s2io.c 232 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214
  1. /************************************************************************
  2. * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
  3. * Copyright(c) 2002-2007 Neterion Inc.
  4. * This software may be used and distributed according to the terms of
  5. * the GNU General Public License (GPL), incorporated herein by reference.
  6. * Drivers based on or derived from this code fall under the GPL and must
  7. * retain the authorship, copyright and license notice. This file is not
  8. * a complete program and may only be used when the entire operating
  9. * system is licensed under the GPL.
  10. * See the file COPYING in this distribution for more information.
  11. *
  12. * Credits:
  13. * Jeff Garzik : For pointing out the improper error condition
  14. * check in the s2io_xmit routine and also some
  15. * issues in the Tx watch dog function. Also for
  16. * patiently answering all those innumerable
  17. * questions regaring the 2.6 porting issues.
  18. * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
  19. * macros available only in 2.6 Kernel.
  20. * Francois Romieu : For pointing out all code part that were
  21. * deprecated and also styling related comments.
  22. * Grant Grundler : For helping me get rid of some Architecture
  23. * dependent code.
  24. * Christopher Hellwig : Some more 2.6 specific issues in the driver.
  25. *
  26. * The module loadable parameters that are supported by the driver and a brief
  27. * explaination of all the variables.
  28. *
  29. * rx_ring_num : This can be used to program the number of receive rings used
  30. * in the driver.
  31. * rx_ring_sz: This defines the number of receive blocks each ring can have.
  32. * This is also an array of size 8.
  33. * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
  34. * values are 1, 2.
  35. * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
  36. * tx_fifo_len: This too is an array of 8. Each element defines the number of
  37. * Tx descriptors that can be associated with each corresponding FIFO.
  38. * intr_type: This defines the type of interrupt. The values can be 0(INTA),
  39. * 2(MSI_X). Default value is '2(MSI_X)'
  40. * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
  41. * Possible values '1' for enable '0' for disable. Default is '0'
  42. * lro_max_pkts: This parameter defines maximum number of packets can be
  43. * aggregated as a single large packet
  44. * napi: This parameter used to enable/disable NAPI (polling Rx)
  45. * Possible values '1' for enable and '0' for disable. Default is '1'
  46. * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
  47. * Possible values '1' for enable and '0' for disable. Default is '0'
  48. * vlan_tag_strip: This can be used to enable or disable vlan stripping.
  49. * Possible values '1' for enable , '0' for disable.
  50. * Default is '2' - which means disable in promisc mode
  51. * and enable in non-promiscuous mode.
  52. ************************************************************************/
  53. #include <linux/module.h>
  54. #include <linux/types.h>
  55. #include <linux/errno.h>
  56. #include <linux/ioport.h>
  57. #include <linux/pci.h>
  58. #include <linux/dma-mapping.h>
  59. #include <linux/kernel.h>
  60. #include <linux/netdevice.h>
  61. #include <linux/etherdevice.h>
  62. #include <linux/skbuff.h>
  63. #include <linux/init.h>
  64. #include <linux/delay.h>
  65. #include <linux/stddef.h>
  66. #include <linux/ioctl.h>
  67. #include <linux/timex.h>
  68. #include <linux/ethtool.h>
  69. #include <linux/workqueue.h>
  70. #include <linux/if_vlan.h>
  71. #include <linux/ip.h>
  72. #include <linux/tcp.h>
  73. #include <net/tcp.h>
  74. #include <asm/system.h>
  75. #include <asm/uaccess.h>
  76. #include <asm/io.h>
  77. #include <asm/div64.h>
  78. #include <asm/irq.h>
  79. /* local include */
  80. #include "s2io.h"
  81. #include "s2io-regs.h"
  82. #define DRV_VERSION "2.0.26.6"
  83. /* S2io Driver name & version. */
  84. static char s2io_driver_name[] = "Neterion";
  85. static char s2io_driver_version[] = DRV_VERSION;
  86. static int rxd_size[2] = {32,48};
  87. static int rxd_count[2] = {127,85};
  88. static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
  89. {
  90. int ret;
  91. ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
  92. (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
  93. return ret;
  94. }
  95. /*
  96. * Cards with following subsystem_id have a link state indication
  97. * problem, 600B, 600C, 600D, 640B, 640C and 640D.
  98. * macro below identifies these cards given the subsystem_id.
  99. */
  100. #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
  101. (dev_type == XFRAME_I_DEVICE) ? \
  102. ((((subid >= 0x600B) && (subid <= 0x600D)) || \
  103. ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
  104. #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
  105. ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
  106. #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
  107. #define PANIC 1
  108. #define LOW 2
  109. static inline int rx_buffer_level(struct s2io_nic * sp, int rxb_size, int ring)
  110. {
  111. struct mac_info *mac_control;
  112. mac_control = &sp->mac_control;
  113. if (rxb_size <= rxd_count[sp->rxd_mode])
  114. return PANIC;
  115. else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
  116. return LOW;
  117. return 0;
  118. }
  119. static inline int is_s2io_card_up(const struct s2io_nic * sp)
  120. {
  121. return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
  122. }
  123. /* Ethtool related variables and Macros. */
  124. static char s2io_gstrings[][ETH_GSTRING_LEN] = {
  125. "Register test\t(offline)",
  126. "Eeprom test\t(offline)",
  127. "Link test\t(online)",
  128. "RLDRAM test\t(offline)",
  129. "BIST Test\t(offline)"
  130. };
  131. static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
  132. {"tmac_frms"},
  133. {"tmac_data_octets"},
  134. {"tmac_drop_frms"},
  135. {"tmac_mcst_frms"},
  136. {"tmac_bcst_frms"},
  137. {"tmac_pause_ctrl_frms"},
  138. {"tmac_ttl_octets"},
  139. {"tmac_ucst_frms"},
  140. {"tmac_nucst_frms"},
  141. {"tmac_any_err_frms"},
  142. {"tmac_ttl_less_fb_octets"},
  143. {"tmac_vld_ip_octets"},
  144. {"tmac_vld_ip"},
  145. {"tmac_drop_ip"},
  146. {"tmac_icmp"},
  147. {"tmac_rst_tcp"},
  148. {"tmac_tcp"},
  149. {"tmac_udp"},
  150. {"rmac_vld_frms"},
  151. {"rmac_data_octets"},
  152. {"rmac_fcs_err_frms"},
  153. {"rmac_drop_frms"},
  154. {"rmac_vld_mcst_frms"},
  155. {"rmac_vld_bcst_frms"},
  156. {"rmac_in_rng_len_err_frms"},
  157. {"rmac_out_rng_len_err_frms"},
  158. {"rmac_long_frms"},
  159. {"rmac_pause_ctrl_frms"},
  160. {"rmac_unsup_ctrl_frms"},
  161. {"rmac_ttl_octets"},
  162. {"rmac_accepted_ucst_frms"},
  163. {"rmac_accepted_nucst_frms"},
  164. {"rmac_discarded_frms"},
  165. {"rmac_drop_events"},
  166. {"rmac_ttl_less_fb_octets"},
  167. {"rmac_ttl_frms"},
  168. {"rmac_usized_frms"},
  169. {"rmac_osized_frms"},
  170. {"rmac_frag_frms"},
  171. {"rmac_jabber_frms"},
  172. {"rmac_ttl_64_frms"},
  173. {"rmac_ttl_65_127_frms"},
  174. {"rmac_ttl_128_255_frms"},
  175. {"rmac_ttl_256_511_frms"},
  176. {"rmac_ttl_512_1023_frms"},
  177. {"rmac_ttl_1024_1518_frms"},
  178. {"rmac_ip"},
  179. {"rmac_ip_octets"},
  180. {"rmac_hdr_err_ip"},
  181. {"rmac_drop_ip"},
  182. {"rmac_icmp"},
  183. {"rmac_tcp"},
  184. {"rmac_udp"},
  185. {"rmac_err_drp_udp"},
  186. {"rmac_xgmii_err_sym"},
  187. {"rmac_frms_q0"},
  188. {"rmac_frms_q1"},
  189. {"rmac_frms_q2"},
  190. {"rmac_frms_q3"},
  191. {"rmac_frms_q4"},
  192. {"rmac_frms_q5"},
  193. {"rmac_frms_q6"},
  194. {"rmac_frms_q7"},
  195. {"rmac_full_q0"},
  196. {"rmac_full_q1"},
  197. {"rmac_full_q2"},
  198. {"rmac_full_q3"},
  199. {"rmac_full_q4"},
  200. {"rmac_full_q5"},
  201. {"rmac_full_q6"},
  202. {"rmac_full_q7"},
  203. {"rmac_pause_cnt"},
  204. {"rmac_xgmii_data_err_cnt"},
  205. {"rmac_xgmii_ctrl_err_cnt"},
  206. {"rmac_accepted_ip"},
  207. {"rmac_err_tcp"},
  208. {"rd_req_cnt"},
  209. {"new_rd_req_cnt"},
  210. {"new_rd_req_rtry_cnt"},
  211. {"rd_rtry_cnt"},
  212. {"wr_rtry_rd_ack_cnt"},
  213. {"wr_req_cnt"},
  214. {"new_wr_req_cnt"},
  215. {"new_wr_req_rtry_cnt"},
  216. {"wr_rtry_cnt"},
  217. {"wr_disc_cnt"},
  218. {"rd_rtry_wr_ack_cnt"},
  219. {"txp_wr_cnt"},
  220. {"txd_rd_cnt"},
  221. {"txd_wr_cnt"},
  222. {"rxd_rd_cnt"},
  223. {"rxd_wr_cnt"},
  224. {"txf_rd_cnt"},
  225. {"rxf_wr_cnt"}
  226. };
  227. static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
  228. {"rmac_ttl_1519_4095_frms"},
  229. {"rmac_ttl_4096_8191_frms"},
  230. {"rmac_ttl_8192_max_frms"},
  231. {"rmac_ttl_gt_max_frms"},
  232. {"rmac_osized_alt_frms"},
  233. {"rmac_jabber_alt_frms"},
  234. {"rmac_gt_max_alt_frms"},
  235. {"rmac_vlan_frms"},
  236. {"rmac_len_discard"},
  237. {"rmac_fcs_discard"},
  238. {"rmac_pf_discard"},
  239. {"rmac_da_discard"},
  240. {"rmac_red_discard"},
  241. {"rmac_rts_discard"},
  242. {"rmac_ingm_full_discard"},
  243. {"link_fault_cnt"}
  244. };
  245. static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
  246. {"\n DRIVER STATISTICS"},
  247. {"single_bit_ecc_errs"},
  248. {"double_bit_ecc_errs"},
  249. {"parity_err_cnt"},
  250. {"serious_err_cnt"},
  251. {"soft_reset_cnt"},
  252. {"fifo_full_cnt"},
  253. {"ring_0_full_cnt"},
  254. {"ring_1_full_cnt"},
  255. {"ring_2_full_cnt"},
  256. {"ring_3_full_cnt"},
  257. {"ring_4_full_cnt"},
  258. {"ring_5_full_cnt"},
  259. {"ring_6_full_cnt"},
  260. {"ring_7_full_cnt"},
  261. {"alarm_transceiver_temp_high"},
  262. {"alarm_transceiver_temp_low"},
  263. {"alarm_laser_bias_current_high"},
  264. {"alarm_laser_bias_current_low"},
  265. {"alarm_laser_output_power_high"},
  266. {"alarm_laser_output_power_low"},
  267. {"warn_transceiver_temp_high"},
  268. {"warn_transceiver_temp_low"},
  269. {"warn_laser_bias_current_high"},
  270. {"warn_laser_bias_current_low"},
  271. {"warn_laser_output_power_high"},
  272. {"warn_laser_output_power_low"},
  273. {"lro_aggregated_pkts"},
  274. {"lro_flush_both_count"},
  275. {"lro_out_of_sequence_pkts"},
  276. {"lro_flush_due_to_max_pkts"},
  277. {"lro_avg_aggr_pkts"},
  278. {"mem_alloc_fail_cnt"},
  279. {"pci_map_fail_cnt"},
  280. {"watchdog_timer_cnt"},
  281. {"mem_allocated"},
  282. {"mem_freed"},
  283. {"link_up_cnt"},
  284. {"link_down_cnt"},
  285. {"link_up_time"},
  286. {"link_down_time"},
  287. {"tx_tcode_buf_abort_cnt"},
  288. {"tx_tcode_desc_abort_cnt"},
  289. {"tx_tcode_parity_err_cnt"},
  290. {"tx_tcode_link_loss_cnt"},
  291. {"tx_tcode_list_proc_err_cnt"},
  292. {"rx_tcode_parity_err_cnt"},
  293. {"rx_tcode_abort_cnt"},
  294. {"rx_tcode_parity_abort_cnt"},
  295. {"rx_tcode_rda_fail_cnt"},
  296. {"rx_tcode_unkn_prot_cnt"},
  297. {"rx_tcode_fcs_err_cnt"},
  298. {"rx_tcode_buf_size_err_cnt"},
  299. {"rx_tcode_rxd_corrupt_cnt"},
  300. {"rx_tcode_unkn_err_cnt"},
  301. {"tda_err_cnt"},
  302. {"pfc_err_cnt"},
  303. {"pcc_err_cnt"},
  304. {"tti_err_cnt"},
  305. {"tpa_err_cnt"},
  306. {"sm_err_cnt"},
  307. {"lso_err_cnt"},
  308. {"mac_tmac_err_cnt"},
  309. {"mac_rmac_err_cnt"},
  310. {"xgxs_txgxs_err_cnt"},
  311. {"xgxs_rxgxs_err_cnt"},
  312. {"rc_err_cnt"},
  313. {"prc_pcix_err_cnt"},
  314. {"rpa_err_cnt"},
  315. {"rda_err_cnt"},
  316. {"rti_err_cnt"},
  317. {"mc_err_cnt"}
  318. };
  319. #define S2IO_XENA_STAT_LEN sizeof(ethtool_xena_stats_keys)/ ETH_GSTRING_LEN
  320. #define S2IO_ENHANCED_STAT_LEN sizeof(ethtool_enhanced_stats_keys)/ \
  321. ETH_GSTRING_LEN
  322. #define S2IO_DRIVER_STAT_LEN sizeof(ethtool_driver_stats_keys)/ ETH_GSTRING_LEN
  323. #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
  324. #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
  325. #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
  326. #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
  327. #define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN
  328. #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
  329. #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
  330. init_timer(&timer); \
  331. timer.function = handle; \
  332. timer.data = (unsigned long) arg; \
  333. mod_timer(&timer, (jiffies + exp)) \
  334. /* copy mac addr to def_mac_addr array */
  335. static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
  336. {
  337. sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
  338. sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
  339. sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
  340. sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
  341. sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
  342. sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
  343. }
  344. /* Add the vlan */
  345. static void s2io_vlan_rx_register(struct net_device *dev,
  346. struct vlan_group *grp)
  347. {
  348. struct s2io_nic *nic = dev->priv;
  349. unsigned long flags;
  350. spin_lock_irqsave(&nic->tx_lock, flags);
  351. nic->vlgrp = grp;
  352. spin_unlock_irqrestore(&nic->tx_lock, flags);
  353. }
  354. /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
  355. static int vlan_strip_flag;
  356. /*
  357. * Constants to be programmed into the Xena's registers, to configure
  358. * the XAUI.
  359. */
  360. #define END_SIGN 0x0
  361. static const u64 herc_act_dtx_cfg[] = {
  362. /* Set address */
  363. 0x8000051536750000ULL, 0x80000515367500E0ULL,
  364. /* Write data */
  365. 0x8000051536750004ULL, 0x80000515367500E4ULL,
  366. /* Set address */
  367. 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
  368. /* Write data */
  369. 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
  370. /* Set address */
  371. 0x801205150D440000ULL, 0x801205150D4400E0ULL,
  372. /* Write data */
  373. 0x801205150D440004ULL, 0x801205150D4400E4ULL,
  374. /* Set address */
  375. 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
  376. /* Write data */
  377. 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
  378. /* Done */
  379. END_SIGN
  380. };
  381. static const u64 xena_dtx_cfg[] = {
  382. /* Set address */
  383. 0x8000051500000000ULL, 0x80000515000000E0ULL,
  384. /* Write data */
  385. 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
  386. /* Set address */
  387. 0x8001051500000000ULL, 0x80010515000000E0ULL,
  388. /* Write data */
  389. 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
  390. /* Set address */
  391. 0x8002051500000000ULL, 0x80020515000000E0ULL,
  392. /* Write data */
  393. 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
  394. END_SIGN
  395. };
  396. /*
  397. * Constants for Fixing the MacAddress problem seen mostly on
  398. * Alpha machines.
  399. */
  400. static const u64 fix_mac[] = {
  401. 0x0060000000000000ULL, 0x0060600000000000ULL,
  402. 0x0040600000000000ULL, 0x0000600000000000ULL,
  403. 0x0020600000000000ULL, 0x0060600000000000ULL,
  404. 0x0020600000000000ULL, 0x0060600000000000ULL,
  405. 0x0020600000000000ULL, 0x0060600000000000ULL,
  406. 0x0020600000000000ULL, 0x0060600000000000ULL,
  407. 0x0020600000000000ULL, 0x0060600000000000ULL,
  408. 0x0020600000000000ULL, 0x0060600000000000ULL,
  409. 0x0020600000000000ULL, 0x0060600000000000ULL,
  410. 0x0020600000000000ULL, 0x0060600000000000ULL,
  411. 0x0020600000000000ULL, 0x0060600000000000ULL,
  412. 0x0020600000000000ULL, 0x0060600000000000ULL,
  413. 0x0020600000000000ULL, 0x0000600000000000ULL,
  414. 0x0040600000000000ULL, 0x0060600000000000ULL,
  415. END_SIGN
  416. };
  417. MODULE_LICENSE("GPL");
  418. MODULE_VERSION(DRV_VERSION);
  419. /* Module Loadable parameters. */
  420. S2IO_PARM_INT(tx_fifo_num, 1);
  421. S2IO_PARM_INT(rx_ring_num, 1);
  422. S2IO_PARM_INT(rx_ring_mode, 1);
  423. S2IO_PARM_INT(use_continuous_tx_intrs, 1);
  424. S2IO_PARM_INT(rmac_pause_time, 0x100);
  425. S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
  426. S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
  427. S2IO_PARM_INT(shared_splits, 0);
  428. S2IO_PARM_INT(tmac_util_period, 5);
  429. S2IO_PARM_INT(rmac_util_period, 5);
  430. S2IO_PARM_INT(l3l4hdr_size, 128);
  431. /* Frequency of Rx desc syncs expressed as power of 2 */
  432. S2IO_PARM_INT(rxsync_frequency, 3);
  433. /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
  434. S2IO_PARM_INT(intr_type, 2);
  435. /* Large receive offload feature */
  436. static unsigned int lro_enable;
  437. module_param_named(lro, lro_enable, uint, 0);
  438. /* Max pkts to be aggregated by LRO at one time. If not specified,
  439. * aggregation happens until we hit max IP pkt size(64K)
  440. */
  441. S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
  442. S2IO_PARM_INT(indicate_max_pkts, 0);
  443. S2IO_PARM_INT(napi, 1);
  444. S2IO_PARM_INT(ufo, 0);
  445. S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
  446. static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
  447. {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
  448. static unsigned int rx_ring_sz[MAX_RX_RINGS] =
  449. {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
  450. static unsigned int rts_frm_len[MAX_RX_RINGS] =
  451. {[0 ...(MAX_RX_RINGS - 1)] = 0 };
  452. module_param_array(tx_fifo_len, uint, NULL, 0);
  453. module_param_array(rx_ring_sz, uint, NULL, 0);
  454. module_param_array(rts_frm_len, uint, NULL, 0);
  455. /*
  456. * S2IO device table.
  457. * This table lists all the devices that this driver supports.
  458. */
  459. static struct pci_device_id s2io_tbl[] __devinitdata = {
  460. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
  461. PCI_ANY_ID, PCI_ANY_ID},
  462. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
  463. PCI_ANY_ID, PCI_ANY_ID},
  464. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
  465. PCI_ANY_ID, PCI_ANY_ID},
  466. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
  467. PCI_ANY_ID, PCI_ANY_ID},
  468. {0,}
  469. };
  470. MODULE_DEVICE_TABLE(pci, s2io_tbl);
  471. static struct pci_error_handlers s2io_err_handler = {
  472. .error_detected = s2io_io_error_detected,
  473. .slot_reset = s2io_io_slot_reset,
  474. .resume = s2io_io_resume,
  475. };
  476. static struct pci_driver s2io_driver = {
  477. .name = "S2IO",
  478. .id_table = s2io_tbl,
  479. .probe = s2io_init_nic,
  480. .remove = __devexit_p(s2io_rem_nic),
  481. .err_handler = &s2io_err_handler,
  482. };
  483. /* A simplifier macro used both by init and free shared_mem Fns(). */
  484. #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
  485. /**
  486. * init_shared_mem - Allocation and Initialization of Memory
  487. * @nic: Device private variable.
  488. * Description: The function allocates all the memory areas shared
  489. * between the NIC and the driver. This includes Tx descriptors,
  490. * Rx descriptors and the statistics block.
  491. */
  492. static int init_shared_mem(struct s2io_nic *nic)
  493. {
  494. u32 size;
  495. void *tmp_v_addr, *tmp_v_addr_next;
  496. dma_addr_t tmp_p_addr, tmp_p_addr_next;
  497. struct RxD_block *pre_rxd_blk = NULL;
  498. int i, j, blk_cnt;
  499. int lst_size, lst_per_page;
  500. struct net_device *dev = nic->dev;
  501. unsigned long tmp;
  502. struct buffAdd *ba;
  503. struct mac_info *mac_control;
  504. struct config_param *config;
  505. unsigned long long mem_allocated = 0;
  506. mac_control = &nic->mac_control;
  507. config = &nic->config;
  508. /* Allocation and initialization of TXDLs in FIOFs */
  509. size = 0;
  510. for (i = 0; i < config->tx_fifo_num; i++) {
  511. size += config->tx_cfg[i].fifo_len;
  512. }
  513. if (size > MAX_AVAILABLE_TXDS) {
  514. DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
  515. DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
  516. return -EINVAL;
  517. }
  518. lst_size = (sizeof(struct TxD) * config->max_txds);
  519. lst_per_page = PAGE_SIZE / lst_size;
  520. for (i = 0; i < config->tx_fifo_num; i++) {
  521. int fifo_len = config->tx_cfg[i].fifo_len;
  522. int list_holder_size = fifo_len * sizeof(struct list_info_hold);
  523. mac_control->fifos[i].list_info = kzalloc(list_holder_size,
  524. GFP_KERNEL);
  525. if (!mac_control->fifos[i].list_info) {
  526. DBG_PRINT(INFO_DBG,
  527. "Malloc failed for list_info\n");
  528. return -ENOMEM;
  529. }
  530. mem_allocated += list_holder_size;
  531. }
  532. for (i = 0; i < config->tx_fifo_num; i++) {
  533. int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
  534. lst_per_page);
  535. mac_control->fifos[i].tx_curr_put_info.offset = 0;
  536. mac_control->fifos[i].tx_curr_put_info.fifo_len =
  537. config->tx_cfg[i].fifo_len - 1;
  538. mac_control->fifos[i].tx_curr_get_info.offset = 0;
  539. mac_control->fifos[i].tx_curr_get_info.fifo_len =
  540. config->tx_cfg[i].fifo_len - 1;
  541. mac_control->fifos[i].fifo_no = i;
  542. mac_control->fifos[i].nic = nic;
  543. mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
  544. for (j = 0; j < page_num; j++) {
  545. int k = 0;
  546. dma_addr_t tmp_p;
  547. void *tmp_v;
  548. tmp_v = pci_alloc_consistent(nic->pdev,
  549. PAGE_SIZE, &tmp_p);
  550. if (!tmp_v) {
  551. DBG_PRINT(INFO_DBG,
  552. "pci_alloc_consistent ");
  553. DBG_PRINT(INFO_DBG, "failed for TxDL\n");
  554. return -ENOMEM;
  555. }
  556. /* If we got a zero DMA address(can happen on
  557. * certain platforms like PPC), reallocate.
  558. * Store virtual address of page we don't want,
  559. * to be freed later.
  560. */
  561. if (!tmp_p) {
  562. mac_control->zerodma_virt_addr = tmp_v;
  563. DBG_PRINT(INIT_DBG,
  564. "%s: Zero DMA address for TxDL. ", dev->name);
  565. DBG_PRINT(INIT_DBG,
  566. "Virtual address %p\n", tmp_v);
  567. tmp_v = pci_alloc_consistent(nic->pdev,
  568. PAGE_SIZE, &tmp_p);
  569. if (!tmp_v) {
  570. DBG_PRINT(INFO_DBG,
  571. "pci_alloc_consistent ");
  572. DBG_PRINT(INFO_DBG, "failed for TxDL\n");
  573. return -ENOMEM;
  574. }
  575. mem_allocated += PAGE_SIZE;
  576. }
  577. while (k < lst_per_page) {
  578. int l = (j * lst_per_page) + k;
  579. if (l == config->tx_cfg[i].fifo_len)
  580. break;
  581. mac_control->fifos[i].list_info[l].list_virt_addr =
  582. tmp_v + (k * lst_size);
  583. mac_control->fifos[i].list_info[l].list_phy_addr =
  584. tmp_p + (k * lst_size);
  585. k++;
  586. }
  587. }
  588. }
  589. nic->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
  590. if (!nic->ufo_in_band_v)
  591. return -ENOMEM;
  592. mem_allocated += (size * sizeof(u64));
  593. /* Allocation and initialization of RXDs in Rings */
  594. size = 0;
  595. for (i = 0; i < config->rx_ring_num; i++) {
  596. if (config->rx_cfg[i].num_rxd %
  597. (rxd_count[nic->rxd_mode] + 1)) {
  598. DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
  599. DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
  600. i);
  601. DBG_PRINT(ERR_DBG, "RxDs per Block");
  602. return FAILURE;
  603. }
  604. size += config->rx_cfg[i].num_rxd;
  605. mac_control->rings[i].block_count =
  606. config->rx_cfg[i].num_rxd /
  607. (rxd_count[nic->rxd_mode] + 1 );
  608. mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
  609. mac_control->rings[i].block_count;
  610. }
  611. if (nic->rxd_mode == RXD_MODE_1)
  612. size = (size * (sizeof(struct RxD1)));
  613. else
  614. size = (size * (sizeof(struct RxD3)));
  615. for (i = 0; i < config->rx_ring_num; i++) {
  616. mac_control->rings[i].rx_curr_get_info.block_index = 0;
  617. mac_control->rings[i].rx_curr_get_info.offset = 0;
  618. mac_control->rings[i].rx_curr_get_info.ring_len =
  619. config->rx_cfg[i].num_rxd - 1;
  620. mac_control->rings[i].rx_curr_put_info.block_index = 0;
  621. mac_control->rings[i].rx_curr_put_info.offset = 0;
  622. mac_control->rings[i].rx_curr_put_info.ring_len =
  623. config->rx_cfg[i].num_rxd - 1;
  624. mac_control->rings[i].nic = nic;
  625. mac_control->rings[i].ring_no = i;
  626. blk_cnt = config->rx_cfg[i].num_rxd /
  627. (rxd_count[nic->rxd_mode] + 1);
  628. /* Allocating all the Rx blocks */
  629. for (j = 0; j < blk_cnt; j++) {
  630. struct rx_block_info *rx_blocks;
  631. int l;
  632. rx_blocks = &mac_control->rings[i].rx_blocks[j];
  633. size = SIZE_OF_BLOCK; //size is always page size
  634. tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
  635. &tmp_p_addr);
  636. if (tmp_v_addr == NULL) {
  637. /*
  638. * In case of failure, free_shared_mem()
  639. * is called, which should free any
  640. * memory that was alloced till the
  641. * failure happened.
  642. */
  643. rx_blocks->block_virt_addr = tmp_v_addr;
  644. return -ENOMEM;
  645. }
  646. mem_allocated += size;
  647. memset(tmp_v_addr, 0, size);
  648. rx_blocks->block_virt_addr = tmp_v_addr;
  649. rx_blocks->block_dma_addr = tmp_p_addr;
  650. rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
  651. rxd_count[nic->rxd_mode],
  652. GFP_KERNEL);
  653. if (!rx_blocks->rxds)
  654. return -ENOMEM;
  655. mem_allocated +=
  656. (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
  657. for (l=0; l<rxd_count[nic->rxd_mode];l++) {
  658. rx_blocks->rxds[l].virt_addr =
  659. rx_blocks->block_virt_addr +
  660. (rxd_size[nic->rxd_mode] * l);
  661. rx_blocks->rxds[l].dma_addr =
  662. rx_blocks->block_dma_addr +
  663. (rxd_size[nic->rxd_mode] * l);
  664. }
  665. }
  666. /* Interlinking all Rx Blocks */
  667. for (j = 0; j < blk_cnt; j++) {
  668. tmp_v_addr =
  669. mac_control->rings[i].rx_blocks[j].block_virt_addr;
  670. tmp_v_addr_next =
  671. mac_control->rings[i].rx_blocks[(j + 1) %
  672. blk_cnt].block_virt_addr;
  673. tmp_p_addr =
  674. mac_control->rings[i].rx_blocks[j].block_dma_addr;
  675. tmp_p_addr_next =
  676. mac_control->rings[i].rx_blocks[(j + 1) %
  677. blk_cnt].block_dma_addr;
  678. pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
  679. pre_rxd_blk->reserved_2_pNext_RxD_block =
  680. (unsigned long) tmp_v_addr_next;
  681. pre_rxd_blk->pNext_RxD_Blk_physical =
  682. (u64) tmp_p_addr_next;
  683. }
  684. }
  685. if (nic->rxd_mode == RXD_MODE_3B) {
  686. /*
  687. * Allocation of Storages for buffer addresses in 2BUFF mode
  688. * and the buffers as well.
  689. */
  690. for (i = 0; i < config->rx_ring_num; i++) {
  691. blk_cnt = config->rx_cfg[i].num_rxd /
  692. (rxd_count[nic->rxd_mode]+ 1);
  693. mac_control->rings[i].ba =
  694. kmalloc((sizeof(struct buffAdd *) * blk_cnt),
  695. GFP_KERNEL);
  696. if (!mac_control->rings[i].ba)
  697. return -ENOMEM;
  698. mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
  699. for (j = 0; j < blk_cnt; j++) {
  700. int k = 0;
  701. mac_control->rings[i].ba[j] =
  702. kmalloc((sizeof(struct buffAdd) *
  703. (rxd_count[nic->rxd_mode] + 1)),
  704. GFP_KERNEL);
  705. if (!mac_control->rings[i].ba[j])
  706. return -ENOMEM;
  707. mem_allocated += (sizeof(struct buffAdd) * \
  708. (rxd_count[nic->rxd_mode] + 1));
  709. while (k != rxd_count[nic->rxd_mode]) {
  710. ba = &mac_control->rings[i].ba[j][k];
  711. ba->ba_0_org = (void *) kmalloc
  712. (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
  713. if (!ba->ba_0_org)
  714. return -ENOMEM;
  715. mem_allocated +=
  716. (BUF0_LEN + ALIGN_SIZE);
  717. tmp = (unsigned long)ba->ba_0_org;
  718. tmp += ALIGN_SIZE;
  719. tmp &= ~((unsigned long) ALIGN_SIZE);
  720. ba->ba_0 = (void *) tmp;
  721. ba->ba_1_org = (void *) kmalloc
  722. (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
  723. if (!ba->ba_1_org)
  724. return -ENOMEM;
  725. mem_allocated
  726. += (BUF1_LEN + ALIGN_SIZE);
  727. tmp = (unsigned long) ba->ba_1_org;
  728. tmp += ALIGN_SIZE;
  729. tmp &= ~((unsigned long) ALIGN_SIZE);
  730. ba->ba_1 = (void *) tmp;
  731. k++;
  732. }
  733. }
  734. }
  735. }
  736. /* Allocation and initialization of Statistics block */
  737. size = sizeof(struct stat_block);
  738. mac_control->stats_mem = pci_alloc_consistent
  739. (nic->pdev, size, &mac_control->stats_mem_phy);
  740. if (!mac_control->stats_mem) {
  741. /*
  742. * In case of failure, free_shared_mem() is called, which
  743. * should free any memory that was alloced till the
  744. * failure happened.
  745. */
  746. return -ENOMEM;
  747. }
  748. mem_allocated += size;
  749. mac_control->stats_mem_sz = size;
  750. tmp_v_addr = mac_control->stats_mem;
  751. mac_control->stats_info = (struct stat_block *) tmp_v_addr;
  752. memset(tmp_v_addr, 0, size);
  753. DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
  754. (unsigned long long) tmp_p_addr);
  755. mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
  756. return SUCCESS;
  757. }
  758. /**
  759. * free_shared_mem - Free the allocated Memory
  760. * @nic: Device private variable.
  761. * Description: This function is to free all memory locations allocated by
  762. * the init_shared_mem() function and return it to the kernel.
  763. */
  764. static void free_shared_mem(struct s2io_nic *nic)
  765. {
  766. int i, j, blk_cnt, size;
  767. u32 ufo_size = 0;
  768. void *tmp_v_addr;
  769. dma_addr_t tmp_p_addr;
  770. struct mac_info *mac_control;
  771. struct config_param *config;
  772. int lst_size, lst_per_page;
  773. struct net_device *dev;
  774. int page_num = 0;
  775. if (!nic)
  776. return;
  777. dev = nic->dev;
  778. mac_control = &nic->mac_control;
  779. config = &nic->config;
  780. lst_size = (sizeof(struct TxD) * config->max_txds);
  781. lst_per_page = PAGE_SIZE / lst_size;
  782. for (i = 0; i < config->tx_fifo_num; i++) {
  783. ufo_size += config->tx_cfg[i].fifo_len;
  784. page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
  785. lst_per_page);
  786. for (j = 0; j < page_num; j++) {
  787. int mem_blks = (j * lst_per_page);
  788. if (!mac_control->fifos[i].list_info)
  789. return;
  790. if (!mac_control->fifos[i].list_info[mem_blks].
  791. list_virt_addr)
  792. break;
  793. pci_free_consistent(nic->pdev, PAGE_SIZE,
  794. mac_control->fifos[i].
  795. list_info[mem_blks].
  796. list_virt_addr,
  797. mac_control->fifos[i].
  798. list_info[mem_blks].
  799. list_phy_addr);
  800. nic->mac_control.stats_info->sw_stat.mem_freed
  801. += PAGE_SIZE;
  802. }
  803. /* If we got a zero DMA address during allocation,
  804. * free the page now
  805. */
  806. if (mac_control->zerodma_virt_addr) {
  807. pci_free_consistent(nic->pdev, PAGE_SIZE,
  808. mac_control->zerodma_virt_addr,
  809. (dma_addr_t)0);
  810. DBG_PRINT(INIT_DBG,
  811. "%s: Freeing TxDL with zero DMA addr. ",
  812. dev->name);
  813. DBG_PRINT(INIT_DBG, "Virtual address %p\n",
  814. mac_control->zerodma_virt_addr);
  815. nic->mac_control.stats_info->sw_stat.mem_freed
  816. += PAGE_SIZE;
  817. }
  818. kfree(mac_control->fifos[i].list_info);
  819. nic->mac_control.stats_info->sw_stat.mem_freed +=
  820. (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
  821. }
  822. size = SIZE_OF_BLOCK;
  823. for (i = 0; i < config->rx_ring_num; i++) {
  824. blk_cnt = mac_control->rings[i].block_count;
  825. for (j = 0; j < blk_cnt; j++) {
  826. tmp_v_addr = mac_control->rings[i].rx_blocks[j].
  827. block_virt_addr;
  828. tmp_p_addr = mac_control->rings[i].rx_blocks[j].
