common.c 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353
  1. #include <linux/bootmem.h>
  2. #include <linux/linkage.h>
  3. #include <linux/bitops.h>
  4. #include <linux/kernel.h>
  5. #include <linux/module.h>
  6. #include <linux/percpu.h>
  7. #include <linux/string.h>
  8. #include <linux/delay.h>
  9. #include <linux/sched.h>
  10. #include <linux/init.h>
  11. #include <linux/kgdb.h>
  12. #include <linux/smp.h>
  13. #include <linux/io.h>
  14. #include <asm/stackprotector.h>
  15. #include <asm/perf_event.h>
  16. #include <asm/mmu_context.h>
  17. #include <asm/archrandom.h>
  18. #include <asm/hypervisor.h>
  19. #include <asm/processor.h>
  20. #include <asm/debugreg.h>
  21. #include <asm/sections.h>
  22. #include <linux/topology.h>
  23. #include <linux/cpumask.h>
  24. #include <asm/pgtable.h>
  25. #include <linux/atomic.h>
  26. #include <asm/proto.h>
  27. #include <asm/setup.h>
  28. #include <asm/apic.h>
  29. #include <asm/desc.h>
  30. #include <asm/i387.h>
  31. #include <asm/fpu-internal.h>
  32. #include <asm/mtrr.h>
  33. #include <linux/numa.h>
  34. #include <asm/asm.h>
  35. #include <asm/cpu.h>
  36. #include <asm/mce.h>
  37. #include <asm/msr.h>
  38. #include <asm/pat.h>
  39. #ifdef CONFIG_X86_LOCAL_APIC
  40. #include <asm/uv/uv.h>
  41. #endif
  42. #include "cpu.h"
  43. /* all of these masks are initialized in setup_cpu_local_masks() */
  44. cpumask_var_t cpu_initialized_mask;
  45. cpumask_var_t cpu_callout_mask;
  46. cpumask_var_t cpu_callin_mask;
  47. /* representing cpus for which sibling maps can be computed */
  48. cpumask_var_t cpu_sibling_setup_mask;
  49. /* correctly size the local cpu masks */
  50. void __init setup_cpu_local_masks(void)
  51. {
  52. alloc_bootmem_cpumask_var(&cpu_initialized_mask);
  53. alloc_bootmem_cpumask_var(&cpu_callin_mask);
  54. alloc_bootmem_cpumask_var(&cpu_callout_mask);
  55. alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
  56. }
  57. static void __cpuinit default_init(struct cpuinfo_x86 *c)
  58. {
  59. #ifdef CONFIG_X86_64
  60. cpu_detect_cache_sizes(c);
  61. #else
  62. /* Not much we can do here... */
  63. /* Check if at least it has cpuid */
  64. if (c->cpuid_level == -1) {
  65. /* No cpuid. It must be an ancient CPU */
  66. if (c->x86 == 4)
  67. strcpy(c->x86_model_id, "486");
  68. else if (c->x86 == 3)
  69. strcpy(c->x86_model_id, "386");
  70. }
  71. #endif
  72. }
  73. static const struct cpu_dev __cpuinitconst default_cpu = {
  74. .c_init = default_init,
  75. .c_vendor = "Unknown",
  76. .c_x86_vendor = X86_VENDOR_UNKNOWN,
  77. };
  78. static const struct cpu_dev *this_cpu __cpuinitdata = &default_cpu;
  79. DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
  80. #ifdef CONFIG_X86_64
  81. /*
  82. * We need valid kernel segments for data and code in long mode too
  83. * IRET will check the segment types kkeil 2000/10/28
  84. * Also sysret mandates a special GDT layout
  85. *
  86. * TLS descriptors are currently at a different place compared to i386.
  87. * Hopefully nobody expects them at a fixed place (Wine?)
  88. */
  89. [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
  90. [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
  91. [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
  92. [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
  93. [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
  94. [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
  95. #else
  96. [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
  97. [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
  98. [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
  99. [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
  100. /*
  101. * Segments used for calling PnP BIOS have byte granularity.
  102. * They code segments and data segments have fixed 64k limits,
  103. * the transfer segment sizes are set at run time.
  104. */
  105. /* 32-bit code */
  106. [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
  107. /* 16-bit code */
  108. [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
  109. /* 16-bit data */
  110. [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
  111. /* 16-bit data */
  112. [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
  113. /* 16-bit data */
  114. [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
  115. /*
  116. * The APM segments have byte granularity and their bases
  117. * are set at run time. All have 64k limits.
