ngene-core.c 66 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657
  1. /*
  2. * ngene.c: nGene PCIe bridge driver
  3. *
  4. * Copyright (C) 2005-2007 Micronas
  5. *
  6. * Copyright (C) 2008-2009 Ralph Metzler <rjkm@metzlerbros.de>
  7. * Modifications for new nGene firmware,
  8. * support for EEPROM-copying,
  9. * support for new dual DVB-S2 card prototype
  10. *
  11. *
  12. * This program is free software; you can redistribute it and/or
  13. * modify it under the terms of the GNU General Public License
  14. * version 2 only, as published by the Free Software Foundation.
  15. *
  16. *
  17. * This program is distributed in the hope that it will be useful,
  18. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  20. * GNU General Public License for more details.
  21. *
  22. *
  23. * You should have received a copy of the GNU General Public License
  24. * along with this program; if not, write to the Free Software
  25. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  26. * 02110-1301, USA
  27. * Or, point your browser to http://www.gnu.org/copyleft/gpl.html
  28. */
  29. #include <linux/module.h>
  30. #include <linux/init.h>
  31. #include <linux/delay.h>
  32. #include <linux/slab.h>
  33. #include <linux/poll.h>
  34. #include <asm/io.h>
  35. #include <asm/div64.h>
  36. #include <linux/pci.h>
  37. #include <linux/pci_ids.h>
  38. #include <linux/smp_lock.h>
  39. #include <linux/timer.h>
  40. #include <linux/version.h>
  41. #include <linux/byteorder/generic.h>
  42. #include <linux/firmware.h>
  43. #include "ngene.h"
  44. #ifdef NGENE_COMMAND_API
  45. #include "ngene-ioctls.h"
  46. #endif
  47. static int copy_eeprom;
  48. module_param(copy_eeprom, int, 0444);
  49. MODULE_PARM_DESC(copy_eeprom, "Copy eeprom.");
  50. static int ngene_fw_debug;
  51. module_param(ngene_fw_debug, int, 0444);
  52. MODULE_PARM_DESC(ngene_fw_debug, "Debug firmware.");
  53. static int debug;
  54. module_param(debug, int, 0444);
  55. MODULE_PARM_DESC(debug, "Print debugging information.");
  56. DVB_DEFINE_MOD_OPT_ADAPTER_NR(adapter_nr);
  57. #define dprintk if (debug) printk
  58. #define DEVICE_NAME "ngene"
  59. #define ngwriteb(dat, adr) writeb((dat), (char *)(dev->iomem + (adr)))
  60. #define ngwritel(dat, adr) writel((dat), (char *)(dev->iomem + (adr)))
  61. #define ngwriteb(dat, adr) writeb((dat), (char *)(dev->iomem + (adr)))
  62. #define ngreadl(adr) readl(dev->iomem + (adr))
  63. #define ngreadb(adr) readb(dev->iomem + (adr))
  64. #define ngcpyto(adr, src, count) memcpy_toio((char *) \
  65. (dev->iomem + (adr)), (src), (count))
  66. #define ngcpyfrom(dst, adr, count) memcpy_fromio((dst), (char *) \
  67. (dev->iomem + (adr)), (count))
  68. /****************************************************************************/
  69. /* Functions with missing kernel exports ************************************/
  70. /****************************************************************************/
  71. /* yeah, let's throw out all exports which are not used in kernel ... */
  72. void my_dvb_ringbuffer_flush(struct dvb_ringbuffer *rbuf)
  73. {
  74. rbuf->pread = rbuf->pwrite;
  75. rbuf->error = 0;
  76. }
  77. /****************************************************************************/
  78. /* nGene interrupt handler **************************************************/
  79. /****************************************************************************/
  80. static void event_tasklet(unsigned long data)
  81. {
  82. struct ngene *dev = (struct ngene *)data;
  83. while (dev->EventQueueReadIndex != dev->EventQueueWriteIndex) {
  84. struct EVENT_BUFFER Event =
  85. dev->EventQueue[dev->EventQueueReadIndex];
  86. dev->EventQueueReadIndex =
  87. (dev->EventQueueReadIndex + 1) & (EVENT_QUEUE_SIZE - 1);
  88. if ((Event.UARTStatus & 0x01) && (dev->TxEventNotify))
  89. dev->TxEventNotify(dev, Event.TimeStamp);
  90. if ((Event.UARTStatus & 0x02) && (dev->RxEventNotify))
  91. dev->RxEventNotify(dev, Event.TimeStamp,
  92. Event.RXCharacter);
  93. }
  94. }
  95. static void demux_tasklet(unsigned long data)
  96. {
  97. struct ngene_channel *chan = (struct ngene_channel *)data;
  98. struct SBufferHeader *Cur = chan->nextBuffer;
  99. spin_lock_irq(&chan->state_lock);
  100. while (Cur->ngeneBuffer.SR.Flags & 0x80) {
  101. if (chan->mode & NGENE_IO_TSOUT) {
  102. u32 Flags = chan->DataFormatFlags;
  103. if (Cur->ngeneBuffer.SR.Flags & 0x20)
  104. Flags |= BEF_OVERFLOW;
  105. if (chan->pBufferExchange) {
  106. if (!chan->pBufferExchange(chan,
  107. Cur->Buffer1,
  108. chan->Capture1Length,
  109. Cur->ngeneBuffer.SR.
  110. Clock, Flags)) {
  111. /*
  112. We didn't get data
  113. Clear in service flag to make sure we
  114. get called on next interrupt again.
  115. leave fill/empty (0x80) flag alone
  116. to avoid hardware running out of
  117. buffers during startup, we hold only
  118. in run state ( the source may be late
  119. delivering data )
  120. */
  121. if (chan->HWState == HWSTATE_RUN) {
  122. Cur->ngeneBuffer.SR.Flags &=
  123. ~0x40;
  124. break;
  125. /* Stop proccessing stream */
  126. }
  127. } else {
  128. /* We got a valid buffer,
  129. so switch to run state */
  130. chan->HWState = HWSTATE_RUN;
  131. }
  132. } else {
  133. printk(KERN_ERR DEVICE_NAME ": OOPS\n");
  134. if (chan->HWState == HWSTATE_RUN) {
  135. Cur->ngeneBuffer.SR.Flags &= ~0x40;
  136. break; /* Stop proccessing stream */
  137. }
  138. }
  139. if (chan->AudioDTOUpdated) {
  140. printk(KERN_INFO DEVICE_NAME
  141. ": Update AudioDTO = %d\n",
  142. chan->AudioDTOValue);
  143. Cur->ngeneBuffer.SR.DTOUpdate =
  144. chan->AudioDTOValue;
  145. chan->AudioDTOUpdated = 0;
  146. }
  147. } else {
  148. if (chan->HWState == HWSTATE_RUN) {
  149. u32 Flags = 0;
  150. if (Cur->ngeneBuffer.SR.Flags & 0x01)
  151. Flags |= BEF_EVEN_FIELD;
  152. if (Cur->ngeneBuffer.SR.Flags & 0x20)
  153. Flags |= BEF_OVERFLOW;
  154. if (chan->pBufferExchange)
  155. chan->pBufferExchange(chan,
  156. Cur->Buffer1,
  157. chan->
  158. Capture1Length,
  159. Cur->ngeneBuffer.
  160. SR.Clock, Flags);
  161. if (chan->pBufferExchange2)
  162. chan->pBufferExchange2(chan,
  163. Cur->Buffer2,
  164. chan->
  165. Capture2Length,
  166. Cur->ngeneBuffer.
  167. SR.Clock, Flags);
  168. } else if (chan->HWState != HWSTATE_STOP)
  169. chan->HWState = HWSTATE_RUN;
  170. }
  171. Cur->ngeneBuffer.SR.Flags = 0x00;
  172. Cur = Cur->Next;
  173. }
  174. chan->nextBuffer = Cur;
  175. spin_unlock_irq(&chan->state_lock);
  176. }
  177. static irqreturn_t irq_handler(int irq, void *dev_id)
  178. {
  179. struct ngene *dev = (struct ngene *)dev_id;
  180. u32 icounts = 0;
  181. irqreturn_t rc = IRQ_NONE;
  182. u32 i = MAX_STREAM;
  183. u8 *tmpCmdDoneByte;
  184. if (dev->BootFirmware) {
  185. icounts = ngreadl(NGENE_INT_COUNTS);
  186. if (icounts != dev->icounts) {
  187. ngwritel(0, FORCE_NMI);
  188. dev->cmd_done = 1;
  189. wake_up(&dev->cmd_wq);
  190. dev->icounts = icounts;
  191. rc = IRQ_HANDLED;
  192. }
  193. return rc;
  194. }
  195. ngwritel(0, FORCE_NMI);
  196. spin_lock(&dev->cmd_lock);
  197. tmpCmdDoneByte = dev->CmdDoneByte;
  198. if (tmpCmdDoneByte &&
  199. (*tmpCmdDoneByte ||
  200. (dev->ngenetohost[0] == 1 && dev->ngenetohost[1] != 0))) {
  201. dev->CmdDoneByte = NULL;
  202. dev->cmd_done = 1;
  203. wake_up(&dev->cmd_wq);
  204. rc = IRQ_HANDLED;
  205. }
  206. spin_unlock(&dev->cmd_lock);
  207. if (dev->EventBuffer->EventStatus & 0x80) {
  208. u8 nextWriteIndex =
  209. (dev->EventQueueWriteIndex + 1) &
  210. (EVENT_QUEUE_SIZE - 1);
  211. if (nextWriteIndex != dev->EventQueueReadIndex) {
  212. dev->EventQueue[dev->EventQueueWriteIndex] =
  213. *(dev->EventBuffer);
  214. dev->EventQueueWriteIndex = nextWriteIndex;
  215. } else {
  216. printk(KERN_ERR DEVICE_NAME ": event overflow\n");
  217. dev->EventQueueOverflowCount += 1;
  218. dev->EventQueueOverflowFlag = 1;
  219. }
  220. dev->EventBuffer->EventStatus &= ~0x80;
  221. tasklet_schedule(&dev->event_tasklet);
  222. rc = IRQ_HANDLED;
  223. }
  224. while (i > 0) {
  225. i--;
  226. spin_lock(&dev->channel[i].state_lock);
  227. /* if (dev->channel[i].State>=KSSTATE_RUN) { */
  228. if (dev->channel[i].nextBuffer) {
  229. if ((dev->channel[i].nextBuffer->
  230. ngeneBuffer.SR.Flags & 0xC0) == 0x80) {
  231. dev->channel[i].nextBuffer->
  232. ngeneBuffer.SR.Flags |= 0x40;
  233. tasklet_schedule(
  234. &dev->channel[i].demux_tasklet);
  235. rc = IRQ_HANDLED;
  236. }
  237. }
  238. spin_unlock(&dev->channel[i].state_lock);
  239. }
  240. return rc;
  241. }
  242. /****************************************************************************/
  243. /* nGene command interface **************************************************/
  244. /****************************************************************************/
  245. static int ngene_command_mutex(struct ngene *dev, struct ngene_command *com)
  246. {
  247. int ret;
  248. u8 *tmpCmdDoneByte;
  249. dev->cmd_done = 0;
  250. if (com->cmd.hdr.Opcode == CMD_FWLOAD_PREPARE) {
  251. dev->BootFirmware = 1;
  252. dev->icounts = ngreadl(NGENE_INT_COUNTS);
  253. ngwritel(0, NGENE_COMMAND);
  254. ngwritel(0, NGENE_COMMAND_HI);
  255. ngwritel(0, NGENE_STATUS);
  256. ngwritel(0, NGENE_STATUS_HI);
  257. ngwritel(0, NGENE_EVENT);
  258. ngwritel(0, NGENE_EVENT_HI);
  259. } else if (com->cmd.hdr.Opcode == CMD_FWLOAD_FINISH) {
  260. u64 fwio = dev->PAFWInterfaceBuffer;
  261. ngwritel(fwio & 0xffffffff, NGENE_COMMAND);
  262. ngwritel(fwio >> 32, NGENE_COMMAND_HI);
  263. ngwritel((fwio + 256) & 0xffffffff, NGENE_STATUS);
  264. ngwritel((fwio + 256) >> 32, NGENE_STATUS_HI);
  265. ngwritel((fwio + 512) & 0xffffffff, NGENE_EVENT);
