enlighten.c 40 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716
  1. /*
  2. * Core of Xen paravirt_ops implementation.
  3. *
  4. * This file contains the xen_paravirt_ops structure itself, and the
  5. * implementations for:
  6. * - privileged instructions
  7. * - interrupt flags
  8. * - segment operations
  9. * - booting and setup
  10. *
  11. * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
  12. */
  13. #include <linux/kernel.h>
  14. #include <linux/init.h>
  15. #include <linux/smp.h>
  16. #include <linux/preempt.h>
  17. #include <linux/hardirq.h>
  18. #include <linux/percpu.h>
  19. #include <linux/delay.h>
  20. #include <linux/start_kernel.h>
  21. #include <linux/sched.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/module.h>
  24. #include <linux/mm.h>
  25. #include <linux/page-flags.h>
  26. #include <linux/highmem.h>
  27. #include <linux/console.h>
  28. #include <xen/interface/xen.h>
  29. #include <xen/interface/physdev.h>
  30. #include <xen/interface/vcpu.h>
  31. #include <xen/features.h>
  32. #include <xen/page.h>
  33. #include <xen/hvc-console.h>
  34. #include <asm/paravirt.h>
  35. #include <asm/page.h>
  36. #include <asm/xen/hypercall.h>
  37. #include <asm/xen/hypervisor.h>
  38. #include <asm/fixmap.h>
  39. #include <asm/processor.h>
  40. #include <asm/msr-index.h>
  41. #include <asm/setup.h>
  42. #include <asm/desc.h>
  43. #include <asm/pgtable.h>
  44. #include <asm/tlbflush.h>
  45. #include <asm/reboot.h>
  46. #include "xen-ops.h"
  47. #include "mmu.h"
  48. #include "multicalls.h"
  49. EXPORT_SYMBOL_GPL(hypercall_page);
  50. DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
  51. DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
  52. enum xen_domain_type xen_domain_type = XEN_NATIVE;
  53. EXPORT_SYMBOL_GPL(xen_domain_type);
  54. /*
  55. * Identity map, in addition to plain kernel map. This needs to be
  56. * large enough to allocate page table pages to allocate the rest.
  57. * Each page can map 2MB.
  58. */
  59. static pte_t level1_ident_pgt[PTRS_PER_PTE * 4] __page_aligned_bss;
  60. #ifdef CONFIG_X86_64
  61. /* l3 pud for userspace vsyscall mapping */
  62. static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
  63. #endif /* CONFIG_X86_64 */
  64. /*
  65. * Note about cr3 (pagetable base) values:
  66. *
  67. * xen_cr3 contains the current logical cr3 value; it contains the
  68. * last set cr3. This may not be the current effective cr3, because
  69. * its update may be being lazily deferred. However, a vcpu looking
  70. * at its own cr3 can use this value knowing that it everything will
  71. * be self-consistent.
  72. *
  73. * xen_current_cr3 contains the actual vcpu cr3; it is set once the
  74. * hypercall to set the vcpu cr3 is complete (so it may be a little
  75. * out of date, but it will never be set early). If one vcpu is
  76. * looking at another vcpu's cr3 value, it should use this variable.
  77. */
  78. DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
  79. DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
  80. struct start_info *xen_start_info;
  81. EXPORT_SYMBOL_GPL(xen_start_info);
  82. struct shared_info xen_dummy_shared_info;
  83. /*
  84. * Point at some empty memory to start with. We map the real shared_info
  85. * page as soon as fixmap is up and running.
  86. */
  87. struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
  88. /*
  89. * Flag to determine whether vcpu info placement is available on all
  90. * VCPUs. We assume it is to start with, and then set it to zero on
  91. * the first failure. This is because it can succeed on some VCPUs
  92. * and not others, since it can involve hypervisor memory allocation,
  93. * or because the guest failed to guarantee all the appropriate
  94. * constraints on all VCPUs (ie buffer can't cross a page boundary).
  95. *
  96. * Note that any particular CPU may be using a placed vcpu structure,
  97. * but we can only optimise if the all are.