  118. */
  119. /* 32-bit code */
  120. [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
  121. /* 16-bit code */
  122. [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
  123. /* data */
  124. [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
  125. [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
  126. [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
  127. GDT_STACK_CANARY_INIT
  128. #endif
  129. } };
  130. EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
  131. static int __init x86_xsave_setup(char *s)
  132. {
  133. setup_clear_cpu_cap(X86_FEATURE_XSAVE);
  134. setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
  135. setup_clear_cpu_cap(X86_FEATURE_AVX);
  136. setup_clear_cpu_cap(X86_FEATURE_AVX2);
  137. return 1;
  138. }
  139. __setup("noxsave", x86_xsave_setup);
  140. static int __init x86_xsaveopt_setup(char *s)
  141. {
  142. setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
  143. return 1;
  144. }
  145. __setup("noxsaveopt", x86_xsaveopt_setup);
  146. #ifdef CONFIG_X86_32
  147. static int cachesize_override __cpuinitdata = -1;
  148. static int disable_x86_serial_nr __cpuinitdata = 1;
  149. static int __init cachesize_setup(char *str)
  150. {
  151. get_option(&str, &cachesize_override);
  152. return 1;
  153. }
  154. __setup("cachesize=", cachesize_setup);
  155. static int __init x86_fxsr_setup(char *s)
  156. {
  157. setup_clear_cpu_cap(X86_FEATURE_FXSR);
  158. setup_clear_cpu_cap(X86_FEATURE_XMM);
  159. return 1;
  160. }
  161. __setup("nofxsr", x86_fxsr_setup);
  162. static int __init x86_sep_setup(char *s)
  163. {
  164. setup_clear_cpu_cap(X86_FEATURE_SEP);
  165. return 1;
  166. }
  167. __setup("nosep", x86_sep_setup);
  168. /* Standard macro to see if a specific flag is changeable */
  169. static inline int flag_is_changeable_p(u32 flag)
  170. {
  171. u32 f1, f2;
  172. /*
  173. * Cyrix and IDT cpus allow disabling of CPUID
  174. * so the code below may return different results
  175. * when it is executed before and after enabling
  176. * the CPUID. Add "volatile" to not allow gcc to
  177. * optimize the subsequent calls to this function.
  178. */
  179. asm volatile ("pushfl \n\t"
  180. "pushfl \n\t"
  181. "popl %0 \n\t"
  182. "movl %0, %1 \n\t"
  183. "xorl %2, %0 \n\t"
  184. "pushl %0 \n\t"
  185. "popfl \n\t"
  186. "pushfl \n\t"
  187. "popl %0 \n\t"
  188. "popfl \n\t"
  189. : "=&r" (f1), "=&r" (f2)
  190. : "ir" (flag));
  191. return ((f1^f2) & flag) != 0;
  192. }
  193. /* Probe for the CPUID instruction */
  194. static int __cpuinit have_cpuid_p(void)
  195. {
  196. return flag_is_changeable_p(X86_EFLAGS_ID);
  197. }
  198. static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
  199. {
  200. unsigned long lo, hi;
  201. if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
  202. return;
  203. /* Disable processor serial number: */
  204. rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
  205. lo |= 0x200000;
  206. wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
  207. printk(KERN_NOTICE "CPU serial number disabled.\n");
  208. clear_cpu_cap(c, X86_FEATURE_PN);
  209. /* Disabling the serial number may affect the cpuid level */
  210. c->cpuid_level = cpuid_eax(0);
  211. }
  212. static int __init x86_serial_nr_setup(char *s)
  213. {
  214. disable_x86_serial_nr = 0;
  215. return 1;
  216. }
  217. __setup("serialnumber", x86_serial_nr_setup);
  218. #else
  219. static inline int flag_is_changeable_p(u32 flag)
  220. {
  221. return 1;
  222. }
  223. /* Probe for the CPUID instruction */
  224. static inline int have_cpuid_p(void)
  225. {
  226. return 1;
  227. }
  228. static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
  229. {
  230. }
  231. #endif
  232. static int disable_smep __cpuinitdata;
  233. static __init int setup_disable_smep(char *arg)
  234. {
  235. disable_smep = 1;
  236. return 1;
  237. }
  238. __setup("nosmep", setup_disable_smep);
  239. static __cpuinit void setup_smep(struct cpuinfo_x86 *c)
  240. {
  241. if (cpu_has(c, X86_FEATURE_SMEP)) {
  242. if (unlikely(disable_smep)) {
  243. setup_clear_cpu_cap(X86_FEATURE_SMEP);
  244. clear_in_cr4(X86_CR4_SMEP);
  245. } else
  246. set_in_cr4(X86_CR4_SMEP);
  247. }
  248. }
  249. /*
  250. * Some CPU features depend on higher CPUID levels, which may not always
  251. * be available due to CPUID level capping or broken virtualization
  252. * software. Add those features to this table to auto-disable them.
  253. */
  254. struct cpuid_dependent_feature {
  255. u32 feature;
  256. u32 level;
  257. };
  258. static const struct cpuid_dependent_feature __cpuinitconst
  259. cpuid_dependent_features[] = {
  260. { X86_FEATURE_MWAIT, 0x00000005 },
  261. { X86_FEATURE_DCA, 0x00000009 },
  262. { X86_FEATURE_XSAVE, 0x0000000d },
  263. { 0, 0 }
  264. };
  265. static void __cpuinit filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
  266. {
  267. const struct cpuid_dependent_feature *df;
  268. for (df = cpuid_dependent_features; df->feature; df++) {
  269. if (!cpu_has(c, df->feature))
  270. continue;
  271. /*
  272. * Note: cpuid_level is set to -1 if unavailable, but
  273. * extended_extended_level is set to 0 if unavailable
  274. * and the legitimate extended levels are all negative
  275. * when signed; hence the weird messing around with
  276. * signs here...
  277. */
  278. if (!((s32)df->level < 0 ?
