random.c 49 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636
  1. /*
  2. * random.c -- A strong random number generator
  3. *
  4. * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
  5. *
  6. * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
  7. * rights reserved.
  8. *
  9. * Redistribution and use in source and binary forms, with or without
  10. * modification, are permitted provided that the following conditions
  11. * are met:
  12. * 1. Redistributions of source code must retain the above copyright
  13. * notice, and the entire permission notice in its entirety,
  14. * including the disclaimer of warranties.
  15. * 2. Redistributions in binary form must reproduce the above copyright
  16. * notice, this list of conditions and the following disclaimer in the
  17. * documentation and/or other materials provided with the distribution.
  18. * 3. The name of the author may not be used to endorse or promote
  19. * products derived from this software without specific prior
  20. * written permission.
  21. *
  22. * ALTERNATIVELY, this product may be distributed under the terms of
  23. * the GNU General Public License, in which case the provisions of the GPL are
  24. * required INSTEAD OF the above restrictions. (This clause is
  25. * necessary due to a potential bad interaction between the GPL and
  26. * the restrictions contained in a BSD-style copyright.)
  27. *
  28. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  29. * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  30. * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
  31. * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
  32. * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  33. * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
  34. * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  35. * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  36. * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  37. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  38. * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
  39. * DAMAGE.
  40. */
  41. /*
  42. * (now, with legal B.S. out of the way.....)
  43. *
  44. * This routine gathers environmental noise from device drivers, etc.,
  45. * and returns good random numbers, suitable for cryptographic use.
  46. * Besides the obvious cryptographic uses, these numbers are also good
  47. * for seeding TCP sequence numbers, and other places where it is
  48. * desirable to have numbers which are not only random, but hard to
  49. * predict by an attacker.
  50. *
  51. * Theory of operation
  52. * ===================
  53. *
  54. * Computers are very predictable devices. Hence it is extremely hard
  55. * to produce truly random numbers on a computer --- as opposed to
  56. * pseudo-random numbers, which can easily generated by using a
  57. * algorithm. Unfortunately, it is very easy for attackers to guess
  58. * the sequence of pseudo-random number generators, and for some
  59. * applications this is not acceptable. So instead, we must try to
  60. * gather "environmental noise" from the computer's environment, which
  61. * must be hard for outside attackers to observe, and use that to
  62. * generate random numbers. In a Unix environment, this is best done
  63. * from inside the kernel.
  64. *
  65. * Sources of randomness from the environment include inter-keyboard
  66. * timings, inter-interrupt timings from some interrupts, and other
  67. * events which are both (a) non-deterministic and (b) hard for an
  68. * outside observer to measure. Randomness from these sources are
  69. * added to an "entropy pool", which is mixed using a CRC-like function.
  70. * This is not cryptographically strong, but it is adequate assuming
  71. * the randomness is not chosen maliciously, and it is fast enough that
  72. * the overhead of doing it on every interrupt is very reasonable.
  73. * As random bytes are mixed into the entropy pool, the routines keep
  74. * an *estimate* of how many bits of randomness have been stored into
  75. * the random number generator's internal state.
  76. *
  77. * When random bytes are desired, they are obtained by taking the SHA
  78. * hash of the contents of the "entropy pool". The SHA hash avoids
  79. * exposing the internal state of the entropy pool. It is believed to
  80. * be computationally infeasible to derive any useful information
  81. * about the input of SHA from its output. Even if it is possible to
  82. * analyze SHA in some clever way, as long as the amount of data
  83. * returned from the generator is less than the inherent entropy in
  84. * the pool, the output data is totally unpredictable. For this
  85. * reason, the routine decreases its internal estimate of how many
  86. * bits of "true randomness" are contained in the entropy pool as it
  87. * outputs random numbers.
  88. *
  89. * If this estimate goes to zero, the routine can still generate
  90. * random numbers; however, an attacker may (at least in theory) be
  91. * able to infer the future output of the generator from prior
  92. * outputs. This requires successful cryptanalysis of SHA, which is
  93. * not believed to be feasible, but there is a remote possibility.
  94. * Nonetheless, these numbers should be useful for the vast majority
  95. * of purposes.
  96. *
  97. * Exported interfaces ---- output
  98. * ===============================
  99. *
  100. * There are three exported interfaces; the first is one designed to
  101. * be used from within the kernel:
  102. *
  103. * void get_random_bytes(void *buf, int nbytes);
  104. *
  105. * This interface will return the requested number of random bytes,
  106. * and place it in the requested buffer.
  107. *
  108. * The two other interfaces are two character devices /dev/random and
  109. * /dev/urandom. /dev/random is suitable for use when very high
  110. * quality randomness is desired (for example, for key generation or
  111. * one-time pads), as it will only return a maximum of the number of
  112. * bits of randomness (as estimated by the random number generator)
  113. * contained in the entropy pool.
  114. *
  115. * The /dev/urandom device does not have this limit, and will return
  116. * as many bytes as are requested. As more and more random bytes are
  117. * requested without giving time for the entropy pool to recharge,
  118. * this will result in random numbers that are merely cryptographically
  119. * strong. For many applications, however, this is acceptable.
  120. *
  121. * Exported interfaces ---- input
  122. * ==============================
  123. *
  124. * The current exported interfaces for gathering environmental noise
  125. * from the devices are:
  126. *
  127. * void add_device_randomness(const void *buf, unsigned int size);
  128. * void add_input_randomness(unsigned int type, unsigned int code,
  129. * unsigned int value);
  130. * void add_interrupt_randomness(int irq, int irq_flags);
  131. * void add_disk_randomness(struct gendisk *disk);
  132. *
  133. * add_device_randomness() is for adding data to the random pool that
  134. * is likely to differ between two devices (or possibly even per boot).
  135. * This would be things like MAC addresses or serial numbers, or the
  136. * read-out of the RTC. This does *not* add any actual entropy to the
  137. * pool, but it initializes the pool to different values for devices
  138. * that might otherwise be identical and have very little entropy
  139. * available to them (particularly common in the embedded world).
  140. *
  141. * add_input_randomness() uses the input layer interrupt timing, as well as
  142. * the event type information from the hardware.
  143. *
  144. * add_interrupt_randomness() uses the interrupt timing as random
  145. * inputs to the entropy pool. Using the cycle counters and the irq source
  146. * as inputs, it feeds the randomness roughly once a second.
  147. *
  148. * add_disk_randomness() uses what amounts to the seek time of block
  149. * layer request events, on a per-disk_devt basis, as input to the
  150. * entropy pool. Note that high-speed solid state drives with very low
  151. * seek times do not make for good sources of entropy, as their seek
  152. * times are usually fairly consistent.
  153. *
  154. * All of these routines try to estimate how many bits of randomness a
  155. * particular randomness source. They do this by keeping track of the
  156. * first and second order deltas of the event timings.
  157. *
  158. * Ensuring unpredictability at system startup
  159. * ============================================
  160. *
  161. * When any operating system starts up, it will go through a sequence
  162. * of actions that are fairly predictable by an adversary, especially
  163. * if the start-up does not involve interaction with a human operator.
  164. * This reduces the actual number of bits of unpredictability in the
  165. * entropy pool below the value in entropy_count. In order to
  166. * counteract this effect, it helps to carry information in the
  167. * entropy pool across shut-downs and start-ups. To do this, put the
  168. * following lines an appropriate script which is run during the boot
  169. * sequence:
  170. *
  171. * echo "Initializing random number generator..."