  266. ngwritel((fwio + 512) >> 32, NGENE_EVENT_HI);
  267. }
  268. memcpy(dev->FWInterfaceBuffer, com->cmd.raw8, com->in_len + 2);
  269. if (dev->BootFirmware)
  270. ngcpyto(HOST_TO_NGENE, com->cmd.raw8, com->in_len + 2);
  271. spin_lock_irq(&dev->cmd_lock);
  272. tmpCmdDoneByte = dev->ngenetohost + com->out_len;
  273. if (!com->out_len)
  274. tmpCmdDoneByte++;
  275. *tmpCmdDoneByte = 0;
  276. dev->ngenetohost[0] = 0;
  277. dev->ngenetohost[1] = 0;
  278. dev->CmdDoneByte = tmpCmdDoneByte;
  279. spin_unlock_irq(&dev->cmd_lock);
  280. /* Notify 8051. */
  281. ngwritel(1, FORCE_INT);
  282. ret = wait_event_timeout(dev->cmd_wq, dev->cmd_done == 1, 2 * HZ);
  283. if (!ret) {
  284. /*ngwritel(0, FORCE_NMI);*/
  285. printk(KERN_ERR DEVICE_NAME
  286. ": Command timeout cmd=%02x prev=%02x\n",
  287. com->cmd.hdr.Opcode, dev->prev_cmd);
  288. return -1;
  289. }
  290. if (com->cmd.hdr.Opcode == CMD_FWLOAD_FINISH)
  291. dev->BootFirmware = 0;
  292. dev->prev_cmd = com->cmd.hdr.Opcode;
  293. msleep(10);
  294. if (!com->out_len)
  295. return 0;
  296. memcpy(com->cmd.raw8, dev->ngenetohost, com->out_len);
  297. return 0;
  298. }
  299. static int ngene_command(struct ngene *dev, struct ngene_command *com)
  300. {
  301. int result;
  302. down(&dev->cmd_mutex);
  303. result = ngene_command_mutex(dev, com);
  304. up(&dev->cmd_mutex);
  305. return result;
  306. }
  307. int ngene_command_nop(struct ngene *dev)
  308. {
  309. struct ngene_command com;
  310. com.cmd.hdr.Opcode = CMD_NOP;
  311. com.cmd.hdr.Length = 0;
  312. com.in_len = 0;
  313. com.out_len = 0;
  314. return ngene_command(dev, &com);
  315. }
  316. int ngene_command_i2c_read(struct ngene *dev, u8 adr,
  317. u8 *out, u8 outlen, u8 *in, u8 inlen, int flag)
  318. {
  319. struct ngene_command com;
  320. com.cmd.hdr.Opcode = CMD_I2C_READ;
  321. com.cmd.hdr.Length = outlen + 3;
  322. com.cmd.I2CRead.Device = adr << 1;
  323. memcpy(com.cmd.I2CRead.Data, out, outlen);
  324. com.cmd.I2CRead.Data[outlen] = inlen;
  325. com.cmd.I2CRead.Data[outlen + 1] = 0;
  326. com.in_len = outlen + 3;
  327. com.out_len = inlen + 1;
  328. if (ngene_command(dev, &com) < 0)
  329. return -EIO;
  330. if ((com.cmd.raw8[0] >> 1) != adr)
  331. return -EIO;
  332. if (flag)
  333. memcpy(in, com.cmd.raw8, inlen + 1);
  334. else
  335. memcpy(in, com.cmd.raw8 + 1, inlen);
  336. return 0;
  337. }
  338. int ngene_command_i2c_write(struct ngene *dev, u8 adr, u8 *out, u8 outlen)
  339. {
  340. struct ngene_command com;
  341. com.cmd.hdr.Opcode = CMD_I2C_WRITE;
  342. com.cmd.hdr.Length = outlen + 1;
  343. com.cmd.I2CRead.Device = adr << 1;
  344. memcpy(com.cmd.I2CRead.Data, out, outlen);
  345. com.in_len = outlen + 1;
  346. com.out_len = 1;
  347. if (ngene_command(dev, &com) < 0)
  348. return -EIO;
  349. if (com.cmd.raw8[0] == 1)
  350. return -EIO;
  351. return 0;
  352. }
  353. static int ngene_command_load_firmware(struct ngene *dev,
  354. u8 *ngene_fw, u32 size)
  355. {
  356. #define FIRSTCHUNK (1024)
  357. u32 cleft;
  358. struct ngene_command com;
  359. com.cmd.hdr.Opcode = CMD_FWLOAD_PREPARE;
  360. com.cmd.hdr.Length = 0;
  361. com.in_len = 0;
  362. com.out_len = 0;
  363. ngene_command(dev, &com);
  364. cleft = (size + 3) & ~3;
  365. if (cleft > FIRSTCHUNK) {
  366. ngcpyto(PROGRAM_SRAM + FIRSTCHUNK, ngene_fw + FIRSTCHUNK,
  367. cleft - FIRSTCHUNK);
  368. cleft = FIRSTCHUNK;
  369. }
  370. ngene_fw[FW_DEBUG_DEFAULT - PROGRAM_SRAM] = ngene_fw_debug;
  371. ngcpyto(DATA_FIFO_AREA, ngene_fw, cleft);
  372. memset(&com, 0, sizeof(struct ngene_command));
  373. com.cmd.hdr.Opcode = CMD_FWLOAD_FINISH;
  374. com.cmd.hdr.Length = 4;
  375. com.cmd.FWLoadFinish.Address = DATA_FIFO_AREA;
  376. com.cmd.FWLoadFinish.Length = (unsigned short)cleft;
  377. com.in_len = 4;
  378. com.out_len = 0;
  379. return ngene_command(dev, &com);
  380. }
  381. int ngene_command_imem_read(struct ngene *dev, u8 adr, u8 *data, int type)
  382. {
  383. struct ngene_command com;
  384. com.cmd.hdr.Opcode = type ? CMD_SFR_READ : CMD_IRAM_READ;
  385. com.cmd.hdr.Length = 1;
  386. com.cmd.SfrIramRead.address = adr;
  387. com.in_len = 1;
  388. com.out_len = 2;
  389. if (ngene_command(dev, &com) < 0)
  390. return -EIO;
  391. *data = com.cmd.raw8[1];
  392. return 0;
  393. }
  394. int ngene_command_imem_write(struct ngene *dev, u8 adr, u8 data, int type)
  395. {
  396. struct ngene_command com;
  397. com.cmd.hdr.Opcode = type ? CMD_SFR_WRITE : CMD_IRAM_WRITE;
  398. com.cmd.hdr.Length = 2;
  399. com.cmd.SfrIramWrite.address = adr;
  400. com.cmd.SfrIramWrite.data = data;
  401. com.in_len = 2;
  402. com.out_len = 1;
  403. if (ngene_command(dev, &com) < 0)
  404. return -EIO;
  405. return 0;
  406. }
  407. static int ngene_command_config_uart(struct ngene *dev, u8 config,
  408. tx_cb_t *tx_cb, rx_cb_t *rx_cb)
  409. {
  410. struct ngene_command com;
  411. com.cmd.hdr.Opcode = CMD_CONFIGURE_UART;
  412. com.cmd.hdr.Length = sizeof(struct FW_CONFIGURE_UART) - 2;
  413. com.cmd.ConfigureUart.UartControl = config;
  414. com.in_len = sizeof(struct FW_CONFIGURE_UART);
  415. com.out_len = 0;
  416. if (ngene_command(dev, &com) < 0)
  417. return -EIO;
  418. dev->TxEventNotify = tx_cb;
  419. dev->RxEventNotify = rx_cb;
  420. dprintk(KERN_DEBUG DEVICE_NAME ": Set UART config %02x.\n", config);
  421. return 0;
  422. }
  423. static void tx_cb(struct ngene *dev, u32 ts)
  424. {
  425. dev->tx_busy = 0;
  426. wake_up_interruptible(&dev->tx_wq);
  427. }
  428. static void rx_cb(struct ngene *dev, u32 ts, u8 c)
  429. {
  430. int rp = dev->uart_rp;
  431. int nwp, wp = dev->uart_wp;
  432. /* dprintk(KERN_DEBUG DEVICE_NAME ": %c\n", c); */
  433. nwp = (wp + 1) % (UART_RBUF_LEN);
  434. if (nwp == rp)
  435. return;
  436. dev->uart_rbuf[wp] = c;
  437. dev->uart_wp = nwp;
  438. wake_up_interruptible(&dev->rx_wq);
  439. }
  440. static int ngene_command_config_buf(struct ngene *dev, u8 config)
  441. {
  442. struct ngene_command com;
  443. com.cmd.hdr.Opcode = CMD_CONFIGURE_BUFFER;
  444. com.cmd.hdr.Length = 1;
  445. com.cmd.ConfigureBuffers.config = config;
  446. com.in_len = 1;
  447. com.out_len = 0;
  448. if (ngene_command(dev, &com) < 0)
  449. return -EIO;
  450. return 0;
  451. }
  452. static int ngene_command_config_free_buf(struct ngene *dev, u8 *config)
  453. {
  454. struct ngene_command com;
  455. com.cmd.hdr.Opcode = CMD_CONFIGURE_FREE_BUFFER;
  456. com.cmd.hdr.Length = 6;
  457. memcpy(&com.cmd.ConfigureBuffers.config, config, 6);
  458. com.in_len = 6;
  459. com.out_len = 0;
  460. if (ngene_command(dev, &com) < 0)
  461. return -EIO;
  462. return 0;
  463. }
  464. static int ngene_command_gpio_set(struct ngene *dev, u8 select, u8 level)
  465. {
  466. struct ngene_command com;
  467. com.cmd.hdr.Opcode = CMD_SET_GPIO_PIN;
  468. com.cmd.hdr.Length = 1;
  469. com.cmd.SetGpioPin.select = select | (level << 7);
  470. com.in_len = 1;
  471. com.out_len = 0;
  472. return ngene_command(dev, &com);
  473. }
  474. /* The reset is only wired to GPIO4 on MicRacer Revision 1.10 !
  475. Also better set bootdelay to 1 in nvram or less. */
  476. static void ngene_reset_decypher(struct ngene *dev)
  477. {
  478. printk(KERN_INFO DEVICE_NAME ": Resetting Decypher.\n");
  479. ngene_command_gpio_set(dev, 4, 0);
  480. msleep(1);
  481. ngene_command_gpio_set(dev, 4, 1);
  482. msleep(2000);
  483. }
  484. /*
  485. 02000640 is sample on rising edge.
  486. 02000740 is sample on falling edge.
  487. 02000040 is ignore "valid" signal
  488. 0: FD_CTL1 Bit 7,6 must be 0,1
  489. 7 disable(fw controlled)
  490. 6 0-AUX,1-TS
  491. 5 0-par,1-ser
  492. 4 0-lsb/1-msb
  493. 3,2 reserved
  494. 1,0 0-no sync, 1-use ext. start, 2-use 0x47, 3-both
  495. 1: FD_CTL2 has 3-valid must be hi, 2-use valid, 1-edge
  496. 2: FD_STA is read-only. 0-sync
  497. 3: FD_INSYNC is number of 47s to trigger "in sync".
  498. 4: FD_OUTSYNC is number of 47s to trigger "out of sync".
  499. 5: FD_MAXBYTE1 is low-order of bytes per packet.
  500. 6: FD_MAXBYTE2 is high-order of bytes per packet.
  501. 7: Top byte is unused.
  502. */
  503. /****************************************************************************/
  504. static u8 TSFeatureDecoderSetup[8 * 4] = {
  505. 0x42, 0x00, 0x00, 0x02, 0x02, 0xbc, 0x00, 0x00,
  506. 0x40, 0x06, 0x00, 0x02, 0x02, 0xbc, 0x00, 0x00, /* DRXH */
  507. 0x71, 0x07, 0x00, 0x02, 0x02, 0xbc, 0x00, 0x00, /* DRXHser */
  508. 0x72, 0x06, 0x00, 0x02, 0x02, 0xbc, 0x00, 0x00, /* S2ser */
  509. };
  510. /* Set NGENE I2S Config to 16 bit packed */
  511. static u8 I2SConfiguration[] = {
  512. 0x00, 0x10, 0x00, 0x00,
  513. 0x80, 0x10, 0x00, 0x00,
  514. };
  515. static u8 SPDIFConfiguration[10] = {
  516. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
  517. };
  518. /* Set NGENE I2S Config to transport stream compatible mode */
  519. static u8 TS_I2SConfiguration[4] = { 0x3E, 0x1A, 0x00, 0x00 }; /*3e 18 00 00 ?*/
  520. static u8 TS_I2SOutConfiguration[4] = { 0x80, 0x20, 0x00, 0x00 };
  521. static u8 ITUDecoderSetup[4][16] = {
  522. {0x1c, 0x13, 0x01, 0x68, 0x3d, 0x90, 0x14, 0x20, /* SDTV */
  523. 0x00, 0x00, 0x01, 0xb0, 0x9c, 0x00, 0x00, 0x00},
  524. {0x9c, 0x03, 0x23, 0xC0, 0x60, 0x0E, 0x13, 0x00,
  525. 0x00, 0x00, 0x00, 0x01, 0xB0, 0x00, 0x00, 0x00},
  526. {0x9f, 0x00, 0x23, 0xC0, 0x60, 0x0F, 0x13, 0x00, /* HDTV 1080i50 */
  527. 0x00, 0x00, 0x00, 0x01, 0xB0, 0x00, 0x00, 0x00},
  528. {0x9c, 0x01, 0x23, 0xC0, 0x60, 0x0E, 0x13, 0x00, /* HDTV 1080i60 */
  529. 0x00, 0x00, 0x00, 0x01, 0xB0, 0x00, 0x00, 0x00},
  530. };
  531. /*
  532. * 50 48 60 gleich
  533. * 27p50 9f 00 22 80 42 69 18 ...
  534. * 27p60 93 00 22 80 82 69 1c ...