  279. (u32)df->level > (u32)c->extended_cpuid_level :
  280. (s32)df->level > (s32)c->cpuid_level))
  281. continue;
  282. clear_cpu_cap(c, df->feature);
  283. if (!warn)
  284. continue;
  285. printk(KERN_WARNING
  286. "CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
  287. x86_cap_flags[df->feature], df->level);
  288. }
  289. }
  290. /*
  291. * Naming convention should be: <Name> [(<Codename>)]
  292. * This table only is used unless init_<vendor>() below doesn't set it;
  293. * in particular, if CPUID levels 0x80000002..4 are supported, this
  294. * isn't used
  295. */
  296. /* Look up CPU names by table lookup. */
  297. static const char *__cpuinit table_lookup_model(struct cpuinfo_x86 *c)
  298. {
  299. const struct cpu_model_info *info;
  300. if (c->x86_model >= 16)
  301. return NULL; /* Range check */
  302. if (!this_cpu)
  303. return NULL;
  304. info = this_cpu->c_models;
  305. while (info && info->family) {
  306. if (info->family == c->x86)
  307. return info->model_names[c->x86_model];
  308. info++;
  309. }
  310. return NULL; /* Not found */
  311. }
  312. __u32 cpu_caps_cleared[NCAPINTS] __cpuinitdata;
  313. __u32 cpu_caps_set[NCAPINTS] __cpuinitdata;
  314. void load_percpu_segment(int cpu)
  315. {
  316. #ifdef CONFIG_X86_32
  317. loadsegment(fs, __KERNEL_PERCPU);
  318. #else
  319. loadsegment(gs, 0);
  320. wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
  321. #endif
  322. load_stack_canary_segment();
  323. }
  324. /*
  325. * Current gdt points %fs at the "master" per-cpu area: after this,
  326. * it's on the real one.
  327. */
  328. void switch_to_new_gdt(int cpu)
  329. {
  330. struct desc_ptr gdt_descr;
  331. gdt_descr.address = (long)get_cpu_gdt_table(cpu);
  332. gdt_descr.size = GDT_SIZE - 1;
  333. load_gdt(&gdt_descr);
  334. /* Reload the per-cpu base */
  335. load_percpu_segment(cpu);
  336. }
  337. static const struct cpu_dev *__cpuinitdata cpu_devs[X86_VENDOR_NUM] = {};
  338. static void __cpuinit get_model_name(struct cpuinfo_x86 *c)
  339. {
  340. unsigned int *v;
  341. char *p, *q;
  342. if (c->extended_cpuid_level < 0x80000004)
  343. return;
  344. v = (unsigned int *)c->x86_model_id;
  345. cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
  346. cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
  347. cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
  348. c->x86_model_id[48] = 0;
  349. /*
  350. * Intel chips right-justify this string for some dumb reason;
  351. * undo that brain damage:
  352. */
  353. p = q = &c->x86_model_id[0];
  354. while (*p == ' ')
  355. p++;
  356. if (p != q) {
  357. while (*p)
  358. *q++ = *p++;
  359. while (q <= &c->x86_model_id[48])
  360. *q++ = '\0'; /* Zero-pad the rest */
  361. }
  362. }
  363. void __cpuinit cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
  364. {
  365. unsigned int n, dummy, ebx, ecx, edx, l2size;
  366. n = c->extended_cpuid_level;
  367. if (n >= 0x80000005) {
  368. cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
  369. c->x86_cache_size = (ecx>>24) + (edx>>24);
  370. #ifdef CONFIG_X86_64
  371. /* On K8 L1 TLB is inclusive, so don't count it */
  372. c->x86_tlbsize = 0;
  373. #endif
  374. }
  375. if (n < 0x80000006) /* Some chips just has a large L1. */
  376. return;
  377. cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
  378. l2size = ecx >> 16;
  379. #ifdef CONFIG_X86_64
  380. c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
  381. #else
  382. /* do processor-specific cache resizing */
  383. if (this_cpu->c_size_cache)
  384. l2size = this_cpu->c_size_cache(c, l2size);
  385. /* Allow user to override all this if necessary. */
  386. if (cachesize_override != -1)
  387. l2size = cachesize_override;
  388. if (l2size == 0)
  389. return; /* Again, no L2 cache is possible */
  390. #endif
  391. c->x86_cache_size = l2size;
  392. }
  393. u16 __read_mostly tlb_lli_4k[NR_INFO];
  394. u16 __read_mostly tlb_lli_2m[NR_INFO];
  395. u16 __read_mostly tlb_lli_4m[NR_INFO];
  396. u16 __read_mostly tlb_lld_4k[NR_INFO];
  397. u16 __read_mostly tlb_lld_2m[NR_INFO];
  398. u16 __read_mostly tlb_lld_4m[NR_INFO];
  399. /*
  400. * tlb_flushall_shift shows the balance point in replacing cr3 write
  401. * with multiple 'invlpg'. It will do this replacement when
  402. * flush_tlb_lines <= active_lines/2^tlb_flushall_shift.
  403. * If tlb_flushall_shift is -1, means the replacement will be disabled.