  98. *
  99. * 0: not available, 1: available
  100. */
  101. static int have_vcpu_info_placement = 1;
  102. static void xen_vcpu_setup(int cpu)
  103. {
  104. struct vcpu_register_vcpu_info info;
  105. int err;
  106. struct vcpu_info *vcpup;
  107. BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
  108. per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
  109. if (!have_vcpu_info_placement)
  110. return; /* already tested, not available */
  111. vcpup = &per_cpu(xen_vcpu_info, cpu);
  112. info.mfn = virt_to_mfn(vcpup);
  113. info.offset = offset_in_page(vcpup);
  114. printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
  115. cpu, vcpup, info.mfn, info.offset);
  116. /* Check to see if the hypervisor will put the vcpu_info
  117. structure where we want it, which allows direct access via
  118. a percpu-variable. */
  119. err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
  120. if (err) {
  121. printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
  122. have_vcpu_info_placement = 0;
  123. } else {
  124. /* This cpu is using the registered vcpu info, even if
  125. later ones fail to. */
  126. per_cpu(xen_vcpu, cpu) = vcpup;
  127. printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
  128. cpu, vcpup);
  129. }
  130. }
  131. /*
  132. * On restore, set the vcpu placement up again.
  133. * If it fails, then we're in a bad state, since
  134. * we can't back out from using it...
  135. */
  136. void xen_vcpu_restore(void)
  137. {
  138. if (have_vcpu_info_placement) {
  139. int cpu;
  140. for_each_online_cpu(cpu) {
  141. bool other_cpu = (cpu != smp_processor_id());
  142. if (other_cpu &&
  143. HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
  144. BUG();
  145. xen_vcpu_setup(cpu);
  146. if (other_cpu &&
  147. HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
  148. BUG();
  149. }
  150. BUG_ON(!have_vcpu_info_placement);
  151. }
  152. }
  153. static void __init xen_banner(void)
  154. {
  155. unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
  156. struct xen_extraversion extra;
  157. HYPERVISOR_xen_version(XENVER_extraversion, &extra);
  158. printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
  159. pv_info.name);
  160. printk(KERN_INFO "Xen version: %d.%d%s%s\n",
  161. version >> 16, version & 0xffff, extra.extraversion,
  162. xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
  163. }
  164. static void xen_cpuid(unsigned int *ax, unsigned int *bx,
  165. unsigned int *cx, unsigned int *dx)
  166. {
  167. unsigned maskedx = ~0;
  168. /*
  169. * Mask out inconvenient features, to try and disable as many
  170. * unsupported kernel subsystems as possible.
  171. */
  172. if (*ax == 1)
  173. maskedx = ~((1 << X86_FEATURE_APIC) | /* disable APIC */
  174. (1 << X86_FEATURE_ACPI) | /* disable ACPI */
  175. (1 << X86_FEATURE_MCE) | /* disable MCE */
  176. (1 << X86_FEATURE_MCA) | /* disable MCA */
  177. (1 << X86_FEATURE_ACC)); /* thermal monitoring */
  178. asm(XEN_EMULATE_PREFIX "cpuid"
  179. : "=a" (*ax),
  180. "=b" (*bx),
  181. "=c" (*cx),
  182. "=d" (*dx)
  183. : "0" (*ax), "2" (*cx));
  184. *dx &= maskedx;
  185. }
  186. static void xen_set_debugreg(int reg, unsigned long val)
  187. {
  188. HYPERVISOR_set_debugreg(reg, val);
  189. }
  190. static unsigned long xen_get_debugreg(int reg)
  191. {
  192. return HYPERVISOR_get_debugreg(reg);
  193. }
  194. static void xen_leave_lazy(void)
  195. {
  196. paravirt_leave_lazy(paravirt_get_lazy_mode());
  197. xen_mc_flush();
  198. }
  199. static unsigned long xen_store_tr(void)
  200. {
  201. return 0;
  202. }
  203. /*
  204. * Set the page permissions for a particular virtual address. If the
  205. * address is a vmalloc mapping (or other non-linear mapping), then
  206. * find the linear mapping of the page and also set its protections to
  207. * match.