  535. */
  536. /* Maxbyte to 1144 (for raw data) */
  537. static u8 ITUFeatureDecoderSetup[8] = {
  538. 0x00, 0x00, 0x00, 0x00, 0x00, 0x78, 0x04, 0x00
  539. };
  540. static void FillTSBuffer(void *Buffer, int Length, u32 Flags)
  541. {
  542. u32 *ptr = Buffer;
  543. memset(Buffer, Length, 0xff);
  544. while (Length > 0) {
  545. if (Flags & DF_SWAP32)
  546. *ptr = 0x471FFF10;
  547. else
  548. *ptr = 0x10FF1F47;
  549. ptr += (188 / 4);
  550. Length -= 188;
  551. }
  552. }
  553. static void flush_buffers(struct ngene_channel *chan)
  554. {
  555. u8 val;
  556. do {
  557. msleep(1);
  558. spin_lock_irq(&chan->state_lock);
  559. val = chan->nextBuffer->ngeneBuffer.SR.Flags & 0x80;
  560. spin_unlock_irq(&chan->state_lock);
  561. } while (val);
  562. }
  563. static void clear_buffers(struct ngene_channel *chan)
  564. {
  565. struct SBufferHeader *Cur = chan->nextBuffer;
  566. do {
  567. memset(&Cur->ngeneBuffer.SR, 0, sizeof(Cur->ngeneBuffer.SR));
  568. if (chan->mode & NGENE_IO_TSOUT)
  569. FillTSBuffer(Cur->Buffer1,
  570. chan->Capture1Length,
  571. chan->DataFormatFlags);
  572. Cur = Cur->Next;
  573. } while (Cur != chan->nextBuffer);
  574. if (chan->mode & NGENE_IO_TSOUT) {
  575. chan->nextBuffer->ngeneBuffer.SR.DTOUpdate =
  576. chan->AudioDTOValue;
  577. chan->AudioDTOUpdated = 0;
  578. Cur = chan->TSIdleBuffer.Head;
  579. do {
  580. memset(&Cur->ngeneBuffer.SR, 0,
  581. sizeof(Cur->ngeneBuffer.SR));
  582. FillTSBuffer(Cur->Buffer1,
  583. chan->Capture1Length,
  584. chan->DataFormatFlags);
  585. Cur = Cur->Next;
  586. } while (Cur != chan->TSIdleBuffer.Head);
  587. }
  588. }
  589. int ngene_command_stream_control(struct ngene *dev, u8 stream, u8 control,
  590. u8 mode, u8 flags)
  591. {
  592. struct ngene_channel *chan = &dev->channel[stream];
  593. struct ngene_command com;
  594. u16 BsUVI = ((stream & 1) ? 0x9400 : 0x9300);
  595. u16 BsSDI = ((stream & 1) ? 0x9600 : 0x9500);
  596. u16 BsSPI = ((stream & 1) ? 0x9800 : 0x9700);
  597. u16 BsSDO = 0x9B00;
  598. /* down(&dev->stream_mutex); */
  599. while (down_trylock(&dev->stream_mutex)) {
  600. printk(KERN_INFO DEVICE_NAME ": SC locked\n");
  601. msleep(1);
  602. }
  603. memset(&com, 0, sizeof(com));
  604. com.cmd.hdr.Opcode = CMD_CONTROL;
  605. com.cmd.hdr.Length = sizeof(struct FW_STREAM_CONTROL) - 2;
  606. com.cmd.StreamControl.Stream = stream | (control ? 8 : 0);
  607. if (chan->mode & NGENE_IO_TSOUT)
  608. com.cmd.StreamControl.Stream |= 0x07;
  609. com.cmd.StreamControl.Control = control |
  610. (flags & SFLAG_ORDER_LUMA_CHROMA);
  611. com.cmd.StreamControl.Mode = mode;
  612. com.in_len = sizeof(struct FW_STREAM_CONTROL);
  613. com.out_len = 0;
  614. printk(KERN_INFO DEVICE_NAME ": Stream=%02x, Control=%02x, Mode=%02x\n",
  615. com.cmd.StreamControl.Stream, com.cmd.StreamControl.Control,
  616. com.cmd.StreamControl.Mode);
  617. chan->Mode = mode;
  618. if (!(control & 0x80)) {
  619. spin_lock_irq(&chan->state_lock);
  620. if (chan->State == KSSTATE_RUN) {
  621. chan->State = KSSTATE_ACQUIRE;
  622. chan->HWState = HWSTATE_STOP;
  623. spin_unlock_irq(&chan->state_lock);
  624. if (ngene_command(dev, &com) < 0) {
  625. up(&dev->stream_mutex);
  626. return -1;
  627. }
  628. /* clear_buffers(chan); */
  629. flush_buffers(chan);
  630. up(&dev->stream_mutex);
  631. return 0;
  632. }
  633. spin_unlock_irq(&chan->state_lock);
  634. up(&dev->stream_mutex);
  635. return 0;
  636. }
  637. if (mode & SMODE_AUDIO_CAPTURE) {
  638. com.cmd.StreamControl.CaptureBlockCount =
  639. chan->Capture1Length / AUDIO_BLOCK_SIZE;
  640. com.cmd.StreamControl.Buffer_Address = chan->RingBuffer.PAHead;
  641. } else if (mode & SMODE_TRANSPORT_STREAM) {
  642. com.cmd.StreamControl.CaptureBlockCount =
  643. chan->Capture1Length / TS_BLOCK_SIZE;
  644. com.cmd.StreamControl.MaxLinesPerField =
  645. chan->Capture1Length / TS_BLOCK_SIZE;
  646. com.cmd.StreamControl.Buffer_Address =
  647. chan->TSRingBuffer.PAHead;
  648. if (chan->mode & NGENE_IO_TSOUT) {
  649. com.cmd.StreamControl.BytesPerVBILine =
  650. chan->Capture1Length / TS_BLOCK_SIZE;
  651. com.cmd.StreamControl.Stream |= 0x07;
  652. }
  653. } else {
  654. com.cmd.StreamControl.BytesPerVideoLine = chan->nBytesPerLine;
  655. com.cmd.StreamControl.MaxLinesPerField = chan->nLines;
  656. com.cmd.StreamControl.MinLinesPerField = 100;
  657. com.cmd.StreamControl.Buffer_Address = chan->RingBuffer.PAHead;
  658. if (mode & SMODE_VBI_CAPTURE) {
  659. com.cmd.StreamControl.MaxVBILinesPerField =
  660. chan->nVBILines;
  661. com.cmd.StreamControl.MinVBILinesPerField = 0;
  662. com.cmd.StreamControl.BytesPerVBILine =
  663. chan->nBytesPerVBILine;
  664. }
  665. if (flags & SFLAG_COLORBAR)
  666. com.cmd.StreamControl.Stream |= 0x04;
  667. }
  668. spin_lock_irq(&chan->state_lock);
  669. if (mode & SMODE_AUDIO_CAPTURE) {
  670. chan->nextBuffer = chan->RingBuffer.Head;
  671. if (mode & SMODE_AUDIO_SPDIF) {
  672. com.cmd.StreamControl.SetupDataLen =
  673. sizeof(SPDIFConfiguration);
  674. com.cmd.StreamControl.SetupDataAddr = BsSPI;
  675. memcpy(com.cmd.StreamControl.SetupData,
  676. SPDIFConfiguration, sizeof(SPDIFConfiguration));
  677. } else {
  678. com.cmd.StreamControl.SetupDataLen = 4;
  679. com.cmd.StreamControl.SetupDataAddr = BsSDI;
  680. memcpy(com.cmd.StreamControl.SetupData,
  681. I2SConfiguration +
  682. 4 * dev->card_info->i2s[stream], 4);
  683. }
  684. } else if (mode & SMODE_TRANSPORT_STREAM) {
  685. chan->nextBuffer = chan->TSRingBuffer.Head;
  686. if (stream >= STREAM_AUDIOIN1) {
  687. if (chan->mode & NGENE_IO_TSOUT) {
  688. com.cmd.StreamControl.SetupDataLen =
  689. sizeof(TS_I2SOutConfiguration);
  690. com.cmd.StreamControl.SetupDataAddr = BsSDO;
  691. memcpy(com.cmd.StreamControl.SetupData,
  692. TS_I2SOutConfiguration,
  693. sizeof(TS_I2SOutConfiguration));
  694. } else {
  695. com.cmd.StreamControl.SetupDataLen =
  696. sizeof(TS_I2SConfiguration);
  697. com.cmd.StreamControl.SetupDataAddr = BsSDI;
  698. memcpy(com.cmd.StreamControl.SetupData,
  699. TS_I2SConfiguration,
  700. sizeof(TS_I2SConfiguration));
  701. }
  702. } else {
  703. com.cmd.StreamControl.SetupDataLen = 8;
  704. com.cmd.StreamControl.SetupDataAddr = BsUVI + 0x10;
  705. memcpy(com.cmd.StreamControl.SetupData,
  706. TSFeatureDecoderSetup +
  707. 8 * dev->card_info->tsf[stream], 8);
  708. }
  709. } else {
  710. chan->nextBuffer = chan->RingBuffer.Head;
  711. com.cmd.StreamControl.SetupDataLen =
  712. 16 + sizeof(ITUFeatureDecoderSetup);
  713. com.cmd.StreamControl.SetupDataAddr = BsUVI;
  714. memcpy(com.cmd.StreamControl.SetupData,
  715. ITUDecoderSetup[chan->itumode], 16);
  716. memcpy(com.cmd.StreamControl.SetupData + 16,
  717. ITUFeatureDecoderSetup, sizeof(ITUFeatureDecoderSetup));
  718. }
  719. clear_buffers(chan);
  720. chan->State = KSSTATE_RUN;
  721. if (mode & SMODE_TRANSPORT_STREAM)
  722. chan->HWState = HWSTATE_RUN;
  723. else
  724. chan->HWState = HWSTATE_STARTUP;
  725. spin_unlock_irq(&chan->state_lock);
  726. if (ngene_command(dev, &com) < 0) {
  727. up(&dev->stream_mutex);
  728. return -1;
  729. }
  730. up(&dev->stream_mutex);
  731. return 0;
  732. }
  733. int ngene_stream_control(struct ngene *dev, u8 stream, u8 control, u8 mode,
  734. u16 lines, u16 bpl, u16 vblines, u16 vbibpl)
  735. {
  736. if (!(mode & SMODE_TRANSPORT_STREAM))
  737. return -EINVAL;
  738. if (lines * bpl > MAX_VIDEO_BUFFER_SIZE)
  739. return -EINVAL;
  740. if ((mode & SMODE_TRANSPORT_STREAM) && (((bpl * lines) & 0xff) != 0))
  741. return -EINVAL;
  742. if ((mode & SMODE_VIDEO_CAPTURE) && (bpl & 7) != 0)
  743. return -EINVAL;
  744. return ngene_command_stream_control(dev, stream, control, mode, 0);
  745. }
  746. /****************************************************************************/
  747. /* I2C **********************************************************************/
  748. /****************************************************************************/
  749. static void ngene_i2c_set_bus(struct ngene *dev, int bus)
  750. {
  751. if (!(dev->card_info->i2c_access & 2))
  752. return;
  753. if (dev->i2c_current_bus == bus)
  754. return;
  755. switch (bus) {
  756. case 0:
  757. ngene_command_gpio_set(dev, 3, 0);
  758. ngene_command_gpio_set(dev, 2, 1);
  759. break;
  760. case 1:
  761. ngene_command_gpio_set(dev, 2, 0);
  762. ngene_command_gpio_set(dev, 3, 1);
  763. break;
  764. }
  765. dev->i2c_current_bus = bus;
  766. }
  767. static int ngene_i2c_master_xfer(struct i2c_adapter *adapter,
  768. struct i2c_msg msg[], int num)
  769. {
  770. struct ngene_channel *chan =
  771. (struct ngene_channel *)i2c_get_adapdata(adapter);
  772. struct ngene *dev = chan->dev;
  773. down(&dev->i2c_switch_mutex);
  774. ngene_i2c_set_bus(dev, chan->number);
  775. if (num == 2 && msg[1].flags & I2C_M_RD && !(msg[0].flags & I2C_M_RD))
  776. if (!ngene_command_i2c_read(dev, msg[0].addr,
  777. msg[0].buf, msg[0].len,
  778. msg[1].buf, msg[1].len, 0))
  779. goto done;
  780. if (num == 1 && !(msg[0].flags & I2C_M_RD))
  781. if (!ngene_command_i2c_write(dev, msg[0].addr,
  782. msg[0].buf, msg[0].len))
  783. goto done;
  784. if (num == 1 && (msg[0].flags & I2C_M_RD))
  785. if (!ngene_command_i2c_read(dev, msg[0].addr, 0, 0,
  786. msg[0].buf, msg[0].len, 0))
  787. goto done;
  788. up(&dev->i2c_switch_mutex);
  789. return -EIO;
  790. done:
  791. up(&dev->i2c_switch_mutex);
  792. return num;
  793. }
  794. static u32 ngene_i2c_functionality(struct i2c_adapter *adap)
  795. {
  796. return I2C_FUNC_SMBUS_EMUL;
  797. }
  798. struct i2c_algorithm ngene_i2c_algo = {
  799. .master_xfer = ngene_i2c_master_xfer,
  800. .functionality = ngene_i2c_functionality,
  801. };
  802. static int ngene_i2c_init(struct ngene *dev, int dev_nr)
  803. {
  804. struct i2c_adapter *adap = &(dev->channel[dev_nr].i2c_adapter);
  805. i2c_set_adapdata(adap, &(dev->channel[dev_nr]));
  806. #ifdef I2C_ADAP_CLASS_TV_DIGITAL
  807. adap->class = I2C_ADAP_CLASS_TV_DIGITAL | I2C_CLASS_TV_ANALOG;