  404. */
  405. s8 __read_mostly tlb_flushall_shift = -1;
  406. void __cpuinit cpu_detect_tlb(struct cpuinfo_x86 *c)
  407. {
  408. if (this_cpu->c_detect_tlb)
  409. this_cpu->c_detect_tlb(c);
  410. printk(KERN_INFO "Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n" \
  411. "Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d\n" \
  412. "tlb_flushall_shift is 0x%x\n",
  413. tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
  414. tlb_lli_4m[ENTRIES], tlb_lld_4k[ENTRIES],
  415. tlb_lld_2m[ENTRIES], tlb_lld_4m[ENTRIES],
  416. tlb_flushall_shift);
  417. }
  418. void __cpuinit detect_ht(struct cpuinfo_x86 *c)
  419. {
  420. #ifdef CONFIG_X86_HT
  421. u32 eax, ebx, ecx, edx;
  422. int index_msb, core_bits;
  423. static bool printed;
  424. if (!cpu_has(c, X86_FEATURE_HT))
  425. return;
  426. if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
  427. goto out;
  428. if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
  429. return;
  430. cpuid(1, &eax, &ebx, &ecx, &edx);
  431. smp_num_siblings = (ebx & 0xff0000) >> 16;
  432. if (smp_num_siblings == 1) {
  433. printk_once(KERN_INFO "CPU0: Hyper-Threading is disabled\n");
  434. goto out;
  435. }
  436. if (smp_num_siblings <= 1)
  437. goto out;
  438. index_msb = get_count_order(smp_num_siblings);
  439. c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
  440. smp_num_siblings = smp_num_siblings / c->x86_max_cores;
  441. index_msb = get_count_order(smp_num_siblings);
  442. core_bits = get_count_order(c->x86_max_cores);
  443. c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
  444. ((1 << core_bits) - 1);
  445. out:
  446. if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
  447. printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
  448. c->phys_proc_id);
  449. printk(KERN_INFO "CPU: Processor Core ID: %d\n",
  450. c->cpu_core_id);
  451. printed = 1;
  452. }
  453. #endif
  454. }
  455. static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
  456. {
  457. char *v = c->x86_vendor_id;
  458. int i;
  459. for (i = 0; i < X86_VENDOR_NUM; i++) {
  460. if (!cpu_devs[i])
  461. break;
  462. if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
  463. (cpu_devs[i]->c_ident[1] &&
  464. !strcmp(v, cpu_devs[i]->c_ident[1]))) {
  465. this_cpu = cpu_devs[i];
  466. c->x86_vendor = this_cpu->c_x86_vendor;
  467. return;
  468. }
  469. }
  470. printk_once(KERN_ERR
  471. "CPU: vendor_id '%s' unknown, using generic init.\n" \
  472. "CPU: Your system may be unstable.\n", v);
  473. c->x86_vendor = X86_VENDOR_UNKNOWN;
  474. this_cpu = &default_cpu;
  475. }
  476. void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
  477. {
  478. /* Get vendor name */
  479. cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
  480. (unsigned int *)&c->x86_vendor_id[0],
  481. (unsigned int *)&c->x86_vendor_id[8],
  482. (unsigned int *)&c->x86_vendor_id[4]);
  483. c->x86 = 4;
  484. /* Intel-defined flags: level 0x00000001 */
  485. if (c->cpuid_level >= 0x00000001) {
  486. u32 junk, tfms, cap0, misc;
  487. cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
  488. c->x86 = (tfms >> 8) & 0xf;
  489. c->x86_model = (tfms >> 4) & 0xf;
  490. c->x86_mask = tfms & 0xf;
  491. if (c->x86 == 0xf)
  492. c->x86 += (tfms >> 20) & 0xff;
  493. if (c->x86 >= 0x6)
  494. c->x86_model += ((tfms >> 16) & 0xf) << 4;
  495. if (cap0 & (1<<19)) {
  496. c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
  497. c->x86_cache_alignment = c->x86_clflush_size;
  498. }
  499. }
  500. }
  501. void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
  502. {
  503. u32 tfms, xlvl;
  504. u32 ebx;
  505. /* Intel-defined flags: level 0x00000001 */
  506. if (c->cpuid_level >= 0x00000001) {
  507. u32 capability, excap;
  508. cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
  509. c->x86_capability[0] = capability;
  510. c->x86_capability[4] = excap;
  511. }
  512. /* Additional Intel-defined flags: level 0x00000007 */
  513. if (c->cpuid_level >= 0x00000007) {
  514. u32 eax, ebx, ecx, edx;
  515. cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
  516. c->x86_capability[9] = ebx;
  517. }
  518. /* AMD-defined flags: level 0x80000001 */
  519. xlvl = cpuid_eax(0x80000000);
  520. c->extended_cpuid_level = xlvl;
  521. if ((xlvl & 0xffff0000) == 0x80000000) {
  522. if (xlvl >= 0x80000001) {
  523. c->x86_capability[1] = cpuid_edx(0x80000001);
  524. c->x86_capability[6] = cpuid_ecx(0x80000001);
  525. }
  526. }
  527. if (c->extended_cpuid_level >= 0x80000008) {
  528. u32 eax = cpuid_eax(0x80000008);
  529. c->x86_virt_bits = (eax >> 8) & 0xff;
  530. c->x86_phys_bits = eax & 0xff;
  531. }
  532. #ifdef CONFIG_X86_32
  533. else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
  534. c->x86_phys_bits = 36;
  535. #endif
  536. if (c->extended_cpuid_level >= 0x80000007)
  537. c->x86_power = cpuid_edx(0x80000007);
  538. init_scattered_cpuid_features(c);
  539. }
  540. static void __cpuinit identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
  541. {
  542. #ifdef CONFIG_X86_32
  543. int i;
  544. /*
  545. * First of all, decide if this is a 486 or higher
  546. * It's a 486 if we can modify the AC flag
  547. */
  548. if (flag_is_changeable_p(X86_EFLAGS_AC))
  549. c->x86 = 4;
  550. else
  551. c->x86 = 3;
  552. for (i = 0; i < X86_VENDOR_NUM; i++)
  553. if (cpu_devs[i] && cpu_devs[i]->c_identify) {
  554. c->x86_vendor_id[0] = 0;
  555. cpu_devs[i]->c_identify(c);
  556. if (c->x86_vendor_id[0]) {
  557. get_cpu_vendor(c);
  558. break;
  559. }
  560. }
  561. #endif
  562. }
  563. /*
  564. * Do minimum CPU detection early.