  208. */
  209. static void set_aliased_prot(void *v, pgprot_t prot)
  210. {
  211. int level;
  212. pte_t *ptep;
  213. pte_t pte;
  214. unsigned long pfn;
  215. struct page *page;
  216. ptep = lookup_address((unsigned long)v, &level);
  217. BUG_ON(ptep == NULL);
  218. pfn = pte_pfn(*ptep);
  219. page = pfn_to_page(pfn);
  220. pte = pfn_pte(pfn, prot);
  221. if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
  222. BUG();
  223. if (!PageHighMem(page)) {
  224. void *av = __va(PFN_PHYS(pfn));
  225. if (av != v)
  226. if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
  227. BUG();
  228. } else
  229. kmap_flush_unused();
  230. }
  231. static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
  232. {
  233. const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
  234. int i;
  235. for(i = 0; i < entries; i += entries_per_page)
  236. set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
  237. }
  238. static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
  239. {
  240. const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
  241. int i;
  242. for(i = 0; i < entries; i += entries_per_page)
  243. set_aliased_prot(ldt + i, PAGE_KERNEL);
  244. }
  245. static void xen_set_ldt(const void *addr, unsigned entries)
  246. {
  247. struct mmuext_op *op;
  248. struct multicall_space mcs = xen_mc_entry(sizeof(*op));
  249. op = mcs.args;
  250. op->cmd = MMUEXT_SET_LDT;
  251. op->arg1.linear_addr = (unsigned long)addr;
  252. op->arg2.nr_ents = entries;
  253. MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
  254. xen_mc_issue(PARAVIRT_LAZY_CPU);
  255. }
  256. static void xen_load_gdt(const struct desc_ptr *dtr)
  257. {
  258. unsigned long *frames;
  259. unsigned long va = dtr->address;
  260. unsigned int size = dtr->size + 1;
  261. unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
  262. int f;
  263. struct multicall_space mcs;
  264. /* A GDT can be up to 64k in size, which corresponds to 8192
  265. 8-byte entries, or 16 4k pages.. */
  266. BUG_ON(size > 65536);
  267. BUG_ON(va & ~PAGE_MASK);
  268. mcs = xen_mc_entry(sizeof(*frames) * pages);
  269. frames = mcs.args;
  270. for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
  271. frames[f] = virt_to_mfn(va);
  272. make_lowmem_page_readonly((void *)va);
  273. }
  274. MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct));
  275. xen_mc_issue(PARAVIRT_LAZY_CPU);
  276. }
  277. static void load_TLS_descriptor(struct thread_struct *t,
  278. unsigned int cpu, unsigned int i)
  279. {
  280. struct desc_struct *gdt = get_cpu_gdt_table(cpu);
  281. xmaddr_t maddr = virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
  282. struct multicall_space mc = __xen_mc_entry(0);
  283. MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
  284. }
  285. static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
  286. {
  287. /*
  288. * XXX sleazy hack: If we're being called in a lazy-cpu zone,
  289. * it means we're in a context switch, and %gs has just been
  290. * saved. This means we can zero it out to prevent faults on
  291. * exit from the hypervisor if the next process has no %gs.
  292. * Either way, it has been saved, and the new value will get
  293. * loaded properly. This will go away as soon as Xen has been
  294. * modified to not save/restore %gs for normal hypercalls.
  295. *
  296. * On x86_64, this hack is not used for %gs, because gs points
  297. * to KERNEL_GS_BASE (and uses it for PDA references), so we
  298. * must not zero %gs on x86_64
  299. *
  300. * For x86_64, we need to zero %fs, otherwise we may get an
  301. * exception between the new %fs descriptor being loaded and
  302. * %fs being effectively cleared at __switch_to().
