md.c 214 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/kthread.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/sysctl.h>
  29. #include <linux/seq_file.h>
  30. #include <linux/mutex.h>
  31. #include <linux/buffer_head.h> /* for invalidate_bdev */
  32. #include <linux/poll.h>
  33. #include <linux/ctype.h>
  34. #include <linux/string.h>
  35. #include <linux/hdreg.h>
  36. #include <linux/proc_fs.h>
  37. #include <linux/random.h>
  38. #include <linux/module.h>
  39. #include <linux/reboot.h>
  40. #include <linux/file.h>
  41. #include <linux/compat.h>
  42. #include <linux/delay.h>
  43. #include <linux/raid/md_p.h>
  44. #include <linux/raid/md_u.h>
  45. #include <linux/slab.h>
  46. #include "md.h"
  47. #include "bitmap.h"
  48. #ifndef MODULE
  49. static void autostart_arrays(int part);
  50. #endif
  51. /* pers_list is a list of registered personalities protected
  52. * by pers_lock.
  53. * pers_lock does extra service to protect accesses to
  54. * mddev->thread when the mutex cannot be held.
  55. */
  56. static LIST_HEAD(pers_list);
  57. static DEFINE_SPINLOCK(pers_lock);
  58. static void md_print_devices(void);
  59. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  60. static struct workqueue_struct *md_wq;
  61. static struct workqueue_struct *md_misc_wq;
  62. #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
  63. /*
  64. * Default number of read corrections we'll attempt on an rdev
  65. * before ejecting it from the array. We divide the read error
  66. * count by 2 for every hour elapsed between read errors.
  67. */
  68. #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
  69. /*
  70. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  71. * is 1000 KB/sec, so the extra system load does not show up that much.
  72. * Increase it if you want to have more _guaranteed_ speed. Note that
  73. * the RAID driver will use the maximum available bandwidth if the IO
  74. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  75. * speed limit - in case reconstruction slows down your system despite
  76. * idle IO detection.
  77. *
  78. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  79. * or /sys/block/mdX/md/sync_speed_{min,max}
  80. */
  81. static int sysctl_speed_limit_min = 1000;
  82. static int sysctl_speed_limit_max = 200000;
  83. static inline int speed_min(struct mddev *mddev)
  84. {
  85. return mddev->sync_speed_min ?
  86. mddev->sync_speed_min : sysctl_speed_limit_min;
  87. }
  88. static inline int speed_max(struct mddev *mddev)
  89. {
  90. return mddev->sync_speed_max ?
  91. mddev->sync_speed_max : sysctl_speed_limit_max;
  92. }
  93. static struct ctl_table_header *raid_table_header;
  94. static ctl_table raid_table[] = {
  95. {
  96. .procname = "speed_limit_min",
  97. .data = &sysctl_speed_limit_min,
  98. .maxlen = sizeof(int),
  99. .mode = S_IRUGO|S_IWUSR,
  100. .proc_handler = proc_dointvec,
  101. },
  102. {
  103. .procname = "speed_limit_max",
  104. .data = &sysctl_speed_limit_max,
  105. .maxlen = sizeof(int),
  106. .mode = S_IRUGO|S_IWUSR,
  107. .proc_handler = proc_dointvec,
  108. },
  109. { }
  110. };
  111. static ctl_table raid_dir_table[] = {
  112. {
  113. .procname = "raid",
  114. .maxlen = 0,
  115. .mode = S_IRUGO|S_IXUGO,
  116. .child = raid_table,
  117. },
  118. { }
  119. };
  120. static ctl_table raid_root_table[] = {
  121. {
  122. .procname = "dev",
  123. .maxlen = 0,
  124. .mode = 0555,
  125. .child = raid_dir_table,
  126. },
  127. { }
  128. };
  129. static const struct block_device_operations md_fops;
  130. static int start_readonly;
  131. /* bio_clone_mddev
  132. * like bio_clone, but with a local bio set
  133. */
  134. static void mddev_bio_destructor(struct bio *bio)
  135. {
  136. struct mddev *mddev, **mddevp;
  137. mddevp = (void*)bio;
  138. mddev = mddevp[-1];
  139. bio_free(bio, mddev->bio_set);
  140. }
  141. struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
  142. struct mddev *mddev)
  143. {
  144. struct bio *b;
  145. struct mddev **mddevp;
  146. if (!mddev || !mddev->bio_set)
  147. return bio_alloc(gfp_mask, nr_iovecs);
  148. b = bio_alloc_bioset(gfp_mask, nr_iovecs,
  149. mddev->bio_set);
  150. if (!b)
  151. return NULL;
  152. mddevp = (void*)b;
  153. mddevp[-1] = mddev;
  154. b->bi_destructor = mddev_bio_destructor;
  155. return b;
  156. }
  157. EXPORT_SYMBOL_GPL(bio_alloc_mddev);
  158. struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
  159. struct mddev *mddev)
  160. {
  161. struct bio *b;
  162. struct mddev **mddevp;
  163. if (!mddev || !mddev->bio_set)
  164. return bio_clone(bio, gfp_mask);
  165. b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
  166. mddev->bio_set);
  167. if (!b)
  168. return NULL;
  169. mddevp = (void*)b;
  170. mddevp[-1] = mddev;
  171. b->bi_destructor = mddev_bio_destructor;
  172. __bio_clone(b, bio);
  173. if (bio_integrity(bio)) {
  174. int ret;
  175. ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
  176. if (ret < 0) {
  177. bio_put(b);
  178. return NULL;
  179. }
  180. }
  181. return b;
  182. }
  183. EXPORT_SYMBOL_GPL(bio_clone_mddev);
  184. void md_trim_bio(struct bio *bio, int offset, int size)
  185. {
  186. /* 'bio' is a cloned bio which we need to trim to match
  187. * the given offset and size.
  188. * This requires adjusting bi_sector, bi_size, and bi_io_vec
  189. */
  190. int i;
  191. struct bio_vec *bvec;
  192. int sofar = 0;
  193. size <<= 9;
  194. if (offset == 0 && size == bio->bi_size)
  195. return;
  196. bio->bi_sector += offset;
  197. bio->bi_size = size;
  198. offset <<= 9;
  199. clear_bit(BIO_SEG_VALID, &bio->bi_flags);
  200. while (bio->bi_idx < bio->bi_vcnt &&
  201. bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
  202. /* remove this whole bio_vec */
  203. offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
  204. bio->bi_idx++;
  205. }
  206. if (bio->bi_idx < bio->bi_vcnt) {
  207. bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
  208. bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
  209. }
  210. /* avoid any complications with bi_idx being non-zero*/
  211. if (bio->bi_idx) {
  212. memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
  213. (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
  214. bio->bi_vcnt -= bio->bi_idx;
  215. bio->bi_idx = 0;
  216. }
  217. /* Make sure vcnt and last bv are not too big */
  218. bio_for_each_segment(bvec, bio, i) {
  219. if (sofar + bvec->bv_len > size)
  220. bvec->bv_len = size - sofar;
  221. if (bvec->bv_len == 0) {
  222. bio->bi_vcnt = i;
  223. break;
  224. }
  225. sofar += bvec->bv_len;
  226. }
  227. }
  228. EXPORT_SYMBOL_GPL(md_trim_bio);
  229. /*
  230. * We have a system wide 'event count' that is incremented
  231. * on any 'interesting' event, and readers of /proc/mdstat
  232. * can use 'poll' or 'select' to find out when the event
  233. * count increases.
  234. *
  235. * Events are:
  236. * start array, stop array, error, add device, remove device,
  237. * start build, activate spare
  238. */
  239. static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
  240. static atomic_t md_event_count;
  241. void md_new_event(struct mddev *mddev)
  242. {
  243. atomic_inc(&md_event_count);
  244. wake_up(&md_event_waiters);
  245. }
  246. EXPORT_SYMBOL_GPL(md_new_event);
  247. /* Alternate version that can be called from interrupts
  248. * when calling sysfs_notify isn't needed.
  249. */
  250. static void md_new_event_inintr(struct mddev *mddev)
  251. {
  252. atomic_inc(&md_event_count);
  253. wake_up(&md_event_waiters);
  254. }
  255. /*
  256. * Enables to iterate over all existing md arrays
  257. * all_mddevs_lock protects this list.
  258. */
  259. static LIST_HEAD(all_mddevs);
  260. static DEFINE_SPINLOCK(all_mddevs_lock);
  261. /*
  262. * iterates through all used mddevs in the system.
  263. * We take care to grab the all_mddevs_lock whenever navigating
  264. * the list, and to always hold a refcount when unlocked.
  265. * Any code which breaks out of this loop while own
  266. * a reference to the current mddev and must mddev_put it.
  267. */
  268. #define for_each_mddev(_mddev,_tmp) \
  269. \
  270. for (({ spin_lock(&all_mddevs_lock); \
  271. _tmp = all_mddevs.next; \
  272. _mddev = NULL;}); \
  273. ({ if (_tmp != &all_mddevs) \
  274. mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
  275. spin_unlock(&all_mddevs_lock); \
  276. if (_mddev) mddev_put(_mddev); \
  277. _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
  278. _tmp != &all_mddevs;}); \
  279. ({ spin_lock(&all_mddevs_lock); \
  280. _tmp = _tmp->next;}) \
  281. )
  282. /* Rather than calling directly into the personality make_request function,
  283. * IO requests come here first so that we can check if the device is
  284. * being suspended pending a reconfiguration.
  285. * We hold a refcount over the call to ->make_request. By the time that
  286. * call has finished, the bio has been linked into some internal structure
  287. * and so is visible to ->quiesce(), so we don't need the refcount any more.
  288. */
  289. static void md_make_request(struct request_queue *q, struct bio *bio)
  290. {
  291. const int rw = bio_data_dir(bio);
  292. struct mddev *mddev = q->queuedata;
  293. int cpu;
  294. unsigned int sectors;
  295. if (mddev == NULL || mddev->pers == NULL
  296. || !mddev->ready) {
  297. bio_io_error(bio);
  298. return;
  299. }
  300. smp_rmb(); /* Ensure implications of 'active' are visible */
  301. rcu_read_lock();
  302. if (mddev->suspended) {
  303. DEFINE_WAIT(__wait);
  304. for (;;) {
  305. prepare_to_wait(&mddev->sb_wait, &__wait,
  306. TASK_UNINTERRUPTIBLE);
  307. if (!mddev->suspended)
  308. break;
  309. rcu_read_unlock();
  310. schedule();
  311. rcu_read_lock();
  312. }
  313. finish_wait(&mddev->sb_wait, &__wait);
  314. }
  315. atomic_inc(&mddev->active_io);
  316. rcu_read_unlock();
  317. /*
  318. * save the sectors now since our bio can
  319. * go away inside make_request
  320. */
  321. sectors = bio_sectors(bio);
  322. mddev->pers->make_request(mddev, bio);
  323. cpu = part_stat_lock();
  324. part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
  325. part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
  326. part_stat_unlock();
  327. if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
  328. wake_up(&mddev->sb_wait);
  329. }
  330. /* mddev_suspend makes sure no new requests are submitted
  331. * to the device, and that any requests that have been submitted
  332. * are completely handled.
  333. * Once ->stop is called and completes, the module will be completely
  334. * unused.
  335. */
  336. void mddev_suspend(struct mddev *mddev)
  337. {
  338. BUG_ON(mddev->suspended);
  339. mddev->suspended = 1;
  340. synchronize_rcu();
  341. wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
  342. mddev->pers->quiesce(mddev, 1);
  343. }
  344. EXPORT_SYMBOL_GPL(mddev_suspend);
  345. void mddev_resume(struct mddev *mddev)
  346. {
  347. mddev->suspended = 0;
  348. wake_up(&mddev->sb_wait);
  349. mddev->pers->quiesce(mddev, 0);
  350. md_wakeup_thread(mddev->thread);
  351. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  352. }
  353. EXPORT_SYMBOL_GPL(mddev_resume);
  354. int mddev_congested(struct mddev *mddev, int bits)
  355. {
  356. return mddev->suspended;
  357. }
  358. EXPORT_SYMBOL(mddev_congested);
  359. /*
  360. * Generic flush handling for md
  361. */
  362. static void md_end_flush(struct bio *bio, int err)
  363. {
  364. struct md_rdev *rdev = bio->bi_private;
  365. struct mddev *mddev = rdev->mddev;
  366. rdev_dec_pending(rdev, mddev);
  367. if (atomic_dec_and_test(&mddev->flush_pending)) {
  368. /* The pre-request flush has finished */
  369. queue_work(md_wq, &mddev->flush_work);
  370. }
  371. bio_put(bio);
  372. }
  373. static void md_submit_flush_data(struct work_struct *ws);
  374. static void submit_flushes(struct work_struct *ws)
  375. {
  376. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  377. struct md_rdev *rdev;
  378. INIT_WORK(&mddev->flush_work, md_submit_flush_data);
  379. atomic_set(&mddev->flush_pending, 1);
  380. rcu_read_lock();
  381. list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
  382. if (rdev->raid_disk >= 0 &&
  383. !test_bit(Faulty, &rdev->flags)) {
  384. /* Take two references, one is dropped
  385. * when request finishes, one after
  386. * we reclaim rcu_read_lock
  387. */
  388. struct bio *bi;
  389. atomic_inc(&rdev->nr_pending);
  390. atomic_inc(&rdev->nr_pending);
  391. rcu_read_unlock();
  392. bi = bio_alloc_mddev(GFP_KERNEL, 0, mddev);
  393. bi->bi_end_io = md_end_flush;
  394. bi->bi_private = rdev;
  395. bi->bi_bdev = rdev->bdev;
  396. atomic_inc(&mddev->flush_pending);
  397. submit_bio(WRITE_FLUSH, bi);
  398. rcu_read_lock();
  399. rdev_dec_pending(rdev, mddev);
  400. }
  401. rcu_read_unlock();
  402. if (atomic_dec_and_test(&mddev->flush_pending))
  403. queue_work(md_wq, &mddev->flush_work);
  404. }
  405. static void md_submit_flush_data(struct work_struct *ws)
  406. {
  407. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  408. struct bio *bio = mddev->flush_bio;
  409. if (bio->bi_size == 0)
  410. /* an empty barrier - all done */
  411. bio_endio(bio, 0);
  412. else {
  413. bio->bi_rw &= ~REQ_FLUSH;
  414. mddev->pers->make_request(mddev, bio);
  415. }
  416. mddev->flush_bio = NULL;
  417. wake_up(&mddev->sb_wait);
  418. }
  419. void md_flush_request(struct mddev *mddev, struct bio *bio)
  420. {
  421. spin_lock_irq(&mddev->write_lock);
  422. wait_event_lock_irq(mddev->sb_wait,
  423. !mddev->flush_bio,
  424. mddev->write_lock, /*nothing*/);
  425. mddev->flush_bio = bio;
  426. spin_unlock_irq(&mddev->write_lock);
  427. INIT_WORK(&mddev->flush_work, submit_flushes);
  428. queue_work(md_wq, &mddev->flush_work);
  429. }
  430. EXPORT_SYMBOL(md_flush_request);
  431. /* Support for plugging.
  432. * This mirrors the plugging support in request_queue, but does not
  433. * require having a whole queue or request structures.
  434. * We allocate an md_plug_cb for each md device and each thread it gets
  435. * plugged on. This links tot the private plug_handle structure in the
  436. * personality data where we keep a count of the number of outstanding
  437. * plugs so other code can see if a plug is active.
  438. */
  439. struct md_plug_cb {
  440. struct blk_plug_cb cb;
  441. struct mddev *mddev;
  442. };
  443. static void plugger_unplug(struct blk_plug_cb *cb)
  444. {
  445. struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
  446. if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
  447. md_wakeup_thread(mdcb->mddev->thread);
  448. kfree(mdcb);
  449. }
  450. /* Check that an unplug wakeup will come shortly.
  451. * If not, wakeup the md thread immediately
  452. */
  453. int mddev_check_plugged(struct mddev *mddev)
  454. {
  455. struct blk_plug *plug = current->plug;
  456. struct md_plug_cb *mdcb;
  457. if (!plug)
  458. return 0;
  459. list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
  460. if (mdcb->cb.callback == plugger_unplug &&
  461. mdcb->mddev == mddev) {
  462. /* Already on the list, move to top */
  463. if (mdcb != list_first_entry(&plug->cb_list,
  464. struct md_plug_cb,
  465. cb.list))
  466. list_move(&mdcb->cb.list, &plug->cb_list);
  467. return 1;
  468. }
  469. }
  470. /* Not currently on the callback list */
  471. mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
  472. if (!mdcb)
  473. return 0;
  474. mdcb->mddev = mddev;
  475. mdcb->cb.callback = plugger_unplug;
  476. atomic_inc(&mddev->plug_cnt);
  477. list_add(&mdcb->cb.list, &plug->cb_list);
  478. return 1;
  479. }
  480. EXPORT_SYMBOL_GPL(mddev_check_plugged);
  481. static inline struct mddev *mddev_get(struct mddev *mddev)
  482. {
  483. atomic_inc(&mddev->active);
  484. return mddev;
  485. }
  486. static void mddev_delayed_delete(struct work_struct *ws);
  487. static void mddev_put(struct mddev *mddev)
  488. {
  489. struct bio_set *bs = NULL;
  490. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  491. return;
  492. if (!mddev->raid_disks && list_empty(&mddev->disks) &&
  493. mddev->ctime == 0 && !mddev->hold_active) {
  494. /* Array is not configured at all, and not held active,
  495. * so destroy it */
  496. list_del_init(&mddev->all_mddevs);
  497. bs = mddev->bio_set;
  498. mddev->bio_set = NULL;
  499. if (mddev->gendisk) {
  500. /* We did a probe so need to clean up. Call
  501. * queue_work inside the spinlock so that
  502. * flush_workqueue() after mddev_find will
  503. * succeed in waiting for the work to be done.
  504. */
  505. INIT_WORK(&mddev->del_work, mddev_delayed_delete);
  506. queue_work(md_misc_wq, &mddev->del_work);
  507. } else
  508. kfree(mddev);
  509. }
  510. spin_unlock(&all_mddevs_lock);
  511. if (bs)
  512. bioset_free(bs);
  513. }
  514. void mddev_init(struct mddev *mddev)
  515. {
  516. mutex_init(&mddev->open_mutex);
  517. mutex_init(&mddev->reconfig_mutex);
  518. mutex_init(&mddev->bitmap_info.mutex);
  519. INIT_LIST_HEAD(&mddev->disks);
  520. INIT_LIST_HEAD(&mddev->all_mddevs);
  521. init_timer(&mddev->safemode_timer);
  522. atomic_set(&mddev->active, 1);
  523. atomic_set(&mddev->openers, 0);
  524. atomic_set(&mddev->active_io, 0);
  525. atomic_set(&mddev->plug_cnt, 0);
  526. spin_lock_init(&mddev->write_lock);
  527. atomic_set(&mddev->flush_pending, 0);
  528. init_waitqueue_head(&mddev->sb_wait);
  529. init_waitqueue_head(&mddev->recovery_wait);
  530. mddev->reshape_position = MaxSector;
  531. mddev->resync_min = 0;
  532. mddev->resync_max = MaxSector;
  533. mddev->level = LEVEL_NONE;
  534. }
  535. EXPORT_SYMBOL_GPL(mddev_init);
  536. static struct mddev * mddev_find(dev_t unit)
  537. {
  538. struct mddev *mddev, *new = NULL;
  539. if (unit && MAJOR(unit) != MD_MAJOR)
  540. unit &= ~((1<<MdpMinorShift)-1);
  541. retry:
  542. spin_lock(&all_mddevs_lock);
  543. if (unit) {
  544. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  545. if (mddev->unit == unit) {
  546. mddev_get(mddev);
  547. spin_unlock(&all_mddevs_lock);
  548. kfree(new);
  549. return mddev;
  550. }
  551. if (new) {
  552. list_add(&new->all_mddevs, &all_mddevs);
  553. spin_unlock(&all_mddevs_lock);
  554. new->hold_active = UNTIL_IOCTL;
  555. return new;
  556. }
  557. } else if (new) {
  558. /* find an unused unit number */
  559. static int next_minor = 512;
  560. int start = next_minor;
  561. int is_free = 0;
  562. int dev = 0;
  563. while (!is_free) {
  564. dev = MKDEV(MD_MAJOR, next_minor);
  565. next_minor++;
  566. if (next_minor > MINORMASK)
  567. next_minor = 0;
  568. if (next_minor == start) {
  569. /* Oh dear, all in use. */
  570. spin_unlock(&all_mddevs_lock);
  571. kfree(new);
  572. return NULL;
  573. }
  574. is_free = 1;
  575. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  576. if (mddev->unit == dev) {
  577. is_free = 0;
  578. break;
  579. }
  580. }
  581. new->unit = dev;
  582. new->md_minor = MINOR(dev);
  583. new->hold_active = UNTIL_STOP;
  584. list_add(&new->all_mddevs, &all_mddevs);
  585. spin_unlock(&all_mddevs_lock);
  586. return new;
  587. }
  588. spin_unlock(&all_mddevs_lock);
  589. new = kzalloc(sizeof(*new), GFP_KERNEL);
  590. if (!new)
  591. return NULL;
  592. new->unit = unit;
  593. if (MAJOR(unit) == MD_MAJOR)
  594. new->md_minor = MINOR(unit);
  595. else
  596. new->md_minor = MINOR(unit) >> MdpMinorShift;
  597. mddev_init(new);
  598. goto retry;
  599. }
  600. static inline int mddev_lock(struct mddev * mddev)
  601. {
  602. return mutex_lock_interruptible(&mddev->reconfig_mutex);
  603. }
  604. static inline int mddev_is_locked(struct mddev *mddev)
  605. {
  606. return mutex_is_locked(&mddev->reconfig_mutex);
  607. }
  608. static inline int mddev_trylock(struct mddev * mddev)
  609. {
  610. return mutex_trylock(&mddev->reconfig_mutex);
  611. }
  612. static struct attribute_group md_redundancy_group;
  613. static void mddev_unlock(struct mddev * mddev)
  614. {
  615. if (mddev->to_remove) {
  616. /* These cannot be removed under reconfig_mutex as
  617. * an access to the files will try to take reconfig_mutex
  618. * while holding the file unremovable, which leads to
  619. * a deadlock.
  620. * So hold set sysfs_active while the remove in happeing,
  621. * and anything else which might set ->to_remove or my
  622. * otherwise change the sysfs namespace will fail with
  623. * -EBUSY if sysfs_active is still set.
  624. * We set sysfs_active under reconfig_mutex and elsewhere
  625. * test it under the same mutex to ensure its correct value
  626. * is seen.
  627. */
  628. struct attribute_group *to_remove = mddev->to_remove;
  629. mddev->to_remove = NULL;
  630. mddev->sysfs_active = 1;
  631. mutex_unlock(&mddev->reconfig_mutex);
  632. if (mddev->kobj.sd) {
  633. if (to_remove != &md_redundancy_group)
  634. sysfs_remove_group(&mddev->kobj, to_remove);
  635. if (mddev->pers == NULL ||
  636. mddev->pers->sync_request == NULL) {
  637. sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
  638. if (mddev->sysfs_action)
  639. sysfs_put(mddev->sysfs_action);
  640. mddev->sysfs_action = NULL;
  641. }
  642. }
  643. mddev->sysfs_active = 0;
  644. } else
  645. mutex_unlock(&mddev->reconfig_mutex);
  646. /* As we've dropped the mutex we need a spinlock to
  647. * make sure the thread doesn't disappear
  648. */
  649. spin_lock(&pers_lock);
  650. md_wakeup_thread(mddev->thread);
  651. spin_unlock(&pers_lock);
  652. }
  653. static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
  654. {
  655. struct md_rdev *rdev;
  656. list_for_each_entry(rdev, &mddev->disks, same_set)
  657. if (rdev->desc_nr == nr)
  658. return rdev;
  659. return NULL;
  660. }
  661. static struct md_rdev * find_rdev(struct mddev * mddev, dev_t dev)
  662. {
  663. struct md_rdev *rdev;
  664. list_for_each_entry(rdev, &mddev->disks, same_set)
  665. if (rdev->bdev->bd_dev == dev)
  666. return rdev;
  667. return NULL;
  668. }
  669. static struct md_personality *find_pers(int level, char *clevel)
  670. {
  671. struct md_personality *pers;
  672. list_for_each_entry(pers, &pers_list, list) {
  673. if (level != LEVEL_NONE && pers->level == level)
  674. return pers;
  675. if (strcmp(pers->name, clevel)==0)
  676. return pers;
  677. }
  678. return NULL;
  679. }
  680. /* return the offset of the super block in 512byte sectors */
  681. static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
  682. {
  683. sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
  684. return MD_NEW_SIZE_SECTORS(num_sectors);
  685. }
  686. static int alloc_disk_sb(struct md_rdev * rdev)
  687. {
  688. if (rdev->sb_page)
  689. MD_BUG();
  690. rdev->sb_page = alloc_page(GFP_KERNEL);
  691. if (!rdev->sb_page) {
  692. printk(KERN_ALERT "md: out of memory.\n");
  693. return -ENOMEM;
  694. }
  695. return 0;
  696. }
  697. static void free_disk_sb(struct md_rdev * rdev)
  698. {
  699. if (rdev->sb_page) {
  700. put_page(rdev->sb_page);
  701. rdev->sb_loaded = 0;
  702. rdev->sb_page = NULL;
  703. rdev->sb_start = 0;
  704. rdev->sectors = 0;
  705. }
  706. if (rdev->bb_page) {
  707. put_page(rdev->bb_page);
  708. rdev->bb_page = NULL;
  709. }
  710. }
  711. static void super_written(struct bio *bio, int error)
  712. {
  713. struct md_rdev *rdev = bio->bi_private;
  714. struct mddev *mddev = rdev->mddev;
  715. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
  716. printk("md: super_written gets error=%d, uptodate=%d\n",
  717. error, test_bit(BIO_UPTODATE, &bio->bi_flags));
  718. WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
  719. md_error(mddev, rdev);
  720. }
  721. if (atomic_dec_and_test(&mddev->pending_writes))
  722. wake_up(&mddev->sb_wait);
  723. bio_put(bio);
  724. }
  725. void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
  726. sector_t sector, int size, struct page *page)
  727. {
  728. /* write first size bytes of page to sector of rdev
  729. * Increment mddev->pending_writes before returning
  730. * and decrement it on completion, waking up sb_wait
  731. * if zero is reached.
  732. * If an error occurred, call md_error
  733. */
  734. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
  735. bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
  736. bio->bi_sector = sector;
  737. bio_add_page(bio, page, size, 0);
  738. bio->bi_private = rdev;
  739. bio->bi_end_io = super_written;
  740. atomic_inc(&mddev->pending_writes);
  741. submit_bio(WRITE_FLUSH_FUA, bio);
  742. }
  743. void md_super_wait(struct mddev *mddev)
  744. {
  745. /* wait for all superblock writes that were scheduled to complete */
  746. DEFINE_WAIT(wq);
  747. for(;;) {
  748. prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
  749. if (atomic_read(&mddev->pending_writes)==0)
  750. break;
  751. schedule();
  752. }
  753. finish_wait(&mddev->sb_wait, &wq);
  754. }
  755. static void bi_complete(struct bio *bio, int error)
  756. {
  757. complete((struct completion*)bio->bi_private);
  758. }
  759. int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
  760. struct page *page, int rw, bool metadata_op)
  761. {
  762. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
  763. struct completion event;
  764. int ret;
  765. rw |= REQ_SYNC;
  766. bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
  767. rdev->meta_bdev : rdev->bdev;
  768. if (metadata_op)
  769. bio->bi_sector = sector + rdev->sb_start;
  770. else
  771. bio->bi_sector = sector + rdev->data_offset;
  772. bio_add_page(bio, page, size, 0);
  773. init_completion(&event);
  774. bio->bi_private = &event;
  775. bio->bi_end_io = bi_complete;
  776. submit_bio(rw, bio);
  777. wait_for_completion(&event);
  778. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  779. bio_put(bio);
  780. return ret;
  781. }
  782. EXPORT_SYMBOL_GPL(sync_page_io);
  783. static int read_disk_sb(struct md_rdev * rdev, int size)
  784. {
  785. char b[BDEVNAME_SIZE];
  786. if (!rdev->sb_page) {
  787. MD_BUG();
  788. return -EINVAL;
  789. }
  790. if (rdev->sb_loaded)
  791. return 0;
  792. if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
  793. goto fail;
  794. rdev->sb_loaded = 1;
  795. return 0;
  796. fail:
  797. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  798. bdevname(rdev->bdev,b));
  799. return -EINVAL;
  800. }
  801. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  802. {
  803. return sb1->set_uuid0 == sb2->set_uuid0 &&
  804. sb1->set_uuid1 == sb2->set_uuid1 &&
  805. sb1->set_uuid2 == sb2->set_uuid2 &&
  806. sb1->set_uuid3 == sb2->set_uuid3;
  807. }
  808. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  809. {
  810. int ret;
  811. mdp_super_t *tmp1, *tmp2;
  812. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  813. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  814. if (!tmp1 || !tmp2) {
  815. ret = 0;
  816. printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
  817. goto abort;
  818. }
  819. *tmp1 = *sb1;
  820. *tmp2 = *sb2;
  821. /*
  822. * nr_disks is not constant
  823. */
  824. tmp1->nr_disks = 0;
  825. tmp2->nr_disks = 0;
  826. ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
  827. abort:
  828. kfree(tmp1);
  829. kfree(tmp2);
  830. return ret;
  831. }
  832. static u32 md_csum_fold(u32 csum)
  833. {
  834. csum = (csum & 0xffff) + (csum >> 16);
  835. return (csum & 0xffff) + (csum >> 16);
  836. }
  837. static unsigned int calc_sb_csum(mdp_super_t * sb)
  838. {
  839. u64 newcsum = 0;
  840. u32 *sb32 = (u32*)sb;
  841. int i;
  842. unsigned int disk_csum, csum;
  843. disk_csum = sb->sb_csum;
  844. sb->sb_csum = 0;
  845. for (i = 0; i < MD_SB_BYTES/4 ; i++)
  846. newcsum += sb32[i];
  847. csum = (newcsum & 0xffffffff) + (newcsum>>32);
  848. #ifdef CONFIG_ALPHA
  849. /* This used to use csum_partial, which was wrong for several
  850. * reasons including that different results are returned on
  851. * different architectures. It isn't critical that we get exactly
  852. * the same return value as before (we always csum_fold before
  853. * testing, and that removes any differences). However as we
  854. * know that csum_partial always returned a 16bit value on
  855. * alphas, do a fold to maximise conformity to previous behaviour.
  856. */
  857. sb->sb_csum = md_csum_fold(disk_csum);
  858. #else
  859. sb->sb_csum = disk_csum;
  860. #endif
  861. return csum;
  862. }
  863. /*
  864. * Handle superblock details.
  865. * We want to be able to handle multiple superblock formats
  866. * so we have a common interface to them all, and an array of
  867. * different handlers.
  868. * We rely on user-space to write the initial superblock, and support
  869. * reading and updating of superblocks.
  870. * Interface methods are:
  871. * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
  872. * loads and validates a superblock on dev.
  873. * if refdev != NULL, compare superblocks on both devices
  874. * Return:
  875. * 0 - dev has a superblock that is compatible with refdev
  876. * 1 - dev has a superblock that is compatible and newer than refdev
  877. * so dev should be used as the refdev in future
  878. * -EINVAL superblock incompatible or invalid
  879. * -othererror e.g. -EIO
  880. *
  881. * int validate_super(struct mddev *mddev, struct md_rdev *dev)
  882. * Verify that dev is acceptable into mddev.
  883. * The first time, mddev->raid_disks will be 0, and data from
  884. * dev should be merged in. Subsequent calls check that dev
  885. * is new enough. Return 0 or -EINVAL
  886. *
  887. * void sync_super(struct mddev *mddev, struct md_rdev *dev)
  888. * Update the superblock for rdev with data in mddev
  889. * This does not write to disc.
  890. *
  891. */
  892. struct super_type {
  893. char *name;
  894. struct module *owner;
  895. int (*load_super)(struct md_rdev *rdev, struct md_rdev *refdev,
  896. int minor_version);
  897. int (*validate_super)(struct mddev *mddev, struct md_rdev *rdev);
  898. void (*sync_super)(struct mddev *mddev, struct md_rdev *rdev);
  899. unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
  900. sector_t num_sectors);
  901. };
  902. /*
  903. * Check that the given mddev has no bitmap.
  904. *
  905. * This function is called from the run method of all personalities that do not
  906. * support bitmaps. It prints an error message and returns non-zero if mddev
  907. * has a bitmap. Otherwise, it returns 0.
  908. *
  909. */
  910. int md_check_no_bitmap(struct mddev *mddev)
  911. {
  912. if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
  913. return 0;
  914. printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
  915. mdname(mddev), mddev->pers->name);
  916. return 1;
  917. }
  918. EXPORT_SYMBOL(md_check_no_bitmap);
  919. /*
  920. * load_super for 0.90.0
  921. */
  922. static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  923. {
  924. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  925. mdp_super_t *sb;
  926. int ret;
  927. /*
  928. * Calculate the position of the superblock (512byte sectors),
  929. * it's at the end of the disk.
  930. *
  931. * It also happens to be a multiple of 4Kb.