  565. * Fields really needed: vendor, cpuid_level, family, model, mask,
  566. * cache alignment.
  567. * The others are not touched to avoid unwanted side effects.
  568. *
  569. * WARNING: this function is only called on the BP. Don't add code here
  570. * that is supposed to run on all CPUs.
  571. */
  572. static void __init early_identify_cpu(struct cpuinfo_x86 *c)
  573. {
  574. #ifdef CONFIG_X86_64
  575. c->x86_clflush_size = 64;
  576. c->x86_phys_bits = 36;
  577. c->x86_virt_bits = 48;
  578. #else
  579. c->x86_clflush_size = 32;
  580. c->x86_phys_bits = 32;
  581. c->x86_virt_bits = 32;
  582. #endif
  583. c->x86_cache_alignment = c->x86_clflush_size;
  584. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  585. c->extended_cpuid_level = 0;
  586. if (!have_cpuid_p())
  587. identify_cpu_without_cpuid(c);
  588. /* cyrix could have cpuid enabled via c_identify()*/
  589. if (!have_cpuid_p())
  590. return;
  591. cpu_detect(c);
  592. get_cpu_vendor(c);
  593. get_cpu_cap(c);
  594. if (this_cpu->c_early_init)
  595. this_cpu->c_early_init(c);
  596. c->cpu_index = 0;
  597. filter_cpuid_features(c, false);
  598. setup_smep(c);
  599. if (this_cpu->c_bsp_init)
  600. this_cpu->c_bsp_init(c);
  601. }
  602. void __init early_cpu_init(void)
  603. {
  604. const struct cpu_dev *const *cdev;
  605. int count = 0;
  606. #ifdef CONFIG_PROCESSOR_SELECT
  607. printk(KERN_INFO "KERNEL supported cpus:\n");
  608. #endif
  609. for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
  610. const struct cpu_dev *cpudev = *cdev;
  611. if (count >= X86_VENDOR_NUM)
  612. break;
  613. cpu_devs[count] = cpudev;
  614. count++;
  615. #ifdef CONFIG_PROCESSOR_SELECT
  616. {
  617. unsigned int j;
  618. for (j = 0; j < 2; j++) {
  619. if (!cpudev->c_ident[j])
  620. continue;
  621. printk(KERN_INFO " %s %s\n", cpudev->c_vendor,
  622. cpudev->c_ident[j]);
  623. }
  624. }
  625. #endif
  626. }
  627. early_identify_cpu(&boot_cpu_data);
  628. }
  629. /*
  630. * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
  631. * unfortunately, that's not true in practice because of early VIA
  632. * chips and (more importantly) broken virtualizers that are not easy
  633. * to detect. In the latter case it doesn't even *fail* reliably, so
  634. * probing for it doesn't even work. Disable it completely on 32-bit
  635. * unless we can find a reliable way to detect all the broken cases.
  636. * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
  637. */
  638. static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
  639. {
  640. #ifdef CONFIG_X86_32
  641. clear_cpu_cap(c, X86_FEATURE_NOPL);
  642. #else
  643. set_cpu_cap(c, X86_FEATURE_NOPL);
  644. #endif
  645. }
  646. static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
  647. {
  648. c->extended_cpuid_level = 0;
  649. if (!have_cpuid_p())
  650. identify_cpu_without_cpuid(c);
  651. /* cyrix could have cpuid enabled via c_identify()*/
  652. if (!have_cpuid_p())
  653. return;
  654. cpu_detect(c);
  655. get_cpu_vendor(c);
  656. get_cpu_cap(c);
  657. if (c->cpuid_level >= 0x00000001) {
  658. c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
  659. #ifdef CONFIG_X86_32
  660. # ifdef CONFIG_X86_HT
  661. c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
  662. # else
  663. c->apicid = c->initial_apicid;
  664. # endif
  665. #endif
  666. c->phys_proc_id = c->initial_apicid;
  667. }
  668. setup_smep(c);
  669. get_model_name(c); /* Default name */
  670. detect_nopl(c);
  671. }
  672. /*
  673. * This does the hard work of actually picking apart the CPU stuff...
  674. */
  675. static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
  676. {
  677. int i;
  678. c->loops_per_jiffy = loops_per_jiffy;
  679. c->x86_cache_size = -1;
  680. c->x86_vendor = X86_VENDOR_UNKNOWN;
  681. c->x86_model = c->x86_mask = 0; /* So far unknown... */
  682. c->x86_vendor_id[0] = '\0'; /* Unset */
  683. c->x86_model_id[0] = '\0'; /* Unset */
  684. c->x86_max_cores = 1;
  685. c->x86_coreid_bits = 0;
  686. #ifdef CONFIG_X86_64
  687. c->x86_clflush_size = 64;
  688. c->x86_phys_bits = 36;
  689. c->x86_virt_bits = 48;
  690. #else
  691. c->cpuid_level = -1; /* CPUID not detected */
  692. c->x86_clflush_size = 32;
  693. c->x86_phys_bits = 32;
  694. c->x86_virt_bits = 32;
  695. #endif
  696. c->x86_cache_alignment = c->x86_clflush_size;
  697. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  698. generic_identify(c);
  699. if (this_cpu->c_identify)
  700. this_cpu->c_identify(c);
  701. /* Clear/Set all flags overriden by options, after probe */
  702. for (i = 0; i < NCAPINTS; i++) {
  703. c->x86_capability[i] &= ~cpu_caps_cleared[i];
  704. c->x86_capability[i] |= cpu_caps_set[i];
  705. }
  706. #ifdef CONFIG_X86_64
  707. c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
  708. #endif
  709. /*
  710. * Vendor-specific initialization. In this section we
  711. * canonicalize the feature flags, meaning if there are
  712. * features a certain CPU supports which CPUID doesn't
  713. * tell us, CPUID claiming incorrect flags, or other bugs,
  714. * we handle them here.