  808. #else
  809. adap->class = I2C_CLASS_TV_ANALOG;
  810. #endif
  811. strcpy(adap->name, "nGene");
  812. adap->id = I2C_HW_SAA7146;
  813. adap->algo = &ngene_i2c_algo;
  814. adap->algo_data = (void *)&(dev->channel[dev_nr]);
  815. mutex_init(&adap->bus_lock);
  816. return i2c_add_adapter(adap);
  817. }
  818. int i2c_write(struct i2c_adapter *adapter, u8 adr, u8 data)
  819. {
  820. u8 m[1] = {data};
  821. struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = m, .len = 1};
  822. if (i2c_transfer(adapter, &msg, 1) != 1) {
  823. printk(KERN_ERR DEVICE_NAME
  824. ": Failed to write to I2C adr %02x!\n", adr);
  825. return -1;
  826. }
  827. return 0;
  828. }
  829. static int i2c_write_read(struct i2c_adapter *adapter,
  830. u8 adr, u8 *w, u8 wlen, u8 *r, u8 rlen)
  831. {
  832. struct i2c_msg msgs[2] = {{.addr = adr, .flags = 0,
  833. .buf = w, .len = wlen},
  834. {.addr = adr, .flags = I2C_M_RD,
  835. .buf = r, .len = rlen} };
  836. if (i2c_transfer(adapter, msgs, 2) != 2) {
  837. printk(KERN_ERR DEVICE_NAME ": error in i2c_write_read\n");
  838. return -1;
  839. }
  840. return 0;
  841. }
  842. static int test_dec_i2c(struct i2c_adapter *adapter, int reg)
  843. {
  844. u8 data[256] = { reg, 0x00, 0x93, 0x78, 0x43, 0x45 };
  845. u8 data2[256];
  846. int i;
  847. memset(data2, 0, 256);
  848. i2c_write_read(adapter, 0x66, data, 2, data2, 4);
  849. for (i = 0; i < 4; i++)
  850. printk("%02x ", data2[i]);
  851. printk("\n");
  852. return 0;
  853. }
  854. /****************************************************************************/
  855. /* EEPROM TAGS **************************************************************/
  856. /****************************************************************************/
  857. #define MICNG_EE_START 0x0100
  858. #define MICNG_EE_END 0x0FF0
  859. #define MICNG_EETAG_END0 0x0000
  860. #define MICNG_EETAG_END1 0xFFFF
  861. /* 0x0001 - 0x000F reserved for housekeeping */
  862. /* 0xFFFF - 0xFFFE reserved for housekeeping */
  863. /* Micronas assigned tags
  864. EEProm tags for hardware support */
  865. #define MICNG_EETAG_DRXD1_OSCDEVIATION 0x1000 /* 2 Bytes data */
  866. #define MICNG_EETAG_DRXD2_OSCDEVIATION 0x1001 /* 2 Bytes data */
  867. #define MICNG_EETAG_MT2060_1_1STIF 0x1100 /* 2 Bytes data */
  868. #define MICNG_EETAG_MT2060_2_1STIF 0x1101 /* 2 Bytes data */
  869. /* Tag range for OEMs */
  870. #define MICNG_EETAG_OEM_FIRST 0xC000
  871. #define MICNG_EETAG_OEM_LAST 0xFFEF
  872. static int i2c_write_eeprom(struct i2c_adapter *adapter,
  873. u8 adr, u16 reg, u8 data)
  874. {
  875. u8 m[3] = {(reg >> 8), (reg & 0xff), data};
  876. struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = m,
  877. .len = sizeof(m)};
  878. if (i2c_transfer(adapter, &msg, 1) != 1) {
  879. dprintk(KERN_DEBUG DEVICE_NAME ": Error writing EEPROM!\n");
  880. return -EIO;
  881. }
  882. return 0;
  883. }
  884. static int i2c_read_eeprom(struct i2c_adapter *adapter,
  885. u8 adr, u16 reg, u8 *data, int len)
  886. {
  887. u8 msg[2] = {(reg >> 8), (reg & 0xff)};
  888. struct i2c_msg msgs[2] = {{.addr = adr, .flags = 0,
  889. .buf = msg, .len = 2 },
  890. {.addr = adr, .flags = I2C_M_RD,
  891. .buf = data, .len = len} };
  892. if (i2c_transfer(adapter, msgs, 2) != 2) {
  893. dprintk(KERN_DEBUG DEVICE_NAME ": Error reading EEPROM\n");
  894. return -EIO;
  895. }
  896. return 0;
  897. }
  898. static int i2c_dump_eeprom(struct i2c_adapter *adapter, u8 adr)
  899. {
  900. u8 buf[64];
  901. int i;
  902. if (i2c_read_eeprom(adapter, adr, 0x0000, buf, sizeof(buf))) {
  903. printk(KERN_ERR DEVICE_NAME ": No EEPROM?\n");
  904. return -1;
  905. }
  906. for (i = 0; i < sizeof(buf); i++) {
  907. if (!(i & 15))
  908. printk("\n");
  909. printk("%02x ", buf[i]);
  910. }
  911. printk("\n");
  912. return 0;
  913. }
  914. static int i2c_copy_eeprom(struct i2c_adapter *adapter, u8 adr, u8 adr2)
  915. {
  916. u8 buf[64];
  917. int i;
  918. if (i2c_read_eeprom(adapter, adr, 0x0000, buf, sizeof(buf))) {
  919. printk(KERN_ERR DEVICE_NAME ": No EEPROM?\n");
  920. return -1;
  921. }
  922. buf[36] = 0xc3;
  923. buf[39] = 0xab;
  924. for (i = 0; i < sizeof(buf); i++) {
  925. i2c_write_eeprom(adapter, adr2, i, buf[i]);
  926. msleep(10);
  927. }
  928. return 0;
  929. }
  930. /****************************************************************************/
  931. /* COMMAND API interface ****************************************************/
  932. /****************************************************************************/
  933. #ifdef NGENE_COMMAND_API
  934. static int command_do_ioctl(struct inode *inode, struct file *file,
  935. unsigned int cmd, void *parg)
  936. {
  937. struct dvb_device *dvbdev = file->private_data;
  938. struct ngene_channel *chan = dvbdev->priv;
  939. struct ngene *dev = chan->dev;
  940. int err = 0;
  941. switch (cmd) {
  942. case IOCTL_MIC_NO_OP:
  943. err = ngene_command_nop(dev);
  944. break;
  945. case IOCTL_MIC_DOWNLOAD_FIRMWARE:
  946. break;
  947. case IOCTL_MIC_I2C_READ:
  948. {
  949. MIC_I2C_READ *msg = parg;
  950. err = ngene_command_i2c_read(dev, msg->I2CAddress >> 1,
  951. msg->OutData, msg->OutLength,
  952. msg->OutData, msg->InLength, 1);
  953. break;
  954. }
  955. case IOCTL_MIC_I2C_WRITE:
  956. {
  957. MIC_I2C_WRITE *msg = parg;
  958. err = ngene_command_i2c_write(dev, msg->I2CAddress >> 1,
  959. msg->Data, msg->Length);
  960. break;
  961. }
  962. case IOCTL_MIC_TEST_GETMEM:
  963. {
  964. MIC_MEM *m = parg;
  965. if (m->Length > 64 * 1024 || m->Start + m->Length > 64 * 1024)
  966. return -EINVAL;
  967. /* WARNING, only use this on x86,
  968. other archs may not swallow this */
  969. err = copy_to_user(m->Data, dev->iomem + m->Start, m->Length);
  970. break;
  971. }
  972. case IOCTL_MIC_TEST_SETMEM:
  973. {
  974. MIC_MEM *m = parg;
  975. if (m->Length > 64 * 1024 || m->Start + m->Length > 64 * 1024)
  976. return -EINVAL;
  977. err = copy_from_user(dev->iomem + m->Start, m->Data, m->Length);
  978. break;
  979. }
  980. case IOCTL_MIC_SFR_READ:
  981. {
  982. MIC_IMEM *m = parg;
  983. err = ngene_command_imem_read(dev, m->Address, &m->Data, 1);
  984. break;
  985. }
  986. case IOCTL_MIC_SFR_WRITE:
  987. {
  988. MIC_IMEM *m = parg;
  989. err = ngene_command_imem_write(dev, m->Address, m->Data, 1);
  990. break;
  991. }
  992. case IOCTL_MIC_IRAM_READ:
  993. {
  994. MIC_IMEM *m = parg;
  995. err = ngene_command_imem_read(dev, m->Address, &m->Data, 0);
  996. break;
  997. }
  998. case IOCTL_MIC_IRAM_WRITE:
  999. {
  1000. MIC_IMEM *m = parg;
  1001. err = ngene_command_imem_write(dev, m->Address, m->Data, 0);
  1002. break;
  1003. }
  1004. case IOCTL_MIC_STREAM_CONTROL:
  1005. {
  1006. MIC_STREAM_CONTROL *m = parg;
  1007. err = ngene_stream_control(dev, m->Stream, m->Control, m->Mode,
  1008. m->nLines, m->nBytesPerLine,
  1009. m->nVBILines, m->nBytesPerVBILine);
  1010. break;
  1011. }
  1012. default:
  1013. err = -EINVAL;
  1014. break;
  1015. }
  1016. return err;
  1017. }
  1018. static int command_ioctl(struct inode *inode, struct file *file,
  1019. unsigned int cmd, unsigned long arg)
  1020. {
  1021. void *parg = (void *)arg, *pbuf = NULL;
  1022. char buf[64];
  1023. int res = -EFAULT;
  1024. if (_IOC_DIR(cmd) & _IOC_WRITE) {
  1025. parg = buf;
  1026. if (_IOC_SIZE(cmd) > sizeof(buf)) {
  1027. pbuf = kmalloc(_IOC_SIZE(cmd), GFP_KERNEL);
  1028. if (!pbuf)
  1029. return -ENOMEM;
  1030. parg = pbuf;
  1031. }
  1032. if (copy_from_user(parg, (void __user *)arg, _IOC_SIZE(cmd)))
  1033. goto error;
  1034. }
  1035. res = command_do_ioctl(inode, file, cmd, parg);
  1036. if (res < 0)
  1037. goto error;
  1038. if (_IOC_DIR(cmd) & _IOC_READ)
  1039. if (copy_to_user((void __user *)arg, parg, _IOC_SIZE(cmd)))
  1040. res = -EFAULT;
  1041. error:
  1042. kfree(pbuf);
  1043. return res;
  1044. }
  1045. struct page *ngene_nopage(struct vm_area_struct *vma,
  1046. unsigned long address, int *type)
  1047. {
  1048. return 0;
  1049. }
  1050. static int ngene_mmap(struct file *file, struct vm_area_struct *vma)
  1051. {
  1052. struct dvb_device *dvbdev = file->private_data;
  1053. struct ngene_channel *chan = dvbdev->priv;
  1054. struct ngene *dev = chan->dev;
  1055. unsigned long size = vma->vm_end - vma->vm_start;
  1056. unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
  1057. unsigned long padr = pci_resource_start(dev->pci_dev, 0) + off;
  1058. unsigned long psize = pci_resource_len(dev->pci_dev, 0) - off;
  1059. if (size > psize)
  1060. return -EINVAL;
  1061. if (io_remap_pfn_range(vma, vma->vm_start, padr >> PAGE_SHIFT, size,
  1062. vma->vm_page_prot))
  1063. return -EAGAIN;
  1064. return 0;
  1065. }
  1066. static int write_uart(struct ngene *dev, u8 *data, int len)
  1067. {
  1068. struct ngene_command com;
  1069. com.cmd.hdr.Opcode = CMD_WRITE_UART;
  1070. com.cmd.hdr.Length = len;
  1071. memcpy(com.cmd.WriteUart.Data, data, len);
  1072. com.cmd.WriteUart.Data[len] = 0;
  1073. com.cmd.WriteUart.Data[len + 1] = 0;
  1074. com.in_len = len;
  1075. com.out_len = 0;
  1076. if (ngene_command(dev, &com) < 0)
  1077. return -EIO;
  1078. return 0;
  1079. }
  1080. static int send_cli(struct ngene *dev, char *cmd)
  1081. {
  1082. /* printk(KERN_INFO DEVICE_NAME ": %s", cmd); */
  1083. return write_uart(dev, cmd, strlen(cmd));
  1084. }
  1085. static int send_cli_val(struct ngene *dev, char *cmd, u32 val)
  1086. {
  1087. char s[32];
  1088. snprintf(s, 32, "%s %d\n", cmd, val);
  1089. /* printk(KERN_INFO DEVICE_NAME ": %s", s); */
  1090. return write_uart(dev, s, strlen(s));
  1091. }
  1092. static int ngene_command_write_uart_user(struct ngene *dev,
  1093. const u8 *data, int len)
  1094. {
  1095. struct ngene_command com;
  1096. dev->tx_busy = 1;
  1097. com.cmd.hdr.Opcode = CMD_WRITE_UART;
  1098. com.cmd.hdr.Length = len;
  1099. if (copy_from_user(com.cmd.WriteUart.Data, data, len))
  1100. return -EFAULT;