  829. block_dma_addr;
  830. if (tmp_v_addr == NULL)
  831. break;
  832. pci_free_consistent(nic->pdev, size,
  833. tmp_v_addr, tmp_p_addr);
  834. nic->mac_control.stats_info->sw_stat.mem_freed += size;
  835. kfree(mac_control->rings[i].rx_blocks[j].rxds);
  836. nic->mac_control.stats_info->sw_stat.mem_freed +=
  837. ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
  838. }
  839. }
  840. if (nic->rxd_mode == RXD_MODE_3B) {
  841. /* Freeing buffer storage addresses in 2BUFF mode. */
  842. for (i = 0; i < config->rx_ring_num; i++) {
  843. blk_cnt = config->rx_cfg[i].num_rxd /
  844. (rxd_count[nic->rxd_mode] + 1);
  845. for (j = 0; j < blk_cnt; j++) {
  846. int k = 0;
  847. if (!mac_control->rings[i].ba[j])
  848. continue;
  849. while (k != rxd_count[nic->rxd_mode]) {
  850. struct buffAdd *ba =
  851. &mac_control->rings[i].ba[j][k];
  852. kfree(ba->ba_0_org);
  853. nic->mac_control.stats_info->sw_stat.\
  854. mem_freed += (BUF0_LEN + ALIGN_SIZE);
  855. kfree(ba->ba_1_org);
  856. nic->mac_control.stats_info->sw_stat.\
  857. mem_freed += (BUF1_LEN + ALIGN_SIZE);
  858. k++;
  859. }
  860. kfree(mac_control->rings[i].ba[j]);
  861. nic->mac_control.stats_info->sw_stat.mem_freed +=
  862. (sizeof(struct buffAdd) *
  863. (rxd_count[nic->rxd_mode] + 1));
  864. }
  865. kfree(mac_control->rings[i].ba);
  866. nic->mac_control.stats_info->sw_stat.mem_freed +=
  867. (sizeof(struct buffAdd *) * blk_cnt);
  868. }
  869. }
  870. if (mac_control->stats_mem) {
  871. pci_free_consistent(nic->pdev,
  872. mac_control->stats_mem_sz,
  873. mac_control->stats_mem,
  874. mac_control->stats_mem_phy);
  875. nic->mac_control.stats_info->sw_stat.mem_freed +=
  876. mac_control->stats_mem_sz;
  877. }
  878. if (nic->ufo_in_band_v) {
  879. kfree(nic->ufo_in_band_v);
  880. nic->mac_control.stats_info->sw_stat.mem_freed
  881. += (ufo_size * sizeof(u64));
  882. }
  883. }
  884. /**
  885. * s2io_verify_pci_mode -
  886. */
  887. static int s2io_verify_pci_mode(struct s2io_nic *nic)
  888. {
  889. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  890. register u64 val64 = 0;
  891. int mode;
  892. val64 = readq(&bar0->pci_mode);
  893. mode = (u8)GET_PCI_MODE(val64);
  894. if ( val64 & PCI_MODE_UNKNOWN_MODE)
  895. return -1; /* Unknown PCI mode */
  896. return mode;
  897. }
  898. #define NEC_VENID 0x1033
  899. #define NEC_DEVID 0x0125
  900. static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
  901. {
  902. struct pci_dev *tdev = NULL;
  903. while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
  904. if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
  905. if (tdev->bus == s2io_pdev->bus->parent)
  906. pci_dev_put(tdev);
  907. return 1;
  908. }
  909. }
  910. return 0;
  911. }
  912. static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
  913. /**
  914. * s2io_print_pci_mode -
  915. */
  916. static int s2io_print_pci_mode(struct s2io_nic *nic)
  917. {
  918. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  919. register u64 val64 = 0;
  920. int mode;
  921. struct config_param *config = &nic->config;
  922. val64 = readq(&bar0->pci_mode);
  923. mode = (u8)GET_PCI_MODE(val64);
  924. if ( val64 & PCI_MODE_UNKNOWN_MODE)
  925. return -1; /* Unknown PCI mode */
  926. config->bus_speed = bus_speed[mode];
  927. if (s2io_on_nec_bridge(nic->pdev)) {
  928. DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
  929. nic->dev->name);
  930. return mode;
  931. }
  932. if (val64 & PCI_MODE_32_BITS) {
  933. DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
  934. } else {
  935. DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
  936. }
  937. switch(mode) {
  938. case PCI_MODE_PCI_33:
  939. DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
  940. break;
  941. case PCI_MODE_PCI_66:
  942. DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
  943. break;
  944. case PCI_MODE_PCIX_M1_66:
  945. DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
  946. break;
  947. case PCI_MODE_PCIX_M1_100:
  948. DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
  949. break;
  950. case PCI_MODE_PCIX_M1_133:
  951. DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
  952. break;
  953. case PCI_MODE_PCIX_M2_66:
  954. DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
  955. break;
  956. case PCI_MODE_PCIX_M2_100:
  957. DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
  958. break;
  959. case PCI_MODE_PCIX_M2_133:
  960. DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
  961. break;
  962. default:
  963. return -1; /* Unsupported bus speed */
  964. }
  965. return mode;
  966. }
  967. /**
  968. * init_nic - Initialization of hardware
  969. * @nic: device peivate variable
  970. * Description: The function sequentially configures every block
  971. * of the H/W from their reset values.
  972. * Return Value: SUCCESS on success and
  973. * '-1' on failure (endian settings incorrect).
  974. */
  975. static int init_nic(struct s2io_nic *nic)
  976. {
  977. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  978. struct net_device *dev = nic->dev;
  979. register u64 val64 = 0;
  980. void __iomem *add;
  981. u32 time;
  982. int i, j;
  983. struct mac_info *mac_control;
  984. struct config_param *config;
  985. int dtx_cnt = 0;
  986. unsigned long long mem_share;
  987. int mem_size;
  988. mac_control = &nic->mac_control;
  989. config = &nic->config;
  990. /* to set the swapper controle on the card */
  991. if(s2io_set_swapper(nic)) {
  992. DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
  993. return -1;
  994. }
  995. /*
  996. * Herc requires EOI to be removed from reset before XGXS, so..
  997. */
  998. if (nic->device_type & XFRAME_II_DEVICE) {
  999. val64 = 0xA500000000ULL;
  1000. writeq(val64, &bar0->sw_reset);
  1001. msleep(500);
  1002. val64 = readq(&bar0->sw_reset);
  1003. }
  1004. /* Remove XGXS from reset state */
  1005. val64 = 0;
  1006. writeq(val64, &bar0->sw_reset);
  1007. msleep(500);
  1008. val64 = readq(&bar0->sw_reset);
  1009. /* Enable Receiving broadcasts */
  1010. add = &bar0->mac_cfg;
  1011. val64 = readq(&bar0->mac_cfg);
  1012. val64 |= MAC_RMAC_BCAST_ENABLE;
  1013. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1014. writel((u32) val64, add);
  1015. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1016. writel((u32) (val64 >> 32), (add + 4));
  1017. /* Read registers in all blocks */
  1018. val64 = readq(&bar0->mac_int_mask);
  1019. val64 = readq(&bar0->mc_int_mask);
  1020. val64 = readq(&bar0->xgxs_int_mask);
  1021. /* Set MTU */
  1022. val64 = dev->mtu;
  1023. writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
  1024. if (nic->device_type & XFRAME_II_DEVICE) {
  1025. while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
  1026. SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
  1027. &bar0->dtx_control, UF);
  1028. if (dtx_cnt & 0x1)
  1029. msleep(1); /* Necessary!! */
  1030. dtx_cnt++;
  1031. }
  1032. } else {
  1033. while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
  1034. SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
  1035. &bar0->dtx_control, UF);
  1036. val64 = readq(&bar0->dtx_control);
  1037. dtx_cnt++;
  1038. }
  1039. }
  1040. /* Tx DMA Initialization */
  1041. val64 = 0;
  1042. writeq(val64, &bar0->tx_fifo_partition_0);
  1043. writeq(val64, &bar0->tx_fifo_partition_1);
  1044. writeq(val64, &bar0->tx_fifo_partition_2);
  1045. writeq(val64, &bar0->tx_fifo_partition_3);
  1046. for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
  1047. val64 |=
  1048. vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
  1049. 13) | vBIT(config->tx_cfg[i].fifo_priority,
  1050. ((i * 32) + 5), 3);
  1051. if (i == (config->tx_fifo_num - 1)) {
  1052. if (i % 2 == 0)
  1053. i++;
  1054. }
  1055. switch (i) {
  1056. case 1:
  1057. writeq(val64, &bar0->tx_fifo_partition_0);
  1058. val64 = 0;
  1059. break;
  1060. case 3:
  1061. writeq(val64, &bar0->tx_fifo_partition_1);
  1062. val64 = 0;
  1063. break;
  1064. case 5:
  1065. writeq(val64, &bar0->tx_fifo_partition_2);
  1066. val64 = 0;
  1067. break;
  1068. case 7:
  1069. writeq(val64, &bar0->tx_fifo_partition_3);
  1070. break;
  1071. }
  1072. }
  1073. /*
  1074. * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
  1075. * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
  1076. */
  1077. if ((nic->device_type == XFRAME_I_DEVICE) &&
  1078. (nic->pdev->revision < 4))
  1079. writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
  1080. val64 = readq(&bar0->tx_fifo_partition_0);
  1081. DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
  1082. &bar0->tx_fifo_partition_0, (unsigned long long) val64);
  1083. /*
  1084. * Initialization of Tx_PA_CONFIG register to ignore packet
  1085. * integrity checking.
  1086. */
  1087. val64 = readq(&bar0->tx_pa_cfg);
  1088. val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
  1089. TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
  1090. writeq(val64, &bar0->tx_pa_cfg);
  1091. /* Rx DMA intialization. */
  1092. val64 = 0;
  1093. for (i = 0; i < config->rx_ring_num; i++) {
  1094. val64 |=
  1095. vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
  1096. 3);
  1097. }
  1098. writeq(val64, &bar0->rx_queue_priority);
  1099. /*
  1100. * Allocating equal share of memory to all the
  1101. * configured Rings.
  1102. */
  1103. val64 = 0;
  1104. if (nic->device_type & XFRAME_II_DEVICE)
  1105. mem_size = 32;
  1106. else
  1107. mem_size = 64;
  1108. for (i = 0; i < config->rx_ring_num; i++) {
  1109. switch (i) {
  1110. case 0:
  1111. mem_share = (mem_size / config->rx_ring_num +
  1112. mem_size % config->rx_ring_num);
  1113. val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
  1114. continue;
  1115. case 1:
  1116. mem_share = (mem_size / config->rx_ring_num);
  1117. val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
  1118. continue;
  1119. case 2:
  1120. mem_share = (mem_size / config->rx_ring_num);
  1121. val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
  1122. continue;
  1123. case 3:
  1124. mem_share = (mem_size / config->rx_ring_num);
  1125. val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
  1126. continue;
  1127. case 4:
  1128. mem_share = (mem_size / config->rx_ring_num);
  1129. val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
  1130. continue;
  1131. case 5:
  1132. mem_share = (mem_size / config->rx_ring_num);
  1133. val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
  1134. continue;
  1135. case 6:
  1136. mem_share = (mem_size / config->rx_ring_num);
  1137. val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
  1138. continue;
  1139. case 7:
  1140. mem_share = (mem_size / config->rx_ring_num);
  1141. val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
  1142. continue;
  1143. }
  1144. }
  1145. writeq(val64, &bar0->rx_queue_cfg);
  1146. /*
  1147. * Filling Tx round robin registers
  1148. * as per the number of FIFOs
  1149. */
  1150. switch (config->tx_fifo_num) {
  1151. case 1:
  1152. val64 = 0x0000000000000000ULL;
  1153. writeq(val64, &bar0->tx_w_round_robin_0);
  1154. writeq(val64, &bar0->tx_w_round_robin_1);
  1155. writeq(val64, &bar0->tx_w_round_robin_2);
  1156. writeq(val64, &bar0->tx_w_round_robin_3);
  1157. writeq(val64, &bar0->tx_w_round_robin_4);
  1158. break;
  1159. case 2:
  1160. val64 = 0x0000010000010000ULL;
  1161. writeq(val64, &bar0->tx_w_round_robin_0);
  1162. val64 = 0x0100000100000100ULL;
  1163. writeq(val64, &bar0->tx_w_round_robin_1);
  1164. val64 = 0x0001000001000001ULL;
  1165. writeq(val64, &bar0->tx_w_round_robin_2);
  1166. val64 = 0x0000010000010000ULL;
  1167. writeq(val64, &bar0->tx_w_round_robin_3);
  1168. val64 = 0x0100000000000000ULL;
  1169. writeq(val64, &bar0->tx_w_round_robin_4);
  1170. break;
  1171. case 3:
  1172. val64 = 0x0001000102000001ULL;
  1173. writeq(val64, &bar0->tx_w_round_robin_0);
  1174. val64 = 0x0001020000010001ULL;
  1175. writeq(val64, &bar0->tx_w_round_robin_1);
  1176. val64 = 0x0200000100010200ULL;
  1177. writeq(val64, &bar0->tx_w_round_robin_2);
  1178. val64 = 0x0001000102000001ULL;
  1179. writeq(val64, &bar0->tx_w_round_robin_3);
  1180. val64 = 0x0001020000000000ULL;
  1181. writeq(val64, &bar0->tx_w_round_robin_4);
  1182. break;
  1183. case 4:
  1184. val64 = 0x0001020300010200ULL;
  1185. writeq(val64, &bar0->tx_w_round_robin_0);
  1186. val64 = 0x0100000102030001ULL;
  1187. writeq(val64, &bar0->tx_w_round_robin_1);
  1188. val64 = 0x0200010000010203ULL;
  1189. writeq(val64, &bar0->tx_w_round_robin_2);
  1190. val64 = 0x0001020001000001ULL;
  1191. writeq(val64, &bar0->tx_w_round_robin_3);
  1192. val64 = 0x0203000100000000ULL;
  1193. writeq(val64, &bar0->tx_w_round_robin_4);
  1194. break;
  1195. case 5:
  1196. val64 = 0x0001000203000102ULL;
  1197. writeq(val64, &bar0->tx_w_round_robin_0);
  1198. val64 = 0x0001020001030004ULL;
  1199. writeq(val64, &bar0->tx_w_round_robin_1);
  1200. val64 = 0x0001000203000102ULL;
  1201. writeq(val64, &bar0->tx_w_round_robin_2);
  1202. val64 = 0x0001020001030004ULL;
  1203. writeq(val64, &bar0->tx_w_round_robin_3);
  1204. val64 = 0x0001000000000000ULL;
  1205. writeq(val64, &bar0->tx_w_round_robin_4);
  1206. break;
  1207. case 6:
  1208. val64 = 0x0001020304000102ULL;
  1209. writeq(val64, &bar0->tx_w_round_robin_0);
  1210. val64 = 0x0304050001020001ULL;
  1211. writeq(val64, &bar0->tx_w_round_robin_1);
  1212. val64 = 0x0203000100000102ULL;
  1213. writeq(val64, &bar0->tx_w_round_robin_2);
  1214. val64 = 0x0304000102030405ULL;
  1215. writeq(val64, &bar0->tx_w_round_robin_3);
  1216. val64 = 0x0001000200000000ULL;
  1217. writeq(val64, &bar0->tx_w_round_robin_4);
  1218. break;
  1219. case 7:
  1220. val64 = 0x0001020001020300ULL;
  1221. writeq(val64, &bar0->tx_w_round_robin_0);
  1222. val64 = 0x0102030400010203ULL;
  1223. writeq(val64, &bar0->tx_w_round_robin_1);
  1224. val64 = 0x0405060001020001ULL;
  1225. writeq(val64, &bar0->tx_w_round_robin_2);
  1226. val64 = 0x0304050000010200ULL;
  1227. writeq(val64, &bar0->tx_w_round_robin_3);
  1228. val64 = 0x0102030000000000ULL;
  1229. writeq(val64, &bar0->tx_w_round_robin_4);
  1230. break;
  1231. case 8:
  1232. val64 = 0x0001020300040105ULL;
  1233. writeq(val64, &bar0->tx_w_round_robin_0);
  1234. val64 = 0x0200030106000204ULL;
  1235. writeq(val64, &bar0->tx_w_round_robin_1);
  1236. val64 = 0x0103000502010007ULL;
  1237. writeq(val64, &bar0->tx_w_round_robin_2);
  1238. val64 = 0x0304010002060500ULL;
  1239. writeq(val64, &bar0->tx_w_round_robin_3);
  1240. val64 = 0x0103020400000000ULL;
  1241. writeq(val64, &bar0->tx_w_round_robin_4);
  1242. break;
  1243. }
  1244. /* Enable all configured Tx FIFO partitions */
  1245. val64 = readq(&bar0->tx_fifo_partition_0);
  1246. val64 |= (TX_FIFO_PARTITION_EN);
  1247. writeq(val64, &bar0->tx_fifo_partition_0);
  1248. /* Filling the Rx round robin registers as per the
  1249. * number of Rings and steering based on QoS.
  1250. */
  1251. switch (config->rx_ring_num) {
  1252. case 1:
  1253. val64 = 0x8080808080808080ULL;
  1254. writeq(val64, &bar0->rts_qos_steering);
  1255. break;
  1256. case 2:
  1257. val64 = 0x0000010000010000ULL;
  1258. writeq(val64, &bar0->rx_w_round_robin_0);
  1259. val64 = 0x0100000100000100ULL;
  1260. writeq(val64, &bar0->rx_w_round_robin_1);
  1261. val64 = 0x0001000001000001ULL;
  1262. writeq(val64, &bar0->rx_w_round_robin_2);
  1263. val64 = 0x0000010000010000ULL;
  1264. writeq(val64, &bar0->rx_w_round_robin_3);
  1265. val64 = 0x0100000000000000ULL;
  1266. writeq(val64, &bar0->rx_w_round_robin_4);
  1267. val64 = 0x8080808040404040ULL;
  1268. writeq(val64, &bar0->rts_qos_steering);
  1269. break;
  1270. case 3:
  1271. val64 = 0x0001000102000001ULL;
  1272. writeq(val64, &bar0->rx_w_round_robin_0);
  1273. val64 = 0x0001020000010001ULL;
  1274. writeq(val64, &bar0->rx_w_round_robin_1);
  1275. val64 = 0x0200000100010200ULL;
  1276. writeq(val64, &bar0->rx_w_round_robin_2);
  1277. val64 = 0x0001000102000001ULL;
  1278. writeq(val64, &bar0->rx_w_round_robin_3);
  1279. val64 = 0x0001020000000000ULL;
  1280. writeq(val64, &bar0->rx_w_round_robin_4);
  1281. val64 = 0x8080804040402020ULL;
  1282. writeq(val64, &bar0->rts_qos_steering);
  1283. break;
  1284. case 4:
  1285. val64 = 0x0001020300010200ULL;
  1286. writeq(val64, &bar0->rx_w_round_robin_0);
  1287. val64 = 0x0100000102030001ULL;
  1288. writeq(val64, &bar0->rx_w_round_robin_1);
  1289. val64 = 0x0200010000010203ULL;
  1290. writeq(val64, &bar0->rx_w_round_robin_2);
  1291. val64 = 0x0001020001000001ULL;
  1292. writeq(val64, &bar0->rx_w_round_robin_3);
  1293. val64 = 0x0203000100000000ULL;
  1294. writeq(val64, &bar0->rx_w_round_robin_4);
  1295. val64 = 0x8080404020201010ULL;
  1296. writeq(val64, &bar0->rts_qos_steering);
  1297. break;
  1298. case 5:
  1299. val64 = 0x0001000203000102ULL;
  1300. writeq(val64, &bar0->rx_w_round_robin_0);
  1301. val64 = 0x0001020001030004ULL;
  1302. writeq(val64, &bar0->rx_w_round_robin_1);
  1303. val64 = 0x0001000203000102ULL;
  1304. writeq(val64, &bar0->rx_w_round_robin_2);
  1305. val64 = 0x0001020001030004ULL;
  1306. writeq(val64, &bar0->rx_w_round_robin_3);
  1307. val64 = 0x0001000000000000ULL;
  1308. writeq(val64, &bar0->rx_w_round_robin_4);
  1309. val64 = 0x8080404020201008ULL;
  1310. writeq(val64, &bar0->rts_qos_steering);
  1311. break;
  1312. case 6:
  1313. val64 = 0x0001020304000102ULL;
  1314. writeq(val64, &bar0->rx_w_round_robin_0);
  1315. val64 = 0x0304050001020001ULL;
  1316. writeq(val64, &bar0->rx_w_round_robin_1);
  1317. val64 = 0x0203000100000102ULL;
  1318. writeq(val64, &bar0->rx_w_round_robin_2);
  1319. val64 = 0x0304000102030405ULL;
  1320. writeq(val64, &bar0->rx_w_round_robin_3);
  1321. val64 = 0x0001000200000000ULL;
  1322. writeq(val64, &bar0->rx_w_round_robin_4);
  1323. val64 = 0x8080404020100804ULL;
  1324. writeq(val64, &bar0->rts_qos_steering);
  1325. break;
  1326. case 7:
  1327. val64 = 0x0001020001020300ULL;
  1328. writeq(val64, &bar0->rx_w_round_robin_0);
  1329. val64 = 0x0102030400010203ULL;
  1330. writeq(val64, &bar0->rx_w_round_robin_1);
  1331. val64 = 0x0405060001020001ULL;
  1332. writeq(val64, &bar0->rx_w_round_robin_2);
  1333. val64 = 0x0304050000010200ULL;
  1334. writeq(val64, &bar0->rx_w_round_robin_3);
  1335. val64 = 0x0102030000000000ULL;
  1336. writeq(val64, &bar0->rx_w_round_robin_4);
  1337. val64 = 0x8080402010080402ULL;
  1338. writeq(val64, &bar0->rts_qos_steering);
  1339. break;
  1340. case 8:
  1341. val64 = 0x0001020300040105ULL;
  1342. writeq(val64, &bar0->rx_w_round_robin_0);
  1343. val64 = 0x0200030106000204ULL;
  1344. writeq(val64, &bar0->rx_w_round_robin_1);
  1345. val64 = 0x0103000502010007ULL;
  1346. writeq(val64, &bar0->rx_w_round_robin_2);
  1347. val64 = 0x0304010002060500ULL;
  1348. writeq(val64, &bar0->rx_w_round_robin_3);
  1349. val64 = 0x0103020400000000ULL;
  1350. writeq(val64, &bar0->rx_w_round_robin_4);
  1351. val64 = 0x8040201008040201ULL;
  1352. writeq(val64, &bar0->rts_qos_steering);
  1353. break;
  1354. }
  1355. /* UDP Fix */
  1356. val64 = 0;
  1357. for (i = 0; i < 8; i++)
  1358. writeq(val64, &bar0->rts_frm_len_n[i]);
  1359. /* Set the default rts frame length for the rings configured */
  1360. val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
  1361. for (i = 0 ; i < config->rx_ring_num ; i++)
  1362. writeq(val64, &bar0->rts_frm_len_n[i]);
  1363. /* Set the frame length for the configured rings
  1364. * desired by the user
  1365. */
  1366. for (i = 0; i < config->rx_ring_num; i++) {
  1367. /* If rts_frm_len[i] == 0 then it is assumed that user not
  1368. * specified frame length steering.
  1369. * If the user provides the frame length then program
  1370. * the rts_frm_len register for those values or else
  1371. * leave it as it is.
  1372. */
  1373. if (rts_frm_len[i] != 0) {
  1374. writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
  1375. &bar0->rts_frm_len_n[i]);
  1376. }
  1377. }
  1378. /* Disable differentiated services steering logic */
  1379. for (i = 0; i < 64; i++) {
  1380. if (rts_ds_steer(nic, i, 0) == FAILURE) {
  1381. DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
  1382. dev->name);
  1383. DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
  1384. return FAILURE;
  1385. }
  1386. }
  1387. /* Program statistics memory */
  1388. writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
  1389. if (nic->device_type == XFRAME_II_DEVICE) {
  1390. val64 = STAT_BC(0x320);
  1391. writeq(val64, &bar0->stat_byte_cnt);
  1392. }
  1393. /*
  1394. * Initializing the sampling rate for the device to calculate the
  1395. * bandwidth utilization.
  1396. */
  1397. val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
  1398. MAC_RX_LINK_UTIL_VAL(rmac_util_period);
  1399. writeq(val64, &bar0->mac_link_util);
  1400. /*
  1401. * Initializing the Transmit and Receive Traffic Interrupt
  1402. * Scheme.
  1403. */
  1404. /*
  1405. * TTI Initialization. Default Tx timer gets us about
  1406. * 250 interrupts per sec. Continuous interrupts are enabled
  1407. * by default.
  1408. */
  1409. if (nic->device_type == XFRAME_II_DEVICE) {
  1410. int count = (nic->config.bus_speed * 125)/2;
  1411. val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
  1412. } else {
  1413. val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
  1414. }
  1415. val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
  1416. TTI_DATA1_MEM_TX_URNG_B(0x10) |
  1417. TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
  1418. if (use_continuous_tx_intrs)
  1419. val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
  1420. writeq(val64, &bar0->tti_data1_mem);
  1421. val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
  1422. TTI_DATA2_MEM_TX_UFC_B(0x20) |
  1423. TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80);
  1424. writeq(val64, &bar0->tti_data2_mem);
  1425. val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
  1426. writeq(val64, &bar0->tti_command_mem);
  1427. /*
  1428. * Once the operation completes, the Strobe bit of the command
  1429. * register will be reset. We poll for this particular condition
  1430. * We wait for a maximum of 500ms for the operation to complete,
  1431. * if it's not complete by then we return error.
  1432. */
  1433. time = 0;
  1434. while (TRUE) {
  1435. val64 = readq(&bar0->tti_command_mem);
  1436. if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
  1437. break;
  1438. }
  1439. if (time > 10) {
  1440. DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
  1441. dev->name);
  1442. return -1;
  1443. }
  1444. msleep(50);
  1445. time++;
  1446. }
  1447. /* RTI Initialization */
  1448. if (nic->device_type == XFRAME_II_DEVICE) {
  1449. /*
  1450. * Programmed to generate Apprx 500 Intrs per
  1451. * second
  1452. */
  1453. int count = (nic->config.bus_speed * 125)/4;
  1454. val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
  1455. } else
  1456. val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
  1457. val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
  1458. RTI_DATA1_MEM_RX_URNG_B(0x10) |
  1459. RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
  1460. writeq(val64, &bar0->rti_data1_mem);
  1461. val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
  1462. RTI_DATA2_MEM_RX_UFC_B(0x2) ;
  1463. if (nic->config.intr_type == MSI_X)
  1464. val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
  1465. RTI_DATA2_MEM_RX_UFC_D(0x40));
  1466. else
  1467. val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
  1468. RTI_DATA2_MEM_RX_UFC_D(0x80));
  1469. writeq(val64, &bar0->rti_data2_mem);
  1470. for (i = 0; i < config->rx_ring_num; i++) {
  1471. val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
  1472. | RTI_CMD_MEM_OFFSET(i);
  1473. writeq(val64, &bar0->rti_command_mem);
  1474. /*
  1475. * Once the operation completes, the Strobe bit of the
  1476. * command register will be reset. We poll for this
  1477. * particular condition. We wait for a maximum of 500ms
  1478. * for the operation to complete, if it's not complete
  1479. * by then we return error.
  1480. */
  1481. time = 0;
  1482. while (TRUE) {
  1483. val64 = readq(&bar0->rti_command_mem);
  1484. if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
  1485. break;
  1486. if (time > 10) {
  1487. DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
  1488. dev->name);
  1489. return -1;
  1490. }
  1491. time++;
  1492. msleep(50);
  1493. }
  1494. }
  1495. /*
  1496. * Initializing proper values as Pause threshold into all
  1497. * the 8 Queues on Rx side.
  1498. */
  1499. writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
  1500. writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
  1501. /* Disable RMAC PAD STRIPPING */
  1502. add = &bar0->mac_cfg;
  1503. val64 = readq(&bar0->mac_cfg);
  1504. val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
  1505. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1506. writel((u32) (val64), add);
  1507. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1508. writel((u32) (val64 >> 32), (add + 4));
  1509. val64 = readq(&bar0->mac_cfg);
  1510. /* Enable FCS stripping by adapter */
  1511. add = &bar0->mac_cfg;
  1512. val64 = readq(&bar0->mac_cfg);
  1513. val64 |= MAC_CFG_RMAC_STRIP_FCS;
  1514. if (nic->device_type == XFRAME_II_DEVICE)
  1515. writeq(val64, &bar0->mac_cfg);
  1516. else {
  1517. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1518. writel((u32) (val64), add);
  1519. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1520. writel((u32) (val64 >> 32), (add + 4));
  1521. }
  1522. /*
  1523. * Set the time value to be inserted in the pause frame
  1524. * generated by xena.
  1525. */
  1526. val64 = readq(&bar0->rmac_pause_cfg);
  1527. val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
  1528. val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
  1529. writeq(val64, &bar0->rmac_pause_cfg);
  1530. /*
  1531. * Set the Threshold Limit for Generating the pause frame
  1532. * If the amount of data in any Queue exceeds ratio of
  1533. * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
  1534. * pause frame is generated
  1535. */
  1536. val64 = 0;
  1537. for (i = 0; i < 4; i++) {
  1538. val64 |=
  1539. (((u64) 0xFF00 | nic->mac_control.
  1540. mc_pause_threshold_q0q3)
  1541. << (i * 2 * 8));
  1542. }
  1543. writeq(val64, &bar0->mc_pause_thresh_q0q3);
  1544. val64 = 0;
  1545. for (i = 0; i < 4; i++) {
  1546. val64 |=
  1547. (((u64) 0xFF00 | nic->mac_control.
  1548. mc_pause_threshold_q4q7)
  1549. << (i * 2 * 8));
  1550. }
  1551. writeq(val64, &bar0->mc_pause_thresh_q4q7);
  1552. /*
  1553. * TxDMA will stop Read request if the number of read split has
  1554. * exceeded the limit pointed by shared_splits
  1555. */
  1556. val64 = readq(&bar0->pic_control);
  1557. val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
  1558. writeq(val64, &bar0->pic_control);
  1559. if (nic->config.bus_speed == 266) {
  1560. writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
  1561. writeq(0x0, &bar0->read_retry_delay);
  1562. writeq(0x0, &bar0->write_retry_delay);
  1563. }
  1564. /*
  1565. * Programming the Herc to split every write transaction
  1566. * that does not start on an ADB to reduce disconnects.
  1567. */
  1568. if (nic->device_type == XFRAME_II_DEVICE) {
  1569. val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
  1570. MISC_LINK_STABILITY_PRD(3);
  1571. writeq(val64, &bar0->misc_control);
  1572. val64 = readq(&bar0->pic_control2);
  1573. val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
  1574. writeq(val64, &bar0->pic_control2);
  1575. }
  1576. if (strstr(nic->product_name, "CX4")) {
  1577. val64 = TMAC_AVG_IPG(0x17);
  1578. writeq(val64, &bar0->tmac_avg_ipg);
  1579. }
  1580. return SUCCESS;
  1581. }
  1582. #define LINK_UP_DOWN_INTERRUPT 1
  1583. #define MAC_RMAC_ERR_TIMER 2
  1584. static int s2io_link_fault_indication(struct s2io_nic *nic)
  1585. {
  1586. if (nic->config.intr_type != INTA)
  1587. return MAC_RMAC_ERR_TIMER;
  1588. if (nic->device_type == XFRAME_II_DEVICE)
  1589. return LINK_UP_DOWN_INTERRUPT;
  1590. else
  1591. return MAC_RMAC_ERR_TIMER;
  1592. }
  1593. /**
  1594. * do_s2io_write_bits - update alarm bits in alarm register
  1595. * @value: alarm bits
  1596. * @flag: interrupt status
  1597. * @addr: address value
  1598. * Description: update alarm bits in alarm register
  1599. * Return Value:
  1600. * NONE.
  1601. */
  1602. static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
  1603. {
  1604. u64 temp64;
  1605. temp64 = readq(addr);
  1606. if(flag == ENABLE_INTRS)
  1607. temp64 &= ~((u64) value);
  1608. else
  1609. temp64 |= ((u64) value);
  1610. writeq(temp64, addr);
  1611. }
  1612. static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
  1613. {
  1614. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  1615. register u64 gen_int_mask = 0;
  1616. if (mask & TX_DMA_INTR) {
  1617. gen_int_mask |= TXDMA_INT_M;
  1618. do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
  1619. TXDMA_PCC_INT | TXDMA_TTI_INT |
  1620. TXDMA_LSO_INT | TXDMA_TPA_INT |
  1621. TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
  1622. do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
  1623. PFC_MISC_0_ERR | PFC_MISC_1_ERR |
  1624. PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
  1625. &bar0->pfc_err_mask);
  1626. do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
  1627. TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
  1628. TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
  1629. do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
  1630. PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
  1631. PCC_N_SERR | PCC_6_COF_OV_ERR |
  1632. PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
  1633. PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
  1634. PCC_TXB_ECC_SG_ERR, flag, &bar0->pcc_err_mask);
  1635. do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
  1636. TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
  1637. do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
  1638. LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
  1639. LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
  1640. flag, &bar0->lso_err_mask);
  1641. do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
  1642. flag, &bar0->tpa_err_mask);
  1643. do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
  1644. }
  1645. if (mask & TX_MAC_INTR) {
  1646. gen_int_mask |= TXMAC_INT_M;
  1647. do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
  1648. &bar0->mac_int_mask);
  1649. do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
  1650. TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
  1651. TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
  1652. flag, &bar0->mac_tmac_err_mask);
  1653. }
  1654. if (mask & TX_XGXS_INTR) {
  1655. gen_int_mask |= TXXGXS_INT_M;
  1656. do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
  1657. &bar0->xgxs_int_mask);
  1658. do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
  1659. TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
  1660. flag, &bar0->xgxs_txgxs_err_mask);
  1661. }
  1662. if (mask & RX_DMA_INTR) {
  1663. gen_int_mask |= RXDMA_INT_M;
  1664. do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
  1665. RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
  1666. flag, &bar0->rxdma_int_mask);
  1667. do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
  1668. RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
  1669. RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
  1670. RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
  1671. do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
  1672. PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
  1673. PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
  1674. &bar0->prc_pcix_err_mask);
  1675. do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
  1676. RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
  1677. &bar0->rpa_err_mask);
  1678. do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
  1679. RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
  1680. RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
  1681. RDA_FRM_ECC_SG_ERR | RDA_MISC_ERR|RDA_PCIX_ERR,
  1682. flag, &bar0->rda_err_mask);
  1683. do_s2io_write_bits(RTI_SM_ERR_ALARM |
  1684. RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
  1685. flag, &bar0->rti_err_mask);
  1686. }
  1687. if (mask & RX_MAC_INTR) {
  1688. gen_int_mask |= RXMAC_INT_M;
  1689. do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
  1690. &bar0->mac_int_mask);
  1691. do_s2io_write_bits(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
  1692. RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
  1693. RMAC_DOUBLE_ECC_ERR |
  1694. RMAC_LINK_STATE_CHANGE_INT,
  1695. flag, &bar0->mac_rmac_err_mask);
  1696. }
  1697. if (mask & RX_XGXS_INTR)
  1698. {
  1699. gen_int_mask |= RXXGXS_INT_M;
  1700. do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
  1701. &bar0->xgxs_int_mask);
  1702. do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
  1703. &bar0->xgxs_rxgxs_err_mask);
  1704. }
  1705. if (mask & MC_INTR) {
  1706. gen_int_mask |= MC_INT_M;
  1707. do_s2io_write_bits(MC_INT_MASK_MC_INT, flag, &bar0->mc_int_mask);
  1708. do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
  1709. MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
  1710. &bar0->mc_err_mask);
  1711. }
  1712. nic->general_int_mask = gen_int_mask;
  1713. /* Remove this line when alarm interrupts are enabled */
  1714. nic->general_int_mask = 0;
  1715. }
  1716. /**
  1717. * en_dis_able_nic_intrs - Enable or Disable the interrupts
  1718. * @nic: device private variable,
  1719. * @mask: A mask indicating which Intr block must be modified and,
  1720. * @flag: A flag indicating whether to enable or disable the Intrs.
  1721. * Description: This function will either disable or enable the interrupts
  1722. * depending on the flag argument. The mask argument can be used to
  1723. * enable/disable any Intr block.
  1724. * Return Value: NONE.
  1725. */
  1726. static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
  1727. {
  1728. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  1729. register u64 temp64 = 0, intr_mask = 0;
  1730. intr_mask = nic->general_int_mask;
  1731. /* Top level interrupt classification */
  1732. /* PIC Interrupts */
  1733. if (mask & TX_PIC_INTR) {
  1734. /* Enable PIC Intrs in the general intr mask register */
  1735. intr_mask |= TXPIC_INT_M;
  1736. if (flag == ENABLE_INTRS) {
  1737. /*
  1738. * If Hercules adapter enable GPIO otherwise
  1739. * disable all PCIX, Flash, MDIO, IIC and GPIO
  1740. * interrupts for now.