  715. *
  716. * At the end of this section, c->x86_capability better
  717. * indicate the features this CPU genuinely supports!
  718. */
  719. if (this_cpu->c_init)
  720. this_cpu->c_init(c);
  721. /* Disable the PN if appropriate */
  722. squash_the_stupid_serial_number(c);
  723. /*
  724. * The vendor-specific functions might have changed features.
  725. * Now we do "generic changes."
  726. */
  727. /* Filter out anything that depends on CPUID levels we don't have */
  728. filter_cpuid_features(c, true);
  729. /* If the model name is still unset, do table lookup. */
  730. if (!c->x86_model_id[0]) {
  731. const char *p;
  732. p = table_lookup_model(c);
  733. if (p)
  734. strcpy(c->x86_model_id, p);
  735. else
  736. /* Last resort... */
  737. sprintf(c->x86_model_id, "%02x/%02x",
  738. c->x86, c->x86_model);
  739. }
  740. #ifdef CONFIG_X86_64
  741. detect_ht(c);
  742. #endif
  743. init_hypervisor(c);
  744. x86_init_rdrand(c);
  745. /*
  746. * Clear/Set all flags overriden by options, need do it
  747. * before following smp all cpus cap AND.
  748. */
  749. for (i = 0; i < NCAPINTS; i++) {
  750. c->x86_capability[i] &= ~cpu_caps_cleared[i];
  751. c->x86_capability[i] |= cpu_caps_set[i];
  752. }
  753. /*
  754. * On SMP, boot_cpu_data holds the common feature set between
  755. * all CPUs; so make sure that we indicate which features are
  756. * common between the CPUs. The first time this routine gets
  757. * executed, c == &boot_cpu_data.
  758. */
  759. if (c != &boot_cpu_data) {
  760. /* AND the already accumulated flags with these */
  761. for (i = 0; i < NCAPINTS; i++)
  762. boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
  763. }
  764. /* Init Machine Check Exception if available. */
  765. mcheck_cpu_init(c);
  766. select_idle_routine(c);
  767. #ifdef CONFIG_NUMA
  768. numa_add_cpu(smp_processor_id());
  769. #endif
  770. }
  771. #ifdef CONFIG_X86_64
  772. static void vgetcpu_set_mode(void)
  773. {
  774. if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
  775. vgetcpu_mode = VGETCPU_RDTSCP;
  776. else
  777. vgetcpu_mode = VGETCPU_LSL;
  778. }
  779. #endif
  780. void __init identify_boot_cpu(void)
  781. {
  782. identify_cpu(&boot_cpu_data);
  783. init_amd_e400_c1e_mask();
  784. #ifdef CONFIG_X86_32
  785. sysenter_setup();
  786. enable_sep_cpu();
  787. #else
  788. vgetcpu_set_mode();
  789. #endif
  790. if (boot_cpu_data.cpuid_level >= 2)
  791. cpu_detect_tlb(&boot_cpu_data);
  792. }
  793. void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
  794. {
  795. BUG_ON(c == &boot_cpu_data);
  796. identify_cpu(c);
  797. #ifdef CONFIG_X86_32
  798. enable_sep_cpu();
  799. #endif
  800. mtrr_ap_init();
  801. }
  802. struct msr_range {
  803. unsigned min;
  804. unsigned max;
  805. };
  806. static const struct msr_range msr_range_array[] __cpuinitconst = {
  807. { 0x00000000, 0x00000418},
  808. { 0xc0000000, 0xc000040b},
  809. { 0xc0010000, 0xc0010142},
  810. { 0xc0011000, 0xc001103b},
  811. };
  812. static void __cpuinit __print_cpu_msr(void)
  813. {
  814. unsigned index_min, index_max;
  815. unsigned index;
  816. u64 val;
  817. int i;
  818. for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
  819. index_min = msr_range_array[i].min;
  820. index_max = msr_range_array[i].max;
  821. for (index = index_min; index < index_max; index++) {
  822. if (rdmsrl_safe(index, &val))
  823. continue;
  824. printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
  825. }
  826. }
  827. }
  828. static int show_msr __cpuinitdata;
  829. static __init int setup_show_msr(char *arg)
  830. {
  831. int num;
  832. get_option(&arg, &num);
  833. if (num > 0)
  834. show_msr = num;
  835. return 1;
  836. }
  837. __setup("show_msr=", setup_show_msr);
  838. static __init int setup_noclflush(char *arg)
  839. {
  840. setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
  841. return 1;
  842. }
  843. __setup("noclflush", setup_noclflush);
  844. void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
  845. {
  846. const char *vendor = NULL;
  847. if (c->x86_vendor < X86_VENDOR_NUM) {
  848. vendor = this_cpu->c_vendor;
  849. } else {
  850. if (c->cpuid_level >= 0)
  851. vendor = c->x86_vendor_id;
  852. }
  853. if (vendor && !strstr(c->x86_model_id, vendor))
  854. printk(KERN_CONT "%s ", vendor);
  855. if (c->x86_model_id[0])
  856. printk(KERN_CONT "%s", c->x86_model_id);
  857. else
  858. printk(KERN_CONT "%d86", c->x86);
  859. if (c->x86_mask || c->cpuid_level >= 0)
  860. printk(KERN_CONT " stepping %02x\n", c->x86_mask);
  861. else
  862. printk(KERN_CONT "\n");
  863. print_cpu_msr(c);