  932. */
  933. rdev->sb_start = calc_dev_sboffset(rdev);
  934. ret = read_disk_sb(rdev, MD_SB_BYTES);
  935. if (ret) return ret;
  936. ret = -EINVAL;
  937. bdevname(rdev->bdev, b);
  938. sb = page_address(rdev->sb_page);
  939. if (sb->md_magic != MD_SB_MAGIC) {
  940. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  941. b);
  942. goto abort;
  943. }
  944. if (sb->major_version != 0 ||
  945. sb->minor_version < 90 ||
  946. sb->minor_version > 91) {
  947. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  948. sb->major_version, sb->minor_version,
  949. b);
  950. goto abort;
  951. }
  952. if (sb->raid_disks <= 0)
  953. goto abort;
  954. if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
  955. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  956. b);
  957. goto abort;
  958. }
  959. rdev->preferred_minor = sb->md_minor;
  960. rdev->data_offset = 0;
  961. rdev->sb_size = MD_SB_BYTES;
  962. rdev->badblocks.shift = -1;
  963. if (sb->level == LEVEL_MULTIPATH)
  964. rdev->desc_nr = -1;
  965. else
  966. rdev->desc_nr = sb->this_disk.number;
  967. if (!refdev) {
  968. ret = 1;
  969. } else {
  970. __u64 ev1, ev2;
  971. mdp_super_t *refsb = page_address(refdev->sb_page);
  972. if (!uuid_equal(refsb, sb)) {
  973. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  974. b, bdevname(refdev->bdev,b2));
  975. goto abort;
  976. }
  977. if (!sb_equal(refsb, sb)) {
  978. printk(KERN_WARNING "md: %s has same UUID"
  979. " but different superblock to %s\n",
  980. b, bdevname(refdev->bdev, b2));
  981. goto abort;
  982. }
  983. ev1 = md_event(sb);
  984. ev2 = md_event(refsb);
  985. if (ev1 > ev2)
  986. ret = 1;
  987. else
  988. ret = 0;
  989. }
  990. rdev->sectors = rdev->sb_start;
  991. /* Limit to 4TB as metadata cannot record more than that */
  992. if (rdev->sectors >= (2ULL << 32))
  993. rdev->sectors = (2ULL << 32) - 2;
  994. if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
  995. /* "this cannot possibly happen" ... */
  996. ret = -EINVAL;
  997. abort:
  998. return ret;
  999. }
  1000. /*
  1001. * validate_super for 0.90.0
  1002. */
  1003. static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
  1004. {
  1005. mdp_disk_t *desc;
  1006. mdp_super_t *sb = page_address(rdev->sb_page);
  1007. __u64 ev1 = md_event(sb);
  1008. rdev->raid_disk = -1;
  1009. clear_bit(Faulty, &rdev->flags);
  1010. clear_bit(In_sync, &rdev->flags);
  1011. clear_bit(WriteMostly, &rdev->flags);
  1012. if (mddev->raid_disks == 0) {
  1013. mddev->major_version = 0;
  1014. mddev->minor_version = sb->minor_version;
  1015. mddev->patch_version = sb->patch_version;
  1016. mddev->external = 0;
  1017. mddev->chunk_sectors = sb->chunk_size >> 9;
  1018. mddev->ctime = sb->ctime;
  1019. mddev->utime = sb->utime;
  1020. mddev->level = sb->level;
  1021. mddev->clevel[0] = 0;
  1022. mddev->layout = sb->layout;
  1023. mddev->raid_disks = sb->raid_disks;
  1024. mddev->dev_sectors = ((sector_t)sb->size) * 2;
  1025. mddev->events = ev1;
  1026. mddev->bitmap_info.offset = 0;
  1027. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  1028. if (mddev->minor_version >= 91) {
  1029. mddev->reshape_position = sb->reshape_position;
  1030. mddev->delta_disks = sb->delta_disks;
  1031. mddev->new_level = sb->new_level;
  1032. mddev->new_layout = sb->new_layout;
  1033. mddev->new_chunk_sectors = sb->new_chunk >> 9;
  1034. } else {
  1035. mddev->reshape_position = MaxSector;
  1036. mddev->delta_disks = 0;
  1037. mddev->new_level = mddev->level;
  1038. mddev->new_layout = mddev->layout;
  1039. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1040. }
  1041. if (sb->state & (1<<MD_SB_CLEAN))
  1042. mddev->recovery_cp = MaxSector;
  1043. else {
  1044. if (sb->events_hi == sb->cp_events_hi &&
  1045. sb->events_lo == sb->cp_events_lo) {
  1046. mddev->recovery_cp = sb->recovery_cp;
  1047. } else
  1048. mddev->recovery_cp = 0;
  1049. }
  1050. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  1051. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  1052. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  1053. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  1054. mddev->max_disks = MD_SB_DISKS;
  1055. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  1056. mddev->bitmap_info.file == NULL)
  1057. mddev->bitmap_info.offset =
  1058. mddev->bitmap_info.default_offset;
  1059. } else if (mddev->pers == NULL) {
  1060. /* Insist on good event counter while assembling, except
  1061. * for spares (which don't need an event count) */
  1062. ++ev1;
  1063. if (sb->disks[rdev->desc_nr].state & (
  1064. (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
  1065. if (ev1 < mddev->events)
  1066. return -EINVAL;
  1067. } else if (mddev->bitmap) {
  1068. /* if adding to array with a bitmap, then we can accept an
  1069. * older device ... but not too old.
  1070. */
  1071. if (ev1 < mddev->bitmap->events_cleared)
  1072. return 0;
  1073. } else {
  1074. if (ev1 < mddev->events)
  1075. /* just a hot-add of a new device, leave raid_disk at -1 */
  1076. return 0;
  1077. }
  1078. if (mddev->level != LEVEL_MULTIPATH) {
  1079. desc = sb->disks + rdev->desc_nr;
  1080. if (desc->state & (1<<MD_DISK_FAULTY))
  1081. set_bit(Faulty, &rdev->flags);
  1082. else if (desc->state & (1<<MD_DISK_SYNC) /* &&
  1083. desc->raid_disk < mddev->raid_disks */) {
  1084. set_bit(In_sync, &rdev->flags);
  1085. rdev->raid_disk = desc->raid_disk;
  1086. } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
  1087. /* active but not in sync implies recovery up to
  1088. * reshape position. We don't know exactly where
  1089. * that is, so set to zero for now */
  1090. if (mddev->minor_version >= 91) {
  1091. rdev->recovery_offset = 0;
  1092. rdev->raid_disk = desc->raid_disk;
  1093. }
  1094. }
  1095. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  1096. set_bit(WriteMostly, &rdev->flags);
  1097. } else /* MULTIPATH are always insync */
  1098. set_bit(In_sync, &rdev->flags);
  1099. return 0;
  1100. }
  1101. /*
  1102. * sync_super for 0.90.0
  1103. */
  1104. static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
  1105. {
  1106. mdp_super_t *sb;
  1107. struct md_rdev *rdev2;
  1108. int next_spare = mddev->raid_disks;
  1109. /* make rdev->sb match mddev data..
  1110. *
  1111. * 1/ zero out disks
  1112. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  1113. * 3/ any empty disks < next_spare become removed
  1114. *
  1115. * disks[0] gets initialised to REMOVED because
  1116. * we cannot be sure from other fields if it has
  1117. * been initialised or not.
  1118. */
  1119. int i;
  1120. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  1121. rdev->sb_size = MD_SB_BYTES;
  1122. sb = page_address(rdev->sb_page);
  1123. memset(sb, 0, sizeof(*sb));
  1124. sb->md_magic = MD_SB_MAGIC;
  1125. sb->major_version = mddev->major_version;
  1126. sb->patch_version = mddev->patch_version;
  1127. sb->gvalid_words = 0; /* ignored */
  1128. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  1129. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  1130. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  1131. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  1132. sb->ctime = mddev->ctime;
  1133. sb->level = mddev->level;
  1134. sb->size = mddev->dev_sectors / 2;
  1135. sb->raid_disks = mddev->raid_disks;
  1136. sb->md_minor = mddev->md_minor;
  1137. sb->not_persistent = 0;
  1138. sb->utime = mddev->utime;
  1139. sb->state = 0;
  1140. sb->events_hi = (mddev->events>>32);
  1141. sb->events_lo = (u32)mddev->events;
  1142. if (mddev->reshape_position == MaxSector)
  1143. sb->minor_version = 90;
  1144. else {
  1145. sb->minor_version = 91;
  1146. sb->reshape_position = mddev->reshape_position;
  1147. sb->new_level = mddev->new_level;
  1148. sb->delta_disks = mddev->delta_disks;
  1149. sb->new_layout = mddev->new_layout;
  1150. sb->new_chunk = mddev->new_chunk_sectors << 9;
  1151. }
  1152. mddev->minor_version = sb->minor_version;
  1153. if (mddev->in_sync)
  1154. {
  1155. sb->recovery_cp = mddev->recovery_cp;
  1156. sb->cp_events_hi = (mddev->events>>32);
  1157. sb->cp_events_lo = (u32)mddev->events;
  1158. if (mddev->recovery_cp == MaxSector)
  1159. sb->state = (1<< MD_SB_CLEAN);
  1160. } else
  1161. sb->recovery_cp = 0;
  1162. sb->layout = mddev->layout;
  1163. sb->chunk_size = mddev->chunk_sectors << 9;
  1164. if (mddev->bitmap && mddev->bitmap_info.file == NULL)
  1165. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  1166. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  1167. list_for_each_entry(rdev2, &mddev->disks, same_set) {
  1168. mdp_disk_t *d;
  1169. int desc_nr;
  1170. int is_active = test_bit(In_sync, &rdev2->flags);
  1171. if (rdev2->raid_disk >= 0 &&
  1172. sb->minor_version >= 91)
  1173. /* we have nowhere to store the recovery_offset,
  1174. * but if it is not below the reshape_position,
  1175. * we can piggy-back on that.
  1176. */
  1177. is_active = 1;
  1178. if (rdev2->raid_disk < 0 ||
  1179. test_bit(Faulty, &rdev2->flags))
  1180. is_active = 0;
  1181. if (is_active)
  1182. desc_nr = rdev2->raid_disk;
  1183. else
  1184. desc_nr = next_spare++;
  1185. rdev2->desc_nr = desc_nr;
  1186. d = &sb->disks[rdev2->desc_nr];
  1187. nr_disks++;
  1188. d->number = rdev2->desc_nr;
  1189. d->major = MAJOR(rdev2->bdev->bd_dev);
  1190. d->minor = MINOR(rdev2->bdev->bd_dev);
  1191. if (is_active)
  1192. d->raid_disk = rdev2->raid_disk;
  1193. else
  1194. d->raid_disk = rdev2->desc_nr; /* compatibility */
  1195. if (test_bit(Faulty, &rdev2->flags))
  1196. d->state = (1<<MD_DISK_FAULTY);
  1197. else if (is_active) {
  1198. d->state = (1<<MD_DISK_ACTIVE);
  1199. if (test_bit(In_sync, &rdev2->flags))
  1200. d->state |= (1<<MD_DISK_SYNC);
  1201. active++;
  1202. working++;
  1203. } else {
  1204. d->state = 0;
  1205. spare++;
  1206. working++;
  1207. }
  1208. if (test_bit(WriteMostly, &rdev2->flags))
  1209. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  1210. }
  1211. /* now set the "removed" and "faulty" bits on any missing devices */
  1212. for (i=0 ; i < mddev->raid_disks ; i++) {
  1213. mdp_disk_t *d = &sb->disks[i];
  1214. if (d->state == 0 && d->number == 0) {
  1215. d->number = i;
  1216. d->raid_disk = i;
  1217. d->state = (1<<MD_DISK_REMOVED);
  1218. d->state |= (1<<MD_DISK_FAULTY);
  1219. failed++;
  1220. }
  1221. }
  1222. sb->nr_disks = nr_disks;
  1223. sb->active_disks = active;
  1224. sb->working_disks = working;
  1225. sb->failed_disks = failed;
  1226. sb->spare_disks = spare;
  1227. sb->this_disk = sb->disks[rdev->desc_nr];
  1228. sb->sb_csum = calc_sb_csum(sb);
  1229. }
  1230. /*
  1231. * rdev_size_change for 0.90.0
  1232. */
  1233. static unsigned long long
  1234. super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1235. {
  1236. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1237. return 0; /* component must fit device */
  1238. if (rdev->mddev->bitmap_info.offset)
  1239. return 0; /* can't move bitmap */
  1240. rdev->sb_start = calc_dev_sboffset(rdev);
  1241. if (!num_sectors || num_sectors > rdev->sb_start)
  1242. num_sectors = rdev->sb_start;
  1243. /* Limit to 4TB as metadata cannot record more than that.
  1244. * 4TB == 2^32 KB, or 2*2^32 sectors.
  1245. */
  1246. if (num_sectors >= (2ULL << 32))
  1247. num_sectors = (2ULL << 32) - 2;
  1248. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1249. rdev->sb_page);
  1250. md_super_wait(rdev->mddev);
  1251. return num_sectors;
  1252. }
  1253. /*
  1254. * version 1 superblock
  1255. */
  1256. static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
  1257. {
  1258. __le32 disk_csum;
  1259. u32 csum;
  1260. unsigned long long newcsum;
  1261. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  1262. __le32 *isuper = (__le32*)sb;
  1263. int i;
  1264. disk_csum = sb->sb_csum;
  1265. sb->sb_csum = 0;
  1266. newcsum = 0;
  1267. for (i=0; size>=4; size -= 4 )
  1268. newcsum += le32_to_cpu(*isuper++);
  1269. if (size == 2)
  1270. newcsum += le16_to_cpu(*(__le16*) isuper);
  1271. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  1272. sb->sb_csum = disk_csum;
  1273. return cpu_to_le32(csum);
  1274. }
  1275. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  1276. int acknowledged);
  1277. static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  1278. {
  1279. struct mdp_superblock_1 *sb;
  1280. int ret;
  1281. sector_t sb_start;
  1282. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  1283. int bmask;
  1284. /*
  1285. * Calculate the position of the superblock in 512byte sectors.
  1286. * It is always aligned to a 4K boundary and
  1287. * depeding on minor_version, it can be:
  1288. * 0: At least 8K, but less than 12K, from end of device
  1289. * 1: At start of device
  1290. * 2: 4K from start of device.
  1291. */
  1292. switch(minor_version) {
  1293. case 0:
  1294. sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
  1295. sb_start -= 8*2;
  1296. sb_start &= ~(sector_t)(4*2-1);
  1297. break;
  1298. case 1:
  1299. sb_start = 0;
  1300. break;
  1301. case 2:
  1302. sb_start = 8;
  1303. break;
  1304. default:
  1305. return -EINVAL;
  1306. }
  1307. rdev->sb_start = sb_start;
  1308. /* superblock is rarely larger than 1K, but it can be larger,
  1309. * and it is safe to read 4k, so we do that
  1310. */
  1311. ret = read_disk_sb(rdev, 4096);
  1312. if (ret) return ret;
  1313. sb = page_address(rdev->sb_page);
  1314. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  1315. sb->major_version != cpu_to_le32(1) ||
  1316. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  1317. le64_to_cpu(sb->super_offset) != rdev->sb_start ||
  1318. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  1319. return -EINVAL;
  1320. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  1321. printk("md: invalid superblock checksum on %s\n",
  1322. bdevname(rdev->bdev,b));
  1323. return -EINVAL;
  1324. }
  1325. if (le64_to_cpu(sb->data_size) < 10) {
  1326. printk("md: data_size too small on %s\n",
  1327. bdevname(rdev->bdev,b));
  1328. return -EINVAL;
  1329. }
  1330. rdev->preferred_minor = 0xffff;
  1331. rdev->data_offset = le64_to_cpu(sb->data_offset);
  1332. atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
  1333. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  1334. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1335. if (rdev->sb_size & bmask)
  1336. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1337. if (minor_version
  1338. && rdev->data_offset < sb_start + (rdev->sb_size/512))
  1339. return -EINVAL;
  1340. if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
  1341. rdev->desc_nr = -1;
  1342. else
  1343. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  1344. if (!rdev->bb_page) {
  1345. rdev->bb_page = alloc_page(GFP_KERNEL);
  1346. if (!rdev->bb_page)
  1347. return -ENOMEM;
  1348. }
  1349. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
  1350. rdev->badblocks.count == 0) {
  1351. /* need to load the bad block list.
  1352. * Currently we limit it to one page.
  1353. */
  1354. s32 offset;
  1355. sector_t bb_sector;
  1356. u64 *bbp;
  1357. int i;
  1358. int sectors = le16_to_cpu(sb->bblog_size);
  1359. if (sectors > (PAGE_SIZE / 512))
  1360. return -EINVAL;
  1361. offset = le32_to_cpu(sb->bblog_offset);
  1362. if (offset == 0)
  1363. return -EINVAL;
  1364. bb_sector = (long long)offset;
  1365. if (!sync_page_io(rdev, bb_sector, sectors << 9,
  1366. rdev->bb_page, READ, true))
  1367. return -EIO;
  1368. bbp = (u64 *)page_address(rdev->bb_page);
  1369. rdev->badblocks.shift = sb->bblog_shift;
  1370. for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
  1371. u64 bb = le64_to_cpu(*bbp);
  1372. int count = bb & (0x3ff);
  1373. u64 sector = bb >> 10;
  1374. sector <<= sb->bblog_shift;
  1375. count <<= sb->bblog_shift;
  1376. if (bb + 1 == 0)
  1377. break;
  1378. if (md_set_badblocks(&rdev->badblocks,
  1379. sector, count, 1) == 0)
  1380. return -EINVAL;
  1381. }
  1382. } else if (sb->bblog_offset == 0)
  1383. rdev->badblocks.shift = -1;
  1384. if (!refdev) {
  1385. ret = 1;
  1386. } else {
  1387. __u64 ev1, ev2;
  1388. struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
  1389. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  1390. sb->level != refsb->level ||
  1391. sb->layout != refsb->layout ||
  1392. sb->chunksize != refsb->chunksize) {
  1393. printk(KERN_WARNING "md: %s has strangely different"
  1394. " superblock to %s\n",
  1395. bdevname(rdev->bdev,b),
  1396. bdevname(refdev->bdev,b2));
  1397. return -EINVAL;
  1398. }
  1399. ev1 = le64_to_cpu(sb->events);
  1400. ev2 = le64_to_cpu(refsb->events);
  1401. if (ev1 > ev2)
  1402. ret = 1;
  1403. else
  1404. ret = 0;
  1405. }
  1406. if (minor_version)
  1407. rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
  1408. le64_to_cpu(sb->data_offset);
  1409. else
  1410. rdev->sectors = rdev->sb_start;
  1411. if (rdev->sectors < le64_to_cpu(sb->data_size))
  1412. return -EINVAL;
  1413. rdev->sectors = le64_to_cpu(sb->data_size);
  1414. if (le64_to_cpu(sb->size) > rdev->sectors)
  1415. return -EINVAL;
  1416. return ret;
  1417. }
  1418. static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
  1419. {
  1420. struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
  1421. __u64 ev1 = le64_to_cpu(sb->events);
  1422. rdev->raid_disk = -1;
  1423. clear_bit(Faulty, &rdev->flags);
  1424. clear_bit(In_sync, &rdev->flags);
  1425. clear_bit(WriteMostly, &rdev->flags);
  1426. if (mddev->raid_disks == 0) {
  1427. mddev->major_version = 1;
  1428. mddev->patch_version = 0;
  1429. mddev->external = 0;
  1430. mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
  1431. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  1432. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  1433. mddev->level = le32_to_cpu(sb->level);
  1434. mddev->clevel[0] = 0;
  1435. mddev->layout = le32_to_cpu(sb->layout);
  1436. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  1437. mddev->dev_sectors = le64_to_cpu(sb->size);
  1438. mddev->events = ev1;
  1439. mddev->bitmap_info.offset = 0;
  1440. mddev->bitmap_info.default_offset = 1024 >> 9;
  1441. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  1442. memcpy(mddev->uuid, sb->set_uuid, 16);
  1443. mddev->max_disks = (4096-256)/2;
  1444. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  1445. mddev->bitmap_info.file == NULL )
  1446. mddev->bitmap_info.offset =
  1447. (__s32)le32_to_cpu(sb->bitmap_offset);
  1448. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
  1449. mddev->reshape_position = le64_to_cpu(sb->reshape_position);
  1450. mddev->delta_disks = le32_to_cpu(sb->delta_disks);
  1451. mddev->new_level = le32_to_cpu(sb->new_level);
  1452. mddev->new_layout = le32_to_cpu(sb->new_layout);
  1453. mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
  1454. } else {
  1455. mddev->reshape_position = MaxSector;
  1456. mddev->delta_disks = 0;
  1457. mddev->new_level = mddev->level;
  1458. mddev->new_layout = mddev->layout;
  1459. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1460. }
  1461. } else if (mddev->pers == NULL) {
  1462. /* Insist of good event counter while assembling, except for
  1463. * spares (which don't need an event count) */
  1464. ++ev1;
  1465. if (rdev->desc_nr >= 0 &&
  1466. rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
  1467. le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
  1468. if (ev1 < mddev->events)
  1469. return -EINVAL;
  1470. } else if (mddev->bitmap) {
  1471. /* If adding to array with a bitmap, then we can accept an
  1472. * older device, but not too old.
  1473. */
  1474. if (ev1 < mddev->bitmap->events_cleared)
  1475. return 0;
  1476. } else {
  1477. if (ev1 < mddev->events)
  1478. /* just a hot-add of a new device, leave raid_disk at -1 */
  1479. return 0;
  1480. }
  1481. if (mddev->level != LEVEL_MULTIPATH) {
  1482. int role;
  1483. if (rdev->desc_nr < 0 ||
  1484. rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
  1485. role = 0xffff;
  1486. rdev->desc_nr = -1;
  1487. } else
  1488. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  1489. switch(role) {
  1490. case 0xffff: /* spare */
  1491. break;
  1492. case 0xfffe: /* faulty */
  1493. set_bit(Faulty, &rdev->flags);
  1494. break;
  1495. default:
  1496. if ((le32_to_cpu(sb->feature_map) &
  1497. MD_FEATURE_RECOVERY_OFFSET))
  1498. rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
  1499. else
  1500. set_bit(In_sync, &rdev->flags);
  1501. rdev->raid_disk = role;
  1502. break;
  1503. }
  1504. if (sb->devflags & WriteMostly1)
  1505. set_bit(WriteMostly, &rdev->flags);
  1506. } else /* MULTIPATH are always insync */
  1507. set_bit(In_sync, &rdev->flags);
  1508. return 0;
  1509. }
  1510. static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
  1511. {
  1512. struct mdp_superblock_1 *sb;
  1513. struct md_rdev *rdev2;
  1514. int max_dev, i;
  1515. /* make rdev->sb match mddev and rdev data. */
  1516. sb = page_address(rdev->sb_page);
  1517. sb->feature_map = 0;
  1518. sb->pad0 = 0;
  1519. sb->recovery_offset = cpu_to_le64(0);
  1520. memset(sb->pad1, 0, sizeof(sb->pad1));
  1521. memset(sb->pad3, 0, sizeof(sb->pad3));
  1522. sb->utime = cpu_to_le64((__u64)mddev->utime);
  1523. sb->events = cpu_to_le64(mddev->events);
  1524. if (mddev->in_sync)
  1525. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  1526. else
  1527. sb->resync_offset = cpu_to_le64(0);
  1528. sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
  1529. sb->raid_disks = cpu_to_le32(mddev->raid_disks);
  1530. sb->size = cpu_to_le64(mddev->dev_sectors);
  1531. sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
  1532. sb->level = cpu_to_le32(mddev->level);
  1533. sb->layout = cpu_to_le32(mddev->layout);
  1534. if (test_bit(WriteMostly, &rdev->flags))
  1535. sb->devflags |= WriteMostly1;
  1536. else
  1537. sb->devflags &= ~WriteMostly1;
  1538. if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
  1539. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
  1540. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  1541. }
  1542. if (rdev->raid_disk >= 0 &&
  1543. !test_bit(In_sync, &rdev->flags)) {
  1544. sb->feature_map |=
  1545. cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
  1546. sb->recovery_offset =
  1547. cpu_to_le64(rdev->recovery_offset);
  1548. }
  1549. if (mddev->reshape_position != MaxSector) {
  1550. sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
  1551. sb->reshape_position = cpu_to_le64(mddev->reshape_position);
  1552. sb->new_layout = cpu_to_le32(mddev->new_layout);
  1553. sb->delta_disks = cpu_to_le32(mddev->delta_disks);
  1554. sb->new_level = cpu_to_le32(mddev->new_level);
  1555. sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
  1556. }
  1557. if (rdev->badblocks.count == 0)
  1558. /* Nothing to do for bad blocks*/ ;
  1559. else if (sb->bblog_offset == 0)
  1560. /* Cannot record bad blocks on this device */
  1561. md_error(mddev, rdev);
  1562. else {
  1563. struct badblocks *bb = &rdev->badblocks;
  1564. u64 *bbp = (u64 *)page_address(rdev->bb_page);
  1565. u64 *p = bb->page;
  1566. sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
  1567. if (bb->changed) {
  1568. unsigned seq;
  1569. retry:
  1570. seq = read_seqbegin(&bb->lock);
  1571. memset(bbp, 0xff, PAGE_SIZE);
  1572. for (i = 0 ; i < bb->count ; i++) {
  1573. u64 internal_bb = *p++;
  1574. u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
  1575. | BB_LEN(internal_bb));
  1576. *bbp++ = cpu_to_le64(store_bb);
  1577. }
  1578. if (read_seqretry(&bb->lock, seq))
  1579. goto retry;
  1580. bb->sector = (rdev->sb_start +
  1581. (int)le32_to_cpu(sb->bblog_offset));
  1582. bb->size = le16_to_cpu(sb->bblog_size);
  1583. bb->changed = 0;
  1584. }
  1585. }
  1586. max_dev = 0;
  1587. list_for_each_entry(rdev2, &mddev->disks, same_set)
  1588. if (rdev2->desc_nr+1 > max_dev)
  1589. max_dev = rdev2->desc_nr+1;
  1590. if (max_dev > le32_to_cpu(sb->max_dev)) {
  1591. int bmask;
  1592. sb->max_dev = cpu_to_le32(max_dev);
  1593. rdev->sb_size = max_dev * 2 + 256;
  1594. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1595. if (rdev->sb_size & bmask)
  1596. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1597. } else
  1598. max_dev = le32_to_cpu(sb->max_dev);
  1599. for (i=0; i<max_dev;i++)
  1600. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1601. list_for_each_entry(rdev2, &mddev->disks, same_set) {
  1602. i = rdev2->desc_nr;
  1603. if (test_bit(Faulty, &rdev2->flags))
  1604. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1605. else if (test_bit(In_sync, &rdev2->flags))
  1606. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1607. else if (rdev2->raid_disk >= 0)
  1608. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1609. else
  1610. sb->dev_roles[i] = cpu_to_le16(0xffff);
  1611. }
  1612. sb->sb_csum = calc_sb_1_csum(sb);
  1613. }
  1614. static unsigned long long
  1615. super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1616. {
  1617. struct mdp_superblock_1 *sb;
  1618. sector_t max_sectors;
  1619. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1620. return 0; /* component must fit device */
  1621. if (rdev->sb_start < rdev->data_offset) {
  1622. /* minor versions 1 and 2; superblock before data */
  1623. max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
  1624. max_sectors -= rdev->data_offset;
  1625. if (!num_sectors || num_sectors > max_sectors)
  1626. num_sectors = max_sectors;
  1627. } else if (rdev->mddev->bitmap_info.offset) {
  1628. /* minor version 0 with bitmap we can't move */
  1629. return 0;
  1630. } else {
  1631. /* minor version 0; superblock after data */
  1632. sector_t sb_start;
  1633. sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
  1634. sb_start &= ~(sector_t)(4*2 - 1);
  1635. max_sectors = rdev->sectors + sb_start - rdev->sb_start;
  1636. if (!num_sectors || num_sectors > max_sectors)
  1637. num_sectors = max_sectors;
  1638. rdev->sb_start = sb_start;
  1639. }
  1640. sb = page_address(rdev->sb_page);
  1641. sb->data_size = cpu_to_le64(num_sectors);
  1642. sb->super_offset = rdev->sb_start;
  1643. sb->sb_csum = calc_sb_1_csum(sb);
  1644. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1645. rdev->sb_page);
  1646. md_super_wait(rdev->mddev);
  1647. return num_sectors;
  1648. }
  1649. static struct super_type super_types[] = {
  1650. [0] = {
  1651. .name = "0.90.0",
  1652. .owner = THIS_MODULE,
  1653. .load_super = super_90_load,
  1654. .validate_super = super_90_validate,
  1655. .sync_super = super_90_sync,
  1656. .rdev_size_change = super_90_rdev_size_change,
  1657. },
  1658. [1] = {
  1659. .name = "md-1",
  1660. .owner = THIS_MODULE,
  1661. .load_super = super_1_load,
  1662. .validate_super = super_1_validate,
  1663. .sync_super = super_1_sync,
  1664. .rdev_size_change = super_1_rdev_size_change,
  1665. },
  1666. };
  1667. static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
  1668. {
  1669. if (mddev->sync_super) {
  1670. mddev->sync_super(mddev, rdev);
  1671. return;
  1672. }
  1673. BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
  1674. super_types[mddev->major_version].sync_super(mddev, rdev);
  1675. }
  1676. static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
  1677. {
  1678. struct md_rdev *rdev, *rdev2;
  1679. rcu_read_lock();
  1680. rdev_for_each_rcu(rdev, mddev1)
  1681. rdev_for_each_rcu(rdev2, mddev2)
  1682. if (rdev->bdev->bd_contains ==
  1683. rdev2->bdev->bd_contains) {
  1684. rcu_read_unlock();
  1685. return 1;
  1686. }
  1687. rcu_read_unlock();
  1688. return 0;
  1689. }
  1690. static LIST_HEAD(pending_raid_disks);
  1691. /*
  1692. * Try to register data integrity profile for an mddev
  1693. *
  1694. * This is called when an array is started and after a disk has been kicked
  1695. * from the array. It only succeeds if all working and active component devices
  1696. * are integrity capable with matching profiles.
  1697. */
  1698. int md_integrity_register(struct mddev *mddev)
  1699. {
  1700. struct md_rdev *rdev, *reference = NULL;
  1701. if (list_empty(&mddev->disks))
  1702. return 0; /* nothing to do */
  1703. if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
  1704. return 0; /* shouldn't register, or already is */
  1705. list_for_each_entry(rdev, &mddev->disks, same_set) {
  1706. /* skip spares and non-functional disks */
  1707. if (test_bit(Faulty, &rdev->flags))
  1708. continue;
  1709. if (rdev->raid_disk < 0)
  1710. continue;
  1711. if (!reference) {
  1712. /* Use the first rdev as the reference */
  1713. reference = rdev;
  1714. continue;
  1715. }
  1716. /* does this rdev's profile match the reference profile? */
  1717. if (blk_integrity_compare(reference->bdev->bd_disk,
  1718. rdev->bdev->bd_disk) < 0)
  1719. return -EINVAL;
  1720. }
  1721. if (!reference || !bdev_get_integrity(reference->bdev))
  1722. return 0;
  1723. /*
  1724. * All component devices are integrity capable and have matching
  1725. * profiles, register the common profile for the md device.
  1726. */
  1727. if (blk_integrity_register(mddev->gendisk,
  1728. bdev_get_integrity(reference->bdev)) != 0) {
  1729. printk(KERN_ERR "md: failed to register integrity for %s\n",
  1730. mdname(mddev));
  1731. return -EINVAL;
  1732. }
  1733. printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
  1734. if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
  1735. printk(KERN_ERR "md: failed to create integrity pool for %s\n",
  1736. mdname(mddev));
  1737. return -EINVAL;
  1738. }
  1739. return 0;
  1740. }
  1741. EXPORT_SYMBOL(md_integrity_register);
  1742. /* Disable data integrity if non-capable/non-matching disk is being added */
  1743. void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
  1744. {
  1745. struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
  1746. struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
  1747. if (!bi_mddev) /* nothing to do */
  1748. return;
  1749. if (rdev->raid_disk < 0) /* skip spares */
  1750. return;
  1751. if (bi_rdev && blk_integrity_compare(mddev->gendisk,
  1752. rdev->bdev->bd_disk) >= 0)
  1753. return;
  1754. printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
  1755. blk_integrity_unregister(mddev->gendisk);
  1756. }
  1757. EXPORT_SYMBOL(md_integrity_add_rdev);
  1758. static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
  1759. {
  1760. char b[BDEVNAME_SIZE];
  1761. struct kobject *ko;
  1762. char *s;
  1763. int err;
  1764. if (rdev->mddev) {
  1765. MD_BUG();
  1766. return -EINVAL;
  1767. }
  1768. /* prevent duplicates */
  1769. if (find_rdev(mddev, rdev->bdev->bd_dev))
  1770. return -EEXIST;
  1771. /* make sure rdev->sectors exceeds mddev->dev_sectors */
  1772. if (rdev->sectors && (mddev->dev_sectors == 0 ||
  1773. rdev->sectors < mddev->dev_sectors)) {
  1774. if (mddev->pers) {
  1775. /* Cannot change size, so fail
  1776. * If mddev->level <= 0, then we don't care
  1777. * about aligning sizes (e.g. linear)
  1778. */
  1779. if (mddev->level > 0)
  1780. return -ENOSPC;
  1781. } else
  1782. mddev->dev_sectors = rdev->sectors;
  1783. }
  1784. /* Verify rdev->desc_nr is unique.
  1785. * If it is -1, assign a free number, else
  1786. * check number is not in use
  1787. */
  1788. if (rdev->desc_nr < 0) {
  1789. int choice = 0;
  1790. if (mddev->pers) choice = mddev->raid_disks;
  1791. while (find_rdev_nr(mddev, choice))
  1792. choice++;
  1793. rdev->desc_nr = choice;
  1794. } else {
  1795. if (find_rdev_nr(mddev, rdev->desc_nr))
  1796. return -EBUSY;
  1797. }
  1798. if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
  1799. printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
  1800. mdname(mddev), mddev->max_disks);
  1801. return -EBUSY;
  1802. }
  1803. bdevname(rdev->bdev,b);
  1804. while ( (s=strchr(b, '/')) != NULL)
  1805. *s = '!';
  1806. rdev->mddev = mddev;
  1807. printk(KERN_INFO "md: bind<%s>\n", b);
  1808. if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
  1809. goto fail;
  1810. ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
  1811. if (sysfs_create_link(&rdev->kobj, ko, "block"))
  1812. /* failure here is OK */;
  1813. rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
  1814. list_add_rcu(&rdev->same_set, &mddev->disks);
  1815. bd_link_disk_holder(rdev->bdev, mddev->gendisk);
  1816. /* May as well allow recovery to be retried once */
  1817. mddev->recovery_disabled++;
  1818. return 0;
  1819. fail:
  1820. printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
  1821. b, mdname(mddev));
  1822. return err;
  1823. }
  1824. static void md_delayed_delete(struct work_struct *ws)
  1825. {
  1826. struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
  1827. kobject_del(&rdev->kobj);
  1828. kobject_put(&rdev->kobj);
  1829. }
  1830. static void unbind_rdev_from_array(struct md_rdev * rdev)
  1831. {
  1832. char b[BDEVNAME_SIZE];
  1833. if (!rdev->mddev) {
  1834. MD_BUG();
  1835. return;
  1836. }
  1837. bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
  1838. list_del_rcu(&rdev->same_set);
  1839. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1840. rdev->mddev = NULL;
  1841. sysfs_remove_link(&rdev->kobj, "block");
  1842. sysfs_put(rdev->sysfs_state);
  1843. rdev->sysfs_state = NULL;
  1844. kfree(rdev->badblocks.page);
  1845. rdev->badblocks.count = 0;
  1846. rdev->badblocks.page = NULL;
  1847. /* We need to delay this, otherwise we can deadlock when
  1848. * writing to 'remove' to "dev/state". We also need
  1849. * to delay it due to rcu usage.