  1741. * TODO
  1742. */
  1743. if (s2io_link_fault_indication(nic) ==
  1744. LINK_UP_DOWN_INTERRUPT ) {
  1745. do_s2io_write_bits(PIC_INT_GPIO, flag,
  1746. &bar0->pic_int_mask);
  1747. do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
  1748. &bar0->gpio_int_mask);
  1749. } else
  1750. writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
  1751. } else if (flag == DISABLE_INTRS) {
  1752. /*
  1753. * Disable PIC Intrs in the general
  1754. * intr mask register
  1755. */
  1756. writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
  1757. }
  1758. }
  1759. /* Tx traffic interrupts */
  1760. if (mask & TX_TRAFFIC_INTR) {
  1761. intr_mask |= TXTRAFFIC_INT_M;
  1762. if (flag == ENABLE_INTRS) {
  1763. /*
  1764. * Enable all the Tx side interrupts
  1765. * writing 0 Enables all 64 TX interrupt levels
  1766. */
  1767. writeq(0x0, &bar0->tx_traffic_mask);
  1768. } else if (flag == DISABLE_INTRS) {
  1769. /*
  1770. * Disable Tx Traffic Intrs in the general intr mask
  1771. * register.
  1772. */
  1773. writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
  1774. }
  1775. }
  1776. /* Rx traffic interrupts */
  1777. if (mask & RX_TRAFFIC_INTR) {
  1778. intr_mask |= RXTRAFFIC_INT_M;
  1779. if (flag == ENABLE_INTRS) {
  1780. /* writing 0 Enables all 8 RX interrupt levels */
  1781. writeq(0x0, &bar0->rx_traffic_mask);
  1782. } else if (flag == DISABLE_INTRS) {
  1783. /*
  1784. * Disable Rx Traffic Intrs in the general intr mask
  1785. * register.
  1786. */
  1787. writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
  1788. }
  1789. }
  1790. temp64 = readq(&bar0->general_int_mask);
  1791. if (flag == ENABLE_INTRS)
  1792. temp64 &= ~((u64) intr_mask);
  1793. else
  1794. temp64 = DISABLE_ALL_INTRS;
  1795. writeq(temp64, &bar0->general_int_mask);
  1796. nic->general_int_mask = readq(&bar0->general_int_mask);
  1797. }
  1798. /**
  1799. * verify_pcc_quiescent- Checks for PCC quiescent state
  1800. * Return: 1 If PCC is quiescence
  1801. * 0 If PCC is not quiescence
  1802. */
  1803. static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
  1804. {
  1805. int ret = 0, herc;
  1806. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  1807. u64 val64 = readq(&bar0->adapter_status);
  1808. herc = (sp->device_type == XFRAME_II_DEVICE);
  1809. if (flag == FALSE) {
  1810. if ((!herc && (sp->pdev->revision >= 4)) || herc) {
  1811. if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
  1812. ret = 1;
  1813. } else {
  1814. if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
  1815. ret = 1;
  1816. }
  1817. } else {
  1818. if ((!herc && (sp->pdev->revision >= 4)) || herc) {
  1819. if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
  1820. ADAPTER_STATUS_RMAC_PCC_IDLE))
  1821. ret = 1;
  1822. } else {
  1823. if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
  1824. ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
  1825. ret = 1;
  1826. }
  1827. }
  1828. return ret;
  1829. }
  1830. /**
  1831. * verify_xena_quiescence - Checks whether the H/W is ready
  1832. * Description: Returns whether the H/W is ready to go or not. Depending
  1833. * on whether adapter enable bit was written or not the comparison
  1834. * differs and the calling function passes the input argument flag to
  1835. * indicate this.
  1836. * Return: 1 If xena is quiescence
  1837. * 0 If Xena is not quiescence
  1838. */
  1839. static int verify_xena_quiescence(struct s2io_nic *sp)
  1840. {
  1841. int mode;
  1842. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  1843. u64 val64 = readq(&bar0->adapter_status);
  1844. mode = s2io_verify_pci_mode(sp);
  1845. if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
  1846. DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
  1847. return 0;
  1848. }
  1849. if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
  1850. DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
  1851. return 0;
  1852. }
  1853. if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
  1854. DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
  1855. return 0;
  1856. }
  1857. if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
  1858. DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
  1859. return 0;
  1860. }
  1861. if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
  1862. DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
  1863. return 0;
  1864. }
  1865. if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
  1866. DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
  1867. return 0;
  1868. }
  1869. if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
  1870. DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
  1871. return 0;
  1872. }
  1873. if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
  1874. DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
  1875. return 0;
  1876. }
  1877. /*
  1878. * In PCI 33 mode, the P_PLL is not used, and therefore,
  1879. * the the P_PLL_LOCK bit in the adapter_status register will
  1880. * not be asserted.
  1881. */
  1882. if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
  1883. sp->device_type == XFRAME_II_DEVICE && mode !=
  1884. PCI_MODE_PCI_33) {
  1885. DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
  1886. return 0;
  1887. }
  1888. if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
  1889. ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
  1890. DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
  1891. return 0;
  1892. }
  1893. return 1;
  1894. }
  1895. /**
  1896. * fix_mac_address - Fix for Mac addr problem on Alpha platforms
  1897. * @sp: Pointer to device specifc structure
  1898. * Description :
  1899. * New procedure to clear mac address reading problems on Alpha platforms
  1900. *
  1901. */
  1902. static void fix_mac_address(struct s2io_nic * sp)
  1903. {
  1904. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  1905. u64 val64;
  1906. int i = 0;
  1907. while (fix_mac[i] != END_SIGN) {
  1908. writeq(fix_mac[i++], &bar0->gpio_control);
  1909. udelay(10);
  1910. val64 = readq(&bar0->gpio_control);
  1911. }
  1912. }
  1913. /**
  1914. * start_nic - Turns the device on
  1915. * @nic : device private variable.
  1916. * Description:
  1917. * This function actually turns the device on. Before this function is
  1918. * called,all Registers are configured from their reset states
  1919. * and shared memory is allocated but the NIC is still quiescent. On
  1920. * calling this function, the device interrupts are cleared and the NIC is
  1921. * literally switched on by writing into the adapter control register.
  1922. * Return Value:
  1923. * SUCCESS on success and -1 on failure.
  1924. */
  1925. static int start_nic(struct s2io_nic *nic)
  1926. {
  1927. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  1928. struct net_device *dev = nic->dev;
  1929. register u64 val64 = 0;
  1930. u16 subid, i;
  1931. struct mac_info *mac_control;
  1932. struct config_param *config;
  1933. mac_control = &nic->mac_control;
  1934. config = &nic->config;
  1935. /* PRC Initialization and configuration */
  1936. for (i = 0; i < config->rx_ring_num; i++) {
  1937. writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
  1938. &bar0->prc_rxd0_n[i]);
  1939. val64 = readq(&bar0->prc_ctrl_n[i]);
  1940. if (nic->rxd_mode == RXD_MODE_1)
  1941. val64 |= PRC_CTRL_RC_ENABLED;
  1942. else
  1943. val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
  1944. if (nic->device_type == XFRAME_II_DEVICE)
  1945. val64 |= PRC_CTRL_GROUP_READS;
  1946. val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
  1947. val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
  1948. writeq(val64, &bar0->prc_ctrl_n[i]);
  1949. }
  1950. if (nic->rxd_mode == RXD_MODE_3B) {
  1951. /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
  1952. val64 = readq(&bar0->rx_pa_cfg);
  1953. val64 |= RX_PA_CFG_IGNORE_L2_ERR;
  1954. writeq(val64, &bar0->rx_pa_cfg);
  1955. }
  1956. if (vlan_tag_strip == 0) {
  1957. val64 = readq(&bar0->rx_pa_cfg);
  1958. val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
  1959. writeq(val64, &bar0->rx_pa_cfg);
  1960. vlan_strip_flag = 0;
  1961. }
  1962. /*
  1963. * Enabling MC-RLDRAM. After enabling the device, we timeout
  1964. * for around 100ms, which is approximately the time required
  1965. * for the device to be ready for operation.
  1966. */
  1967. val64 = readq(&bar0->mc_rldram_mrs);
  1968. val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
  1969. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
  1970. val64 = readq(&bar0->mc_rldram_mrs);
  1971. msleep(100); /* Delay by around 100 ms. */
  1972. /* Enabling ECC Protection. */
  1973. val64 = readq(&bar0->adapter_control);
  1974. val64 &= ~ADAPTER_ECC_EN;
  1975. writeq(val64, &bar0->adapter_control);
  1976. /*
  1977. * Verify if the device is ready to be enabled, if so enable
  1978. * it.
  1979. */
  1980. val64 = readq(&bar0->adapter_status);
  1981. if (!verify_xena_quiescence(nic)) {
  1982. DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
  1983. DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
  1984. (unsigned long long) val64);
  1985. return FAILURE;
  1986. }
  1987. /*
  1988. * With some switches, link might be already up at this point.
  1989. * Because of this weird behavior, when we enable laser,
  1990. * we may not get link. We need to handle this. We cannot
  1991. * figure out which switch is misbehaving. So we are forced to
  1992. * make a global change.
  1993. */
  1994. /* Enabling Laser. */
  1995. val64 = readq(&bar0->adapter_control);
  1996. val64 |= ADAPTER_EOI_TX_ON;
  1997. writeq(val64, &bar0->adapter_control);
  1998. if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
  1999. /*
  2000. * Dont see link state interrupts initally on some switches,
  2001. * so directly scheduling the link state task here.
  2002. */
  2003. schedule_work(&nic->set_link_task);
  2004. }
  2005. /* SXE-002: Initialize link and activity LED */
  2006. subid = nic->pdev->subsystem_device;
  2007. if (((subid & 0xFF) >= 0x07) &&
  2008. (nic->device_type == XFRAME_I_DEVICE)) {
  2009. val64 = readq(&bar0->gpio_control);
  2010. val64 |= 0x0000800000000000ULL;
  2011. writeq(val64, &bar0->gpio_control);
  2012. val64 = 0x0411040400000000ULL;
  2013. writeq(val64, (void __iomem *)bar0 + 0x2700);
  2014. }
  2015. return SUCCESS;
  2016. }
  2017. /**
  2018. * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
  2019. */
  2020. static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
  2021. TxD *txdlp, int get_off)
  2022. {
  2023. struct s2io_nic *nic = fifo_data->nic;
  2024. struct sk_buff *skb;
  2025. struct TxD *txds;
  2026. u16 j, frg_cnt;
  2027. txds = txdlp;
  2028. if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
  2029. pci_unmap_single(nic->pdev, (dma_addr_t)
  2030. txds->Buffer_Pointer, sizeof(u64),
  2031. PCI_DMA_TODEVICE);
  2032. txds++;
  2033. }
  2034. skb = (struct sk_buff *) ((unsigned long)
  2035. txds->Host_Control);
  2036. if (!skb) {
  2037. memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
  2038. return NULL;
  2039. }
  2040. pci_unmap_single(nic->pdev, (dma_addr_t)
  2041. txds->Buffer_Pointer,
  2042. skb->len - skb->data_len,
  2043. PCI_DMA_TODEVICE);
  2044. frg_cnt = skb_shinfo(skb)->nr_frags;
  2045. if (frg_cnt) {
  2046. txds++;
  2047. for (j = 0; j < frg_cnt; j++, txds++) {
  2048. skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
  2049. if (!txds->Buffer_Pointer)
  2050. break;
  2051. pci_unmap_page(nic->pdev, (dma_addr_t)
  2052. txds->Buffer_Pointer,
  2053. frag->size, PCI_DMA_TODEVICE);
  2054. }
  2055. }
  2056. memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
  2057. return(skb);
  2058. }
  2059. /**
  2060. * free_tx_buffers - Free all queued Tx buffers
  2061. * @nic : device private variable.
  2062. * Description:
  2063. * Free all queued Tx buffers.
  2064. * Return Value: void
  2065. */
  2066. static void free_tx_buffers(struct s2io_nic *nic)
  2067. {
  2068. struct net_device *dev = nic->dev;
  2069. struct sk_buff *skb;
  2070. struct TxD *txdp;
  2071. int i, j;
  2072. struct mac_info *mac_control;
  2073. struct config_param *config;
  2074. int cnt = 0;
  2075. mac_control = &nic->mac_control;
  2076. config = &nic->config;
  2077. for (i = 0; i < config->tx_fifo_num; i++) {
  2078. for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
  2079. txdp = (struct TxD *) \
  2080. mac_control->fifos[i].list_info[j].list_virt_addr;
  2081. skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
  2082. if (skb) {
  2083. nic->mac_control.stats_info->sw_stat.mem_freed
  2084. += skb->truesize;
  2085. dev_kfree_skb(skb);
  2086. cnt++;
  2087. }
  2088. }
  2089. DBG_PRINT(INTR_DBG,
  2090. "%s:forcibly freeing %d skbs on FIFO%d\n",
  2091. dev->name, cnt, i);
  2092. mac_control->fifos[i].tx_curr_get_info.offset = 0;
  2093. mac_control->fifos[i].tx_curr_put_info.offset = 0;
  2094. }
  2095. }
  2096. /**
  2097. * stop_nic - To stop the nic
  2098. * @nic ; device private variable.
  2099. * Description:
  2100. * This function does exactly the opposite of what the start_nic()
  2101. * function does. This function is called to stop the device.
  2102. * Return Value:
  2103. * void.
  2104. */
  2105. static void stop_nic(struct s2io_nic *nic)
  2106. {
  2107. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  2108. register u64 val64 = 0;
  2109. u16 interruptible;
  2110. struct mac_info *mac_control;
  2111. struct config_param *config;
  2112. mac_control = &nic->mac_control;
  2113. config = &nic->config;
  2114. /* Disable all interrupts */
  2115. en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
  2116. interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
  2117. interruptible |= TX_PIC_INTR;
  2118. en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
  2119. /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
  2120. val64 = readq(&bar0->adapter_control);
  2121. val64 &= ~(ADAPTER_CNTL_EN);
  2122. writeq(val64, &bar0->adapter_control);
  2123. }
  2124. /**
  2125. * fill_rx_buffers - Allocates the Rx side skbs
  2126. * @nic: device private variable
  2127. * @ring_no: ring number
  2128. * Description:
  2129. * The function allocates Rx side skbs and puts the physical
  2130. * address of these buffers into the RxD buffer pointers, so that the NIC
  2131. * can DMA the received frame into these locations.
  2132. * The NIC supports 3 receive modes, viz
  2133. * 1. single buffer,
  2134. * 2. three buffer and
  2135. * 3. Five buffer modes.
  2136. * Each mode defines how many fragments the received frame will be split
  2137. * up into by the NIC. The frame is split into L3 header, L4 Header,
  2138. * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
  2139. * is split into 3 fragments. As of now only single buffer mode is
  2140. * supported.
  2141. * Return Value:
  2142. * SUCCESS on success or an appropriate -ve value on failure.
  2143. */
  2144. static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
  2145. {
  2146. struct net_device *dev = nic->dev;
  2147. struct sk_buff *skb;
  2148. struct RxD_t *rxdp;
  2149. int off, off1, size, block_no, block_no1;
  2150. u32 alloc_tab = 0;
  2151. u32 alloc_cnt;
  2152. struct mac_info *mac_control;
  2153. struct config_param *config;
  2154. u64 tmp;
  2155. struct buffAdd *ba;
  2156. unsigned long flags;
  2157. struct RxD_t *first_rxdp = NULL;
  2158. u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
  2159. struct RxD1 *rxdp1;
  2160. struct RxD3 *rxdp3;
  2161. struct swStat *stats = &nic->mac_control.stats_info->sw_stat;
  2162. mac_control = &nic->mac_control;
  2163. config = &nic->config;
  2164. alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
  2165. atomic_read(&nic->rx_bufs_left[ring_no]);
  2166. block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
  2167. off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
  2168. while (alloc_tab < alloc_cnt) {
  2169. block_no = mac_control->rings[ring_no].rx_curr_put_info.
  2170. block_index;
  2171. off = mac_control->rings[ring_no].rx_curr_put_info.offset;
  2172. rxdp = mac_control->rings[ring_no].
  2173. rx_blocks[block_no].rxds[off].virt_addr;
  2174. if ((block_no == block_no1) && (off == off1) &&
  2175. (rxdp->Host_Control)) {
  2176. DBG_PRINT(INTR_DBG, "%s: Get and Put",
  2177. dev->name);
  2178. DBG_PRINT(INTR_DBG, " info equated\n");
  2179. goto end;
  2180. }
  2181. if (off && (off == rxd_count[nic->rxd_mode])) {
  2182. mac_control->rings[ring_no].rx_curr_put_info.
  2183. block_index++;
  2184. if (mac_control->rings[ring_no].rx_curr_put_info.
  2185. block_index == mac_control->rings[ring_no].
  2186. block_count)
  2187. mac_control->rings[ring_no].rx_curr_put_info.
  2188. block_index = 0;
  2189. block_no = mac_control->rings[ring_no].
  2190. rx_curr_put_info.block_index;
  2191. if (off == rxd_count[nic->rxd_mode])
  2192. off = 0;
  2193. mac_control->rings[ring_no].rx_curr_put_info.
  2194. offset = off;
  2195. rxdp = mac_control->rings[ring_no].
  2196. rx_blocks[block_no].block_virt_addr;
  2197. DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
  2198. dev->name, rxdp);
  2199. }
  2200. if(!napi) {
  2201. spin_lock_irqsave(&nic->put_lock, flags);
  2202. mac_control->rings[ring_no].put_pos =
  2203. (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
  2204. spin_unlock_irqrestore(&nic->put_lock, flags);
  2205. } else {
  2206. mac_control->rings[ring_no].put_pos =
  2207. (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
  2208. }
  2209. if ((rxdp->Control_1 & RXD_OWN_XENA) &&
  2210. ((nic->rxd_mode == RXD_MODE_3B) &&
  2211. (rxdp->Control_2 & s2BIT(0)))) {
  2212. mac_control->rings[ring_no].rx_curr_put_info.
  2213. offset = off;
  2214. goto end;
  2215. }
  2216. /* calculate size of skb based on ring mode */
  2217. size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
  2218. HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
  2219. if (nic->rxd_mode == RXD_MODE_1)
  2220. size += NET_IP_ALIGN;
  2221. else
  2222. size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
  2223. /* allocate skb */
  2224. skb = dev_alloc_skb(size);
  2225. if(!skb) {
  2226. DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
  2227. DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
  2228. if (first_rxdp) {
  2229. wmb();
  2230. first_rxdp->Control_1 |= RXD_OWN_XENA;
  2231. }
  2232. nic->mac_control.stats_info->sw_stat. \
  2233. mem_alloc_fail_cnt++;
  2234. return -ENOMEM ;
  2235. }
  2236. nic->mac_control.stats_info->sw_stat.mem_allocated
  2237. += skb->truesize;
  2238. if (nic->rxd_mode == RXD_MODE_1) {
  2239. /* 1 buffer mode - normal operation mode */
  2240. rxdp1 = (struct RxD1*)rxdp;
  2241. memset(rxdp, 0, sizeof(struct RxD1));
  2242. skb_reserve(skb, NET_IP_ALIGN);
  2243. rxdp1->Buffer0_ptr = pci_map_single
  2244. (nic->pdev, skb->data, size - NET_IP_ALIGN,
  2245. PCI_DMA_FROMDEVICE);
  2246. if( (rxdp1->Buffer0_ptr == 0) ||
  2247. (rxdp1->Buffer0_ptr ==
  2248. DMA_ERROR_CODE))
  2249. goto pci_map_failed;
  2250. rxdp->Control_2 =
  2251. SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
  2252. } else if (nic->rxd_mode == RXD_MODE_3B) {
  2253. /*
  2254. * 2 buffer mode -
  2255. * 2 buffer mode provides 128
  2256. * byte aligned receive buffers.
  2257. */
  2258. rxdp3 = (struct RxD3*)rxdp;
  2259. /* save buffer pointers to avoid frequent dma mapping */
  2260. Buffer0_ptr = rxdp3->Buffer0_ptr;
  2261. Buffer1_ptr = rxdp3->Buffer1_ptr;
  2262. memset(rxdp, 0, sizeof(struct RxD3));
  2263. /* restore the buffer pointers for dma sync*/
  2264. rxdp3->Buffer0_ptr = Buffer0_ptr;
  2265. rxdp3->Buffer1_ptr = Buffer1_ptr;
  2266. ba = &mac_control->rings[ring_no].ba[block_no][off];
  2267. skb_reserve(skb, BUF0_LEN);
  2268. tmp = (u64)(unsigned long) skb->data;
  2269. tmp += ALIGN_SIZE;
  2270. tmp &= ~ALIGN_SIZE;
  2271. skb->data = (void *) (unsigned long)tmp;
  2272. skb_reset_tail_pointer(skb);
  2273. if (!(rxdp3->Buffer0_ptr))
  2274. rxdp3->Buffer0_ptr =
  2275. pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
  2276. PCI_DMA_FROMDEVICE);
  2277. else
  2278. pci_dma_sync_single_for_device(nic->pdev,
  2279. (dma_addr_t) rxdp3->Buffer0_ptr,
  2280. BUF0_LEN, PCI_DMA_FROMDEVICE);
  2281. if( (rxdp3->Buffer0_ptr == 0) ||
  2282. (rxdp3->Buffer0_ptr == DMA_ERROR_CODE))
  2283. goto pci_map_failed;
  2284. rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
  2285. if (nic->rxd_mode == RXD_MODE_3B) {
  2286. /* Two buffer mode */
  2287. /*
  2288. * Buffer2 will have L3/L4 header plus
  2289. * L4 payload
  2290. */
  2291. rxdp3->Buffer2_ptr = pci_map_single
  2292. (nic->pdev, skb->data, dev->mtu + 4,
  2293. PCI_DMA_FROMDEVICE);
  2294. if( (rxdp3->Buffer2_ptr == 0) ||
  2295. (rxdp3->Buffer2_ptr == DMA_ERROR_CODE))
  2296. goto pci_map_failed;
  2297. rxdp3->Buffer1_ptr =
  2298. pci_map_single(nic->pdev,
  2299. ba->ba_1, BUF1_LEN,
  2300. PCI_DMA_FROMDEVICE);
  2301. if( (rxdp3->Buffer1_ptr == 0) ||
  2302. (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
  2303. pci_unmap_single
  2304. (nic->pdev,
  2305. (dma_addr_t)rxdp3->Buffer2_ptr,
  2306. dev->mtu + 4,
  2307. PCI_DMA_FROMDEVICE);
  2308. goto pci_map_failed;
  2309. }
  2310. rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
  2311. rxdp->Control_2 |= SET_BUFFER2_SIZE_3
  2312. (dev->mtu + 4);
  2313. }
  2314. rxdp->Control_2 |= s2BIT(0);
  2315. }
  2316. rxdp->Host_Control = (unsigned long) (skb);
  2317. if (alloc_tab & ((1 << rxsync_frequency) - 1))
  2318. rxdp->Control_1 |= RXD_OWN_XENA;
  2319. off++;
  2320. if (off == (rxd_count[nic->rxd_mode] + 1))
  2321. off = 0;
  2322. mac_control->rings[ring_no].rx_curr_put_info.offset = off;
  2323. rxdp->Control_2 |= SET_RXD_MARKER;
  2324. if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
  2325. if (first_rxdp) {
  2326. wmb();
  2327. first_rxdp->Control_1 |= RXD_OWN_XENA;
  2328. }
  2329. first_rxdp = rxdp;
  2330. }
  2331. atomic_inc(&nic->rx_bufs_left[ring_no]);
  2332. alloc_tab++;
  2333. }
  2334. end:
  2335. /* Transfer ownership of first descriptor to adapter just before
  2336. * exiting. Before that, use memory barrier so that ownership
  2337. * and other fields are seen by adapter correctly.
  2338. */
  2339. if (first_rxdp) {
  2340. wmb();
  2341. first_rxdp->Control_1 |= RXD_OWN_XENA;
  2342. }
  2343. return SUCCESS;
  2344. pci_map_failed:
  2345. stats->pci_map_fail_cnt++;
  2346. stats->mem_freed += skb->truesize;
  2347. dev_kfree_skb_irq(skb);
  2348. return -ENOMEM;
  2349. }
  2350. static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
  2351. {
  2352. struct net_device *dev = sp->dev;
  2353. int j;
  2354. struct sk_buff *skb;
  2355. struct RxD_t *rxdp;
  2356. struct mac_info *mac_control;
  2357. struct buffAdd *ba;
  2358. struct RxD1 *rxdp1;
  2359. struct RxD3 *rxdp3;
  2360. mac_control = &sp->mac_control;
  2361. for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
  2362. rxdp = mac_control->rings[ring_no].
  2363. rx_blocks[blk].rxds[j].virt_addr;
  2364. skb = (struct sk_buff *)
  2365. ((unsigned long) rxdp->Host_Control);
  2366. if (!skb) {
  2367. continue;
  2368. }
  2369. if (sp->rxd_mode == RXD_MODE_1) {
  2370. rxdp1 = (struct RxD1*)rxdp;
  2371. pci_unmap_single(sp->pdev, (dma_addr_t)
  2372. rxdp1->Buffer0_ptr,
  2373. dev->mtu +
  2374. HEADER_ETHERNET_II_802_3_SIZE
  2375. + HEADER_802_2_SIZE +
  2376. HEADER_SNAP_SIZE,
  2377. PCI_DMA_FROMDEVICE);
  2378. memset(rxdp, 0, sizeof(struct RxD1));
  2379. } else if(sp->rxd_mode == RXD_MODE_3B) {
  2380. rxdp3 = (struct RxD3*)rxdp;
  2381. ba = &mac_control->rings[ring_no].
  2382. ba[blk][j];
  2383. pci_unmap_single(sp->pdev, (dma_addr_t)
  2384. rxdp3->Buffer0_ptr,
  2385. BUF0_LEN,
  2386. PCI_DMA_FROMDEVICE);
  2387. pci_unmap_single(sp->pdev, (dma_addr_t)
  2388. rxdp3->Buffer1_ptr,
  2389. BUF1_LEN,
  2390. PCI_DMA_FROMDEVICE);
  2391. pci_unmap_single(sp->pdev, (dma_addr_t)
  2392. rxdp3->Buffer2_ptr,
  2393. dev->mtu + 4,
  2394. PCI_DMA_FROMDEVICE);
  2395. memset(rxdp, 0, sizeof(struct RxD3));
  2396. }
  2397. sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
  2398. dev_kfree_skb(skb);
  2399. atomic_dec(&sp->rx_bufs_left[ring_no]);
  2400. }
  2401. }
  2402. /**
  2403. * free_rx_buffers - Frees all Rx buffers
  2404. * @sp: device private variable.
  2405. * Description:
  2406. * This function will free all Rx buffers allocated by host.
  2407. * Return Value:
  2408. * NONE.
  2409. */
  2410. static void free_rx_buffers(struct s2io_nic *sp)
  2411. {
  2412. struct net_device *dev = sp->dev;
  2413. int i, blk = 0, buf_cnt = 0;
  2414. struct mac_info *mac_control;
  2415. struct config_param *config;
  2416. mac_control = &sp->mac_control;
  2417. config = &sp->config;
  2418. for (i = 0; i < config->rx_ring_num; i++) {
  2419. for (blk = 0; blk < rx_ring_sz[i]; blk++)
  2420. free_rxd_blk(sp,i,blk);
  2421. mac_control->rings[i].rx_curr_put_info.block_index = 0;
  2422. mac_control->rings[i].rx_curr_get_info.block_index = 0;
  2423. mac_control->rings[i].rx_curr_put_info.offset = 0;
  2424. mac_control->rings[i].rx_curr_get_info.offset = 0;
  2425. atomic_set(&sp->rx_bufs_left[i], 0);
  2426. DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
  2427. dev->name, buf_cnt, i);
  2428. }
  2429. }
  2430. /**
  2431. * s2io_poll - Rx interrupt handler for NAPI support
  2432. * @napi : pointer to the napi structure.
  2433. * @budget : The number of packets that were budgeted to be processed
  2434. * during one pass through the 'Poll" function.
  2435. * Description:
  2436. * Comes into picture only if NAPI support has been incorporated. It does
  2437. * the same thing that rx_intr_handler does, but not in a interrupt context
  2438. * also It will process only a given number of packets.
  2439. * Return value:
  2440. * 0 on success and 1 if there are No Rx packets to be processed.
  2441. */
  2442. static int s2io_poll(struct napi_struct *napi, int budget)
  2443. {
  2444. struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
  2445. struct net_device *dev = nic->dev;
  2446. int pkt_cnt = 0, org_pkts_to_process;
  2447. struct mac_info *mac_control;
  2448. struct config_param *config;
  2449. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  2450. int i;
  2451. if (!is_s2io_card_up(nic))
  2452. return 0;
  2453. mac_control = &nic->mac_control;
  2454. config = &nic->config;
  2455. nic->pkts_to_process = budget;
  2456. org_pkts_to_process = nic->pkts_to_process;
  2457. writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
  2458. readl(&bar0->rx_traffic_int);
  2459. for (i = 0; i < config->rx_ring_num; i++) {
  2460. rx_intr_handler(&mac_control->rings[i]);
  2461. pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
  2462. if (!nic->pkts_to_process) {
  2463. /* Quota for the current iteration has been met */
  2464. goto no_rx;
  2465. }
  2466. }
  2467. netif_rx_complete(dev, napi);
  2468. for (i = 0; i < config->rx_ring_num; i++) {
  2469. if (fill_rx_buffers(nic, i) == -ENOMEM) {
  2470. DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
  2471. DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
  2472. break;
  2473. }
  2474. }
  2475. /* Re enable the Rx interrupts. */
  2476. writeq(0x0, &bar0->rx_traffic_mask);
  2477. readl(&bar0->rx_traffic_mask);
  2478. return pkt_cnt;
  2479. no_rx:
  2480. for (i = 0; i < config->rx_ring_num; i++) {
  2481. if (fill_rx_buffers(nic, i) == -ENOMEM) {
  2482. DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
  2483. DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
  2484. break;
  2485. }
  2486. }
  2487. return pkt_cnt;
  2488. }
  2489. #ifdef CONFIG_NET_POLL_CONTROLLER
  2490. /**
  2491. * s2io_netpoll - netpoll event handler entry point
  2492. * @dev : pointer to the device structure.
  2493. * Description:
  2494. * This function will be called by upper layer to check for events on the
  2495. * interface in situations where interrupts are disabled. It is used for
  2496. * specific in-kernel networking tasks, such as remote consoles and kernel
  2497. * debugging over the network (example netdump in RedHat).
  2498. */
  2499. static void s2io_netpoll(struct net_device *dev)
  2500. {
  2501. struct s2io_nic *nic = dev->priv;
  2502. struct mac_info *mac_control;
  2503. struct config_param *config;
  2504. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  2505. u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
  2506. int i;
  2507. if (pci_channel_offline(nic->pdev))
  2508. return;
  2509. disable_irq(dev->irq);
  2510. mac_control = &nic->mac_control;
  2511. config = &nic->config;
  2512. writeq(val64, &bar0->rx_traffic_int);
  2513. writeq(val64, &bar0->tx_traffic_int);
  2514. /* we need to free up the transmitted skbufs or else netpoll will
  2515. * run out of skbs and will fail and eventually netpoll application such
  2516. * as netdump will fail.
  2517. */
  2518. for (i = 0; i < config->tx_fifo_num; i++)
  2519. tx_intr_handler(&mac_control->fifos[i]);
  2520. /* check for received packet and indicate up to network */
  2521. for (i = 0; i < config->rx_ring_num; i++)
  2522. rx_intr_handler(&mac_control->rings[i]);
  2523. for (i = 0; i < config->rx_ring_num; i++) {
  2524. if (fill_rx_buffers(nic, i) == -ENOMEM) {
  2525. DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
  2526. DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
  2527. break;
  2528. }
  2529. }
  2530. enable_irq(dev->irq);
  2531. return;
  2532. }
  2533. #endif
  2534. /**
  2535. * rx_intr_handler - Rx interrupt handler
  2536. * @nic: device private variable.
  2537. * Description:
  2538. * If the interrupt is because of a received frame or if the
  2539. * receive ring contains fresh as yet un-processed frames,this function is
  2540. * called. It picks out the RxD at which place the last Rx processing had
  2541. * stopped and sends the skb to the OSM's Rx handler and then increments
  2542. * the offset.
  2543. * Return Value:
  2544. * NONE.
  2545. */
  2546. static void rx_intr_handler(struct ring_info *ring_data)
  2547. {
  2548. struct s2io_nic *nic = ring_data->nic;
  2549. struct net_device *dev = (struct net_device *) nic->dev;
  2550. int get_block, put_block, put_offset;
  2551. struct rx_curr_get_info get_info, put_info;
  2552. struct RxD_t *rxdp;
  2553. struct sk_buff *skb;
  2554. int pkt_cnt = 0;
  2555. int i;
  2556. struct RxD1* rxdp1;
  2557. struct RxD3* rxdp3;
  2558. spin_lock(&nic->rx_lock);
  2559. get_info = ring_data->rx_curr_get_info;
  2560. get_block = get_info.block_index;
  2561. memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
  2562. put_block = put_info.block_index;
  2563. rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
  2564. if (!napi) {
  2565. spin_lock(&nic->put_lock);
  2566. put_offset = ring_data->put_pos;
  2567. spin_unlock(&nic->put_lock);
  2568. } else
  2569. put_offset = ring_data->put_pos;
  2570. while (RXD_IS_UP2DT(rxdp)) {
  2571. /*
  2572. * If your are next to put index then it's
  2573. * FIFO full condition
  2574. */
  2575. if ((get_block == put_block) &&
  2576. (get_info.offset + 1) == put_info.offset) {
  2577. DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
  2578. break;
  2579. }
  2580. skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
  2581. if (skb == NULL) {
  2582. DBG_PRINT(ERR_DBG, "%s: The skb is ",
  2583. dev->name);
  2584. DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
  2585. spin_unlock(&nic->rx_lock);
  2586. return;
  2587. }
  2588. if (nic->rxd_mode == RXD_MODE_1) {
  2589. rxdp1 = (struct RxD1*)rxdp;
  2590. pci_unmap_single(nic->pdev, (dma_addr_t)
  2591. rxdp1->Buffer0_ptr,
  2592. dev->mtu +
  2593. HEADER_ETHERNET_II_802_3_SIZE +
  2594. HEADER_802_2_SIZE +
  2595. HEADER_SNAP_SIZE,
  2596. PCI_DMA_FROMDEVICE);
  2597. } else if (nic->rxd_mode == RXD_MODE_3B) {
  2598. rxdp3 = (struct RxD3*)rxdp;
  2599. pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
  2600. rxdp3->Buffer0_ptr,
  2601. BUF0_LEN, PCI_DMA_FROMDEVICE);
  2602. pci_unmap_single(nic->pdev, (dma_addr_t)
  2603. rxdp3->Buffer2_ptr,
  2604. dev->mtu + 4,
  2605. PCI_DMA_FROMDEVICE);
  2606. }
  2607. prefetch(skb->data);
  2608. rx_osm_handler(ring_data, rxdp);
  2609. get_info.offset++;
  2610. ring_data->rx_curr_get_info.offset = get_info.offset;
  2611. rxdp = ring_data->rx_blocks[get_block].
  2612. rxds[get_info.offset].virt_addr;
  2613. if (get_info.offset == rxd_count[nic->rxd_mode]) {
  2614. get_info.offset = 0;
  2615. ring_data->rx_curr_get_info.offset = get_info.offset;
  2616. get_block++;
  2617. if (get_block == ring_data->block_count)
  2618. get_block = 0;
  2619. ring_data->rx_curr_get_info.block_index = get_block;
  2620. rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
  2621. }
  2622. nic->pkts_to_process -= 1;
  2623. if ((napi) && (!nic->pkts_to_process))
  2624. break;
  2625. pkt_cnt++;
  2626. if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
  2627. break;
  2628. }
  2629. if (nic->lro) {
  2630. /* Clear all LRO sessions before exiting */
  2631. for (i=0; i<MAX_LRO_SESSIONS; i++) {
  2632. struct lro *lro = &nic->lro0_n[i];
  2633. if (lro->in_use) {
  2634. update_L3L4_header(nic, lro);
  2635. queue_rx_frame(lro->parent);
  2636. clear_lro_session(lro);
  2637. }
  2638. }
  2639. }
  2640. spin_unlock(&nic->rx_lock);
  2641. }
  2642. /**
  2643. * tx_intr_handler - Transmit interrupt handler
  2644. * @nic : device private variable
  2645. * Description:
  2646. * If an interrupt was raised to indicate DMA complete of the
  2647. * Tx packet, this function is called. It identifies the last TxD
  2648. * whose buffer was freed and frees all skbs whose data have already
  2649. * DMA'ed into the NICs internal memory.