  864. }
  865. void __cpuinit print_cpu_msr(struct cpuinfo_x86 *c)
  866. {
  867. if (c->cpu_index < show_msr)
  868. __print_cpu_msr();
  869. }
  870. static __init int setup_disablecpuid(char *arg)
  871. {
  872. int bit;
  873. if (get_option(&arg, &bit) && bit < NCAPINTS*32)
  874. setup_clear_cpu_cap(bit);
  875. else
  876. return 0;
  877. return 1;
  878. }
  879. __setup("clearcpuid=", setup_disablecpuid);
  880. #ifdef CONFIG_X86_64
  881. struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
  882. struct desc_ptr nmi_idt_descr = { NR_VECTORS * 16 - 1,
  883. (unsigned long) nmi_idt_table };
  884. DEFINE_PER_CPU_FIRST(union irq_stack_union,
  885. irq_stack_union) __aligned(PAGE_SIZE);
  886. /*
  887. * The following four percpu variables are hot. Align current_task to
  888. * cacheline size such that all four fall in the same cacheline.
  889. */
  890. DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
  891. &init_task;
  892. EXPORT_PER_CPU_SYMBOL(current_task);
  893. DEFINE_PER_CPU(unsigned long, kernel_stack) =
  894. (unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE;
  895. EXPORT_PER_CPU_SYMBOL(kernel_stack);
  896. DEFINE_PER_CPU(char *, irq_stack_ptr) =
  897. init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
  898. DEFINE_PER_CPU(unsigned int, irq_count) = -1;
  899. DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
  900. /*
  901. * Special IST stacks which the CPU switches to when it calls
  902. * an IST-marked descriptor entry. Up to 7 stacks (hardware
  903. * limit), all of them are 4K, except the debug stack which
  904. * is 8K.
  905. */
  906. static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
  907. [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
  908. [DEBUG_STACK - 1] = DEBUG_STKSZ
  909. };
  910. static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
  911. [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
  912. /* May not be marked __init: used by software suspend */
  913. void syscall_init(void)
  914. {
  915. /*
  916. * LSTAR and STAR live in a bit strange symbiosis.
  917. * They both write to the same internal register. STAR allows to
  918. * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
  919. */
  920. wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
  921. wrmsrl(MSR_LSTAR, system_call);
  922. wrmsrl(MSR_CSTAR, ignore_sysret);
  923. #ifdef CONFIG_IA32_EMULATION
  924. syscall32_cpu_init();
  925. #endif
  926. /* Flags to clear on syscall */
  927. wrmsrl(MSR_SYSCALL_MASK,
  928. X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
  929. }
  930. /*
  931. * Copies of the original ist values from the tss are only accessed during
  932. * debugging, no special alignment required.
  933. */
  934. DEFINE_PER_CPU(struct orig_ist, orig_ist);
  935. static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
  936. DEFINE_PER_CPU(int, debug_stack_usage);
  937. int is_debug_stack(unsigned long addr)
  938. {
  939. return __get_cpu_var(debug_stack_usage) ||
  940. (addr <= __get_cpu_var(debug_stack_addr) &&
  941. addr > (__get_cpu_var(debug_stack_addr) - DEBUG_STKSZ));
  942. }
  943. static DEFINE_PER_CPU(u32, debug_stack_use_ctr);
  944. void debug_stack_set_zero(void)
  945. {
  946. this_cpu_inc(debug_stack_use_ctr);
  947. load_idt((const struct desc_ptr *)&nmi_idt_descr);
  948. }
  949. void debug_stack_reset(void)
  950. {
  951. if (WARN_ON(!this_cpu_read(debug_stack_use_ctr)))
  952. return;
  953. if (this_cpu_dec_return(debug_stack_use_ctr) == 0)
  954. load_idt((const struct desc_ptr *)&idt_descr);
  955. }
  956. #else /* CONFIG_X86_64 */
  957. DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
  958. EXPORT_PER_CPU_SYMBOL(current_task);
  959. DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
  960. #ifdef CONFIG_CC_STACKPROTECTOR
  961. DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
  962. #endif
  963. /* Make sure %fs and %gs are initialized properly in idle threads */
  964. struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
  965. {
  966. memset(regs, 0, sizeof(struct pt_regs));
  967. regs->fs = __KERNEL_PERCPU;
  968. regs->gs = __KERNEL_STACK_CANARY;
  969. return regs;
  970. }
  971. #endif /* CONFIG_X86_64 */
  972. /*
  973. * Clear all 6 debug registers:
  974. */
  975. static void clear_all_debug_regs(void)
  976. {
  977. int i;
  978. for (i = 0; i < 8; i++) {
  979. /* Ignore db4, db5 */
  980. if ((i == 4) || (i == 5))
  981. continue;
  982. set_debugreg(0, i);
  983. }
  984. }
  985. #ifdef CONFIG_KGDB
  986. /*
  987. * Restore debug regs if using kgdbwait and you have a kernel debugger
  988. * connection established.