  172. * random_seed=/var/run/random-seed
  173. * # Carry a random seed from start-up to start-up
  174. * # Load and then save the whole entropy pool
  175. * if [ -f $random_seed ]; then
  176. * cat $random_seed >/dev/urandom
  177. * else
  178. * touch $random_seed
  179. * fi
  180. * chmod 600 $random_seed
  181. * dd if=/dev/urandom of=$random_seed count=1 bs=512
  182. *
  183. * and the following lines in an appropriate script which is run as
  184. * the system is shutdown:
  185. *
  186. * # Carry a random seed from shut-down to start-up
  187. * # Save the whole entropy pool
  188. * echo "Saving random seed..."
  189. * random_seed=/var/run/random-seed
  190. * touch $random_seed
  191. * chmod 600 $random_seed
  192. * dd if=/dev/urandom of=$random_seed count=1 bs=512
  193. *
  194. * For example, on most modern systems using the System V init
  195. * scripts, such code fragments would be found in
  196. * /etc/rc.d/init.d/random. On older Linux systems, the correct script
  197. * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
  198. *
  199. * Effectively, these commands cause the contents of the entropy pool
  200. * to be saved at shut-down time and reloaded into the entropy pool at
  201. * start-up. (The 'dd' in the addition to the bootup script is to
  202. * make sure that /etc/random-seed is different for every start-up,
  203. * even if the system crashes without executing rc.0.) Even with
  204. * complete knowledge of the start-up activities, predicting the state
  205. * of the entropy pool requires knowledge of the previous history of
  206. * the system.
  207. *
  208. * Configuring the /dev/random driver under Linux
  209. * ==============================================
  210. *
  211. * The /dev/random driver under Linux uses minor numbers 8 and 9 of
  212. * the /dev/mem major number (#1). So if your system does not have
  213. * /dev/random and /dev/urandom created already, they can be created
  214. * by using the commands:
  215. *
  216. * mknod /dev/random c 1 8
  217. * mknod /dev/urandom c 1 9
  218. *
  219. * Acknowledgements:
  220. * =================
  221. *
  222. * Ideas for constructing this random number generator were derived
  223. * from Pretty Good Privacy's random number generator, and from private
  224. * discussions with Phil Karn. Colin Plumb provided a faster random
  225. * number generator, which speed up the mixing function of the entropy
  226. * pool, taken from PGPfone. Dale Worley has also contributed many
  227. * useful ideas and suggestions to improve this driver.
  228. *
  229. * Any flaws in the design are solely my responsibility, and should
  230. * not be attributed to the Phil, Colin, or any of authors of PGP.
  231. *
  232. * Further background information on this topic may be obtained from
  233. * RFC 1750, "Randomness Recommendations for Security", by Donald
  234. * Eastlake, Steve Crocker, and Jeff Schiller.
  235. */
  236. #include <linux/utsname.h>
  237. #include <linux/module.h>
  238. #include <linux/kernel.h>
  239. #include <linux/major.h>
  240. #include <linux/string.h>
  241. #include <linux/fcntl.h>
  242. #include <linux/slab.h>
  243. #include <linux/random.h>
  244. #include <linux/poll.h>
  245. #include <linux/init.h>
  246. #include <linux/fs.h>
  247. #include <linux/genhd.h>
  248. #include <linux/interrupt.h>
  249. #include <linux/mm.h>
  250. #include <linux/spinlock.h>
  251. #include <linux/percpu.h>
  252. #include <linux/cryptohash.h>
  253. #include <linux/fips.h>
  254. #include <linux/ptrace.h>
  255. #include <linux/kmemcheck.h>
  256. #ifdef CONFIG_GENERIC_HARDIRQS
  257. # include <linux/irq.h>
  258. #endif
  259. #include <asm/processor.h>
  260. #include <asm/uaccess.h>
  261. #include <asm/irq.h>
  262. #include <asm/irq_regs.h>
  263. #include <asm/io.h>
  264. #define CREATE_TRACE_POINTS
  265. #include <trace/events/random.h>
  266. /*
  267. * Configuration information
  268. */
  269. #define INPUT_POOL_SHIFT 12
  270. #define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
  271. #define OUTPUT_POOL_SHIFT 10
  272. #define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
  273. #define SEC_XFER_SIZE 512
  274. #define EXTRACT_SIZE 10
  275. #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
  276. /*
  277. * To allow fractional bits to be tracked, the following fields contain
  278. * this many fractional bits:
  279. *
  280. * entropy_count, trickle_thresh
  281. *
  282. * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
  283. * credit_entropy_bits() needs to be 64 bits wide.
  284. */
  285. #define ENTROPY_SHIFT 3
  286. #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
  287. /*
  288. * The minimum number of bits of entropy before we wake up a read on
  289. * /dev/random. Should be enough to do a significant reseed.
  290. */
  291. static int random_read_wakeup_thresh = 64;
  292. /*
  293. * If the entropy count falls under this number of bits, then we
  294. * should wake up processes which are selecting or polling on write
  295. * access to /dev/random.
  296. */
  297. static int random_write_wakeup_thresh = 128;
  298. /*
  299. * The minimum number of seconds between urandom pool resending. We
  300. * do this to limit the amount of entropy that can be drained from the
  301. * input pool even if there are heavy demands on /dev/urandom.
  302. */
  303. static int random_min_urandom_seed = 60;
  304. /*
  305. * When the input pool goes over trickle_thresh, start dropping most
  306. * samples to avoid wasting CPU time and reduce lock contention.
  307. */
  308. static const int trickle_thresh = (INPUT_POOL_WORDS * 28) << ENTROPY_SHIFT;
  309. static DEFINE_PER_CPU(int, trickle_count);
  310. /*
  311. * Originally, we used a primitive polynomial of degree .poolwords
  312. * over GF(2). The taps for various sizes are defined below. They
  313. * were chosen to be evenly spaced except for the last tap, which is 1
  314. * to get the twisting happening as fast as possible.
  315. *
  316. * For the purposes of better mixing, we use the CRC-32 polynomial as
  317. * well to make a (modified) twisted Generalized Feedback Shift
  318. * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
  319. * generators. ACM Transactions on Modeling and Computer Simulation
  320. * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
  321. * GFSR generators II. ACM Transactions on Mdeling and Computer
  322. * Simulation 4:254-266)
  323. *
  324. * Thanks to Colin Plumb for suggesting this.
  325. *
  326. * The mixing operation is much less sensitive than the output hash,
  327. * where we use SHA-1. All that we want of mixing operation is that
  328. * it be a good non-cryptographic hash; i.e. it not produce collisions
  329. * when fed "random" data of the sort we expect to see. As long as
  330. * the pool state differs for different inputs, we have preserved the
  331. * input entropy and done a good job. The fact that an intelligent
  332. * attacker can construct inputs that will produce controlled
  333. * alterations to the pool's state is not important because we don't
  334. * consider such inputs to contribute any randomness. The only
  335. * property we need with respect to them is that the attacker can't
  336. * increase his/her knowledge of the pool's state. Since all
  337. * additions are reversible (knowing the final state and the input,
  338. * you can reconstruct the initial state), if an attacker has any
  339. * uncertainty about the initial state, he/she can only shuffle that
  340. * uncertainty about, but never cause any collisions (which would
  341. * decrease the uncertainty).