  2650. * Return Value:
  2651. * NONE
  2652. */
  2653. static void tx_intr_handler(struct fifo_info *fifo_data)
  2654. {
  2655. struct s2io_nic *nic = fifo_data->nic;
  2656. struct net_device *dev = (struct net_device *) nic->dev;
  2657. struct tx_curr_get_info get_info, put_info;
  2658. struct sk_buff *skb;
  2659. struct TxD *txdlp;
  2660. u8 err_mask;
  2661. get_info = fifo_data->tx_curr_get_info;
  2662. memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
  2663. txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
  2664. list_virt_addr;
  2665. while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
  2666. (get_info.offset != put_info.offset) &&
  2667. (txdlp->Host_Control)) {
  2668. /* Check for TxD errors */
  2669. if (txdlp->Control_1 & TXD_T_CODE) {
  2670. unsigned long long err;
  2671. err = txdlp->Control_1 & TXD_T_CODE;
  2672. if (err & 0x1) {
  2673. nic->mac_control.stats_info->sw_stat.
  2674. parity_err_cnt++;
  2675. }
  2676. /* update t_code statistics */
  2677. err_mask = err >> 48;
  2678. switch(err_mask) {
  2679. case 2:
  2680. nic->mac_control.stats_info->sw_stat.
  2681. tx_buf_abort_cnt++;
  2682. break;
  2683. case 3:
  2684. nic->mac_control.stats_info->sw_stat.
  2685. tx_desc_abort_cnt++;
  2686. break;
  2687. case 7:
  2688. nic->mac_control.stats_info->sw_stat.
  2689. tx_parity_err_cnt++;
  2690. break;
  2691. case 10:
  2692. nic->mac_control.stats_info->sw_stat.
  2693. tx_link_loss_cnt++;
  2694. break;
  2695. case 15:
  2696. nic->mac_control.stats_info->sw_stat.
  2697. tx_list_proc_err_cnt++;
  2698. break;
  2699. }
  2700. }
  2701. skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
  2702. if (skb == NULL) {
  2703. DBG_PRINT(ERR_DBG, "%s: Null skb ",
  2704. __FUNCTION__);
  2705. DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
  2706. return;
  2707. }
  2708. /* Updating the statistics block */
  2709. nic->stats.tx_bytes += skb->len;
  2710. nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
  2711. dev_kfree_skb_irq(skb);
  2712. get_info.offset++;
  2713. if (get_info.offset == get_info.fifo_len + 1)
  2714. get_info.offset = 0;
  2715. txdlp = (struct TxD *) fifo_data->list_info
  2716. [get_info.offset].list_virt_addr;
  2717. fifo_data->tx_curr_get_info.offset =
  2718. get_info.offset;
  2719. }
  2720. spin_lock(&nic->tx_lock);
  2721. if (netif_queue_stopped(dev))
  2722. netif_wake_queue(dev);
  2723. spin_unlock(&nic->tx_lock);
  2724. }
  2725. /**
  2726. * s2io_mdio_write - Function to write in to MDIO registers
  2727. * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
  2728. * @addr : address value
  2729. * @value : data value
  2730. * @dev : pointer to net_device structure
  2731. * Description:
  2732. * This function is used to write values to the MDIO registers
  2733. * NONE
  2734. */
  2735. static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
  2736. {
  2737. u64 val64 = 0x0;
  2738. struct s2io_nic *sp = dev->priv;
  2739. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  2740. //address transaction
  2741. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2742. | MDIO_MMD_DEV_ADDR(mmd_type)
  2743. | MDIO_MMS_PRT_ADDR(0x0);
  2744. writeq(val64, &bar0->mdio_control);
  2745. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2746. writeq(val64, &bar0->mdio_control);
  2747. udelay(100);
  2748. //Data transaction
  2749. val64 = 0x0;
  2750. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2751. | MDIO_MMD_DEV_ADDR(mmd_type)
  2752. | MDIO_MMS_PRT_ADDR(0x0)
  2753. | MDIO_MDIO_DATA(value)
  2754. | MDIO_OP(MDIO_OP_WRITE_TRANS);
  2755. writeq(val64, &bar0->mdio_control);
  2756. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2757. writeq(val64, &bar0->mdio_control);
  2758. udelay(100);
  2759. val64 = 0x0;
  2760. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2761. | MDIO_MMD_DEV_ADDR(mmd_type)
  2762. | MDIO_MMS_PRT_ADDR(0x0)
  2763. | MDIO_OP(MDIO_OP_READ_TRANS);
  2764. writeq(val64, &bar0->mdio_control);
  2765. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2766. writeq(val64, &bar0->mdio_control);
  2767. udelay(100);
  2768. }
  2769. /**
  2770. * s2io_mdio_read - Function to write in to MDIO registers
  2771. * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
  2772. * @addr : address value
  2773. * @dev : pointer to net_device structure
  2774. * Description:
  2775. * This function is used to read values to the MDIO registers
  2776. * NONE
  2777. */
  2778. static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
  2779. {
  2780. u64 val64 = 0x0;
  2781. u64 rval64 = 0x0;
  2782. struct s2io_nic *sp = dev->priv;
  2783. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  2784. /* address transaction */
  2785. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2786. | MDIO_MMD_DEV_ADDR(mmd_type)
  2787. | MDIO_MMS_PRT_ADDR(0x0);
  2788. writeq(val64, &bar0->mdio_control);
  2789. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2790. writeq(val64, &bar0->mdio_control);
  2791. udelay(100);
  2792. /* Data transaction */
  2793. val64 = 0x0;
  2794. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2795. | MDIO_MMD_DEV_ADDR(mmd_type)
  2796. | MDIO_MMS_PRT_ADDR(0x0)
  2797. | MDIO_OP(MDIO_OP_READ_TRANS);
  2798. writeq(val64, &bar0->mdio_control);
  2799. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2800. writeq(val64, &bar0->mdio_control);
  2801. udelay(100);
  2802. /* Read the value from regs */
  2803. rval64 = readq(&bar0->mdio_control);
  2804. rval64 = rval64 & 0xFFFF0000;
  2805. rval64 = rval64 >> 16;
  2806. return rval64;
  2807. }
  2808. /**
  2809. * s2io_chk_xpak_counter - Function to check the status of the xpak counters
  2810. * @counter : couter value to be updated
  2811. * @flag : flag to indicate the status
  2812. * @type : counter type
  2813. * Description:
  2814. * This function is to check the status of the xpak counters value
  2815. * NONE
  2816. */
  2817. static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
  2818. {
  2819. u64 mask = 0x3;
  2820. u64 val64;
  2821. int i;
  2822. for(i = 0; i <index; i++)
  2823. mask = mask << 0x2;
  2824. if(flag > 0)
  2825. {
  2826. *counter = *counter + 1;
  2827. val64 = *regs_stat & mask;
  2828. val64 = val64 >> (index * 0x2);
  2829. val64 = val64 + 1;
  2830. if(val64 == 3)
  2831. {
  2832. switch(type)
  2833. {
  2834. case 1:
  2835. DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
  2836. "service. Excessive temperatures may "
  2837. "result in premature transceiver "
  2838. "failure \n");
  2839. break;
  2840. case 2:
  2841. DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
  2842. "service Excessive bias currents may "
  2843. "indicate imminent laser diode "
  2844. "failure \n");
  2845. break;
  2846. case 3:
  2847. DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
  2848. "service Excessive laser output "
  2849. "power may saturate far-end "
  2850. "receiver\n");
  2851. break;
  2852. default:
  2853. DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
  2854. "type \n");
  2855. }
  2856. val64 = 0x0;
  2857. }
  2858. val64 = val64 << (index * 0x2);
  2859. *regs_stat = (*regs_stat & (~mask)) | (val64);
  2860. } else {
  2861. *regs_stat = *regs_stat & (~mask);
  2862. }
  2863. }
  2864. /**
  2865. * s2io_updt_xpak_counter - Function to update the xpak counters
  2866. * @dev : pointer to net_device struct
  2867. * Description:
  2868. * This function is to upate the status of the xpak counters value
  2869. * NONE
  2870. */
  2871. static void s2io_updt_xpak_counter(struct net_device *dev)
  2872. {
  2873. u16 flag = 0x0;
  2874. u16 type = 0x0;
  2875. u16 val16 = 0x0;
  2876. u64 val64 = 0x0;
  2877. u64 addr = 0x0;
  2878. struct s2io_nic *sp = dev->priv;
  2879. struct stat_block *stat_info = sp->mac_control.stats_info;
  2880. /* Check the communication with the MDIO slave */
  2881. addr = 0x0000;
  2882. val64 = 0x0;
  2883. val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
  2884. if((val64 == 0xFFFF) || (val64 == 0x0000))
  2885. {
  2886. DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
  2887. "Returned %llx\n", (unsigned long long)val64);
  2888. return;
  2889. }
  2890. /* Check for the expecte value of 2040 at PMA address 0x0000 */
  2891. if(val64 != 0x2040)
  2892. {
  2893. DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
  2894. DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
  2895. (unsigned long long)val64);
  2896. return;
  2897. }
  2898. /* Loading the DOM register to MDIO register */
  2899. addr = 0xA100;
  2900. s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
  2901. val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
  2902. /* Reading the Alarm flags */
  2903. addr = 0xA070;
  2904. val64 = 0x0;
  2905. val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
  2906. flag = CHECKBIT(val64, 0x7);
  2907. type = 1;
  2908. s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
  2909. &stat_info->xpak_stat.xpak_regs_stat,
  2910. 0x0, flag, type);
  2911. if(CHECKBIT(val64, 0x6))
  2912. stat_info->xpak_stat.alarm_transceiver_temp_low++;
  2913. flag = CHECKBIT(val64, 0x3);
  2914. type = 2;
  2915. s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
  2916. &stat_info->xpak_stat.xpak_regs_stat,
  2917. 0x2, flag, type);
  2918. if(CHECKBIT(val64, 0x2))
  2919. stat_info->xpak_stat.alarm_laser_bias_current_low++;
  2920. flag = CHECKBIT(val64, 0x1);
  2921. type = 3;
  2922. s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
  2923. &stat_info->xpak_stat.xpak_regs_stat,
  2924. 0x4, flag, type);
  2925. if(CHECKBIT(val64, 0x0))
  2926. stat_info->xpak_stat.alarm_laser_output_power_low++;
  2927. /* Reading the Warning flags */
  2928. addr = 0xA074;
  2929. val64 = 0x0;
  2930. val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
  2931. if(CHECKBIT(val64, 0x7))
  2932. stat_info->xpak_stat.warn_transceiver_temp_high++;
  2933. if(CHECKBIT(val64, 0x6))
  2934. stat_info->xpak_stat.warn_transceiver_temp_low++;
  2935. if(CHECKBIT(val64, 0x3))
  2936. stat_info->xpak_stat.warn_laser_bias_current_high++;
  2937. if(CHECKBIT(val64, 0x2))
  2938. stat_info->xpak_stat.warn_laser_bias_current_low++;
  2939. if(CHECKBIT(val64, 0x1))
  2940. stat_info->xpak_stat.warn_laser_output_power_high++;
  2941. if(CHECKBIT(val64, 0x0))
  2942. stat_info->xpak_stat.warn_laser_output_power_low++;
  2943. }
  2944. /**
  2945. * wait_for_cmd_complete - waits for a command to complete.
  2946. * @sp : private member of the device structure, which is a pointer to the
  2947. * s2io_nic structure.
  2948. * Description: Function that waits for a command to Write into RMAC
  2949. * ADDR DATA registers to be completed and returns either success or
  2950. * error depending on whether the command was complete or not.
  2951. * Return value:
  2952. * SUCCESS on success and FAILURE on failure.
  2953. */
  2954. static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
  2955. int bit_state)
  2956. {
  2957. int ret = FAILURE, cnt = 0, delay = 1;
  2958. u64 val64;
  2959. if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
  2960. return FAILURE;
  2961. do {
  2962. val64 = readq(addr);
  2963. if (bit_state == S2IO_BIT_RESET) {
  2964. if (!(val64 & busy_bit)) {
  2965. ret = SUCCESS;
  2966. break;
  2967. }
  2968. } else {
  2969. if (!(val64 & busy_bit)) {
  2970. ret = SUCCESS;
  2971. break;
  2972. }
  2973. }
  2974. if(in_interrupt())
  2975. mdelay(delay);
  2976. else
  2977. msleep(delay);
  2978. if (++cnt >= 10)
  2979. delay = 50;
  2980. } while (cnt < 20);
  2981. return ret;
  2982. }
  2983. /*
  2984. * check_pci_device_id - Checks if the device id is supported
  2985. * @id : device id
  2986. * Description: Function to check if the pci device id is supported by driver.
  2987. * Return value: Actual device id if supported else PCI_ANY_ID
  2988. */
  2989. static u16 check_pci_device_id(u16 id)
  2990. {
  2991. switch (id) {
  2992. case PCI_DEVICE_ID_HERC_WIN:
  2993. case PCI_DEVICE_ID_HERC_UNI:
  2994. return XFRAME_II_DEVICE;
  2995. case PCI_DEVICE_ID_S2IO_UNI:
  2996. case PCI_DEVICE_ID_S2IO_WIN:
  2997. return XFRAME_I_DEVICE;
  2998. default:
  2999. return PCI_ANY_ID;
  3000. }
  3001. }
  3002. /**
  3003. * s2io_reset - Resets the card.
  3004. * @sp : private member of the device structure.
  3005. * Description: Function to Reset the card. This function then also
  3006. * restores the previously saved PCI configuration space registers as
  3007. * the card reset also resets the configuration space.
  3008. * Return value:
  3009. * void.
  3010. */
  3011. static void s2io_reset(struct s2io_nic * sp)
  3012. {
  3013. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3014. u64 val64;
  3015. u16 subid, pci_cmd;
  3016. int i;
  3017. u16 val16;
  3018. unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
  3019. unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
  3020. DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
  3021. __FUNCTION__, sp->dev->name);
  3022. /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
  3023. pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
  3024. val64 = SW_RESET_ALL;
  3025. writeq(val64, &bar0->sw_reset);
  3026. if (strstr(sp->product_name, "CX4")) {
  3027. msleep(750);
  3028. }
  3029. msleep(250);
  3030. for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
  3031. /* Restore the PCI state saved during initialization. */
  3032. pci_restore_state(sp->pdev);
  3033. pci_read_config_word(sp->pdev, 0x2, &val16);
  3034. if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
  3035. break;
  3036. msleep(200);
  3037. }
  3038. if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
  3039. DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
  3040. }
  3041. pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
  3042. s2io_init_pci(sp);
  3043. /* Set swapper to enable I/O register access */
  3044. s2io_set_swapper(sp);
  3045. /* Restore the MSIX table entries from local variables */
  3046. restore_xmsi_data(sp);
  3047. /* Clear certain PCI/PCI-X fields after reset */
  3048. if (sp->device_type == XFRAME_II_DEVICE) {
  3049. /* Clear "detected parity error" bit */
  3050. pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
  3051. /* Clearing PCIX Ecc status register */
  3052. pci_write_config_dword(sp->pdev, 0x68, 0x7C);
  3053. /* Clearing PCI_STATUS error reflected here */
  3054. writeq(s2BIT(62), &bar0->txpic_int_reg);
  3055. }
  3056. /* Reset device statistics maintained by OS */
  3057. memset(&sp->stats, 0, sizeof (struct net_device_stats));
  3058. up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
  3059. down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
  3060. up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
  3061. down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
  3062. reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
  3063. mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
  3064. mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
  3065. watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
  3066. /* save link up/down time/cnt, reset/memory/watchdog cnt */
  3067. memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
  3068. /* restore link up/down time/cnt, reset/memory/watchdog cnt */
  3069. sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
  3070. sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
  3071. sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
  3072. sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
  3073. sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
  3074. sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
  3075. sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
  3076. sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
  3077. /* SXE-002: Configure link and activity LED to turn it off */
  3078. subid = sp->pdev->subsystem_device;
  3079. if (((subid & 0xFF) >= 0x07) &&
  3080. (sp->device_type == XFRAME_I_DEVICE)) {
  3081. val64 = readq(&bar0->gpio_control);
  3082. val64 |= 0x0000800000000000ULL;
  3083. writeq(val64, &bar0->gpio_control);
  3084. val64 = 0x0411040400000000ULL;
  3085. writeq(val64, (void __iomem *)bar0 + 0x2700);
  3086. }
  3087. /*
  3088. * Clear spurious ECC interrupts that would have occured on
  3089. * XFRAME II cards after reset.
  3090. */
  3091. if (sp->device_type == XFRAME_II_DEVICE) {
  3092. val64 = readq(&bar0->pcc_err_reg);
  3093. writeq(val64, &bar0->pcc_err_reg);
  3094. }
  3095. /* restore the previously assigned mac address */
  3096. do_s2io_prog_unicast(sp->dev, (u8 *)&sp->def_mac_addr[0].mac_addr);
  3097. sp->device_enabled_once = FALSE;
  3098. }
  3099. /**
  3100. * s2io_set_swapper - to set the swapper controle on the card
  3101. * @sp : private member of the device structure,
  3102. * pointer to the s2io_nic structure.
  3103. * Description: Function to set the swapper control on the card
  3104. * correctly depending on the 'endianness' of the system.
  3105. * Return value:
  3106. * SUCCESS on success and FAILURE on failure.
  3107. */
  3108. static int s2io_set_swapper(struct s2io_nic * sp)
  3109. {
  3110. struct net_device *dev = sp->dev;
  3111. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3112. u64 val64, valt, valr;
  3113. /*
  3114. * Set proper endian settings and verify the same by reading
  3115. * the PIF Feed-back register.
  3116. */
  3117. val64 = readq(&bar0->pif_rd_swapper_fb);
  3118. if (val64 != 0x0123456789ABCDEFULL) {
  3119. int i = 0;
  3120. u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
  3121. 0x8100008181000081ULL, /* FE=1, SE=0 */
  3122. 0x4200004242000042ULL, /* FE=0, SE=1 */
  3123. 0}; /* FE=0, SE=0 */
  3124. while(i<4) {
  3125. writeq(value[i], &bar0->swapper_ctrl);
  3126. val64 = readq(&bar0->pif_rd_swapper_fb);
  3127. if (val64 == 0x0123456789ABCDEFULL)
  3128. break;
  3129. i++;
  3130. }
  3131. if (i == 4) {
  3132. DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
  3133. dev->name);
  3134. DBG_PRINT(ERR_DBG, "feedback read %llx\n",
  3135. (unsigned long long) val64);
  3136. return FAILURE;
  3137. }
  3138. valr = value[i];
  3139. } else {
  3140. valr = readq(&bar0->swapper_ctrl);
  3141. }
  3142. valt = 0x0123456789ABCDEFULL;
  3143. writeq(valt, &bar0->xmsi_address);
  3144. val64 = readq(&bar0->xmsi_address);
  3145. if(val64 != valt) {
  3146. int i = 0;
  3147. u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
  3148. 0x0081810000818100ULL, /* FE=1, SE=0 */
  3149. 0x0042420000424200ULL, /* FE=0, SE=1 */
  3150. 0}; /* FE=0, SE=0 */
  3151. while(i<4) {
  3152. writeq((value[i] | valr), &bar0->swapper_ctrl);
  3153. writeq(valt, &bar0->xmsi_address);
  3154. val64 = readq(&bar0->xmsi_address);
  3155. if(val64 == valt)
  3156. break;
  3157. i++;
  3158. }
  3159. if(i == 4) {
  3160. unsigned long long x = val64;
  3161. DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
  3162. DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
  3163. return FAILURE;
  3164. }
  3165. }
  3166. val64 = readq(&bar0->swapper_ctrl);
  3167. val64 &= 0xFFFF000000000000ULL;
  3168. #ifdef __BIG_ENDIAN
  3169. /*
  3170. * The device by default set to a big endian format, so a
  3171. * big endian driver need not set anything.
  3172. */
  3173. val64 |= (SWAPPER_CTRL_TXP_FE |
  3174. SWAPPER_CTRL_TXP_SE |
  3175. SWAPPER_CTRL_TXD_R_FE |
  3176. SWAPPER_CTRL_TXD_W_FE |
  3177. SWAPPER_CTRL_TXF_R_FE |
  3178. SWAPPER_CTRL_RXD_R_FE |
  3179. SWAPPER_CTRL_RXD_W_FE |
  3180. SWAPPER_CTRL_RXF_W_FE |
  3181. SWAPPER_CTRL_XMSI_FE |
  3182. SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
  3183. if (sp->config.intr_type == INTA)
  3184. val64 |= SWAPPER_CTRL_XMSI_SE;
  3185. writeq(val64, &bar0->swapper_ctrl);
  3186. #else
  3187. /*
  3188. * Initially we enable all bits to make it accessible by the
  3189. * driver, then we selectively enable only those bits that
  3190. * we want to set.
  3191. */
  3192. val64 |= (SWAPPER_CTRL_TXP_FE |
  3193. SWAPPER_CTRL_TXP_SE |
  3194. SWAPPER_CTRL_TXD_R_FE |
  3195. SWAPPER_CTRL_TXD_R_SE |
  3196. SWAPPER_CTRL_TXD_W_FE |
  3197. SWAPPER_CTRL_TXD_W_SE |
  3198. SWAPPER_CTRL_TXF_R_FE |
  3199. SWAPPER_CTRL_RXD_R_FE |
  3200. SWAPPER_CTRL_RXD_R_SE |
  3201. SWAPPER_CTRL_RXD_W_FE |
  3202. SWAPPER_CTRL_RXD_W_SE |
  3203. SWAPPER_CTRL_RXF_W_FE |
  3204. SWAPPER_CTRL_XMSI_FE |
  3205. SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
  3206. if (sp->config.intr_type == INTA)
  3207. val64 |= SWAPPER_CTRL_XMSI_SE;
  3208. writeq(val64, &bar0->swapper_ctrl);
  3209. #endif
  3210. val64 = readq(&bar0->swapper_ctrl);
  3211. /*
  3212. * Verifying if endian settings are accurate by reading a
  3213. * feedback register.
  3214. */
  3215. val64 = readq(&bar0->pif_rd_swapper_fb);
  3216. if (val64 != 0x0123456789ABCDEFULL) {
  3217. /* Endian settings are incorrect, calls for another dekko. */
  3218. DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
  3219. dev->name);
  3220. DBG_PRINT(ERR_DBG, "feedback read %llx\n",
  3221. (unsigned long long) val64);
  3222. return FAILURE;
  3223. }
  3224. return SUCCESS;
  3225. }
  3226. static int wait_for_msix_trans(struct s2io_nic *nic, int i)
  3227. {
  3228. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3229. u64 val64;
  3230. int ret = 0, cnt = 0;
  3231. do {
  3232. val64 = readq(&bar0->xmsi_access);
  3233. if (!(val64 & s2BIT(15)))
  3234. break;
  3235. mdelay(1);
  3236. cnt++;
  3237. } while(cnt < 5);
  3238. if (cnt == 5) {
  3239. DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
  3240. ret = 1;
  3241. }
  3242. return ret;
  3243. }
  3244. static void restore_xmsi_data(struct s2io_nic *nic)
  3245. {
  3246. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3247. u64 val64;
  3248. int i;
  3249. for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
  3250. writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
  3251. writeq(nic->msix_info[i].data, &bar0->xmsi_data);
  3252. val64 = (s2BIT(7) | s2BIT(15) | vBIT(i, 26, 6));
  3253. writeq(val64, &bar0->xmsi_access);
  3254. if (wait_for_msix_trans(nic, i)) {
  3255. DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
  3256. continue;
  3257. }
  3258. }
  3259. }
  3260. static void store_xmsi_data(struct s2io_nic *nic)
  3261. {
  3262. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3263. u64 val64, addr, data;
  3264. int i;
  3265. /* Store and display */
  3266. for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
  3267. val64 = (s2BIT(15) | vBIT(i, 26, 6));
  3268. writeq(val64, &bar0->xmsi_access);
  3269. if (wait_for_msix_trans(nic, i)) {
  3270. DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
  3271. continue;
  3272. }
  3273. addr = readq(&bar0->xmsi_address);
  3274. data = readq(&bar0->xmsi_data);
  3275. if (addr && data) {
  3276. nic->msix_info[i].addr = addr;
  3277. nic->msix_info[i].data = data;
  3278. }
  3279. }
  3280. }
  3281. static int s2io_enable_msi_x(struct s2io_nic *nic)
  3282. {
  3283. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3284. u64 tx_mat, rx_mat;
  3285. u16 msi_control; /* Temp variable */
  3286. int ret, i, j, msix_indx = 1;
  3287. nic->entries = kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct msix_entry),
  3288. GFP_KERNEL);
  3289. if (!nic->entries) {
  3290. DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
  3291. __FUNCTION__);
  3292. nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
  3293. return -ENOMEM;
  3294. }
  3295. nic->mac_control.stats_info->sw_stat.mem_allocated
  3296. += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
  3297. nic->s2io_entries =
  3298. kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct s2io_msix_entry),
  3299. GFP_KERNEL);
  3300. if (!nic->s2io_entries) {
  3301. DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
  3302. __FUNCTION__);
  3303. nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
  3304. kfree(nic->entries);
  3305. nic->mac_control.stats_info->sw_stat.mem_freed
  3306. += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
  3307. return -ENOMEM;
  3308. }
  3309. nic->mac_control.stats_info->sw_stat.mem_allocated
  3310. += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
  3311. for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
  3312. nic->entries[i].entry = i;
  3313. nic->s2io_entries[i].entry = i;
  3314. nic->s2io_entries[i].arg = NULL;
  3315. nic->s2io_entries[i].in_use = 0;
  3316. }
  3317. tx_mat = readq(&bar0->tx_mat0_n[0]);
  3318. for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
  3319. tx_mat |= TX_MAT_SET(i, msix_indx);
  3320. nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
  3321. nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
  3322. nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
  3323. }
  3324. writeq(tx_mat, &bar0->tx_mat0_n[0]);
  3325. rx_mat = readq(&bar0->rx_mat);
  3326. for (j = 0; j < nic->config.rx_ring_num; j++, msix_indx++) {
  3327. rx_mat |= RX_MAT_SET(j, msix_indx);
  3328. nic->s2io_entries[msix_indx].arg
  3329. = &nic->mac_control.rings[j];
  3330. nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
  3331. nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
  3332. }
  3333. writeq(rx_mat, &bar0->rx_mat);
  3334. nic->avail_msix_vectors = 0;
  3335. ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
  3336. /* We fail init if error or we get less vectors than min required */
  3337. if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
  3338. nic->avail_msix_vectors = ret;
  3339. ret = pci_enable_msix(nic->pdev, nic->entries, ret);
  3340. }
  3341. if (ret) {
  3342. DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
  3343. kfree(nic->entries);
  3344. nic->mac_control.stats_info->sw_stat.mem_freed
  3345. += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
  3346. kfree(nic->s2io_entries);
  3347. nic->mac_control.stats_info->sw_stat.mem_freed
  3348. += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
  3349. nic->entries = NULL;
  3350. nic->s2io_entries = NULL;
  3351. nic->avail_msix_vectors = 0;
  3352. return -ENOMEM;
  3353. }
  3354. if (!nic->avail_msix_vectors)
  3355. nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
  3356. /*
  3357. * To enable MSI-X, MSI also needs to be enabled, due to a bug
  3358. * in the herc NIC. (Temp change, needs to be removed later)
  3359. */
  3360. pci_read_config_word(nic->pdev, 0x42, &msi_control);
  3361. msi_control |= 0x1; /* Enable MSI */
  3362. pci_write_config_word(nic->pdev, 0x42, msi_control);
  3363. return 0;
  3364. }
  3365. /* Handle software interrupt used during MSI(X) test */
  3366. static irqreturn_t __devinit s2io_test_intr(int irq, void *dev_id)
  3367. {
  3368. struct s2io_nic *sp = dev_id;
  3369. sp->msi_detected = 1;
  3370. wake_up(&sp->msi_wait);
  3371. return IRQ_HANDLED;
  3372. }
  3373. /* Test interrupt path by forcing a a software IRQ */
  3374. static int __devinit s2io_test_msi(struct s2io_nic *sp)
  3375. {
  3376. struct pci_dev *pdev = sp->pdev;
  3377. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3378. int err;
  3379. u64 val64, saved64;
  3380. err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
  3381. sp->name, sp);
  3382. if (err) {
  3383. DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
  3384. sp->dev->name, pci_name(pdev), pdev->irq);
  3385. return err;
  3386. }
  3387. init_waitqueue_head (&sp->msi_wait);
  3388. sp->msi_detected = 0;
  3389. saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
  3390. val64 |= SCHED_INT_CTRL_ONE_SHOT;
  3391. val64 |= SCHED_INT_CTRL_TIMER_EN;
  3392. val64 |= SCHED_INT_CTRL_INT2MSI(1);
  3393. writeq(val64, &bar0->scheduled_int_ctrl);
  3394. wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
  3395. if (!sp->msi_detected) {
  3396. /* MSI(X) test failed, go back to INTx mode */
  3397. DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated"
  3398. "using MSI(X) during test\n", sp->dev->name,
  3399. pci_name(pdev));
  3400. err = -EOPNOTSUPP;
  3401. }
  3402. free_irq(sp->entries[1].vector, sp);
  3403. writeq(saved64, &bar0->scheduled_int_ctrl);
  3404. return err;
  3405. }
  3406. static void remove_msix_isr(struct s2io_nic *sp)
  3407. {
  3408. int i;
  3409. u16 msi_control;
  3410. for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
  3411. if (sp->s2io_entries[i].in_use ==
  3412. MSIX_REGISTERED_SUCCESS) {
  3413. int vector = sp->entries[i].vector;
  3414. void *arg = sp->s2io_entries[i].arg;
  3415. free_irq(vector, arg);
  3416. }
  3417. }
  3418. kfree(sp->entries);
  3419. kfree(sp->s2io_entries);
  3420. sp->entries = NULL;
  3421. sp->s2io_entries = NULL;
  3422. pci_read_config_word(sp->pdev, 0x42, &msi_control);
  3423. msi_control &= 0xFFFE; /* Disable MSI */
  3424. pci_write_config_word(sp->pdev, 0x42, msi_control);
  3425. pci_disable_msix(sp->pdev);
  3426. }
  3427. static void remove_inta_isr(struct s2io_nic *sp)
  3428. {
  3429. struct net_device *dev = sp->dev;
  3430. free_irq(sp->pdev->irq, dev);
  3431. }
  3432. /* ********************************************************* *
  3433. * Functions defined below concern the OS part of the driver *
  3434. * ********************************************************* */
  3435. /**
  3436. * s2io_open - open entry point of the driver
  3437. * @dev : pointer to the device structure.
  3438. * Description:
  3439. * This function is the open entry point of the driver. It mainly calls a
  3440. * function to allocate Rx buffers and inserts them into the buffer
  3441. * descriptors and then enables the Rx part of the NIC.
  3442. * Return value:
  3443. * 0 on success and an appropriate (-)ve integer as defined in errno.h
  3444. * file on failure.
  3445. */
  3446. static int s2io_open(struct net_device *dev)
  3447. {
  3448. struct s2io_nic *sp = dev->priv;
  3449. int err = 0;
  3450. /*
  3451. * Make sure you have link off by default every time
  3452. * Nic is initialized
  3453. */
  3454. netif_carrier_off(dev);
  3455. sp->last_link_state = 0;
  3456. napi_enable(&sp->napi);
  3457. if (sp->config.intr_type == MSI_X) {
  3458. int ret = s2io_enable_msi_x(sp);
  3459. if (!ret) {
  3460. ret = s2io_test_msi(sp);
  3461. /* rollback MSI-X, will re-enable during add_isr() */
  3462. remove_msix_isr(sp);
  3463. }
  3464. if (ret) {
  3465. DBG_PRINT(ERR_DBG,
  3466. "%s: MSI-X requested but failed to enable\n",
  3467. dev->name);
  3468. sp->config.intr_type = INTA;
  3469. }
  3470. }
  3471. /* NAPI doesn't work well with MSI(X) */
  3472. if (sp->config.intr_type != INTA) {
  3473. if(sp->config.napi)
  3474. sp->config.napi = 0;
  3475. }
  3476. /* Initialize H/W and enable interrupts */
  3477. err = s2io_card_up(sp);
  3478. if (err) {
  3479. DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
  3480. dev->name);
  3481. goto hw_init_failed;
  3482. }
  3483. if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
  3484. DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
  3485. s2io_card_down(sp);
  3486. err = -ENODEV;
  3487. goto hw_init_failed;
  3488. }
  3489. netif_start_queue(dev);
  3490. return 0;
  3491. hw_init_failed:
  3492. napi_disable(&sp->napi);
  3493. if (sp->config.intr_type == MSI_X) {
  3494. if (sp->entries) {
  3495. kfree(sp->entries);
  3496. sp->mac_control.stats_info->sw_stat.mem_freed
  3497. += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
  3498. }
  3499. if (sp->s2io_entries) {
  3500. kfree(sp->s2io_entries);
  3501. sp->mac_control.stats_info->sw_stat.mem_freed
  3502. += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
  3503. }
  3504. }
  3505. return err;
  3506. }
  3507. /**
  3508. * s2io_close -close entry point of the driver
  3509. * @dev : device pointer.
  3510. * Description:
  3511. * This is the stop entry point of the driver. It needs to undo exactly
  3512. * whatever was done by the open entry point,thus it's usually referred to
  3513. * as the close function.Among other things this function mainly stops the
  3514. * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
  3515. * Return value:
  3516. * 0 on success and an appropriate (-)ve integer as defined in errno.h
  3517. * file on failure.
  3518. */
  3519. static int s2io_close(struct net_device *dev)
  3520. {
  3521. struct s2io_nic *sp = dev->priv;
  3522. netif_stop_queue(dev);
  3523. napi_disable(&sp->napi);
  3524. /* Reset card, kill tasklet and free Tx and Rx buffers. */
  3525. s2io_card_down(sp);
  3526. return 0;
  3527. }
  3528. /**
  3529. * s2io_xmit - Tx entry point of te driver
  3530. * @skb : the socket buffer containing the Tx data.
  3531. * @dev : device pointer.
  3532. * Description :
  3533. * This function is the Tx entry point of the driver. S2IO NIC supports
  3534. * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
  3535. * NOTE: when device cant queue the pkt,just the trans_start variable will
  3536. * not be upadted.
  3537. * Return value:
  3538. * 0 on success & 1 on failure.
  3539. */
  3540. static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
  3541. {
  3542. struct s2io_nic *sp = dev->priv;
  3543. u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
  3544. register u64 val64;
  3545. struct TxD *txdp;
  3546. struct TxFIFO_element __iomem *tx_fifo;
  3547. unsigned long flags;
  3548. u16 vlan_tag = 0;
  3549. int vlan_priority = 0;
  3550. struct mac_info *mac_control;
  3551. struct config_param *config;
  3552. int offload_type;
  3553. struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
  3554. mac_control = &sp->mac_control;
  3555. config = &sp->config;
  3556. DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
  3557. if (unlikely(skb->len <= 0)) {
  3558. DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
  3559. dev_kfree_skb_any(skb);
  3560. return 0;
  3561. }
  3562. spin_lock_irqsave(&sp->tx_lock, flags);
  3563. if (!is_s2io_card_up(sp)) {
  3564. DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
  3565. dev->name);
  3566. spin_unlock_irqrestore(&sp->tx_lock, flags);
  3567. dev_kfree_skb(skb);
  3568. return 0;
  3569. }
  3570. queue = 0;
  3571. /* Get Fifo number to Transmit based on vlan priority */
  3572. if (sp->vlgrp && vlan_tx_tag_present(skb)) {
  3573. vlan_tag = vlan_tx_tag_get(skb);
  3574. vlan_priority = vlan_tag >> 13;
  3575. queue = config->fifo_mapping[vlan_priority];
  3576. }
  3577. put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
  3578. get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
  3579. txdp = (struct TxD *) mac_control->fifos[queue].list_info[put_off].