  303. */
  304. if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
  305. #ifdef CONFIG_X86_32
  306. loadsegment(gs, 0);
  307. #else
  308. loadsegment(fs, 0);
  309. #endif
  310. }
  311. xen_mc_batch();
  312. load_TLS_descriptor(t, cpu, 0);
  313. load_TLS_descriptor(t, cpu, 1);
  314. load_TLS_descriptor(t, cpu, 2);
  315. xen_mc_issue(PARAVIRT_LAZY_CPU);
  316. }
  317. #ifdef CONFIG_X86_64
  318. static void xen_load_gs_index(unsigned int idx)
  319. {
  320. if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
  321. BUG();
  322. }
  323. #endif
  324. static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
  325. const void *ptr)
  326. {
  327. xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
  328. u64 entry = *(u64 *)ptr;
  329. preempt_disable();
  330. xen_mc_flush();
  331. if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
  332. BUG();
  333. preempt_enable();
  334. }
  335. static int cvt_gate_to_trap(int vector, const gate_desc *val,
  336. struct trap_info *info)
  337. {
  338. if (val->type != 0xf && val->type != 0xe)
  339. return 0;
  340. info->vector = vector;
  341. info->address = gate_offset(*val);
  342. info->cs = gate_segment(*val);
  343. info->flags = val->dpl;
  344. /* interrupt gates clear IF */
  345. if (val->type == 0xe)
  346. info->flags |= 4;
  347. return 1;
  348. }
  349. /* Locations of each CPU's IDT */
  350. static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
  351. /* Set an IDT entry. If the entry is part of the current IDT, then
  352. also update Xen. */
  353. static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
  354. {
  355. unsigned long p = (unsigned long)&dt[entrynum];
  356. unsigned long start, end;
  357. preempt_disable();
  358. start = __get_cpu_var(idt_desc).address;
  359. end = start + __get_cpu_var(idt_desc).size + 1;
  360. xen_mc_flush();
  361. native_write_idt_entry(dt, entrynum, g);
  362. if (p >= start && (p + 8) <= end) {
  363. struct trap_info info[2];
  364. info[1].address = 0;
  365. if (cvt_gate_to_trap(entrynum, g, &info[0]))
  366. if (HYPERVISOR_set_trap_table(info))
  367. BUG();
  368. }
  369. preempt_enable();
  370. }
  371. static void xen_convert_trap_info(const struct desc_ptr *desc,
  372. struct trap_info *traps)
  373. {
  374. unsigned in, out, count;
  375. count = (desc->size+1) / sizeof(gate_desc);
  376. BUG_ON(count > 256);
  377. for (in = out = 0; in < count; in++) {
  378. gate_desc *entry = (gate_desc*)(desc->address) + in;
  379. if (cvt_gate_to_trap(in, entry, &traps[out]))
  380. out++;
  381. }
  382. traps[out].address = 0;
  383. }
  384. void xen_copy_trap_info(struct trap_info *traps)
  385. {
  386. const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
  387. xen_convert_trap_info(desc, traps);
  388. }
  389. /* Load a new IDT into Xen. In principle this can be per-CPU, so we
  390. hold a spinlock to protect the static traps[] array (static because
  391. it avoids allocation, and saves stack space). */
  392. static void xen_load_idt(const struct desc_ptr *desc)
  393. {
  394. static DEFINE_SPINLOCK(lock);
  395. static struct trap_info traps[257];
  396. spin_lock(&lock);
  397. __get_cpu_var(idt_desc) = *desc;
  398. xen_convert_trap_info(desc, traps);
  399. xen_mc_flush();
  400. if (HYPERVISOR_set_trap_table(traps))
  401. BUG();
  402. spin_unlock(&lock);
  403. }
  404. /* Write a GDT descriptor entry. Ignore LDT descriptors, since
  405. they're handled differently. */
  406. static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
  407. const void *desc, int type)
  408. {
  409. preempt_disable();
  410. switch (type) {
  411. case DESC_LDT:
  412. case DESC_TSS:
  413. /* ignore */