  1101. com.in_len = len;
  1102. com.out_len = 0;
  1103. if (ngene_command(dev, &com) < 0)
  1104. return -EIO;
  1105. return 0;
  1106. }
  1107. static ssize_t uart_write(struct file *file, const char *buf,
  1108. size_t count, loff_t *ppos)
  1109. {
  1110. struct dvb_device *dvbdev = file->private_data;
  1111. struct ngene_channel *chan = dvbdev->priv;
  1112. struct ngene *dev = chan->dev;
  1113. int len, ret = 0;
  1114. size_t left = count;
  1115. while (left) {
  1116. len = left;
  1117. if (len > 250)
  1118. len = 250;
  1119. ret = wait_event_interruptible(dev->tx_wq, dev->tx_busy == 0);
  1120. if (ret < 0)
  1121. return ret;
  1122. ngene_command_write_uart_user(dev, buf, len);
  1123. left -= len;
  1124. buf += len;
  1125. }
  1126. return count;
  1127. }
  1128. static ssize_t ts_write(struct file *file, const char *buf,
  1129. size_t count, loff_t *ppos)
  1130. {
  1131. struct dvb_device *dvbdev = file->private_data;
  1132. struct ngene_channel *chan = dvbdev->priv;
  1133. struct ngene *dev = chan->dev;
  1134. if (wait_event_interruptible(dev->tsout_rbuf.queue,
  1135. dvb_ringbuffer_free
  1136. (&dev->tsout_rbuf) >= count) < 0)
  1137. return 0;
  1138. dvb_ringbuffer_write(&dev->tsout_rbuf, buf, count);
  1139. return count;
  1140. }
  1141. static ssize_t uart_read(struct file *file, char *buf,
  1142. size_t count, loff_t *ppos)
  1143. {
  1144. struct dvb_device *dvbdev = file->private_data;
  1145. struct ngene_channel *chan = dvbdev->priv;
  1146. struct ngene *dev = chan->dev;
  1147. int left;
  1148. int wp, rp, avail, len;
  1149. if (!dev->uart_rbuf)
  1150. return -EINVAL;
  1151. if (count > 128)
  1152. count = 128;
  1153. left = count;
  1154. while (left) {
  1155. if (wait_event_interruptible(dev->rx_wq,
  1156. dev->uart_wp != dev->uart_rp) < 0)
  1157. return -EAGAIN;
  1158. wp = dev->uart_wp;
  1159. rp = dev->uart_rp;
  1160. avail = (wp - rp);
  1161. if (avail < 0)
  1162. avail += UART_RBUF_LEN;
  1163. if (avail > left)
  1164. avail = left;
  1165. if (wp < rp) {
  1166. len = UART_RBUF_LEN - rp;
  1167. if (len > avail)
  1168. len = avail;
  1169. if (copy_to_user(buf, dev->uart_rbuf + rp, len))
  1170. return -EFAULT;
  1171. if (len < avail)
  1172. if (copy_to_user(buf + len, dev->uart_rbuf,
  1173. avail - len))
  1174. return -EFAULT;
  1175. } else {
  1176. if (copy_to_user(buf, dev->uart_rbuf + rp, avail))
  1177. return -EFAULT;
  1178. }
  1179. dev->uart_rp = (rp + avail) % UART_RBUF_LEN;
  1180. left -= avail;
  1181. buf += avail;
  1182. }
  1183. return count;
  1184. }
  1185. static const struct file_operations command_fops = {
  1186. .owner = THIS_MODULE,
  1187. .read = uart_read,
  1188. .write = ts_write,
  1189. .ioctl = command_ioctl,
  1190. .open = dvb_generic_open,
  1191. .release = dvb_generic_release,
  1192. .poll = 0,
  1193. .mmap = ngene_mmap,
  1194. };
  1195. static struct dvb_device dvbdev_command = {
  1196. .priv = 0,
  1197. .readers = -1,
  1198. .writers = -1,
  1199. .users = -1,
  1200. .fops = &command_fops,
  1201. };
  1202. #endif
  1203. /****************************************************************************/
  1204. /* DVB functions and API interface ******************************************/
  1205. /****************************************************************************/
  1206. static void swap_buffer(u32 *p, u32 len)
  1207. {
  1208. while (len) {
  1209. *p = swab32(*p);
  1210. p++;
  1211. len -= 4;
  1212. }
  1213. }
  1214. static void *tsin_exchange(void *priv, void *buf, u32 len, u32 clock, u32 flags)
  1215. {
  1216. struct ngene_channel *chan = priv;
  1217. dvb_dmx_swfilter(&chan->demux, buf, len);
  1218. return 0;
  1219. }
  1220. u8 fill_ts[188] = { 0x47, 0x1f, 0xff, 0x10 };
  1221. static void *tsout_exchange(void *priv, void *buf, u32 len,
  1222. u32 clock, u32 flags)
  1223. {
  1224. struct ngene_channel *chan = priv;
  1225. struct ngene *dev = chan->dev;
  1226. u32 alen;
  1227. alen = dvb_ringbuffer_avail(&dev->tsout_rbuf);
  1228. alen -= alen % 188;
  1229. if (alen < len)
  1230. FillTSBuffer(buf + alen, len - alen, flags);
  1231. else
  1232. alen = len;
  1233. dvb_ringbuffer_read(&dev->tsout_rbuf, buf, alen);
  1234. if (flags & DF_SWAP32)
  1235. swap_buffer((u32 *)buf, alen);
  1236. wake_up_interruptible(&dev->tsout_rbuf.queue);
  1237. return buf;
  1238. }
  1239. static void set_transfer(struct ngene_channel *chan, int state)
  1240. {
  1241. u8 control = 0, mode = 0, flags = 0;
  1242. struct ngene *dev = chan->dev;
  1243. int ret;
  1244. /*
  1245. if (chan->running)
  1246. return;
  1247. */
  1248. /*
  1249. printk(KERN_INFO DEVICE_NAME ": st %d\n", state);
  1250. msleep(100);
  1251. */
  1252. if (state) {
  1253. if (chan->running) {
  1254. printk(KERN_INFO DEVICE_NAME ": already running\n");
  1255. return;
  1256. }
  1257. } else {
  1258. if (!chan->running) {
  1259. printk(KERN_INFO DEVICE_NAME ": already stopped\n");
  1260. return;
  1261. }
  1262. }
  1263. if (dev->card_info->switch_ctrl)
  1264. dev->card_info->switch_ctrl(chan, 1, state ^ 1);
  1265. if (state) {
  1266. spin_lock_irq(&chan->state_lock);
  1267. /* printk(KERN_INFO DEVICE_NAME ": lock=%08x\n",
  1268. ngreadl(0x9310)); */
  1269. my_dvb_ringbuffer_flush(&dev->tsout_rbuf);
  1270. control = 0x80;
  1271. if (chan->mode & (NGENE_IO_TSIN | NGENE_IO_TSOUT)) {
  1272. chan->Capture1Length = 512 * 188;
  1273. mode = SMODE_TRANSPORT_STREAM;
  1274. }
  1275. if (chan->mode & NGENE_IO_TSOUT) {
  1276. chan->pBufferExchange = tsout_exchange;
  1277. /* 0x66666666 = 50MHz *2^33 /250MHz */
  1278. chan->AudioDTOValue = 0x66666666;
  1279. /* set_dto(chan, 38810700+1000); */
  1280. /* set_dto(chan, 19392658); */
  1281. }
  1282. if (chan->mode & NGENE_IO_TSIN)
  1283. chan->pBufferExchange = tsin_exchange;
  1284. /* ngwritel(0, 0x9310); */
  1285. spin_unlock_irq(&chan->state_lock);
  1286. } else
  1287. ;/* printk(KERN_INFO DEVICE_NAME ": lock=%08x\n",
  1288. ngreadl(0x9310)); */
  1289. ret = ngene_command_stream_control(dev, chan->number,
  1290. control, mode, flags);
  1291. if (!ret)
  1292. chan->running = state;
  1293. else
  1294. printk(KERN_ERR DEVICE_NAME ": set_transfer %d failed\n",
  1295. state);
  1296. if (!state) {
  1297. spin_lock_irq(&chan->state_lock);
  1298. chan->pBufferExchange = 0;
  1299. my_dvb_ringbuffer_flush(&dev->tsout_rbuf);
  1300. spin_unlock_irq(&chan->state_lock);
  1301. }
  1302. }
  1303. static int ngene_start_feed(struct dvb_demux_feed *dvbdmxfeed)
  1304. {
  1305. struct dvb_demux *dvbdmx = dvbdmxfeed->demux;
  1306. struct ngene_channel *chan = dvbdmx->priv;
  1307. #ifdef NGENE_COMMAND_API
  1308. struct ngene *dev = chan->dev;
  1309. if (dev->card_info->io_type[chan->number] & NGENE_IO_TSOUT) {
  1310. switch (dvbdmxfeed->pes_type) {
  1311. case DMX_TS_PES_VIDEO:
  1312. send_cli_val(dev, "vpid", dvbdmxfeed->pid);
  1313. send_cli(dev, "res 1080i50\n");
  1314. /* send_cli(dev, "vdec mpeg2\n"); */
  1315. break;
  1316. case DMX_TS_PES_AUDIO:
  1317. send_cli_val(dev, "apid", dvbdmxfeed->pid);
  1318. send_cli(dev, "start\n");
  1319. break;
  1320. case DMX_TS_PES_PCR:
  1321. send_cli_val(dev, "pcrpid", dvbdmxfeed->pid);
  1322. break;
  1323. default:
  1324. break;
  1325. }
  1326. }
  1327. #endif
  1328. if (chan->users == 0) {
  1329. set_transfer(chan, 1);
  1330. /* msleep(10); */
  1331. }
  1332. return ++chan->users;
  1333. }
  1334. static int ngene_stop_feed(struct dvb_demux_feed *dvbdmxfeed)
  1335. {
  1336. struct dvb_demux *dvbdmx = dvbdmxfeed->demux;
  1337. struct ngene_channel *chan = dvbdmx->priv;
  1338. #ifdef NGENE_COMMAND_API
  1339. struct ngene *dev = chan->dev;
  1340. if (dev->card_info->io_type[chan->number] & NGENE_IO_TSOUT) {
  1341. switch (dvbdmxfeed->pes_type) {
  1342. case DMX_TS_PES_VIDEO:
  1343. send_cli(dev, "stop\n");
  1344. break;
  1345. case DMX_TS_PES_AUDIO:
  1346. break;
  1347. case DMX_TS_PES_PCR:
  1348. break;
  1349. default:
  1350. break;
  1351. }
  1352. }
  1353. #endif
  1354. if (--chan->users)
  1355. return chan->users;
  1356. set_transfer(chan, 0);
  1357. return 0;
  1358. }
  1359. static int write_to_decoder(struct dvb_demux_feed *feed,
  1360. const u8 *buf, size_t len)
  1361. {
  1362. struct dvb_demux *dvbdmx = feed->demux;
  1363. struct ngene_channel *chan = dvbdmx->priv;
  1364. struct ngene *dev = chan->dev;
  1365. if (wait_event_interruptible(dev->tsout_rbuf.queue,
  1366. dvb_ringbuffer_free
  1367. (&dev->tsout_rbuf) >= len) < 0)
  1368. return 0;
  1369. dvb_ringbuffer_write(&dev->tsout_rbuf, buf, len);
  1370. return len;
  1371. }
  1372. static int my_dvb_dmx_ts_card_init(struct dvb_demux *dvbdemux, char *id,
  1373. int (*start_feed)(struct dvb_demux_feed *),
  1374. int (*stop_feed)(struct dvb_demux_feed *),
  1375. void *priv)
  1376. {
  1377. dvbdemux->priv = priv;
  1378. dvbdemux->filternum = 256;
  1379. dvbdemux->feednum = 256;
  1380. dvbdemux->start_feed = start_feed;
  1381. dvbdemux->stop_feed = stop_feed;
  1382. dvbdemux->write_to_decoder = 0;
  1383. dvbdemux->dmx.capabilities = (DMX_TS_FILTERING |
  1384. DMX_SECTION_FILTERING |
  1385. DMX_MEMORY_BASED_FILTERING);
  1386. return dvb_dmx_init(dvbdemux);
  1387. }
  1388. static int my_dvb_dmxdev_ts_card_init(struct dmxdev *dmxdev,
  1389. struct dvb_demux *dvbdemux,
  1390. struct dmx_frontend *hw_frontend,
  1391. struct dmx_frontend *mem_frontend,
  1392. struct dvb_adapter *dvb_adapter)
  1393. {
  1394. int ret;
  1395. dmxdev->filternum = 256;
  1396. dmxdev->demux = &dvbdemux->dmx;
  1397. dmxdev->capabilities = 0;
  1398. ret = dvb_dmxdev_init(dmxdev, dvb_adapter);
  1399. if (ret < 0)
  1400. return ret;
  1401. hw_frontend->source = DMX_FRONTEND_0;
  1402. dvbdemux->dmx.add_frontend(&dvbdemux->dmx, hw_frontend);
  1403. mem_frontend->source = DMX_MEMORY_FE;
  1404. dvbdemux->dmx.add_frontend(&dvbdemux->dmx, mem_frontend);
  1405. return dvbdemux->dmx.connect_frontend(&dvbdemux->dmx, hw_frontend);
  1406. }