  3580. list_virt_addr;
  3581. queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
  3582. /* Avoid "put" pointer going beyond "get" pointer */
  3583. if (txdp->Host_Control ||
  3584. ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
  3585. DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
  3586. netif_stop_queue(dev);
  3587. dev_kfree_skb(skb);
  3588. spin_unlock_irqrestore(&sp->tx_lock, flags);
  3589. return 0;
  3590. }
  3591. offload_type = s2io_offload_type(skb);
  3592. if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
  3593. txdp->Control_1 |= TXD_TCP_LSO_EN;
  3594. txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
  3595. }
  3596. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  3597. txdp->Control_2 |=
  3598. (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
  3599. TXD_TX_CKO_UDP_EN);
  3600. }
  3601. txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
  3602. txdp->Control_1 |= TXD_LIST_OWN_XENA;
  3603. txdp->Control_2 |= config->tx_intr_type;
  3604. if (sp->vlgrp && vlan_tx_tag_present(skb)) {
  3605. txdp->Control_2 |= TXD_VLAN_ENABLE;
  3606. txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
  3607. }
  3608. frg_len = skb->len - skb->data_len;
  3609. if (offload_type == SKB_GSO_UDP) {
  3610. int ufo_size;
  3611. ufo_size = s2io_udp_mss(skb);
  3612. ufo_size &= ~7;
  3613. txdp->Control_1 |= TXD_UFO_EN;
  3614. txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
  3615. txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
  3616. #ifdef __BIG_ENDIAN
  3617. sp->ufo_in_band_v[put_off] =
  3618. (u64)skb_shinfo(skb)->ip6_frag_id;
  3619. #else
  3620. sp->ufo_in_band_v[put_off] =
  3621. (u64)skb_shinfo(skb)->ip6_frag_id << 32;
  3622. #endif
  3623. txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
  3624. txdp->Buffer_Pointer = pci_map_single(sp->pdev,
  3625. sp->ufo_in_band_v,
  3626. sizeof(u64), PCI_DMA_TODEVICE);
  3627. if((txdp->Buffer_Pointer == 0) ||
  3628. (txdp->Buffer_Pointer == DMA_ERROR_CODE))
  3629. goto pci_map_failed;
  3630. txdp++;
  3631. }
  3632. txdp->Buffer_Pointer = pci_map_single
  3633. (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
  3634. if((txdp->Buffer_Pointer == 0) ||
  3635. (txdp->Buffer_Pointer == DMA_ERROR_CODE))
  3636. goto pci_map_failed;
  3637. txdp->Host_Control = (unsigned long) skb;
  3638. txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
  3639. if (offload_type == SKB_GSO_UDP)
  3640. txdp->Control_1 |= TXD_UFO_EN;
  3641. frg_cnt = skb_shinfo(skb)->nr_frags;
  3642. /* For fragmented SKB. */
  3643. for (i = 0; i < frg_cnt; i++) {
  3644. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  3645. /* A '0' length fragment will be ignored */
  3646. if (!frag->size)
  3647. continue;
  3648. txdp++;
  3649. txdp->Buffer_Pointer = (u64) pci_map_page
  3650. (sp->pdev, frag->page, frag->page_offset,
  3651. frag->size, PCI_DMA_TODEVICE);
  3652. txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
  3653. if (offload_type == SKB_GSO_UDP)
  3654. txdp->Control_1 |= TXD_UFO_EN;
  3655. }
  3656. txdp->Control_1 |= TXD_GATHER_CODE_LAST;
  3657. if (offload_type == SKB_GSO_UDP)
  3658. frg_cnt++; /* as Txd0 was used for inband header */
  3659. tx_fifo = mac_control->tx_FIFO_start[queue];
  3660. val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
  3661. writeq(val64, &tx_fifo->TxDL_Pointer);
  3662. val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
  3663. TX_FIFO_LAST_LIST);
  3664. if (offload_type)
  3665. val64 |= TX_FIFO_SPECIAL_FUNC;
  3666. writeq(val64, &tx_fifo->List_Control);
  3667. mmiowb();
  3668. put_off++;
  3669. if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
  3670. put_off = 0;
  3671. mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
  3672. /* Avoid "put" pointer going beyond "get" pointer */
  3673. if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
  3674. sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
  3675. DBG_PRINT(TX_DBG,
  3676. "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
  3677. put_off, get_off);
  3678. netif_stop_queue(dev);
  3679. }
  3680. mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
  3681. dev->trans_start = jiffies;
  3682. spin_unlock_irqrestore(&sp->tx_lock, flags);
  3683. return 0;
  3684. pci_map_failed:
  3685. stats->pci_map_fail_cnt++;
  3686. netif_stop_queue(dev);
  3687. stats->mem_freed += skb->truesize;
  3688. dev_kfree_skb(skb);
  3689. spin_unlock_irqrestore(&sp->tx_lock, flags);
  3690. return 0;
  3691. }
  3692. static void
  3693. s2io_alarm_handle(unsigned long data)
  3694. {
  3695. struct s2io_nic *sp = (struct s2io_nic *)data;
  3696. struct net_device *dev = sp->dev;
  3697. s2io_handle_errors(dev);
  3698. mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
  3699. }
  3700. static int s2io_chk_rx_buffers(struct s2io_nic *sp, int rng_n)
  3701. {
  3702. int rxb_size, level;
  3703. if (!sp->lro) {
  3704. rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
  3705. level = rx_buffer_level(sp, rxb_size, rng_n);
  3706. if ((level == PANIC) && (!TASKLET_IN_USE)) {
  3707. int ret;
  3708. DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
  3709. DBG_PRINT(INTR_DBG, "PANIC levels\n");
  3710. if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
  3711. DBG_PRINT(INFO_DBG, "Out of memory in %s",
  3712. __FUNCTION__);
  3713. clear_bit(0, (&sp->tasklet_status));
  3714. return -1;
  3715. }
  3716. clear_bit(0, (&sp->tasklet_status));
  3717. } else if (level == LOW)
  3718. tasklet_schedule(&sp->task);
  3719. } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
  3720. DBG_PRINT(INFO_DBG, "%s:Out of memory", sp->dev->name);
  3721. DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
  3722. }
  3723. return 0;
  3724. }
  3725. static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
  3726. {
  3727. struct ring_info *ring = (struct ring_info *)dev_id;
  3728. struct s2io_nic *sp = ring->nic;
  3729. if (!is_s2io_card_up(sp))
  3730. return IRQ_HANDLED;
  3731. rx_intr_handler(ring);
  3732. s2io_chk_rx_buffers(sp, ring->ring_no);
  3733. return IRQ_HANDLED;
  3734. }
  3735. static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
  3736. {
  3737. struct fifo_info *fifo = (struct fifo_info *)dev_id;
  3738. struct s2io_nic *sp = fifo->nic;
  3739. if (!is_s2io_card_up(sp))
  3740. return IRQ_HANDLED;
  3741. tx_intr_handler(fifo);
  3742. return IRQ_HANDLED;
  3743. }
  3744. static void s2io_txpic_intr_handle(struct s2io_nic *sp)
  3745. {
  3746. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3747. u64 val64;
  3748. val64 = readq(&bar0->pic_int_status);
  3749. if (val64 & PIC_INT_GPIO) {
  3750. val64 = readq(&bar0->gpio_int_reg);
  3751. if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
  3752. (val64 & GPIO_INT_REG_LINK_UP)) {
  3753. /*
  3754. * This is unstable state so clear both up/down
  3755. * interrupt and adapter to re-evaluate the link state.
  3756. */
  3757. val64 |= GPIO_INT_REG_LINK_DOWN;
  3758. val64 |= GPIO_INT_REG_LINK_UP;
  3759. writeq(val64, &bar0->gpio_int_reg);
  3760. val64 = readq(&bar0->gpio_int_mask);
  3761. val64 &= ~(GPIO_INT_MASK_LINK_UP |
  3762. GPIO_INT_MASK_LINK_DOWN);
  3763. writeq(val64, &bar0->gpio_int_mask);
  3764. }
  3765. else if (val64 & GPIO_INT_REG_LINK_UP) {
  3766. val64 = readq(&bar0->adapter_status);
  3767. /* Enable Adapter */
  3768. val64 = readq(&bar0->adapter_control);
  3769. val64 |= ADAPTER_CNTL_EN;
  3770. writeq(val64, &bar0->adapter_control);
  3771. val64 |= ADAPTER_LED_ON;
  3772. writeq(val64, &bar0->adapter_control);
  3773. if (!sp->device_enabled_once)
  3774. sp->device_enabled_once = 1;
  3775. s2io_link(sp, LINK_UP);
  3776. /*
  3777. * unmask link down interrupt and mask link-up
  3778. * intr
  3779. */
  3780. val64 = readq(&bar0->gpio_int_mask);
  3781. val64 &= ~GPIO_INT_MASK_LINK_DOWN;
  3782. val64 |= GPIO_INT_MASK_LINK_UP;
  3783. writeq(val64, &bar0->gpio_int_mask);
  3784. }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
  3785. val64 = readq(&bar0->adapter_status);
  3786. s2io_link(sp, LINK_DOWN);
  3787. /* Link is down so unmaks link up interrupt */
  3788. val64 = readq(&bar0->gpio_int_mask);
  3789. val64 &= ~GPIO_INT_MASK_LINK_UP;
  3790. val64 |= GPIO_INT_MASK_LINK_DOWN;
  3791. writeq(val64, &bar0->gpio_int_mask);
  3792. /* turn off LED */
  3793. val64 = readq(&bar0->adapter_control);
  3794. val64 = val64 &(~ADAPTER_LED_ON);
  3795. writeq(val64, &bar0->adapter_control);
  3796. }
  3797. }
  3798. val64 = readq(&bar0->gpio_int_mask);
  3799. }
  3800. /**
  3801. * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
  3802. * @value: alarm bits
  3803. * @addr: address value
  3804. * @cnt: counter variable
  3805. * Description: Check for alarm and increment the counter
  3806. * Return Value:
  3807. * 1 - if alarm bit set
  3808. * 0 - if alarm bit is not set
  3809. */
  3810. static int do_s2io_chk_alarm_bit(u64 value, void __iomem * addr,
  3811. unsigned long long *cnt)
  3812. {
  3813. u64 val64;
  3814. val64 = readq(addr);
  3815. if ( val64 & value ) {
  3816. writeq(val64, addr);
  3817. (*cnt)++;
  3818. return 1;
  3819. }
  3820. return 0;
  3821. }
  3822. /**
  3823. * s2io_handle_errors - Xframe error indication handler
  3824. * @nic: device private variable
  3825. * Description: Handle alarms such as loss of link, single or
  3826. * double ECC errors, critical and serious errors.
  3827. * Return Value:
  3828. * NONE
  3829. */
  3830. static void s2io_handle_errors(void * dev_id)
  3831. {
  3832. struct net_device *dev = (struct net_device *) dev_id;
  3833. struct s2io_nic *sp = dev->priv;
  3834. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3835. u64 temp64 = 0,val64=0;
  3836. int i = 0;
  3837. struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
  3838. struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
  3839. if (!is_s2io_card_up(sp))
  3840. return;
  3841. if (pci_channel_offline(sp->pdev))
  3842. return;
  3843. memset(&sw_stat->ring_full_cnt, 0,
  3844. sizeof(sw_stat->ring_full_cnt));
  3845. /* Handling the XPAK counters update */
  3846. if(stats->xpak_timer_count < 72000) {
  3847. /* waiting for an hour */
  3848. stats->xpak_timer_count++;
  3849. } else {
  3850. s2io_updt_xpak_counter(dev);
  3851. /* reset the count to zero */
  3852. stats->xpak_timer_count = 0;
  3853. }
  3854. /* Handling link status change error Intr */
  3855. if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
  3856. val64 = readq(&bar0->mac_rmac_err_reg);
  3857. writeq(val64, &bar0->mac_rmac_err_reg);
  3858. if (val64 & RMAC_LINK_STATE_CHANGE_INT)
  3859. schedule_work(&sp->set_link_task);
  3860. }
  3861. /* In case of a serious error, the device will be Reset. */
  3862. if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
  3863. &sw_stat->serious_err_cnt))
  3864. goto reset;
  3865. /* Check for data parity error */
  3866. if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
  3867. &sw_stat->parity_err_cnt))
  3868. goto reset;
  3869. /* Check for ring full counter */
  3870. if (sp->device_type == XFRAME_II_DEVICE) {
  3871. val64 = readq(&bar0->ring_bump_counter1);
  3872. for (i=0; i<4; i++) {
  3873. temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
  3874. temp64 >>= 64 - ((i+1)*16);
  3875. sw_stat->ring_full_cnt[i] += temp64;
  3876. }
  3877. val64 = readq(&bar0->ring_bump_counter2);
  3878. for (i=0; i<4; i++) {
  3879. temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
  3880. temp64 >>= 64 - ((i+1)*16);
  3881. sw_stat->ring_full_cnt[i+4] += temp64;
  3882. }
  3883. }
  3884. val64 = readq(&bar0->txdma_int_status);
  3885. /*check for pfc_err*/
  3886. if (val64 & TXDMA_PFC_INT) {
  3887. if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM|
  3888. PFC_MISC_0_ERR | PFC_MISC_1_ERR|
  3889. PFC_PCIX_ERR, &bar0->pfc_err_reg,
  3890. &sw_stat->pfc_err_cnt))
  3891. goto reset;
  3892. do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, &bar0->pfc_err_reg,
  3893. &sw_stat->pfc_err_cnt);
  3894. }
  3895. /*check for tda_err*/
  3896. if (val64 & TXDMA_TDA_INT) {
  3897. if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
  3898. TDA_SM1_ERR_ALARM, &bar0->tda_err_reg,
  3899. &sw_stat->tda_err_cnt))
  3900. goto reset;
  3901. do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
  3902. &bar0->tda_err_reg, &sw_stat->tda_err_cnt);
  3903. }
  3904. /*check for pcc_err*/
  3905. if (val64 & TXDMA_PCC_INT) {
  3906. if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM
  3907. | PCC_N_SERR | PCC_6_COF_OV_ERR
  3908. | PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR
  3909. | PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR
  3910. | PCC_TXB_ECC_DB_ERR, &bar0->pcc_err_reg,
  3911. &sw_stat->pcc_err_cnt))
  3912. goto reset;
  3913. do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
  3914. &bar0->pcc_err_reg, &sw_stat->pcc_err_cnt);
  3915. }
  3916. /*check for tti_err*/
  3917. if (val64 & TXDMA_TTI_INT) {
  3918. if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, &bar0->tti_err_reg,
  3919. &sw_stat->tti_err_cnt))
  3920. goto reset;
  3921. do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
  3922. &bar0->tti_err_reg, &sw_stat->tti_err_cnt);
  3923. }
  3924. /*check for lso_err*/
  3925. if (val64 & TXDMA_LSO_INT) {
  3926. if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT
  3927. | LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
  3928. &bar0->lso_err_reg, &sw_stat->lso_err_cnt))
  3929. goto reset;
  3930. do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
  3931. &bar0->lso_err_reg, &sw_stat->lso_err_cnt);
  3932. }
  3933. /*check for tpa_err*/
  3934. if (val64 & TXDMA_TPA_INT) {
  3935. if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, &bar0->tpa_err_reg,
  3936. &sw_stat->tpa_err_cnt))
  3937. goto reset;
  3938. do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, &bar0->tpa_err_reg,
  3939. &sw_stat->tpa_err_cnt);
  3940. }
  3941. /*check for sm_err*/
  3942. if (val64 & TXDMA_SM_INT) {
  3943. if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, &bar0->sm_err_reg,
  3944. &sw_stat->sm_err_cnt))
  3945. goto reset;
  3946. }
  3947. val64 = readq(&bar0->mac_int_status);
  3948. if (val64 & MAC_INT_STATUS_TMAC_INT) {
  3949. if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
  3950. &bar0->mac_tmac_err_reg,
  3951. &sw_stat->mac_tmac_err_cnt))
  3952. goto reset;
  3953. do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR
  3954. | TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
  3955. &bar0->mac_tmac_err_reg,
  3956. &sw_stat->mac_tmac_err_cnt);
  3957. }
  3958. val64 = readq(&bar0->xgxs_int_status);
  3959. if (val64 & XGXS_INT_STATUS_TXGXS) {
  3960. if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
  3961. &bar0->xgxs_txgxs_err_reg,
  3962. &sw_stat->xgxs_txgxs_err_cnt))
  3963. goto reset;
  3964. do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
  3965. &bar0->xgxs_txgxs_err_reg,
  3966. &sw_stat->xgxs_txgxs_err_cnt);
  3967. }
  3968. val64 = readq(&bar0->rxdma_int_status);
  3969. if (val64 & RXDMA_INT_RC_INT_M) {
  3970. if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR
  3971. | RC_PRCn_SM_ERR_ALARM |RC_FTC_SM_ERR_ALARM,
  3972. &bar0->rc_err_reg, &sw_stat->rc_err_cnt))
  3973. goto reset;
  3974. do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR
  3975. | RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
  3976. &sw_stat->rc_err_cnt);
  3977. if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn
  3978. | PRC_PCI_AB_F_WR_Rn, &bar0->prc_pcix_err_reg,
  3979. &sw_stat->prc_pcix_err_cnt))
  3980. goto reset;
  3981. do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | PRC_PCI_DP_WR_Rn
  3982. | PRC_PCI_DP_F_WR_Rn, &bar0->prc_pcix_err_reg,
  3983. &sw_stat->prc_pcix_err_cnt);
  3984. }
  3985. if (val64 & RXDMA_INT_RPA_INT_M) {
  3986. if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
  3987. &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt))
  3988. goto reset;
  3989. do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
  3990. &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt);
  3991. }
  3992. if (val64 & RXDMA_INT_RDA_INT_M) {
  3993. if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
  3994. | RDA_FRM_ECC_DB_N_AERR | RDA_SM1_ERR_ALARM
  3995. | RDA_SM0_ERR_ALARM | RDA_RXD_ECC_DB_SERR,
  3996. &bar0->rda_err_reg, &sw_stat->rda_err_cnt))
  3997. goto reset;
  3998. do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | RDA_FRM_ECC_SG_ERR
  3999. | RDA_MISC_ERR | RDA_PCIX_ERR,
  4000. &bar0->rda_err_reg, &sw_stat->rda_err_cnt);
  4001. }
  4002. if (val64 & RXDMA_INT_RTI_INT_M) {
  4003. if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, &bar0->rti_err_reg,
  4004. &sw_stat->rti_err_cnt))
  4005. goto reset;
  4006. do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
  4007. &bar0->rti_err_reg, &sw_stat->rti_err_cnt);
  4008. }
  4009. val64 = readq(&bar0->mac_int_status);
  4010. if (val64 & MAC_INT_STATUS_RMAC_INT) {
  4011. if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
  4012. &bar0->mac_rmac_err_reg,
  4013. &sw_stat->mac_rmac_err_cnt))
  4014. goto reset;
  4015. do_s2io_chk_alarm_bit(RMAC_UNUSED_INT|RMAC_SINGLE_ECC_ERR|
  4016. RMAC_DOUBLE_ECC_ERR, &bar0->mac_rmac_err_reg,
  4017. &sw_stat->mac_rmac_err_cnt);
  4018. }
  4019. val64 = readq(&bar0->xgxs_int_status);
  4020. if (val64 & XGXS_INT_STATUS_RXGXS) {
  4021. if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
  4022. &bar0->xgxs_rxgxs_err_reg,
  4023. &sw_stat->xgxs_rxgxs_err_cnt))
  4024. goto reset;
  4025. }
  4026. val64 = readq(&bar0->mc_int_status);
  4027. if(val64 & MC_INT_STATUS_MC_INT) {
  4028. if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, &bar0->mc_err_reg,
  4029. &sw_stat->mc_err_cnt))
  4030. goto reset;
  4031. /* Handling Ecc errors */
  4032. if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
  4033. writeq(val64, &bar0->mc_err_reg);
  4034. if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
  4035. sw_stat->double_ecc_errs++;
  4036. if (sp->device_type != XFRAME_II_DEVICE) {
  4037. /*
  4038. * Reset XframeI only if critical error
  4039. */
  4040. if (val64 &
  4041. (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
  4042. MC_ERR_REG_MIRI_ECC_DB_ERR_1))
  4043. goto reset;
  4044. }
  4045. } else
  4046. sw_stat->single_ecc_errs++;
  4047. }
  4048. }
  4049. return;
  4050. reset:
  4051. netif_stop_queue(dev);
  4052. schedule_work(&sp->rst_timer_task);
  4053. sw_stat->soft_reset_cnt++;
  4054. return;
  4055. }
  4056. /**
  4057. * s2io_isr - ISR handler of the device .
  4058. * @irq: the irq of the device.
  4059. * @dev_id: a void pointer to the dev structure of the NIC.
  4060. * Description: This function is the ISR handler of the device. It
  4061. * identifies the reason for the interrupt and calls the relevant
  4062. * service routines. As a contongency measure, this ISR allocates the
  4063. * recv buffers, if their numbers are below the panic value which is
  4064. * presently set to 25% of the original number of rcv buffers allocated.
  4065. * Return value:
  4066. * IRQ_HANDLED: will be returned if IRQ was handled by this routine
  4067. * IRQ_NONE: will be returned if interrupt is not from our device
  4068. */
  4069. static irqreturn_t s2io_isr(int irq, void *dev_id)
  4070. {
  4071. struct net_device *dev = (struct net_device *) dev_id;
  4072. struct s2io_nic *sp = dev->priv;
  4073. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4074. int i;
  4075. u64 reason = 0;
  4076. struct mac_info *mac_control;
  4077. struct config_param *config;
  4078. /* Pretend we handled any irq's from a disconnected card */
  4079. if (pci_channel_offline(sp->pdev))
  4080. return IRQ_NONE;
  4081. if (!is_s2io_card_up(sp))
  4082. return IRQ_NONE;
  4083. mac_control = &sp->mac_control;
  4084. config = &sp->config;
  4085. /*
  4086. * Identify the cause for interrupt and call the appropriate
  4087. * interrupt handler. Causes for the interrupt could be;
  4088. * 1. Rx of packet.
  4089. * 2. Tx complete.
  4090. * 3. Link down.
  4091. */
  4092. reason = readq(&bar0->general_int_status);
  4093. if (unlikely(reason == S2IO_MINUS_ONE) ) {
  4094. /* Nothing much can be done. Get out */
  4095. return IRQ_HANDLED;
  4096. }
  4097. if (reason & (GEN_INTR_RXTRAFFIC |
  4098. GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC))
  4099. {
  4100. writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
  4101. if (config->napi) {
  4102. if (reason & GEN_INTR_RXTRAFFIC) {
  4103. if (likely(netif_rx_schedule_prep(dev,
  4104. &sp->napi))) {
  4105. __netif_rx_schedule(dev, &sp->napi);
  4106. writeq(S2IO_MINUS_ONE,
  4107. &bar0->rx_traffic_mask);
  4108. } else
  4109. writeq(S2IO_MINUS_ONE,
  4110. &bar0->rx_traffic_int);
  4111. }
  4112. } else {
  4113. /*
  4114. * rx_traffic_int reg is an R1 register, writing all 1's
  4115. * will ensure that the actual interrupt causing bit
  4116. * get's cleared and hence a read can be avoided.
  4117. */
  4118. if (reason & GEN_INTR_RXTRAFFIC)
  4119. writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
  4120. for (i = 0; i < config->rx_ring_num; i++)
  4121. rx_intr_handler(&mac_control->rings[i]);
  4122. }
  4123. /*
  4124. * tx_traffic_int reg is an R1 register, writing all 1's
  4125. * will ensure that the actual interrupt causing bit get's
  4126. * cleared and hence a read can be avoided.
  4127. */
  4128. if (reason & GEN_INTR_TXTRAFFIC)
  4129. writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
  4130. for (i = 0; i < config->tx_fifo_num; i++)
  4131. tx_intr_handler(&mac_control->fifos[i]);
  4132. if (reason & GEN_INTR_TXPIC)
  4133. s2io_txpic_intr_handle(sp);
  4134. /*
  4135. * Reallocate the buffers from the interrupt handler itself.
  4136. */
  4137. if (!config->napi) {
  4138. for (i = 0; i < config->rx_ring_num; i++)
  4139. s2io_chk_rx_buffers(sp, i);
  4140. }
  4141. writeq(sp->general_int_mask, &bar0->general_int_mask);
  4142. readl(&bar0->general_int_status);
  4143. return IRQ_HANDLED;
  4144. }
  4145. else if (!reason) {
  4146. /* The interrupt was not raised by us */
  4147. return IRQ_NONE;
  4148. }
  4149. return IRQ_HANDLED;
  4150. }
  4151. /**
  4152. * s2io_updt_stats -
  4153. */
  4154. static void s2io_updt_stats(struct s2io_nic *sp)
  4155. {
  4156. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4157. u64 val64;
  4158. int cnt = 0;
  4159. if (is_s2io_card_up(sp)) {
  4160. /* Apprx 30us on a 133 MHz bus */
  4161. val64 = SET_UPDT_CLICKS(10) |
  4162. STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
  4163. writeq(val64, &bar0->stat_cfg);
  4164. do {
  4165. udelay(100);
  4166. val64 = readq(&bar0->stat_cfg);
  4167. if (!(val64 & s2BIT(0)))
  4168. break;
  4169. cnt++;
  4170. if (cnt == 5)
  4171. break; /* Updt failed */
  4172. } while(1);
  4173. }
  4174. }
  4175. /**
  4176. * s2io_get_stats - Updates the device statistics structure.
  4177. * @dev : pointer to the device structure.
  4178. * Description:
  4179. * This function updates the device statistics structure in the s2io_nic
  4180. * structure and returns a pointer to the same.
  4181. * Return value:
  4182. * pointer to the updated net_device_stats structure.
  4183. */
  4184. static struct net_device_stats *s2io_get_stats(struct net_device *dev)
  4185. {
  4186. struct s2io_nic *sp = dev->priv;
  4187. struct mac_info *mac_control;
  4188. struct config_param *config;
  4189. mac_control = &sp->mac_control;
  4190. config = &sp->config;
  4191. /* Configure Stats for immediate updt */
  4192. s2io_updt_stats(sp);
  4193. sp->stats.tx_packets =
  4194. le32_to_cpu(mac_control->stats_info->tmac_frms);
  4195. sp->stats.tx_errors =
  4196. le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
  4197. sp->stats.rx_errors =
  4198. le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
  4199. sp->stats.multicast =
  4200. le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
  4201. sp->stats.rx_length_errors =
  4202. le64_to_cpu(mac_control->stats_info->rmac_long_frms);
  4203. return (&sp->stats);
  4204. }
  4205. /**
  4206. * s2io_set_multicast - entry point for multicast address enable/disable.
  4207. * @dev : pointer to the device structure
  4208. * Description:
  4209. * This function is a driver entry point which gets called by the kernel
  4210. * whenever multicast addresses must be enabled/disabled. This also gets
  4211. * called to set/reset promiscuous mode. Depending on the deivce flag, we
  4212. * determine, if multicast address must be enabled or if promiscuous mode
  4213. * is to be disabled etc.
  4214. * Return value:
  4215. * void.
  4216. */
  4217. static void s2io_set_multicast(struct net_device *dev)
  4218. {
  4219. int i, j, prev_cnt;
  4220. struct dev_mc_list *mclist;
  4221. struct s2io_nic *sp = dev->priv;
  4222. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4223. u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
  4224. 0xfeffffffffffULL;
  4225. u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
  4226. void __iomem *add;
  4227. if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
  4228. /* Enable all Multicast addresses */
  4229. writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
  4230. &bar0->rmac_addr_data0_mem);
  4231. writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
  4232. &bar0->rmac_addr_data1_mem);
  4233. val64 = RMAC_ADDR_CMD_MEM_WE |
  4234. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4235. RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
  4236. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4237. /* Wait till command completes */
  4238. wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4239. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4240. S2IO_BIT_RESET);
  4241. sp->m_cast_flg = 1;
  4242. sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
  4243. } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
  4244. /* Disable all Multicast addresses */
  4245. writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
  4246. &bar0->rmac_addr_data0_mem);
  4247. writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
  4248. &bar0->rmac_addr_data1_mem);
  4249. val64 = RMAC_ADDR_CMD_MEM_WE |
  4250. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4251. RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
  4252. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4253. /* Wait till command completes */
  4254. wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4255. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4256. S2IO_BIT_RESET);
  4257. sp->m_cast_flg = 0;
  4258. sp->all_multi_pos = 0;
  4259. }
  4260. if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
  4261. /* Put the NIC into promiscuous mode */
  4262. add = &bar0->mac_cfg;
  4263. val64 = readq(&bar0->mac_cfg);
  4264. val64 |= MAC_CFG_RMAC_PROM_ENABLE;
  4265. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4266. writel((u32) val64, add);
  4267. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4268. writel((u32) (val64 >> 32), (add + 4));
  4269. if (vlan_tag_strip != 1) {
  4270. val64 = readq(&bar0->rx_pa_cfg);
  4271. val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
  4272. writeq(val64, &bar0->rx_pa_cfg);
  4273. vlan_strip_flag = 0;
  4274. }
  4275. val64 = readq(&bar0->mac_cfg);
  4276. sp->promisc_flg = 1;
  4277. DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
  4278. dev->name);
  4279. } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
  4280. /* Remove the NIC from promiscuous mode */
  4281. add = &bar0->mac_cfg;
  4282. val64 = readq(&bar0->mac_cfg);
  4283. val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
  4284. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4285. writel((u32) val64, add);
  4286. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4287. writel((u32) (val64 >> 32), (add + 4));
  4288. if (vlan_tag_strip != 0) {
  4289. val64 = readq(&bar0->rx_pa_cfg);
  4290. val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
  4291. writeq(val64, &bar0->rx_pa_cfg);
  4292. vlan_strip_flag = 1;
  4293. }
  4294. val64 = readq(&bar0->mac_cfg);
  4295. sp->promisc_flg = 0;
  4296. DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
  4297. dev->name);
  4298. }
  4299. /* Update individual M_CAST address list */
  4300. if ((!sp->m_cast_flg) && dev->mc_count) {
  4301. if (dev->mc_count >
  4302. (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
  4303. DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
  4304. dev->name);
  4305. DBG_PRINT(ERR_DBG, "can be added, please enable ");
  4306. DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
  4307. return;
  4308. }
  4309. prev_cnt = sp->mc_addr_count;
  4310. sp->mc_addr_count = dev->mc_count;
  4311. /* Clear out the previous list of Mc in the H/W. */
  4312. for (i = 0; i < prev_cnt; i++) {
  4313. writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
  4314. &bar0->rmac_addr_data0_mem);
  4315. writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
  4316. &bar0->rmac_addr_data1_mem);
  4317. val64 = RMAC_ADDR_CMD_MEM_WE |
  4318. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4319. RMAC_ADDR_CMD_MEM_OFFSET
  4320. (MAC_MC_ADDR_START_OFFSET + i);
  4321. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4322. /* Wait for command completes */
  4323. if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4324. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4325. S2IO_BIT_RESET)) {
  4326. DBG_PRINT(ERR_DBG, "%s: Adding ",
  4327. dev->name);
  4328. DBG_PRINT(ERR_DBG, "Multicasts failed\n");
  4329. return;
  4330. }
  4331. }
  4332. /* Create the new Rx filter list and update the same in H/W. */
  4333. for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
  4334. i++, mclist = mclist->next) {
  4335. memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
  4336. ETH_ALEN);
  4337. mac_addr = 0;
  4338. for (j = 0; j < ETH_ALEN; j++) {
  4339. mac_addr |= mclist->dmi_addr[j];
  4340. mac_addr <<= 8;
  4341. }
  4342. mac_addr >>= 8;
  4343. writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
  4344. &bar0->rmac_addr_data0_mem);
  4345. writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
  4346. &bar0->rmac_addr_data1_mem);
  4347. val64 = RMAC_ADDR_CMD_MEM_WE |
  4348. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4349. RMAC_ADDR_CMD_MEM_OFFSET
  4350. (i + MAC_MC_ADDR_START_OFFSET);
  4351. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4352. /* Wait for command completes */
  4353. if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4354. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4355. S2IO_BIT_RESET)) {
  4356. DBG_PRINT(ERR_DBG, "%s: Adding ",
  4357. dev->name);
  4358. DBG_PRINT(ERR_DBG, "Multicasts failed\n");
  4359. return;
  4360. }
  4361. }
  4362. }
  4363. }
  4364. /* add unicast MAC address to CAM */
  4365. static int do_s2io_add_unicast(struct s2io_nic *sp, u64 addr, int off)
  4366. {
  4367. u64 val64;
  4368. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4369. writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
  4370. &bar0->rmac_addr_data0_mem);
  4371. val64 =
  4372. RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4373. RMAC_ADDR_CMD_MEM_OFFSET(off);
  4374. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4375. /* Wait till command completes */
  4376. if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4377. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4378. S2IO_BIT_RESET)) {
  4379. DBG_PRINT(INFO_DBG, "add_mac_addr failed\n");
  4380. return FAILURE;
  4381. }
  4382. return SUCCESS;
  4383. }
  4384. /**
  4385. * s2io_set_mac_addr driver entry point
  4386. */
  4387. static int s2io_set_mac_addr(struct net_device *dev, void *p)
  4388. {
  4389. struct sockaddr *addr = p;
  4390. if (!is_valid_ether_addr(addr->sa_data))
  4391. return -EINVAL;
  4392. memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
  4393. /* store the MAC address in CAM */
  4394. return (do_s2io_prog_unicast(dev, dev->dev_addr));
  4395. }
  4396. /**
  4397. * do_s2io_prog_unicast - Programs the Xframe mac address
  4398. * @dev : pointer to the device structure.
  4399. * @addr: a uchar pointer to the new mac address which is to be set.
  4400. * Description : This procedure will program the Xframe to receive
  4401. * frames with new Mac Address
  4402. * Return value: SUCCESS on success and an appropriate (-)ve integer
  4403. * as defined in errno.h file on failure.
  4404. */
  4405. static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
  4406. {
  4407. struct s2io_nic *sp = dev->priv;
  4408. register u64 mac_addr = 0, perm_addr = 0;
  4409. int i;
  4410. /*
  4411. * Set the new MAC address as the new unicast filter and reflect this
  4412. * change on the device address registered with the OS. It will be
  4413. * at offset 0.
  4414. */
  4415. for (i = 0; i < ETH_ALEN; i++) {
  4416. mac_addr <<= 8;
  4417. mac_addr |= addr[i];
  4418. perm_addr <<= 8;
  4419. perm_addr |= sp->def_mac_addr[0].mac_addr[i];
  4420. }
  4421. /* check if the dev_addr is different than perm_addr */
  4422. if (mac_addr == perm_addr)
  4423. return SUCCESS;
  4424. /* Update the internal structure with this new mac address */
  4425. do_s2io_copy_mac_addr(sp, 0, mac_addr);
  4426. return (do_s2io_add_unicast(sp, mac_addr, 0));
  4427. }
  4428. /**
  4429. * s2io_ethtool_sset - Sets different link parameters.
  4430. * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
  4431. * @info: pointer to the structure with parameters given by ethtool to set
  4432. * link information.
  4433. * Description:
  4434. * The function sets different link parameters provided by the user onto
  4435. * the NIC.
  4436. * Return value:
  4437. * 0 on success.
  4438. */
  4439. static int s2io_ethtool_sset(struct net_device *dev,
  4440. struct ethtool_cmd *info)
  4441. {
  4442. struct s2io_nic *sp = dev->priv;
  4443. if ((info->autoneg == AUTONEG_ENABLE) ||
  4444. (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
  4445. return -EINVAL;
  4446. else {
  4447. s2io_close(sp->dev);
  4448. s2io_open(sp->dev);
  4449. }
  4450. return 0;
  4451. }
  4452. /**
  4453. * s2io_ethtol_gset - Return link specific information.
  4454. * @sp : private member of the device structure, pointer to the
  4455. * s2io_nic structure.
  4456. * @info : pointer to the structure with parameters given by ethtool
  4457. * to return link information.