  414. break;
  415. default: {
  416. xmaddr_t maddr = virt_to_machine(&dt[entry]);
  417. xen_mc_flush();
  418. if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
  419. BUG();
  420. }
  421. }
  422. preempt_enable();
  423. }
  424. static void xen_load_sp0(struct tss_struct *tss,
  425. struct thread_struct *thread)
  426. {
  427. struct multicall_space mcs = xen_mc_entry(0);
  428. MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
  429. xen_mc_issue(PARAVIRT_LAZY_CPU);
  430. }
  431. static void xen_set_iopl_mask(unsigned mask)
  432. {
  433. struct physdev_set_iopl set_iopl;
  434. /* Force the change at ring 0. */
  435. set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
  436. HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
  437. }
  438. static void xen_io_delay(void)
  439. {
  440. }
  441. #ifdef CONFIG_X86_LOCAL_APIC
  442. static u32 xen_apic_read(unsigned long reg)
  443. {
  444. return 0;
  445. }
  446. static void xen_apic_write(unsigned long reg, u32 val)
  447. {
  448. /* Warn to see if there's any stray references */
  449. WARN_ON(1);
  450. }
  451. #endif
  452. static void xen_flush_tlb(void)
  453. {
  454. struct mmuext_op *op;
  455. struct multicall_space mcs;
  456. preempt_disable();
  457. mcs = xen_mc_entry(sizeof(*op));
  458. op = mcs.args;
  459. op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
  460. MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
  461. xen_mc_issue(PARAVIRT_LAZY_MMU);
  462. preempt_enable();
  463. }
  464. static void xen_flush_tlb_single(unsigned long addr)
  465. {
  466. struct mmuext_op *op;
  467. struct multicall_space mcs;
  468. preempt_disable();
  469. mcs = xen_mc_entry(sizeof(*op));
  470. op = mcs.args;
  471. op->cmd = MMUEXT_INVLPG_LOCAL;
  472. op->arg1.linear_addr = addr & PAGE_MASK;
  473. MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
  474. xen_mc_issue(PARAVIRT_LAZY_MMU);
  475. preempt_enable();
  476. }
  477. static void xen_flush_tlb_others(const cpumask_t *cpus, struct mm_struct *mm,
  478. unsigned long va)
  479. {
  480. struct {
  481. struct mmuext_op op;
  482. cpumask_t mask;
  483. } *args;
  484. cpumask_t cpumask = *cpus;
  485. struct multicall_space mcs;
  486. /*
  487. * A couple of (to be removed) sanity checks:
  488. *
  489. * - current CPU must not be in mask
  490. * - mask must exist :)
  491. */
  492. BUG_ON(cpus_empty(cpumask));
  493. BUG_ON(cpu_isset(smp_processor_id(), cpumask));
  494. BUG_ON(!mm);
  495. /* If a CPU which we ran on has gone down, OK. */
  496. cpus_and(cpumask, cpumask, cpu_online_map);
  497. if (cpus_empty(cpumask))
  498. return;
  499. mcs = xen_mc_entry(sizeof(*args));
  500. args = mcs.args;
  501. args->mask = cpumask;
  502. args->op.arg2.vcpumask = &args->mask;
  503. if (va == TLB_FLUSH_ALL) {
  504. args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
  505. } else {
  506. args->op.cmd = MMUEXT_INVLPG_MULTI;
  507. args->op.arg1.linear_addr = va;
  508. }
  509. MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
  510. xen_mc_issue(PARAVIRT_LAZY_MMU);
  511. }
  512. static void xen_clts(void)
  513. {
  514. struct multicall_space mcs;
  515. mcs = xen_mc_entry(0);
  516. MULTI_fpu_taskswitch(mcs.mc, 0);
  517. xen_mc_issue(PARAVIRT_LAZY_CPU);
  518. }
  519. static void xen_write_cr0(unsigned long cr0)
  520. {
  521. struct multicall_space mcs;
  522. /* Only pay attention to cr0.TS; everything else is
  523. ignored. */
  524. mcs = xen_mc_entry(0);
  525. MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
  526. xen_mc_issue(PARAVIRT_LAZY_CPU);
  527. }
  528. static void xen_write_cr2(unsigned long cr2)
  529. {
  530. x86_read_percpu(xen_vcpu)->arch.cr2 = cr2;