  342. *
  343. * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
  344. * Videau in their paper, "The Linux Pseudorandom Number Generator
  345. * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
  346. * paper, they point out that we are not using a true Twisted GFSR,
  347. * since Matsumoto & Kurita used a trinomial feedback polynomial (that
  348. * is, with only three taps, instead of the six that we are using).
  349. * As a result, the resulting polynomial is neither primitive nor
  350. * irreducible, and hence does not have a maximal period over
  351. * GF(2**32). They suggest a slight change to the generator
  352. * polynomial which improves the resulting TGFSR polynomial to be
  353. * irreducible, which we have made here.
  354. */
  355. static struct poolinfo {
  356. int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
  357. #define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
  358. int tap1, tap2, tap3, tap4, tap5;
  359. } poolinfo_table[] = {
  360. /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
  361. /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
  362. { S(128), 104, 76, 51, 25, 1 },
  363. /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
  364. /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
  365. { S(32), 26, 19, 14, 7, 1 },
  366. #if 0
  367. /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
  368. { S(2048), 1638, 1231, 819, 411, 1 },
  369. /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
  370. { S(1024), 817, 615, 412, 204, 1 },
  371. /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
  372. { S(1024), 819, 616, 410, 207, 2 },
  373. /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
  374. { S(512), 411, 308, 208, 104, 1 },
  375. /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
  376. { S(512), 409, 307, 206, 102, 2 },
  377. /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
  378. { S(512), 409, 309, 205, 103, 2 },
  379. /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
  380. { S(256), 205, 155, 101, 52, 1 },
  381. /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
  382. { S(128), 103, 78, 51, 27, 2 },
  383. /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
  384. { S(64), 52, 39, 26, 14, 1 },
  385. #endif
  386. };
  387. /*
  388. * Static global variables
  389. */
  390. static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
  391. static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
  392. static struct fasync_struct *fasync;
  393. static bool debug;
  394. module_param(debug, bool, 0644);
  395. #define DEBUG_ENT(fmt, arg...) do { \
  396. if (debug) \
  397. printk(KERN_DEBUG "random %04d %04d %04d: " \
  398. fmt,\
  399. input_pool.entropy_count,\
  400. blocking_pool.entropy_count,\
  401. nonblocking_pool.entropy_count,\
  402. ## arg); } while (0)
  403. /**********************************************************************
  404. *
  405. * OS independent entropy store. Here are the functions which handle
  406. * storing entropy in an entropy pool.
  407. *
  408. **********************************************************************/
  409. struct entropy_store;
  410. struct entropy_store {
  411. /* read-only data: */
  412. const struct poolinfo *poolinfo;
  413. __u32 *pool;
  414. const char *name;
  415. struct entropy_store *pull;
  416. /* read-write data: */
  417. unsigned long last_pulled;
  418. spinlock_t lock;
  419. unsigned short add_ptr;
  420. unsigned short input_rotate;
  421. int entropy_count;
  422. int entropy_total;
  423. unsigned int initialized:1;
  424. unsigned int limit:1;
  425. unsigned int last_data_init:1;
  426. __u8 last_data[EXTRACT_SIZE];
  427. };
  428. static __u32 input_pool_data[INPUT_POOL_WORDS];
  429. static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
  430. static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
  431. static struct entropy_store input_pool = {
  432. .poolinfo = &poolinfo_table[0],
  433. .name = "input",
  434. .limit = 1,
  435. .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
  436. .pool = input_pool_data
  437. };
  438. static struct entropy_store blocking_pool = {
  439. .poolinfo = &poolinfo_table[1],
  440. .name = "blocking",
  441. .limit = 1,
  442. .pull = &input_pool,
  443. .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
  444. .pool = blocking_pool_data
  445. };
  446. static struct entropy_store nonblocking_pool = {
  447. .poolinfo = &poolinfo_table[1],
  448. .name = "nonblocking",
  449. .pull = &input_pool,
  450. .lock = __SPIN_LOCK_UNLOCKED(nonblocking_pool.lock),
  451. .pool = nonblocking_pool_data
  452. };
  453. static __u32 const twist_table[8] = {
  454. 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
  455. 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
  456. /*
  457. * This function adds bytes into the entropy "pool". It does not
  458. * update the entropy estimate. The caller should call
  459. * credit_entropy_bits if this is appropriate.
  460. *
  461. * The pool is stirred with a primitive polynomial of the appropriate
  462. * degree, and then twisted. We twist by three bits at a time because
  463. * it's cheap to do so and helps slightly in the expected case where
  464. * the entropy is concentrated in the low-order bits.
  465. */
  466. static void _mix_pool_bytes(struct entropy_store *r, const void *in,
  467. int nbytes, __u8 out[64])
  468. {
  469. unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
  470. int input_rotate;
  471. int wordmask = r->poolinfo->poolwords - 1;
  472. const char *bytes = in;
  473. __u32 w;
  474. tap1 = r->poolinfo->tap1;
  475. tap2 = r->poolinfo->tap2;
  476. tap3 = r->poolinfo->tap3;
  477. tap4 = r->poolinfo->tap4;
  478. tap5 = r->poolinfo->tap5;
  479. smp_rmb();
  480. input_rotate = ACCESS_ONCE(r->input_rotate);
  481. i = ACCESS_ONCE(r->add_ptr);
  482. /* mix one byte at a time to simplify size handling and churn faster */
  483. while (nbytes--) {
  484. w = rol32(*bytes++, input_rotate);
  485. i = (i - 1) & wordmask;
  486. /* XOR in the various taps */
  487. w ^= r->pool[i];
  488. w ^= r->pool[(i + tap1) & wordmask];
  489. w ^= r->pool[(i + tap2) & wordmask];
  490. w ^= r->pool[(i + tap3) & wordmask];
  491. w ^= r->pool[(i + tap4) & wordmask];
  492. w ^= r->pool[(i + tap5) & wordmask];
  493. /* Mix the result back in with a twist */
  494. r->pool[i] = (w >> 3) ^ twist_table[w & 7];
  495. /*
  496. * Normally, we add 7 bits of rotation to the pool.
  497. * At the beginning of the pool, add an extra 7 bits
  498. * rotation, so that successive passes spread the
  499. * input bits across the pool evenly.
  500. */
  501. input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
  502. }
  503. ACCESS_ONCE(r->input_rotate) = input_rotate;
  504. ACCESS_ONCE(r->add_ptr) = i;
  505. smp_wmb();
  506. if (out)
  507. for (j = 0; j < 16; j++)
  508. ((__u32 *)out)[j] = r->pool[(i - j) & wordmask];
  509. }
  510. static void __mix_pool_bytes(struct entropy_store *r, const void *in,
  511. int nbytes, __u8 out[64])
  512. {
  513. trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
  514. _mix_pool_bytes(r, in, nbytes, out);
  515. }
  516. static void mix_pool_bytes(struct entropy_store *r, const void *in,
  517. int nbytes, __u8 out[64])
  518. {
  519. unsigned long flags;
  520. trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
  521. spin_lock_irqsave(&r->lock, flags);
  522. _mix_pool_bytes(r, in, nbytes, out);
  523. spin_unlock_irqrestore(&r->lock, flags);
  524. }
  525. struct fast_pool {
  526. __u32 pool[4];
  527. unsigned long last;
  528. unsigned short count;
  529. unsigned char rotate;
  530. unsigned char last_timer_intr;
  531. };
  532. /*
  533. * This is a fast mixing routine used by the interrupt randomness
  534. * collector. It's hardcoded for an 128 bit pool and assumes that any
  535. * locks that might be needed are taken by the caller.