  1850. */
  1851. synchronize_rcu();
  1852. INIT_WORK(&rdev->del_work, md_delayed_delete);
  1853. kobject_get(&rdev->kobj);
  1854. queue_work(md_misc_wq, &rdev->del_work);
  1855. }
  1856. /*
  1857. * prevent the device from being mounted, repartitioned or
  1858. * otherwise reused by a RAID array (or any other kernel
  1859. * subsystem), by bd_claiming the device.
  1860. */
  1861. static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
  1862. {
  1863. int err = 0;
  1864. struct block_device *bdev;
  1865. char b[BDEVNAME_SIZE];
  1866. bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
  1867. shared ? (struct md_rdev *)lock_rdev : rdev);
  1868. if (IS_ERR(bdev)) {
  1869. printk(KERN_ERR "md: could not open %s.\n",
  1870. __bdevname(dev, b));
  1871. return PTR_ERR(bdev);
  1872. }
  1873. rdev->bdev = bdev;
  1874. return err;
  1875. }
  1876. static void unlock_rdev(struct md_rdev *rdev)
  1877. {
  1878. struct block_device *bdev = rdev->bdev;
  1879. rdev->bdev = NULL;
  1880. if (!bdev)
  1881. MD_BUG();
  1882. blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
  1883. }
  1884. void md_autodetect_dev(dev_t dev);
  1885. static void export_rdev(struct md_rdev * rdev)
  1886. {
  1887. char b[BDEVNAME_SIZE];
  1888. printk(KERN_INFO "md: export_rdev(%s)\n",
  1889. bdevname(rdev->bdev,b));
  1890. if (rdev->mddev)
  1891. MD_BUG();
  1892. free_disk_sb(rdev);
  1893. #ifndef MODULE
  1894. if (test_bit(AutoDetected, &rdev->flags))
  1895. md_autodetect_dev(rdev->bdev->bd_dev);
  1896. #endif
  1897. unlock_rdev(rdev);
  1898. kobject_put(&rdev->kobj);
  1899. }
  1900. static void kick_rdev_from_array(struct md_rdev * rdev)
  1901. {
  1902. unbind_rdev_from_array(rdev);
  1903. export_rdev(rdev);
  1904. }
  1905. static void export_array(struct mddev *mddev)
  1906. {
  1907. struct md_rdev *rdev, *tmp;
  1908. rdev_for_each(rdev, tmp, mddev) {
  1909. if (!rdev->mddev) {
  1910. MD_BUG();
  1911. continue;
  1912. }
  1913. kick_rdev_from_array(rdev);
  1914. }
  1915. if (!list_empty(&mddev->disks))
  1916. MD_BUG();
  1917. mddev->raid_disks = 0;
  1918. mddev->major_version = 0;
  1919. }
  1920. static void print_desc(mdp_disk_t *desc)
  1921. {
  1922. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  1923. desc->major,desc->minor,desc->raid_disk,desc->state);
  1924. }
  1925. static void print_sb_90(mdp_super_t *sb)
  1926. {
  1927. int i;
  1928. printk(KERN_INFO
  1929. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  1930. sb->major_version, sb->minor_version, sb->patch_version,
  1931. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  1932. sb->ctime);
  1933. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  1934. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  1935. sb->md_minor, sb->layout, sb->chunk_size);
  1936. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  1937. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  1938. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  1939. sb->failed_disks, sb->spare_disks,
  1940. sb->sb_csum, (unsigned long)sb->events_lo);
  1941. printk(KERN_INFO);
  1942. for (i = 0; i < MD_SB_DISKS; i++) {
  1943. mdp_disk_t *desc;
  1944. desc = sb->disks + i;
  1945. if (desc->number || desc->major || desc->minor ||
  1946. desc->raid_disk || (desc->state && (desc->state != 4))) {
  1947. printk(" D %2d: ", i);
  1948. print_desc(desc);
  1949. }
  1950. }
  1951. printk(KERN_INFO "md: THIS: ");
  1952. print_desc(&sb->this_disk);
  1953. }
  1954. static void print_sb_1(struct mdp_superblock_1 *sb)
  1955. {
  1956. __u8 *uuid;
  1957. uuid = sb->set_uuid;
  1958. printk(KERN_INFO
  1959. "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
  1960. "md: Name: \"%s\" CT:%llu\n",
  1961. le32_to_cpu(sb->major_version),
  1962. le32_to_cpu(sb->feature_map),
  1963. uuid,
  1964. sb->set_name,
  1965. (unsigned long long)le64_to_cpu(sb->ctime)
  1966. & MD_SUPERBLOCK_1_TIME_SEC_MASK);
  1967. uuid = sb->device_uuid;
  1968. printk(KERN_INFO
  1969. "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
  1970. " RO:%llu\n"
  1971. "md: Dev:%08x UUID: %pU\n"
  1972. "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
  1973. "md: (MaxDev:%u) \n",
  1974. le32_to_cpu(sb->level),
  1975. (unsigned long long)le64_to_cpu(sb->size),
  1976. le32_to_cpu(sb->raid_disks),
  1977. le32_to_cpu(sb->layout),
  1978. le32_to_cpu(sb->chunksize),
  1979. (unsigned long long)le64_to_cpu(sb->data_offset),
  1980. (unsigned long long)le64_to_cpu(sb->data_size),
  1981. (unsigned long long)le64_to_cpu(sb->super_offset),
  1982. (unsigned long long)le64_to_cpu(sb->recovery_offset),
  1983. le32_to_cpu(sb->dev_number),
  1984. uuid,
  1985. sb->devflags,
  1986. (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
  1987. (unsigned long long)le64_to_cpu(sb->events),
  1988. (unsigned long long)le64_to_cpu(sb->resync_offset),
  1989. le32_to_cpu(sb->sb_csum),
  1990. le32_to_cpu(sb->max_dev)
  1991. );
  1992. }
  1993. static void print_rdev(struct md_rdev *rdev, int major_version)
  1994. {
  1995. char b[BDEVNAME_SIZE];
  1996. printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
  1997. bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
  1998. test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
  1999. rdev->desc_nr);
  2000. if (rdev->sb_loaded) {
  2001. printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
  2002. switch (major_version) {
  2003. case 0:
  2004. print_sb_90(page_address(rdev->sb_page));
  2005. break;
  2006. case 1:
  2007. print_sb_1(page_address(rdev->sb_page));
  2008. break;
  2009. }
  2010. } else
  2011. printk(KERN_INFO "md: no rdev superblock!\n");
  2012. }
  2013. static void md_print_devices(void)
  2014. {
  2015. struct list_head *tmp;
  2016. struct md_rdev *rdev;
  2017. struct mddev *mddev;
  2018. char b[BDEVNAME_SIZE];
  2019. printk("\n");
  2020. printk("md: **********************************\n");
  2021. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  2022. printk("md: **********************************\n");
  2023. for_each_mddev(mddev, tmp) {
  2024. if (mddev->bitmap)
  2025. bitmap_print_sb(mddev->bitmap);
  2026. else
  2027. printk("%s: ", mdname(mddev));
  2028. list_for_each_entry(rdev, &mddev->disks, same_set)
  2029. printk("<%s>", bdevname(rdev->bdev,b));
  2030. printk("\n");
  2031. list_for_each_entry(rdev, &mddev->disks, same_set)
  2032. print_rdev(rdev, mddev->major_version);
  2033. }
  2034. printk("md: **********************************\n");
  2035. printk("\n");
  2036. }
  2037. static void sync_sbs(struct mddev * mddev, int nospares)
  2038. {
  2039. /* Update each superblock (in-memory image), but
  2040. * if we are allowed to, skip spares which already
  2041. * have the right event counter, or have one earlier
  2042. * (which would mean they aren't being marked as dirty
  2043. * with the rest of the array)
  2044. */
  2045. struct md_rdev *rdev;
  2046. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2047. if (rdev->sb_events == mddev->events ||
  2048. (nospares &&
  2049. rdev->raid_disk < 0 &&
  2050. rdev->sb_events+1 == mddev->events)) {
  2051. /* Don't update this superblock */
  2052. rdev->sb_loaded = 2;
  2053. } else {
  2054. sync_super(mddev, rdev);
  2055. rdev->sb_loaded = 1;
  2056. }
  2057. }
  2058. }
  2059. static void md_update_sb(struct mddev * mddev, int force_change)
  2060. {
  2061. struct md_rdev *rdev;
  2062. int sync_req;
  2063. int nospares = 0;
  2064. int any_badblocks_changed = 0;
  2065. repeat:
  2066. /* First make sure individual recovery_offsets are correct */
  2067. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2068. if (rdev->raid_disk >= 0 &&
  2069. mddev->delta_disks >= 0 &&
  2070. !test_bit(In_sync, &rdev->flags) &&
  2071. mddev->curr_resync_completed > rdev->recovery_offset)
  2072. rdev->recovery_offset = mddev->curr_resync_completed;
  2073. }
  2074. if (!mddev->persistent) {
  2075. clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
  2076. clear_bit(MD_CHANGE_DEVS, &mddev->flags);
  2077. if (!mddev->external) {
  2078. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2079. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2080. if (rdev->badblocks.changed) {
  2081. md_ack_all_badblocks(&rdev->badblocks);
  2082. md_error(mddev, rdev);
  2083. }
  2084. clear_bit(Blocked, &rdev->flags);
  2085. clear_bit(BlockedBadBlocks, &rdev->flags);
  2086. wake_up(&rdev->blocked_wait);
  2087. }
  2088. }
  2089. wake_up(&mddev->sb_wait);
  2090. return;
  2091. }
  2092. spin_lock_irq(&mddev->write_lock);
  2093. mddev->utime = get_seconds();
  2094. if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
  2095. force_change = 1;
  2096. if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
  2097. /* just a clean<-> dirty transition, possibly leave spares alone,
  2098. * though if events isn't the right even/odd, we will have to do
  2099. * spares after all
  2100. */
  2101. nospares = 1;
  2102. if (force_change)
  2103. nospares = 0;
  2104. if (mddev->degraded)
  2105. /* If the array is degraded, then skipping spares is both
  2106. * dangerous and fairly pointless.
  2107. * Dangerous because a device that was removed from the array
  2108. * might have a event_count that still looks up-to-date,
  2109. * so it can be re-added without a resync.
  2110. * Pointless because if there are any spares to skip,
  2111. * then a recovery will happen and soon that array won't
  2112. * be degraded any more and the spare can go back to sleep then.
  2113. */
  2114. nospares = 0;
  2115. sync_req = mddev->in_sync;
  2116. /* If this is just a dirty<->clean transition, and the array is clean
  2117. * and 'events' is odd, we can roll back to the previous clean state */
  2118. if (nospares
  2119. && (mddev->in_sync && mddev->recovery_cp == MaxSector)
  2120. && mddev->can_decrease_events
  2121. && mddev->events != 1) {
  2122. mddev->events--;
  2123. mddev->can_decrease_events = 0;
  2124. } else {
  2125. /* otherwise we have to go forward and ... */
  2126. mddev->events ++;
  2127. mddev->can_decrease_events = nospares;
  2128. }
  2129. if (!mddev->events) {
  2130. /*
  2131. * oops, this 64-bit counter should never wrap.
  2132. * Either we are in around ~1 trillion A.C., assuming
  2133. * 1 reboot per second, or we have a bug:
  2134. */
  2135. MD_BUG();
  2136. mddev->events --;
  2137. }
  2138. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2139. if (rdev->badblocks.changed)
  2140. any_badblocks_changed++;
  2141. if (test_bit(Faulty, &rdev->flags))
  2142. set_bit(FaultRecorded, &rdev->flags);
  2143. }
  2144. sync_sbs(mddev, nospares);
  2145. spin_unlock_irq(&mddev->write_lock);
  2146. pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
  2147. mdname(mddev), mddev->in_sync);
  2148. bitmap_update_sb(mddev->bitmap);
  2149. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2150. char b[BDEVNAME_SIZE];
  2151. if (rdev->sb_loaded != 1)
  2152. continue; /* no noise on spare devices */
  2153. if (!test_bit(Faulty, &rdev->flags) &&
  2154. rdev->saved_raid_disk == -1) {
  2155. md_super_write(mddev,rdev,
  2156. rdev->sb_start, rdev->sb_size,
  2157. rdev->sb_page);
  2158. pr_debug("md: (write) %s's sb offset: %llu\n",
  2159. bdevname(rdev->bdev, b),
  2160. (unsigned long long)rdev->sb_start);
  2161. rdev->sb_events = mddev->events;
  2162. if (rdev->badblocks.size) {
  2163. md_super_write(mddev, rdev,
  2164. rdev->badblocks.sector,
  2165. rdev->badblocks.size << 9,
  2166. rdev->bb_page);
  2167. rdev->badblocks.size = 0;
  2168. }
  2169. } else if (test_bit(Faulty, &rdev->flags))
  2170. pr_debug("md: %s (skipping faulty)\n",
  2171. bdevname(rdev->bdev, b));
  2172. else
  2173. pr_debug("(skipping incremental s/r ");
  2174. if (mddev->level == LEVEL_MULTIPATH)
  2175. /* only need to write one superblock... */
  2176. break;
  2177. }
  2178. md_super_wait(mddev);
  2179. /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
  2180. spin_lock_irq(&mddev->write_lock);
  2181. if (mddev->in_sync != sync_req ||
  2182. test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  2183. /* have to write it out again */
  2184. spin_unlock_irq(&mddev->write_lock);
  2185. goto repeat;
  2186. }
  2187. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2188. spin_unlock_irq(&mddev->write_lock);
  2189. wake_up(&mddev->sb_wait);
  2190. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  2191. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  2192. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2193. if (test_and_clear_bit(FaultRecorded, &rdev->flags))
  2194. clear_bit(Blocked, &rdev->flags);
  2195. if (any_badblocks_changed)
  2196. md_ack_all_badblocks(&rdev->badblocks);
  2197. clear_bit(BlockedBadBlocks, &rdev->flags);
  2198. wake_up(&rdev->blocked_wait);
  2199. }
  2200. }
  2201. /* words written to sysfs files may, or may not, be \n terminated.
  2202. * We want to accept with case. For this we use cmd_match.
  2203. */
  2204. static int cmd_match(const char *cmd, const char *str)
  2205. {
  2206. /* See if cmd, written into a sysfs file, matches
  2207. * str. They must either be the same, or cmd can
  2208. * have a trailing newline
  2209. */
  2210. while (*cmd && *str && *cmd == *str) {
  2211. cmd++;
  2212. str++;
  2213. }
  2214. if (*cmd == '\n')
  2215. cmd++;
  2216. if (*str || *cmd)
  2217. return 0;
  2218. return 1;
  2219. }
  2220. struct rdev_sysfs_entry {
  2221. struct attribute attr;
  2222. ssize_t (*show)(struct md_rdev *, char *);
  2223. ssize_t (*store)(struct md_rdev *, const char *, size_t);
  2224. };
  2225. static ssize_t
  2226. state_show(struct md_rdev *rdev, char *page)
  2227. {
  2228. char *sep = "";
  2229. size_t len = 0;
  2230. if (test_bit(Faulty, &rdev->flags) ||
  2231. rdev->badblocks.unacked_exist) {
  2232. len+= sprintf(page+len, "%sfaulty",sep);
  2233. sep = ",";
  2234. }
  2235. if (test_bit(In_sync, &rdev->flags)) {
  2236. len += sprintf(page+len, "%sin_sync",sep);
  2237. sep = ",";
  2238. }
  2239. if (test_bit(WriteMostly, &rdev->flags)) {
  2240. len += sprintf(page+len, "%swrite_mostly",sep);
  2241. sep = ",";
  2242. }
  2243. if (test_bit(Blocked, &rdev->flags) ||
  2244. (rdev->badblocks.unacked_exist
  2245. && !test_bit(Faulty, &rdev->flags))) {
  2246. len += sprintf(page+len, "%sblocked", sep);
  2247. sep = ",";
  2248. }
  2249. if (!test_bit(Faulty, &rdev->flags) &&
  2250. !test_bit(In_sync, &rdev->flags)) {
  2251. len += sprintf(page+len, "%sspare", sep);
  2252. sep = ",";
  2253. }
  2254. if (test_bit(WriteErrorSeen, &rdev->flags)) {
  2255. len += sprintf(page+len, "%swrite_error", sep);
  2256. sep = ",";
  2257. }
  2258. return len+sprintf(page+len, "\n");
  2259. }
  2260. static ssize_t
  2261. state_store(struct md_rdev *rdev, const char *buf, size_t len)
  2262. {
  2263. /* can write
  2264. * faulty - simulates an error
  2265. * remove - disconnects the device
  2266. * writemostly - sets write_mostly
  2267. * -writemostly - clears write_mostly
  2268. * blocked - sets the Blocked flags
  2269. * -blocked - clears the Blocked and possibly simulates an error
  2270. * insync - sets Insync providing device isn't active
  2271. * write_error - sets WriteErrorSeen
  2272. * -write_error - clears WriteErrorSeen
  2273. */
  2274. int err = -EINVAL;
  2275. if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
  2276. md_error(rdev->mddev, rdev);
  2277. if (test_bit(Faulty, &rdev->flags))
  2278. err = 0;
  2279. else
  2280. err = -EBUSY;
  2281. } else if (cmd_match(buf, "remove")) {
  2282. if (rdev->raid_disk >= 0)
  2283. err = -EBUSY;
  2284. else {
  2285. struct mddev *mddev = rdev->mddev;
  2286. kick_rdev_from_array(rdev);
  2287. if (mddev->pers)
  2288. md_update_sb(mddev, 1);
  2289. md_new_event(mddev);
  2290. err = 0;
  2291. }
  2292. } else if (cmd_match(buf, "writemostly")) {
  2293. set_bit(WriteMostly, &rdev->flags);
  2294. err = 0;
  2295. } else if (cmd_match(buf, "-writemostly")) {
  2296. clear_bit(WriteMostly, &rdev->flags);
  2297. err = 0;
  2298. } else if (cmd_match(buf, "blocked")) {
  2299. set_bit(Blocked, &rdev->flags);
  2300. err = 0;
  2301. } else if (cmd_match(buf, "-blocked")) {
  2302. if (!test_bit(Faulty, &rdev->flags) &&
  2303. rdev->badblocks.unacked_exist) {
  2304. /* metadata handler doesn't understand badblocks,
  2305. * so we need to fail the device
  2306. */
  2307. md_error(rdev->mddev, rdev);
  2308. }
  2309. clear_bit(Blocked, &rdev->flags);
  2310. clear_bit(BlockedBadBlocks, &rdev->flags);
  2311. wake_up(&rdev->blocked_wait);
  2312. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2313. md_wakeup_thread(rdev->mddev->thread);
  2314. err = 0;
  2315. } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
  2316. set_bit(In_sync, &rdev->flags);
  2317. err = 0;
  2318. } else if (cmd_match(buf, "write_error")) {
  2319. set_bit(WriteErrorSeen, &rdev->flags);
  2320. err = 0;
  2321. } else if (cmd_match(buf, "-write_error")) {
  2322. clear_bit(WriteErrorSeen, &rdev->flags);
  2323. err = 0;
  2324. }
  2325. if (!err)
  2326. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2327. return err ? err : len;
  2328. }
  2329. static struct rdev_sysfs_entry rdev_state =
  2330. __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
  2331. static ssize_t
  2332. errors_show(struct md_rdev *rdev, char *page)
  2333. {
  2334. return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
  2335. }
  2336. static ssize_t
  2337. errors_store(struct md_rdev *rdev, const char *buf, size_t len)
  2338. {
  2339. char *e;
  2340. unsigned long n = simple_strtoul(buf, &e, 10);
  2341. if (*buf && (*e == 0 || *e == '\n')) {
  2342. atomic_set(&rdev->corrected_errors, n);
  2343. return len;
  2344. }
  2345. return -EINVAL;
  2346. }
  2347. static struct rdev_sysfs_entry rdev_errors =
  2348. __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
  2349. static ssize_t
  2350. slot_show(struct md_rdev *rdev, char *page)
  2351. {
  2352. if (rdev->raid_disk < 0)
  2353. return sprintf(page, "none\n");
  2354. else
  2355. return sprintf(page, "%d\n", rdev->raid_disk);
  2356. }
  2357. static ssize_t
  2358. slot_store(struct md_rdev *rdev, const char *buf, size_t len)
  2359. {
  2360. char *e;
  2361. int err;
  2362. int slot = simple_strtoul(buf, &e, 10);
  2363. if (strncmp(buf, "none", 4)==0)
  2364. slot = -1;
  2365. else if (e==buf || (*e && *e!= '\n'))
  2366. return -EINVAL;
  2367. if (rdev->mddev->pers && slot == -1) {
  2368. /* Setting 'slot' on an active array requires also
  2369. * updating the 'rd%d' link, and communicating
  2370. * with the personality with ->hot_*_disk.
  2371. * For now we only support removing
  2372. * failed/spare devices. This normally happens automatically,
  2373. * but not when the metadata is externally managed.
  2374. */
  2375. if (rdev->raid_disk == -1)
  2376. return -EEXIST;
  2377. /* personality does all needed checks */
  2378. if (rdev->mddev->pers->hot_remove_disk == NULL)
  2379. return -EINVAL;
  2380. err = rdev->mddev->pers->
  2381. hot_remove_disk(rdev->mddev, rdev->raid_disk);
  2382. if (err)
  2383. return err;
  2384. sysfs_unlink_rdev(rdev->mddev, rdev);
  2385. rdev->raid_disk = -1;
  2386. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2387. md_wakeup_thread(rdev->mddev->thread);
  2388. } else if (rdev->mddev->pers) {
  2389. struct md_rdev *rdev2;
  2390. /* Activating a spare .. or possibly reactivating
  2391. * if we ever get bitmaps working here.
  2392. */
  2393. if (rdev->raid_disk != -1)
  2394. return -EBUSY;
  2395. if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
  2396. return -EBUSY;
  2397. if (rdev->mddev->pers->hot_add_disk == NULL)
  2398. return -EINVAL;
  2399. list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
  2400. if (rdev2->raid_disk == slot)
  2401. return -EEXIST;
  2402. if (slot >= rdev->mddev->raid_disks &&
  2403. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2404. return -ENOSPC;
  2405. rdev->raid_disk = slot;
  2406. if (test_bit(In_sync, &rdev->flags))
  2407. rdev->saved_raid_disk = slot;
  2408. else
  2409. rdev->saved_raid_disk = -1;
  2410. clear_bit(In_sync, &rdev->flags);
  2411. err = rdev->mddev->pers->
  2412. hot_add_disk(rdev->mddev, rdev);
  2413. if (err) {
  2414. rdev->raid_disk = -1;
  2415. return err;
  2416. } else
  2417. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2418. if (sysfs_link_rdev(rdev->mddev, rdev))
  2419. /* failure here is OK */;
  2420. /* don't wakeup anyone, leave that to userspace. */
  2421. } else {
  2422. if (slot >= rdev->mddev->raid_disks &&
  2423. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2424. return -ENOSPC;
  2425. rdev->raid_disk = slot;
  2426. /* assume it is working */
  2427. clear_bit(Faulty, &rdev->flags);
  2428. clear_bit(WriteMostly, &rdev->flags);
  2429. set_bit(In_sync, &rdev->flags);
  2430. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2431. }
  2432. return len;
  2433. }
  2434. static struct rdev_sysfs_entry rdev_slot =
  2435. __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
  2436. static ssize_t
  2437. offset_show(struct md_rdev *rdev, char *page)
  2438. {
  2439. return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
  2440. }
  2441. static ssize_t
  2442. offset_store(struct md_rdev *rdev, const char *buf, size_t len)
  2443. {
  2444. char *e;
  2445. unsigned long long offset = simple_strtoull(buf, &e, 10);
  2446. if (e==buf || (*e && *e != '\n'))
  2447. return -EINVAL;
  2448. if (rdev->mddev->pers && rdev->raid_disk >= 0)
  2449. return -EBUSY;
  2450. if (rdev->sectors && rdev->mddev->external)
  2451. /* Must set offset before size, so overlap checks
  2452. * can be sane */
  2453. return -EBUSY;
  2454. rdev->data_offset = offset;
  2455. return len;
  2456. }
  2457. static struct rdev_sysfs_entry rdev_offset =
  2458. __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
  2459. static ssize_t
  2460. rdev_size_show(struct md_rdev *rdev, char *page)
  2461. {
  2462. return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
  2463. }
  2464. static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
  2465. {
  2466. /* check if two start/length pairs overlap */
  2467. if (s1+l1 <= s2)
  2468. return 0;
  2469. if (s2+l2 <= s1)
  2470. return 0;
  2471. return 1;
  2472. }
  2473. static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
  2474. {
  2475. unsigned long long blocks;
  2476. sector_t new;
  2477. if (strict_strtoull(buf, 10, &blocks) < 0)
  2478. return -EINVAL;
  2479. if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
  2480. return -EINVAL; /* sector conversion overflow */
  2481. new = blocks * 2;
  2482. if (new != blocks * 2)
  2483. return -EINVAL; /* unsigned long long to sector_t overflow */
  2484. *sectors = new;
  2485. return 0;
  2486. }
  2487. static ssize_t
  2488. rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
  2489. {
  2490. struct mddev *my_mddev = rdev->mddev;
  2491. sector_t oldsectors = rdev->sectors;
  2492. sector_t sectors;
  2493. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  2494. return -EINVAL;
  2495. if (my_mddev->pers && rdev->raid_disk >= 0) {
  2496. if (my_mddev->persistent) {
  2497. sectors = super_types[my_mddev->major_version].
  2498. rdev_size_change(rdev, sectors);
  2499. if (!sectors)
  2500. return -EBUSY;
  2501. } else if (!sectors)
  2502. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
  2503. rdev->data_offset;
  2504. }
  2505. if (sectors < my_mddev->dev_sectors)
  2506. return -EINVAL; /* component must fit device */
  2507. rdev->sectors = sectors;
  2508. if (sectors > oldsectors && my_mddev->external) {
  2509. /* need to check that all other rdevs with the same ->bdev
  2510. * do not overlap. We need to unlock the mddev to avoid
  2511. * a deadlock. We have already changed rdev->sectors, and if
  2512. * we have to change it back, we will have the lock again.
  2513. */
  2514. struct mddev *mddev;
  2515. int overlap = 0;
  2516. struct list_head *tmp;
  2517. mddev_unlock(my_mddev);
  2518. for_each_mddev(mddev, tmp) {
  2519. struct md_rdev *rdev2;
  2520. mddev_lock(mddev);
  2521. list_for_each_entry(rdev2, &mddev->disks, same_set)
  2522. if (rdev->bdev == rdev2->bdev &&
  2523. rdev != rdev2 &&
  2524. overlaps(rdev->data_offset, rdev->sectors,
  2525. rdev2->data_offset,
  2526. rdev2->sectors)) {
  2527. overlap = 1;
  2528. break;
  2529. }
  2530. mddev_unlock(mddev);
  2531. if (overlap) {
  2532. mddev_put(mddev);
  2533. break;
  2534. }
  2535. }
  2536. mddev_lock(my_mddev);
  2537. if (overlap) {
  2538. /* Someone else could have slipped in a size
  2539. * change here, but doing so is just silly.
  2540. * We put oldsectors back because we *know* it is
  2541. * safe, and trust userspace not to race with
  2542. * itself
  2543. */
  2544. rdev->sectors = oldsectors;
  2545. return -EBUSY;
  2546. }
  2547. }
  2548. return len;
  2549. }
  2550. static struct rdev_sysfs_entry rdev_size =
  2551. __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
  2552. static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
  2553. {
  2554. unsigned long long recovery_start = rdev->recovery_offset;
  2555. if (test_bit(In_sync, &rdev->flags) ||
  2556. recovery_start == MaxSector)
  2557. return sprintf(page, "none\n");
  2558. return sprintf(page, "%llu\n", recovery_start);
  2559. }
  2560. static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
  2561. {
  2562. unsigned long long recovery_start;
  2563. if (cmd_match(buf, "none"))
  2564. recovery_start = MaxSector;
  2565. else if (strict_strtoull(buf, 10, &recovery_start))
  2566. return -EINVAL;
  2567. if (rdev->mddev->pers &&
  2568. rdev->raid_disk >= 0)
  2569. return -EBUSY;
  2570. rdev->recovery_offset = recovery_start;
  2571. if (recovery_start == MaxSector)
  2572. set_bit(In_sync, &rdev->flags);
  2573. else
  2574. clear_bit(In_sync, &rdev->flags);
  2575. return len;
  2576. }
  2577. static struct rdev_sysfs_entry rdev_recovery_start =
  2578. __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
  2579. static ssize_t
  2580. badblocks_show(struct badblocks *bb, char *page, int unack);
  2581. static ssize_t
  2582. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
  2583. static ssize_t bb_show(struct md_rdev *rdev, char *page)
  2584. {
  2585. return badblocks_show(&rdev->badblocks, page, 0);
  2586. }
  2587. static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
  2588. {
  2589. int rv = badblocks_store(&rdev->badblocks, page, len, 0);
  2590. /* Maybe that ack was all we needed */
  2591. if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
  2592. wake_up(&rdev->blocked_wait);
  2593. return rv;
  2594. }
  2595. static struct rdev_sysfs_entry rdev_bad_blocks =
  2596. __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
  2597. static ssize_t ubb_show(struct md_rdev *rdev, char *page)
  2598. {
  2599. return badblocks_show(&rdev->badblocks, page, 1);
  2600. }
  2601. static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
  2602. {
  2603. return badblocks_store(&rdev->badblocks, page, len, 1);
  2604. }
  2605. static struct rdev_sysfs_entry rdev_unack_bad_blocks =
  2606. __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
  2607. static struct attribute *rdev_default_attrs[] = {
  2608. &rdev_state.attr,
  2609. &rdev_errors.attr,
  2610. &rdev_slot.attr,
  2611. &rdev_offset.attr,
  2612. &rdev_size.attr,
  2613. &rdev_recovery_start.attr,
  2614. &rdev_bad_blocks.attr,
  2615. &rdev_unack_bad_blocks.attr,
  2616. NULL,
  2617. };
  2618. static ssize_t
  2619. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  2620. {
  2621. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2622. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2623. struct mddev *mddev = rdev->mddev;
  2624. ssize_t rv;
  2625. if (!entry->show)
  2626. return -EIO;
  2627. rv = mddev ? mddev_lock(mddev) : -EBUSY;
  2628. if (!rv) {
  2629. if (rdev->mddev == NULL)
  2630. rv = -EBUSY;
  2631. else
  2632. rv = entry->show(rdev, page);
  2633. mddev_unlock(mddev);
  2634. }
  2635. return rv;
  2636. }
  2637. static ssize_t
  2638. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  2639. const char *page, size_t length)
  2640. {
  2641. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2642. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2643. ssize_t rv;
  2644. struct mddev *mddev = rdev->mddev;
  2645. if (!entry->store)
  2646. return -EIO;
  2647. if (!capable(CAP_SYS_ADMIN))
  2648. return -EACCES;
  2649. rv = mddev ? mddev_lock(mddev): -EBUSY;
  2650. if (!rv) {
  2651. if (rdev->mddev == NULL)
  2652. rv = -EBUSY;
  2653. else
  2654. rv = entry->store(rdev, page, length);
  2655. mddev_unlock(mddev);
  2656. }
  2657. return rv;
  2658. }
  2659. static void rdev_free(struct kobject *ko)
  2660. {
  2661. struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
  2662. kfree(rdev);
  2663. }
  2664. static const struct sysfs_ops rdev_sysfs_ops = {
  2665. .show = rdev_attr_show,
  2666. .store = rdev_attr_store,
  2667. };
  2668. static struct kobj_type rdev_ktype = {
  2669. .release = rdev_free,
  2670. .sysfs_ops = &rdev_sysfs_ops,
  2671. .default_attrs = rdev_default_attrs,
  2672. };
  2673. int md_rdev_init(struct md_rdev *rdev)
  2674. {
  2675. rdev->desc_nr = -1;
  2676. rdev->saved_raid_disk = -1;
  2677. rdev->raid_disk = -1;
  2678. rdev->flags = 0;
  2679. rdev->data_offset = 0;
  2680. rdev->sb_events = 0;
  2681. rdev->last_read_error.tv_sec = 0;
  2682. rdev->last_read_error.tv_nsec = 0;
  2683. rdev->sb_loaded = 0;
  2684. rdev->bb_page = NULL;
  2685. atomic_set(&rdev->nr_pending, 0);
  2686. atomic_set(&rdev->read_errors, 0);
  2687. atomic_set(&rdev->corrected_errors, 0);
  2688. INIT_LIST_HEAD(&rdev->same_set);
  2689. init_waitqueue_head(&rdev->blocked_wait);
  2690. /* Add space to store bad block list.
  2691. * This reserves the space even on arrays where it cannot
  2692. * be used - I wonder if that matters
  2693. */
  2694. rdev->badblocks.count = 0;
  2695. rdev->badblocks.shift = 0;
  2696. rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2697. seqlock_init(&rdev->badblocks.lock);
  2698. if (rdev->badblocks.page == NULL)
  2699. return -ENOMEM;
  2700. return 0;
  2701. }
  2702. EXPORT_SYMBOL_GPL(md_rdev_init);
  2703. /*
  2704. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  2705. *
  2706. * mark the device faulty if:
  2707. *
  2708. * - the device is nonexistent (zero size)
  2709. * - the device has no valid superblock
  2710. *
  2711. * a faulty rdev _never_ has rdev->sb set.
  2712. */
  2713. static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
  2714. {
  2715. char b[BDEVNAME_SIZE];
  2716. int err;
  2717. struct md_rdev *rdev;
  2718. sector_t size;
  2719. rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
  2720. if (!rdev) {
  2721. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  2722. return ERR_PTR(-ENOMEM);
  2723. }
  2724. err = md_rdev_init(rdev);
  2725. if (err)
  2726. goto abort_free;
  2727. err = alloc_disk_sb(rdev);
  2728. if (err)
  2729. goto abort_free;
  2730. err = lock_rdev(rdev, newdev, super_format == -2);
  2731. if (err)
  2732. goto abort_free;
  2733. kobject_init(&rdev->kobj, &rdev_ktype);
  2734. size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
  2735. if (!size) {
  2736. printk(KERN_WARNING
  2737. "md: %s has zero or unknown size, marking faulty!\n",
  2738. bdevname(rdev->bdev,b));
  2739. err = -EINVAL;
  2740. goto abort_free;
  2741. }
  2742. if (super_format >= 0) {
  2743. err = super_types[super_format].