  989. */
  990. static void dbg_restore_debug_regs(void)
  991. {
  992. if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
  993. arch_kgdb_ops.correct_hw_break();
  994. }
  995. #else /* ! CONFIG_KGDB */
  996. #define dbg_restore_debug_regs()
  997. #endif /* ! CONFIG_KGDB */
  998. /*
  999. * cpu_init() initializes state that is per-CPU. Some data is already
  1000. * initialized (naturally) in the bootstrap process, such as the GDT
  1001. * and IDT. We reload them nevertheless, this function acts as a
  1002. * 'CPU state barrier', nothing should get across.
  1003. * A lot of state is already set up in PDA init for 64 bit
  1004. */
  1005. #ifdef CONFIG_X86_64
  1006. void __cpuinit cpu_init(void)
  1007. {
  1008. struct orig_ist *oist;
  1009. struct task_struct *me;
  1010. struct tss_struct *t;
  1011. unsigned long v;
  1012. int cpu;
  1013. int i;
  1014. cpu = stack_smp_processor_id();
  1015. t = &per_cpu(init_tss, cpu);
  1016. oist = &per_cpu(orig_ist, cpu);
  1017. #ifdef CONFIG_NUMA
  1018. if (cpu != 0 && this_cpu_read(numa_node) == 0 &&
  1019. early_cpu_to_node(cpu) != NUMA_NO_NODE)
  1020. set_numa_node(early_cpu_to_node(cpu));
  1021. #endif
  1022. me = current;
  1023. if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask))
  1024. panic("CPU#%d already initialized!\n", cpu);
  1025. pr_debug("Initializing CPU#%d\n", cpu);
  1026. clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
  1027. /*
  1028. * Initialize the per-CPU GDT with the boot GDT,
  1029. * and set up the GDT descriptor:
  1030. */
  1031. switch_to_new_gdt(cpu);
  1032. loadsegment(fs, 0);
  1033. load_idt((const struct desc_ptr *)&idt_descr);
  1034. memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
  1035. syscall_init();
  1036. wrmsrl(MSR_FS_BASE, 0);
  1037. wrmsrl(MSR_KERNEL_GS_BASE, 0);
  1038. barrier();
  1039. x86_configure_nx();
  1040. if (cpu != 0)
  1041. enable_x2apic();
  1042. /*
  1043. * set up and load the per-CPU TSS
  1044. */
  1045. if (!oist->ist[0]) {
  1046. char *estacks = per_cpu(exception_stacks, cpu);
  1047. for (v = 0; v < N_EXCEPTION_STACKS; v++) {
  1048. estacks += exception_stack_sizes[v];
  1049. oist->ist[v] = t->x86_tss.ist[v] =
  1050. (unsigned long)estacks;
  1051. if (v == DEBUG_STACK-1)
  1052. per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
  1053. }
  1054. }
  1055. t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
  1056. /*
  1057. * <= is required because the CPU will access up to
  1058. * 8 bits beyond the end of the IO permission bitmap.
  1059. */
  1060. for (i = 0; i <= IO_BITMAP_LONGS; i++)
  1061. t->io_bitmap[i] = ~0UL;
  1062. atomic_inc(&init_mm.mm_count);
  1063. me->active_mm = &init_mm;
  1064. BUG_ON(me->mm);
  1065. enter_lazy_tlb(&init_mm, me);
  1066. load_sp0(t, &current->thread);
  1067. set_tss_desc(cpu, t);
  1068. load_TR_desc();
  1069. load_LDT(&init_mm.context);
  1070. clear_all_debug_regs();
  1071. dbg_restore_debug_regs();
  1072. fpu_init();
  1073. xsave_init();
  1074. if (is_uv_system())
  1075. uv_cpu_init();
  1076. }
  1077. #else
  1078. void __cpuinit cpu_init(void)
  1079. {
  1080. int cpu = smp_processor_id();
  1081. struct task_struct *curr = current;
  1082. struct tss_struct *t = &per_cpu(init_tss, cpu);
  1083. struct thread_struct *thread = &curr->thread;
  1084. if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) {
  1085. printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
  1086. for (;;)
  1087. local_irq_enable();
  1088. }
  1089. printk(KERN_INFO "Initializing CPU#%d\n", cpu);
  1090. if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
  1091. clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
  1092. load_idt(&idt_descr);
  1093. switch_to_new_gdt(cpu);
  1094. /*
  1095. * Set up and load the per-CPU TSS and LDT
  1096. */
  1097. atomic_inc(&init_mm.mm_count);
  1098. curr->active_mm = &init_mm;
  1099. BUG_ON(curr->mm);
  1100. enter_lazy_tlb(&init_mm, curr);
  1101. load_sp0(t, thread);
  1102. set_tss_desc(cpu, t);
  1103. load_TR_desc();
  1104. load_LDT(&init_mm.context);
  1105. t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
  1106. #ifdef CONFIG_DOUBLEFAULT
  1107. /* Set up doublefault TSS pointer in the GDT */
  1108. __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
  1109. #endif
  1110. clear_all_debug_regs();
  1111. dbg_restore_debug_regs();
  1112. fpu_init();
  1113. xsave_init();
  1114. }
  1115. #endif