  536. */
  537. static void fast_mix(struct fast_pool *f, __u32 input[4])
  538. {
  539. __u32 w;
  540. unsigned input_rotate = f->rotate;
  541. w = rol32(input[0], input_rotate) ^ f->pool[0] ^ f->pool[3];
  542. f->pool[0] = (w >> 3) ^ twist_table[w & 7];
  543. input_rotate = (input_rotate + 14) & 31;
  544. w = rol32(input[1], input_rotate) ^ f->pool[1] ^ f->pool[0];
  545. f->pool[1] = (w >> 3) ^ twist_table[w & 7];
  546. input_rotate = (input_rotate + 7) & 31;
  547. w = rol32(input[2], input_rotate) ^ f->pool[2] ^ f->pool[1];
  548. f->pool[2] = (w >> 3) ^ twist_table[w & 7];
  549. input_rotate = (input_rotate + 7) & 31;
  550. w = rol32(input[3], input_rotate) ^ f->pool[3] ^ f->pool[2];
  551. f->pool[3] = (w >> 3) ^ twist_table[w & 7];
  552. input_rotate = (input_rotate + 7) & 31;
  553. f->rotate = input_rotate;
  554. f->count++;
  555. }
  556. /*
  557. * Credit (or debit) the entropy store with n bits of entropy.
  558. * Use credit_entropy_bits_safe() if the value comes from userspace
  559. * or otherwise should be checked for extreme values.
  560. */
  561. static void credit_entropy_bits(struct entropy_store *r, int nbits)
  562. {
  563. int entropy_count, orig;
  564. const int pool_size = r->poolinfo->poolfracbits;
  565. int nfrac = nbits << ENTROPY_SHIFT;
  566. if (!nbits)
  567. return;
  568. DEBUG_ENT("added %d entropy credits to %s\n", nbits, r->name);
  569. retry:
  570. entropy_count = orig = ACCESS_ONCE(r->entropy_count);
  571. if (nfrac < 0) {
  572. /* Debit */
  573. entropy_count += nfrac;
  574. } else {
  575. /*
  576. * Credit: we have to account for the possibility of
  577. * overwriting already present entropy. Even in the
  578. * ideal case of pure Shannon entropy, new contributions
  579. * approach the full value asymptotically:
  580. *
  581. * entropy <- entropy + (pool_size - entropy) *
  582. * (1 - exp(-add_entropy/pool_size))
  583. *
  584. * For add_entropy <= pool_size/2 then
  585. * (1 - exp(-add_entropy/pool_size)) >=
  586. * (add_entropy/pool_size)*0.7869...
  587. * so we can approximate the exponential with
  588. * 3/4*add_entropy/pool_size and still be on the
  589. * safe side by adding at most pool_size/2 at a time.
  590. *
  591. * The use of pool_size-2 in the while statement is to
  592. * prevent rounding artifacts from making the loop
  593. * arbitrarily long; this limits the loop to log2(pool_size)*2
  594. * turns no matter how large nbits is.
  595. */
  596. int pnfrac = nfrac;
  597. const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
  598. /* The +2 corresponds to the /4 in the denominator */
  599. do {
  600. unsigned int anfrac = min(pnfrac, pool_size/2);
  601. unsigned int add =
  602. ((pool_size - entropy_count)*anfrac*3) >> s;
  603. entropy_count += add;
  604. pnfrac -= anfrac;
  605. } while (unlikely(entropy_count < pool_size-2 && pnfrac));
  606. }
  607. if (entropy_count < 0) {
  608. DEBUG_ENT("negative entropy/overflow\n");
  609. entropy_count = 0;
  610. } else if (entropy_count > pool_size)
  611. entropy_count = pool_size;
  612. if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
  613. goto retry;
  614. if (!r->initialized && nbits > 0) {
  615. r->entropy_total += nbits;
  616. if (r->entropy_total > 128)
  617. r->initialized = 1;
  618. }
  619. trace_credit_entropy_bits(r->name, nbits,
  620. entropy_count >> ENTROPY_SHIFT,
  621. r->entropy_total, _RET_IP_);
  622. /* should we wake readers? */
  623. if (r == &input_pool &&
  624. (entropy_count >> ENTROPY_SHIFT) >= random_read_wakeup_thresh) {
  625. wake_up_interruptible(&random_read_wait);
  626. kill_fasync(&fasync, SIGIO, POLL_IN);
  627. }
  628. }
  629. static void credit_entropy_bits_safe(struct entropy_store *r, int nbits)
  630. {
  631. const int nbits_max = (int)(~0U >> (ENTROPY_SHIFT + 1));
  632. /* Cap the value to avoid overflows */
  633. nbits = min(nbits, nbits_max);
  634. nbits = max(nbits, -nbits_max);
  635. credit_entropy_bits(r, nbits);
  636. }
  637. /*********************************************************************
  638. *
  639. * Entropy input management
  640. *
  641. *********************************************************************/
  642. /* There is one of these per entropy source */
  643. struct timer_rand_state {
  644. cycles_t last_time;
  645. long last_delta, last_delta2;
  646. unsigned dont_count_entropy:1;
  647. };
  648. /*
  649. * Add device- or boot-specific data to the input and nonblocking
  650. * pools to help initialize them to unique values.
  651. *
  652. * None of this adds any entropy, it is meant to avoid the
  653. * problem of the nonblocking pool having similar initial state
  654. * across largely identical devices.
  655. */
  656. void add_device_randomness(const void *buf, unsigned int size)
  657. {
  658. unsigned long time = random_get_entropy() ^ jiffies;
  659. unsigned long flags;
  660. trace_add_device_randomness(size, _RET_IP_);
  661. spin_lock_irqsave(&input_pool.lock, flags);
  662. _mix_pool_bytes(&input_pool, buf, size, NULL);
  663. _mix_pool_bytes(&input_pool, &time, sizeof(time), NULL);
  664. spin_unlock_irqrestore(&input_pool.lock, flags);
  665. spin_lock_irqsave(&nonblocking_pool.lock, flags);
  666. _mix_pool_bytes(&nonblocking_pool, buf, size, NULL);
  667. _mix_pool_bytes(&nonblocking_pool, &time, sizeof(time), NULL);
  668. spin_unlock_irqrestore(&nonblocking_pool.lock, flags);
  669. }
  670. EXPORT_SYMBOL(add_device_randomness);
  671. static struct timer_rand_state input_timer_state;
  672. /*
  673. * This function adds entropy to the entropy "pool" by using timing
  674. * delays. It uses the timer_rand_state structure to make an estimate
  675. * of how many bits of entropy this call has added to the pool.
  676. *
  677. * The number "num" is also added to the pool - it should somehow describe
  678. * the type of event which just happened. This is currently 0-255 for
  679. * keyboard scan codes, and 256 upwards for interrupts.