  1407. /****************************************************************************/
  1408. /* Decypher firmware loading ************************************************/
  1409. /****************************************************************************/
  1410. #define DECYPHER_FW "decypher.fw"
  1411. static int dec_ts_send(struct ngene *dev, u8 *buf, u32 len)
  1412. {
  1413. while (dvb_ringbuffer_free(&dev->tsout_rbuf) < len)
  1414. msleep(1);
  1415. dvb_ringbuffer_write(&dev->tsout_rbuf, buf, len);
  1416. return len;
  1417. }
  1418. u8 dec_fw_fill_ts[188] = { 0x47, 0x09, 0x0e, 0x10, 0xff, 0xff, 0x00, 0x00 };
  1419. int dec_fw_send(struct ngene *dev, u8 *fw, u32 size)
  1420. {
  1421. struct ngene_channel *chan = &dev->channel[4];
  1422. u32 len = 180, cc = 0;
  1423. u8 buf[8] = { 0x47, 0x09, 0x0e, 0x10, 0x00, 0x00, 0x00, 0x00 };
  1424. set_transfer(chan, 1);
  1425. msleep(100);
  1426. while (size) {
  1427. len = 180;
  1428. if (len > size)
  1429. len = size;
  1430. buf[3] = 0x10 | (cc & 0x0f);
  1431. buf[4] = (cc >> 8);
  1432. buf[5] = cc & 0xff;
  1433. buf[6] = len;
  1434. dec_ts_send(dev, buf, 8);
  1435. dec_ts_send(dev, fw, len);
  1436. if (len < 180)
  1437. dec_ts_send(dev, dec_fw_fill_ts + len + 8, 180 - len);
  1438. cc++;
  1439. size -= len;
  1440. fw += len;
  1441. }
  1442. for (len = 0; len < 512; len++)
  1443. dec_ts_send(dev, dec_fw_fill_ts, 188);
  1444. while (dvb_ringbuffer_avail(&dev->tsout_rbuf))
  1445. msleep(10);
  1446. msleep(100);
  1447. set_transfer(chan, 0);
  1448. return 0;
  1449. }
  1450. int dec_fw_boot(struct ngene *dev)
  1451. {
  1452. u32 size;
  1453. const struct firmware *fw = NULL;
  1454. u8 *dec_fw;
  1455. if (request_firmware(&fw, DECYPHER_FW, &dev->pci_dev->dev) < 0) {
  1456. printk(KERN_ERR DEVICE_NAME
  1457. ": %s not found. Check hotplug directory.\n",
  1458. DECYPHER_FW);
  1459. return -1;
  1460. }
  1461. printk(KERN_INFO DEVICE_NAME ": Booting decypher firmware file %s\n",
  1462. DECYPHER_FW);
  1463. size = fw->size;
  1464. dec_fw = (u8 *)fw->data;
  1465. dec_fw_send(dev, dec_fw, size);
  1466. release_firmware(fw);
  1467. return 0;
  1468. }
  1469. /****************************************************************************/
  1470. /* nGene hardware init and release functions ********************************/
  1471. /****************************************************************************/
  1472. void free_ringbuffer(struct ngene *dev, struct SRingBufferDescriptor *rb)
  1473. {
  1474. struct SBufferHeader *Cur = rb->Head;
  1475. u32 j;
  1476. if (!Cur)
  1477. return;
  1478. for (j = 0; j < rb->NumBuffers; j++, Cur = Cur->Next) {
  1479. if (Cur->Buffer1)
  1480. pci_free_consistent(dev->pci_dev,
  1481. rb->Buffer1Length,
  1482. Cur->Buffer1,
  1483. Cur->scList1->Address);
  1484. if (Cur->Buffer2)
  1485. pci_free_consistent(dev->pci_dev,
  1486. rb->Buffer2Length,
  1487. Cur->Buffer2,
  1488. Cur->scList2->Address);
  1489. }
  1490. if (rb->SCListMem)
  1491. pci_free_consistent(dev->pci_dev, rb->SCListMemSize,
  1492. rb->SCListMem, rb->PASCListMem);
  1493. pci_free_consistent(dev->pci_dev, rb->MemSize, rb->Head, rb->PAHead);
  1494. }
  1495. void free_idlebuffer(struct ngene *dev,
  1496. struct SRingBufferDescriptor *rb,
  1497. struct SRingBufferDescriptor *tb)
  1498. {
  1499. int j;
  1500. struct SBufferHeader *Cur = tb->Head;
  1501. if (!rb->Head)
  1502. return;
  1503. free_ringbuffer(dev, rb);
  1504. for (j = 0; j < tb->NumBuffers; j++, Cur = Cur->Next) {
  1505. Cur->Buffer2 = 0;
  1506. Cur->scList2 = 0;
  1507. Cur->ngeneBuffer.Address_of_first_entry_2 = 0;
  1508. Cur->ngeneBuffer.Number_of_entries_2 = 0;
  1509. }
  1510. }
  1511. void free_common_buffers(struct ngene *dev)
  1512. {
  1513. u32 i;
  1514. struct ngene_channel *chan;
  1515. for (i = STREAM_VIDEOIN1; i < MAX_STREAM; i++) {
  1516. chan = &dev->channel[i];
  1517. free_idlebuffer(dev, &chan->TSIdleBuffer, &chan->TSRingBuffer);
  1518. free_ringbuffer(dev, &chan->RingBuffer);
  1519. free_ringbuffer(dev, &chan->TSRingBuffer);
  1520. }
  1521. if (dev->OverflowBuffer)
  1522. pci_free_consistent(dev->pci_dev,
  1523. OVERFLOW_BUFFER_SIZE,
  1524. dev->OverflowBuffer, dev->PAOverflowBuffer);
  1525. if (dev->FWInterfaceBuffer)
  1526. pci_free_consistent(dev->pci_dev,
  1527. 4096,
  1528. dev->FWInterfaceBuffer,
  1529. dev->PAFWInterfaceBuffer);
  1530. }
  1531. /****************************************************************************/
  1532. /* Ring buffer handling *****************************************************/
  1533. /****************************************************************************/
  1534. int create_ring_buffer(struct pci_dev *pci_dev,
  1535. struct SRingBufferDescriptor *descr, u32 NumBuffers)
  1536. {
  1537. dma_addr_t tmp;
  1538. struct SBufferHeader *Head;
  1539. u32 i;
  1540. u32 MemSize = SIZEOF_SBufferHeader * NumBuffers;
  1541. u64 PARingBufferHead;
  1542. u64 PARingBufferCur;
  1543. u64 PARingBufferNext;
  1544. struct SBufferHeader *Cur, *Next;
  1545. descr->Head = 0;
  1546. descr->MemSize = 0;
  1547. descr->PAHead = 0;
  1548. descr->NumBuffers = 0;
  1549. if (MemSize < 4096)
  1550. MemSize = 4096;
  1551. Head = pci_alloc_consistent(pci_dev, MemSize, &tmp);
  1552. PARingBufferHead = tmp;
  1553. if (!Head)
  1554. return -ENOMEM;
  1555. memset(Head, 0, MemSize);
  1556. PARingBufferCur = PARingBufferHead;
  1557. Cur = Head;
  1558. for (i = 0; i < NumBuffers - 1; i++) {
  1559. Next = (struct SBufferHeader *)
  1560. (((u8 *) Cur) + SIZEOF_SBufferHeader);
  1561. PARingBufferNext = PARingBufferCur + SIZEOF_SBufferHeader;
  1562. Cur->Next = Next;
  1563. Cur->ngeneBuffer.Next = PARingBufferNext;
  1564. Cur = Next;
  1565. PARingBufferCur = PARingBufferNext;
  1566. }
  1567. /* Last Buffer points back to first one */
  1568. Cur->Next = Head;
  1569. Cur->ngeneBuffer.Next = PARingBufferHead;
  1570. descr->Head = Head;
  1571. descr->MemSize = MemSize;
  1572. descr->PAHead = PARingBufferHead;
  1573. descr->NumBuffers = NumBuffers;
  1574. return 0;
  1575. }
  1576. static int AllocateRingBuffers(struct pci_dev *pci_dev,
  1577. dma_addr_t of,
  1578. struct SRingBufferDescriptor *pRingBuffer,
  1579. u32 Buffer1Length, u32 Buffer2Length)
  1580. {
  1581. dma_addr_t tmp;
  1582. u32 i, j;
  1583. int status = 0;
  1584. u32 SCListMemSize = pRingBuffer->NumBuffers
  1585. * ((Buffer2Length != 0) ? (NUM_SCATTER_GATHER_ENTRIES * 2) :
  1586. NUM_SCATTER_GATHER_ENTRIES)
  1587. * sizeof(struct HW_SCATTER_GATHER_ELEMENT);
  1588. u64 PASCListMem;
  1589. PHW_SCATTER_GATHER_ELEMENT SCListEntry;
  1590. u64 PASCListEntry;
  1591. struct SBufferHeader *Cur;
  1592. void *SCListMem;
  1593. if (SCListMemSize < 4096)
  1594. SCListMemSize = 4096;
  1595. SCListMem = pci_alloc_consistent(pci_dev, SCListMemSize, &tmp);
  1596. PASCListMem = tmp;
  1597. if (SCListMem == NULL)
  1598. return -ENOMEM;
  1599. memset(SCListMem, 0, SCListMemSize);
  1600. pRingBuffer->SCListMem = SCListMem;
  1601. pRingBuffer->PASCListMem = PASCListMem;
  1602. pRingBuffer->SCListMemSize = SCListMemSize;
  1603. pRingBuffer->Buffer1Length = Buffer1Length;
  1604. pRingBuffer->Buffer2Length = Buffer2Length;
  1605. SCListEntry = (PHW_SCATTER_GATHER_ELEMENT) SCListMem;
  1606. PASCListEntry = PASCListMem;
  1607. Cur = pRingBuffer->Head;
  1608. for (i = 0; i < pRingBuffer->NumBuffers; i += 1, Cur = Cur->Next) {
  1609. u64 PABuffer;
  1610. void *Buffer = pci_alloc_consistent(pci_dev, Buffer1Length,
  1611. &tmp);
  1612. PABuffer = tmp;
  1613. if (Buffer == NULL)
  1614. return -ENOMEM;
  1615. Cur->Buffer1 = Buffer;
  1616. SCListEntry->Address = PABuffer;
  1617. SCListEntry->Length = Buffer1Length;
  1618. Cur->scList1 = SCListEntry;
  1619. Cur->ngeneBuffer.Address_of_first_entry_1 = PASCListEntry;
  1620. Cur->ngeneBuffer.Number_of_entries_1 =
  1621. NUM_SCATTER_GATHER_ENTRIES;
  1622. SCListEntry += 1;
  1623. PASCListEntry += sizeof(struct HW_SCATTER_GATHER_ELEMENT);
  1624. #if NUM_SCATTER_GATHER_ENTRIES > 1
  1625. for (j = 0; j < NUM_SCATTER_GATHER_ENTRIES - 1; j += 1) {
  1626. SCListEntry->Address = of;
  1627. SCListEntry->Length = OVERFLOW_BUFFER_SIZE;
  1628. SCListEntry += 1;
  1629. PASCListEntry +=
  1630. sizeof(struct HW_SCATTER_GATHER_ELEMENT);
  1631. }
  1632. #endif
  1633. if (!Buffer2Length)
  1634. continue;
  1635. Buffer = pci_alloc_consistent(pci_dev, Buffer2Length, &tmp);
  1636. PABuffer = tmp;
  1637. if (Buffer == NULL)
  1638. return -ENOMEM;
  1639. Cur->Buffer2 = Buffer;
  1640. SCListEntry->Address = PABuffer;
  1641. SCListEntry->Length = Buffer2Length;
  1642. Cur->scList2 = SCListEntry;
  1643. Cur->ngeneBuffer.Address_of_first_entry_2 = PASCListEntry;
  1644. Cur->ngeneBuffer.Number_of_entries_2 =
  1645. NUM_SCATTER_GATHER_ENTRIES;
  1646. SCListEntry += 1;
  1647. PASCListEntry += sizeof(struct HW_SCATTER_GATHER_ELEMENT);
  1648. #if NUM_SCATTER_GATHER_ENTRIES > 1
  1649. for (j = 0; j < NUM_SCATTER_GATHER_ENTRIES - 1; j++) {
  1650. SCListEntry->Address = of;
  1651. SCListEntry->Length = OVERFLOW_BUFFER_SIZE;
  1652. SCListEntry += 1;
  1653. PASCListEntry +=
  1654. sizeof(struct HW_SCATTER_GATHER_ELEMENT);
  1655. }
  1656. #endif
  1657. }
  1658. return status;
  1659. }
  1660. static int FillTSIdleBuffer(struct SRingBufferDescriptor *pIdleBuffer,
  1661. struct SRingBufferDescriptor *pRingBuffer)
  1662. {
  1663. int status = 0;
  1664. /* Copy pointer to scatter gather list in TSRingbuffer
  1665. structure for buffer 2
  1666. Load number of buffer
  1667. */
  1668. u32 n = pRingBuffer->NumBuffers;
  1669. /* Point to first buffer entry */
  1670. struct SBufferHeader *Cur = pRingBuffer->Head;
  1671. int i;
  1672. /* Loop thru all buffer and set Buffer 2 pointers to TSIdlebuffer */
  1673. for (i = 0; i < n; i++) {
  1674. Cur->Buffer2 = pIdleBuffer->Head->Buffer1;
  1675. Cur->scList2 = pIdleBuffer->Head->scList1;
  1676. Cur->ngeneBuffer.Address_of_first_entry_2 =
  1677. pIdleBuffer->Head->ngeneBuffer.