  531. }
  532. static unsigned long xen_read_cr2(void)
  533. {
  534. return x86_read_percpu(xen_vcpu)->arch.cr2;
  535. }
  536. static unsigned long xen_read_cr2_direct(void)
  537. {
  538. return x86_read_percpu(xen_vcpu_info.arch.cr2);
  539. }
  540. static void xen_write_cr4(unsigned long cr4)
  541. {
  542. cr4 &= ~X86_CR4_PGE;
  543. cr4 &= ~X86_CR4_PSE;
  544. native_write_cr4(cr4);
  545. }
  546. static unsigned long xen_read_cr3(void)
  547. {
  548. return x86_read_percpu(xen_cr3);
  549. }
  550. static void set_current_cr3(void *v)
  551. {
  552. x86_write_percpu(xen_current_cr3, (unsigned long)v);
  553. }
  554. static void __xen_write_cr3(bool kernel, unsigned long cr3)
  555. {
  556. struct mmuext_op *op;
  557. struct multicall_space mcs;
  558. unsigned long mfn;
  559. if (cr3)
  560. mfn = pfn_to_mfn(PFN_DOWN(cr3));
  561. else
  562. mfn = 0;
  563. WARN_ON(mfn == 0 && kernel);
  564. mcs = __xen_mc_entry(sizeof(*op));
  565. op = mcs.args;
  566. op->cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
  567. op->arg1.mfn = mfn;
  568. MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
  569. if (kernel) {
  570. x86_write_percpu(xen_cr3, cr3);
  571. /* Update xen_current_cr3 once the batch has actually
  572. been submitted. */
  573. xen_mc_callback(set_current_cr3, (void *)cr3);
  574. }
  575. }
  576. static void xen_write_cr3(unsigned long cr3)
  577. {
  578. BUG_ON(preemptible());
  579. xen_mc_batch(); /* disables interrupts */
  580. /* Update while interrupts are disabled, so its atomic with
  581. respect to ipis */
  582. x86_write_percpu(xen_cr3, cr3);
  583. __xen_write_cr3(true, cr3);
  584. #ifdef CONFIG_X86_64
  585. {
  586. pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
  587. if (user_pgd)
  588. __xen_write_cr3(false, __pa(user_pgd));
  589. else
  590. __xen_write_cr3(false, 0);
  591. }
  592. #endif
  593. xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
  594. }
  595. static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
  596. {
  597. int ret;
  598. ret = 0;
  599. switch(msr) {
  600. #ifdef CONFIG_X86_64
  601. unsigned which;
  602. u64 base;
  603. case MSR_FS_BASE: which = SEGBASE_FS; goto set;
  604. case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
  605. case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
  606. set:
  607. base = ((u64)high << 32) | low;
  608. if (HYPERVISOR_set_segment_base(which, base) != 0)
  609. ret = -EFAULT;
  610. break;
  611. #endif
  612. case MSR_STAR:
  613. case MSR_CSTAR:
  614. case MSR_LSTAR:
  615. case MSR_SYSCALL_MASK:
  616. case MSR_IA32_SYSENTER_CS:
  617. case MSR_IA32_SYSENTER_ESP:
  618. case MSR_IA32_SYSENTER_EIP:
  619. /* Fast syscall setup is all done in hypercalls, so
  620. these are all ignored. Stub them out here to stop
  621. Xen console noise. */
  622. break;
  623. default:
  624. ret = native_write_msr_safe(msr, low, high);
  625. }
  626. return ret;
  627. }
  628. /* Early in boot, while setting up the initial pagetable, assume
  629. everything is pinned. */
  630. static __init void xen_alloc_pte_init(struct mm_struct *mm, u32 pfn)
  631. {
  632. #ifdef CONFIG_FLATMEM
  633. BUG_ON(mem_map); /* should only be used early */
  634. #endif
  635. make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
  636. }
  637. /* Early release_pte assumes that all pts are pinned, since there's
  638. only init_mm and anything attached to that is pinned. */
  639. static void xen_release_pte_init(u32 pfn)
  640. {
  641. make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
  642. }
  643. static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
  644. {
  645. struct mmuext_op op;