  680. *
  681. */
  682. static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
  683. {
  684. struct {
  685. long jiffies;
  686. unsigned cycles;
  687. unsigned num;
  688. } sample;
  689. long delta, delta2, delta3;
  690. preempt_disable();
  691. /* if over the trickle threshold, use only 1 in 4096 samples */
  692. if (ENTROPY_BITS(&input_pool) > trickle_thresh &&
  693. ((__this_cpu_inc_return(trickle_count) - 1) & 0xfff))
  694. goto out;
  695. sample.jiffies = jiffies;
  696. sample.cycles = random_get_entropy();
  697. sample.num = num;
  698. mix_pool_bytes(&input_pool, &sample, sizeof(sample), NULL);
  699. /*
  700. * Calculate number of bits of randomness we probably added.
  701. * We take into account the first, second and third-order deltas
  702. * in order to make our estimate.
  703. */
  704. if (!state->dont_count_entropy) {
  705. delta = sample.jiffies - state->last_time;
  706. state->last_time = sample.jiffies;
  707. delta2 = delta - state->last_delta;
  708. state->last_delta = delta;
  709. delta3 = delta2 - state->last_delta2;
  710. state->last_delta2 = delta2;
  711. if (delta < 0)
  712. delta = -delta;
  713. if (delta2 < 0)
  714. delta2 = -delta2;
  715. if (delta3 < 0)
  716. delta3 = -delta3;
  717. if (delta > delta2)
  718. delta = delta2;
  719. if (delta > delta3)
  720. delta = delta3;
  721. /*
  722. * delta is now minimum absolute delta.
  723. * Round down by 1 bit on general principles,
  724. * and limit entropy entimate to 12 bits.
  725. */
  726. credit_entropy_bits(&input_pool,
  727. min_t(int, fls(delta>>1), 11));
  728. }
  729. out:
  730. preempt_enable();
  731. }
  732. void add_input_randomness(unsigned int type, unsigned int code,
  733. unsigned int value)
  734. {
  735. static unsigned char last_value;
  736. /* ignore autorepeat and the like */
  737. if (value == last_value)
  738. return;
  739. DEBUG_ENT("input event\n");
  740. last_value = value;
  741. add_timer_randomness(&input_timer_state,
  742. (type << 4) ^ code ^ (code >> 4) ^ value);
  743. }
  744. EXPORT_SYMBOL_GPL(add_input_randomness);
  745. static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
  746. void add_interrupt_randomness(int irq, int irq_flags)
  747. {
  748. struct entropy_store *r;
  749. struct fast_pool *fast_pool = &__get_cpu_var(irq_randomness);
  750. struct pt_regs *regs = get_irq_regs();
  751. unsigned long now = jiffies;
  752. cycles_t cycles = random_get_entropy();
  753. __u32 input[4], c_high, j_high;
  754. __u64 ip;
  755. c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
  756. j_high = (sizeof(now) > 4) ? now >> 32 : 0;
  757. input[0] = cycles ^ j_high ^ irq;
  758. input[1] = now ^ c_high;
  759. ip = regs ? instruction_pointer(regs) : _RET_IP_;
  760. input[2] = ip;
  761. input[3] = ip >> 32;
  762. fast_mix(fast_pool, input);
  763. if ((fast_pool->count & 63) && !time_after(now, fast_pool->last + HZ))
  764. return;
  765. fast_pool->last = now;
  766. r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
  767. __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool), NULL);
  768. /*
  769. * If we don't have a valid cycle counter, and we see
  770. * back-to-back timer interrupts, then skip giving credit for
  771. * any entropy.
  772. */
  773. if (cycles == 0) {
  774. if (irq_flags & __IRQF_TIMER) {
  775. if (fast_pool->last_timer_intr)
  776. return;
  777. fast_pool->last_timer_intr = 1;
  778. } else
  779. fast_pool->last_timer_intr = 0;
  780. }
  781. credit_entropy_bits(r, 1);
  782. }
  783. #ifdef CONFIG_BLOCK
  784. void add_disk_randomness(struct gendisk *disk)
  785. {
  786. if (!disk || !disk->random)
  787. return;
  788. /* first major is 1, so we get >= 0x200 here */
  789. DEBUG_ENT("disk event %d:%d\n",
  790. MAJOR(disk_devt(disk)), MINOR(disk_devt(disk)));
  791. add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
  792. }
  793. #endif
  794. /*********************************************************************
  795. *
  796. * Entropy extraction routines
  797. *
  798. *********************************************************************/
  799. static ssize_t extract_entropy(struct entropy_store *r, void *buf,
  800. size_t nbytes, int min, int rsvd);
  801. /*
  802. * This utility inline function is responsible for transferring entropy
  803. * from the primary pool to the secondary extraction pool. We make
  804. * sure we pull enough for a 'catastrophic reseed'.
  805. */
  806. static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
  807. {
  808. __u32 tmp[OUTPUT_POOL_WORDS];
  809. if (r->limit == 0 && random_min_urandom_seed) {
  810. unsigned long now = jiffies;
  811. if (time_before(now,
  812. r->last_pulled + random_min_urandom_seed * HZ))
  813. return;
  814. r->last_pulled = now;
  815. }
  816. if (r->pull &&
  817. r->entropy_count < (nbytes << (ENTROPY_SHIFT + 3)) &&
  818. r->entropy_count < r->poolinfo->poolfracbits) {
  819. /* If we're limited, always leave two wakeup worth's BITS */
  820. int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
  821. int bytes = nbytes;
  822. /* pull at least as many as BYTES as wakeup BITS */
  823. bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
  824. /* but never more than the buffer size */
  825. bytes = min_t(int, bytes, sizeof(tmp));
  826. DEBUG_ENT("going to reseed %s with %d bits "
  827. "(%zu of %d requested)\n",
  828. r->name, bytes * 8, nbytes * 8,
  829. r->entropy_count >> ENTROPY_SHIFT);
  830. bytes = extract_entropy(r->pull, tmp, bytes,
  831. random_read_wakeup_thresh / 8, rsvd);
  832. mix_pool_bytes(r, tmp, bytes, NULL);
  833. credit_entropy_bits(r, bytes*8);
  834. }
  835. }
  836. /*
  837. * These functions extracts randomness from the "entropy pool", and
  838. * returns it in a buffer.
  839. *
  840. * The min parameter specifies the minimum amount we can pull before
  841. * failing to avoid races that defeat catastrophic reseeding while the
  842. * reserved parameter indicates how much entropy we must leave in the
  843. * pool after each pull to avoid starving other readers.