  2744. load_super(rdev, NULL, super_minor);
  2745. if (err == -EINVAL) {
  2746. printk(KERN_WARNING
  2747. "md: %s does not have a valid v%d.%d "
  2748. "superblock, not importing!\n",
  2749. bdevname(rdev->bdev,b),
  2750. super_format, super_minor);
  2751. goto abort_free;
  2752. }
  2753. if (err < 0) {
  2754. printk(KERN_WARNING
  2755. "md: could not read %s's sb, not importing!\n",
  2756. bdevname(rdev->bdev,b));
  2757. goto abort_free;
  2758. }
  2759. }
  2760. if (super_format == -1)
  2761. /* hot-add for 0.90, or non-persistent: so no badblocks */
  2762. rdev->badblocks.shift = -1;
  2763. return rdev;
  2764. abort_free:
  2765. if (rdev->bdev)
  2766. unlock_rdev(rdev);
  2767. free_disk_sb(rdev);
  2768. kfree(rdev->badblocks.page);
  2769. kfree(rdev);
  2770. return ERR_PTR(err);
  2771. }
  2772. /*
  2773. * Check a full RAID array for plausibility
  2774. */
  2775. static void analyze_sbs(struct mddev * mddev)
  2776. {
  2777. int i;
  2778. struct md_rdev *rdev, *freshest, *tmp;
  2779. char b[BDEVNAME_SIZE];
  2780. freshest = NULL;
  2781. rdev_for_each(rdev, tmp, mddev)
  2782. switch (super_types[mddev->major_version].
  2783. load_super(rdev, freshest, mddev->minor_version)) {
  2784. case 1:
  2785. freshest = rdev;
  2786. break;
  2787. case 0:
  2788. break;
  2789. default:
  2790. printk( KERN_ERR \
  2791. "md: fatal superblock inconsistency in %s"
  2792. " -- removing from array\n",
  2793. bdevname(rdev->bdev,b));
  2794. kick_rdev_from_array(rdev);
  2795. }
  2796. super_types[mddev->major_version].
  2797. validate_super(mddev, freshest);
  2798. i = 0;
  2799. rdev_for_each(rdev, tmp, mddev) {
  2800. if (mddev->max_disks &&
  2801. (rdev->desc_nr >= mddev->max_disks ||
  2802. i > mddev->max_disks)) {
  2803. printk(KERN_WARNING
  2804. "md: %s: %s: only %d devices permitted\n",
  2805. mdname(mddev), bdevname(rdev->bdev, b),
  2806. mddev->max_disks);
  2807. kick_rdev_from_array(rdev);
  2808. continue;
  2809. }
  2810. if (rdev != freshest)
  2811. if (super_types[mddev->major_version].
  2812. validate_super(mddev, rdev)) {
  2813. printk(KERN_WARNING "md: kicking non-fresh %s"
  2814. " from array!\n",
  2815. bdevname(rdev->bdev,b));
  2816. kick_rdev_from_array(rdev);
  2817. continue;
  2818. }
  2819. if (mddev->level == LEVEL_MULTIPATH) {
  2820. rdev->desc_nr = i++;
  2821. rdev->raid_disk = rdev->desc_nr;
  2822. set_bit(In_sync, &rdev->flags);
  2823. } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
  2824. rdev->raid_disk = -1;
  2825. clear_bit(In_sync, &rdev->flags);
  2826. }
  2827. }
  2828. }
  2829. /* Read a fixed-point number.
  2830. * Numbers in sysfs attributes should be in "standard" units where
  2831. * possible, so time should be in seconds.
  2832. * However we internally use a a much smaller unit such as
  2833. * milliseconds or jiffies.
  2834. * This function takes a decimal number with a possible fractional
  2835. * component, and produces an integer which is the result of
  2836. * multiplying that number by 10^'scale'.
  2837. * all without any floating-point arithmetic.
  2838. */
  2839. int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
  2840. {
  2841. unsigned long result = 0;
  2842. long decimals = -1;
  2843. while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
  2844. if (*cp == '.')
  2845. decimals = 0;
  2846. else if (decimals < scale) {
  2847. unsigned int value;
  2848. value = *cp - '0';
  2849. result = result * 10 + value;
  2850. if (decimals >= 0)
  2851. decimals++;
  2852. }
  2853. cp++;
  2854. }
  2855. if (*cp == '\n')
  2856. cp++;
  2857. if (*cp)
  2858. return -EINVAL;
  2859. if (decimals < 0)
  2860. decimals = 0;
  2861. while (decimals < scale) {
  2862. result *= 10;
  2863. decimals ++;
  2864. }
  2865. *res = result;
  2866. return 0;
  2867. }
  2868. static void md_safemode_timeout(unsigned long data);
  2869. static ssize_t
  2870. safe_delay_show(struct mddev *mddev, char *page)
  2871. {
  2872. int msec = (mddev->safemode_delay*1000)/HZ;
  2873. return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
  2874. }
  2875. static ssize_t
  2876. safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
  2877. {
  2878. unsigned long msec;
  2879. if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
  2880. return -EINVAL;
  2881. if (msec == 0)
  2882. mddev->safemode_delay = 0;
  2883. else {
  2884. unsigned long old_delay = mddev->safemode_delay;
  2885. mddev->safemode_delay = (msec*HZ)/1000;
  2886. if (mddev->safemode_delay == 0)
  2887. mddev->safemode_delay = 1;
  2888. if (mddev->safemode_delay < old_delay)
  2889. md_safemode_timeout((unsigned long)mddev);
  2890. }
  2891. return len;
  2892. }
  2893. static struct md_sysfs_entry md_safe_delay =
  2894. __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
  2895. static ssize_t
  2896. level_show(struct mddev *mddev, char *page)
  2897. {
  2898. struct md_personality *p = mddev->pers;
  2899. if (p)
  2900. return sprintf(page, "%s\n", p->name);
  2901. else if (mddev->clevel[0])
  2902. return sprintf(page, "%s\n", mddev->clevel);
  2903. else if (mddev->level != LEVEL_NONE)
  2904. return sprintf(page, "%d\n", mddev->level);
  2905. else
  2906. return 0;
  2907. }
  2908. static ssize_t
  2909. level_store(struct mddev *mddev, const char *buf, size_t len)
  2910. {
  2911. char clevel[16];
  2912. ssize_t rv = len;
  2913. struct md_personality *pers;
  2914. long level;
  2915. void *priv;
  2916. struct md_rdev *rdev;
  2917. if (mddev->pers == NULL) {
  2918. if (len == 0)
  2919. return 0;
  2920. if (len >= sizeof(mddev->clevel))
  2921. return -ENOSPC;
  2922. strncpy(mddev->clevel, buf, len);
  2923. if (mddev->clevel[len-1] == '\n')
  2924. len--;
  2925. mddev->clevel[len] = 0;
  2926. mddev->level = LEVEL_NONE;
  2927. return rv;
  2928. }
  2929. /* request to change the personality. Need to ensure:
  2930. * - array is not engaged in resync/recovery/reshape
  2931. * - old personality can be suspended
  2932. * - new personality will access other array.
  2933. */
  2934. if (mddev->sync_thread ||
  2935. mddev->reshape_position != MaxSector ||
  2936. mddev->sysfs_active)
  2937. return -EBUSY;
  2938. if (!mddev->pers->quiesce) {
  2939. printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
  2940. mdname(mddev), mddev->pers->name);
  2941. return -EINVAL;
  2942. }
  2943. /* Now find the new personality */
  2944. if (len == 0 || len >= sizeof(clevel))
  2945. return -EINVAL;
  2946. strncpy(clevel, buf, len);
  2947. if (clevel[len-1] == '\n')
  2948. len--;
  2949. clevel[len] = 0;
  2950. if (strict_strtol(clevel, 10, &level))
  2951. level = LEVEL_NONE;
  2952. if (request_module("md-%s", clevel) != 0)
  2953. request_module("md-level-%s", clevel);
  2954. spin_lock(&pers_lock);
  2955. pers = find_pers(level, clevel);
  2956. if (!pers || !try_module_get(pers->owner)) {
  2957. spin_unlock(&pers_lock);
  2958. printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
  2959. return -EINVAL;
  2960. }
  2961. spin_unlock(&pers_lock);
  2962. if (pers == mddev->pers) {
  2963. /* Nothing to do! */
  2964. module_put(pers->owner);
  2965. return rv;
  2966. }
  2967. if (!pers->takeover) {
  2968. module_put(pers->owner);
  2969. printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
  2970. mdname(mddev), clevel);
  2971. return -EINVAL;
  2972. }
  2973. list_for_each_entry(rdev, &mddev->disks, same_set)
  2974. rdev->new_raid_disk = rdev->raid_disk;
  2975. /* ->takeover must set new_* and/or delta_disks
  2976. * if it succeeds, and may set them when it fails.
  2977. */
  2978. priv = pers->takeover(mddev);
  2979. if (IS_ERR(priv)) {
  2980. mddev->new_level = mddev->level;
  2981. mddev->new_layout = mddev->layout;
  2982. mddev->new_chunk_sectors = mddev->chunk_sectors;
  2983. mddev->raid_disks -= mddev->delta_disks;
  2984. mddev->delta_disks = 0;
  2985. module_put(pers->owner);
  2986. printk(KERN_WARNING "md: %s: %s would not accept array\n",
  2987. mdname(mddev), clevel);
  2988. return PTR_ERR(priv);
  2989. }
  2990. /* Looks like we have a winner */
  2991. mddev_suspend(mddev);
  2992. mddev->pers->stop(mddev);
  2993. if (mddev->pers->sync_request == NULL &&
  2994. pers->sync_request != NULL) {
  2995. /* need to add the md_redundancy_group */
  2996. if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  2997. printk(KERN_WARNING
  2998. "md: cannot register extra attributes for %s\n",
  2999. mdname(mddev));
  3000. mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
  3001. }
  3002. if (mddev->pers->sync_request != NULL &&
  3003. pers->sync_request == NULL) {
  3004. /* need to remove the md_redundancy_group */
  3005. if (mddev->to_remove == NULL)
  3006. mddev->to_remove = &md_redundancy_group;
  3007. }
  3008. if (mddev->pers->sync_request == NULL &&
  3009. mddev->external) {
  3010. /* We are converting from a no-redundancy array
  3011. * to a redundancy array and metadata is managed
  3012. * externally so we need to be sure that writes
  3013. * won't block due to a need to transition
  3014. * clean->dirty
  3015. * until external management is started.
  3016. */
  3017. mddev->in_sync = 0;
  3018. mddev->safemode_delay = 0;
  3019. mddev->safemode = 0;
  3020. }
  3021. list_for_each_entry(rdev, &mddev->disks, same_set) {
  3022. if (rdev->raid_disk < 0)
  3023. continue;
  3024. if (rdev->new_raid_disk >= mddev->raid_disks)
  3025. rdev->new_raid_disk = -1;
  3026. if (rdev->new_raid_disk == rdev->raid_disk)
  3027. continue;
  3028. sysfs_unlink_rdev(mddev, rdev);
  3029. }
  3030. list_for_each_entry(rdev, &mddev->disks, same_set) {
  3031. if (rdev->raid_disk < 0)
  3032. continue;
  3033. if (rdev->new_raid_disk == rdev->raid_disk)
  3034. continue;
  3035. rdev->raid_disk = rdev->new_raid_disk;
  3036. if (rdev->raid_disk < 0)
  3037. clear_bit(In_sync, &rdev->flags);
  3038. else {
  3039. if (sysfs_link_rdev(mddev, rdev))
  3040. printk(KERN_WARNING "md: cannot register rd%d"
  3041. " for %s after level change\n",
  3042. rdev->raid_disk, mdname(mddev));
  3043. }
  3044. }
  3045. module_put(mddev->pers->owner);
  3046. mddev->pers = pers;
  3047. mddev->private = priv;
  3048. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  3049. mddev->level = mddev->new_level;
  3050. mddev->layout = mddev->new_layout;
  3051. mddev->chunk_sectors = mddev->new_chunk_sectors;
  3052. mddev->delta_disks = 0;
  3053. mddev->degraded = 0;
  3054. if (mddev->pers->sync_request == NULL) {
  3055. /* this is now an array without redundancy, so
  3056. * it must always be in_sync
  3057. */
  3058. mddev->in_sync = 1;
  3059. del_timer_sync(&mddev->safemode_timer);
  3060. }
  3061. pers->run(mddev);
  3062. mddev_resume(mddev);
  3063. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  3064. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3065. md_wakeup_thread(mddev->thread);
  3066. sysfs_notify(&mddev->kobj, NULL, "level");
  3067. md_new_event(mddev);
  3068. return rv;
  3069. }
  3070. static struct md_sysfs_entry md_level =
  3071. __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
  3072. static ssize_t
  3073. layout_show(struct mddev *mddev, char *page)
  3074. {
  3075. /* just a number, not meaningful for all levels */
  3076. if (mddev->reshape_position != MaxSector &&
  3077. mddev->layout != mddev->new_layout)
  3078. return sprintf(page, "%d (%d)\n",
  3079. mddev->new_layout, mddev->layout);
  3080. return sprintf(page, "%d\n", mddev->layout);
  3081. }
  3082. static ssize_t
  3083. layout_store(struct mddev *mddev, const char *buf, size_t len)
  3084. {
  3085. char *e;
  3086. unsigned long n = simple_strtoul(buf, &e, 10);
  3087. if (!*buf || (*e && *e != '\n'))
  3088. return -EINVAL;
  3089. if (mddev->pers) {
  3090. int err;
  3091. if (mddev->pers->check_reshape == NULL)
  3092. return -EBUSY;
  3093. mddev->new_layout = n;
  3094. err = mddev->pers->check_reshape(mddev);
  3095. if (err) {
  3096. mddev->new_layout = mddev->layout;
  3097. return err;
  3098. }
  3099. } else {
  3100. mddev->new_layout = n;
  3101. if (mddev->reshape_position == MaxSector)
  3102. mddev->layout = n;
  3103. }
  3104. return len;
  3105. }
  3106. static struct md_sysfs_entry md_layout =
  3107. __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
  3108. static ssize_t
  3109. raid_disks_show(struct mddev *mddev, char *page)
  3110. {
  3111. if (mddev->raid_disks == 0)
  3112. return 0;
  3113. if (mddev->reshape_position != MaxSector &&
  3114. mddev->delta_disks != 0)
  3115. return sprintf(page, "%d (%d)\n", mddev->raid_disks,
  3116. mddev->raid_disks - mddev->delta_disks);
  3117. return sprintf(page, "%d\n", mddev->raid_disks);
  3118. }
  3119. static int update_raid_disks(struct mddev *mddev, int raid_disks);
  3120. static ssize_t
  3121. raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
  3122. {
  3123. char *e;
  3124. int rv = 0;
  3125. unsigned long n = simple_strtoul(buf, &e, 10);
  3126. if (!*buf || (*e && *e != '\n'))
  3127. return -EINVAL;
  3128. if (mddev->pers)
  3129. rv = update_raid_disks(mddev, n);
  3130. else if (mddev->reshape_position != MaxSector) {
  3131. int olddisks = mddev->raid_disks - mddev->delta_disks;
  3132. mddev->delta_disks = n - olddisks;
  3133. mddev->raid_disks = n;
  3134. } else
  3135. mddev->raid_disks = n;
  3136. return rv ? rv : len;
  3137. }
  3138. static struct md_sysfs_entry md_raid_disks =
  3139. __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
  3140. static ssize_t
  3141. chunk_size_show(struct mddev *mddev, char *page)
  3142. {
  3143. if (mddev->reshape_position != MaxSector &&
  3144. mddev->chunk_sectors != mddev->new_chunk_sectors)
  3145. return sprintf(page, "%d (%d)\n",
  3146. mddev->new_chunk_sectors << 9,
  3147. mddev->chunk_sectors << 9);
  3148. return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
  3149. }
  3150. static ssize_t
  3151. chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
  3152. {
  3153. char *e;
  3154. unsigned long n = simple_strtoul(buf, &e, 10);
  3155. if (!*buf || (*e && *e != '\n'))
  3156. return -EINVAL;
  3157. if (mddev->pers) {
  3158. int err;
  3159. if (mddev->pers->check_reshape == NULL)
  3160. return -EBUSY;
  3161. mddev->new_chunk_sectors = n >> 9;
  3162. err = mddev->pers->check_reshape(mddev);
  3163. if (err) {
  3164. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3165. return err;
  3166. }
  3167. } else {
  3168. mddev->new_chunk_sectors = n >> 9;
  3169. if (mddev->reshape_position == MaxSector)
  3170. mddev->chunk_sectors = n >> 9;
  3171. }
  3172. return len;
  3173. }
  3174. static struct md_sysfs_entry md_chunk_size =
  3175. __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
  3176. static ssize_t
  3177. resync_start_show(struct mddev *mddev, char *page)
  3178. {
  3179. if (mddev->recovery_cp == MaxSector)
  3180. return sprintf(page, "none\n");
  3181. return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
  3182. }
  3183. static ssize_t
  3184. resync_start_store(struct mddev *mddev, const char *buf, size_t len)
  3185. {
  3186. char *e;
  3187. unsigned long long n = simple_strtoull(buf, &e, 10);
  3188. if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3189. return -EBUSY;
  3190. if (cmd_match(buf, "none"))
  3191. n = MaxSector;
  3192. else if (!*buf || (*e && *e != '\n'))
  3193. return -EINVAL;
  3194. mddev->recovery_cp = n;
  3195. return len;
  3196. }
  3197. static struct md_sysfs_entry md_resync_start =
  3198. __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
  3199. /*
  3200. * The array state can be:
  3201. *
  3202. * clear
  3203. * No devices, no size, no level
  3204. * Equivalent to STOP_ARRAY ioctl
  3205. * inactive
  3206. * May have some settings, but array is not active
  3207. * all IO results in error
  3208. * When written, doesn't tear down array, but just stops it
  3209. * suspended (not supported yet)
  3210. * All IO requests will block. The array can be reconfigured.
  3211. * Writing this, if accepted, will block until array is quiescent
  3212. * readonly
  3213. * no resync can happen. no superblocks get written.
  3214. * write requests fail
  3215. * read-auto
  3216. * like readonly, but behaves like 'clean' on a write request.
  3217. *
  3218. * clean - no pending writes, but otherwise active.
  3219. * When written to inactive array, starts without resync
  3220. * If a write request arrives then
  3221. * if metadata is known, mark 'dirty' and switch to 'active'.
  3222. * if not known, block and switch to write-pending
  3223. * If written to an active array that has pending writes, then fails.
  3224. * active
  3225. * fully active: IO and resync can be happening.
  3226. * When written to inactive array, starts with resync
  3227. *
  3228. * write-pending
  3229. * clean, but writes are blocked waiting for 'active' to be written.
  3230. *
  3231. * active-idle
  3232. * like active, but no writes have been seen for a while (100msec).
  3233. *
  3234. */
  3235. enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
  3236. write_pending, active_idle, bad_word};
  3237. static char *array_states[] = {
  3238. "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
  3239. "write-pending", "active-idle", NULL };
  3240. static int match_word(const char *word, char **list)
  3241. {
  3242. int n;
  3243. for (n=0; list[n]; n++)
  3244. if (cmd_match(word, list[n]))
  3245. break;
  3246. return n;
  3247. }
  3248. static ssize_t
  3249. array_state_show(struct mddev *mddev, char *page)
  3250. {
  3251. enum array_state st = inactive;
  3252. if (mddev->pers)
  3253. switch(mddev->ro) {
  3254. case 1:
  3255. st = readonly;
  3256. break;
  3257. case 2:
  3258. st = read_auto;
  3259. break;
  3260. case 0:
  3261. if (mddev->in_sync)
  3262. st = clean;
  3263. else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  3264. st = write_pending;
  3265. else if (mddev->safemode)
  3266. st = active_idle;
  3267. else
  3268. st = active;
  3269. }
  3270. else {
  3271. if (list_empty(&mddev->disks) &&
  3272. mddev->raid_disks == 0 &&
  3273. mddev->dev_sectors == 0)
  3274. st = clear;
  3275. else
  3276. st = inactive;
  3277. }
  3278. return sprintf(page, "%s\n", array_states[st]);
  3279. }
  3280. static int do_md_stop(struct mddev * mddev, int ro, int is_open);
  3281. static int md_set_readonly(struct mddev * mddev, int is_open);
  3282. static int do_md_run(struct mddev * mddev);
  3283. static int restart_array(struct mddev *mddev);
  3284. static ssize_t
  3285. array_state_store(struct mddev *mddev, const char *buf, size_t len)
  3286. {
  3287. int err = -EINVAL;
  3288. enum array_state st = match_word(buf, array_states);
  3289. switch(st) {
  3290. case bad_word:
  3291. break;
  3292. case clear:
  3293. /* stopping an active array */
  3294. if (atomic_read(&mddev->openers) > 0)
  3295. return -EBUSY;
  3296. err = do_md_stop(mddev, 0, 0);
  3297. break;
  3298. case inactive:
  3299. /* stopping an active array */
  3300. if (mddev->pers) {
  3301. if (atomic_read(&mddev->openers) > 0)
  3302. return -EBUSY;
  3303. err = do_md_stop(mddev, 2, 0);
  3304. } else
  3305. err = 0; /* already inactive */
  3306. break;
  3307. case suspended:
  3308. break; /* not supported yet */
  3309. case readonly:
  3310. if (mddev->pers)
  3311. err = md_set_readonly(mddev, 0);
  3312. else {
  3313. mddev->ro = 1;
  3314. set_disk_ro(mddev->gendisk, 1);
  3315. err = do_md_run(mddev);
  3316. }
  3317. break;
  3318. case read_auto:
  3319. if (mddev->pers) {
  3320. if (mddev->ro == 0)
  3321. err = md_set_readonly(mddev, 0);
  3322. else if (mddev->ro == 1)
  3323. err = restart_array(mddev);
  3324. if (err == 0) {
  3325. mddev->ro = 2;
  3326. set_disk_ro(mddev->gendisk, 0);
  3327. }
  3328. } else {
  3329. mddev->ro = 2;
  3330. err = do_md_run(mddev);
  3331. }
  3332. break;
  3333. case clean:
  3334. if (mddev->pers) {
  3335. restart_array(mddev);
  3336. spin_lock_irq(&mddev->write_lock);
  3337. if (atomic_read(&mddev->writes_pending) == 0) {
  3338. if (mddev->in_sync == 0) {
  3339. mddev->in_sync = 1;
  3340. if (mddev->safemode == 1)
  3341. mddev->safemode = 0;
  3342. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3343. }
  3344. err = 0;
  3345. } else
  3346. err = -EBUSY;
  3347. spin_unlock_irq(&mddev->write_lock);
  3348. } else
  3349. err = -EINVAL;
  3350. break;
  3351. case active:
  3352. if (mddev->pers) {
  3353. restart_array(mddev);
  3354. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  3355. wake_up(&mddev->sb_wait);
  3356. err = 0;
  3357. } else {
  3358. mddev->ro = 0;
  3359. set_disk_ro(mddev->gendisk, 0);
  3360. err = do_md_run(mddev);
  3361. }
  3362. break;
  3363. case write_pending:
  3364. case active_idle:
  3365. /* these cannot be set */
  3366. break;
  3367. }
  3368. if (err)
  3369. return err;
  3370. else {
  3371. if (mddev->hold_active == UNTIL_IOCTL)
  3372. mddev->hold_active = 0;
  3373. sysfs_notify_dirent_safe(mddev->sysfs_state);
  3374. return len;
  3375. }
  3376. }
  3377. static struct md_sysfs_entry md_array_state =
  3378. __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
  3379. static ssize_t
  3380. max_corrected_read_errors_show(struct mddev *mddev, char *page) {
  3381. return sprintf(page, "%d\n",
  3382. atomic_read(&mddev->max_corr_read_errors));
  3383. }
  3384. static ssize_t
  3385. max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
  3386. {
  3387. char *e;
  3388. unsigned long n = simple_strtoul(buf, &e, 10);
  3389. if (*buf && (*e == 0 || *e == '\n')) {
  3390. atomic_set(&mddev->max_corr_read_errors, n);
  3391. return len;
  3392. }
  3393. return -EINVAL;
  3394. }
  3395. static struct md_sysfs_entry max_corr_read_errors =
  3396. __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
  3397. max_corrected_read_errors_store);
  3398. static ssize_t
  3399. null_show(struct mddev *mddev, char *page)
  3400. {
  3401. return -EINVAL;
  3402. }
  3403. static ssize_t
  3404. new_dev_store(struct mddev *mddev, const char *buf, size_t len)
  3405. {
  3406. /* buf must be %d:%d\n? giving major and minor numbers */
  3407. /* The new device is added to the array.
  3408. * If the array has a persistent superblock, we read the
  3409. * superblock to initialise info and check validity.
  3410. * Otherwise, only checking done is that in bind_rdev_to_array,
  3411. * which mainly checks size.
  3412. */
  3413. char *e;
  3414. int major = simple_strtoul(buf, &e, 10);
  3415. int minor;
  3416. dev_t dev;
  3417. struct md_rdev *rdev;
  3418. int err;
  3419. if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
  3420. return -EINVAL;
  3421. minor = simple_strtoul(e+1, &e, 10);
  3422. if (*e && *e != '\n')
  3423. return -EINVAL;
  3424. dev = MKDEV(major, minor);
  3425. if (major != MAJOR(dev) ||
  3426. minor != MINOR(dev))
  3427. return -EOVERFLOW;
  3428. if (mddev->persistent) {
  3429. rdev = md_import_device(dev, mddev->major_version,
  3430. mddev->minor_version);
  3431. if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
  3432. struct md_rdev *rdev0
  3433. = list_entry(mddev->disks.next,
  3434. struct md_rdev, same_set);
  3435. err = super_types[mddev->major_version]
  3436. .load_super(rdev, rdev0, mddev->minor_version);
  3437. if (err < 0)
  3438. goto out;
  3439. }
  3440. } else if (mddev->external)
  3441. rdev = md_import_device(dev, -2, -1);
  3442. else
  3443. rdev = md_import_device(dev, -1, -1);
  3444. if (IS_ERR(rdev))
  3445. return PTR_ERR(rdev);
  3446. err = bind_rdev_to_array(rdev, mddev);
  3447. out:
  3448. if (err)
  3449. export_rdev(rdev);
  3450. return err ? err : len;
  3451. }
  3452. static struct md_sysfs_entry md_new_device =
  3453. __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
  3454. static ssize_t
  3455. bitmap_store(struct mddev *mddev, const char *buf, size_t len)
  3456. {
  3457. char *end;
  3458. unsigned long chunk, end_chunk;
  3459. if (!mddev->bitmap)
  3460. goto out;
  3461. /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
  3462. while (*buf) {
  3463. chunk = end_chunk = simple_strtoul(buf, &end, 0);
  3464. if (buf == end) break;
  3465. if (*end == '-') { /* range */
  3466. buf = end + 1;
  3467. end_chunk = simple_strtoul(buf, &end, 0);
  3468. if (buf == end) break;
  3469. }
  3470. if (*end && !isspace(*end)) break;
  3471. bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
  3472. buf = skip_spaces(end);
  3473. }
  3474. bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
  3475. out:
  3476. return len;
  3477. }
  3478. static struct md_sysfs_entry md_bitmap =
  3479. __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
  3480. static ssize_t
  3481. size_show(struct mddev *mddev, char *page)
  3482. {
  3483. return sprintf(page, "%llu\n",
  3484. (unsigned long long)mddev->dev_sectors / 2);
  3485. }
  3486. static int update_size(struct mddev *mddev, sector_t num_sectors);
  3487. static ssize_t
  3488. size_store(struct mddev *mddev, const char *buf, size_t len)
  3489. {
  3490. /* If array is inactive, we can reduce the component size, but
  3491. * not increase it (except from 0).
  3492. * If array is active, we can try an on-line resize
  3493. */
  3494. sector_t sectors;
  3495. int err = strict_blocks_to_sectors(buf, &sectors);
  3496. if (err < 0)
  3497. return err;
  3498. if (mddev->pers) {
  3499. err = update_size(mddev, sectors);
  3500. md_update_sb(mddev, 1);
  3501. } else {
  3502. if (mddev->dev_sectors == 0 ||
  3503. mddev->dev_sectors > sectors)
  3504. mddev->dev_sectors = sectors;
  3505. else
  3506. err = -ENOSPC;
  3507. }
  3508. return err ? err : len;
  3509. }
  3510. static struct md_sysfs_entry md_size =
  3511. __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
  3512. /* Metdata version.
  3513. * This is one of
  3514. * 'none' for arrays with no metadata (good luck...)
  3515. * 'external' for arrays with externally managed metadata,
  3516. * or N.M for internally known formats
  3517. */
  3518. static ssize_t
  3519. metadata_show(struct mddev *mddev, char *page)
  3520. {
  3521. if (mddev->persistent)
  3522. return sprintf(page, "%d.%d\n",
  3523. mddev->major_version, mddev->minor_version);
  3524. else if (mddev->external)
  3525. return sprintf(page, "external:%s\n", mddev->metadata_type);
  3526. else
  3527. return sprintf(page, "none\n");
  3528. }
  3529. static ssize_t
  3530. metadata_store(struct mddev *mddev, const char *buf, size_t len)
  3531. {
  3532. int major, minor;
  3533. char *e;
  3534. /* Changing the details of 'external' metadata is
  3535. * always permitted. Otherwise there must be
  3536. * no devices attached to the array.
  3537. */
  3538. if (mddev->external && strncmp(buf, "external:", 9) == 0)
  3539. ;
  3540. else if (!list_empty(&mddev->disks))
  3541. return -EBUSY;
  3542. if (cmd_match(buf, "none")) {
  3543. mddev->persistent = 0;
  3544. mddev->external = 0;
  3545. mddev->major_version = 0;
  3546. mddev->minor_version = 90;
  3547. return len;
  3548. }
  3549. if (strncmp(buf, "external:", 9) == 0) {
  3550. size_t namelen = len-9;
  3551. if (namelen >= sizeof(mddev->metadata_type))
  3552. namelen = sizeof(mddev->metadata_type)-1;
  3553. strncpy(mddev->metadata_type, buf+9, namelen);
  3554. mddev->metadata_type[namelen] = 0;
  3555. if (namelen && mddev->metadata_type[namelen-1] == '\n')
  3556. mddev->metadata_type[--namelen] = 0;
  3557. mddev->persistent = 0;
  3558. mddev->external = 1;
  3559. mddev->major_version = 0;
  3560. mddev->minor_version = 90;
  3561. return len;
  3562. }
  3563. major = simple_strtoul(buf, &e, 10);
  3564. if (e==buf || *e != '.')