  4458. * Description:
  4459. * Returns link specific information like speed, duplex etc.. to ethtool.
  4460. * Return value :
  4461. * return 0 on success.
  4462. */
  4463. static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
  4464. {
  4465. struct s2io_nic *sp = dev->priv;
  4466. info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
  4467. info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
  4468. info->port = PORT_FIBRE;
  4469. /* info->transceiver */
  4470. info->transceiver = XCVR_EXTERNAL;
  4471. if (netif_carrier_ok(sp->dev)) {
  4472. info->speed = 10000;
  4473. info->duplex = DUPLEX_FULL;
  4474. } else {
  4475. info->speed = -1;
  4476. info->duplex = -1;
  4477. }
  4478. info->autoneg = AUTONEG_DISABLE;
  4479. return 0;
  4480. }
  4481. /**
  4482. * s2io_ethtool_gdrvinfo - Returns driver specific information.
  4483. * @sp : private member of the device structure, which is a pointer to the
  4484. * s2io_nic structure.
  4485. * @info : pointer to the structure with parameters given by ethtool to
  4486. * return driver information.
  4487. * Description:
  4488. * Returns driver specefic information like name, version etc.. to ethtool.
  4489. * Return value:
  4490. * void
  4491. */
  4492. static void s2io_ethtool_gdrvinfo(struct net_device *dev,
  4493. struct ethtool_drvinfo *info)
  4494. {
  4495. struct s2io_nic *sp = dev->priv;
  4496. strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
  4497. strncpy(info->version, s2io_driver_version, sizeof(info->version));
  4498. strncpy(info->fw_version, "", sizeof(info->fw_version));
  4499. strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
  4500. info->regdump_len = XENA_REG_SPACE;
  4501. info->eedump_len = XENA_EEPROM_SPACE;
  4502. }
  4503. /**
  4504. * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
  4505. * @sp: private member of the device structure, which is a pointer to the
  4506. * s2io_nic structure.
  4507. * @regs : pointer to the structure with parameters given by ethtool for
  4508. * dumping the registers.
  4509. * @reg_space: The input argumnet into which all the registers are dumped.
  4510. * Description:
  4511. * Dumps the entire register space of xFrame NIC into the user given
  4512. * buffer area.
  4513. * Return value :
  4514. * void .
  4515. */
  4516. static void s2io_ethtool_gregs(struct net_device *dev,
  4517. struct ethtool_regs *regs, void *space)
  4518. {
  4519. int i;
  4520. u64 reg;
  4521. u8 *reg_space = (u8 *) space;
  4522. struct s2io_nic *sp = dev->priv;
  4523. regs->len = XENA_REG_SPACE;
  4524. regs->version = sp->pdev->subsystem_device;
  4525. for (i = 0; i < regs->len; i += 8) {
  4526. reg = readq(sp->bar0 + i);
  4527. memcpy((reg_space + i), &reg, 8);
  4528. }
  4529. }
  4530. /**
  4531. * s2io_phy_id - timer function that alternates adapter LED.
  4532. * @data : address of the private member of the device structure, which
  4533. * is a pointer to the s2io_nic structure, provided as an u32.
  4534. * Description: This is actually the timer function that alternates the
  4535. * adapter LED bit of the adapter control bit to set/reset every time on
  4536. * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
  4537. * once every second.
  4538. */
  4539. static void s2io_phy_id(unsigned long data)
  4540. {
  4541. struct s2io_nic *sp = (struct s2io_nic *) data;
  4542. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4543. u64 val64 = 0;
  4544. u16 subid;
  4545. subid = sp->pdev->subsystem_device;
  4546. if ((sp->device_type == XFRAME_II_DEVICE) ||
  4547. ((subid & 0xFF) >= 0x07)) {
  4548. val64 = readq(&bar0->gpio_control);
  4549. val64 ^= GPIO_CTRL_GPIO_0;
  4550. writeq(val64, &bar0->gpio_control);
  4551. } else {
  4552. val64 = readq(&bar0->adapter_control);
  4553. val64 ^= ADAPTER_LED_ON;
  4554. writeq(val64, &bar0->adapter_control);
  4555. }
  4556. mod_timer(&sp->id_timer, jiffies + HZ / 2);
  4557. }
  4558. /**
  4559. * s2io_ethtool_idnic - To physically identify the nic on the system.
  4560. * @sp : private member of the device structure, which is a pointer to the
  4561. * s2io_nic structure.
  4562. * @id : pointer to the structure with identification parameters given by
  4563. * ethtool.
  4564. * Description: Used to physically identify the NIC on the system.
  4565. * The Link LED will blink for a time specified by the user for
  4566. * identification.
  4567. * NOTE: The Link has to be Up to be able to blink the LED. Hence
  4568. * identification is possible only if it's link is up.
  4569. * Return value:
  4570. * int , returns 0 on success
  4571. */
  4572. static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
  4573. {
  4574. u64 val64 = 0, last_gpio_ctrl_val;
  4575. struct s2io_nic *sp = dev->priv;
  4576. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4577. u16 subid;
  4578. subid = sp->pdev->subsystem_device;
  4579. last_gpio_ctrl_val = readq(&bar0->gpio_control);
  4580. if ((sp->device_type == XFRAME_I_DEVICE) &&
  4581. ((subid & 0xFF) < 0x07)) {
  4582. val64 = readq(&bar0->adapter_control);
  4583. if (!(val64 & ADAPTER_CNTL_EN)) {
  4584. printk(KERN_ERR
  4585. "Adapter Link down, cannot blink LED\n");
  4586. return -EFAULT;
  4587. }
  4588. }
  4589. if (sp->id_timer.function == NULL) {
  4590. init_timer(&sp->id_timer);
  4591. sp->id_timer.function = s2io_phy_id;
  4592. sp->id_timer.data = (unsigned long) sp;
  4593. }
  4594. mod_timer(&sp->id_timer, jiffies);
  4595. if (data)
  4596. msleep_interruptible(data * HZ);
  4597. else
  4598. msleep_interruptible(MAX_FLICKER_TIME);
  4599. del_timer_sync(&sp->id_timer);
  4600. if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
  4601. writeq(last_gpio_ctrl_val, &bar0->gpio_control);
  4602. last_gpio_ctrl_val = readq(&bar0->gpio_control);
  4603. }
  4604. return 0;
  4605. }
  4606. static void s2io_ethtool_gringparam(struct net_device *dev,
  4607. struct ethtool_ringparam *ering)
  4608. {
  4609. struct s2io_nic *sp = dev->priv;
  4610. int i,tx_desc_count=0,rx_desc_count=0;
  4611. if (sp->rxd_mode == RXD_MODE_1)
  4612. ering->rx_max_pending = MAX_RX_DESC_1;
  4613. else if (sp->rxd_mode == RXD_MODE_3B)
  4614. ering->rx_max_pending = MAX_RX_DESC_2;
  4615. ering->tx_max_pending = MAX_TX_DESC;
  4616. for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
  4617. tx_desc_count += sp->config.tx_cfg[i].fifo_len;
  4618. DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
  4619. ering->tx_pending = tx_desc_count;
  4620. rx_desc_count = 0;
  4621. for (i = 0 ; i < sp->config.rx_ring_num ; i++)
  4622. rx_desc_count += sp->config.rx_cfg[i].num_rxd;
  4623. ering->rx_pending = rx_desc_count;
  4624. ering->rx_mini_max_pending = 0;
  4625. ering->rx_mini_pending = 0;
  4626. if(sp->rxd_mode == RXD_MODE_1)
  4627. ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
  4628. else if (sp->rxd_mode == RXD_MODE_3B)
  4629. ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
  4630. ering->rx_jumbo_pending = rx_desc_count;
  4631. }
  4632. /**
  4633. * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
  4634. * @sp : private member of the device structure, which is a pointer to the
  4635. * s2io_nic structure.
  4636. * @ep : pointer to the structure with pause parameters given by ethtool.
  4637. * Description:
  4638. * Returns the Pause frame generation and reception capability of the NIC.
  4639. * Return value:
  4640. * void
  4641. */
  4642. static void s2io_ethtool_getpause_data(struct net_device *dev,
  4643. struct ethtool_pauseparam *ep)
  4644. {
  4645. u64 val64;
  4646. struct s2io_nic *sp = dev->priv;
  4647. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4648. val64 = readq(&bar0->rmac_pause_cfg);
  4649. if (val64 & RMAC_PAUSE_GEN_ENABLE)
  4650. ep->tx_pause = TRUE;
  4651. if (val64 & RMAC_PAUSE_RX_ENABLE)
  4652. ep->rx_pause = TRUE;
  4653. ep->autoneg = FALSE;
  4654. }
  4655. /**
  4656. * s2io_ethtool_setpause_data - set/reset pause frame generation.
  4657. * @sp : private member of the device structure, which is a pointer to the
  4658. * s2io_nic structure.
  4659. * @ep : pointer to the structure with pause parameters given by ethtool.
  4660. * Description:
  4661. * It can be used to set or reset Pause frame generation or reception
  4662. * support of the NIC.
  4663. * Return value:
  4664. * int, returns 0 on Success
  4665. */
  4666. static int s2io_ethtool_setpause_data(struct net_device *dev,
  4667. struct ethtool_pauseparam *ep)
  4668. {
  4669. u64 val64;
  4670. struct s2io_nic *sp = dev->priv;
  4671. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4672. val64 = readq(&bar0->rmac_pause_cfg);
  4673. if (ep->tx_pause)
  4674. val64 |= RMAC_PAUSE_GEN_ENABLE;
  4675. else
  4676. val64 &= ~RMAC_PAUSE_GEN_ENABLE;
  4677. if (ep->rx_pause)
  4678. val64 |= RMAC_PAUSE_RX_ENABLE;
  4679. else
  4680. val64 &= ~RMAC_PAUSE_RX_ENABLE;
  4681. writeq(val64, &bar0->rmac_pause_cfg);
  4682. return 0;
  4683. }
  4684. /**
  4685. * read_eeprom - reads 4 bytes of data from user given offset.
  4686. * @sp : private member of the device structure, which is a pointer to the
  4687. * s2io_nic structure.
  4688. * @off : offset at which the data must be written
  4689. * @data : Its an output parameter where the data read at the given
  4690. * offset is stored.
  4691. * Description:
  4692. * Will read 4 bytes of data from the user given offset and return the
  4693. * read data.
  4694. * NOTE: Will allow to read only part of the EEPROM visible through the
  4695. * I2C bus.
  4696. * Return value:
  4697. * -1 on failure and 0 on success.
  4698. */
  4699. #define S2IO_DEV_ID 5
  4700. static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
  4701. {
  4702. int ret = -1;
  4703. u32 exit_cnt = 0;
  4704. u64 val64;
  4705. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4706. if (sp->device_type == XFRAME_I_DEVICE) {
  4707. val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
  4708. I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
  4709. I2C_CONTROL_CNTL_START;
  4710. SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
  4711. while (exit_cnt < 5) {
  4712. val64 = readq(&bar0->i2c_control);
  4713. if (I2C_CONTROL_CNTL_END(val64)) {
  4714. *data = I2C_CONTROL_GET_DATA(val64);
  4715. ret = 0;
  4716. break;
  4717. }
  4718. msleep(50);
  4719. exit_cnt++;
  4720. }
  4721. }
  4722. if (sp->device_type == XFRAME_II_DEVICE) {
  4723. val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
  4724. SPI_CONTROL_BYTECNT(0x3) |
  4725. SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
  4726. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  4727. val64 |= SPI_CONTROL_REQ;
  4728. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  4729. while (exit_cnt < 5) {
  4730. val64 = readq(&bar0->spi_control);
  4731. if (val64 & SPI_CONTROL_NACK) {
  4732. ret = 1;
  4733. break;
  4734. } else if (val64 & SPI_CONTROL_DONE) {
  4735. *data = readq(&bar0->spi_data);
  4736. *data &= 0xffffff;
  4737. ret = 0;
  4738. break;
  4739. }
  4740. msleep(50);
  4741. exit_cnt++;
  4742. }
  4743. }
  4744. return ret;
  4745. }
  4746. /**
  4747. * write_eeprom - actually writes the relevant part of the data value.
  4748. * @sp : private member of the device structure, which is a pointer to the
  4749. * s2io_nic structure.
  4750. * @off : offset at which the data must be written
  4751. * @data : The data that is to be written
  4752. * @cnt : Number of bytes of the data that are actually to be written into
  4753. * the Eeprom. (max of 3)
  4754. * Description:
  4755. * Actually writes the relevant part of the data value into the Eeprom
  4756. * through the I2C bus.
  4757. * Return value:
  4758. * 0 on success, -1 on failure.
  4759. */
  4760. static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
  4761. {
  4762. int exit_cnt = 0, ret = -1;
  4763. u64 val64;
  4764. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4765. if (sp->device_type == XFRAME_I_DEVICE) {
  4766. val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
  4767. I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
  4768. I2C_CONTROL_CNTL_START;
  4769. SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
  4770. while (exit_cnt < 5) {
  4771. val64 = readq(&bar0->i2c_control);
  4772. if (I2C_CONTROL_CNTL_END(val64)) {
  4773. if (!(val64 & I2C_CONTROL_NACK))
  4774. ret = 0;
  4775. break;
  4776. }
  4777. msleep(50);
  4778. exit_cnt++;
  4779. }
  4780. }
  4781. if (sp->device_type == XFRAME_II_DEVICE) {
  4782. int write_cnt = (cnt == 8) ? 0 : cnt;
  4783. writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
  4784. val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
  4785. SPI_CONTROL_BYTECNT(write_cnt) |
  4786. SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
  4787. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  4788. val64 |= SPI_CONTROL_REQ;
  4789. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  4790. while (exit_cnt < 5) {
  4791. val64 = readq(&bar0->spi_control);
  4792. if (val64 & SPI_CONTROL_NACK) {
  4793. ret = 1;
  4794. break;
  4795. } else if (val64 & SPI_CONTROL_DONE) {
  4796. ret = 0;
  4797. break;
  4798. }
  4799. msleep(50);
  4800. exit_cnt++;
  4801. }
  4802. }
  4803. return ret;
  4804. }
  4805. static void s2io_vpd_read(struct s2io_nic *nic)
  4806. {
  4807. u8 *vpd_data;
  4808. u8 data;
  4809. int i=0, cnt, fail = 0;
  4810. int vpd_addr = 0x80;
  4811. if (nic->device_type == XFRAME_II_DEVICE) {
  4812. strcpy(nic->product_name, "Xframe II 10GbE network adapter");
  4813. vpd_addr = 0x80;
  4814. }
  4815. else {
  4816. strcpy(nic->product_name, "Xframe I 10GbE network adapter");
  4817. vpd_addr = 0x50;
  4818. }
  4819. strcpy(nic->serial_num, "NOT AVAILABLE");
  4820. vpd_data = kmalloc(256, GFP_KERNEL);
  4821. if (!vpd_data) {
  4822. nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
  4823. return;
  4824. }
  4825. nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
  4826. for (i = 0; i < 256; i +=4 ) {
  4827. pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
  4828. pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
  4829. pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
  4830. for (cnt = 0; cnt <5; cnt++) {
  4831. msleep(2);
  4832. pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
  4833. if (data == 0x80)
  4834. break;
  4835. }
  4836. if (cnt >= 5) {
  4837. DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
  4838. fail = 1;
  4839. break;
  4840. }
  4841. pci_read_config_dword(nic->pdev, (vpd_addr + 4),
  4842. (u32 *)&vpd_data[i]);
  4843. }
  4844. if(!fail) {
  4845. /* read serial number of adapter */
  4846. for (cnt = 0; cnt < 256; cnt++) {
  4847. if ((vpd_data[cnt] == 'S') &&
  4848. (vpd_data[cnt+1] == 'N') &&
  4849. (vpd_data[cnt+2] < VPD_STRING_LEN)) {
  4850. memset(nic->serial_num, 0, VPD_STRING_LEN);
  4851. memcpy(nic->serial_num, &vpd_data[cnt + 3],
  4852. vpd_data[cnt+2]);
  4853. break;
  4854. }
  4855. }
  4856. }
  4857. if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
  4858. memset(nic->product_name, 0, vpd_data[1]);
  4859. memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
  4860. }
  4861. kfree(vpd_data);
  4862. nic->mac_control.stats_info->sw_stat.mem_freed += 256;
  4863. }
  4864. /**
  4865. * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
  4866. * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
  4867. * @eeprom : pointer to the user level structure provided by ethtool,
  4868. * containing all relevant information.
  4869. * @data_buf : user defined value to be written into Eeprom.
  4870. * Description: Reads the values stored in the Eeprom at given offset
  4871. * for a given length. Stores these values int the input argument data
  4872. * buffer 'data_buf' and returns these to the caller (ethtool.)
  4873. * Return value:
  4874. * int 0 on success
  4875. */
  4876. static int s2io_ethtool_geeprom(struct net_device *dev,
  4877. struct ethtool_eeprom *eeprom, u8 * data_buf)
  4878. {
  4879. u32 i, valid;
  4880. u64 data;
  4881. struct s2io_nic *sp = dev->priv;
  4882. eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
  4883. if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
  4884. eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
  4885. for (i = 0; i < eeprom->len; i += 4) {
  4886. if (read_eeprom(sp, (eeprom->offset + i), &data)) {
  4887. DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
  4888. return -EFAULT;
  4889. }
  4890. valid = INV(data);
  4891. memcpy((data_buf + i), &valid, 4);
  4892. }
  4893. return 0;
  4894. }
  4895. /**
  4896. * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
  4897. * @sp : private member of the device structure, which is a pointer to the
  4898. * s2io_nic structure.
  4899. * @eeprom : pointer to the user level structure provided by ethtool,
  4900. * containing all relevant information.
  4901. * @data_buf ; user defined value to be written into Eeprom.
  4902. * Description:
  4903. * Tries to write the user provided value in the Eeprom, at the offset
  4904. * given by the user.
  4905. * Return value:
  4906. * 0 on success, -EFAULT on failure.
  4907. */
  4908. static int s2io_ethtool_seeprom(struct net_device *dev,
  4909. struct ethtool_eeprom *eeprom,
  4910. u8 * data_buf)
  4911. {
  4912. int len = eeprom->len, cnt = 0;
  4913. u64 valid = 0, data;
  4914. struct s2io_nic *sp = dev->priv;
  4915. if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
  4916. DBG_PRINT(ERR_DBG,
  4917. "ETHTOOL_WRITE_EEPROM Err: Magic value ");
  4918. DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
  4919. eeprom->magic);
  4920. return -EFAULT;
  4921. }
  4922. while (len) {
  4923. data = (u32) data_buf[cnt] & 0x000000FF;
  4924. if (data) {
  4925. valid = (u32) (data << 24);
  4926. } else
  4927. valid = data;
  4928. if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
  4929. DBG_PRINT(ERR_DBG,
  4930. "ETHTOOL_WRITE_EEPROM Err: Cannot ");
  4931. DBG_PRINT(ERR_DBG,
  4932. "write into the specified offset\n");
  4933. return -EFAULT;
  4934. }
  4935. cnt++;
  4936. len--;
  4937. }
  4938. return 0;
  4939. }
  4940. /**
  4941. * s2io_register_test - reads and writes into all clock domains.
  4942. * @sp : private member of the device structure, which is a pointer to the
  4943. * s2io_nic structure.
  4944. * @data : variable that returns the result of each of the test conducted b
  4945. * by the driver.
  4946. * Description:
  4947. * Read and write into all clock domains. The NIC has 3 clock domains,
  4948. * see that registers in all the three regions are accessible.
  4949. * Return value:
  4950. * 0 on success.
  4951. */
  4952. static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
  4953. {
  4954. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4955. u64 val64 = 0, exp_val;
  4956. int fail = 0;
  4957. val64 = readq(&bar0->pif_rd_swapper_fb);
  4958. if (val64 != 0x123456789abcdefULL) {
  4959. fail = 1;
  4960. DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
  4961. }
  4962. val64 = readq(&bar0->rmac_pause_cfg);
  4963. if (val64 != 0xc000ffff00000000ULL) {
  4964. fail = 1;
  4965. DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
  4966. }
  4967. val64 = readq(&bar0->rx_queue_cfg);
  4968. if (sp->device_type == XFRAME_II_DEVICE)
  4969. exp_val = 0x0404040404040404ULL;
  4970. else
  4971. exp_val = 0x0808080808080808ULL;
  4972. if (val64 != exp_val) {
  4973. fail = 1;
  4974. DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
  4975. }
  4976. val64 = readq(&bar0->xgxs_efifo_cfg);
  4977. if (val64 != 0x000000001923141EULL) {
  4978. fail = 1;
  4979. DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
  4980. }
  4981. val64 = 0x5A5A5A5A5A5A5A5AULL;
  4982. writeq(val64, &bar0->xmsi_data);
  4983. val64 = readq(&bar0->xmsi_data);
  4984. if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
  4985. fail = 1;
  4986. DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
  4987. }
  4988. val64 = 0xA5A5A5A5A5A5A5A5ULL;
  4989. writeq(val64, &bar0->xmsi_data);
  4990. val64 = readq(&bar0->xmsi_data);
  4991. if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
  4992. fail = 1;
  4993. DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
  4994. }
  4995. *data = fail;
  4996. return fail;
  4997. }
  4998. /**
  4999. * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
  5000. * @sp : private member of the device structure, which is a pointer to the
  5001. * s2io_nic structure.
  5002. * @data:variable that returns the result of each of the test conducted by
  5003. * the driver.
  5004. * Description:
  5005. * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
  5006. * register.
  5007. * Return value:
  5008. * 0 on success.
  5009. */
  5010. static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
  5011. {
  5012. int fail = 0;
  5013. u64 ret_data, org_4F0, org_7F0;
  5014. u8 saved_4F0 = 0, saved_7F0 = 0;
  5015. struct net_device *dev = sp->dev;
  5016. /* Test Write Error at offset 0 */
  5017. /* Note that SPI interface allows write access to all areas
  5018. * of EEPROM. Hence doing all negative testing only for Xframe I.
  5019. */
  5020. if (sp->device_type == XFRAME_I_DEVICE)
  5021. if (!write_eeprom(sp, 0, 0, 3))
  5022. fail = 1;
  5023. /* Save current values at offsets 0x4F0 and 0x7F0 */
  5024. if (!read_eeprom(sp, 0x4F0, &org_4F0))
  5025. saved_4F0 = 1;
  5026. if (!read_eeprom(sp, 0x7F0, &org_7F0))
  5027. saved_7F0 = 1;
  5028. /* Test Write at offset 4f0 */
  5029. if (write_eeprom(sp, 0x4F0, 0x012345, 3))
  5030. fail = 1;
  5031. if (read_eeprom(sp, 0x4F0, &ret_data))
  5032. fail = 1;
  5033. if (ret_data != 0x012345) {
  5034. DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
  5035. "Data written %llx Data read %llx\n",
  5036. dev->name, (unsigned long long)0x12345,
  5037. (unsigned long long)ret_data);
  5038. fail = 1;
  5039. }
  5040. /* Reset the EEPROM data go FFFF */
  5041. write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
  5042. /* Test Write Request Error at offset 0x7c */
  5043. if (sp->device_type == XFRAME_I_DEVICE)
  5044. if (!write_eeprom(sp, 0x07C, 0, 3))
  5045. fail = 1;
  5046. /* Test Write Request at offset 0x7f0 */
  5047. if (write_eeprom(sp, 0x7F0, 0x012345, 3))
  5048. fail = 1;
  5049. if (read_eeprom(sp, 0x7F0, &ret_data))
  5050. fail = 1;
  5051. if (ret_data != 0x012345) {
  5052. DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
  5053. "Data written %llx Data read %llx\n",
  5054. dev->name, (unsigned long long)0x12345,
  5055. (unsigned long long)ret_data);
  5056. fail = 1;
  5057. }
  5058. /* Reset the EEPROM data go FFFF */
  5059. write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
  5060. if (sp->device_type == XFRAME_I_DEVICE) {
  5061. /* Test Write Error at offset 0x80 */
  5062. if (!write_eeprom(sp, 0x080, 0, 3))
  5063. fail = 1;
  5064. /* Test Write Error at offset 0xfc */
  5065. if (!write_eeprom(sp, 0x0FC, 0, 3))
  5066. fail = 1;
  5067. /* Test Write Error at offset 0x100 */
  5068. if (!write_eeprom(sp, 0x100, 0, 3))
  5069. fail = 1;
  5070. /* Test Write Error at offset 4ec */
  5071. if (!write_eeprom(sp, 0x4EC, 0, 3))
  5072. fail = 1;
  5073. }
  5074. /* Restore values at offsets 0x4F0 and 0x7F0 */
  5075. if (saved_4F0)
  5076. write_eeprom(sp, 0x4F0, org_4F0, 3);
  5077. if (saved_7F0)
  5078. write_eeprom(sp, 0x7F0, org_7F0, 3);
  5079. *data = fail;
  5080. return fail;
  5081. }
  5082. /**
  5083. * s2io_bist_test - invokes the MemBist test of the card .
  5084. * @sp : private member of the device structure, which is a pointer to the
  5085. * s2io_nic structure.
  5086. * @data:variable that returns the result of each of the test conducted by
  5087. * the driver.
  5088. * Description:
  5089. * This invokes the MemBist test of the card. We give around
  5090. * 2 secs time for the Test to complete. If it's still not complete
  5091. * within this peiod, we consider that the test failed.
  5092. * Return value:
  5093. * 0 on success and -1 on failure.
  5094. */
  5095. static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
  5096. {
  5097. u8 bist = 0;
  5098. int cnt = 0, ret = -1;
  5099. pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
  5100. bist |= PCI_BIST_START;
  5101. pci_write_config_word(sp->pdev, PCI_BIST, bist);
  5102. while (cnt < 20) {
  5103. pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
  5104. if (!(bist & PCI_BIST_START)) {
  5105. *data = (bist & PCI_BIST_CODE_MASK);
  5106. ret = 0;
  5107. break;
  5108. }
  5109. msleep(100);
  5110. cnt++;
  5111. }
  5112. return ret;
  5113. }
  5114. /**
  5115. * s2io-link_test - verifies the link state of the nic
  5116. * @sp ; private member of the device structure, which is a pointer to the
  5117. * s2io_nic structure.
  5118. * @data: variable that returns the result of each of the test conducted by
  5119. * the driver.
  5120. * Description:
  5121. * The function verifies the link state of the NIC and updates the input
  5122. * argument 'data' appropriately.
  5123. * Return value:
  5124. * 0 on success.
  5125. */
  5126. static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
  5127. {
  5128. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  5129. u64 val64;
  5130. val64 = readq(&bar0->adapter_status);
  5131. if(!(LINK_IS_UP(val64)))
  5132. *data = 1;
  5133. else
  5134. *data = 0;
  5135. return *data;
  5136. }
  5137. /**
  5138. * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
  5139. * @sp - private member of the device structure, which is a pointer to the
  5140. * s2io_nic structure.
  5141. * @data - variable that returns the result of each of the test
  5142. * conducted by the driver.
  5143. * Description:
  5144. * This is one of the offline test that tests the read and write
  5145. * access to the RldRam chip on the NIC.
  5146. * Return value:
  5147. * 0 on success.
  5148. */
  5149. static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
  5150. {
  5151. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  5152. u64 val64;
  5153. int cnt, iteration = 0, test_fail = 0;
  5154. val64 = readq(&bar0->adapter_control);
  5155. val64 &= ~ADAPTER_ECC_EN;
  5156. writeq(val64, &bar0->adapter_control);
  5157. val64 = readq(&bar0->mc_rldram_test_ctrl);
  5158. val64 |= MC_RLDRAM_TEST_MODE;
  5159. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
  5160. val64 = readq(&bar0->mc_rldram_mrs);
  5161. val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
  5162. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
  5163. val64 |= MC_RLDRAM_MRS_ENABLE;
  5164. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
  5165. while (iteration < 2) {
  5166. val64 = 0x55555555aaaa0000ULL;
  5167. if (iteration == 1) {
  5168. val64 ^= 0xFFFFFFFFFFFF0000ULL;
  5169. }
  5170. writeq(val64, &bar0->mc_rldram_test_d0);
  5171. val64 = 0xaaaa5a5555550000ULL;
  5172. if (iteration == 1) {
  5173. val64 ^= 0xFFFFFFFFFFFF0000ULL;
  5174. }
  5175. writeq(val64, &bar0->mc_rldram_test_d1);
  5176. val64 = 0x55aaaaaaaa5a0000ULL;
  5177. if (iteration == 1) {
  5178. val64 ^= 0xFFFFFFFFFFFF0000ULL;
  5179. }
  5180. writeq(val64, &bar0->mc_rldram_test_d2);
  5181. val64 = (u64) (0x0000003ffffe0100ULL);
  5182. writeq(val64, &bar0->mc_rldram_test_add);
  5183. val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
  5184. MC_RLDRAM_TEST_GO;
  5185. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
  5186. for (cnt = 0; cnt < 5; cnt++) {
  5187. val64 = readq(&bar0->mc_rldram_test_ctrl);
  5188. if (val64 & MC_RLDRAM_TEST_DONE)
  5189. break;
  5190. msleep(200);
  5191. }
  5192. if (cnt == 5)
  5193. break;
  5194. val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
  5195. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
  5196. for (cnt = 0; cnt < 5; cnt++) {
  5197. val64 = readq(&bar0->mc_rldram_test_ctrl);
  5198. if (val64 & MC_RLDRAM_TEST_DONE)
  5199. break;
  5200. msleep(500);
  5201. }
  5202. if (cnt == 5)
  5203. break;
  5204. val64 = readq(&bar0->mc_rldram_test_ctrl);
  5205. if (!(val64 & MC_RLDRAM_TEST_PASS))
  5206. test_fail = 1;
  5207. iteration++;
  5208. }
  5209. *data = test_fail;
  5210. /* Bring the adapter out of test mode */
  5211. SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
  5212. return test_fail;
  5213. }
  5214. /**
  5215. * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
  5216. * @sp : private member of the device structure, which is a pointer to the
  5217. * s2io_nic structure.
  5218. * @ethtest : pointer to a ethtool command specific structure that will be
  5219. * returned to the user.
  5220. * @data : variable that returns the result of each of the test
  5221. * conducted by the driver.
  5222. * Description:
  5223. * This function conducts 6 tests ( 4 offline and 2 online) to determine
  5224. * the health of the card.
  5225. * Return value:
  5226. * void
  5227. */
  5228. static void s2io_ethtool_test(struct net_device *dev,
  5229. struct ethtool_test *ethtest,
  5230. uint64_t * data)
  5231. {
  5232. struct s2io_nic *sp = dev->priv;
  5233. int orig_state = netif_running(sp->dev);
  5234. if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
  5235. /* Offline Tests. */
  5236. if (orig_state)
  5237. s2io_close(sp->dev);
  5238. if (s2io_register_test(sp, &data[0]))
  5239. ethtest->flags |= ETH_TEST_FL_FAILED;
  5240. s2io_reset(sp);
  5241. if (s2io_rldram_test(sp, &data[3]))
  5242. ethtest->flags |= ETH_TEST_FL_FAILED;
  5243. s2io_reset(sp);
  5244. if (s2io_eeprom_test(sp, &data[1]))
  5245. ethtest->flags |= ETH_TEST_FL_FAILED;
  5246. if (s2io_bist_test(sp, &data[4]))
  5247. ethtest->flags |= ETH_TEST_FL_FAILED;
  5248. if (orig_state)
  5249. s2io_open(sp->dev);
  5250. data[2] = 0;
  5251. } else {
  5252. /* Online Tests. */
  5253. if (!orig_state) {
  5254. DBG_PRINT(ERR_DBG,
  5255. "%s: is not up, cannot run test\n",
  5256. dev->name);
  5257. data[0] = -1;
  5258. data[1] = -1;
  5259. data[2] = -1;
  5260. data[3] = -1;
  5261. data[4] = -1;
  5262. }
  5263. if (s2io_link_test(sp, &data[2]))
  5264. ethtest->flags |= ETH_TEST_FL_FAILED;
  5265. data[0] = 0;
  5266. data[1] = 0;
  5267. data[3] = 0;
  5268. data[4] = 0;
  5269. }
  5270. }
  5271. static void s2io_get_ethtool_stats(struct net_device *dev,
  5272. struct ethtool_stats *estats,
  5273. u64 * tmp_stats)
  5274. {
  5275. int i = 0, k;
  5276. struct s2io_nic *sp = dev->priv;
  5277. struct stat_block *stat_info = sp->mac_control.stats_info;
  5278. s2io_updt_stats(sp);
  5279. tmp_stats[i++] =
  5280. (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
  5281. le32_to_cpu(stat_info->tmac_frms);
  5282. tmp_stats[i++] =
  5283. (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
  5284. le32_to_cpu(stat_info->tmac_data_octets);
  5285. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
  5286. tmp_stats[i++] =
  5287. (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
  5288. le32_to_cpu(stat_info->tmac_mcst_frms);
  5289. tmp_stats[i++] =
  5290. (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
  5291. le32_to_cpu(stat_info->tmac_bcst_frms);
  5292. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
  5293. tmp_stats[i++] =
  5294. (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
  5295. le32_to_cpu(stat_info->tmac_ttl_octets);
  5296. tmp_stats[i++] =
  5297. (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
  5298. le32_to_cpu(stat_info->tmac_ucst_frms);
  5299. tmp_stats[i++] =
  5300. (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
  5301. le32_to_cpu(stat_info->tmac_nucst_frms);
  5302. tmp_stats[i++] =
  5303. (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
  5304. le32_to_cpu(stat_info->tmac_any_err_frms);
  5305. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
  5306. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
  5307. tmp_stats[i++] =
  5308. (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
  5309. le32_to_cpu(stat_info->tmac_vld_ip);
  5310. tmp_stats[i++] =
  5311. (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
  5312. le32_to_cpu(stat_info->tmac_drop_ip);
  5313. tmp_stats[i++] =
  5314. (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
  5315. le32_to_cpu(stat_info->tmac_icmp);
  5316. tmp_stats[i++] =
  5317. (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
  5318. le32_to_cpu(stat_info->tmac_rst_tcp);
  5319. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
  5320. tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
  5321. le32_to_cpu(stat_info->tmac_udp);
  5322. tmp_stats[i++] =
  5323. (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
  5324. le32_to_cpu(stat_info->rmac_vld_frms);
  5325. tmp_stats[i++] =
  5326. (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
  5327. le32_to_cpu(stat_info->rmac_data_octets);
  5328. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
  5329. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
  5330. tmp_stats[i++] =
  5331. (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
  5332. le32_to_cpu(stat_info->rmac_vld_mcst_frms);
  5333. tmp_stats[i++] =
  5334. (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
  5335. le32_to_cpu(stat_info->rmac_vld_bcst_frms);
  5336. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
  5337. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
  5338. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
  5339. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
  5340. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
  5341. tmp_stats[i++] =
  5342. (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
  5343. le32_to_cpu(stat_info->rmac_ttl_octets);
  5344. tmp_stats[i++] =
  5345. (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
  5346. << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
  5347. tmp_stats[i++] =
  5348. (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
  5349. << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
  5350. tmp_stats[i++] =
  5351. (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
  5352. le32_to_cpu(stat_info->rmac_discarded_frms);
  5353. tmp_stats[i++] =
  5354. (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
  5355. << 32 | le32_to_cpu(stat_info->rmac_drop_events);
  5356. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
  5357. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
  5358. tmp_stats[i++] =
  5359. (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
  5360. le32_to_cpu(stat_info->rmac_usized_frms);
  5361. tmp_stats[i++] =
  5362. (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
  5363. le32_to_cpu(stat_info->rmac_osized_frms);
  5364. tmp_stats[i++] =
  5365. (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
  5366. le32_to_cpu(stat_info->rmac_frag_frms);
  5367. tmp_stats[i++] =
  5368. (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
  5369. le32_to_cpu(stat_info->rmac_jabber_frms);
  5370. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
  5371. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
  5372. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
  5373. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
  5374. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
  5375. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
  5376. tmp_stats[i++] =
  5377. (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
  5378. le32_to_cpu(stat_info->rmac_ip);
  5379. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
  5380. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
  5381. tmp_stats[i++] =
  5382. (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
  5383. le32_to_cpu(stat_info->rmac_drop_ip);
  5384. tmp_stats[i++] =
  5385. (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
  5386. le32_to_cpu(stat_info->rmac_icmp);
  5387. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
  5388. tmp_stats[i++] =
  5389. (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
  5390. le32_to_cpu(stat_info->rmac_udp);
  5391. tmp_stats[i++] =
  5392. (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
  5393. le32_to_cpu(stat_info->rmac_err_drp_udp);
  5394. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
  5395. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
  5396. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
  5397. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
  5398. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
  5399. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
  5400. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
  5401. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
  5402. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
  5403. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
  5404. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
  5405. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
  5406. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
  5407. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
  5408. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
  5409. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
  5410. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
  5411. tmp_stats[i++] =
  5412. (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
  5413. le32_to_cpu(stat_info->rmac_pause_cnt);
  5414. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
  5415. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
  5416. tmp_stats[i++] =
  5417. (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
  5418. le32_to_cpu(stat_info->rmac_accepted_ip);
  5419. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
  5420. tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
  5421. tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
  5422. tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
  5423. tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
  5424. tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
  5425. tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
  5426. tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
  5427. tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
  5428. tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
  5429. tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
  5430. tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
  5431. tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
  5432. tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
  5433. tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
  5434. tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
  5435. tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
  5436. tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
  5437. tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
  5438. /* Enhanced statistics exist only for Hercules */
  5439. if(sp->device_type == XFRAME_II_DEVICE) {
  5440. tmp_stats[i++] =
  5441. le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
  5442. tmp_stats[i++] =
  5443. le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
  5444. tmp_stats[i++] =
  5445. le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
  5446. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
  5447. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
  5448. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
  5449. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
  5450. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
  5451. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
  5452. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
  5453. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
  5454. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
  5455. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
  5456. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
  5457. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
  5458. tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
  5459. }
  5460. tmp_stats[i++] = 0;
  5461. tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
  5462. tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
  5463. tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
  5464. tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
  5465. tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
  5466. tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
  5467. for (k = 0; k < MAX_RX_RINGS; k++)
  5468. tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt[k];
  5469. tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
  5470. tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
  5471. tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
  5472. tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
  5473. tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
  5474. tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
  5475. tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
  5476. tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
  5477. tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
  5478. tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
  5479. tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
  5480. tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
  5481. tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
  5482. tmp_stats[i++] = stat_info->sw_stat.sending_both;
  5483. tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
  5484. tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
  5485. if (stat_info->sw_stat.num_aggregations) {
  5486. u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
  5487. int count = 0;
  5488. /*
  5489. * Since 64-bit divide does not work on all platforms,
  5490. * do repeated subtraction.