  844. *
  845. * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
  846. */
  847. static size_t account(struct entropy_store *r, size_t nbytes, int min,
  848. int reserved)
  849. {
  850. unsigned long flags;
  851. int wakeup_write = 0;
  852. int have_bytes;
  853. int entropy_count, orig;
  854. size_t ibytes;
  855. /* Hold lock while accounting */
  856. spin_lock_irqsave(&r->lock, flags);
  857. BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
  858. DEBUG_ENT("trying to extract %zu bits from %s\n",
  859. nbytes * 8, r->name);
  860. /* Can we pull enough? */
  861. retry:
  862. entropy_count = orig = ACCESS_ONCE(r->entropy_count);
  863. have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
  864. ibytes = nbytes;
  865. if (have_bytes < min + reserved) {
  866. ibytes = 0;
  867. } else {
  868. /* If limited, never pull more than available */
  869. if (r->limit && ibytes + reserved >= have_bytes)
  870. ibytes = have_bytes - reserved;
  871. if (have_bytes >= ibytes + reserved)
  872. entropy_count -= ibytes << (ENTROPY_SHIFT + 3);
  873. else
  874. entropy_count = reserved << (ENTROPY_SHIFT + 3);
  875. if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
  876. goto retry;
  877. if ((r->entropy_count >> ENTROPY_SHIFT)
  878. < random_write_wakeup_thresh)
  879. wakeup_write = 1;
  880. }
  881. DEBUG_ENT("debiting %zu entropy credits from %s%s\n",
  882. ibytes * 8, r->name, r->limit ? "" : " (unlimited)");
  883. spin_unlock_irqrestore(&r->lock, flags);
  884. if (wakeup_write) {
  885. wake_up_interruptible(&random_write_wait);
  886. kill_fasync(&fasync, SIGIO, POLL_OUT);
  887. }
  888. return ibytes;
  889. }
  890. static void extract_buf(struct entropy_store *r, __u8 *out)
  891. {
  892. int i;
  893. union {
  894. __u32 w[5];
  895. unsigned long l[LONGS(20)];
  896. } hash;
  897. __u32 workspace[SHA_WORKSPACE_WORDS];
  898. __u8 extract[64];
  899. unsigned long flags;
  900. /* Generate a hash across the pool, 16 words (512 bits) at a time */
  901. sha_init(hash.w);
  902. spin_lock_irqsave(&r->lock, flags);
  903. for (i = 0; i < r->poolinfo->poolwords; i += 16)
  904. sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
  905. /*
  906. * If we have a architectural hardware random number
  907. * generator, mix that in, too.
  908. */
  909. for (i = 0; i < LONGS(20); i++) {
  910. unsigned long v;
  911. if (!arch_get_random_long(&v))
  912. break;
  913. hash.l[i] ^= v;
  914. }
  915. /*
  916. * We mix the hash back into the pool to prevent backtracking
  917. * attacks (where the attacker knows the state of the pool
  918. * plus the current outputs, and attempts to find previous
  919. * ouputs), unless the hash function can be inverted. By
  920. * mixing at least a SHA1 worth of hash data back, we make
  921. * brute-forcing the feedback as hard as brute-forcing the
  922. * hash.
  923. */
  924. __mix_pool_bytes(r, hash.w, sizeof(hash.w), extract);
  925. spin_unlock_irqrestore(&r->lock, flags);
  926. /*
  927. * To avoid duplicates, we atomically extract a portion of the
  928. * pool while mixing, and hash one final time.
  929. */
  930. sha_transform(hash.w, extract, workspace);
  931. memset(extract, 0, sizeof(extract));
  932. memset(workspace, 0, sizeof(workspace));
  933. /*
  934. * In case the hash function has some recognizable output
  935. * pattern, we fold it in half. Thus, we always feed back
  936. * twice as much data as we output.
  937. */
  938. hash.w[0] ^= hash.w[3];
  939. hash.w[1] ^= hash.w[4];
  940. hash.w[2] ^= rol32(hash.w[2], 16);
  941. memcpy(out, &hash, EXTRACT_SIZE);
  942. memset(&hash, 0, sizeof(hash));
  943. }
  944. static ssize_t extract_entropy(struct entropy_store *r, void *buf,
  945. size_t nbytes, int min, int reserved)
  946. {
  947. ssize_t ret = 0, i;
  948. __u8 tmp[EXTRACT_SIZE];
  949. unsigned long flags;
  950. /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
  951. if (fips_enabled) {
  952. spin_lock_irqsave(&r->lock, flags);
  953. if (!r->last_data_init) {
  954. r->last_data_init = 1;
  955. spin_unlock_irqrestore(&r->lock, flags);
  956. trace_extract_entropy(r->name, EXTRACT_SIZE,
  957. ENTROPY_BITS(r), _RET_IP_);
  958. xfer_secondary_pool(r, EXTRACT_SIZE);
  959. extract_buf(r, tmp);
  960. spin_lock_irqsave(&r->lock, flags);
  961. memcpy(r->last_data, tmp, EXTRACT_SIZE);
  962. }
  963. spin_unlock_irqrestore(&r->lock, flags);
  964. }
  965. trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
  966. xfer_secondary_pool(r, nbytes);
  967. nbytes = account(r, nbytes, min, reserved);
  968. while (nbytes) {
  969. extract_buf(r, tmp);
  970. if (fips_enabled) {
  971. spin_lock_irqsave(&r->lock, flags);
  972. if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
  973. panic("Hardware RNG duplicated output!\n");
  974. memcpy(r->last_data, tmp, EXTRACT_SIZE);
  975. spin_unlock_irqrestore(&r->lock, flags);
  976. }
  977. i = min_t(int, nbytes, EXTRACT_SIZE);
  978. memcpy(buf, tmp, i);
  979. nbytes -= i;
  980. buf += i;
  981. ret += i;
  982. }
  983. /* Wipe data just returned from memory */
  984. memset(tmp, 0, sizeof(tmp));
  985. return ret;
  986. }
  987. static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
  988. size_t nbytes)
  989. {
  990. ssize_t ret = 0, i;
  991. __u8 tmp[EXTRACT_SIZE];
  992. trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
  993. xfer_secondary_pool(r, nbytes);
  994. nbytes = account(r, nbytes, 0, 0);
  995. while (nbytes) {
  996. if (need_resched()) {
  997. if (signal_pending(current)) {
  998. if (ret == 0)
  999. ret = -ERESTARTSYS;
  1000. break;
  1001. }
  1002. schedule();
  1003. }
  1004. extract_buf(r, tmp);
  1005. i = min_t(int, nbytes, EXTRACT_SIZE);
  1006. if (copy_to_user(buf, tmp, i)) {
  1007. ret = -EFAULT;
  1008. break;
  1009. }
  1010. nbytes -= i;
  1011. buf += i;
  1012. ret += i;
  1013. }
  1014. /* Wipe data just returned from memory */
  1015. memset(tmp, 0, sizeof(tmp));
  1016. return ret;
  1017. }
  1018. /*
  1019. * This function is the exported kernel interface. It returns some
  1020. * number of good random numbers, suitable for key generation, seeding
  1021. * TCP sequence numbers, etc. It does not use the hw random number
  1022. * generator, if available; use get_random_bytes_arch() for that.
  1023. */
  1024. void get_random_bytes(void *buf, int nbytes)
  1025. {
  1026. trace_get_random_bytes(nbytes, _RET_IP_);
  1027. extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
  1028. }
  1029. EXPORT_SYMBOL(get_random_bytes);
  1030. /*
  1031. * This function will use the architecture-specific hardware random
  1032. * number generator if it is available. The arch-specific hw RNG will
  1033. * almost certainly be faster than what we can do in software, but it
  1034. * is impossible to verify that it is implemented securely (as
  1035. * opposed, to, say, the AES encryption of a sequence number using a
  1036. * key known by the NSA). So it's useful if we need the speed, but
  1037. * only if we're willing to trust the hardware manufacturer not to
  1038. * have put in a back door.
  1039. */
  1040. void get_random_bytes_arch(void *buf, int nbytes)
  1041. {
  1042. char *p = buf;
  1043. trace_get_random_bytes_arch(nbytes, _RET_IP_);
  1044. while (nbytes) {
  1045. unsigned long v;
  1046. int chunk = min(nbytes, (int)sizeof(unsigned long));
  1047. if (!arch_get_random_long(&v))
  1048. break;
  1049. memcpy(p, &v, chunk);
  1050. p += chunk;
  1051. nbytes -= chunk;
  1052. }
  1053. if (nbytes)
  1054. extract_entropy(&nonblocking_pool, p, nbytes, 0, 0);
  1055. }
  1056. EXPORT_SYMBOL(get_random_bytes_arch);
  1057. /*
  1058. * init_std_data - initialize pool with system data
  1059. *
  1060. * @r: pool to initialize
  1061. *
  1062. * This function clears the pool's entropy count and mixes some system
  1063. * data into the pool to prepare it for use. The pool is not cleared
  1064. * as that can only decrease the entropy in the pool.