  3565. return -EINVAL;
  3566. buf = e+1;
  3567. minor = simple_strtoul(buf, &e, 10);
  3568. if (e==buf || (*e && *e != '\n') )
  3569. return -EINVAL;
  3570. if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
  3571. return -ENOENT;
  3572. mddev->major_version = major;
  3573. mddev->minor_version = minor;
  3574. mddev->persistent = 1;
  3575. mddev->external = 0;
  3576. return len;
  3577. }
  3578. static struct md_sysfs_entry md_metadata =
  3579. __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
  3580. static ssize_t
  3581. action_show(struct mddev *mddev, char *page)
  3582. {
  3583. char *type = "idle";
  3584. if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3585. type = "frozen";
  3586. else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3587. (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
  3588. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  3589. type = "reshape";
  3590. else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  3591. if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  3592. type = "resync";
  3593. else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  3594. type = "check";
  3595. else
  3596. type = "repair";
  3597. } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
  3598. type = "recover";
  3599. }
  3600. return sprintf(page, "%s\n", type);
  3601. }
  3602. static void reap_sync_thread(struct mddev *mddev);
  3603. static ssize_t
  3604. action_store(struct mddev *mddev, const char *page, size_t len)
  3605. {
  3606. if (!mddev->pers || !mddev->pers->sync_request)
  3607. return -EINVAL;
  3608. if (cmd_match(page, "frozen"))
  3609. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3610. else
  3611. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3612. if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
  3613. if (mddev->sync_thread) {
  3614. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3615. reap_sync_thread(mddev);
  3616. }
  3617. } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3618. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  3619. return -EBUSY;
  3620. else if (cmd_match(page, "resync"))
  3621. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3622. else if (cmd_match(page, "recover")) {
  3623. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  3624. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3625. } else if (cmd_match(page, "reshape")) {
  3626. int err;
  3627. if (mddev->pers->start_reshape == NULL)
  3628. return -EINVAL;
  3629. err = mddev->pers->start_reshape(mddev);
  3630. if (err)
  3631. return err;
  3632. sysfs_notify(&mddev->kobj, NULL, "degraded");
  3633. } else {
  3634. if (cmd_match(page, "check"))
  3635. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  3636. else if (!cmd_match(page, "repair"))
  3637. return -EINVAL;
  3638. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  3639. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3640. }
  3641. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3642. md_wakeup_thread(mddev->thread);
  3643. sysfs_notify_dirent_safe(mddev->sysfs_action);
  3644. return len;
  3645. }
  3646. static ssize_t
  3647. mismatch_cnt_show(struct mddev *mddev, char *page)
  3648. {
  3649. return sprintf(page, "%llu\n",
  3650. (unsigned long long) mddev->resync_mismatches);
  3651. }
  3652. static struct md_sysfs_entry md_scan_mode =
  3653. __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
  3654. static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
  3655. static ssize_t
  3656. sync_min_show(struct mddev *mddev, char *page)
  3657. {
  3658. return sprintf(page, "%d (%s)\n", speed_min(mddev),
  3659. mddev->sync_speed_min ? "local": "system");
  3660. }
  3661. static ssize_t
  3662. sync_min_store(struct mddev *mddev, const char *buf, size_t len)
  3663. {
  3664. int min;
  3665. char *e;
  3666. if (strncmp(buf, "system", 6)==0) {
  3667. mddev->sync_speed_min = 0;
  3668. return len;
  3669. }
  3670. min = simple_strtoul(buf, &e, 10);
  3671. if (buf == e || (*e && *e != '\n') || min <= 0)
  3672. return -EINVAL;
  3673. mddev->sync_speed_min = min;
  3674. return len;
  3675. }
  3676. static struct md_sysfs_entry md_sync_min =
  3677. __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
  3678. static ssize_t
  3679. sync_max_show(struct mddev *mddev, char *page)
  3680. {
  3681. return sprintf(page, "%d (%s)\n", speed_max(mddev),
  3682. mddev->sync_speed_max ? "local": "system");
  3683. }
  3684. static ssize_t
  3685. sync_max_store(struct mddev *mddev, const char *buf, size_t len)
  3686. {
  3687. int max;
  3688. char *e;
  3689. if (strncmp(buf, "system", 6)==0) {
  3690. mddev->sync_speed_max = 0;
  3691. return len;
  3692. }
  3693. max = simple_strtoul(buf, &e, 10);
  3694. if (buf == e || (*e && *e != '\n') || max <= 0)
  3695. return -EINVAL;
  3696. mddev->sync_speed_max = max;
  3697. return len;
  3698. }
  3699. static struct md_sysfs_entry md_sync_max =
  3700. __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
  3701. static ssize_t
  3702. degraded_show(struct mddev *mddev, char *page)
  3703. {
  3704. return sprintf(page, "%d\n", mddev->degraded);
  3705. }
  3706. static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
  3707. static ssize_t
  3708. sync_force_parallel_show(struct mddev *mddev, char *page)
  3709. {
  3710. return sprintf(page, "%d\n", mddev->parallel_resync);
  3711. }
  3712. static ssize_t
  3713. sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
  3714. {
  3715. long n;
  3716. if (strict_strtol(buf, 10, &n))
  3717. return -EINVAL;
  3718. if (n != 0 && n != 1)
  3719. return -EINVAL;
  3720. mddev->parallel_resync = n;
  3721. if (mddev->sync_thread)
  3722. wake_up(&resync_wait);
  3723. return len;
  3724. }
  3725. /* force parallel resync, even with shared block devices */
  3726. static struct md_sysfs_entry md_sync_force_parallel =
  3727. __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
  3728. sync_force_parallel_show, sync_force_parallel_store);
  3729. static ssize_t
  3730. sync_speed_show(struct mddev *mddev, char *page)
  3731. {
  3732. unsigned long resync, dt, db;
  3733. if (mddev->curr_resync == 0)
  3734. return sprintf(page, "none\n");
  3735. resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
  3736. dt = (jiffies - mddev->resync_mark) / HZ;
  3737. if (!dt) dt++;
  3738. db = resync - mddev->resync_mark_cnt;
  3739. return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
  3740. }
  3741. static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
  3742. static ssize_t
  3743. sync_completed_show(struct mddev *mddev, char *page)
  3744. {
  3745. unsigned long long max_sectors, resync;
  3746. if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3747. return sprintf(page, "none\n");
  3748. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  3749. max_sectors = mddev->resync_max_sectors;
  3750. else
  3751. max_sectors = mddev->dev_sectors;
  3752. resync = mddev->curr_resync_completed;
  3753. return sprintf(page, "%llu / %llu\n", resync, max_sectors);
  3754. }
  3755. static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
  3756. static ssize_t
  3757. min_sync_show(struct mddev *mddev, char *page)
  3758. {
  3759. return sprintf(page, "%llu\n",
  3760. (unsigned long long)mddev->resync_min);
  3761. }
  3762. static ssize_t
  3763. min_sync_store(struct mddev *mddev, const char *buf, size_t len)
  3764. {
  3765. unsigned long long min;
  3766. if (strict_strtoull(buf, 10, &min))
  3767. return -EINVAL;
  3768. if (min > mddev->resync_max)
  3769. return -EINVAL;
  3770. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3771. return -EBUSY;
  3772. /* Must be a multiple of chunk_size */
  3773. if (mddev->chunk_sectors) {
  3774. sector_t temp = min;
  3775. if (sector_div(temp, mddev->chunk_sectors))
  3776. return -EINVAL;
  3777. }
  3778. mddev->resync_min = min;
  3779. return len;
  3780. }
  3781. static struct md_sysfs_entry md_min_sync =
  3782. __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
  3783. static ssize_t
  3784. max_sync_show(struct mddev *mddev, char *page)
  3785. {
  3786. if (mddev->resync_max == MaxSector)
  3787. return sprintf(page, "max\n");
  3788. else
  3789. return sprintf(page, "%llu\n",
  3790. (unsigned long long)mddev->resync_max);
  3791. }
  3792. static ssize_t
  3793. max_sync_store(struct mddev *mddev, const char *buf, size_t len)
  3794. {
  3795. if (strncmp(buf, "max", 3) == 0)
  3796. mddev->resync_max = MaxSector;
  3797. else {
  3798. unsigned long long max;
  3799. if (strict_strtoull(buf, 10, &max))
  3800. return -EINVAL;
  3801. if (max < mddev->resync_min)
  3802. return -EINVAL;
  3803. if (max < mddev->resync_max &&
  3804. mddev->ro == 0 &&
  3805. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3806. return -EBUSY;
  3807. /* Must be a multiple of chunk_size */
  3808. if (mddev->chunk_sectors) {
  3809. sector_t temp = max;
  3810. if (sector_div(temp, mddev->chunk_sectors))
  3811. return -EINVAL;
  3812. }
  3813. mddev->resync_max = max;
  3814. }
  3815. wake_up(&mddev->recovery_wait);
  3816. return len;
  3817. }
  3818. static struct md_sysfs_entry md_max_sync =
  3819. __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
  3820. static ssize_t
  3821. suspend_lo_show(struct mddev *mddev, char *page)
  3822. {
  3823. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
  3824. }
  3825. static ssize_t
  3826. suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
  3827. {
  3828. char *e;
  3829. unsigned long long new = simple_strtoull(buf, &e, 10);
  3830. unsigned long long old = mddev->suspend_lo;
  3831. if (mddev->pers == NULL ||
  3832. mddev->pers->quiesce == NULL)
  3833. return -EINVAL;
  3834. if (buf == e || (*e && *e != '\n'))
  3835. return -EINVAL;
  3836. mddev->suspend_lo = new;
  3837. if (new >= old)
  3838. /* Shrinking suspended region */
  3839. mddev->pers->quiesce(mddev, 2);
  3840. else {
  3841. /* Expanding suspended region - need to wait */
  3842. mddev->pers->quiesce(mddev, 1);
  3843. mddev->pers->quiesce(mddev, 0);
  3844. }
  3845. return len;
  3846. }
  3847. static struct md_sysfs_entry md_suspend_lo =
  3848. __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
  3849. static ssize_t
  3850. suspend_hi_show(struct mddev *mddev, char *page)
  3851. {
  3852. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
  3853. }
  3854. static ssize_t
  3855. suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
  3856. {
  3857. char *e;
  3858. unsigned long long new = simple_strtoull(buf, &e, 10);
  3859. unsigned long long old = mddev->suspend_hi;
  3860. if (mddev->pers == NULL ||
  3861. mddev->pers->quiesce == NULL)
  3862. return -EINVAL;
  3863. if (buf == e || (*e && *e != '\n'))
  3864. return -EINVAL;
  3865. mddev->suspend_hi = new;
  3866. if (new <= old)
  3867. /* Shrinking suspended region */
  3868. mddev->pers->quiesce(mddev, 2);
  3869. else {
  3870. /* Expanding suspended region - need to wait */
  3871. mddev->pers->quiesce(mddev, 1);
  3872. mddev->pers->quiesce(mddev, 0);
  3873. }
  3874. return len;
  3875. }
  3876. static struct md_sysfs_entry md_suspend_hi =
  3877. __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
  3878. static ssize_t
  3879. reshape_position_show(struct mddev *mddev, char *page)
  3880. {
  3881. if (mddev->reshape_position != MaxSector)
  3882. return sprintf(page, "%llu\n",
  3883. (unsigned long long)mddev->reshape_position);
  3884. strcpy(page, "none\n");
  3885. return 5;
  3886. }
  3887. static ssize_t
  3888. reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
  3889. {
  3890. char *e;
  3891. unsigned long long new = simple_strtoull(buf, &e, 10);
  3892. if (mddev->pers)
  3893. return -EBUSY;
  3894. if (buf == e || (*e && *e != '\n'))
  3895. return -EINVAL;
  3896. mddev->reshape_position = new;
  3897. mddev->delta_disks = 0;
  3898. mddev->new_level = mddev->level;
  3899. mddev->new_layout = mddev->layout;
  3900. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3901. return len;
  3902. }
  3903. static struct md_sysfs_entry md_reshape_position =
  3904. __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
  3905. reshape_position_store);
  3906. static ssize_t
  3907. array_size_show(struct mddev *mddev, char *page)
  3908. {
  3909. if (mddev->external_size)
  3910. return sprintf(page, "%llu\n",
  3911. (unsigned long long)mddev->array_sectors/2);
  3912. else
  3913. return sprintf(page, "default\n");
  3914. }
  3915. static ssize_t
  3916. array_size_store(struct mddev *mddev, const char *buf, size_t len)
  3917. {
  3918. sector_t sectors;
  3919. if (strncmp(buf, "default", 7) == 0) {
  3920. if (mddev->pers)
  3921. sectors = mddev->pers->size(mddev, 0, 0);
  3922. else
  3923. sectors = mddev->array_sectors;
  3924. mddev->external_size = 0;
  3925. } else {
  3926. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  3927. return -EINVAL;
  3928. if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
  3929. return -E2BIG;
  3930. mddev->external_size = 1;
  3931. }
  3932. mddev->array_sectors = sectors;
  3933. if (mddev->pers) {
  3934. set_capacity(mddev->gendisk, mddev->array_sectors);
  3935. revalidate_disk(mddev->gendisk);
  3936. }
  3937. return len;
  3938. }
  3939. static struct md_sysfs_entry md_array_size =
  3940. __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
  3941. array_size_store);
  3942. static struct attribute *md_default_attrs[] = {
  3943. &md_level.attr,
  3944. &md_layout.attr,
  3945. &md_raid_disks.attr,
  3946. &md_chunk_size.attr,
  3947. &md_size.attr,
  3948. &md_resync_start.attr,
  3949. &md_metadata.attr,
  3950. &md_new_device.attr,
  3951. &md_safe_delay.attr,
  3952. &md_array_state.attr,
  3953. &md_reshape_position.attr,
  3954. &md_array_size.attr,
  3955. &max_corr_read_errors.attr,
  3956. NULL,
  3957. };
  3958. static struct attribute *md_redundancy_attrs[] = {
  3959. &md_scan_mode.attr,
  3960. &md_mismatches.attr,
  3961. &md_sync_min.attr,
  3962. &md_sync_max.attr,
  3963. &md_sync_speed.attr,
  3964. &md_sync_force_parallel.attr,
  3965. &md_sync_completed.attr,
  3966. &md_min_sync.attr,
  3967. &md_max_sync.attr,
  3968. &md_suspend_lo.attr,
  3969. &md_suspend_hi.attr,
  3970. &md_bitmap.attr,
  3971. &md_degraded.attr,
  3972. NULL,
  3973. };
  3974. static struct attribute_group md_redundancy_group = {
  3975. .name = NULL,
  3976. .attrs = md_redundancy_attrs,
  3977. };
  3978. static ssize_t
  3979. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  3980. {
  3981. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  3982. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  3983. ssize_t rv;
  3984. if (!entry->show)
  3985. return -EIO;
  3986. spin_lock(&all_mddevs_lock);
  3987. if (list_empty(&mddev->all_mddevs)) {
  3988. spin_unlock(&all_mddevs_lock);
  3989. return -EBUSY;
  3990. }
  3991. mddev_get(mddev);
  3992. spin_unlock(&all_mddevs_lock);
  3993. rv = mddev_lock(mddev);
  3994. if (!rv) {
  3995. rv = entry->show(mddev, page);
  3996. mddev_unlock(mddev);
  3997. }
  3998. mddev_put(mddev);
  3999. return rv;
  4000. }
  4001. static ssize_t
  4002. md_attr_store(struct kobject *kobj, struct attribute *attr,
  4003. const char *page, size_t length)
  4004. {
  4005. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  4006. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  4007. ssize_t rv;
  4008. if (!entry->store)
  4009. return -EIO;
  4010. if (!capable(CAP_SYS_ADMIN))
  4011. return -EACCES;
  4012. spin_lock(&all_mddevs_lock);
  4013. if (list_empty(&mddev->all_mddevs)) {
  4014. spin_unlock(&all_mddevs_lock);
  4015. return -EBUSY;
  4016. }
  4017. mddev_get(mddev);
  4018. spin_unlock(&all_mddevs_lock);
  4019. rv = mddev_lock(mddev);
  4020. if (!rv) {
  4021. rv = entry->store(mddev, page, length);
  4022. mddev_unlock(mddev);
  4023. }
  4024. mddev_put(mddev);
  4025. return rv;
  4026. }
  4027. static void md_free(struct kobject *ko)
  4028. {
  4029. struct mddev *mddev = container_of(ko, struct mddev, kobj);
  4030. if (mddev->sysfs_state)
  4031. sysfs_put(mddev->sysfs_state);
  4032. if (mddev->gendisk) {
  4033. del_gendisk(mddev->gendisk);
  4034. put_disk(mddev->gendisk);
  4035. }
  4036. if (mddev->queue)
  4037. blk_cleanup_queue(mddev->queue);
  4038. kfree(mddev);
  4039. }
  4040. static const struct sysfs_ops md_sysfs_ops = {
  4041. .show = md_attr_show,
  4042. .store = md_attr_store,
  4043. };
  4044. static struct kobj_type md_ktype = {
  4045. .release = md_free,
  4046. .sysfs_ops = &md_sysfs_ops,
  4047. .default_attrs = md_default_attrs,
  4048. };
  4049. int mdp_major = 0;
  4050. static void mddev_delayed_delete(struct work_struct *ws)
  4051. {
  4052. struct mddev *mddev = container_of(ws, struct mddev, del_work);
  4053. sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
  4054. kobject_del(&mddev->kobj);
  4055. kobject_put(&mddev->kobj);
  4056. }
  4057. static int md_alloc(dev_t dev, char *name)
  4058. {
  4059. static DEFINE_MUTEX(disks_mutex);
  4060. struct mddev *mddev = mddev_find(dev);
  4061. struct gendisk *disk;
  4062. int partitioned;
  4063. int shift;
  4064. int unit;
  4065. int error;
  4066. if (!mddev)
  4067. return -ENODEV;
  4068. partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
  4069. shift = partitioned ? MdpMinorShift : 0;
  4070. unit = MINOR(mddev->unit) >> shift;
  4071. /* wait for any previous instance of this device to be
  4072. * completely removed (mddev_delayed_delete).
  4073. */
  4074. flush_workqueue(md_misc_wq);
  4075. mutex_lock(&disks_mutex);
  4076. error = -EEXIST;
  4077. if (mddev->gendisk)
  4078. goto abort;
  4079. if (name) {
  4080. /* Need to ensure that 'name' is not a duplicate.
  4081. */
  4082. struct mddev *mddev2;
  4083. spin_lock(&all_mddevs_lock);
  4084. list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
  4085. if (mddev2->gendisk &&
  4086. strcmp(mddev2->gendisk->disk_name, name) == 0) {
  4087. spin_unlock(&all_mddevs_lock);
  4088. goto abort;
  4089. }
  4090. spin_unlock(&all_mddevs_lock);
  4091. }
  4092. error = -ENOMEM;
  4093. mddev->queue = blk_alloc_queue(GFP_KERNEL);
  4094. if (!mddev->queue)
  4095. goto abort;
  4096. mddev->queue->queuedata = mddev;
  4097. blk_queue_make_request(mddev->queue, md_make_request);
  4098. disk = alloc_disk(1 << shift);
  4099. if (!disk) {
  4100. blk_cleanup_queue(mddev->queue);
  4101. mddev->queue = NULL;
  4102. goto abort;
  4103. }
  4104. disk->major = MAJOR(mddev->unit);
  4105. disk->first_minor = unit << shift;
  4106. if (name)
  4107. strcpy(disk->disk_name, name);
  4108. else if (partitioned)
  4109. sprintf(disk->disk_name, "md_d%d", unit);
  4110. else
  4111. sprintf(disk->disk_name, "md%d", unit);
  4112. disk->fops = &md_fops;
  4113. disk->private_data = mddev;
  4114. disk->queue = mddev->queue;
  4115. blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
  4116. /* Allow extended partitions. This makes the
  4117. * 'mdp' device redundant, but we can't really
  4118. * remove it now.
  4119. */
  4120. disk->flags |= GENHD_FL_EXT_DEVT;
  4121. mddev->gendisk = disk;
  4122. /* As soon as we call add_disk(), another thread could get
  4123. * through to md_open, so make sure it doesn't get too far
  4124. */
  4125. mutex_lock(&mddev->open_mutex);
  4126. add_disk(disk);
  4127. error = kobject_init_and_add(&mddev->kobj, &md_ktype,
  4128. &disk_to_dev(disk)->kobj, "%s", "md");
  4129. if (error) {
  4130. /* This isn't possible, but as kobject_init_and_add is marked
  4131. * __must_check, we must do something with the result
  4132. */
  4133. printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
  4134. disk->disk_name);
  4135. error = 0;
  4136. }
  4137. if (mddev->kobj.sd &&
  4138. sysfs_create_group(&mddev->kobj, &md_bitmap_group))
  4139. printk(KERN_DEBUG "pointless warning\n");
  4140. mutex_unlock(&mddev->open_mutex);
  4141. abort:
  4142. mutex_unlock(&disks_mutex);
  4143. if (!error && mddev->kobj.sd) {
  4144. kobject_uevent(&mddev->kobj, KOBJ_ADD);
  4145. mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
  4146. }
  4147. mddev_put(mddev);
  4148. return error;
  4149. }
  4150. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  4151. {
  4152. md_alloc(dev, NULL);
  4153. return NULL;
  4154. }
  4155. static int add_named_array(const char *val, struct kernel_param *kp)
  4156. {
  4157. /* val must be "md_*" where * is not all digits.
  4158. * We allocate an array with a large free minor number, and
  4159. * set the name to val. val must not already be an active name.
  4160. */
  4161. int len = strlen(val);
  4162. char buf[DISK_NAME_LEN];
  4163. while (len && val[len-1] == '\n')
  4164. len--;
  4165. if (len >= DISK_NAME_LEN)
  4166. return -E2BIG;
  4167. strlcpy(buf, val, len+1);
  4168. if (strncmp(buf, "md_", 3) != 0)
  4169. return -EINVAL;
  4170. return md_alloc(0, buf);
  4171. }
  4172. static void md_safemode_timeout(unsigned long data)
  4173. {
  4174. struct mddev *mddev = (struct mddev *) data;
  4175. if (!atomic_read(&mddev->writes_pending)) {
  4176. mddev->safemode = 1;
  4177. if (mddev->external)
  4178. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4179. }
  4180. md_wakeup_thread(mddev->thread);
  4181. }
  4182. static int start_dirty_degraded;
  4183. int md_run(struct mddev *mddev)
  4184. {
  4185. int err;
  4186. struct md_rdev *rdev;
  4187. struct md_personality *pers;
  4188. if (list_empty(&mddev->disks))
  4189. /* cannot run an array with no devices.. */
  4190. return -EINVAL;
  4191. if (mddev->pers)
  4192. return -EBUSY;
  4193. /* Cannot run until previous stop completes properly */
  4194. if (mddev->sysfs_active)
  4195. return -EBUSY;
  4196. /*
  4197. * Analyze all RAID superblock(s)
  4198. */
  4199. if (!mddev->raid_disks) {
  4200. if (!mddev->persistent)
  4201. return -EINVAL;
  4202. analyze_sbs(mddev);
  4203. }
  4204. if (mddev->level != LEVEL_NONE)
  4205. request_module("md-level-%d", mddev->level);
  4206. else if (mddev->clevel[0])
  4207. request_module("md-%s", mddev->clevel);
  4208. /*
  4209. * Drop all container device buffers, from now on
  4210. * the only valid external interface is through the md
  4211. * device.
  4212. */
  4213. list_for_each_entry(rdev, &mddev->disks, same_set) {
  4214. if (test_bit(Faulty, &rdev->flags))
  4215. continue;
  4216. sync_blockdev(rdev->bdev);
  4217. invalidate_bdev(rdev->bdev);
  4218. /* perform some consistency tests on the device.
  4219. * We don't want the data to overlap the metadata,
  4220. * Internal Bitmap issues have been handled elsewhere.
  4221. */
  4222. if (rdev->meta_bdev) {
  4223. /* Nothing to check */;
  4224. } else if (rdev->data_offset < rdev->sb_start) {
  4225. if (mddev->dev_sectors &&
  4226. rdev->data_offset + mddev->dev_sectors
  4227. > rdev->sb_start) {
  4228. printk("md: %s: data overlaps metadata\n",
  4229. mdname(mddev));
  4230. return -EINVAL;
  4231. }
  4232. } else {
  4233. if (rdev->sb_start + rdev->sb_size/512
  4234. > rdev->data_offset) {
  4235. printk("md: %s: metadata overlaps data\n",
  4236. mdname(mddev));
  4237. return -EINVAL;
  4238. }
  4239. }
  4240. sysfs_notify_dirent_safe(rdev->sysfs_state);
  4241. }
  4242. if (mddev->bio_set == NULL)
  4243. mddev->bio_set = bioset_create(BIO_POOL_SIZE,
  4244. sizeof(struct mddev *));
  4245. spin_lock(&pers_lock);
  4246. pers = find_pers(mddev->level, mddev->clevel);
  4247. if (!pers || !try_module_get(pers->owner)) {
  4248. spin_unlock(&pers_lock);
  4249. if (mddev->level != LEVEL_NONE)
  4250. printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
  4251. mddev->level);
  4252. else
  4253. printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
  4254. mddev->clevel);
  4255. return -EINVAL;
  4256. }
  4257. mddev->pers = pers;
  4258. spin_unlock(&pers_lock);
  4259. if (mddev->level != pers->level) {
  4260. mddev->level = pers->level;
  4261. mddev->new_level = pers->level;
  4262. }
  4263. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  4264. if (mddev->reshape_position != MaxSector &&
  4265. pers->start_reshape == NULL) {
  4266. /* This personality cannot handle reshaping... */
  4267. mddev->pers = NULL;
  4268. module_put(pers->owner);
  4269. return -EINVAL;
  4270. }
  4271. if (pers->sync_request) {
  4272. /* Warn if this is a potentially silly
  4273. * configuration.
  4274. */
  4275. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  4276. struct md_rdev *rdev2;
  4277. int warned = 0;
  4278. list_for_each_entry(rdev, &mddev->disks, same_set)
  4279. list_for_each_entry(rdev2, &mddev->disks, same_set) {
  4280. if (rdev < rdev2 &&
  4281. rdev->bdev->bd_contains ==
  4282. rdev2->bdev->bd_contains) {
  4283. printk(KERN_WARNING
  4284. "%s: WARNING: %s appears to be"
  4285. " on the same physical disk as"
  4286. " %s.\n",
  4287. mdname(mddev),
  4288. bdevname(rdev->bdev,b),
  4289. bdevname(rdev2->bdev,b2));
  4290. warned = 1;
  4291. }
  4292. }
  4293. if (warned)
  4294. printk(KERN_WARNING
  4295. "True protection against single-disk"
  4296. " failure might be compromised.\n");
  4297. }
  4298. mddev->recovery = 0;
  4299. /* may be over-ridden by personality */
  4300. mddev->resync_max_sectors = mddev->dev_sectors;
  4301. mddev->ok_start_degraded = start_dirty_degraded;
  4302. if (start_readonly && mddev->ro == 0)
  4303. mddev->ro = 2; /* read-only, but switch on first write */
  4304. err = mddev->pers->run(mddev);
  4305. if (err)
  4306. printk(KERN_ERR "md: pers->run() failed ...\n");
  4307. else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
  4308. WARN_ONCE(!mddev->external_size, "%s: default size too small,"
  4309. " but 'external_size' not in effect?\n", __func__);
  4310. printk(KERN_ERR
  4311. "md: invalid array_size %llu > default size %llu\n",
  4312. (unsigned long long)mddev->array_sectors / 2,
  4313. (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
  4314. err = -EINVAL;
  4315. mddev->pers->stop(mddev);
  4316. }
  4317. if (err == 0 && mddev->pers->sync_request) {
  4318. err = bitmap_create(mddev);
  4319. if (err) {
  4320. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  4321. mdname(mddev), err);
  4322. mddev->pers->stop(mddev);
  4323. }
  4324. }
  4325. if (err) {
  4326. module_put(mddev->pers->owner);
  4327. mddev->pers = NULL;
  4328. bitmap_destroy(mddev);
  4329. return err;
  4330. }
  4331. if (mddev->pers->sync_request) {
  4332. if (mddev->kobj.sd &&
  4333. sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  4334. printk(KERN_WARNING
  4335. "md: cannot register extra attributes for %s\n",
  4336. mdname(mddev));
  4337. mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
  4338. } else if (mddev->ro == 2) /* auto-readonly not meaningful */
  4339. mddev->ro = 0;
  4340. atomic_set(&mddev->writes_pending,0);
  4341. atomic_set(&mddev->max_corr_read_errors,
  4342. MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
  4343. mddev->safemode = 0;
  4344. mddev->safemode_timer.function = md_safemode_timeout;
  4345. mddev->safemode_timer.data = (unsigned long) mddev;
  4346. mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
  4347. mddev->in_sync = 1;
  4348. smp_wmb();
  4349. mddev->ready = 1;
  4350. list_for_each_entry(rdev, &mddev->disks, same_set)
  4351. if (rdev->raid_disk >= 0)
  4352. if (sysfs_link_rdev(mddev, rdev))
  4353. /* failure here is OK */;
  4354. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4355. if (mddev->flags)
  4356. md_update_sb(mddev, 0);
  4357. md_new_event(mddev);
  4358. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4359. sysfs_notify_dirent_safe(mddev->sysfs_action);
  4360. sysfs_notify(&mddev->kobj, NULL, "degraded");
  4361. return 0;
  4362. }
  4363. EXPORT_SYMBOL_GPL(md_run);
  4364. static int do_md_run(struct mddev *mddev)
  4365. {
  4366. int err;
  4367. err = md_run(mddev);
  4368. if (err)
  4369. goto out;
  4370. err = bitmap_load(mddev);
  4371. if (err) {
  4372. bitmap_destroy(mddev);
  4373. goto out;
  4374. }
  4375. md_wakeup_thread(mddev->thread);
  4376. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  4377. set_capacity(mddev->gendisk, mddev->array_sectors);
  4378. revalidate_disk(mddev->gendisk);
  4379. mddev->changed = 1;
  4380. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4381. out:
  4382. return err;
  4383. }
  4384. static int restart_array(struct mddev *mddev)
  4385. {
  4386. struct gendisk *disk = mddev->gendisk;
  4387. /* Complain if it has no devices */
  4388. if (list_empty(&mddev->disks))
  4389. return -ENXIO;
  4390. if (!mddev->pers)
  4391. return -EINVAL;
  4392. if (!mddev->ro)
  4393. return -EBUSY;
  4394. mddev->safemode = 0;
  4395. mddev->ro = 0;
  4396. set_disk_ro(disk, 0);
  4397. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  4398. mdname(mddev));
  4399. /* Kick recovery or resync if necessary */
  4400. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4401. md_wakeup_thread(mddev->thread);
  4402. md_wakeup_thread(mddev->sync_thread);
  4403. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4404. return 0;
  4405. }
  4406. /* similar to deny_write_access, but accounts for our holding a reference
  4407. * to the file ourselves */
  4408. static int deny_bitmap_write_access(struct file * file)
  4409. {
  4410. struct inode *inode = file->f_mapping->host;
  4411. spin_lock(&inode->i_lock);
  4412. if (atomic_read(&inode->i_writecount) > 1) {
  4413. spin_unlock(&inode->i_lock);
  4414. return -ETXTBSY;
  4415. }
  4416. atomic_set(&inode->i_writecount, -1);
  4417. spin_unlock(&inode->i_lock);
  4418. return 0;
  4419. }
  4420. void restore_bitmap_write_access(struct file *file)
  4421. {
  4422. struct inode *inode = file->f_mapping->host;
  4423. spin_lock(&inode->i_lock);
  4424. atomic_set(&inode->i_writecount, 1);
  4425. spin_unlock(&inode->i_lock);
  4426. }
  4427. static void md_clean(struct mddev *mddev)
  4428. {
  4429. mddev->array_sectors = 0;
  4430. mddev->external_size = 0;
  4431. mddev->dev_sectors = 0;
  4432. mddev->raid_disks = 0;
  4433. mddev->recovery_cp = 0;
  4434. mddev->resync_min = 0;
  4435. mddev->resync_max = MaxSector;
  4436. mddev->reshape_position = MaxSector;
  4437. mddev->external = 0;
  4438. mddev->persistent = 0;
  4439. mddev->level = LEVEL_NONE;
  4440. mddev->clevel[0] = 0;
  4441. mddev->flags = 0;
  4442. mddev->ro = 0;
  4443. mddev->metadata_type[0] = 0;
  4444. mddev->chunk_sectors = 0;
  4445. mddev->ctime = mddev->utime = 0;
  4446. mddev->layout = 0;
  4447. mddev->max_disks = 0;
  4448. mddev->events = 0;
  4449. mddev->can_decrease_events = 0;
  4450. mddev->delta_disks = 0;
  4451. mddev->new_level = LEVEL_NONE;
  4452. mddev->new_layout = 0;
  4453. mddev->new_chunk_sectors = 0;
  4454. mddev->curr_resync = 0;
  4455. mddev->resync_mismatches = 0;
  4456. mddev->suspend_lo = mddev->suspend_hi = 0;
  4457. mddev->sync_speed_min = mddev->sync_speed_max = 0;
  4458. mddev->recovery = 0;
  4459. mddev->in_sync = 0;
  4460. mddev->changed = 0;
  4461. mddev->degraded = 0;
  4462. mddev->safemode = 0;
  4463. mddev->bitmap_info.offset = 0;
  4464. mddev->bitmap_info.default_offset = 0;
  4465. mddev->bitmap_info.chunksize = 0;
  4466. mddev->bitmap_info.daemon_sleep = 0;
  4467. mddev->bitmap_info.max_write_behind = 0;
  4468. }
  4469. static void __md_stop_writes(struct mddev *mddev)
  4470. {
  4471. if (mddev->sync_thread) {
  4472. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4473. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4474. reap_sync_thread(mddev);
  4475. }
  4476. del_timer_sync(&mddev->safemode_timer);
  4477. bitmap_flush(mddev);
  4478. md_super_wait(mddev);
  4479. if (!mddev->in_sync || mddev->flags) {
  4480. /* mark array as shutdown cleanly */
  4481. mddev->in_sync = 1;
  4482. md_update_sb(mddev, 1);
  4483. }
  4484. }
  4485. void md_stop_writes(struct mddev *mddev)
  4486. {
  4487. mddev_lock(mddev);
  4488. __md_stop_writes(mddev);
  4489. mddev_unlock(mddev);
  4490. }
  4491. EXPORT_SYMBOL_GPL(md_stop_writes);
  4492. void md_stop(struct mddev *mddev)
  4493. {
  4494. mddev->ready = 0;
  4495. mddev->pers->stop(mddev);
  4496. if (mddev->pers->sync_request && mddev->to_remove == NULL)
  4497. mddev->to_remove = &md_redundancy_group;
  4498. module_put(mddev->pers->owner);
  4499. mddev->pers = NULL;
  4500. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4501. }
  4502. EXPORT_SYMBOL_GPL(md_stop);
  4503. static int md_set_readonly(struct mddev *mddev, int is_open)
  4504. {
  4505. int err = 0;
  4506. mutex_lock(&mddev->open_mutex);
  4507. if (atomic_read(&mddev->openers) > is_open) {
  4508. printk("md: %s still in use.\n",mdname(mddev));
  4509. err = -EBUSY;
  4510. goto out;
  4511. }
  4512. if (mddev->pers) {
  4513. __md_stop_writes(mddev);
  4514. err = -ENXIO;
  4515. if (mddev->ro==1)
  4516. goto out;
  4517. mddev->ro = 1;
  4518. set_disk_ro(mddev->gendisk, 1);
  4519. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4520. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4521. err = 0;
  4522. }
  4523. out:
  4524. mutex_unlock(&mddev->open_mutex);
  4525. return err;
  4526. }
  4527. /* mode:
  4528. * 0 - completely stop and dis-assemble array
  4529. * 2 - stop but do not disassemble array
  4530. */
  4531. static int do_md_stop(struct mddev * mddev, int mode, int is_open)
  4532. {
  4533. struct gendisk *disk = mddev->gendisk;
  4534. struct md_rdev *rdev;
  4535. mutex_lock(&mddev->open_mutex);
  4536. if (atomic_read(&mddev->openers) > is_open ||
  4537. mddev->sysfs_active) {
  4538. printk("md: %s still in use.\n",mdname(mddev));
  4539. mutex_unlock(&mddev->open_mutex);
  4540. return -EBUSY;
  4541. }
  4542. if (mddev->pers) {
  4543. if (mddev->ro)
  4544. set_disk_ro(disk, 0);
  4545. __md_stop_writes(mddev);
  4546. md_stop(mddev);
  4547. mddev->queue->merge_bvec_fn = NULL;
  4548. mddev->queue->backing_dev_info.congested_fn = NULL;
  4549. /* tell userspace to handle 'inactive' */
  4550. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4551. list_for_each_entry(rdev, &mddev->disks, same_set)
  4552. if (rdev->raid_disk >= 0)
  4553. sysfs_unlink_rdev(mddev, rdev);
  4554. set_capacity(disk, 0);
  4555. mutex_unlock(&mddev->open_mutex);
  4556. mddev->changed = 1;
  4557. revalidate_disk(disk);
  4558. if (mddev->ro)
  4559. mddev->ro = 0;
  4560. } else
  4561. mutex_unlock(&mddev->open_mutex);
  4562. /*
  4563. * Free resources if final stop
  4564. */
  4565. if (mode == 0) {
  4566. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  4567. bitmap_destroy(mddev);
  4568. if (mddev->bitmap_info.file) {
  4569. restore_bitmap_write_access(mddev->bitmap_info.file);
  4570. fput(mddev->bitmap_info.file);
  4571. mddev->bitmap_info.file = NULL;
  4572. }
  4573. mddev->bitmap_info.offset = 0;
  4574. export_array(mddev);
  4575. md_clean(mddev);
  4576. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4577. if (mddev->hold_active == UNTIL_STOP)
  4578. mddev->hold_active = 0;
  4579. }
  4580. blk_integrity_unregister(disk);
  4581. md_new_event(mddev);
  4582. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4583. return 0;
  4584. }
  4585. #ifndef MODULE
  4586. static void autorun_array(struct mddev *mddev)
  4587. {
  4588. struct md_rdev *rdev;
  4589. int err;
  4590. if (list_empty(&mddev->disks))
  4591. return;
  4592. printk(KERN_INFO "md: running: ");
  4593. list_for_each_entry(rdev, &mddev->disks, same_set) {
  4594. char b[BDEVNAME_SIZE];
  4595. printk("<%s>", bdevname(rdev->bdev,b));
  4596. }
  4597. printk("\n");
  4598. err = do_md_run(mddev);
  4599. if (err) {
  4600. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  4601. do_md_stop(mddev, 0, 0);
  4602. }
  4603. }
  4604. /*
  4605. * lets try to run arrays based on all disks that have arrived
  4606. * until now. (those are in pending_raid_disks)
  4607. *
  4608. * the method: pick the first pending disk, collect all disks with
  4609. * the same UUID, remove all from the pending list and put them into
  4610. * the 'same_array' list. Then order this list based on superblock
  4611. * update time (freshest comes first), kick out 'old' disks and
  4612. * compare superblocks. If everything's fine then run it.