  646. op.cmd = cmd;
  647. op.arg1.mfn = pfn_to_mfn(pfn);
  648. if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
  649. BUG();
  650. }
  651. /* This needs to make sure the new pte page is pinned iff its being
  652. attached to a pinned pagetable. */
  653. static void xen_alloc_ptpage(struct mm_struct *mm, u32 pfn, unsigned level)
  654. {
  655. struct page *page = pfn_to_page(pfn);
  656. if (PagePinned(virt_to_page(mm->pgd))) {
  657. SetPagePinned(page);
  658. if (!PageHighMem(page)) {
  659. make_lowmem_page_readonly(__va(PFN_PHYS((unsigned long)pfn)));
  660. if (level == PT_PTE)
  661. pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
  662. } else
  663. /* make sure there are no stray mappings of
  664. this page */
  665. kmap_flush_unused();
  666. }
  667. }
  668. static void xen_alloc_pte(struct mm_struct *mm, u32 pfn)
  669. {
  670. xen_alloc_ptpage(mm, pfn, PT_PTE);
  671. }
  672. static void xen_alloc_pmd(struct mm_struct *mm, u32 pfn)
  673. {
  674. xen_alloc_ptpage(mm, pfn, PT_PMD);
  675. }
  676. static int xen_pgd_alloc(struct mm_struct *mm)
  677. {
  678. pgd_t *pgd = mm->pgd;
  679. int ret = 0;
  680. BUG_ON(PagePinned(virt_to_page(pgd)));
  681. #ifdef CONFIG_X86_64
  682. {
  683. struct page *page = virt_to_page(pgd);
  684. pgd_t *user_pgd;
  685. BUG_ON(page->private != 0);
  686. ret = -ENOMEM;
  687. user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
  688. page->private = (unsigned long)user_pgd;
  689. if (user_pgd != NULL) {
  690. user_pgd[pgd_index(VSYSCALL_START)] =
  691. __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
  692. ret = 0;
  693. }
  694. BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
  695. }
  696. #endif
  697. return ret;
  698. }
  699. static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
  700. {
  701. #ifdef CONFIG_X86_64
  702. pgd_t *user_pgd = xen_get_user_pgd(pgd);
  703. if (user_pgd)
  704. free_page((unsigned long)user_pgd);
  705. #endif
  706. }
  707. /* This should never happen until we're OK to use struct page */
  708. static void xen_release_ptpage(u32 pfn, unsigned level)
  709. {
  710. struct page *page = pfn_to_page(pfn);
  711. if (PagePinned(page)) {
  712. if (!PageHighMem(page)) {
  713. if (level == PT_PTE)
  714. pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
  715. make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
  716. }
  717. ClearPagePinned(page);
  718. }
  719. }
  720. static void xen_release_pte(u32 pfn)
  721. {
  722. xen_release_ptpage(pfn, PT_PTE);
  723. }
  724. static void xen_release_pmd(u32 pfn)
  725. {
  726. xen_release_ptpage(pfn, PT_PMD);
  727. }
  728. #if PAGETABLE_LEVELS == 4
  729. static void xen_alloc_pud(struct mm_struct *mm, u32 pfn)
  730. {
  731. xen_alloc_ptpage(mm, pfn, PT_PUD);
  732. }
  733. static void xen_release_pud(u32 pfn)
  734. {
  735. xen_release_ptpage(pfn, PT_PUD);
  736. }
  737. #endif
  738. #ifdef CONFIG_HIGHPTE
  739. static void *xen_kmap_atomic_pte(struct page *page, enum km_type type)
  740. {
  741. pgprot_t prot = PAGE_KERNEL;
  742. if (PagePinned(page))
  743. prot = PAGE_KERNEL_RO;
  744. if (0 && PageHighMem(page))
  745. printk("mapping highpte %lx type %d prot %s\n",
  746. page_to_pfn(page), type,
  747. (unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ");
  748. return kmap_atomic_prot(page, type, prot);
  749. }
  750. #endif
  751. static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
  752. {
  753. /* If there's an existing pte, then don't allow _PAGE_RW to be set */
  754. if (pte_val_ma(*ptep) & _PAGE_PRESENT)
  755. pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
  756. pte_val_ma(pte));
  757. return pte;
  758. }