  5491. */
  5492. while (tmp >= stat_info->sw_stat.num_aggregations) {
  5493. tmp -= stat_info->sw_stat.num_aggregations;
  5494. count++;
  5495. }
  5496. tmp_stats[i++] = count;
  5497. }
  5498. else
  5499. tmp_stats[i++] = 0;
  5500. tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
  5501. tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
  5502. tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
  5503. tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
  5504. tmp_stats[i++] = stat_info->sw_stat.mem_freed;
  5505. tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
  5506. tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
  5507. tmp_stats[i++] = stat_info->sw_stat.link_up_time;
  5508. tmp_stats[i++] = stat_info->sw_stat.link_down_time;
  5509. tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
  5510. tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
  5511. tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
  5512. tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
  5513. tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
  5514. tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
  5515. tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
  5516. tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
  5517. tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
  5518. tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
  5519. tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
  5520. tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
  5521. tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
  5522. tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
  5523. tmp_stats[i++] = stat_info->sw_stat.tda_err_cnt;
  5524. tmp_stats[i++] = stat_info->sw_stat.pfc_err_cnt;
  5525. tmp_stats[i++] = stat_info->sw_stat.pcc_err_cnt;
  5526. tmp_stats[i++] = stat_info->sw_stat.tti_err_cnt;
  5527. tmp_stats[i++] = stat_info->sw_stat.tpa_err_cnt;
  5528. tmp_stats[i++] = stat_info->sw_stat.sm_err_cnt;
  5529. tmp_stats[i++] = stat_info->sw_stat.lso_err_cnt;
  5530. tmp_stats[i++] = stat_info->sw_stat.mac_tmac_err_cnt;
  5531. tmp_stats[i++] = stat_info->sw_stat.mac_rmac_err_cnt;
  5532. tmp_stats[i++] = stat_info->sw_stat.xgxs_txgxs_err_cnt;
  5533. tmp_stats[i++] = stat_info->sw_stat.xgxs_rxgxs_err_cnt;
  5534. tmp_stats[i++] = stat_info->sw_stat.rc_err_cnt;
  5535. tmp_stats[i++] = stat_info->sw_stat.prc_pcix_err_cnt;
  5536. tmp_stats[i++] = stat_info->sw_stat.rpa_err_cnt;
  5537. tmp_stats[i++] = stat_info->sw_stat.rda_err_cnt;
  5538. tmp_stats[i++] = stat_info->sw_stat.rti_err_cnt;
  5539. tmp_stats[i++] = stat_info->sw_stat.mc_err_cnt;
  5540. }
  5541. static int s2io_ethtool_get_regs_len(struct net_device *dev)
  5542. {
  5543. return (XENA_REG_SPACE);
  5544. }
  5545. static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
  5546. {
  5547. struct s2io_nic *sp = dev->priv;
  5548. return (sp->rx_csum);
  5549. }
  5550. static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
  5551. {
  5552. struct s2io_nic *sp = dev->priv;
  5553. if (data)
  5554. sp->rx_csum = 1;
  5555. else
  5556. sp->rx_csum = 0;
  5557. return 0;
  5558. }
  5559. static int s2io_get_eeprom_len(struct net_device *dev)
  5560. {
  5561. return (XENA_EEPROM_SPACE);
  5562. }
  5563. static int s2io_get_sset_count(struct net_device *dev, int sset)
  5564. {
  5565. struct s2io_nic *sp = dev->priv;
  5566. switch (sset) {
  5567. case ETH_SS_TEST:
  5568. return S2IO_TEST_LEN;
  5569. case ETH_SS_STATS:
  5570. switch(sp->device_type) {
  5571. case XFRAME_I_DEVICE:
  5572. return XFRAME_I_STAT_LEN;
  5573. case XFRAME_II_DEVICE:
  5574. return XFRAME_II_STAT_LEN;
  5575. default:
  5576. return 0;
  5577. }
  5578. default:
  5579. return -EOPNOTSUPP;
  5580. }
  5581. }
  5582. static void s2io_ethtool_get_strings(struct net_device *dev,
  5583. u32 stringset, u8 * data)
  5584. {
  5585. int stat_size = 0;
  5586. struct s2io_nic *sp = dev->priv;
  5587. switch (stringset) {
  5588. case ETH_SS_TEST:
  5589. memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
  5590. break;
  5591. case ETH_SS_STATS:
  5592. stat_size = sizeof(ethtool_xena_stats_keys);
  5593. memcpy(data, &ethtool_xena_stats_keys,stat_size);
  5594. if(sp->device_type == XFRAME_II_DEVICE) {
  5595. memcpy(data + stat_size,
  5596. &ethtool_enhanced_stats_keys,
  5597. sizeof(ethtool_enhanced_stats_keys));
  5598. stat_size += sizeof(ethtool_enhanced_stats_keys);
  5599. }
  5600. memcpy(data + stat_size, &ethtool_driver_stats_keys,
  5601. sizeof(ethtool_driver_stats_keys));
  5602. }
  5603. }
  5604. static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
  5605. {
  5606. if (data)
  5607. dev->features |= NETIF_F_IP_CSUM;
  5608. else
  5609. dev->features &= ~NETIF_F_IP_CSUM;
  5610. return 0;
  5611. }
  5612. static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
  5613. {
  5614. return (dev->features & NETIF_F_TSO) != 0;
  5615. }
  5616. static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
  5617. {
  5618. if (data)
  5619. dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
  5620. else
  5621. dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
  5622. return 0;
  5623. }
  5624. static const struct ethtool_ops netdev_ethtool_ops = {
  5625. .get_settings = s2io_ethtool_gset,
  5626. .set_settings = s2io_ethtool_sset,
  5627. .get_drvinfo = s2io_ethtool_gdrvinfo,
  5628. .get_regs_len = s2io_ethtool_get_regs_len,
  5629. .get_regs = s2io_ethtool_gregs,
  5630. .get_link = ethtool_op_get_link,
  5631. .get_eeprom_len = s2io_get_eeprom_len,
  5632. .get_eeprom = s2io_ethtool_geeprom,
  5633. .set_eeprom = s2io_ethtool_seeprom,
  5634. .get_ringparam = s2io_ethtool_gringparam,
  5635. .get_pauseparam = s2io_ethtool_getpause_data,
  5636. .set_pauseparam = s2io_ethtool_setpause_data,
  5637. .get_rx_csum = s2io_ethtool_get_rx_csum,
  5638. .set_rx_csum = s2io_ethtool_set_rx_csum,
  5639. .set_tx_csum = s2io_ethtool_op_set_tx_csum,
  5640. .set_sg = ethtool_op_set_sg,
  5641. .get_tso = s2io_ethtool_op_get_tso,
  5642. .set_tso = s2io_ethtool_op_set_tso,
  5643. .set_ufo = ethtool_op_set_ufo,
  5644. .self_test = s2io_ethtool_test,
  5645. .get_strings = s2io_ethtool_get_strings,
  5646. .phys_id = s2io_ethtool_idnic,
  5647. .get_ethtool_stats = s2io_get_ethtool_stats,
  5648. .get_sset_count = s2io_get_sset_count,
  5649. };
  5650. /**
  5651. * s2io_ioctl - Entry point for the Ioctl
  5652. * @dev : Device pointer.
  5653. * @ifr : An IOCTL specefic structure, that can contain a pointer to
  5654. * a proprietary structure used to pass information to the driver.
  5655. * @cmd : This is used to distinguish between the different commands that
  5656. * can be passed to the IOCTL functions.
  5657. * Description:
  5658. * Currently there are no special functionality supported in IOCTL, hence
  5659. * function always return EOPNOTSUPPORTED
  5660. */
  5661. static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
  5662. {
  5663. return -EOPNOTSUPP;
  5664. }
  5665. /**
  5666. * s2io_change_mtu - entry point to change MTU size for the device.
  5667. * @dev : device pointer.
  5668. * @new_mtu : the new MTU size for the device.
  5669. * Description: A driver entry point to change MTU size for the device.
  5670. * Before changing the MTU the device must be stopped.
  5671. * Return value:
  5672. * 0 on success and an appropriate (-)ve integer as defined in errno.h
  5673. * file on failure.
  5674. */
  5675. static int s2io_change_mtu(struct net_device *dev, int new_mtu)
  5676. {
  5677. struct s2io_nic *sp = dev->priv;
  5678. if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
  5679. DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
  5680. dev->name);
  5681. return -EPERM;
  5682. }
  5683. dev->mtu = new_mtu;
  5684. if (netif_running(dev)) {
  5685. s2io_card_down(sp);
  5686. netif_stop_queue(dev);
  5687. if (s2io_card_up(sp)) {
  5688. DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
  5689. __FUNCTION__);
  5690. }
  5691. if (netif_queue_stopped(dev))
  5692. netif_wake_queue(dev);
  5693. } else { /* Device is down */
  5694. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  5695. u64 val64 = new_mtu;
  5696. writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
  5697. }
  5698. return 0;
  5699. }
  5700. /**
  5701. * s2io_tasklet - Bottom half of the ISR.
  5702. * @dev_adr : address of the device structure in dma_addr_t format.
  5703. * Description:
  5704. * This is the tasklet or the bottom half of the ISR. This is
  5705. * an extension of the ISR which is scheduled by the scheduler to be run
  5706. * when the load on the CPU is low. All low priority tasks of the ISR can
  5707. * be pushed into the tasklet. For now the tasklet is used only to
  5708. * replenish the Rx buffers in the Rx buffer descriptors.
  5709. * Return value:
  5710. * void.
  5711. */
  5712. static void s2io_tasklet(unsigned long dev_addr)
  5713. {
  5714. struct net_device *dev = (struct net_device *) dev_addr;
  5715. struct s2io_nic *sp = dev->priv;
  5716. int i, ret;
  5717. struct mac_info *mac_control;
  5718. struct config_param *config;
  5719. mac_control = &sp->mac_control;
  5720. config = &sp->config;
  5721. if (!TASKLET_IN_USE) {
  5722. for (i = 0; i < config->rx_ring_num; i++) {
  5723. ret = fill_rx_buffers(sp, i);
  5724. if (ret == -ENOMEM) {
  5725. DBG_PRINT(INFO_DBG, "%s: Out of ",
  5726. dev->name);
  5727. DBG_PRINT(INFO_DBG, "memory in tasklet\n");
  5728. break;
  5729. } else if (ret == -EFILL) {
  5730. DBG_PRINT(INFO_DBG,
  5731. "%s: Rx Ring %d is full\n",
  5732. dev->name, i);
  5733. break;
  5734. }
  5735. }
  5736. clear_bit(0, (&sp->tasklet_status));
  5737. }
  5738. }
  5739. /**
  5740. * s2io_set_link - Set the LInk status
  5741. * @data: long pointer to device private structue
  5742. * Description: Sets the link status for the adapter
  5743. */
  5744. static void s2io_set_link(struct work_struct *work)
  5745. {
  5746. struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
  5747. struct net_device *dev = nic->dev;
  5748. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  5749. register u64 val64;
  5750. u16 subid;
  5751. rtnl_lock();
  5752. if (!netif_running(dev))
  5753. goto out_unlock;
  5754. if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
  5755. /* The card is being reset, no point doing anything */
  5756. goto out_unlock;
  5757. }
  5758. subid = nic->pdev->subsystem_device;
  5759. if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
  5760. /*
  5761. * Allow a small delay for the NICs self initiated
  5762. * cleanup to complete.
  5763. */
  5764. msleep(100);
  5765. }
  5766. val64 = readq(&bar0->adapter_status);
  5767. if (LINK_IS_UP(val64)) {
  5768. if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
  5769. if (verify_xena_quiescence(nic)) {
  5770. val64 = readq(&bar0->adapter_control);
  5771. val64 |= ADAPTER_CNTL_EN;
  5772. writeq(val64, &bar0->adapter_control);
  5773. if (CARDS_WITH_FAULTY_LINK_INDICATORS(
  5774. nic->device_type, subid)) {
  5775. val64 = readq(&bar0->gpio_control);
  5776. val64 |= GPIO_CTRL_GPIO_0;
  5777. writeq(val64, &bar0->gpio_control);
  5778. val64 = readq(&bar0->gpio_control);
  5779. } else {
  5780. val64 |= ADAPTER_LED_ON;
  5781. writeq(val64, &bar0->adapter_control);
  5782. }
  5783. nic->device_enabled_once = TRUE;
  5784. } else {
  5785. DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
  5786. DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
  5787. netif_stop_queue(dev);
  5788. }
  5789. }
  5790. val64 = readq(&bar0->adapter_control);
  5791. val64 |= ADAPTER_LED_ON;
  5792. writeq(val64, &bar0->adapter_control);
  5793. s2io_link(nic, LINK_UP);
  5794. } else {
  5795. if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
  5796. subid)) {
  5797. val64 = readq(&bar0->gpio_control);
  5798. val64 &= ~GPIO_CTRL_GPIO_0;
  5799. writeq(val64, &bar0->gpio_control);
  5800. val64 = readq(&bar0->gpio_control);
  5801. }
  5802. /* turn off LED */
  5803. val64 = readq(&bar0->adapter_control);
  5804. val64 = val64 &(~ADAPTER_LED_ON);
  5805. writeq(val64, &bar0->adapter_control);
  5806. s2io_link(nic, LINK_DOWN);
  5807. }
  5808. clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
  5809. out_unlock:
  5810. rtnl_unlock();
  5811. }
  5812. static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
  5813. struct buffAdd *ba,
  5814. struct sk_buff **skb, u64 *temp0, u64 *temp1,
  5815. u64 *temp2, int size)
  5816. {
  5817. struct net_device *dev = sp->dev;
  5818. struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
  5819. if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
  5820. struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
  5821. /* allocate skb */
  5822. if (*skb) {
  5823. DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
  5824. /*
  5825. * As Rx frame are not going to be processed,
  5826. * using same mapped address for the Rxd
  5827. * buffer pointer
  5828. */
  5829. rxdp1->Buffer0_ptr = *temp0;
  5830. } else {
  5831. *skb = dev_alloc_skb(size);
  5832. if (!(*skb)) {
  5833. DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
  5834. DBG_PRINT(INFO_DBG, "memory to allocate ");
  5835. DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
  5836. sp->mac_control.stats_info->sw_stat. \
  5837. mem_alloc_fail_cnt++;
  5838. return -ENOMEM ;
  5839. }
  5840. sp->mac_control.stats_info->sw_stat.mem_allocated
  5841. += (*skb)->truesize;
  5842. /* storing the mapped addr in a temp variable
  5843. * such it will be used for next rxd whose
  5844. * Host Control is NULL
  5845. */
  5846. rxdp1->Buffer0_ptr = *temp0 =
  5847. pci_map_single( sp->pdev, (*skb)->data,
  5848. size - NET_IP_ALIGN,
  5849. PCI_DMA_FROMDEVICE);
  5850. if( (rxdp1->Buffer0_ptr == 0) ||
  5851. (rxdp1->Buffer0_ptr == DMA_ERROR_CODE)) {
  5852. goto memalloc_failed;
  5853. }
  5854. rxdp->Host_Control = (unsigned long) (*skb);
  5855. }
  5856. } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
  5857. struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
  5858. /* Two buffer Mode */
  5859. if (*skb) {
  5860. rxdp3->Buffer2_ptr = *temp2;
  5861. rxdp3->Buffer0_ptr = *temp0;
  5862. rxdp3->Buffer1_ptr = *temp1;
  5863. } else {
  5864. *skb = dev_alloc_skb(size);
  5865. if (!(*skb)) {
  5866. DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
  5867. DBG_PRINT(INFO_DBG, "memory to allocate ");
  5868. DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
  5869. sp->mac_control.stats_info->sw_stat. \
  5870. mem_alloc_fail_cnt++;
  5871. return -ENOMEM;
  5872. }
  5873. sp->mac_control.stats_info->sw_stat.mem_allocated
  5874. += (*skb)->truesize;
  5875. rxdp3->Buffer2_ptr = *temp2 =
  5876. pci_map_single(sp->pdev, (*skb)->data,
  5877. dev->mtu + 4,
  5878. PCI_DMA_FROMDEVICE);
  5879. if( (rxdp3->Buffer2_ptr == 0) ||
  5880. (rxdp3->Buffer2_ptr == DMA_ERROR_CODE)) {
  5881. goto memalloc_failed;
  5882. }
  5883. rxdp3->Buffer0_ptr = *temp0 =
  5884. pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
  5885. PCI_DMA_FROMDEVICE);
  5886. if( (rxdp3->Buffer0_ptr == 0) ||
  5887. (rxdp3->Buffer0_ptr == DMA_ERROR_CODE)) {
  5888. pci_unmap_single (sp->pdev,
  5889. (dma_addr_t)rxdp3->Buffer2_ptr,
  5890. dev->mtu + 4, PCI_DMA_FROMDEVICE);
  5891. goto memalloc_failed;
  5892. }
  5893. rxdp->Host_Control = (unsigned long) (*skb);
  5894. /* Buffer-1 will be dummy buffer not used */
  5895. rxdp3->Buffer1_ptr = *temp1 =
  5896. pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
  5897. PCI_DMA_FROMDEVICE);
  5898. if( (rxdp3->Buffer1_ptr == 0) ||
  5899. (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
  5900. pci_unmap_single (sp->pdev,
  5901. (dma_addr_t)rxdp3->Buffer0_ptr,
  5902. BUF0_LEN, PCI_DMA_FROMDEVICE);
  5903. pci_unmap_single (sp->pdev,
  5904. (dma_addr_t)rxdp3->Buffer2_ptr,
  5905. dev->mtu + 4, PCI_DMA_FROMDEVICE);
  5906. goto memalloc_failed;
  5907. }
  5908. }
  5909. }
  5910. return 0;
  5911. memalloc_failed:
  5912. stats->pci_map_fail_cnt++;
  5913. stats->mem_freed += (*skb)->truesize;
  5914. dev_kfree_skb(*skb);
  5915. return -ENOMEM;
  5916. }
  5917. static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
  5918. int size)
  5919. {
  5920. struct net_device *dev = sp->dev;
  5921. if (sp->rxd_mode == RXD_MODE_1) {
  5922. rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
  5923. } else if (sp->rxd_mode == RXD_MODE_3B) {
  5924. rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
  5925. rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
  5926. rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
  5927. }
  5928. }
  5929. static int rxd_owner_bit_reset(struct s2io_nic *sp)
  5930. {
  5931. int i, j, k, blk_cnt = 0, size;
  5932. struct mac_info * mac_control = &sp->mac_control;
  5933. struct config_param *config = &sp->config;
  5934. struct net_device *dev = sp->dev;
  5935. struct RxD_t *rxdp = NULL;
  5936. struct sk_buff *skb = NULL;
  5937. struct buffAdd *ba = NULL;
  5938. u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
  5939. /* Calculate the size based on ring mode */
  5940. size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
  5941. HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
  5942. if (sp->rxd_mode == RXD_MODE_1)
  5943. size += NET_IP_ALIGN;
  5944. else if (sp->rxd_mode == RXD_MODE_3B)
  5945. size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
  5946. for (i = 0; i < config->rx_ring_num; i++) {
  5947. blk_cnt = config->rx_cfg[i].num_rxd /
  5948. (rxd_count[sp->rxd_mode] +1);
  5949. for (j = 0; j < blk_cnt; j++) {
  5950. for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
  5951. rxdp = mac_control->rings[i].
  5952. rx_blocks[j].rxds[k].virt_addr;
  5953. if(sp->rxd_mode == RXD_MODE_3B)
  5954. ba = &mac_control->rings[i].ba[j][k];
  5955. if (set_rxd_buffer_pointer(sp, rxdp, ba,
  5956. &skb,(u64 *)&temp0_64,
  5957. (u64 *)&temp1_64,
  5958. (u64 *)&temp2_64,
  5959. size) == ENOMEM) {
  5960. return 0;
  5961. }
  5962. set_rxd_buffer_size(sp, rxdp, size);
  5963. wmb();
  5964. /* flip the Ownership bit to Hardware */
  5965. rxdp->Control_1 |= RXD_OWN_XENA;
  5966. }
  5967. }
  5968. }
  5969. return 0;
  5970. }
  5971. static int s2io_add_isr(struct s2io_nic * sp)
  5972. {
  5973. int ret = 0;
  5974. struct net_device *dev = sp->dev;
  5975. int err = 0;
  5976. if (sp->config.intr_type == MSI_X)
  5977. ret = s2io_enable_msi_x(sp);
  5978. if (ret) {
  5979. DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
  5980. sp->config.intr_type = INTA;
  5981. }
  5982. /* Store the values of the MSIX table in the struct s2io_nic structure */
  5983. store_xmsi_data(sp);
  5984. /* After proper initialization of H/W, register ISR */
  5985. if (sp->config.intr_type == MSI_X) {
  5986. int i, msix_tx_cnt=0,msix_rx_cnt=0;
  5987. for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
  5988. if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
  5989. sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
  5990. dev->name, i);
  5991. err = request_irq(sp->entries[i].vector,
  5992. s2io_msix_fifo_handle, 0, sp->desc[i],
  5993. sp->s2io_entries[i].arg);
  5994. /* If either data or addr is zero print it */
  5995. if(!(sp->msix_info[i].addr &&
  5996. sp->msix_info[i].data)) {
  5997. DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
  5998. "Data:0x%lx\n",sp->desc[i],
  5999. (unsigned long long)
  6000. sp->msix_info[i].addr,
  6001. (unsigned long)
  6002. ntohl(sp->msix_info[i].data));
  6003. } else {
  6004. msix_tx_cnt++;
  6005. }
  6006. } else {
  6007. sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
  6008. dev->name, i);
  6009. err = request_irq(sp->entries[i].vector,
  6010. s2io_msix_ring_handle, 0, sp->desc[i],
  6011. sp->s2io_entries[i].arg);
  6012. /* If either data or addr is zero print it */
  6013. if(!(sp->msix_info[i].addr &&
  6014. sp->msix_info[i].data)) {
  6015. DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
  6016. "Data:0x%lx\n",sp->desc[i],
  6017. (unsigned long long)
  6018. sp->msix_info[i].addr,
  6019. (unsigned long)
  6020. ntohl(sp->msix_info[i].data));
  6021. } else {
  6022. msix_rx_cnt++;
  6023. }
  6024. }
  6025. if (err) {
  6026. remove_msix_isr(sp);
  6027. DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
  6028. "failed\n", dev->name, i);
  6029. DBG_PRINT(ERR_DBG, "%s: defaulting to INTA\n",
  6030. dev->name);
  6031. sp->config.intr_type = INTA;
  6032. break;
  6033. }
  6034. sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
  6035. }
  6036. if (!err) {
  6037. printk(KERN_INFO "MSI-X-TX %d entries enabled\n",
  6038. msix_tx_cnt);
  6039. printk(KERN_INFO "MSI-X-RX %d entries enabled\n",
  6040. msix_rx_cnt);
  6041. }
  6042. }
  6043. if (sp->config.intr_type == INTA) {
  6044. err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
  6045. sp->name, dev);
  6046. if (err) {
  6047. DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
  6048. dev->name);
  6049. return -1;
  6050. }
  6051. }
  6052. return 0;
  6053. }
  6054. static void s2io_rem_isr(struct s2io_nic * sp)
  6055. {
  6056. if (sp->config.intr_type == MSI_X)
  6057. remove_msix_isr(sp);
  6058. else
  6059. remove_inta_isr(sp);
  6060. }
  6061. static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
  6062. {
  6063. int cnt = 0;
  6064. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  6065. unsigned long flags;
  6066. register u64 val64 = 0;
  6067. del_timer_sync(&sp->alarm_timer);
  6068. /* If s2io_set_link task is executing, wait till it completes. */
  6069. while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) {
  6070. msleep(50);
  6071. }
  6072. clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
  6073. /* disable Tx and Rx traffic on the NIC */
  6074. if (do_io)
  6075. stop_nic(sp);
  6076. s2io_rem_isr(sp);
  6077. /* Kill tasklet. */
  6078. tasklet_kill(&sp->task);
  6079. /* Check if the device is Quiescent and then Reset the NIC */
  6080. while(do_io) {
  6081. /* As per the HW requirement we need to replenish the
  6082. * receive buffer to avoid the ring bump. Since there is
  6083. * no intention of processing the Rx frame at this pointwe are
  6084. * just settting the ownership bit of rxd in Each Rx
  6085. * ring to HW and set the appropriate buffer size
  6086. * based on the ring mode
  6087. */
  6088. rxd_owner_bit_reset(sp);
  6089. val64 = readq(&bar0->adapter_status);
  6090. if (verify_xena_quiescence(sp)) {
  6091. if(verify_pcc_quiescent(sp, sp->device_enabled_once))
  6092. break;
  6093. }
  6094. msleep(50);
  6095. cnt++;
  6096. if (cnt == 10) {
  6097. DBG_PRINT(ERR_DBG,
  6098. "s2io_close:Device not Quiescent ");
  6099. DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
  6100. (unsigned long long) val64);
  6101. break;
  6102. }
  6103. }
  6104. if (do_io)
  6105. s2io_reset(sp);
  6106. spin_lock_irqsave(&sp->tx_lock, flags);
  6107. /* Free all Tx buffers */
  6108. free_tx_buffers(sp);
  6109. spin_unlock_irqrestore(&sp->tx_lock, flags);
  6110. /* Free all Rx buffers */
  6111. spin_lock_irqsave(&sp->rx_lock, flags);
  6112. free_rx_buffers(sp);
  6113. spin_unlock_irqrestore(&sp->rx_lock, flags);
  6114. clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
  6115. }
  6116. static void s2io_card_down(struct s2io_nic * sp)
  6117. {
  6118. do_s2io_card_down(sp, 1);
  6119. }
  6120. static int s2io_card_up(struct s2io_nic * sp)
  6121. {
  6122. int i, ret = 0;
  6123. struct mac_info *mac_control;
  6124. struct config_param *config;
  6125. struct net_device *dev = (struct net_device *) sp->dev;
  6126. u16 interruptible;
  6127. /* Initialize the H/W I/O registers */
  6128. if (init_nic(sp) != 0) {
  6129. DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
  6130. dev->name);
  6131. s2io_reset(sp);
  6132. return -ENODEV;
  6133. }
  6134. /*
  6135. * Initializing the Rx buffers. For now we are considering only 1
  6136. * Rx ring and initializing buffers into 30 Rx blocks
  6137. */
  6138. mac_control = &sp->mac_control;
  6139. config = &sp->config;
  6140. for (i = 0; i < config->rx_ring_num; i++) {
  6141. if ((ret = fill_rx_buffers(sp, i))) {
  6142. DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
  6143. dev->name);
  6144. s2io_reset(sp);
  6145. free_rx_buffers(sp);
  6146. return -ENOMEM;
  6147. }
  6148. DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
  6149. atomic_read(&sp->rx_bufs_left[i]));
  6150. }
  6151. /* Maintain the state prior to the open */
  6152. if (sp->promisc_flg)
  6153. sp->promisc_flg = 0;
  6154. if (sp->m_cast_flg) {
  6155. sp->m_cast_flg = 0;
  6156. sp->all_multi_pos= 0;
  6157. }
  6158. /* Setting its receive mode */
  6159. s2io_set_multicast(dev);
  6160. if (sp->lro) {
  6161. /* Initialize max aggregatable pkts per session based on MTU */
  6162. sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
  6163. /* Check if we can use(if specified) user provided value */
  6164. if (lro_max_pkts < sp->lro_max_aggr_per_sess)
  6165. sp->lro_max_aggr_per_sess = lro_max_pkts;
  6166. }
  6167. /* Enable Rx Traffic and interrupts on the NIC */
  6168. if (start_nic(sp)) {
  6169. DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
  6170. s2io_reset(sp);
  6171. free_rx_buffers(sp);
  6172. return -ENODEV;
  6173. }
  6174. /* Add interrupt service routine */
  6175. if (s2io_add_isr(sp) != 0) {
  6176. if (sp->config.intr_type == MSI_X)
  6177. s2io_rem_isr(sp);
  6178. s2io_reset(sp);
  6179. free_rx_buffers(sp);
  6180. return -ENODEV;
  6181. }
  6182. S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
  6183. /* Enable tasklet for the device */
  6184. tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
  6185. /* Enable select interrupts */
  6186. en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
  6187. if (sp->config.intr_type != INTA)
  6188. en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
  6189. else {
  6190. interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
  6191. interruptible |= TX_PIC_INTR;
  6192. en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
  6193. }
  6194. set_bit(__S2IO_STATE_CARD_UP, &sp->state);
  6195. return 0;
  6196. }
  6197. /**
  6198. * s2io_restart_nic - Resets the NIC.
  6199. * @data : long pointer to the device private structure
  6200. * Description:
  6201. * This function is scheduled to be run by the s2io_tx_watchdog
  6202. * function after 0.5 secs to reset the NIC. The idea is to reduce
  6203. * the run time of the watch dog routine which is run holding a
  6204. * spin lock.
  6205. */
  6206. static void s2io_restart_nic(struct work_struct *work)
  6207. {
  6208. struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
  6209. struct net_device *dev = sp->dev;
  6210. rtnl_lock();
  6211. if (!netif_running(dev))
  6212. goto out_unlock;
  6213. s2io_card_down(sp);
  6214. if (s2io_card_up(sp)) {
  6215. DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
  6216. dev->name);
  6217. }
  6218. netif_wake_queue(dev);
  6219. DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
  6220. dev->name);
  6221. out_unlock:
  6222. rtnl_unlock();
  6223. }
  6224. /**
  6225. * s2io_tx_watchdog - Watchdog for transmit side.
  6226. * @dev : Pointer to net device structure
  6227. * Description:
  6228. * This function is triggered if the Tx Queue is stopped
  6229. * for a pre-defined amount of time when the Interface is still up.
  6230. * If the Interface is jammed in such a situation, the hardware is
  6231. * reset (by s2io_close) and restarted again (by s2io_open) to
  6232. * overcome any problem that might have been caused in the hardware.
  6233. * Return value:
  6234. * void
  6235. */
  6236. static void s2io_tx_watchdog(struct net_device *dev)
  6237. {
  6238. struct s2io_nic *sp = dev->priv;
  6239. if (netif_carrier_ok(dev)) {
  6240. sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
  6241. schedule_work(&sp->rst_timer_task);
  6242. sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
  6243. }
  6244. }
  6245. /**
  6246. * rx_osm_handler - To perform some OS related operations on SKB.
  6247. * @sp: private member of the device structure,pointer to s2io_nic structure.
  6248. * @skb : the socket buffer pointer.
  6249. * @len : length of the packet
  6250. * @cksum : FCS checksum of the frame.
  6251. * @ring_no : the ring from which this RxD was extracted.
  6252. * Description:
  6253. * This function is called by the Rx interrupt serivce routine to perform
  6254. * some OS related operations on the SKB before passing it to the upper
  6255. * layers. It mainly checks if the checksum is OK, if so adds it to the
  6256. * SKBs cksum variable, increments the Rx packet count and passes the SKB
  6257. * to the upper layer. If the checksum is wrong, it increments the Rx
  6258. * packet error count, frees the SKB and returns error.
  6259. * Return value:
  6260. * SUCCESS on success and -1 on failure.
  6261. */
  6262. static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
  6263. {
  6264. struct s2io_nic *sp = ring_data->nic;
  6265. struct net_device *dev = (struct net_device *) sp->dev;
  6266. struct sk_buff *skb = (struct sk_buff *)
  6267. ((unsigned long) rxdp->Host_Control);
  6268. int ring_no = ring_data->ring_no;
  6269. u16 l3_csum, l4_csum;
  6270. unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
  6271. struct lro *lro;
  6272. u8 err_mask;
  6273. skb->dev = dev;
  6274. if (err) {
  6275. /* Check for parity error */
  6276. if (err & 0x1) {
  6277. sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
  6278. }
  6279. err_mask = err >> 48;
  6280. switch(err_mask) {
  6281. case 1:
  6282. sp->mac_control.stats_info->sw_stat.
  6283. rx_parity_err_cnt++;
  6284. break;
  6285. case 2:
  6286. sp->mac_control.stats_info->sw_stat.
  6287. rx_abort_cnt++;
  6288. break;
  6289. case 3:
  6290. sp->mac_control.stats_info->sw_stat.
  6291. rx_parity_abort_cnt++;
  6292. break;
  6293. case 4:
  6294. sp->mac_control.stats_info->sw_stat.
  6295. rx_rda_fail_cnt++;
  6296. break;
  6297. case 5:
  6298. sp->mac_control.stats_info->sw_stat.
  6299. rx_unkn_prot_cnt++;
  6300. break;
  6301. case 6:
  6302. sp->mac_control.stats_info->sw_stat.
  6303. rx_fcs_err_cnt++;
  6304. break;
  6305. case 7:
  6306. sp->mac_control.stats_info->sw_stat.
  6307. rx_buf_size_err_cnt++;
  6308. break;
  6309. case 8:
  6310. sp->mac_control.stats_info->sw_stat.
  6311. rx_rxd_corrupt_cnt++;
  6312. break;
  6313. case 15:
  6314. sp->mac_control.stats_info->sw_stat.
  6315. rx_unkn_err_cnt++;
  6316. break;
  6317. }
  6318. /*
  6319. * Drop the packet if bad transfer code. Exception being
  6320. * 0x5, which could be due to unsupported IPv6 extension header.
  6321. * In this case, we let stack handle the packet.
  6322. * Note that in this case, since checksum will be incorrect,
  6323. * stack will validate the same.