  4613. *
  4614. * If "unit" is allocated, then bump its reference count
  4615. */
  4616. static void autorun_devices(int part)
  4617. {
  4618. struct md_rdev *rdev0, *rdev, *tmp;
  4619. struct mddev *mddev;
  4620. char b[BDEVNAME_SIZE];
  4621. printk(KERN_INFO "md: autorun ...\n");
  4622. while (!list_empty(&pending_raid_disks)) {
  4623. int unit;
  4624. dev_t dev;
  4625. LIST_HEAD(candidates);
  4626. rdev0 = list_entry(pending_raid_disks.next,
  4627. struct md_rdev, same_set);
  4628. printk(KERN_INFO "md: considering %s ...\n",
  4629. bdevname(rdev0->bdev,b));
  4630. INIT_LIST_HEAD(&candidates);
  4631. rdev_for_each_list(rdev, tmp, &pending_raid_disks)
  4632. if (super_90_load(rdev, rdev0, 0) >= 0) {
  4633. printk(KERN_INFO "md: adding %s ...\n",
  4634. bdevname(rdev->bdev,b));
  4635. list_move(&rdev->same_set, &candidates);
  4636. }
  4637. /*
  4638. * now we have a set of devices, with all of them having
  4639. * mostly sane superblocks. It's time to allocate the
  4640. * mddev.
  4641. */
  4642. if (part) {
  4643. dev = MKDEV(mdp_major,
  4644. rdev0->preferred_minor << MdpMinorShift);
  4645. unit = MINOR(dev) >> MdpMinorShift;
  4646. } else {
  4647. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  4648. unit = MINOR(dev);
  4649. }
  4650. if (rdev0->preferred_minor != unit) {
  4651. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  4652. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  4653. break;
  4654. }
  4655. md_probe(dev, NULL, NULL);
  4656. mddev = mddev_find(dev);
  4657. if (!mddev || !mddev->gendisk) {
  4658. if (mddev)
  4659. mddev_put(mddev);
  4660. printk(KERN_ERR
  4661. "md: cannot allocate memory for md drive.\n");
  4662. break;
  4663. }
  4664. if (mddev_lock(mddev))
  4665. printk(KERN_WARNING "md: %s locked, cannot run\n",
  4666. mdname(mddev));
  4667. else if (mddev->raid_disks || mddev->major_version
  4668. || !list_empty(&mddev->disks)) {
  4669. printk(KERN_WARNING
  4670. "md: %s already running, cannot run %s\n",
  4671. mdname(mddev), bdevname(rdev0->bdev,b));
  4672. mddev_unlock(mddev);
  4673. } else {
  4674. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  4675. mddev->persistent = 1;
  4676. rdev_for_each_list(rdev, tmp, &candidates) {
  4677. list_del_init(&rdev->same_set);
  4678. if (bind_rdev_to_array(rdev, mddev))
  4679. export_rdev(rdev);
  4680. }
  4681. autorun_array(mddev);
  4682. mddev_unlock(mddev);
  4683. }
  4684. /* on success, candidates will be empty, on error
  4685. * it won't...
  4686. */
  4687. rdev_for_each_list(rdev, tmp, &candidates) {
  4688. list_del_init(&rdev->same_set);
  4689. export_rdev(rdev);
  4690. }
  4691. mddev_put(mddev);
  4692. }
  4693. printk(KERN_INFO "md: ... autorun DONE.\n");
  4694. }
  4695. #endif /* !MODULE */
  4696. static int get_version(void __user * arg)
  4697. {
  4698. mdu_version_t ver;
  4699. ver.major = MD_MAJOR_VERSION;
  4700. ver.minor = MD_MINOR_VERSION;
  4701. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  4702. if (copy_to_user(arg, &ver, sizeof(ver)))
  4703. return -EFAULT;
  4704. return 0;
  4705. }
  4706. static int get_array_info(struct mddev * mddev, void __user * arg)
  4707. {
  4708. mdu_array_info_t info;
  4709. int nr,working,insync,failed,spare;
  4710. struct md_rdev *rdev;
  4711. nr=working=insync=failed=spare=0;
  4712. list_for_each_entry(rdev, &mddev->disks, same_set) {
  4713. nr++;
  4714. if (test_bit(Faulty, &rdev->flags))
  4715. failed++;
  4716. else {
  4717. working++;
  4718. if (test_bit(In_sync, &rdev->flags))
  4719. insync++;
  4720. else
  4721. spare++;
  4722. }
  4723. }
  4724. info.major_version = mddev->major_version;
  4725. info.minor_version = mddev->minor_version;
  4726. info.patch_version = MD_PATCHLEVEL_VERSION;
  4727. info.ctime = mddev->ctime;
  4728. info.level = mddev->level;
  4729. info.size = mddev->dev_sectors / 2;
  4730. if (info.size != mddev->dev_sectors / 2) /* overflow */
  4731. info.size = -1;
  4732. info.nr_disks = nr;
  4733. info.raid_disks = mddev->raid_disks;
  4734. info.md_minor = mddev->md_minor;
  4735. info.not_persistent= !mddev->persistent;
  4736. info.utime = mddev->utime;
  4737. info.state = 0;
  4738. if (mddev->in_sync)
  4739. info.state = (1<<MD_SB_CLEAN);
  4740. if (mddev->bitmap && mddev->bitmap_info.offset)
  4741. info.state = (1<<MD_SB_BITMAP_PRESENT);
  4742. info.active_disks = insync;
  4743. info.working_disks = working;
  4744. info.failed_disks = failed;
  4745. info.spare_disks = spare;
  4746. info.layout = mddev->layout;
  4747. info.chunk_size = mddev->chunk_sectors << 9;
  4748. if (copy_to_user(arg, &info, sizeof(info)))
  4749. return -EFAULT;
  4750. return 0;
  4751. }
  4752. static int get_bitmap_file(struct mddev * mddev, void __user * arg)
  4753. {
  4754. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  4755. char *ptr, *buf = NULL;
  4756. int err = -ENOMEM;
  4757. if (md_allow_write(mddev))
  4758. file = kmalloc(sizeof(*file), GFP_NOIO);
  4759. else
  4760. file = kmalloc(sizeof(*file), GFP_KERNEL);
  4761. if (!file)
  4762. goto out;
  4763. /* bitmap disabled, zero the first byte and copy out */
  4764. if (!mddev->bitmap || !mddev->bitmap->file) {
  4765. file->pathname[0] = '\0';
  4766. goto copy_out;
  4767. }
  4768. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  4769. if (!buf)
  4770. goto out;
  4771. ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
  4772. if (IS_ERR(ptr))
  4773. goto out;
  4774. strcpy(file->pathname, ptr);
  4775. copy_out:
  4776. err = 0;
  4777. if (copy_to_user(arg, file, sizeof(*file)))
  4778. err = -EFAULT;
  4779. out:
  4780. kfree(buf);
  4781. kfree(file);
  4782. return err;
  4783. }
  4784. static int get_disk_info(struct mddev * mddev, void __user * arg)
  4785. {
  4786. mdu_disk_info_t info;
  4787. struct md_rdev *rdev;
  4788. if (copy_from_user(&info, arg, sizeof(info)))
  4789. return -EFAULT;
  4790. rdev = find_rdev_nr(mddev, info.number);
  4791. if (rdev) {
  4792. info.major = MAJOR(rdev->bdev->bd_dev);
  4793. info.minor = MINOR(rdev->bdev->bd_dev);
  4794. info.raid_disk = rdev->raid_disk;
  4795. info.state = 0;
  4796. if (test_bit(Faulty, &rdev->flags))
  4797. info.state |= (1<<MD_DISK_FAULTY);
  4798. else if (test_bit(In_sync, &rdev->flags)) {
  4799. info.state |= (1<<MD_DISK_ACTIVE);
  4800. info.state |= (1<<MD_DISK_SYNC);
  4801. }
  4802. if (test_bit(WriteMostly, &rdev->flags))
  4803. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  4804. } else {
  4805. info.major = info.minor = 0;
  4806. info.raid_disk = -1;
  4807. info.state = (1<<MD_DISK_REMOVED);
  4808. }
  4809. if (copy_to_user(arg, &info, sizeof(info)))
  4810. return -EFAULT;
  4811. return 0;
  4812. }
  4813. static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
  4814. {
  4815. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  4816. struct md_rdev *rdev;
  4817. dev_t dev = MKDEV(info->major,info->minor);
  4818. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  4819. return -EOVERFLOW;
  4820. if (!mddev->raid_disks) {
  4821. int err;
  4822. /* expecting a device which has a superblock */
  4823. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  4824. if (IS_ERR(rdev)) {
  4825. printk(KERN_WARNING
  4826. "md: md_import_device returned %ld\n",
  4827. PTR_ERR(rdev));
  4828. return PTR_ERR(rdev);
  4829. }
  4830. if (!list_empty(&mddev->disks)) {
  4831. struct md_rdev *rdev0
  4832. = list_entry(mddev->disks.next,
  4833. struct md_rdev, same_set);
  4834. err = super_types[mddev->major_version]
  4835. .load_super(rdev, rdev0, mddev->minor_version);
  4836. if (err < 0) {
  4837. printk(KERN_WARNING
  4838. "md: %s has different UUID to %s\n",
  4839. bdevname(rdev->bdev,b),
  4840. bdevname(rdev0->bdev,b2));
  4841. export_rdev(rdev);
  4842. return -EINVAL;
  4843. }
  4844. }
  4845. err = bind_rdev_to_array(rdev, mddev);
  4846. if (err)
  4847. export_rdev(rdev);
  4848. return err;
  4849. }
  4850. /*
  4851. * add_new_disk can be used once the array is assembled
  4852. * to add "hot spares". They must already have a superblock
  4853. * written
  4854. */
  4855. if (mddev->pers) {
  4856. int err;
  4857. if (!mddev->pers->hot_add_disk) {
  4858. printk(KERN_WARNING
  4859. "%s: personality does not support diskops!\n",
  4860. mdname(mddev));
  4861. return -EINVAL;
  4862. }
  4863. if (mddev->persistent)
  4864. rdev = md_import_device(dev, mddev->major_version,
  4865. mddev->minor_version);
  4866. else
  4867. rdev = md_import_device(dev, -1, -1);
  4868. if (IS_ERR(rdev)) {
  4869. printk(KERN_WARNING
  4870. "md: md_import_device returned %ld\n",
  4871. PTR_ERR(rdev));
  4872. return PTR_ERR(rdev);
  4873. }
  4874. /* set saved_raid_disk if appropriate */
  4875. if (!mddev->persistent) {
  4876. if (info->state & (1<<MD_DISK_SYNC) &&
  4877. info->raid_disk < mddev->raid_disks) {
  4878. rdev->raid_disk = info->raid_disk;
  4879. set_bit(In_sync, &rdev->flags);
  4880. } else
  4881. rdev->raid_disk = -1;
  4882. } else
  4883. super_types[mddev->major_version].
  4884. validate_super(mddev, rdev);
  4885. if ((info->state & (1<<MD_DISK_SYNC)) &&
  4886. (!test_bit(In_sync, &rdev->flags) ||
  4887. rdev->raid_disk != info->raid_disk)) {
  4888. /* This was a hot-add request, but events doesn't
  4889. * match, so reject it.
  4890. */
  4891. export_rdev(rdev);
  4892. return -EINVAL;
  4893. }
  4894. if (test_bit(In_sync, &rdev->flags))
  4895. rdev->saved_raid_disk = rdev->raid_disk;
  4896. else
  4897. rdev->saved_raid_disk = -1;
  4898. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  4899. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  4900. set_bit(WriteMostly, &rdev->flags);
  4901. else
  4902. clear_bit(WriteMostly, &rdev->flags);
  4903. rdev->raid_disk = -1;
  4904. err = bind_rdev_to_array(rdev, mddev);
  4905. if (!err && !mddev->pers->hot_remove_disk) {
  4906. /* If there is hot_add_disk but no hot_remove_disk
  4907. * then added disks for geometry changes,
  4908. * and should be added immediately.
  4909. */
  4910. super_types[mddev->major_version].
  4911. validate_super(mddev, rdev);
  4912. err = mddev->pers->hot_add_disk(mddev, rdev);
  4913. if (err)
  4914. unbind_rdev_from_array(rdev);
  4915. }
  4916. if (err)
  4917. export_rdev(rdev);
  4918. else
  4919. sysfs_notify_dirent_safe(rdev->sysfs_state);
  4920. md_update_sb(mddev, 1);
  4921. if (mddev->degraded)
  4922. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  4923. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4924. if (!err)
  4925. md_new_event(mddev);
  4926. md_wakeup_thread(mddev->thread);
  4927. return err;
  4928. }
  4929. /* otherwise, add_new_disk is only allowed
  4930. * for major_version==0 superblocks
  4931. */
  4932. if (mddev->major_version != 0) {
  4933. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  4934. mdname(mddev));
  4935. return -EINVAL;
  4936. }
  4937. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  4938. int err;
  4939. rdev = md_import_device(dev, -1, 0);
  4940. if (IS_ERR(rdev)) {
  4941. printk(KERN_WARNING
  4942. "md: error, md_import_device() returned %ld\n",
  4943. PTR_ERR(rdev));
  4944. return PTR_ERR(rdev);
  4945. }
  4946. rdev->desc_nr = info->number;
  4947. if (info->raid_disk < mddev->raid_disks)
  4948. rdev->raid_disk = info->raid_disk;
  4949. else
  4950. rdev->raid_disk = -1;
  4951. if (rdev->raid_disk < mddev->raid_disks)
  4952. if (info->state & (1<<MD_DISK_SYNC))
  4953. set_bit(In_sync, &rdev->flags);
  4954. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  4955. set_bit(WriteMostly, &rdev->flags);
  4956. if (!mddev->persistent) {
  4957. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  4958. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  4959. } else
  4960. rdev->sb_start = calc_dev_sboffset(rdev);
  4961. rdev->sectors = rdev->sb_start;
  4962. err = bind_rdev_to_array(rdev, mddev);
  4963. if (err) {
  4964. export_rdev(rdev);
  4965. return err;
  4966. }
  4967. }
  4968. return 0;
  4969. }
  4970. static int hot_remove_disk(struct mddev * mddev, dev_t dev)
  4971. {
  4972. char b[BDEVNAME_SIZE];
  4973. struct md_rdev *rdev;
  4974. rdev = find_rdev(mddev, dev);
  4975. if (!rdev)
  4976. return -ENXIO;
  4977. if (rdev->raid_disk >= 0)
  4978. goto busy;
  4979. kick_rdev_from_array(rdev);
  4980. md_update_sb(mddev, 1);
  4981. md_new_event(mddev);
  4982. return 0;
  4983. busy:
  4984. printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
  4985. bdevname(rdev->bdev,b), mdname(mddev));
  4986. return -EBUSY;
  4987. }
  4988. static int hot_add_disk(struct mddev * mddev, dev_t dev)
  4989. {
  4990. char b[BDEVNAME_SIZE];
  4991. int err;
  4992. struct md_rdev *rdev;
  4993. if (!mddev->pers)
  4994. return -ENODEV;
  4995. if (mddev->major_version != 0) {
  4996. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  4997. " version-0 superblocks.\n",
  4998. mdname(mddev));
  4999. return -EINVAL;
  5000. }
  5001. if (!mddev->pers->hot_add_disk) {
  5002. printk(KERN_WARNING
  5003. "%s: personality does not support diskops!\n",
  5004. mdname(mddev));
  5005. return -EINVAL;
  5006. }
  5007. rdev = md_import_device(dev, -1, 0);
  5008. if (IS_ERR(rdev)) {
  5009. printk(KERN_WARNING
  5010. "md: error, md_import_device() returned %ld\n",
  5011. PTR_ERR(rdev));
  5012. return -EINVAL;
  5013. }
  5014. if (mddev->persistent)
  5015. rdev->sb_start = calc_dev_sboffset(rdev);
  5016. else
  5017. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  5018. rdev->sectors = rdev->sb_start;
  5019. if (test_bit(Faulty, &rdev->flags)) {
  5020. printk(KERN_WARNING
  5021. "md: can not hot-add faulty %s disk to %s!\n",
  5022. bdevname(rdev->bdev,b), mdname(mddev));
  5023. err = -EINVAL;
  5024. goto abort_export;
  5025. }
  5026. clear_bit(In_sync, &rdev->flags);
  5027. rdev->desc_nr = -1;
  5028. rdev->saved_raid_disk = -1;
  5029. err = bind_rdev_to_array(rdev, mddev);
  5030. if (err)
  5031. goto abort_export;
  5032. /*
  5033. * The rest should better be atomic, we can have disk failures
  5034. * noticed in interrupt contexts ...
  5035. */
  5036. rdev->raid_disk = -1;
  5037. md_update_sb(mddev, 1);
  5038. /*
  5039. * Kick recovery, maybe this spare has to be added to the
  5040. * array immediately.
  5041. */
  5042. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5043. md_wakeup_thread(mddev->thread);
  5044. md_new_event(mddev);
  5045. return 0;
  5046. abort_export:
  5047. export_rdev(rdev);
  5048. return err;
  5049. }
  5050. static int set_bitmap_file(struct mddev *mddev, int fd)
  5051. {
  5052. int err;
  5053. if (mddev->pers) {
  5054. if (!mddev->pers->quiesce)
  5055. return -EBUSY;
  5056. if (mddev->recovery || mddev->sync_thread)
  5057. return -EBUSY;
  5058. /* we should be able to change the bitmap.. */
  5059. }
  5060. if (fd >= 0) {
  5061. if (mddev->bitmap)
  5062. return -EEXIST; /* cannot add when bitmap is present */
  5063. mddev->bitmap_info.file = fget(fd);
  5064. if (mddev->bitmap_info.file == NULL) {
  5065. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  5066. mdname(mddev));
  5067. return -EBADF;
  5068. }
  5069. err = deny_bitmap_write_access(mddev->bitmap_info.file);
  5070. if (err) {
  5071. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  5072. mdname(mddev));
  5073. fput(mddev->bitmap_info.file);
  5074. mddev->bitmap_info.file = NULL;
  5075. return err;
  5076. }
  5077. mddev->bitmap_info.offset = 0; /* file overrides offset */
  5078. } else if (mddev->bitmap == NULL)
  5079. return -ENOENT; /* cannot remove what isn't there */
  5080. err = 0;
  5081. if (mddev->pers) {
  5082. mddev->pers->quiesce(mddev, 1);
  5083. if (fd >= 0) {
  5084. err = bitmap_create(mddev);
  5085. if (!err)
  5086. err = bitmap_load(mddev);
  5087. }
  5088. if (fd < 0 || err) {
  5089. bitmap_destroy(mddev);
  5090. fd = -1; /* make sure to put the file */
  5091. }
  5092. mddev->pers->quiesce(mddev, 0);
  5093. }
  5094. if (fd < 0) {
  5095. if (mddev->bitmap_info.file) {
  5096. restore_bitmap_write_access(mddev->bitmap_info.file);
  5097. fput(mddev->bitmap_info.file);
  5098. }
  5099. mddev->bitmap_info.file = NULL;
  5100. }
  5101. return err;
  5102. }
  5103. /*
  5104. * set_array_info is used two different ways
  5105. * The original usage is when creating a new array.
  5106. * In this usage, raid_disks is > 0 and it together with
  5107. * level, size, not_persistent,layout,chunksize determine the
  5108. * shape of the array.
  5109. * This will always create an array with a type-0.90.0 superblock.
  5110. * The newer usage is when assembling an array.
  5111. * In this case raid_disks will be 0, and the major_version field is
  5112. * use to determine which style super-blocks are to be found on the devices.
  5113. * The minor and patch _version numbers are also kept incase the
  5114. * super_block handler wishes to interpret them.
  5115. */
  5116. static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
  5117. {
  5118. if (info->raid_disks == 0) {
  5119. /* just setting version number for superblock loading */
  5120. if (info->major_version < 0 ||
  5121. info->major_version >= ARRAY_SIZE(super_types) ||
  5122. super_types[info->major_version].name == NULL) {
  5123. /* maybe try to auto-load a module? */
  5124. printk(KERN_INFO
  5125. "md: superblock version %d not known\n",
  5126. info->major_version);
  5127. return -EINVAL;
  5128. }
  5129. mddev->major_version = info->major_version;
  5130. mddev->minor_version = info->minor_version;
  5131. mddev->patch_version = info->patch_version;
  5132. mddev->persistent = !info->not_persistent;
  5133. /* ensure mddev_put doesn't delete this now that there
  5134. * is some minimal configuration.
  5135. */
  5136. mddev->ctime = get_seconds();
  5137. return 0;
  5138. }
  5139. mddev->major_version = MD_MAJOR_VERSION;
  5140. mddev->minor_version = MD_MINOR_VERSION;
  5141. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  5142. mddev->ctime = get_seconds();
  5143. mddev->level = info->level;
  5144. mddev->clevel[0] = 0;
  5145. mddev->dev_sectors = 2 * (sector_t)info->size;
  5146. mddev->raid_disks = info->raid_disks;
  5147. /* don't set md_minor, it is determined by which /dev/md* was
  5148. * openned
  5149. */
  5150. if (info->state & (1<<MD_SB_CLEAN))
  5151. mddev->recovery_cp = MaxSector;
  5152. else
  5153. mddev->recovery_cp = 0;
  5154. mddev->persistent = ! info->not_persistent;
  5155. mddev->external = 0;
  5156. mddev->layout = info->layout;
  5157. mddev->chunk_sectors = info->chunk_size >> 9;
  5158. mddev->max_disks = MD_SB_DISKS;
  5159. if (mddev->persistent)
  5160. mddev->flags = 0;
  5161. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  5162. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  5163. mddev->bitmap_info.offset = 0;
  5164. mddev->reshape_position = MaxSector;
  5165. /*
  5166. * Generate a 128 bit UUID
  5167. */
  5168. get_random_bytes(mddev->uuid, 16);
  5169. mddev->new_level = mddev->level;
  5170. mddev->new_chunk_sectors = mddev->chunk_sectors;
  5171. mddev->new_layout = mddev->layout;
  5172. mddev->delta_disks = 0;
  5173. return 0;
  5174. }
  5175. void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
  5176. {
  5177. WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
  5178. if (mddev->external_size)
  5179. return;
  5180. mddev->array_sectors = array_sectors;
  5181. }
  5182. EXPORT_SYMBOL(md_set_array_sectors);
  5183. static int update_size(struct mddev *mddev, sector_t num_sectors)
  5184. {
  5185. struct md_rdev *rdev;
  5186. int rv;
  5187. int fit = (num_sectors == 0);
  5188. if (mddev->pers->resize == NULL)
  5189. return -EINVAL;
  5190. /* The "num_sectors" is the number of sectors of each device that
  5191. * is used. This can only make sense for arrays with redundancy.
  5192. * linear and raid0 always use whatever space is available. We can only
  5193. * consider changing this number if no resync or reconstruction is
  5194. * happening, and if the new size is acceptable. It must fit before the
  5195. * sb_start or, if that is <data_offset, it must fit before the size
  5196. * of each device. If num_sectors is zero, we find the largest size
  5197. * that fits.
  5198. */
  5199. if (mddev->sync_thread)
  5200. return -EBUSY;
  5201. if (mddev->bitmap)
  5202. /* Sorry, cannot grow a bitmap yet, just remove it,
  5203. * grow, and re-add.
  5204. */
  5205. return -EBUSY;
  5206. list_for_each_entry(rdev, &mddev->disks, same_set) {
  5207. sector_t avail = rdev->sectors;
  5208. if (fit && (num_sectors == 0 || num_sectors > avail))
  5209. num_sectors = avail;
  5210. if (avail < num_sectors)
  5211. return -ENOSPC;
  5212. }
  5213. rv = mddev->pers->resize(mddev, num_sectors);
  5214. if (!rv)
  5215. revalidate_disk(mddev->gendisk);
  5216. return rv;
  5217. }
  5218. static int update_raid_disks(struct mddev *mddev, int raid_disks)
  5219. {
  5220. int rv;
  5221. /* change the number of raid disks */
  5222. if (mddev->pers->check_reshape == NULL)
  5223. return -EINVAL;
  5224. if (raid_disks <= 0 ||
  5225. (mddev->max_disks && raid_disks >= mddev->max_disks))
  5226. return -EINVAL;
  5227. if (mddev->sync_thread || mddev->reshape_position != MaxSector)
  5228. return -EBUSY;
  5229. mddev->delta_disks = raid_disks - mddev->raid_disks;
  5230. rv = mddev->pers->check_reshape(mddev);
  5231. if (rv < 0)
  5232. mddev->delta_disks = 0;
  5233. return rv;
  5234. }
  5235. /*
  5236. * update_array_info is used to change the configuration of an
  5237. * on-line array.
  5238. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  5239. * fields in the info are checked against the array.
  5240. * Any differences that cannot be handled will cause an error.
  5241. * Normally, only one change can be managed at a time.
  5242. */
  5243. static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
  5244. {
  5245. int rv = 0;
  5246. int cnt = 0;
  5247. int state = 0;
  5248. /* calculate expected state,ignoring low bits */
  5249. if (mddev->bitmap && mddev->bitmap_info.offset)
  5250. state |= (1 << MD_SB_BITMAP_PRESENT);
  5251. if (mddev->major_version != info->major_version ||
  5252. mddev->minor_version != info->minor_version ||
  5253. /* mddev->patch_version != info->patch_version || */
  5254. mddev->ctime != info->ctime ||
  5255. mddev->level != info->level ||
  5256. /* mddev->layout != info->layout || */
  5257. !mddev->persistent != info->not_persistent||
  5258. mddev->chunk_sectors != info->chunk_size >> 9 ||
  5259. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  5260. ((state^info->state) & 0xfffffe00)
  5261. )
  5262. return -EINVAL;
  5263. /* Check there is only one change */
  5264. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5265. cnt++;
  5266. if (mddev->raid_disks != info->raid_disks)
  5267. cnt++;
  5268. if (mddev->layout != info->layout)
  5269. cnt++;
  5270. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
  5271. cnt++;
  5272. if (cnt == 0)
  5273. return 0;
  5274. if (cnt > 1)
  5275. return -EINVAL;
  5276. if (mddev->layout != info->layout) {
  5277. /* Change layout
  5278. * we don't need to do anything at the md level, the
  5279. * personality will take care of it all.
  5280. */
  5281. if (mddev->pers->check_reshape == NULL)
  5282. return -EINVAL;
  5283. else {
  5284. mddev->new_layout = info->layout;
  5285. rv = mddev->pers->check_reshape(mddev);
  5286. if (rv)
  5287. mddev->new_layout = mddev->layout;
  5288. return rv;
  5289. }
  5290. }
  5291. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5292. rv = update_size(mddev, (sector_t)info->size * 2);
  5293. if (mddev->raid_disks != info->raid_disks)
  5294. rv = update_raid_disks(mddev, info->raid_disks);
  5295. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  5296. if (mddev->pers->quiesce == NULL)
  5297. return -EINVAL;
  5298. if (mddev->recovery || mddev->sync_thread)
  5299. return -EBUSY;
  5300. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  5301. /* add the bitmap */
  5302. if (mddev->bitmap)
  5303. return -EEXIST;
  5304. if (mddev->bitmap_info.default_offset == 0)
  5305. return -EINVAL;
  5306. mddev->bitmap_info.offset =
  5307. mddev->bitmap_info.default_offset;
  5308. mddev->pers->quiesce(mddev, 1);
  5309. rv = bitmap_create(mddev);
  5310. if (!rv)
  5311. rv = bitmap_load(mddev);
  5312. if (rv)
  5313. bitmap_destroy(mddev);
  5314. mddev->pers->quiesce(mddev, 0);
  5315. } else {
  5316. /* remove the bitmap */
  5317. if (!mddev->bitmap)
  5318. return -ENOENT;
  5319. if (mddev->bitmap->file)
  5320. return -EINVAL;
  5321. mddev->pers->quiesce(mddev, 1);
  5322. bitmap_destroy(mddev);
  5323. mddev->pers->quiesce(mddev, 0);
  5324. mddev->bitmap_info.offset = 0;
  5325. }
  5326. }
  5327. md_update_sb(mddev, 1);
  5328. return rv;
  5329. }
  5330. static int set_disk_faulty(struct mddev *mddev, dev_t dev)
  5331. {
  5332. struct md_rdev *rdev;
  5333. if (mddev->pers == NULL)
  5334. return -ENODEV;
  5335. rdev = find_rdev(mddev, dev);
  5336. if (!rdev)
  5337. return -ENODEV;
  5338. md_error(mddev, rdev);
  5339. if (!test_bit(Faulty, &rdev->flags))
  5340. return -EBUSY;
  5341. return 0;
  5342. }
  5343. /*
  5344. * We have a problem here : there is no easy way to give a CHS
  5345. * virtual geometry. We currently pretend that we have a 2 heads
  5346. * 4 sectors (with a BIG number of cylinders...). This drives
  5347. * dosfs just mad... ;-)
  5348. */
  5349. static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  5350. {
  5351. struct mddev *mddev = bdev->bd_disk->private_data;
  5352. geo->heads = 2;
  5353. geo->sectors = 4;
  5354. geo->cylinders = mddev->array_sectors / 8;
  5355. return 0;
  5356. }
  5357. static int md_ioctl(struct block_device *bdev, fmode_t mode,
  5358. unsigned int cmd, unsigned long arg)
  5359. {
  5360. int err = 0;
  5361. void __user *argp = (void __user *)arg;
  5362. struct mddev *mddev = NULL;
  5363. int ro;
  5364. if (!capable(CAP_SYS_ADMIN))
  5365. return -EACCES;
  5366. /*
  5367. * Commands dealing with the RAID driver but not any
  5368. * particular array:
  5369. */
  5370. switch (cmd)
  5371. {
  5372. case RAID_VERSION:
  5373. err = get_version(argp);
  5374. goto done;
  5375. case PRINT_RAID_DEBUG:
  5376. err = 0;
  5377. md_print_devices();
  5378. goto done;
  5379. #ifndef MODULE
  5380. case RAID_AUTORUN:
  5381. err = 0;
  5382. autostart_arrays(arg);
  5383. goto done;
  5384. #endif
  5385. default:;
  5386. }
  5387. /*
  5388. * Commands creating/starting a new array:
  5389. */
  5390. mddev = bdev->bd_disk->private_data;
  5391. if (!mddev) {
  5392. BUG();
  5393. goto abort;
  5394. }
  5395. err = mddev_lock(mddev);
  5396. if (err) {
  5397. printk(KERN_INFO
  5398. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  5399. err, cmd);
  5400. goto abort;
  5401. }
  5402. switch (cmd)
  5403. {
  5404. case SET_ARRAY_INFO:
  5405. {
  5406. mdu_array_info_t info;
  5407. if (!arg)
  5408. memset(&info, 0, sizeof(info));
  5409. else if (copy_from_user(&info, argp, sizeof(info))) {
  5410. err = -EFAULT;
  5411. goto abort_unlock;
  5412. }
  5413. if (mddev->pers) {
  5414. err = update_array_info(mddev, &info);
  5415. if (err) {
  5416. printk(KERN_WARNING "md: couldn't update"
  5417. " array info. %d\n", err);
  5418. goto abort_unlock;
  5419. }
  5420. goto done_unlock;
  5421. }
  5422. if (!list_empty(&mddev->disks)) {
  5423. printk(KERN_WARNING
  5424. "md: array %s already has disks!\n",
  5425. mdname(mddev));
  5426. err = -EBUSY;
  5427. goto abort_unlock;
  5428. }
  5429. if (mddev->raid_disks) {
  5430. printk(KERN_WARNING
  5431. "md: array %s already initialised!\n",
  5432. mdname(mddev));
  5433. err = -EBUSY;
  5434. goto abort_unlock;
  5435. }
  5436. err = set_array_info(mddev, &info);
  5437. if (err) {
  5438. printk(KERN_WARNING "md: couldn't set"
  5439. " array info. %d\n", err);
  5440. goto abort_unlock;
  5441. }
  5442. }
  5443. goto done_unlock;
  5444. default:;
  5445. }
  5446. /*
  5447. * Commands querying/configuring an existing array:
  5448. */
  5449. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  5450. * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
  5451. if ((!mddev->raid_disks && !mddev->external)
  5452. && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  5453. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
  5454. && cmd != GET_BITMAP_FILE) {
  5455. err = -ENODEV;
  5456. goto abort_unlock;
  5457. }
  5458. /*
  5459. * Commands even a read-only array can execute:
  5460. */
  5461. switch (cmd)
  5462. {
  5463. case GET_ARRAY_INFO:
  5464. err = get_array_info(mddev, argp);
  5465. goto done_unlock;
  5466. case GET_BITMAP_FILE:
  5467. err = get_bitmap_file(mddev, argp);
  5468. goto done_unlock;
  5469. case GET_DISK_INFO:
  5470. err = get_disk_info(mddev, argp);
  5471. goto done_unlock;
  5472. case RESTART_ARRAY_RW:
  5473. err = restart_array(mddev);
  5474. goto done_unlock;
  5475. case STOP_ARRAY:
  5476. err = do_md_stop(mddev, 0, 1);
  5477. goto done_unlock;
  5478. case STOP_ARRAY_RO:
  5479. err = md_set_readonly(mddev, 1);
  5480. goto done_unlock;
  5481. case BLKROSET:
  5482. if (get_user(ro, (int __user *)(arg))) {
  5483. err = -EFAULT;
  5484. goto done_unlock;
  5485. }
  5486. err = -EINVAL;
  5487. /* if the bdev is going readonly the value of mddev->ro
  5488. * does not matter, no writes are coming
  5489. */
  5490. if (ro)
  5491. goto done_unlock;
  5492. /* are we are already prepared for writes? */
  5493. if (mddev->ro != 1)
  5494. goto done_unlock;
  5495. /* transitioning to readauto need only happen for
  5496. * arrays that call md_write_start
  5497. */
  5498. if (mddev->pers) {
  5499. err = restart_array(mddev);
  5500. if (err == 0) {
  5501. mddev->ro = 2;
  5502. set_disk_ro(mddev->gendisk, 0);
  5503. }
  5504. }
  5505. goto done_unlock;
  5506. }
  5507. /*
  5508. * The remaining ioctls are changing the state of the
  5509. * superblock, so we do not allow them on read-only arrays.