  1065. */
  1066. static void init_std_data(struct entropy_store *r)
  1067. {
  1068. int i;
  1069. ktime_t now = ktime_get_real();
  1070. unsigned long rv;
  1071. r->entropy_count = 0;
  1072. r->entropy_total = 0;
  1073. r->last_data_init = 0;
  1074. r->last_pulled = jiffies;
  1075. mix_pool_bytes(r, &now, sizeof(now), NULL);
  1076. for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
  1077. if (!arch_get_random_long(&rv))
  1078. break;
  1079. mix_pool_bytes(r, &rv, sizeof(rv), NULL);
  1080. }
  1081. mix_pool_bytes(r, utsname(), sizeof(*(utsname())), NULL);
  1082. }
  1083. /*
  1084. * Note that setup_arch() may call add_device_randomness()
  1085. * long before we get here. This allows seeding of the pools
  1086. * with some platform dependent data very early in the boot
  1087. * process. But it limits our options here. We must use
  1088. * statically allocated structures that already have all
  1089. * initializations complete at compile time. We should also
  1090. * take care not to overwrite the precious per platform data
  1091. * we were given.
  1092. */
  1093. static int rand_initialize(void)
  1094. {
  1095. init_std_data(&input_pool);
  1096. init_std_data(&blocking_pool);
  1097. init_std_data(&nonblocking_pool);
  1098. return 0;
  1099. }
  1100. module_init(rand_initialize);
  1101. #ifdef CONFIG_BLOCK
  1102. void rand_initialize_disk(struct gendisk *disk)
  1103. {
  1104. struct timer_rand_state *state;
  1105. /*
  1106. * If kzalloc returns null, we just won't use that entropy
  1107. * source.
  1108. */
  1109. state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
  1110. if (state)
  1111. disk->random = state;
  1112. }
  1113. #endif
  1114. static ssize_t
  1115. random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
  1116. {
  1117. ssize_t n, retval = 0, count = 0;
  1118. if (nbytes == 0)
  1119. return 0;
  1120. while (nbytes > 0) {
  1121. n = nbytes;
  1122. if (n > SEC_XFER_SIZE)
  1123. n = SEC_XFER_SIZE;
  1124. DEBUG_ENT("reading %zu bits\n", n*8);
  1125. n = extract_entropy_user(&blocking_pool, buf, n);
  1126. if (n < 0) {
  1127. retval = n;
  1128. break;
  1129. }
  1130. DEBUG_ENT("read got %zd bits (%zd still needed)\n",
  1131. n*8, (nbytes-n)*8);
  1132. if (n == 0) {
  1133. if (file->f_flags & O_NONBLOCK) {
  1134. retval = -EAGAIN;
  1135. break;
  1136. }
  1137. DEBUG_ENT("sleeping?\n");
  1138. wait_event_interruptible(random_read_wait,
  1139. ENTROPY_BITS(&input_pool) >=
  1140. random_read_wakeup_thresh);
  1141. DEBUG_ENT("awake\n");
  1142. if (signal_pending(current)) {
  1143. retval = -ERESTARTSYS;
  1144. break;
  1145. }
  1146. continue;
  1147. }
  1148. count += n;
  1149. buf += n;
  1150. nbytes -= n;
  1151. break; /* This break makes the device work */
  1152. /* like a named pipe */
  1153. }
  1154. return (count ? count : retval);
  1155. }
  1156. static ssize_t
  1157. urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
  1158. {
  1159. return extract_entropy_user(&nonblocking_pool, buf, nbytes);
  1160. }
  1161. static unsigned int
  1162. random_poll(struct file *file, poll_table * wait)
  1163. {
  1164. unsigned int mask;
  1165. poll_wait(file, &random_read_wait, wait);
  1166. poll_wait(file, &random_write_wait, wait);
  1167. mask = 0;
  1168. if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_thresh)
  1169. mask |= POLLIN | POLLRDNORM;
  1170. if (ENTROPY_BITS(&input_pool) < random_write_wakeup_thresh)
  1171. mask |= POLLOUT | POLLWRNORM;
  1172. return mask;
  1173. }
  1174. static int
  1175. write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
  1176. {
  1177. size_t bytes;
  1178. __u32 buf[16];
  1179. const char __user *p = buffer;
  1180. while (count > 0) {
  1181. bytes = min(count, sizeof(buf));
  1182. if (copy_from_user(&buf, p, bytes))
  1183. return -EFAULT;
  1184. count -= bytes;
  1185. p += bytes;
  1186. mix_pool_bytes(r, buf, bytes, NULL);
  1187. cond_resched();
  1188. }
  1189. return 0;
  1190. }
  1191. static ssize_t random_write(struct file *file, const char __user *buffer,
  1192. size_t count, loff_t *ppos)
  1193. {
  1194. size_t ret;
  1195. ret = write_pool(&blocking_pool, buffer, count);
  1196. if (ret)
  1197. return ret;
  1198. ret = write_pool(&nonblocking_pool, buffer, count);
  1199. if (ret)
  1200. return ret;
  1201. return (ssize_t)count;
  1202. }
  1203. static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
  1204. {
  1205. int size, ent_count;
  1206. int __user *p = (int __user *)arg;
  1207. int retval;
  1208. switch (cmd) {
  1209. case RNDGETENTCNT:
  1210. /* inherently racy, no point locking */
  1211. ent_count = ENTROPY_BITS(&input_pool);
  1212. if (put_user(ent_count, p))
  1213. return -EFAULT;
  1214. return 0;
  1215. case RNDADDTOENTCNT:
  1216. if (!capable(CAP_SYS_ADMIN))
  1217. return -EPERM;
  1218. if (get_user(ent_count, p))
  1219. return -EFAULT;
  1220. credit_entropy_bits_safe(&input_pool, ent_count);
  1221. return 0;
  1222. case RNDADDENTROPY:
  1223. if (!capable(CAP_SYS_ADMIN))
  1224. return -EPERM;
  1225. if (get_user(ent_count, p++))
  1226. return -EFAULT;
  1227. if (ent_count < 0)
  1228. return -EINVAL;
  1229. if (get_user(size, p++))
  1230. return -EFAULT;
  1231. retval = write_pool(&input_pool, (const char __user *)p,
  1232. size);
  1233. if (retval < 0)
  1234. return retval;
  1235. credit_entropy_bits_safe(&input_pool, ent_count);
  1236. return 0;
  1237. case RNDZAPENTCNT:
  1238. case RNDCLEARPOOL:
  1239. /* Clear the entropy pool counters. */
  1240. if (!capable(CAP_SYS_ADMIN))
  1241. return -EPERM;
  1242. rand_initialize();
  1243. return 0;
  1244. default:
  1245. return -EINVAL;
  1246. }
  1247. }
  1248. static int random_fasync(int fd, struct file *filp, int on)
  1249. {
  1250. return fasync_helper(fd, filp, on, &fasync);
  1251. }
  1252. const struct file_operations random_fops = {
  1253. .read = random_read,
  1254. .write = random_write,
  1255. .poll = random_poll,
  1256. .unlocked_ioctl = random_ioctl,
  1257. .fasync = random_fasync,
  1258. .llseek = noop_llseek,
  1259. };
  1260. const struct file_operations urandom_fops = {
  1261. .read = urandom_read,
  1262. .write = random_write,
  1263. .unlocked_ioctl = random_ioctl,
  1264. .fasync = random_fasync,
  1265. .llseek = noop_llseek,
  1266. };
  1267. /***************************************************************
  1268. * Random UUID interface
  1269. *
  1270. * Used here for a Boot ID, but can be useful for other kernel
  1271. * drivers.
