is off,
  2490. * no need to hold Vape
  2491. */
  2492. .constraints = {
  2493. .name = "db8500-esram34",
  2494. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2495. },
  2496. .consumer_supplies = db8500_esram34_consumers,
  2497. .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
  2498. },
  2499. [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
  2500. .constraints = {
  2501. .name = "db8500-esram34-ret",
  2502. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2503. },
  2504. },
  2505. };
  2506. static struct mfd_cell db8500_prcmu_devs[] = {
  2507. {
  2508. .name = "db8500-prcmu-regulators",
  2509. .platform_data = &db8500_regulators,
  2510. .pdata_size = sizeof(db8500_regulators),
  2511. },
  2512. {
  2513. .name = "cpufreq-u8500",
  2514. },
  2515. };
  2516. /**
  2517. * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
  2518. *
  2519. */
  2520. static int __init db8500_prcmu_probe(struct platform_device *pdev)
  2521. {
  2522. int err = 0;
  2523. if (ux500_is_svp())
  2524. return -ENODEV;
  2525. init_prcm_registers();
  2526. /* Clean up the mailbox interrupts after pre-kernel code. */
  2527. writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
  2528. err = request_threaded_irq(IRQ_DB8500_PRCMU1, prcmu_irq_handler,
  2529. prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
  2530. if (err < 0) {
  2531. pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
  2532. err = -EBUSY;
  2533. goto no_irq_return;
  2534. }
  2535. if (cpu_is_u8500v20_or_later())
  2536. prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
  2537. err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
  2538. ARRAY_SIZE(db8500_prcmu_devs), NULL,
  2539. 0);
  2540. if (err)
  2541. pr_err("prcmu: Failed to add subdevices\n");
  2542. else
  2543. pr_info("DB8500 PRCMU initialized\n");
  2544. no_irq_return:
  2545. return err;
  2546. }
  2547. static struct platform_driver db8500_prcmu_driver = {
  2548. .driver = {
  2549. .name = "db8500-prcmu",
  2550. .owner = THIS_MODULE,
  2551. },
  2552. };
  2553. static int __init db8500_prcmu_init(void)
  2554. {
  2555. return platform_driver_probe(&db8500_prcmu_driver, db8500_prcmu_probe);
  2556. }
  2557. arch_initcall(db8500_prcmu_init);
  2558. MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
  2559. MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
  2560. MODULE_LICENSE("GPL v2");