  5510. * However non-MD ioctls (e.g. get-size) will still come through
  5511. * here and hit the 'default' below, so only disallow
  5512. * 'md' ioctls, and switch to rw mode if started auto-readonly.
  5513. */
  5514. if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
  5515. if (mddev->ro == 2) {
  5516. mddev->ro = 0;
  5517. sysfs_notify_dirent_safe(mddev->sysfs_state);
  5518. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5519. md_wakeup_thread(mddev->thread);
  5520. } else {
  5521. err = -EROFS;
  5522. goto abort_unlock;
  5523. }
  5524. }
  5525. switch (cmd)
  5526. {
  5527. case ADD_NEW_DISK:
  5528. {
  5529. mdu_disk_info_t info;
  5530. if (copy_from_user(&info, argp, sizeof(info)))
  5531. err = -EFAULT;
  5532. else
  5533. err = add_new_disk(mddev, &info);
  5534. goto done_unlock;
  5535. }
  5536. case HOT_REMOVE_DISK:
  5537. err = hot_remove_disk(mddev, new_decode_dev(arg));
  5538. goto done_unlock;
  5539. case HOT_ADD_DISK:
  5540. err = hot_add_disk(mddev, new_decode_dev(arg));
  5541. goto done_unlock;
  5542. case SET_DISK_FAULTY:
  5543. err = set_disk_faulty(mddev, new_decode_dev(arg));
  5544. goto done_unlock;
  5545. case RUN_ARRAY:
  5546. err = do_md_run(mddev);
  5547. goto done_unlock;
  5548. case SET_BITMAP_FILE:
  5549. err = set_bitmap_file(mddev, (int)arg);
  5550. goto done_unlock;
  5551. default:
  5552. err = -EINVAL;
  5553. goto abort_unlock;
  5554. }
  5555. done_unlock:
  5556. abort_unlock:
  5557. if (mddev->hold_active == UNTIL_IOCTL &&
  5558. err != -EINVAL)
  5559. mddev->hold_active = 0;
  5560. mddev_unlock(mddev);
  5561. return err;
  5562. done:
  5563. if (err)
  5564. MD_BUG();
  5565. abort:
  5566. return err;
  5567. }
  5568. #ifdef CONFIG_COMPAT
  5569. static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
  5570. unsigned int cmd, unsigned long arg)
  5571. {
  5572. switch (cmd) {
  5573. case HOT_REMOVE_DISK:
  5574. case HOT_ADD_DISK:
  5575. case SET_DISK_FAULTY:
  5576. case SET_BITMAP_FILE:
  5577. /* These take in integer arg, do not convert */
  5578. break;
  5579. default:
  5580. arg = (unsigned long)compat_ptr(arg);
  5581. break;
  5582. }
  5583. return md_ioctl(bdev, mode, cmd, arg);
  5584. }
  5585. #endif /* CONFIG_COMPAT */
  5586. static int md_open(struct block_device *bdev, fmode_t mode)
  5587. {
  5588. /*
  5589. * Succeed if we can lock the mddev, which confirms that
  5590. * it isn't being stopped right now.
  5591. */
  5592. struct mddev *mddev = mddev_find(bdev->bd_dev);
  5593. int err;
  5594. if (mddev->gendisk != bdev->bd_disk) {
  5595. /* we are racing with mddev_put which is discarding this
  5596. * bd_disk.
  5597. */
  5598. mddev_put(mddev);
  5599. /* Wait until bdev->bd_disk is definitely gone */
  5600. flush_workqueue(md_misc_wq);
  5601. /* Then retry the open from the top */
  5602. return -ERESTARTSYS;
  5603. }
  5604. BUG_ON(mddev != bdev->bd_disk->private_data);
  5605. if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
  5606. goto out;
  5607. err = 0;
  5608. atomic_inc(&mddev->openers);
  5609. mutex_unlock(&mddev->open_mutex);
  5610. check_disk_change(bdev);
  5611. out:
  5612. return err;
  5613. }
  5614. static int md_release(struct gendisk *disk, fmode_t mode)
  5615. {
  5616. struct mddev *mddev = disk->private_data;
  5617. BUG_ON(!mddev);
  5618. atomic_dec(&mddev->openers);
  5619. mddev_put(mddev);
  5620. return 0;
  5621. }
  5622. static int md_media_changed(struct gendisk *disk)
  5623. {
  5624. struct mddev *mddev = disk->private_data;
  5625. return mddev->changed;
  5626. }
  5627. static int md_revalidate(struct gendisk *disk)
  5628. {
  5629. struct mddev *mddev = disk->private_data;
  5630. mddev->changed = 0;
  5631. return 0;
  5632. }
  5633. static const struct block_device_operations md_fops =
  5634. {
  5635. .owner = THIS_MODULE,
  5636. .open = md_open,
  5637. .release = md_release,
  5638. .ioctl = md_ioctl,
  5639. #ifdef CONFIG_COMPAT
  5640. .compat_ioctl = md_compat_ioctl,
  5641. #endif
  5642. .getgeo = md_getgeo,
  5643. .media_changed = md_media_changed,
  5644. .revalidate_disk= md_revalidate,
  5645. };
  5646. static int md_thread(void * arg)
  5647. {
  5648. struct md_thread *thread = arg;
  5649. /*
  5650. * md_thread is a 'system-thread', it's priority should be very
  5651. * high. We avoid resource deadlocks individually in each
  5652. * raid personality. (RAID5 does preallocation) We also use RR and
  5653. * the very same RT priority as kswapd, thus we will never get
  5654. * into a priority inversion deadlock.
  5655. *
  5656. * we definitely have to have equal or higher priority than
  5657. * bdflush, otherwise bdflush will deadlock if there are too
  5658. * many dirty RAID5 blocks.
  5659. */
  5660. allow_signal(SIGKILL);
  5661. while (!kthread_should_stop()) {
  5662. /* We need to wait INTERRUPTIBLE so that
  5663. * we don't add to the load-average.
  5664. * That means we need to be sure no signals are
  5665. * pending
  5666. */
  5667. if (signal_pending(current))
  5668. flush_signals(current);
  5669. wait_event_interruptible_timeout
  5670. (thread->wqueue,
  5671. test_bit(THREAD_WAKEUP, &thread->flags)
  5672. || kthread_should_stop(),
  5673. thread->timeout);
  5674. clear_bit(THREAD_WAKEUP, &thread->flags);
  5675. if (!kthread_should_stop())
  5676. thread->run(thread->mddev);
  5677. }
  5678. return 0;
  5679. }
  5680. void md_wakeup_thread(struct md_thread *thread)
  5681. {
  5682. if (thread) {
  5683. pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
  5684. set_bit(THREAD_WAKEUP, &thread->flags);
  5685. wake_up(&thread->wqueue);
  5686. }
  5687. }
  5688. struct md_thread *md_register_thread(void (*run) (struct mddev *), struct mddev *mddev,
  5689. const char *name)
  5690. {
  5691. struct md_thread *thread;
  5692. thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
  5693. if (!thread)
  5694. return NULL;
  5695. init_waitqueue_head(&thread->wqueue);
  5696. thread->run = run;
  5697. thread->mddev = mddev;
  5698. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  5699. thread->tsk = kthread_run(md_thread, thread,
  5700. "%s_%s",
  5701. mdname(thread->mddev),
  5702. name ?: mddev->pers->name);
  5703. if (IS_ERR(thread->tsk)) {
  5704. kfree(thread);
  5705. return NULL;
  5706. }
  5707. return thread;
  5708. }
  5709. void md_unregister_thread(struct md_thread **threadp)
  5710. {
  5711. struct md_thread *thread = *threadp;
  5712. if (!thread)
  5713. return;
  5714. pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
  5715. /* Locking ensures that mddev_unlock does not wake_up a
  5716. * non-existent thread
  5717. */
  5718. spin_lock(&pers_lock);
  5719. *threadp = NULL;
  5720. spin_unlock(&pers_lock);
  5721. kthread_stop(thread->tsk);
  5722. kfree(thread);
  5723. }
  5724. void md_error(struct mddev *mddev, struct md_rdev *rdev)
  5725. {
  5726. if (!mddev) {
  5727. MD_BUG();
  5728. return;
  5729. }
  5730. if (!rdev || test_bit(Faulty, &rdev->flags))
  5731. return;
  5732. if (!mddev->pers || !mddev->pers->error_handler)
  5733. return;
  5734. mddev->pers->error_handler(mddev,rdev);
  5735. if (mddev->degraded)
  5736. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  5737. sysfs_notify_dirent_safe(rdev->sysfs_state);
  5738. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  5739. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5740. md_wakeup_thread(mddev->thread);
  5741. if (mddev->event_work.func)
  5742. queue_work(md_misc_wq, &mddev->event_work);
  5743. md_new_event_inintr(mddev);
  5744. }
  5745. /* seq_file implementation /proc/mdstat */
  5746. static void status_unused(struct seq_file *seq)
  5747. {
  5748. int i = 0;
  5749. struct md_rdev *rdev;
  5750. seq_printf(seq, "unused devices: ");
  5751. list_for_each_entry(rdev, &pending_raid_disks, same_set) {
  5752. char b[BDEVNAME_SIZE];
  5753. i++;
  5754. seq_printf(seq, "%s ",
  5755. bdevname(rdev->bdev,b));
  5756. }
  5757. if (!i)
  5758. seq_printf(seq, "<none>");
  5759. seq_printf(seq, "\n");
  5760. }
  5761. static void status_resync(struct seq_file *seq, struct mddev * mddev)
  5762. {
  5763. sector_t max_sectors, resync, res;
  5764. unsigned long dt, db;
  5765. sector_t rt;
  5766. int scale;
  5767. unsigned int per_milli;
  5768. resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
  5769. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  5770. max_sectors = mddev->resync_max_sectors;
  5771. else
  5772. max_sectors = mddev->dev_sectors;
  5773. /*
  5774. * Should not happen.
  5775. */
  5776. if (!max_sectors) {
  5777. MD_BUG();
  5778. return;
  5779. }
  5780. /* Pick 'scale' such that (resync>>scale)*1000 will fit
  5781. * in a sector_t, and (max_sectors>>scale) will fit in a
  5782. * u32, as those are the requirements for sector_div.
  5783. * Thus 'scale' must be at least 10
  5784. */
  5785. scale = 10;
  5786. if (sizeof(sector_t) > sizeof(unsigned long)) {
  5787. while ( max_sectors/2 > (1ULL<<(scale+32)))
  5788. scale++;
  5789. }
  5790. res = (resync>>scale)*1000;
  5791. sector_div(res, (u32)((max_sectors>>scale)+1));
  5792. per_milli = res;
  5793. {
  5794. int i, x = per_milli/50, y = 20-x;
  5795. seq_printf(seq, "[");
  5796. for (i = 0; i < x; i++)
  5797. seq_printf(seq, "=");
  5798. seq_printf(seq, ">");
  5799. for (i = 0; i < y; i++)
  5800. seq_printf(seq, ".");
  5801. seq_printf(seq, "] ");
  5802. }
  5803. seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
  5804. (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
  5805. "reshape" :
  5806. (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
  5807. "check" :
  5808. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  5809. "resync" : "recovery"))),
  5810. per_milli/10, per_milli % 10,
  5811. (unsigned long long) resync/2,
  5812. (unsigned long long) max_sectors/2);
  5813. /*
  5814. * dt: time from mark until now
  5815. * db: blocks written from mark until now
  5816. * rt: remaining time
  5817. *
  5818. * rt is a sector_t, so could be 32bit or 64bit.
  5819. * So we divide before multiply in case it is 32bit and close
  5820. * to the limit.
  5821. * We scale the divisor (db) by 32 to avoid losing precision
  5822. * near the end of resync when the number of remaining sectors
  5823. * is close to 'db'.
  5824. * We then divide rt by 32 after multiplying by db to compensate.
  5825. * The '+1' avoids division by zero if db is very small.
  5826. */
  5827. dt = ((jiffies - mddev->resync_mark) / HZ);
  5828. if (!dt) dt++;
  5829. db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
  5830. - mddev->resync_mark_cnt;
  5831. rt = max_sectors - resync; /* number of remaining sectors */
  5832. sector_div(rt, db/32+1);
  5833. rt *= dt;
  5834. rt >>= 5;
  5835. seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
  5836. ((unsigned long)rt % 60)/6);
  5837. seq_printf(seq, " speed=%ldK/sec", db/2/dt);
  5838. }
  5839. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  5840. {
  5841. struct list_head *tmp;
  5842. loff_t l = *pos;
  5843. struct mddev *mddev;
  5844. if (l >= 0x10000)
  5845. return NULL;
  5846. if (!l--)
  5847. /* header */
  5848. return (void*)1;
  5849. spin_lock(&all_mddevs_lock);
  5850. list_for_each(tmp,&all_mddevs)
  5851. if (!l--) {
  5852. mddev = list_entry(tmp, struct mddev, all_mddevs);
  5853. mddev_get(mddev);
  5854. spin_unlock(&all_mddevs_lock);
  5855. return mddev;
  5856. }
  5857. spin_unlock(&all_mddevs_lock);
  5858. if (!l--)
  5859. return (void*)2;/* tail */
  5860. return NULL;
  5861. }
  5862. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  5863. {
  5864. struct list_head *tmp;
  5865. struct mddev *next_mddev, *mddev = v;
  5866. ++*pos;
  5867. if (v == (void*)2)
  5868. return NULL;
  5869. spin_lock(&all_mddevs_lock);
  5870. if (v == (void*)1)
  5871. tmp = all_mddevs.next;
  5872. else
  5873. tmp = mddev->all_mddevs.next;
  5874. if (tmp != &all_mddevs)
  5875. next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
  5876. else {
  5877. next_mddev = (void*)2;
  5878. *pos = 0x10000;
  5879. }
  5880. spin_unlock(&all_mddevs_lock);
  5881. if (v != (void*)1)
  5882. mddev_put(mddev);
  5883. return next_mddev;
  5884. }
  5885. static void md_seq_stop(struct seq_file *seq, void *v)
  5886. {
  5887. struct mddev *mddev = v;
  5888. if (mddev && v != (void*)1 && v != (void*)2)
  5889. mddev_put(mddev);
  5890. }
  5891. static int md_seq_show(struct seq_file *seq, void *v)
  5892. {
  5893. struct mddev *mddev = v;
  5894. sector_t sectors;
  5895. struct md_rdev *rdev;
  5896. struct bitmap *bitmap;
  5897. if (v == (void*)1) {
  5898. struct md_personality *pers;
  5899. seq_printf(seq, "Personalities : ");
  5900. spin_lock(&pers_lock);
  5901. list_for_each_entry(pers, &pers_list, list)
  5902. seq_printf(seq, "[%s] ", pers->name);
  5903. spin_unlock(&pers_lock);
  5904. seq_printf(seq, "\n");
  5905. seq->poll_event = atomic_read(&md_event_count);
  5906. return 0;
  5907. }
  5908. if (v == (void*)2) {
  5909. status_unused(seq);
  5910. return 0;
  5911. }
  5912. if (mddev_lock(mddev) < 0)
  5913. return -EINTR;
  5914. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  5915. seq_printf(seq, "%s : %sactive", mdname(mddev),
  5916. mddev->pers ? "" : "in");
  5917. if (mddev->pers) {
  5918. if (mddev->ro==1)
  5919. seq_printf(seq, " (read-only)");
  5920. if (mddev->ro==2)
  5921. seq_printf(seq, " (auto-read-only)");
  5922. seq_printf(seq, " %s", mddev->pers->name);
  5923. }
  5924. sectors = 0;
  5925. list_for_each_entry(rdev, &mddev->disks, same_set) {
  5926. char b[BDEVNAME_SIZE];
  5927. seq_printf(seq, " %s[%d]",
  5928. bdevname(rdev->bdev,b), rdev->desc_nr);
  5929. if (test_bit(WriteMostly, &rdev->flags))
  5930. seq_printf(seq, "(W)");
  5931. if (test_bit(Faulty, &rdev->flags)) {
  5932. seq_printf(seq, "(F)");
  5933. continue;
  5934. } else if (rdev->raid_disk < 0)
  5935. seq_printf(seq, "(S)"); /* spare */
  5936. sectors += rdev->sectors;
  5937. }
  5938. if (!list_empty(&mddev->disks)) {
  5939. if (mddev->pers)
  5940. seq_printf(seq, "\n %llu blocks",
  5941. (unsigned long long)
  5942. mddev->array_sectors / 2);
  5943. else
  5944. seq_printf(seq, "\n %llu blocks",
  5945. (unsigned long long)sectors / 2);
  5946. }
  5947. if (mddev->persistent) {
  5948. if (mddev->major_version != 0 ||
  5949. mddev->minor_version != 90) {
  5950. seq_printf(seq," super %d.%d",
  5951. mddev->major_version,
  5952. mddev->minor_version);
  5953. }
  5954. } else if (mddev->external)
  5955. seq_printf(seq, " super external:%s",
  5956. mddev->metadata_type);
  5957. else
  5958. seq_printf(seq, " super non-persistent");
  5959. if (mddev->pers) {
  5960. mddev->pers->status(seq, mddev);
  5961. seq_printf(seq, "\n ");
  5962. if (mddev->pers->sync_request) {
  5963. if (mddev->curr_resync > 2) {
  5964. status_resync(seq, mddev);
  5965. seq_printf(seq, "\n ");
  5966. } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
  5967. seq_printf(seq, "\tresync=DELAYED\n ");
  5968. else if (mddev->recovery_cp < MaxSector)
  5969. seq_printf(seq, "\tresync=PENDING\n ");
  5970. }
  5971. } else
  5972. seq_printf(seq, "\n ");
  5973. if ((bitmap = mddev->bitmap)) {
  5974. unsigned long chunk_kb;
  5975. unsigned long flags;
  5976. spin_lock_irqsave(&bitmap->lock, flags);
  5977. chunk_kb = mddev->bitmap_info.chunksize >> 10;
  5978. seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
  5979. "%lu%s chunk",
  5980. bitmap->pages - bitmap->missing_pages,
  5981. bitmap->pages,
  5982. (bitmap->pages - bitmap->missing_pages)
  5983. << (PAGE_SHIFT - 10),
  5984. chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
  5985. chunk_kb ? "KB" : "B");
  5986. if (bitmap->file) {
  5987. seq_printf(seq, ", file: ");
  5988. seq_path(seq, &bitmap->file->f_path, " \t\n");
  5989. }
  5990. seq_printf(seq, "\n");
  5991. spin_unlock_irqrestore(&bitmap->lock, flags);
  5992. }
  5993. seq_printf(seq, "\n");
  5994. }
  5995. mddev_unlock(mddev);
  5996. return 0;
  5997. }
  5998. static const struct seq_operations md_seq_ops = {
  5999. .start = md_seq_start,
  6000. .next = md_seq_next,
  6001. .stop = md_seq_stop,
  6002. .show = md_seq_show,
  6003. };
  6004. static int md_seq_open(struct inode *inode, struct file *file)
  6005. {
  6006. struct seq_file *seq;
  6007. int error;
  6008. error = seq_open(file, &md_seq_ops);
  6009. if (error)
  6010. return error;
  6011. seq = file->private_data;
  6012. seq->poll_event = atomic_read(&md_event_count);
  6013. return error;
  6014. }
  6015. static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
  6016. {
  6017. struct seq_file *seq = filp->private_data;
  6018. int mask;
  6019. poll_wait(filp, &md_event_waiters, wait);
  6020. /* always allow read */
  6021. mask = POLLIN | POLLRDNORM;
  6022. if (seq->poll_event != atomic_read(&md_event_count))
  6023. mask |= POLLERR | POLLPRI;
  6024. return mask;
  6025. }
  6026. static const struct file_operations md_seq_fops = {
  6027. .owner = THIS_MODULE,
  6028. .open = md_seq_open,
  6029. .read = seq_read,
  6030. .llseek = seq_lseek,
  6031. .release = seq_release_private,
  6032. .poll = mdstat_poll,
  6033. };
  6034. int register_md_personality(struct md_personality *p)
  6035. {
  6036. spin_lock(&pers_lock);
  6037. list_add_tail(&p->list, &pers_list);
  6038. printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
  6039. spin_unlock(&pers_lock);
  6040. return 0;
  6041. }
  6042. int unregister_md_personality(struct md_personality *p)
  6043. {
  6044. printk(KERN_INFO "md: %s personality unregistered\n", p->name);
  6045. spin_lock(&pers_lock);
  6046. list_del_init(&p->list);
  6047. spin_unlock(&pers_lock);
  6048. return 0;
  6049. }
  6050. static int is_mddev_idle(struct mddev *mddev, int init)
  6051. {
  6052. struct md_rdev * rdev;
  6053. int idle;
  6054. int curr_events;
  6055. idle = 1;
  6056. rcu_read_lock();
  6057. rdev_for_each_rcu(rdev, mddev) {
  6058. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  6059. curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
  6060. (int)part_stat_read(&disk->part0, sectors[1]) -
  6061. atomic_read(&disk->sync_io);
  6062. /* sync IO will cause sync_io to increase before the disk_stats
  6063. * as sync_io is counted when a request starts, and
  6064. * disk_stats is counted when it completes.
  6065. * So resync activity will cause curr_events to be smaller than
  6066. * when there was no such activity.
  6067. * non-sync IO will cause disk_stat to increase without
  6068. * increasing sync_io so curr_events will (eventually)
  6069. * be larger than it was before. Once it becomes
  6070. * substantially larger, the test below will cause
  6071. * the array to appear non-idle, and resync will slow
  6072. * down.
  6073. * If there is a lot of outstanding resync activity when
  6074. * we set last_event to curr_events, then all that activity
  6075. * completing might cause the array to appear non-idle
  6076. * and resync will be slowed down even though there might
  6077. * not have been non-resync activity. This will only
  6078. * happen once though. 'last_events' will soon reflect
  6079. * the state where there is little or no outstanding
  6080. * resync requests, and further resync activity will
  6081. * always make curr_events less than last_events.
  6082. *
  6083. */
  6084. if (init || curr_events - rdev->last_events > 64) {
  6085. rdev->last_events = curr_events;
  6086. idle = 0;
  6087. }
  6088. }
  6089. rcu_read_unlock();
  6090. return idle;
  6091. }
  6092. void md_done_sync(struct mddev *mddev, int blocks, int ok)
  6093. {
  6094. /* another "blocks" (512byte) blocks have been synced */
  6095. atomic_sub(blocks, &mddev->recovery_active);
  6096. wake_up(&mddev->recovery_wait);
  6097. if (!ok) {
  6098. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6099. md_wakeup_thread(mddev->thread);
  6100. // stop recovery, signal do_sync ....
  6101. }
  6102. }
  6103. /* md_write_start(mddev, bi)
  6104. * If we need to update some array metadata (e.g. 'active' flag
  6105. * in superblock) before writing, schedule a superblock update
  6106. * and wait for it to complete.
  6107. */
  6108. void md_write_start(struct mddev *mddev, struct bio *bi)
  6109. {
  6110. int did_change = 0;
  6111. if (bio_data_dir(bi) != WRITE)
  6112. return;
  6113. BUG_ON(mddev->ro == 1);
  6114. if (mddev->ro == 2) {
  6115. /* need to switch to read/write */
  6116. mddev->ro = 0;
  6117. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6118. md_wakeup_thread(mddev->thread);
  6119. md_wakeup_thread(mddev->sync_thread);
  6120. did_change = 1;
  6121. }
  6122. atomic_inc(&mddev->writes_pending);
  6123. if (mddev->safemode == 1)
  6124. mddev->safemode = 0;
  6125. if (mddev->in_sync) {
  6126. spin_lock_irq(&mddev->write_lock);
  6127. if (mddev->in_sync) {
  6128. mddev->in_sync = 0;
  6129. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6130. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6131. md_wakeup_thread(mddev->thread);
  6132. did_change = 1;
  6133. }
  6134. spin_unlock_irq(&mddev->write_lock);
  6135. }
  6136. if (did_change)
  6137. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6138. wait_event(mddev->sb_wait,
  6139. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  6140. }
  6141. void md_write_end(struct mddev *mddev)
  6142. {
  6143. if (atomic_dec_and_test(&mddev->writes_pending)) {
  6144. if (mddev->safemode == 2)
  6145. md_wakeup_thread(mddev->thread);
  6146. else if (mddev->safemode_delay)
  6147. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  6148. }
  6149. }
  6150. /* md_allow_write(mddev)
  6151. * Calling this ensures that the array is marked 'active' so that writes
  6152. * may proceed without blocking. It is important to call this before
  6153. * attempting a GFP_KERNEL allocation while holding the mddev lock.
  6154. * Must be called with mddev_lock held.
  6155. *
  6156. * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
  6157. * is dropped, so return -EAGAIN after notifying userspace.
  6158. */
  6159. int md_allow_write(struct mddev *mddev)
  6160. {
  6161. if (!mddev->pers)
  6162. return 0;
  6163. if (mddev->ro)
  6164. return 0;
  6165. if (!mddev->pers->sync_request)
  6166. return 0;
  6167. spin_lock_irq(&mddev->write_lock);
  6168. if (mddev->in_sync) {
  6169. mddev->in_sync = 0;
  6170. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6171. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6172. if (mddev->safemode_delay &&
  6173. mddev->safemode == 0)
  6174. mddev->safemode = 1;
  6175. spin_unlock_irq(&mddev->write_lock);
  6176. md_update_sb(mddev, 0);
  6177. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6178. } else
  6179. spin_unlock_irq(&mddev->write_lock);
  6180. if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  6181. return -EAGAIN;
  6182. else
  6183. return 0;
  6184. }
  6185. EXPORT_SYMBOL_GPL(md_allow_write);
  6186. #define SYNC_MARKS 10
  6187. #define SYNC_MARK_STEP (3*HZ)
  6188. void md_do_sync(struct mddev *mddev)
  6189. {
  6190. struct mddev *mddev2;
  6191. unsigned int currspeed = 0,
  6192. window;
  6193. sector_t max_sectors,j, io_sectors;
  6194. unsigned long mark[SYNC_MARKS];
  6195. sector_t mark_cnt[SYNC_MARKS];
  6196. int last_mark,m;
  6197. struct list_head *tmp;
  6198. sector_t last_check;
  6199. int skipped = 0;
  6200. struct md_rdev *rdev;
  6201. char *desc;
  6202. /* just incase thread restarts... */
  6203. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  6204. return;
  6205. if (mddev->ro) /* never try to sync a read-only array */
  6206. return;
  6207. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6208. if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  6209. desc = "data-check";
  6210. else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6211. desc = "requested-resync";
  6212. else
  6213. desc = "resync";
  6214. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6215. desc = "reshape";
  6216. else
  6217. desc = "recovery";
  6218. /* we overload curr_resync somewhat here.
  6219. * 0 == not engaged in resync at all
  6220. * 2 == checking that there is no conflict with another sync
  6221. * 1 == like 2, but have yielded to allow conflicting resync to
  6222. * commense
  6223. * other == active in resync - this many blocks
  6224. *
  6225. * Before starting a resync we must have set curr_resync to
  6226. * 2, and then checked that every "conflicting" array has curr_resync
  6227. * less than ours. When we find one that is the same or higher
  6228. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  6229. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  6230. * This will mean we have to start checking from the beginning again.
  6231. *
  6232. */
  6233. do {
  6234. mddev->curr_resync = 2;
  6235. try_again:
  6236. if (kthread_should_stop())
  6237. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6238. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6239. goto skip;
  6240. for_each_mddev(mddev2, tmp) {
  6241. if (mddev2 == mddev)
  6242. continue;
  6243. if (!mddev->parallel_resync
  6244. && mddev2->curr_resync
  6245. && match_mddev_units(mddev, mddev2)) {
  6246. DEFINE_WAIT(wq);
  6247. if (mddev < mddev2 && mddev->curr_resync == 2) {
  6248. /* arbitrarily yield */
  6249. mddev->curr_resync = 1;
  6250. wake_up(&resync_wait);
  6251. }
  6252. if (mddev > mddev2 && mddev->curr_resync == 1)
  6253. /* no need to wait here, we can wait the next
  6254. * time 'round when curr_resync == 2
  6255. */
  6256. continue;
  6257. /* We need to wait 'interruptible' so as not to
  6258. * contribute to the load average, and not to
  6259. * be caught by 'softlockup'
  6260. */
  6261. prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
  6262. if (!kthread_should_stop() &&
  6263. mddev2->curr_resync >= mddev->curr_resync) {
  6264. printk(KERN_INFO "md: delaying %s of %s"
  6265. " until %s has finished (they"
  6266. " share one or more physical units)\n",
  6267. desc, mdname(mddev), mdname(mddev2));
  6268. mddev_put(mddev2);
  6269. if (signal_pending(current))
  6270. flush_signals(current);
  6271. schedule();
  6272. finish_wait(&resync_wait, &wq);
  6273. goto try_again;
  6274. }
  6275. finish_wait(&resync_wait, &wq);
  6276. }
  6277. }
  6278. } while (mddev->curr_resync < 2);
  6279. j = 0;
  6280. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6281. /* resync follows the size requested by the personality,
  6282. * which defaults to physical size, but can be virtual size
  6283. */
  6284. max_sectors = mddev->resync_max_sectors;
  6285. mddev->resync_mismatches = 0;
  6286. /* we don't use the checkpoint if there's a bitmap */
  6287. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6288. j = mddev->resync_min;
  6289. else if (!mddev->bitmap)
  6290. j = mddev->recovery_cp;
  6291. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6292. max_sectors = mddev->dev_sectors;
  6293. else {
  6294. /* recovery follows the physical size of devices */
  6295. max_sectors = mddev->dev_sectors;
  6296. j = MaxSector;
  6297. rcu_read_lock();
  6298. list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
  6299. if (rdev->raid_disk >= 0 &&
  6300. !test_bit(Faulty, &rdev->flags) &&
  6301. !test_bit(In_sync, &rdev->flags) &&
  6302. rdev->recovery_offset < j)
  6303. j = rdev->recovery_offset;
  6304. rcu_read_unlock();
  6305. }
  6306. printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
  6307. printk(KERN_INFO "md: minimum _guaranteed_ speed:"
  6308. " %d KB/sec/disk.\n", speed_min(mddev));
  6309. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  6310. "(but not more than %d KB/sec) for %s.\n",
  6311. speed_max(mddev), desc);
  6312. is_mddev_idle(mddev, 1); /* this initializes IO event counters */
  6313. io_sectors = 0;
  6314. for (m = 0; m < SYNC_MARKS; m++) {
  6315. mark[m] = jiffies;
  6316. mark_cnt[m] = io_sectors;
  6317. }
  6318. last_mark = 0;
  6319. mddev->resync_mark = mark[last_mark];
  6320. mddev->resync_mark_cnt = mark_cnt[last_mark];
  6321. /*
  6322. * Tune reconstruction:
  6323. */
  6324. window = 32*(PAGE_SIZE/512);
  6325. printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
  6326. window/2, (unsigned long long)max_sectors/2);
  6327. atomic_set(&mddev->recovery_active, 0);
  6328. last_check = 0;
  6329. if (j>2) {
  6330. printk(KERN_INFO
  6331. "md: resuming %s of %s from checkpoint.\n",
  6332. desc, mdname(mddev));
  6333. mddev->curr_resync = j;
  6334. }
  6335. mddev->curr_resync_completed = j;
  6336. while (j < max_sectors) {
  6337. sector_t sectors;
  6338. skipped = 0;
  6339. if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  6340. ((mddev->curr_resync > mddev->curr_resync_completed &&
  6341. (mddev->curr_resync - mddev->curr_resync_completed)
  6342. > (max_sectors >> 4)) ||
  6343. (j - mddev->curr_resync_completed)*2
  6344. >= mddev->resync_max - mddev->curr_resync_completed
  6345. )) {
  6346. /* time to update curr_resync_completed */
  6347. wait_event(mddev->recovery_wait,
  6348. atomic_read(&mddev->recovery_active) == 0);
  6349. mddev->curr_resync_completed = j;
  6350. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6351. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  6352. }
  6353. while (j >= mddev->resync_max && !kthread_should_stop()) {
  6354. /* As this condition is controlled by user-space,
  6355. * we can block indefinitely, so use '_interruptible'
  6356. * to avoid triggering warnings.
  6357. */
  6358. flush_signals(current); /* just in case */
  6359. wait_event_interruptible(mddev->recovery_wait,
  6360. mddev->resync_max > j
  6361. || kthread_should_stop());
  6362. }
  6363. if (kthread_should_stop())
  6364. goto interrupted;
  6365. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  6366. currspeed < speed_min(mddev));
  6367. if (sectors == 0) {
  6368. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6369. goto out;
  6370. }
  6371. if (!skipped) { /* actual IO requested */
  6372. io_sectors += sectors;
  6373. atomic_add(sectors, &mddev->recovery_active);
  6374. }
  6375. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6376. break;
  6377. j += sectors;
  6378. if (j>1) mddev->curr_resync = j;
  6379. mddev->curr_mark_cnt = io_sectors;
  6380. if (last_check == 0)
  6381. /* this is the earliest that rebuild will be
  6382. * visible in /proc/mdstat
  6383. */
  6384. md_new_event(mddev);
  6385. if (last_check + window > io_sectors || j == max_sectors)
  6386. continue;
  6387. last_check = io_sectors;
  6388. repeat:
  6389. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  6390. /* step marks */
  6391. int next = (last_mark+1) % SYNC_MARKS;
  6392. mddev->resync_mark = mark[next];
  6393. mddev->resync_mark_cnt = mark_cnt[next];
  6394. mark[next] = jiffies;
  6395. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  6396. last_mark = next;
  6397. }
  6398. if (kthread_should_stop())
  6399. goto interrupted;
  6400. /*
  6401. * this loop exits only if either when we are slower than
  6402. * the 'hard' speed limit, or the system was IO-idle for
  6403. * a jiffy.