  1678. Address_of_first_entry_1;
  1679. Cur->ngeneBuffer.Number_of_entries_2 =
  1680. pIdleBuffer->Head->ngeneBuffer.Number_of_entries_1;
  1681. Cur = Cur->Next;
  1682. }
  1683. return status;
  1684. }
  1685. static u32 RingBufferSizes[MAX_STREAM] = {
  1686. RING_SIZE_VIDEO,
  1687. RING_SIZE_VIDEO,
  1688. RING_SIZE_AUDIO,
  1689. RING_SIZE_AUDIO,
  1690. RING_SIZE_AUDIO,
  1691. };
  1692. static u32 Buffer1Sizes[MAX_STREAM] = {
  1693. MAX_VIDEO_BUFFER_SIZE,
  1694. MAX_VIDEO_BUFFER_SIZE,
  1695. MAX_AUDIO_BUFFER_SIZE,
  1696. MAX_AUDIO_BUFFER_SIZE,
  1697. MAX_AUDIO_BUFFER_SIZE
  1698. };
  1699. static u32 Buffer2Sizes[MAX_STREAM] = {
  1700. MAX_VBI_BUFFER_SIZE,
  1701. MAX_VBI_BUFFER_SIZE,
  1702. 0,
  1703. 0,
  1704. 0
  1705. };
  1706. static int AllocCommonBuffers(struct ngene *dev)
  1707. {
  1708. int status = 0, i;
  1709. dev->FWInterfaceBuffer = pci_alloc_consistent(dev->pci_dev, 4096,
  1710. &dev->PAFWInterfaceBuffer);
  1711. if (!dev->FWInterfaceBuffer)
  1712. return -ENOMEM;
  1713. dev->hosttongene = dev->FWInterfaceBuffer;
  1714. dev->ngenetohost = dev->FWInterfaceBuffer + 256;
  1715. dev->EventBuffer = dev->FWInterfaceBuffer + 512;
  1716. dev->OverflowBuffer = pci_alloc_consistent(dev->pci_dev,
  1717. OVERFLOW_BUFFER_SIZE,
  1718. &dev->PAOverflowBuffer);
  1719. if (!dev->OverflowBuffer)
  1720. return -ENOMEM;
  1721. memset(dev->OverflowBuffer, 0, OVERFLOW_BUFFER_SIZE);
  1722. for (i = STREAM_VIDEOIN1; i < MAX_STREAM; i++) {
  1723. int type = dev->card_info->io_type[i];
  1724. dev->channel[i].State = KSSTATE_STOP;
  1725. if (type & (NGENE_IO_TV | NGENE_IO_HDTV | NGENE_IO_AIN)) {
  1726. status = create_ring_buffer(dev->pci_dev,
  1727. &dev->channel[i].RingBuffer,
  1728. RingBufferSizes[i]);
  1729. if (status < 0)
  1730. break;
  1731. if (type & (NGENE_IO_TV | NGENE_IO_AIN)) {
  1732. status = AllocateRingBuffers(dev->pci_dev,
  1733. dev->
  1734. PAOverflowBuffer,
  1735. &dev->channel[i].
  1736. RingBuffer,
  1737. Buffer1Sizes[i],
  1738. Buffer2Sizes[i]);
  1739. if (status < 0)
  1740. break;
  1741. } else if (type & NGENE_IO_HDTV) {
  1742. status = AllocateRingBuffers(dev->pci_dev,
  1743. dev->
  1744. PAOverflowBuffer,
  1745. &dev->channel[i].
  1746. RingBuffer,
  1747. MAX_HDTV_BUFFER_SIZE,
  1748. 0);
  1749. if (status < 0)
  1750. break;
  1751. }
  1752. }
  1753. if (type & (NGENE_IO_TSIN | NGENE_IO_TSOUT)) {
  1754. status = create_ring_buffer(dev->pci_dev,
  1755. &dev->channel[i].
  1756. TSRingBuffer, RING_SIZE_TS);
  1757. if (status < 0)
  1758. break;
  1759. status = AllocateRingBuffers(dev->pci_dev,
  1760. dev->PAOverflowBuffer,
  1761. &dev->channel[i].
  1762. TSRingBuffer,
  1763. MAX_TS_BUFFER_SIZE, 0);
  1764. if (status)
  1765. break;
  1766. }
  1767. if (type & NGENE_IO_TSOUT) {
  1768. status = create_ring_buffer(dev->pci_dev,
  1769. &dev->channel[i].
  1770. TSIdleBuffer, 1);
  1771. if (status < 0)
  1772. break;
  1773. status = AllocateRingBuffers(dev->pci_dev,
  1774. dev->PAOverflowBuffer,
  1775. &dev->channel[i].
  1776. TSIdleBuffer,
  1777. MAX_TS_BUFFER_SIZE, 0);
  1778. if (status)
  1779. break;
  1780. FillTSIdleBuffer(&dev->channel[i].TSIdleBuffer,
  1781. &dev->channel[i].TSRingBuffer);
  1782. }
  1783. }
  1784. return status;
  1785. }
  1786. static void ngene_release_buffers(struct ngene *dev)
  1787. {
  1788. if (dev->iomem)
  1789. iounmap(dev->iomem);
  1790. free_common_buffers(dev);
  1791. vfree(dev->tsout_buf);
  1792. vfree(dev->ain_buf);
  1793. vfree(dev->vin_buf);
  1794. vfree(dev);
  1795. }
  1796. static int ngene_get_buffers(struct ngene *dev)
  1797. {
  1798. if (AllocCommonBuffers(dev))
  1799. return -ENOMEM;
  1800. if (dev->card_info->io_type[4] & NGENE_IO_TSOUT) {
  1801. dev->tsout_buf = vmalloc(TSOUT_BUF_SIZE);
  1802. if (!dev->tsout_buf)
  1803. return -ENOMEM;
  1804. dvb_ringbuffer_init(&dev->tsout_rbuf,
  1805. dev->tsout_buf, TSOUT_BUF_SIZE);
  1806. }
  1807. if (dev->card_info->io_type[2] & NGENE_IO_AIN) {
  1808. dev->ain_buf = vmalloc(AIN_BUF_SIZE);
  1809. if (!dev->ain_buf)
  1810. return -ENOMEM;
  1811. dvb_ringbuffer_init(&dev->ain_rbuf, dev->ain_buf, AIN_BUF_SIZE);
  1812. }
  1813. if (dev->card_info->io_type[0] & NGENE_IO_HDTV) {
  1814. dev->vin_buf = vmalloc(VIN_BUF_SIZE);
  1815. if (!dev->vin_buf)
  1816. return -ENOMEM;
  1817. dvb_ringbuffer_init(&dev->vin_rbuf, dev->vin_buf, VIN_BUF_SIZE);
  1818. }
  1819. dev->iomem = ioremap(pci_resource_start(dev->pci_dev, 0),
  1820. pci_resource_len(dev->pci_dev, 0));
  1821. if (!dev->iomem)
  1822. return -ENOMEM;
  1823. return 0;
  1824. }
  1825. static void ngene_init(struct ngene *dev)
  1826. {
  1827. int i;
  1828. tasklet_init(&dev->event_tasklet, event_tasklet, (unsigned long)dev);
  1829. memset_io(dev->iomem + 0xc000, 0x00, 0x220);
  1830. memset_io(dev->iomem + 0xc400, 0x00, 0x100);
  1831. for (i = 0; i < MAX_STREAM; i++) {
  1832. dev->channel[i].dev = dev;
  1833. dev->channel[i].number = i;
  1834. }
  1835. dev->fw_interface_version = 0;
  1836. ngwritel(0, NGENE_INT_ENABLE);
  1837. dev->icounts = ngreadl(NGENE_INT_COUNTS);
  1838. dev->device_version = ngreadl(DEV_VER) & 0x0f;
  1839. printk(KERN_INFO DEVICE_NAME ": Device version %d\n",
  1840. dev->device_version);
  1841. }
  1842. static int ngene_load_firm(struct ngene *dev)
  1843. {
  1844. u32 size;
  1845. const struct firmware *fw = NULL;
  1846. u8 *ngene_fw;
  1847. char *fw_name;
  1848. int err, version;
  1849. version = dev->card_info->fw_version;
  1850. switch (version) {
  1851. default:
  1852. case 15:
  1853. version = 15;
  1854. size = 23466;
  1855. fw_name = "ngene_15.fw";
  1856. break;
  1857. case 16:
  1858. size = 23498;
  1859. fw_name = "ngene_16.fw";
  1860. break;
  1861. case 17:
  1862. size = 24446;
  1863. fw_name = "ngene_17.fw";
  1864. break;
  1865. }
  1866. if (request_firmware(&fw, fw_name, &dev->pci_dev->dev) < 0) {
  1867. printk(KERN_ERR DEVICE_NAME
  1868. ": Could not load firmware file %s.\n", fw_name);
  1869. printk(KERN_INFO DEVICE_NAME
  1870. ": Copy %s to your hotplug directory!\n", fw_name);
  1871. return -1;
  1872. }
  1873. if (size != fw->size) {
  1874. printk(KERN_ERR DEVICE_NAME
  1875. ": Firmware %s has invalid size!", fw_name);
  1876. err = -1;
  1877. } else {
  1878. printk(KERN_INFO DEVICE_NAME
  1879. ": Loading firmware file %s.\n", fw_name);
  1880. ngene_fw = (u8 *) fw->data;
  1881. err = ngene_command_load_firmware(dev, ngene_fw, size);
  1882. }
  1883. release_firmware(fw);
  1884. return err;
  1885. }
  1886. static void ngene_stop(struct ngene *dev)
  1887. {
  1888. down(&dev->cmd_mutex);
  1889. i2c_del_adapter(&(dev->channel[0].i2c_adapter));
  1890. i2c_del_adapter(&(dev->channel[1].i2c_adapter));
  1891. ngwritel(0, NGENE_INT_ENABLE);
  1892. ngwritel(0, NGENE_COMMAND);
  1893. ngwritel(0, NGENE_COMMAND_HI);
  1894. ngwritel(0, NGENE_STATUS);
  1895. ngwritel(0, NGENE_STATUS_HI);
  1896. ngwritel(0, NGENE_EVENT);
  1897. ngwritel(0, NGENE_EVENT_HI);
  1898. free_irq(dev->pci_dev->irq, dev);
  1899. }
  1900. static int ngene_start(struct ngene *dev)
  1901. {
  1902. int stat;
  1903. int i;
  1904. pci_set_master(dev->pci_dev);
  1905. ngene_init(dev);
  1906. stat = request_irq(dev->pci_dev->irq, irq_handler,
  1907. IRQF_SHARED, "nGene",
  1908. (void *)dev);
  1909. if (stat < 0)
  1910. return stat;
  1911. init_waitqueue_head(&dev->cmd_wq);
  1912. init_waitqueue_head(&dev->tx_wq);
  1913. init_waitqueue_head(&dev->rx_wq);
  1914. sema_init(&dev->cmd_mutex, 1);
  1915. sema_init(&dev->stream_mutex, 1);
  1916. sema_init(&dev->pll_mutex, 1);
  1917. sema_init(&dev->i2c_switch_mutex, 1);
  1918. spin_lock_init(&dev->cmd_lock);
  1919. for (i = 0; i < MAX_STREAM; i++)
  1920. spin_lock_init(&dev->channel[i].state_lock);
  1921. ngwritel(1, TIMESTAMPS);
  1922. ngwritel(1, NGENE_INT_ENABLE);
  1923. stat = ngene_load_firm(dev);
  1924. if (stat < 0)
  1925. goto fail;
  1926. stat = ngene_i2c_init(dev, 0);
  1927. if (stat < 0)
  1928. goto fail;
  1929. stat = ngene_i2c_init(dev, 1);
  1930. if (stat < 0)
  1931. goto fail;
  1932. if (dev->card_info->fw_version == 17) {
  1933. u8 hdtv_config[6] =
  1934. {6144 / 64, 0, 0, 2048 / 64, 2048 / 64, 2048 / 64};
  1935. u8 tsin4_config[6] =
  1936. {3072 / 64, 3072 / 64, 0, 3072 / 64, 3072 / 64, 0};
  1937. u8 default_config[6] =
  1938. {4096 / 64, 4096 / 64, 0, 2048 / 64, 2048 / 64, 0};
  1939. u8 *bconf = default_config;
  1940. if (dev->card_info->io_type[3] == NGENE_IO_TSIN)
  1941. bconf = tsin4_config;
  1942. if (dev->card_info->io_type[0] == NGENE_IO_HDTV) {
  1943. bconf = hdtv_config;
  1944. ngene_reset_decypher(dev);
  1945. }
  1946. printk(KERN_INFO DEVICE_NAME ": FW 17 buffer config\n");
  1947. stat = ngene_command_config_free_buf(dev, bconf);
  1948. } else {
  1949. int bconf = BUFFER_CONFIG_4422;
  1950. if (dev->card_info->io_type[0] == NGENE_IO_HDTV) {
  1951. bconf = BUFFER_CONFIG_8022;
  1952. ngene_reset_decypher(dev);
  1953. }
  1954. if (dev->card_info->io_type[3] == NGENE_IO_TSIN)
  1955. bconf = BUFFER_CONFIG_3333;
  1956. stat = ngene_command_config_buf(dev, bconf);
  1957. }
  1958. if (dev->card_info->io_type[0] == NGENE_IO_HDTV) {
  1959. ngene_command_config_uart(dev, 0xc1, tx_cb, rx_cb);
  1960. test_dec_i2c(&dev->channel[0].i2c_adapter, 0);
  1961. test_dec_i2c(&dev->channel[0].i2c_adapter, 1);
  1962. }
  1963. return stat;
  1964. fail:
  1965. ngwritel(0, NGENE_INT_ENABLE);
  1966. free_irq(dev->pci_dev->irq, dev);
  1967. return stat;
  1968. }
  1969. /****************************************************************************/