  1272. ***************************************************************/
  1273. /*
  1274. * Generate random UUID
  1275. */
  1276. void generate_random_uuid(unsigned char uuid_out[16])
  1277. {
  1278. get_random_bytes(uuid_out, 16);
  1279. /* Set UUID version to 4 --- truly random generation */
  1280. uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
  1281. /* Set the UUID variant to DCE */
  1282. uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
  1283. }
  1284. EXPORT_SYMBOL(generate_random_uuid);
  1285. /********************************************************************
  1286. *
  1287. * Sysctl interface
  1288. *
  1289. ********************************************************************/
  1290. #ifdef CONFIG_SYSCTL
  1291. #include <linux/sysctl.h>
  1292. static int min_read_thresh = 8, min_write_thresh;
  1293. static int max_read_thresh = INPUT_POOL_WORDS * 32;
  1294. static int max_write_thresh = INPUT_POOL_WORDS * 32;
  1295. static char sysctl_bootid[16];
  1296. /*
  1297. * These functions is used to return both the bootid UUID, and random
  1298. * UUID. The difference is in whether table->data is NULL; if it is,
  1299. * then a new UUID is generated and returned to the user.
  1300. *
  1301. * If the user accesses this via the proc interface, it will be returned
  1302. * as an ASCII string in the standard UUID format. If accesses via the
  1303. * sysctl system call, it is returned as 16 bytes of binary data.
  1304. */
  1305. static int proc_do_uuid(struct ctl_table *table, int write,
  1306. void __user *buffer, size_t *lenp, loff_t *ppos)
  1307. {
  1308. struct ctl_table fake_table;
  1309. unsigned char buf[64], tmp_uuid[16], *uuid;
  1310. uuid = table->data;
  1311. if (!uuid) {
  1312. uuid = tmp_uuid;
  1313. generate_random_uuid(uuid);
  1314. } else {
  1315. static DEFINE_SPINLOCK(bootid_spinlock);
  1316. spin_lock(&bootid_spinlock);
  1317. if (!uuid[8])
  1318. generate_random_uuid(uuid);
  1319. spin_unlock(&bootid_spinlock);
  1320. }
  1321. sprintf(buf, "%pU", uuid);
  1322. fake_table.data = buf;
  1323. fake_table.maxlen = sizeof(buf);
  1324. return proc_dostring(&fake_table, write, buffer, lenp, ppos);
  1325. }
  1326. /*
  1327. * Return entropy available scaled to integral bits
  1328. */
  1329. static int proc_do_entropy(ctl_table *table, int write,
  1330. void __user *buffer, size_t *lenp, loff_t *ppos)
  1331. {
  1332. ctl_table fake_table;
  1333. int entropy_count;
  1334. entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
  1335. fake_table.data = &entropy_count;
  1336. fake_table.maxlen = sizeof(entropy_count);
  1337. return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
  1338. }
  1339. static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
  1340. extern struct ctl_table random_table[];
  1341. struct ctl_table random_table[] = {
  1342. {
  1343. .procname = "poolsize",
  1344. .data = &sysctl_poolsize,
  1345. .maxlen = sizeof(int),
  1346. .mode = 0444,
  1347. .proc_handler = proc_dointvec,
  1348. },
  1349. {
  1350. .procname = "entropy_avail",
  1351. .maxlen = sizeof(int),
  1352. .mode = 0444,
  1353. .proc_handler = proc_do_entropy,
  1354. .data = &input_pool.entropy_count,
  1355. },
  1356. {
  1357. .procname = "read_wakeup_threshold",
  1358. .data = &random_read_wakeup_thresh,
  1359. .maxlen = sizeof(int),
  1360. .mode = 0644,
  1361. .proc_handler = proc_dointvec_minmax,
  1362. .extra1 = &min_read_thresh,
  1363. .extra2 = &max_read_thresh,
  1364. },
  1365. {
  1366. .procname = "write_wakeup_threshold",
  1367. .data = &random_write_wakeup_thresh,
  1368. .maxlen = sizeof(int),
  1369. .mode = 0644,
  1370. .proc_handler = proc_dointvec_minmax,
  1371. .extra1 = &min_write_thresh,
  1372. .extra2 = &max_write_thresh,
  1373. },
  1374. {
  1375. .procname = "urandom_min_reseed_secs",
  1376. .data = &random_min_urandom_seed,
  1377. .maxlen = sizeof(int),
  1378. .mode = 0644,
  1379. .proc_handler = proc_dointvec,
  1380. },
  1381. {
  1382. .procname = "boot_id",
  1383. .data = &sysctl_bootid,
  1384. .maxlen = 16,
  1385. .mode = 0444,
  1386. .proc_handler = proc_do_uuid,
  1387. },
  1388. {
  1389. .procname = "uuid",
  1390. .maxlen = 16,
  1391. .mode = 0444,
  1392. .proc_handler = proc_do_uuid,
  1393. },
  1394. { }
  1395. };
  1396. #endif /* CONFIG_SYSCTL */
  1397. static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
  1398. int random_int_secret_init(void)
  1399. {
  1400. get_random_bytes(random_int_secret, sizeof(random_int_secret));
  1401. return 0;
  1402. }
  1403. /*
  1404. * Get a random word for internal kernel use only. Similar to urandom but
  1405. * with the goal of minimal entropy pool depletion. As a result, the random
  1406. * value is not cryptographically secure but for several uses the cost of
  1407. * depleting entropy is too high
  1408. */
  1409. static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash);
  1410. unsigned int get_random_int(void)
  1411. {
  1412. __u32 *hash;
  1413. unsigned int ret;
  1414. if (arch_get_random_int(&ret))
  1415. return ret;
  1416. hash = get_cpu_var(get_random_int_hash);
  1417. hash[0] += current->pid + jiffies + random_get_entropy();
  1418. md5_transform(hash, random_int_secret);
  1419. ret = hash[0];
  1420. put_cpu_var(get_random_int_hash);
  1421. return ret;
  1422. }
  1423. EXPORT_SYMBOL(get_random_int);
  1424. /*
  1425. * randomize_range() returns a start address such that
  1426. *
  1427. * [...... <range> .....]
  1428. * start end
  1429. *
  1430. * a <range> with size "len" starting at the return value is inside in the
  1431. * area defined by [start, end], but is otherwise randomized.
  1432. */
  1433. unsigned long
  1434. randomize_range(unsigned long start, unsigned long end, unsigned long len)
  1435. {
  1436. unsigned long range = end - len - start;
  1437. if (end <= start + len)
  1438. return 0;
  1439. return PAGE_ALIGN(get_random_int() % range + start);
  1440. }