  6404. * the system might be non-idle CPU-wise, but we only care
  6405. * about not overloading the IO subsystem. (things like an
  6406. * e2fsck being done on the RAID array should execute fast)
  6407. */
  6408. cond_resched();
  6409. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  6410. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  6411. if (currspeed > speed_min(mddev)) {
  6412. if ((currspeed > speed_max(mddev)) ||
  6413. !is_mddev_idle(mddev, 0)) {
  6414. msleep(500);
  6415. goto repeat;
  6416. }
  6417. }
  6418. }
  6419. printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
  6420. /*
  6421. * this also signals 'finished resyncing' to md_stop
  6422. */
  6423. out:
  6424. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  6425. /* tell personality that we are finished */
  6426. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  6427. if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
  6428. mddev->curr_resync > 2) {
  6429. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6430. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6431. if (mddev->curr_resync >= mddev->recovery_cp) {
  6432. printk(KERN_INFO
  6433. "md: checkpointing %s of %s.\n",
  6434. desc, mdname(mddev));
  6435. mddev->recovery_cp = mddev->curr_resync;
  6436. }
  6437. } else
  6438. mddev->recovery_cp = MaxSector;
  6439. } else {
  6440. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6441. mddev->curr_resync = MaxSector;
  6442. rcu_read_lock();
  6443. list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
  6444. if (rdev->raid_disk >= 0 &&
  6445. mddev->delta_disks >= 0 &&
  6446. !test_bit(Faulty, &rdev->flags) &&
  6447. !test_bit(In_sync, &rdev->flags) &&
  6448. rdev->recovery_offset < mddev->curr_resync)
  6449. rdev->recovery_offset = mddev->curr_resync;
  6450. rcu_read_unlock();
  6451. }
  6452. }
  6453. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6454. skip:
  6455. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6456. /* We completed so min/max setting can be forgotten if used. */
  6457. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6458. mddev->resync_min = 0;
  6459. mddev->resync_max = MaxSector;
  6460. } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6461. mddev->resync_min = mddev->curr_resync_completed;
  6462. mddev->curr_resync = 0;
  6463. wake_up(&resync_wait);
  6464. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  6465. md_wakeup_thread(mddev->thread);
  6466. return;
  6467. interrupted:
  6468. /*
  6469. * got a signal, exit.
  6470. */
  6471. printk(KERN_INFO
  6472. "md: md_do_sync() got signal ... exiting\n");
  6473. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6474. goto out;
  6475. }
  6476. EXPORT_SYMBOL_GPL(md_do_sync);
  6477. static int remove_and_add_spares(struct mddev *mddev)
  6478. {
  6479. struct md_rdev *rdev;
  6480. int spares = 0;
  6481. mddev->curr_resync_completed = 0;
  6482. list_for_each_entry(rdev, &mddev->disks, same_set)
  6483. if (rdev->raid_disk >= 0 &&
  6484. !test_bit(Blocked, &rdev->flags) &&
  6485. (test_bit(Faulty, &rdev->flags) ||
  6486. ! test_bit(In_sync, &rdev->flags)) &&
  6487. atomic_read(&rdev->nr_pending)==0) {
  6488. if (mddev->pers->hot_remove_disk(
  6489. mddev, rdev->raid_disk)==0) {
  6490. sysfs_unlink_rdev(mddev, rdev);
  6491. rdev->raid_disk = -1;
  6492. }
  6493. }
  6494. if (mddev->degraded) {
  6495. list_for_each_entry(rdev, &mddev->disks, same_set) {
  6496. if (rdev->raid_disk >= 0 &&
  6497. !test_bit(In_sync, &rdev->flags) &&
  6498. !test_bit(Faulty, &rdev->flags))
  6499. spares++;
  6500. if (rdev->raid_disk < 0
  6501. && !test_bit(Faulty, &rdev->flags)) {
  6502. rdev->recovery_offset = 0;
  6503. if (mddev->pers->
  6504. hot_add_disk(mddev, rdev) == 0) {
  6505. if (sysfs_link_rdev(mddev, rdev))
  6506. /* failure here is OK */;
  6507. spares++;
  6508. md_new_event(mddev);
  6509. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6510. }
  6511. }
  6512. }
  6513. }
  6514. return spares;
  6515. }
  6516. static void reap_sync_thread(struct mddev *mddev)
  6517. {
  6518. struct md_rdev *rdev;
  6519. /* resync has finished, collect result */
  6520. md_unregister_thread(&mddev->sync_thread);
  6521. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
  6522. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  6523. /* success...*/
  6524. /* activate any spares */
  6525. if (mddev->pers->spare_active(mddev))
  6526. sysfs_notify(&mddev->kobj, NULL,
  6527. "degraded");
  6528. }
  6529. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  6530. mddev->pers->finish_reshape)
  6531. mddev->pers->finish_reshape(mddev);
  6532. /* If array is no-longer degraded, then any saved_raid_disk
  6533. * information must be scrapped. Also if any device is now
  6534. * In_sync we must scrape the saved_raid_disk for that device
  6535. * do the superblock for an incrementally recovered device
  6536. * written out.
  6537. */
  6538. list_for_each_entry(rdev, &mddev->disks, same_set)
  6539. if (!mddev->degraded ||
  6540. test_bit(In_sync, &rdev->flags))
  6541. rdev->saved_raid_disk = -1;
  6542. md_update_sb(mddev, 1);
  6543. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6544. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6545. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6546. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6547. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6548. /* flag recovery needed just to double check */
  6549. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6550. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6551. md_new_event(mddev);
  6552. if (mddev->event_work.func)
  6553. queue_work(md_misc_wq, &mddev->event_work);
  6554. }
  6555. /*
  6556. * This routine is regularly called by all per-raid-array threads to
  6557. * deal with generic issues like resync and super-block update.
  6558. * Raid personalities that don't have a thread (linear/raid0) do not
  6559. * need this as they never do any recovery or update the superblock.
  6560. *
  6561. * It does not do any resync itself, but rather "forks" off other threads
  6562. * to do that as needed.
  6563. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  6564. * "->recovery" and create a thread at ->sync_thread.
  6565. * When the thread finishes it sets MD_RECOVERY_DONE
  6566. * and wakeups up this thread which will reap the thread and finish up.
  6567. * This thread also removes any faulty devices (with nr_pending == 0).
  6568. *
  6569. * The overall approach is:
  6570. * 1/ if the superblock needs updating, update it.
  6571. * 2/ If a recovery thread is running, don't do anything else.
  6572. * 3/ If recovery has finished, clean up, possibly marking spares active.
  6573. * 4/ If there are any faulty devices, remove them.
  6574. * 5/ If array is degraded, try to add spares devices
  6575. * 6/ If array has spares or is not in-sync, start a resync thread.
  6576. */
  6577. void md_check_recovery(struct mddev *mddev)
  6578. {
  6579. if (mddev->suspended)
  6580. return;
  6581. if (mddev->bitmap)
  6582. bitmap_daemon_work(mddev);
  6583. if (signal_pending(current)) {
  6584. if (mddev->pers->sync_request && !mddev->external) {
  6585. printk(KERN_INFO "md: %s in immediate safe mode\n",
  6586. mdname(mddev));
  6587. mddev->safemode = 2;
  6588. }
  6589. flush_signals(current);
  6590. }
  6591. if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  6592. return;
  6593. if ( ! (
  6594. (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
  6595. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  6596. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  6597. (mddev->external == 0 && mddev->safemode == 1) ||
  6598. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  6599. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  6600. ))
  6601. return;
  6602. if (mddev_trylock(mddev)) {
  6603. int spares = 0;
  6604. if (mddev->ro) {
  6605. /* Only thing we do on a ro array is remove
  6606. * failed devices.
  6607. */
  6608. struct md_rdev *rdev;
  6609. list_for_each_entry(rdev, &mddev->disks, same_set)
  6610. if (rdev->raid_disk >= 0 &&
  6611. !test_bit(Blocked, &rdev->flags) &&
  6612. test_bit(Faulty, &rdev->flags) &&
  6613. atomic_read(&rdev->nr_pending)==0) {
  6614. if (mddev->pers->hot_remove_disk(
  6615. mddev, rdev->raid_disk)==0) {
  6616. sysfs_unlink_rdev(mddev, rdev);
  6617. rdev->raid_disk = -1;
  6618. }
  6619. }
  6620. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6621. goto unlock;
  6622. }
  6623. if (!mddev->external) {
  6624. int did_change = 0;
  6625. spin_lock_irq(&mddev->write_lock);
  6626. if (mddev->safemode &&
  6627. !atomic_read(&mddev->writes_pending) &&
  6628. !mddev->in_sync &&
  6629. mddev->recovery_cp == MaxSector) {
  6630. mddev->in_sync = 1;
  6631. did_change = 1;
  6632. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6633. }
  6634. if (mddev->safemode == 1)
  6635. mddev->safemode = 0;
  6636. spin_unlock_irq(&mddev->write_lock);
  6637. if (did_change)
  6638. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6639. }
  6640. if (mddev->flags)
  6641. md_update_sb(mddev, 0);
  6642. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  6643. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  6644. /* resync/recovery still happening */
  6645. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6646. goto unlock;
  6647. }
  6648. if (mddev->sync_thread) {
  6649. reap_sync_thread(mddev);
  6650. goto unlock;
  6651. }
  6652. /* Set RUNNING before clearing NEEDED to avoid
  6653. * any transients in the value of "sync_action".
  6654. */
  6655. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6656. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6657. /* Clear some bits that don't mean anything, but
  6658. * might be left set
  6659. */
  6660. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6661. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  6662. if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  6663. goto unlock;
  6664. /* no recovery is running.
  6665. * remove any failed drives, then
  6666. * add spares if possible.
  6667. * Spare are also removed and re-added, to allow
  6668. * the personality to fail the re-add.
  6669. */
  6670. if (mddev->reshape_position != MaxSector) {
  6671. if (mddev->pers->check_reshape == NULL ||
  6672. mddev->pers->check_reshape(mddev) != 0)
  6673. /* Cannot proceed */
  6674. goto unlock;
  6675. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6676. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6677. } else if ((spares = remove_and_add_spares(mddev))) {
  6678. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6679. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6680. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6681. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6682. } else if (mddev->recovery_cp < MaxSector) {
  6683. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6684. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6685. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  6686. /* nothing to be done ... */
  6687. goto unlock;
  6688. if (mddev->pers->sync_request) {
  6689. if (spares && mddev->bitmap && ! mddev->bitmap->file) {
  6690. /* We are adding a device or devices to an array
  6691. * which has the bitmap stored on all devices.
  6692. * So make sure all bitmap pages get written
  6693. */
  6694. bitmap_write_all(mddev->bitmap);
  6695. }
  6696. mddev->sync_thread = md_register_thread(md_do_sync,
  6697. mddev,
  6698. "resync");
  6699. if (!mddev->sync_thread) {
  6700. printk(KERN_ERR "%s: could not start resync"
  6701. " thread...\n",
  6702. mdname(mddev));
  6703. /* leave the spares where they are, it shouldn't hurt */
  6704. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6705. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6706. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6707. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6708. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6709. } else
  6710. md_wakeup_thread(mddev->sync_thread);
  6711. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6712. md_new_event(mddev);
  6713. }
  6714. unlock:
  6715. if (!mddev->sync_thread) {
  6716. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6717. if (test_and_clear_bit(MD_RECOVERY_RECOVER,
  6718. &mddev->recovery))
  6719. if (mddev->sysfs_action)
  6720. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6721. }
  6722. mddev_unlock(mddev);
  6723. }
  6724. }
  6725. void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
  6726. {
  6727. sysfs_notify_dirent_safe(rdev->sysfs_state);
  6728. wait_event_timeout(rdev->blocked_wait,
  6729. !test_bit(Blocked, &rdev->flags) &&
  6730. !test_bit(BlockedBadBlocks, &rdev->flags),
  6731. msecs_to_jiffies(5000));
  6732. rdev_dec_pending(rdev, mddev);
  6733. }
  6734. EXPORT_SYMBOL(md_wait_for_blocked_rdev);
  6735. /* Bad block management.
  6736. * We can record which blocks on each device are 'bad' and so just
  6737. * fail those blocks, or that stripe, rather than the whole device.
  6738. * Entries in the bad-block table are 64bits wide. This comprises:
  6739. * Length of bad-range, in sectors: 0-511 for lengths 1-512
  6740. * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
  6741. * A 'shift' can be set so that larger blocks are tracked and
  6742. * consequently larger devices can be covered.
  6743. * 'Acknowledged' flag - 1 bit. - the most significant bit.
  6744. *
  6745. * Locking of the bad-block table uses a seqlock so md_is_badblock
  6746. * might need to retry if it is very unlucky.
  6747. * We will sometimes want to check for bad blocks in a bi_end_io function,
  6748. * so we use the write_seqlock_irq variant.
  6749. *
  6750. * When looking for a bad block we specify a range and want to
  6751. * know if any block in the range is bad. So we binary-search
  6752. * to the last range that starts at-or-before the given endpoint,
  6753. * (or "before the sector after the target range")
  6754. * then see if it ends after the given start.
  6755. * We return
  6756. * 0 if there are no known bad blocks in the range
  6757. * 1 if there are known bad block which are all acknowledged
  6758. * -1 if there are bad blocks which have not yet been acknowledged in metadata.
  6759. * plus the start/length of the first bad section we overlap.
  6760. */
  6761. int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
  6762. sector_t *first_bad, int *bad_sectors)
  6763. {
  6764. int hi;
  6765. int lo = 0;
  6766. u64 *p = bb->page;
  6767. int rv = 0;
  6768. sector_t target = s + sectors;
  6769. unsigned seq;
  6770. if (bb->shift > 0) {
  6771. /* round the start down, and the end up */
  6772. s >>= bb->shift;
  6773. target += (1<<bb->shift) - 1;
  6774. target >>= bb->shift;
  6775. sectors = target - s;
  6776. }
  6777. /* 'target' is now the first block after the bad range */
  6778. retry:
  6779. seq = read_seqbegin(&bb->lock);
  6780. hi = bb->count;
  6781. /* Binary search between lo and hi for 'target'
  6782. * i.e. for the last range that starts before 'target'
  6783. */
  6784. /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
  6785. * are known not to be the last range before target.
  6786. * VARIANT: hi-lo is the number of possible
  6787. * ranges, and decreases until it reaches 1
  6788. */
  6789. while (hi - lo > 1) {
  6790. int mid = (lo + hi) / 2;
  6791. sector_t a = BB_OFFSET(p[mid]);
  6792. if (a < target)
  6793. /* This could still be the one, earlier ranges
  6794. * could not. */
  6795. lo = mid;
  6796. else
  6797. /* This and later ranges are definitely out. */
  6798. hi = mid;
  6799. }
  6800. /* 'lo' might be the last that started before target, but 'hi' isn't */
  6801. if (hi > lo) {
  6802. /* need to check all range that end after 's' to see if
  6803. * any are unacknowledged.
  6804. */
  6805. while (lo >= 0 &&
  6806. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  6807. if (BB_OFFSET(p[lo]) < target) {
  6808. /* starts before the end, and finishes after
  6809. * the start, so they must overlap
  6810. */
  6811. if (rv != -1 && BB_ACK(p[lo]))
  6812. rv = 1;
  6813. else
  6814. rv = -1;
  6815. *first_bad = BB_OFFSET(p[lo]);
  6816. *bad_sectors = BB_LEN(p[lo]);
  6817. }
  6818. lo--;
  6819. }
  6820. }
  6821. if (read_seqretry(&bb->lock, seq))
  6822. goto retry;
  6823. return rv;
  6824. }
  6825. EXPORT_SYMBOL_GPL(md_is_badblock);
  6826. /*
  6827. * Add a range of bad blocks to the table.
  6828. * This might extend the table, or might contract it
  6829. * if two adjacent ranges can be merged.
  6830. * We binary-search to find the 'insertion' point, then
  6831. * decide how best to handle it.
  6832. */
  6833. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  6834. int acknowledged)
  6835. {
  6836. u64 *p;
  6837. int lo, hi;
  6838. int rv = 1;
  6839. if (bb->shift < 0)
  6840. /* badblocks are disabled */
  6841. return 0;
  6842. if (bb->shift) {
  6843. /* round the start down, and the end up */
  6844. sector_t next = s + sectors;
  6845. s >>= bb->shift;
  6846. next += (1<<bb->shift) - 1;
  6847. next >>= bb->shift;
  6848. sectors = next - s;
  6849. }
  6850. write_seqlock_irq(&bb->lock);
  6851. p = bb->page;
  6852. lo = 0;
  6853. hi = bb->count;
  6854. /* Find the last range that starts at-or-before 's' */
  6855. while (hi - lo > 1) {
  6856. int mid = (lo + hi) / 2;
  6857. sector_t a = BB_OFFSET(p[mid]);
  6858. if (a <= s)
  6859. lo = mid;
  6860. else
  6861. hi = mid;
  6862. }
  6863. if (hi > lo && BB_OFFSET(p[lo]) > s)
  6864. hi = lo;
  6865. if (hi > lo) {
  6866. /* we found a range that might merge with the start
  6867. * of our new range
  6868. */
  6869. sector_t a = BB_OFFSET(p[lo]);
  6870. sector_t e = a + BB_LEN(p[lo]);
  6871. int ack = BB_ACK(p[lo]);
  6872. if (e >= s) {
  6873. /* Yes, we can merge with a previous range */
  6874. if (s == a && s + sectors >= e)
  6875. /* new range covers old */
  6876. ack = acknowledged;
  6877. else
  6878. ack = ack && acknowledged;
  6879. if (e < s + sectors)
  6880. e = s + sectors;
  6881. if (e - a <= BB_MAX_LEN) {
  6882. p[lo] = BB_MAKE(a, e-a, ack);
  6883. s = e;
  6884. } else {
  6885. /* does not all fit in one range,
  6886. * make p[lo] maximal
  6887. */
  6888. if (BB_LEN(p[lo]) != BB_MAX_LEN)
  6889. p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
  6890. s = a + BB_MAX_LEN;
  6891. }
  6892. sectors = e - s;
  6893. }
  6894. }
  6895. if (sectors && hi < bb->count) {
  6896. /* 'hi' points to the first range that starts after 's'.
  6897. * Maybe we can merge with the start of that range */
  6898. sector_t a = BB_OFFSET(p[hi]);
  6899. sector_t e = a + BB_LEN(p[hi]);
  6900. int ack = BB_ACK(p[hi]);
  6901. if (a <= s + sectors) {
  6902. /* merging is possible */
  6903. if (e <= s + sectors) {
  6904. /* full overlap */
  6905. e = s + sectors;
  6906. ack = acknowledged;
  6907. } else
  6908. ack = ack && acknowledged;
  6909. a = s;
  6910. if (e - a <= BB_MAX_LEN) {
  6911. p[hi] = BB_MAKE(a, e-a, ack);
  6912. s = e;
  6913. } else {
  6914. p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
  6915. s = a + BB_MAX_LEN;
  6916. }
  6917. sectors = e - s;
  6918. lo = hi;
  6919. hi++;
  6920. }
  6921. }
  6922. if (sectors == 0 && hi < bb->count) {
  6923. /* we might be able to combine lo and hi */
  6924. /* Note: 's' is at the end of 'lo' */
  6925. sector_t a = BB_OFFSET(p[hi]);
  6926. int lolen = BB_LEN(p[lo]);
  6927. int hilen = BB_LEN(p[hi]);
  6928. int newlen = lolen + hilen - (s - a);
  6929. if (s >= a && newlen < BB_MAX_LEN) {
  6930. /* yes, we can combine them */
  6931. int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
  6932. p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
  6933. memmove(p + hi, p + hi + 1,
  6934. (bb->count - hi - 1) * 8);
  6935. bb->count--;
  6936. }
  6937. }
  6938. while (sectors) {
  6939. /* didn't merge (it all).
  6940. * Need to add a range just before 'hi' */
  6941. if (bb->count >= MD_MAX_BADBLOCKS) {
  6942. /* No room for more */
  6943. rv = 0;
  6944. break;
  6945. } else {
  6946. int this_sectors = sectors;
  6947. memmove(p + hi + 1, p + hi,
  6948. (bb->count - hi) * 8);
  6949. bb->count++;
  6950. if (this_sectors > BB_MAX_LEN)
  6951. this_sectors = BB_MAX_LEN;
  6952. p[hi] = BB_MAKE(s, this_sectors, acknowledged);
  6953. sectors -= this_sectors;
  6954. s += this_sectors;
  6955. }
  6956. }
  6957. bb->changed = 1;
  6958. if (!acknowledged)
  6959. bb->unacked_exist = 1;
  6960. write_sequnlock_irq(&bb->lock);
  6961. return rv;
  6962. }
  6963. int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
  6964. int acknowledged)
  6965. {
  6966. int rv = md_set_badblocks(&rdev->badblocks,
  6967. s + rdev->data_offset, sectors, acknowledged);
  6968. if (rv) {
  6969. /* Make sure they get written out promptly */
  6970. sysfs_notify_dirent_safe(rdev->sysfs_state);
  6971. set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
  6972. md_wakeup_thread(rdev->mddev->thread);
  6973. }
  6974. return rv;
  6975. }
  6976. EXPORT_SYMBOL_GPL(rdev_set_badblocks);
  6977. /*
  6978. * Remove a range of bad blocks from the table.
  6979. * This may involve extending the table if we spilt a region,
  6980. * but it must not fail. So if the table becomes full, we just
  6981. * drop the remove request.
  6982. */
  6983. static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
  6984. {
  6985. u64 *p;
  6986. int lo, hi;
  6987. sector_t target = s + sectors;
  6988. int rv = 0;
  6989. if (bb->shift > 0) {
  6990. /* When clearing we round the start up and the end down.
  6991. * This should not matter as the shift should align with
  6992. * the block size and no rounding should ever be needed.
  6993. * However it is better the think a block is bad when it
  6994. * isn't than to think a block is not bad when it is.
  6995. */
  6996. s += (1<<bb->shift) - 1;
  6997. s >>= bb->shift;
  6998. target >>= bb->shift;
  6999. sectors = target - s;
  7000. }
  7001. write_seqlock_irq(&bb->lock);
  7002. p = bb->page;
  7003. lo = 0;
  7004. hi = bb->count;
  7005. /* Find the last range that starts before 'target' */
  7006. while (hi - lo > 1) {
  7007. int mid = (lo + hi) / 2;
  7008. sector_t a = BB_OFFSET(p[mid]);
  7009. if (a < target)
  7010. lo = mid;
  7011. else
  7012. hi = mid;
  7013. }
  7014. if (hi > lo) {
  7015. /* p[lo] is the last range that could overlap the
  7016. * current range. Earlier ranges could also overlap,
  7017. * but only this one can overlap the end of the range.
  7018. */
  7019. if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
  7020. /* Partial overlap, leave the tail of this range */
  7021. int ack = BB_ACK(p[lo]);
  7022. sector_t a = BB_OFFSET(p[lo]);
  7023. sector_t end = a + BB_LEN(p[lo]);
  7024. if (a < s) {
  7025. /* we need to split this range */
  7026. if (bb->count >= MD_MAX_BADBLOCKS) {
  7027. rv = 0;
  7028. goto out;
  7029. }
  7030. memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
  7031. bb->count++;
  7032. p[lo] = BB_MAKE(a, s-a, ack);
  7033. lo++;
  7034. }
  7035. p[lo] = BB_MAKE(target, end - target, ack);
  7036. /* there is no longer an overlap */
  7037. hi = lo;
  7038. lo--;
  7039. }
  7040. while (lo >= 0 &&
  7041. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  7042. /* This range does overlap */
  7043. if (BB_OFFSET(p[lo]) < s) {
  7044. /* Keep the early parts of this range. */
  7045. int ack = BB_ACK(p[lo]);
  7046. sector_t start = BB_OFFSET(p[lo]);
  7047. p[lo] = BB_MAKE(start, s - start, ack);
  7048. /* now low doesn't overlap, so.. */
  7049. break;
  7050. }
  7051. lo--;
  7052. }
  7053. /* 'lo' is strictly before, 'hi' is strictly after,
  7054. * anything between needs to be discarded
  7055. */
  7056. if (hi - lo > 1) {
  7057. memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
  7058. bb->count -= (hi - lo - 1);
  7059. }
  7060. }
  7061. bb->changed = 1;
  7062. out:
  7063. write_sequnlock_irq(&bb->lock);
  7064. return rv;
  7065. }
  7066. int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors)
  7067. {
  7068. return md_clear_badblocks(&rdev->badblocks,
  7069. s + rdev->data_offset,
  7070. sectors);
  7071. }
  7072. EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
  7073. /*
  7074. * Acknowledge all bad blocks in a list.
  7075. * This only succeeds if ->changed is clear. It is used by
  7076. * in-kernel metadata updates
  7077. */
  7078. void md_ack_all_badblocks(struct badblocks *bb)
  7079. {
  7080. if (bb->page == NULL || bb->changed)
  7081. /* no point even trying */
  7082. return;
  7083. write_seqlock_irq(&bb->lock);
  7084. if (bb->changed == 0) {
  7085. u64 *p = bb->page;
  7086. int i;
  7087. for (i = 0; i < bb->count ; i++) {
  7088. if (!BB_ACK(p[i])) {
  7089. sector_t start = BB_OFFSET(p[i]);
  7090. int len = BB_LEN(p[i]);
  7091. p[i] = BB_MAKE(start, len, 1);
  7092. }
  7093. }
  7094. bb->unacked_exist = 0;
  7095. }
  7096. write_sequnlock_irq(&bb->lock);
  7097. }
  7098. EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
  7099. /* sysfs access to bad-blocks list.
  7100. * We present two files.
  7101. * 'bad-blocks' lists sector numbers and lengths of ranges that
  7102. * are recorded as bad. The list is truncated to fit within
  7103. * the one-page limit of sysfs.
  7104. * Writing "sector length" to this file adds an acknowledged
  7105. * bad block list.
  7106. * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
  7107. * been acknowledged. Writing to this file adds bad blocks
  7108. * without acknowledging them. This is largely for testing.
  7109. */
  7110. static ssize_t
  7111. badblocks_show(struct badblocks *bb, char *page, int unack)
  7112. {
  7113. size_t len;
  7114. int i;
  7115. u64 *p = bb->page;
  7116. unsigned seq;
  7117. if (bb->shift < 0)
  7118. return 0;
  7119. retry:
  7120. seq = read_seqbegin(&bb->lock);
  7121. len = 0;
  7122. i = 0;
  7123. while (len < PAGE_SIZE && i < bb->count) {
  7124. sector_t s = BB_OFFSET(p[i]);
  7125. unsigned int length = BB_LEN(p[i]);
  7126. int ack = BB_ACK(p[i]);
  7127. i++;
  7128. if (unack && ack)
  7129. continue;
  7130. len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
  7131. (unsigned long long)s << bb->shift,
  7132. length << bb->shift);
  7133. }
  7134. if (unack && len == 0)
  7135. bb->unacked_exist = 0;
  7136. if (read_seqretry(&bb->lock, seq))
  7137. goto retry;
  7138. return len;
  7139. }
  7140. #define DO_DEBUG 1
  7141. static ssize_t
  7142. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
  7143. {
  7144. unsigned long long sector;
  7145. int length;
  7146. char newline;
  7147. #ifdef DO_DEBUG
  7148. /* Allow clearing via sysfs *only* for testing/debugging.
  7149. * Normally only a successful write may clear a badblock
  7150. */
  7151. int clear = 0;
  7152. if (page[0] == '-') {
  7153. clear = 1;
  7154. page++;
  7155. }
  7156. #endif /* DO_DEBUG */
  7157. switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
  7158. case 3:
  7159. if (newline != '\n')
  7160. return -EINVAL;
  7161. case 2:
  7162. if (length <= 0)
  7163. return -EINVAL;
  7164. break;
  7165. default:
  7166. return -EINVAL;
  7167. }
  7168. #ifdef DO_DEBUG
  7169. if (clear) {
  7170. md_clear_badblocks(bb, sector, length);
  7171. return len;
  7172. }
  7173. #endif /* DO_DEBUG */
  7174. if (md_set_badblocks(bb, sector, length, !unack))
  7175. return len;
  7176. else
  7177. return -ENOSPC;
  7178. }
  7179. static int md_notify_reboot(struct notifier_block *this,
  7180. unsigned long code, void *x)
  7181. {
  7182. struct list_head *tmp;
  7183. struct mddev *mddev;
  7184. int need_delay = 0;
  7185. if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
  7186. printk(KERN_INFO "md: stopping all md devices.\n");
  7187. for_each_mddev(mddev, tmp) {
  7188. if (mddev_trylock(mddev)) {
  7189. /* Force a switch to readonly even array
  7190. * appears to still be in use. Hence
  7191. * the '100'.
  7192. */
  7193. md_set_readonly(mddev, 100);
  7194. mddev_unlock(mddev);
  7195. }
  7196. need_delay = 1;
  7197. }
  7198. /*
  7199. * certain more exotic SCSI devices are known to be
  7200. * volatile wrt too early system reboots. While the
  7201. * right place to handle this issue is the given
  7202. * driver, we do want to have a safe RAID driver ...
  7203. */
  7204. if (need_delay)
  7205. mdelay(1000*1);
  7206. }
  7207. return NOTIFY_DONE;
  7208. }
  7209. static struct notifier_block md_notifier = {
  7210. .notifier_call = md_notify_reboot,
  7211. .next = NULL,
  7212. .priority = INT_MAX, /* before any real devices */
  7213. };
  7214. static void md_geninit(void)
  7215. {
  7216. pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  7217. proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
  7218. }
  7219. static int __init md_init(void)
  7220. {
  7221. int ret = -ENOMEM;
  7222. md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
  7223. if (!md_wq)
  7224. goto err_wq;
  7225. md_misc_wq = alloc_workqueue("md_misc", 0, 0);
  7226. if (!md_misc_wq)
  7227. goto err_misc_wq;
  7228. if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
  7229. goto err_md;
  7230. if ((ret = register_blkdev(0, "mdp")) < 0)
  7231. goto err_mdp;
  7232. mdp_major = ret;
  7233. blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
  7234. md_probe, NULL, NULL);
  7235. blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
  7236. md_probe, NULL, NULL);
  7237. register_reboot_notifier(&md_notifier);
  7238. raid_table_header = register_sysctl_table(raid_root_table);
  7239. md_geninit();
  7240. return 0;
  7241. err_mdp:
  7242. unregister_blkdev(MD_MAJOR, "md");
  7243. err_md:
  7244. destroy_workqueue(md_misc_wq);
  7245. err_misc_wq:
  7246. destroy_workqueue(md_wq);
  7247. err_wq:
  7248. return ret;
  7249. }
  7250. #ifndef MODULE
  7251. /*
  7252. * Searches all registered partitions for autorun RAID arrays
  7253. * at boot time.
  7254. */
  7255. static LIST_HEAD(all_detected_devices);
  7256. struct detected_devices_node {
  7257. struct list_head list;
  7258. dev_t dev;
  7259. };
  7260. void md_autodetect_dev(dev_t dev)
  7261. {
  7262. struct detected_devices_node *node_detected_dev;
  7263. node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
  7264. if (node_detected_dev) {
  7265. node_detected_dev->dev = dev;
  7266. list_add_tail(&node_detected_dev->list, &all_detected_devices);
  7267. } else {
  7268. printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
  7269. ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
  7270. }
  7271. }
  7272. static void autostart_arrays(int part)
  7273. {
  7274. struct md_rdev *rdev;
  7275. struct detected_devices_node *node_detected_dev;
  7276. dev_t dev;
  7277. int i_scanned, i_passed;
  7278. i_scanned = 0;
  7279. i_passed = 0;
  7280. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  7281. while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
  7282. i_scanned++;
  7283. node_detected_dev = list_entry(all_detected_devices.next,
  7284. struct detected_devices_node, list);
  7285. list_del(&node_detected_dev->list);
  7286. dev = node_detected_dev->dev;
  7287. kfree(node_detected_dev);
  7288. rdev = md_import_device(dev,0, 90);
  7289. if (IS_ERR(rdev))
  7290. continue;
  7291. if (test_bit(Faulty, &rdev->flags)) {
  7292. MD_BUG();
  7293. continue;
  7294. }
  7295. set_bit(AutoDetected, &rdev->flags);
  7296. list_add(&rdev->same_set, &pending_raid_disks);
  7297. i_passed++;
  7298. }
  7299. printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
  7300. i_scanned, i_passed);
  7301. autorun_devices(part);
  7302. }
  7303. #endif /* !MODULE */
  7304. static __exit void md_exit(void)
  7305. {
  7306. struct mddev *mddev;
  7307. struct list_head *tmp;
  7308. blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
  7309. blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
  7310. unregister_blkdev(MD_MAJOR,"md");
  7311. unregister_blkdev(mdp_major, "mdp");
  7312. unregister_reboot_notifier(&md_notifier);
  7313. unregister_sysctl_table(raid_table_header);
  7314. remove_proc_entry("mdstat", NULL);
  7315. for_each_mddev(mddev, tmp) {
  7316. export_array(mddev);
  7317. mddev->hold_active = 0;
  7318. }
  7319. destroy_workqueue(md_misc_wq);
  7320. destroy_workqueue(md_wq);
  7321. }
  7322. subsys_initcall(md_init);
  7323. module_exit(md_exit)
  7324. static int get_ro(char *buffer, struct kernel_param *kp)
  7325. {
  7326. return sprintf(buffer, "%d", start_readonly);
  7327. }
  7328. static int set_ro(const char *val, struct kernel_param *kp)
  7329. {
  7330. char *e;
  7331. int num = simple_strtoul(val, &e, 10);
  7332. if (*val && (*e == '\0' || *e == '\n')) {
  7333. start_readonly = num;
  7334. return 0;
  7335. }
  7336. return -EINVAL;
  7337. }
  7338. module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
  7339. module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
  7340. module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
  7341. EXPORT_SYMBOL(register_md_personality);
  7342. EXPORT_SYMBOL(unregister_md_personality);
  7343. EXPORT_SYMBOL(md_error);
  7344. EXPORT_SYMBOL(md_done_sync);
  7345. EXPORT_SYMBOL(md_write_start);
  7346. EXPORT_SYMBOL(md_write_end);
  7347. EXPORT_SYMBOL(md_register_thread);
  7348. EXPORT_SYMBOL(md_unregister_thread);
  7349. EXPORT_SYMBOL(md_wakeup_thread);
  7350. EXPORT_SYMBOL(md_check_recovery);
  7351. MODULE_LICENSE("GPL");
  7352. MODULE_DESCRIPTION("MD RAID framework");
  7353. MODULE_ALIAS("md");
  7354. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);