  1970. /* Switch control (I2C gates, etc.) *****************************************/
  1971. /****************************************************************************/
  1972. /****************************************************************************/
  1973. /* Demod/tuner attachment ***************************************************/
  1974. /****************************************************************************/
  1975. /****************************************************************************/
  1976. /****************************************************************************/
  1977. /****************************************************************************/
  1978. static void release_channel(struct ngene_channel *chan)
  1979. {
  1980. struct dvb_demux *dvbdemux = &chan->demux;
  1981. struct ngene *dev = chan->dev;
  1982. struct ngene_info *ni = dev->card_info;
  1983. int io = ni->io_type[chan->number];
  1984. tasklet_kill(&chan->demux_tasklet);
  1985. if (io & (NGENE_IO_TSIN | NGENE_IO_TSOUT)) {
  1986. #ifdef NGENE_COMMAND_API
  1987. if (chan->command_dev)
  1988. dvb_unregister_device(chan->command_dev);
  1989. #endif
  1990. if (chan->fe) {
  1991. dvb_unregister_frontend(chan->fe);
  1992. /*dvb_frontend_detach(chan->fe); */
  1993. chan->fe = 0;
  1994. }
  1995. dvbdemux->dmx.close(&dvbdemux->dmx);
  1996. dvbdemux->dmx.remove_frontend(&dvbdemux->dmx,
  1997. &chan->hw_frontend);
  1998. dvbdemux->dmx.remove_frontend(&dvbdemux->dmx,
  1999. &chan->mem_frontend);
  2000. dvb_dmxdev_release(&chan->dmxdev);
  2001. dvb_dmx_release(&chan->demux);
  2002. #ifndef ONE_ADAPTER
  2003. dvb_unregister_adapter(&chan->dvb_adapter);
  2004. #endif
  2005. }
  2006. }
  2007. static int init_channel(struct ngene_channel *chan)
  2008. {
  2009. int ret = 0, nr = chan->number;
  2010. struct dvb_adapter *adapter = 0;
  2011. struct dvb_demux *dvbdemux = &chan->demux;
  2012. struct ngene *dev = chan->dev;
  2013. struct ngene_info *ni = dev->card_info;
  2014. int io = ni->io_type[nr];
  2015. tasklet_init(&chan->demux_tasklet, demux_tasklet, (unsigned long)chan);
  2016. chan->users = 0;
  2017. chan->type = io;
  2018. chan->mode = chan->type; /* for now only one mode */
  2019. if (io & (NGENE_IO_TSIN | NGENE_IO_TSOUT)) {
  2020. if (nr >= STREAM_AUDIOIN1)
  2021. chan->DataFormatFlags = DF_SWAP32;
  2022. if (io & NGENE_IO_TSOUT)
  2023. dec_fw_boot(dev);
  2024. #ifdef ONE_ADAPTER
  2025. adapter = &chan->dev->dvb_adapter;
  2026. #else
  2027. ret = dvb_register_adapter(&chan->dvb_adapter, "nGene",
  2028. THIS_MODULE,
  2029. &chan->dev->pci_dev->dev,
  2030. adapter_nr);
  2031. if (ret < 0)
  2032. return ret;
  2033. adapter = &chan->dvb_adapter;
  2034. #endif
  2035. ret = my_dvb_dmx_ts_card_init(dvbdemux, "SW demux",
  2036. ngene_start_feed,
  2037. ngene_stop_feed, chan);
  2038. ret = my_dvb_dmxdev_ts_card_init(&chan->dmxdev, &chan->demux,
  2039. &chan->hw_frontend,
  2040. &chan->mem_frontend, adapter);
  2041. if (io & NGENE_IO_TSOUT) {
  2042. dvbdemux->write_to_decoder = write_to_decoder;
  2043. }
  2044. #ifdef NGENE_COMMAND_API
  2045. dvb_register_device(adapter, &chan->command_dev,
  2046. &dvbdev_command, (void *)chan,
  2047. DVB_DEVICE_SEC);
  2048. #endif
  2049. }
  2050. if (io & NGENE_IO_TSIN) {
  2051. chan->fe = NULL;
  2052. if (ni->demod_attach[nr])
  2053. ni->demod_attach[nr](chan);
  2054. if (chan->fe) {
  2055. if (dvb_register_frontend(adapter, chan->fe) < 0) {
  2056. if (chan->fe->ops.release)
  2057. chan->fe->ops.release(chan->fe);
  2058. chan->fe = NULL;
  2059. }
  2060. }
  2061. if (chan->fe && ni->tuner_attach[nr])
  2062. if (ni->tuner_attach[nr] (chan) < 0) {
  2063. printk(KERN_ERR DEVICE_NAME
  2064. ": Tuner attach failed on channel %d!\n",
  2065. nr);
  2066. }
  2067. }
  2068. return ret;
  2069. }
  2070. static int init_channels(struct ngene *dev)
  2071. {
  2072. int i, j;
  2073. for (i = 0; i < MAX_STREAM; i++) {
  2074. if (init_channel(&dev->channel[i]) < 0) {
  2075. for (j = 0; j < i; j++)
  2076. release_channel(&dev->channel[j]);
  2077. return -1;
  2078. }
  2079. }
  2080. return 0;
  2081. }
  2082. /****************************************************************************/
  2083. /* device probe/remove calls ************************************************/
  2084. /****************************************************************************/
  2085. static void __devexit ngene_remove(struct pci_dev *pdev)
  2086. {
  2087. struct ngene *dev = (struct ngene *)pci_get_drvdata(pdev);
  2088. int i;
  2089. tasklet_kill(&dev->event_tasklet);
  2090. for (i = 0; i < MAX_STREAM; i++)
  2091. release_channel(&dev->channel[i]);
  2092. #ifdef ONE_ADAPTER
  2093. dvb_unregister_adapter(&dev->dvb_adapter);
  2094. #endif
  2095. ngene_stop(dev);
  2096. ngene_release_buffers(dev);
  2097. pci_set_drvdata(pdev, 0);
  2098. pci_disable_device(pdev);
  2099. }
  2100. static int __devinit ngene_probe(struct pci_dev *pci_dev,
  2101. const struct pci_device_id *id)
  2102. {
  2103. struct ngene *dev;
  2104. int stat = 0;
  2105. if (pci_enable_device(pci_dev) < 0)
  2106. return -ENODEV;
  2107. dev = vmalloc(sizeof(struct ngene));
  2108. if (dev == NULL)
  2109. return -ENOMEM;
  2110. memset(dev, 0, sizeof(struct ngene));
  2111. dev->pci_dev = pci_dev;
  2112. dev->card_info = (struct ngene_info *)id->driver_data;
  2113. printk(KERN_INFO DEVICE_NAME ": Found %s\n", dev->card_info->name);
  2114. pci_set_drvdata(pci_dev, dev);
  2115. /* Alloc buffers and start nGene */
  2116. stat = ngene_get_buffers(dev);
  2117. if (stat < 0)
  2118. goto fail1;
  2119. stat = ngene_start(dev);
  2120. if (stat < 0)
  2121. goto fail1;
  2122. dev->i2c_current_bus = -1;
  2123. /* Disable analog TV decoder chips if present */
  2124. if (copy_eeprom) {
  2125. i2c_copy_eeprom(&dev->channel[0].i2c_adapter, 0x50, 0x52);
  2126. i2c_dump_eeprom(&dev->channel[0].i2c_adapter, 0x52);
  2127. }
  2128. /*i2c_check_eeprom(&dev->i2c_adapter);*/
  2129. /* Register DVB adapters and devices for both channels */
  2130. #ifdef ONE_ADAPTER
  2131. if (dvb_register_adapter(&dev->dvb_adapter, "nGene", THIS_MODULE,
  2132. &dev->pci_dev->dev, adapter_nr) < 0)
  2133. goto fail2;
  2134. #endif
  2135. if (init_channels(dev) < 0)
  2136. goto fail2;
  2137. return 0;
  2138. fail2:
  2139. ngene_stop(dev);
  2140. fail1:
  2141. ngene_release_buffers(dev);
  2142. pci_set_drvdata(pci_dev, 0);
  2143. return stat;
  2144. }
  2145. /****************************************************************************/
  2146. /* Card configs *************************************************************/
  2147. /****************************************************************************/
  2148. /****************************************************************************/
  2149. /****************************************************************************/
  2150. /****************************************************************************/
  2151. #define NGENE_ID(_subvend, _subdev, _driverdata) { \
  2152. .vendor = NGENE_VID, .device = NGENE_PID, \
  2153. .subvendor = _subvend, .subdevice = _subdev, \
  2154. .driver_data = (unsigned long) &_driverdata }
  2155. /****************************************************************************/
  2156. static const struct pci_device_id ngene_id_tbl[] __devinitdata = {
  2157. {0}
  2158. };
  2159. /****************************************************************************/
  2160. /* Init/Exit ****************************************************************/
  2161. /****************************************************************************/
  2162. static pci_ers_result_t ngene_error_detected(struct pci_dev *dev,
  2163. enum pci_channel_state state)
  2164. {
  2165. printk(KERN_ERR DEVICE_NAME ": PCI error\n");
  2166. if (state == pci_channel_io_perm_failure)
  2167. return PCI_ERS_RESULT_DISCONNECT;
  2168. if (state == pci_channel_io_frozen)
  2169. return PCI_ERS_RESULT_NEED_RESET;
  2170. return PCI_ERS_RESULT_CAN_RECOVER;
  2171. }
  2172. static pci_ers_result_t ngene_link_reset(struct pci_dev *dev)
  2173. {
  2174. printk(KERN_INFO DEVICE_NAME ": link reset\n");
  2175. return 0;
  2176. }
  2177. static pci_ers_result_t ngene_slot_reset(struct pci_dev *dev)
  2178. {
  2179. printk(KERN_INFO DEVICE_NAME ": slot reset\n");
  2180. return 0;
  2181. }
  2182. static void ngene_resume(struct pci_dev *dev)
  2183. {
  2184. printk(KERN_INFO DEVICE_NAME ": resume\n");
  2185. }
  2186. static struct pci_error_handlers ngene_errors = {
  2187. .error_detected = ngene_error_detected,
  2188. .link_reset = ngene_link_reset,
  2189. .slot_reset = ngene_slot_reset,
  2190. .resume = ngene_resume,
  2191. };
  2192. static struct pci_driver ngene_pci_driver = {
  2193. .name = "ngene",
  2194. .id_table = ngene_id_tbl,
  2195. .probe = ngene_probe,
  2196. .remove = ngene_remove,
  2197. .err_handler = &ngene_errors,
  2198. };
  2199. static __init int module_init_ngene(void)
  2200. {
  2201. printk(KERN_INFO
  2202. "nGene PCIE bridge driver, Copyright (C) 2005-2007 Micronas\n");
  2203. return pci_register_driver(&ngene_pci_driver);
  2204. }
  2205. static __exit void module_exit_ngene(void)
  2206. {
  2207. pci_unregister_driver(&ngene_pci_driver);
  2208. }
  2209. module_init(module_init_ngene);
  2210. module_exit(module_exit_ngene);
  2211. MODULE_DESCRIPTION("nGene");
  2212. MODULE_AUTHOR("Micronas, Ralph Metzler, Manfred Voelkel");
  2213. MODULE_LICENSE("GPL");