  6324. */
  6325. if (err_mask != 0x5) {
  6326. DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
  6327. dev->name, err_mask);
  6328. sp->stats.rx_crc_errors++;
  6329. sp->mac_control.stats_info->sw_stat.mem_freed
  6330. += skb->truesize;
  6331. dev_kfree_skb(skb);
  6332. atomic_dec(&sp->rx_bufs_left[ring_no]);
  6333. rxdp->Host_Control = 0;
  6334. return 0;
  6335. }
  6336. }
  6337. /* Updating statistics */
  6338. sp->stats.rx_packets++;
  6339. rxdp->Host_Control = 0;
  6340. if (sp->rxd_mode == RXD_MODE_1) {
  6341. int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
  6342. sp->stats.rx_bytes += len;
  6343. skb_put(skb, len);
  6344. } else if (sp->rxd_mode == RXD_MODE_3B) {
  6345. int get_block = ring_data->rx_curr_get_info.block_index;
  6346. int get_off = ring_data->rx_curr_get_info.offset;
  6347. int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
  6348. int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
  6349. unsigned char *buff = skb_push(skb, buf0_len);
  6350. struct buffAdd *ba = &ring_data->ba[get_block][get_off];
  6351. sp->stats.rx_bytes += buf0_len + buf2_len;
  6352. memcpy(buff, ba->ba_0, buf0_len);
  6353. skb_put(skb, buf2_len);
  6354. }
  6355. if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
  6356. (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
  6357. (sp->rx_csum)) {
  6358. l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
  6359. l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
  6360. if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
  6361. /*
  6362. * NIC verifies if the Checksum of the received
  6363. * frame is Ok or not and accordingly returns
  6364. * a flag in the RxD.
  6365. */
  6366. skb->ip_summed = CHECKSUM_UNNECESSARY;
  6367. if (sp->lro) {
  6368. u32 tcp_len;
  6369. u8 *tcp;
  6370. int ret = 0;
  6371. ret = s2io_club_tcp_session(skb->data, &tcp,
  6372. &tcp_len, &lro,
  6373. rxdp, sp);
  6374. switch (ret) {
  6375. case 3: /* Begin anew */
  6376. lro->parent = skb;
  6377. goto aggregate;
  6378. case 1: /* Aggregate */
  6379. {
  6380. lro_append_pkt(sp, lro,
  6381. skb, tcp_len);
  6382. goto aggregate;
  6383. }
  6384. case 4: /* Flush session */
  6385. {
  6386. lro_append_pkt(sp, lro,
  6387. skb, tcp_len);
  6388. queue_rx_frame(lro->parent);
  6389. clear_lro_session(lro);
  6390. sp->mac_control.stats_info->
  6391. sw_stat.flush_max_pkts++;
  6392. goto aggregate;
  6393. }
  6394. case 2: /* Flush both */
  6395. lro->parent->data_len =
  6396. lro->frags_len;
  6397. sp->mac_control.stats_info->
  6398. sw_stat.sending_both++;
  6399. queue_rx_frame(lro->parent);
  6400. clear_lro_session(lro);
  6401. goto send_up;
  6402. case 0: /* sessions exceeded */
  6403. case -1: /* non-TCP or not
  6404. * L2 aggregatable
  6405. */
  6406. case 5: /*
  6407. * First pkt in session not
  6408. * L3/L4 aggregatable
  6409. */
  6410. break;
  6411. default:
  6412. DBG_PRINT(ERR_DBG,
  6413. "%s: Samadhana!!\n",
  6414. __FUNCTION__);
  6415. BUG();
  6416. }
  6417. }
  6418. } else {
  6419. /*
  6420. * Packet with erroneous checksum, let the
  6421. * upper layers deal with it.
  6422. */
  6423. skb->ip_summed = CHECKSUM_NONE;
  6424. }
  6425. } else {
  6426. skb->ip_summed = CHECKSUM_NONE;
  6427. }
  6428. sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
  6429. if (!sp->lro) {
  6430. skb->protocol = eth_type_trans(skb, dev);
  6431. if ((sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2) &&
  6432. vlan_strip_flag)) {
  6433. /* Queueing the vlan frame to the upper layer */
  6434. if (napi)
  6435. vlan_hwaccel_receive_skb(skb, sp->vlgrp,
  6436. RXD_GET_VLAN_TAG(rxdp->Control_2));
  6437. else
  6438. vlan_hwaccel_rx(skb, sp->vlgrp,
  6439. RXD_GET_VLAN_TAG(rxdp->Control_2));
  6440. } else {
  6441. if (napi)
  6442. netif_receive_skb(skb);
  6443. else
  6444. netif_rx(skb);
  6445. }
  6446. } else {
  6447. send_up:
  6448. queue_rx_frame(skb);
  6449. }
  6450. dev->last_rx = jiffies;
  6451. aggregate:
  6452. atomic_dec(&sp->rx_bufs_left[ring_no]);
  6453. return SUCCESS;
  6454. }
  6455. /**
  6456. * s2io_link - stops/starts the Tx queue.
  6457. * @sp : private member of the device structure, which is a pointer to the
  6458. * s2io_nic structure.
  6459. * @link : inidicates whether link is UP/DOWN.
  6460. * Description:
  6461. * This function stops/starts the Tx queue depending on whether the link
  6462. * status of the NIC is is down or up. This is called by the Alarm
  6463. * interrupt handler whenever a link change interrupt comes up.
  6464. * Return value:
  6465. * void.
  6466. */
  6467. static void s2io_link(struct s2io_nic * sp, int link)
  6468. {
  6469. struct net_device *dev = (struct net_device *) sp->dev;
  6470. if (link != sp->last_link_state) {
  6471. if (link == LINK_DOWN) {
  6472. DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
  6473. netif_carrier_off(dev);
  6474. if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
  6475. sp->mac_control.stats_info->sw_stat.link_up_time =
  6476. jiffies - sp->start_time;
  6477. sp->mac_control.stats_info->sw_stat.link_down_cnt++;
  6478. } else {
  6479. DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
  6480. if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
  6481. sp->mac_control.stats_info->sw_stat.link_down_time =
  6482. jiffies - sp->start_time;
  6483. sp->mac_control.stats_info->sw_stat.link_up_cnt++;
  6484. netif_carrier_on(dev);
  6485. }
  6486. }
  6487. sp->last_link_state = link;
  6488. sp->start_time = jiffies;
  6489. }
  6490. /**
  6491. * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
  6492. * @sp : private member of the device structure, which is a pointer to the
  6493. * s2io_nic structure.
  6494. * Description:
  6495. * This function initializes a few of the PCI and PCI-X configuration registers
  6496. * with recommended values.
  6497. * Return value:
  6498. * void
  6499. */
  6500. static void s2io_init_pci(struct s2io_nic * sp)
  6501. {
  6502. u16 pci_cmd = 0, pcix_cmd = 0;
  6503. /* Enable Data Parity Error Recovery in PCI-X command register. */
  6504. pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
  6505. &(pcix_cmd));
  6506. pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
  6507. (pcix_cmd | 1));
  6508. pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
  6509. &(pcix_cmd));
  6510. /* Set the PErr Response bit in PCI command register. */
  6511. pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
  6512. pci_write_config_word(sp->pdev, PCI_COMMAND,
  6513. (pci_cmd | PCI_COMMAND_PARITY));
  6514. pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
  6515. }
  6516. static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
  6517. {
  6518. if ( tx_fifo_num > 8) {
  6519. DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
  6520. "supported\n");
  6521. DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
  6522. tx_fifo_num = 8;
  6523. }
  6524. if ( rx_ring_num > 8) {
  6525. DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
  6526. "supported\n");
  6527. DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
  6528. rx_ring_num = 8;
  6529. }
  6530. if (*dev_intr_type != INTA)
  6531. napi = 0;
  6532. if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
  6533. DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
  6534. "Defaulting to INTA\n");
  6535. *dev_intr_type = INTA;
  6536. }
  6537. if ((*dev_intr_type == MSI_X) &&
  6538. ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
  6539. (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
  6540. DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
  6541. "Defaulting to INTA\n");
  6542. *dev_intr_type = INTA;
  6543. }
  6544. if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
  6545. DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
  6546. DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
  6547. rx_ring_mode = 1;
  6548. }
  6549. return SUCCESS;
  6550. }
  6551. /**
  6552. * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
  6553. * or Traffic class respectively.
  6554. * @nic: device peivate variable
  6555. * Description: The function configures the receive steering to
  6556. * desired receive ring.
  6557. * Return Value: SUCCESS on success and
  6558. * '-1' on failure (endian settings incorrect).
  6559. */
  6560. static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
  6561. {
  6562. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  6563. register u64 val64 = 0;
  6564. if (ds_codepoint > 63)
  6565. return FAILURE;
  6566. val64 = RTS_DS_MEM_DATA(ring);
  6567. writeq(val64, &bar0->rts_ds_mem_data);
  6568. val64 = RTS_DS_MEM_CTRL_WE |
  6569. RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
  6570. RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
  6571. writeq(val64, &bar0->rts_ds_mem_ctrl);
  6572. return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
  6573. RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
  6574. S2IO_BIT_RESET);
  6575. }
  6576. /**
  6577. * s2io_init_nic - Initialization of the adapter .
  6578. * @pdev : structure containing the PCI related information of the device.
  6579. * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
  6580. * Description:
  6581. * The function initializes an adapter identified by the pci_dec structure.
  6582. * All OS related initialization including memory and device structure and
  6583. * initlaization of the device private variable is done. Also the swapper
  6584. * control register is initialized to enable read and write into the I/O
  6585. * registers of the device.
  6586. * Return value:
  6587. * returns 0 on success and negative on failure.
  6588. */
  6589. static int __devinit
  6590. s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
  6591. {
  6592. struct s2io_nic *sp;
  6593. struct net_device *dev;
  6594. int i, j, ret;
  6595. int dma_flag = FALSE;
  6596. u32 mac_up, mac_down;
  6597. u64 val64 = 0, tmp64 = 0;
  6598. struct XENA_dev_config __iomem *bar0 = NULL;
  6599. u16 subid;
  6600. struct mac_info *mac_control;
  6601. struct config_param *config;
  6602. int mode;
  6603. u8 dev_intr_type = intr_type;
  6604. DECLARE_MAC_BUF(mac);
  6605. if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
  6606. return ret;
  6607. if ((ret = pci_enable_device(pdev))) {
  6608. DBG_PRINT(ERR_DBG,
  6609. "s2io_init_nic: pci_enable_device failed\n");
  6610. return ret;
  6611. }
  6612. if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  6613. DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
  6614. dma_flag = TRUE;
  6615. if (pci_set_consistent_dma_mask
  6616. (pdev, DMA_64BIT_MASK)) {
  6617. DBG_PRINT(ERR_DBG,
  6618. "Unable to obtain 64bit DMA for \
  6619. consistent allocations\n");
  6620. pci_disable_device(pdev);
  6621. return -ENOMEM;
  6622. }
  6623. } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
  6624. DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
  6625. } else {
  6626. pci_disable_device(pdev);
  6627. return -ENOMEM;
  6628. }
  6629. if ((ret = pci_request_regions(pdev, s2io_driver_name))) {
  6630. DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __FUNCTION__, ret);
  6631. pci_disable_device(pdev);
  6632. return -ENODEV;
  6633. }
  6634. dev = alloc_etherdev(sizeof(struct s2io_nic));
  6635. if (dev == NULL) {
  6636. DBG_PRINT(ERR_DBG, "Device allocation failed\n");
  6637. pci_disable_device(pdev);
  6638. pci_release_regions(pdev);
  6639. return -ENODEV;
  6640. }
  6641. pci_set_master(pdev);
  6642. pci_set_drvdata(pdev, dev);
  6643. SET_NETDEV_DEV(dev, &pdev->dev);
  6644. /* Private member variable initialized to s2io NIC structure */
  6645. sp = dev->priv;
  6646. memset(sp, 0, sizeof(struct s2io_nic));
  6647. sp->dev = dev;
  6648. sp->pdev = pdev;
  6649. sp->high_dma_flag = dma_flag;
  6650. sp->device_enabled_once = FALSE;
  6651. if (rx_ring_mode == 1)
  6652. sp->rxd_mode = RXD_MODE_1;
  6653. if (rx_ring_mode == 2)
  6654. sp->rxd_mode = RXD_MODE_3B;
  6655. sp->config.intr_type = dev_intr_type;
  6656. if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
  6657. (pdev->device == PCI_DEVICE_ID_HERC_UNI))
  6658. sp->device_type = XFRAME_II_DEVICE;
  6659. else
  6660. sp->device_type = XFRAME_I_DEVICE;
  6661. sp->lro = lro_enable;
  6662. /* Initialize some PCI/PCI-X fields of the NIC. */
  6663. s2io_init_pci(sp);
  6664. /*
  6665. * Setting the device configuration parameters.
  6666. * Most of these parameters can be specified by the user during
  6667. * module insertion as they are module loadable parameters. If
  6668. * these parameters are not not specified during load time, they
  6669. * are initialized with default values.
  6670. */
  6671. mac_control = &sp->mac_control;
  6672. config = &sp->config;
  6673. config->napi = napi;
  6674. /* Tx side parameters. */
  6675. config->tx_fifo_num = tx_fifo_num;
  6676. for (i = 0; i < MAX_TX_FIFOS; i++) {
  6677. config->tx_cfg[i].fifo_len = tx_fifo_len[i];
  6678. config->tx_cfg[i].fifo_priority = i;
  6679. }
  6680. /* mapping the QoS priority to the configured fifos */
  6681. for (i = 0; i < MAX_TX_FIFOS; i++)
  6682. config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
  6683. config->tx_intr_type = TXD_INT_TYPE_UTILZ;
  6684. for (i = 0; i < config->tx_fifo_num; i++) {
  6685. config->tx_cfg[i].f_no_snoop =
  6686. (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
  6687. if (config->tx_cfg[i].fifo_len < 65) {
  6688. config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
  6689. break;
  6690. }
  6691. }
  6692. /* + 2 because one Txd for skb->data and one Txd for UFO */
  6693. config->max_txds = MAX_SKB_FRAGS + 2;
  6694. /* Rx side parameters. */
  6695. config->rx_ring_num = rx_ring_num;
  6696. for (i = 0; i < MAX_RX_RINGS; i++) {
  6697. config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
  6698. (rxd_count[sp->rxd_mode] + 1);
  6699. config->rx_cfg[i].ring_priority = i;
  6700. }
  6701. for (i = 0; i < rx_ring_num; i++) {
  6702. config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
  6703. config->rx_cfg[i].f_no_snoop =
  6704. (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
  6705. }
  6706. /* Setting Mac Control parameters */
  6707. mac_control->rmac_pause_time = rmac_pause_time;
  6708. mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
  6709. mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
  6710. /* Initialize Ring buffer parameters. */
  6711. for (i = 0; i < config->rx_ring_num; i++)
  6712. atomic_set(&sp->rx_bufs_left[i], 0);
  6713. /* initialize the shared memory used by the NIC and the host */
  6714. if (init_shared_mem(sp)) {
  6715. DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
  6716. dev->name);
  6717. ret = -ENOMEM;
  6718. goto mem_alloc_failed;
  6719. }
  6720. sp->bar0 = ioremap(pci_resource_start(pdev, 0),
  6721. pci_resource_len(pdev, 0));
  6722. if (!sp->bar0) {
  6723. DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
  6724. dev->name);
  6725. ret = -ENOMEM;
  6726. goto bar0_remap_failed;
  6727. }
  6728. sp->bar1 = ioremap(pci_resource_start(pdev, 2),
  6729. pci_resource_len(pdev, 2));
  6730. if (!sp->bar1) {
  6731. DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
  6732. dev->name);
  6733. ret = -ENOMEM;
  6734. goto bar1_remap_failed;
  6735. }
  6736. dev->irq = pdev->irq;
  6737. dev->base_addr = (unsigned long) sp->bar0;
  6738. /* Initializing the BAR1 address as the start of the FIFO pointer. */
  6739. for (j = 0; j < MAX_TX_FIFOS; j++) {
  6740. mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
  6741. (sp->bar1 + (j * 0x00020000));
  6742. }
  6743. /* Driver entry points */
  6744. dev->open = &s2io_open;
  6745. dev->stop = &s2io_close;
  6746. dev->hard_start_xmit = &s2io_xmit;
  6747. dev->get_stats = &s2io_get_stats;
  6748. dev->set_multicast_list = &s2io_set_multicast;
  6749. dev->do_ioctl = &s2io_ioctl;
  6750. dev->set_mac_address = &s2io_set_mac_addr;
  6751. dev->change_mtu = &s2io_change_mtu;
  6752. SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
  6753. dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  6754. dev->vlan_rx_register = s2io_vlan_rx_register;
  6755. /*
  6756. * will use eth_mac_addr() for dev->set_mac_address
  6757. * mac address will be set every time dev->open() is called
  6758. */
  6759. netif_napi_add(dev, &sp->napi, s2io_poll, 32);
  6760. #ifdef CONFIG_NET_POLL_CONTROLLER
  6761. dev->poll_controller = s2io_netpoll;
  6762. #endif
  6763. dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
  6764. if (sp->high_dma_flag == TRUE)
  6765. dev->features |= NETIF_F_HIGHDMA;
  6766. dev->features |= NETIF_F_TSO;
  6767. dev->features |= NETIF_F_TSO6;
  6768. if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
  6769. dev->features |= NETIF_F_UFO;
  6770. dev->features |= NETIF_F_HW_CSUM;
  6771. }
  6772. dev->tx_timeout = &s2io_tx_watchdog;
  6773. dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
  6774. INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
  6775. INIT_WORK(&sp->set_link_task, s2io_set_link);
  6776. pci_save_state(sp->pdev);
  6777. /* Setting swapper control on the NIC, for proper reset operation */
  6778. if (s2io_set_swapper(sp)) {
  6779. DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
  6780. dev->name);
  6781. ret = -EAGAIN;
  6782. goto set_swap_failed;
  6783. }
  6784. /* Verify if the Herc works on the slot its placed into */
  6785. if (sp->device_type & XFRAME_II_DEVICE) {
  6786. mode = s2io_verify_pci_mode(sp);
  6787. if (mode < 0) {
  6788. DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
  6789. DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
  6790. ret = -EBADSLT;
  6791. goto set_swap_failed;
  6792. }
  6793. }
  6794. /* Not needed for Herc */
  6795. if (sp->device_type & XFRAME_I_DEVICE) {
  6796. /*
  6797. * Fix for all "FFs" MAC address problems observed on
  6798. * Alpha platforms
  6799. */
  6800. fix_mac_address(sp);
  6801. s2io_reset(sp);
  6802. }
  6803. /*
  6804. * MAC address initialization.
  6805. * For now only one mac address will be read and used.
  6806. */
  6807. bar0 = sp->bar0;
  6808. val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  6809. RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
  6810. writeq(val64, &bar0->rmac_addr_cmd_mem);
  6811. wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  6812. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
  6813. tmp64 = readq(&bar0->rmac_addr_data0_mem);
  6814. mac_down = (u32) tmp64;
  6815. mac_up = (u32) (tmp64 >> 32);
  6816. sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
  6817. sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
  6818. sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
  6819. sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
  6820. sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
  6821. sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
  6822. /* Set the factory defined MAC address initially */
  6823. dev->addr_len = ETH_ALEN;
  6824. memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
  6825. memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
  6826. /* Store the values of the MSIX table in the s2io_nic structure */
  6827. store_xmsi_data(sp);
  6828. /* reset Nic and bring it to known state */
  6829. s2io_reset(sp);
  6830. /*
  6831. * Initialize the tasklet status and link state flags
  6832. * and the card state parameter
  6833. */
  6834. sp->tasklet_status = 0;
  6835. sp->state = 0;
  6836. /* Initialize spinlocks */
  6837. spin_lock_init(&sp->tx_lock);
  6838. if (!napi)
  6839. spin_lock_init(&sp->put_lock);
  6840. spin_lock_init(&sp->rx_lock);
  6841. /*
  6842. * SXE-002: Configure link and activity LED to init state
  6843. * on driver load.
  6844. */
  6845. subid = sp->pdev->subsystem_device;
  6846. if ((subid & 0xFF) >= 0x07) {
  6847. val64 = readq(&bar0->gpio_control);
  6848. val64 |= 0x0000800000000000ULL;
  6849. writeq(val64, &bar0->gpio_control);
  6850. val64 = 0x0411040400000000ULL;
  6851. writeq(val64, (void __iomem *) bar0 + 0x2700);
  6852. val64 = readq(&bar0->gpio_control);
  6853. }
  6854. sp->rx_csum = 1; /* Rx chksum verify enabled by default */
  6855. if (register_netdev(dev)) {
  6856. DBG_PRINT(ERR_DBG, "Device registration failed\n");
  6857. ret = -ENODEV;
  6858. goto register_failed;
  6859. }
  6860. s2io_vpd_read(sp);
  6861. DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
  6862. DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
  6863. sp->product_name, pdev->revision);
  6864. DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
  6865. s2io_driver_version);
  6866. DBG_PRINT(ERR_DBG, "%s: MAC ADDR: %s\n",
  6867. dev->name, print_mac(mac, dev->dev_addr));
  6868. DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
  6869. if (sp->device_type & XFRAME_II_DEVICE) {
  6870. mode = s2io_print_pci_mode(sp);
  6871. if (mode < 0) {
  6872. DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
  6873. ret = -EBADSLT;
  6874. unregister_netdev(dev);
  6875. goto set_swap_failed;
  6876. }
  6877. }
  6878. switch(sp->rxd_mode) {
  6879. case RXD_MODE_1:
  6880. DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
  6881. dev->name);
  6882. break;
  6883. case RXD_MODE_3B:
  6884. DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
  6885. dev->name);
  6886. break;
  6887. }
  6888. if (napi)
  6889. DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
  6890. switch(sp->config.intr_type) {
  6891. case INTA:
  6892. DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
  6893. break;
  6894. case MSI_X:
  6895. DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
  6896. break;
  6897. }
  6898. if (sp->lro)
  6899. DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
  6900. dev->name);
  6901. if (ufo)
  6902. DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
  6903. " enabled\n", dev->name);
  6904. /* Initialize device name */
  6905. sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
  6906. /*
  6907. * Make Link state as off at this point, when the Link change
  6908. * interrupt comes the state will be automatically changed to
  6909. * the right state.
  6910. */
  6911. netif_carrier_off(dev);
  6912. return 0;
  6913. register_failed:
  6914. set_swap_failed:
  6915. iounmap(sp->bar1);
  6916. bar1_remap_failed:
  6917. iounmap(sp->bar0);
  6918. bar0_remap_failed:
  6919. mem_alloc_failed:
  6920. free_shared_mem(sp);
  6921. pci_disable_device(pdev);
  6922. pci_release_regions(pdev);
  6923. pci_set_drvdata(pdev, NULL);
  6924. free_netdev(dev);
  6925. return ret;
  6926. }
  6927. /**
  6928. * s2io_rem_nic - Free the PCI device
  6929. * @pdev: structure containing the PCI related information of the device.
  6930. * Description: This function is called by the Pci subsystem to release a
  6931. * PCI device and free up all resource held up by the device. This could
  6932. * be in response to a Hot plug event or when the driver is to be removed
  6933. * from memory.
  6934. */
  6935. static void __devexit s2io_rem_nic(struct pci_dev *pdev)
  6936. {
  6937. struct net_device *dev =
  6938. (struct net_device *) pci_get_drvdata(pdev);
  6939. struct s2io_nic *sp;
  6940. if (dev == NULL) {
  6941. DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
  6942. return;
  6943. }
  6944. flush_scheduled_work();
  6945. sp = dev->priv;
  6946. unregister_netdev(dev);
  6947. free_shared_mem(sp);
  6948. iounmap(sp->bar0);
  6949. iounmap(sp->bar1);
  6950. pci_release_regions(pdev);
  6951. pci_set_drvdata(pdev, NULL);
  6952. free_netdev(dev);
  6953. pci_disable_device(pdev);
  6954. }
  6955. /**
  6956. * s2io_starter - Entry point for the driver
  6957. * Description: This function is the entry point for the driver. It verifies
  6958. * the module loadable parameters and initializes PCI configuration space.
  6959. */
  6960. static int __init s2io_starter(void)
  6961. {
  6962. return pci_register_driver(&s2io_driver);
  6963. }
  6964. /**
  6965. * s2io_closer - Cleanup routine for the driver
  6966. * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
  6967. */
  6968. static __exit void s2io_closer(void)
  6969. {
  6970. pci_unregister_driver(&s2io_driver);
  6971. DBG_PRINT(INIT_DBG, "cleanup done\n");
  6972. }
  6973. module_init(s2io_starter);
  6974. module_exit(s2io_closer);
  6975. static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
  6976. struct tcphdr **tcp, struct RxD_t *rxdp)
  6977. {
  6978. int ip_off;
  6979. u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
  6980. if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
  6981. DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
  6982. __FUNCTION__);
  6983. return -1;
  6984. }
  6985. /* TODO:
  6986. * By default the VLAN field in the MAC is stripped by the card, if this
  6987. * feature is turned off in rx_pa_cfg register, then the ip_off field
  6988. * has to be shifted by a further 2 bytes
  6989. */
  6990. switch (l2_type) {
  6991. case 0: /* DIX type */
  6992. case 4: /* DIX type with VLAN */
  6993. ip_off = HEADER_ETHERNET_II_802_3_SIZE;
  6994. break;
  6995. /* LLC, SNAP etc are considered non-mergeable */
  6996. default:
  6997. return -1;
  6998. }
  6999. *ip = (struct iphdr *)((u8 *)buffer + ip_off);
  7000. ip_len = (u8)((*ip)->ihl);
  7001. ip_len <<= 2;
  7002. *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
  7003. return 0;
  7004. }
  7005. static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
  7006. struct tcphdr *tcp)
  7007. {
  7008. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  7009. if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
  7010. (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
  7011. return -1;
  7012. return 0;
  7013. }
  7014. static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
  7015. {
  7016. return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
  7017. }
  7018. static void initiate_new_session(struct lro *lro, u8 *l2h,
  7019. struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
  7020. {
  7021. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  7022. lro->l2h = l2h;
  7023. lro->iph = ip;
  7024. lro->tcph = tcp;
  7025. lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
  7026. lro->tcp_ack = ntohl(tcp->ack_seq);
  7027. lro->sg_num = 1;
  7028. lro->total_len = ntohs(ip->tot_len);
  7029. lro->frags_len = 0;
  7030. /*
  7031. * check if we saw TCP timestamp. Other consistency checks have
  7032. * already been done.
  7033. */
  7034. if (tcp->doff == 8) {
  7035. u32 *ptr;
  7036. ptr = (u32 *)(tcp+1);
  7037. lro->saw_ts = 1;
  7038. lro->cur_tsval = *(ptr+1);
  7039. lro->cur_tsecr = *(ptr+2);
  7040. }
  7041. lro->in_use = 1;
  7042. }
  7043. static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
  7044. {
  7045. struct iphdr *ip = lro->iph;
  7046. struct tcphdr *tcp = lro->tcph;
  7047. __sum16 nchk;
  7048. struct stat_block *statinfo = sp->mac_control.stats_info;
  7049. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  7050. /* Update L3 header */
  7051. ip->tot_len = htons(lro->total_len);
  7052. ip->check = 0;
  7053. nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
  7054. ip->check = nchk;
  7055. /* Update L4 header */
  7056. tcp->ack_seq = lro->tcp_ack;
  7057. tcp->window = lro->window;
  7058. /* Update tsecr field if this session has timestamps enabled */
  7059. if (lro->saw_ts) {
  7060. u32 *ptr = (u32 *)(tcp + 1);
  7061. *(ptr+2) = lro->cur_tsecr;
  7062. }
  7063. /* Update counters required for calculation of
  7064. * average no. of packets aggregated.
  7065. */
  7066. statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
  7067. statinfo->sw_stat.num_aggregations++;
  7068. }
  7069. static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
  7070. struct tcphdr *tcp, u32 l4_pyld)
  7071. {
  7072. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  7073. lro->total_len += l4_pyld;
  7074. lro->frags_len += l4_pyld;
  7075. lro->tcp_next_seq += l4_pyld;
  7076. lro->sg_num++;
  7077. /* Update ack seq no. and window ad(from this pkt) in LRO object */
  7078. lro->tcp_ack = tcp->ack_seq;
  7079. lro->window = tcp->window;
  7080. if (lro->saw_ts) {
  7081. u32 *ptr;
  7082. /* Update tsecr and tsval from this packet */
  7083. ptr = (u32 *) (tcp + 1);
  7084. lro->cur_tsval = *(ptr + 1);
  7085. lro->cur_tsecr = *(ptr + 2);
  7086. }
  7087. }
  7088. static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
  7089. struct tcphdr *tcp, u32 tcp_pyld_len)
  7090. {
  7091. u8 *ptr;
  7092. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  7093. if (!tcp_pyld_len) {
  7094. /* Runt frame or a pure ack */
  7095. return -1;
  7096. }
  7097. if (ip->ihl != 5) /* IP has options */
  7098. return -1;
  7099. /* If we see CE codepoint in IP header, packet is not mergeable */
  7100. if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
  7101. return -1;
  7102. /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
  7103. if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
  7104. tcp->ece || tcp->cwr || !tcp->ack) {
  7105. /*
  7106. * Currently recognize only the ack control word and
  7107. * any other control field being set would result in
  7108. * flushing the LRO session
  7109. */
  7110. return -1;
  7111. }
  7112. /*
  7113. * Allow only one TCP timestamp option. Don't aggregate if
  7114. * any other options are detected.
  7115. */
  7116. if (tcp->doff != 5 && tcp->doff != 8)
  7117. return -1;
  7118. if (tcp->doff == 8) {
  7119. ptr = (u8 *)(tcp + 1);
  7120. while (*ptr == TCPOPT_NOP)
  7121. ptr++;
  7122. if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
  7123. return -1;
  7124. /* Ensure timestamp value increases monotonically */
  7125. if (l_lro)
  7126. if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
  7127. return -1;
  7128. /* timestamp echo reply should be non-zero */
  7129. if (*((u32 *)(ptr+6)) == 0)
  7130. return -1;
  7131. }
  7132. return 0;
  7133. }
  7134. static int
  7135. s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, struct lro **lro,
  7136. struct RxD_t *rxdp, struct s2io_nic *sp)
  7137. {
  7138. struct iphdr *ip;
  7139. struct tcphdr *tcph;
  7140. int ret = 0, i;
  7141. if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
  7142. rxdp))) {
  7143. DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
  7144. ip->saddr, ip->daddr);
  7145. } else {
  7146. return ret;
  7147. }
  7148. tcph = (struct tcphdr *)*tcp;
  7149. *tcp_len = get_l4_pyld_length(ip, tcph);
  7150. for (i=0; i<MAX_LRO_SESSIONS; i++) {
  7151. struct lro *l_lro = &sp->lro0_n[i];
  7152. if (l_lro->in_use) {
  7153. if (check_for_socket_match(l_lro, ip, tcph))
  7154. continue;
  7155. /* Sock pair matched */
  7156. *lro = l_lro;
  7157. if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
  7158. DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
  7159. "0x%x, actual 0x%x\n", __FUNCTION__,
  7160. (*lro)->tcp_next_seq,
  7161. ntohl(tcph->seq));
  7162. sp->mac_control.stats_info->
  7163. sw_stat.outof_sequence_pkts++;
  7164. ret = 2;
  7165. break;
  7166. }
  7167. if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
  7168. ret = 1; /* Aggregate */
  7169. else
  7170. ret = 2; /* Flush both */
  7171. break;
  7172. }
  7173. }
  7174. if (ret == 0) {
  7175. /* Before searching for available LRO objects,
  7176. * check if the pkt is L3/L4 aggregatable. If not
  7177. * don't create new LRO session. Just send this
  7178. * packet up.
  7179. */
  7180. if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
  7181. return 5;
  7182. }
  7183. for (i=0; i<MAX_LRO_SESSIONS; i++) {
  7184. struct lro *l_lro = &sp->lro0_n[i];
  7185. if (!(l_lro->in_use)) {
  7186. *lro = l_lro;
  7187. ret = 3; /* Begin anew */
  7188. break;
  7189. }
  7190. }
  7191. }
  7192. if (ret == 0) { /* sessions exceeded */
  7193. DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
  7194. __FUNCTION__);
  7195. *lro = NULL;
  7196. return ret;
  7197. }
  7198. switch (ret) {
  7199. case 3:
  7200. initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
  7201. break;
  7202. case 2:
  7203. update_L3L4_header(sp, *lro);
  7204. break;
  7205. case 1:
  7206. aggregate_new_rx(*lro, ip, tcph, *tcp_len);
  7207. if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
  7208. update_L3L4_header(sp, *lro);
  7209. ret = 4; /* Flush the LRO */
  7210. }
  7211. break;
  7212. default:
  7213. DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
  7214. __FUNCTION__);
  7215. break;
  7216. }
  7217. return ret;
  7218. }
  7219. static void clear_lro_session(struct lro *lro)
  7220. {
  7221. static u16 lro_struct_size = sizeof(struct lro);
  7222. memset(lro, 0, lro_struct_size);
  7223. }
  7224. static void queue_rx_frame(struct sk_buff *skb)
  7225. {
  7226. struct net_device *dev = skb->dev;
  7227. skb->protocol = eth_type_trans(skb, dev);
  7228. if (napi)
  7229. netif_receive_skb(skb);
  7230. else
  7231. netif_rx(skb);
  7232. }
  7233. static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
  7234. struct sk_buff *skb,
  7235. u32 tcp_len)
  7236. {
  7237. struct sk_buff *first = lro->parent;
  7238. first->len += tcp_len;
  7239. first->data_len = lro->frags_len;
  7240. skb_pull(skb, (skb->len - tcp_len));
  7241. if (skb_shinfo(first)->frag_list)
  7242. lro->last_frag->next = skb;
  7243. else
  7244. skb_shinfo(first)->frag_list = skb;
  7245. first->truesize += skb->truesize;
  7246. lro->last_frag = skb;
  7247. sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
  7248. return;
  7249. }
  7250. /**
  7251. * s2io_io_error_detected - called when PCI error is detected
  7252. * @pdev: Pointer to PCI device
  7253. * @state: The current pci connection state
  7254. *
  7255. * This function is called after a PCI bus error affecting
  7256. * this device has been detected.
  7257. */
  7258. static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
  7259. pci_channel_state_t state)
  7260. {
  7261. struct net_device *netdev = pci_get_drvdata(pdev);
  7262. struct s2io_nic *sp = netdev->priv;
  7263. netif_device_detach(netdev);
  7264. if (netif_running(netdev)) {
  7265. /* Bring down the card, while avoiding PCI I/O */
  7266. do_s2io_card_down(sp, 0);
  7267. }
  7268. pci_disable_device(pdev);
  7269. return PCI_ERS_RESULT_NEED_RESET;
  7270. }
  7271. /**
  7272. * s2io_io_slot_reset - called after the pci bus has been reset.
  7273. * @pdev: Pointer to PCI device
  7274. *
  7275. * Restart the card from scratch, as if from a cold-boot.
  7276. * At this point, the card has exprienced a hard reset,
  7277. * followed by fixups by BIOS, and has its config space
  7278. * set up identically to what it was at cold boot.
  7279. */
  7280. static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
  7281. {
  7282. struct net_device *netdev = pci_get_drvdata(pdev);
  7283. struct s2io_nic *sp = netdev->priv;
  7284. if (pci_enable_device(pdev)) {
  7285. printk(KERN_ERR "s2io: "
  7286. "Cannot re-enable PCI device after reset.\n");
  7287. return PCI_ERS_RESULT_DISCONNECT;
  7288. }
  7289. pci_set_master(pdev);
  7290. s2io_reset(sp);
  7291. return PCI_ERS_RESULT_RECOVERED;
  7292. }
  7293. /**
  7294. * s2io_io_resume - called when traffic can start flowing again.
  7295. * @pdev: Pointer to PCI device
  7296. *
  7297. * This callback is called when the error recovery driver tells
  7298. * us that its OK to resume normal operation.
  7299. */
  7300. static void s2io_io_resume(struct pci_dev *pdev)
  7301. {
  7302. struct net_device *netdev = pci_get_drvdata(pdev);
  7303. struct s2io_nic *sp = netdev->priv;
  7304. if (netif_running(netdev)) {
  7305. if (s2io_card_up(sp)) {
  7306. printk(KERN_ERR "s2io: "
  7307. "Can't bring device back up after reset.\n");
  7308. return;
  7309. }
  7310. if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
  7311. s2io_card_down(sp);
  7312. printk(KERN_ERR "s2io: "
  7313. "Can't resetore mac addr after reset.\n");
  7314. return;
  7315. }
  7316. }
  7317. netif_device_attach(netdev);
  7318. netif_wake_queue(netdev);
  7319. }