  759. /* Init-time set_pte while constructing initial pagetables, which
  760. doesn't allow RO pagetable pages to be remapped RW */
  761. static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
  762. {
  763. pte = mask_rw_pte(ptep, pte);
  764. xen_set_pte(ptep, pte);
  765. }
  766. static __init void xen_pagetable_setup_start(pgd_t *base)
  767. {
  768. }
  769. void xen_setup_shared_info(void)
  770. {
  771. if (!xen_feature(XENFEAT_auto_translated_physmap)) {
  772. set_fixmap(FIX_PARAVIRT_BOOTMAP,
  773. xen_start_info->shared_info);
  774. HYPERVISOR_shared_info =
  775. (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
  776. } else
  777. HYPERVISOR_shared_info =
  778. (struct shared_info *)__va(xen_start_info->shared_info);
  779. #ifndef CONFIG_SMP
  780. /* In UP this is as good a place as any to set up shared info */
  781. xen_setup_vcpu_info_placement();
  782. #endif
  783. xen_setup_mfn_list_list();
  784. }
  785. static __init void xen_pagetable_setup_done(pgd_t *base)
  786. {
  787. xen_setup_shared_info();
  788. }
  789. static __init void xen_post_allocator_init(void)
  790. {
  791. pv_mmu_ops.set_pte = xen_set_pte;
  792. pv_mmu_ops.set_pmd = xen_set_pmd;
  793. pv_mmu_ops.set_pud = xen_set_pud;
  794. #if PAGETABLE_LEVELS == 4
  795. pv_mmu_ops.set_pgd = xen_set_pgd;
  796. #endif
  797. /* This will work as long as patching hasn't happened yet
  798. (which it hasn't) */
  799. pv_mmu_ops.alloc_pte = xen_alloc_pte;
  800. pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
  801. pv_mmu_ops.release_pte = xen_release_pte;
  802. pv_mmu_ops.release_pmd = xen_release_pmd;
  803. #if PAGETABLE_LEVELS == 4
  804. pv_mmu_ops.alloc_pud = xen_alloc_pud;
  805. pv_mmu_ops.release_pud = xen_release_pud;
  806. #endif
  807. #ifdef CONFIG_X86_64
  808. SetPagePinned(virt_to_page(level3_user_vsyscall));
  809. #endif
  810. xen_mark_init_mm_pinned();
  811. }
  812. /* This is called once we have the cpu_possible_map */
  813. void xen_setup_vcpu_info_placement(void)
  814. {
  815. int cpu;
  816. for_each_possible_cpu(cpu)
  817. xen_vcpu_setup(cpu);
  818. /* xen_vcpu_setup managed to place the vcpu_info within the
  819. percpu area for all cpus, so make use of it */
  820. #ifdef CONFIG_X86_32
  821. if (have_vcpu_info_placement) {
  822. printk(KERN_INFO "Xen: using vcpu_info placement\n");
  823. pv_irq_ops.save_fl = xen_save_fl_direct;
  824. pv_irq_ops.restore_fl = xen_restore_fl_direct;
  825. pv_irq_ops.irq_disable = xen_irq_disable_direct;
  826. pv_irq_ops.irq_enable = xen_irq_enable_direct;
  827. pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
  828. }
  829. #endif
  830. }
  831. static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
  832. unsigned long addr, unsigned len)
  833. {
  834. char *start, *end, *reloc;
  835. unsigned ret;
  836. start = end = reloc = NULL;
  837. #define SITE(op, x) \
  838. case PARAVIRT_PATCH(op.x): \
  839. if (have_vcpu_info_placement) { \
  840. start = (char *)xen_##x##_direct; \
  841. end = xen_##x##_direct_end; \
  842. reloc = xen_##x##_direct_reloc; \
  843. } \
  844. goto patch_site
  845. switch (type) {
  846. #ifdef CONFIG_X86_32
  847. SITE(pv_irq_ops, irq_enable);
  848. SITE(pv_irq_ops, irq_disable);
  849. SITE(pv_irq_ops, save_fl);
  850. SITE(pv_irq_ops, restore_fl);
  851. #endif /* CONFIG_X86_32 */
  852. #undef SITE
  853. patch_site:
  854. if (start == NULL || (end-start) > len)
  855. goto default_patch;
  856. ret = paravirt_patch_insns(insnbuf, len, start, end);
  857. /* Note: because reloc is assigned from something that
  858. appears to be an array, gcc assumes it's non-null,
  859. but doesn't know its relationship with start and
  860. end. */
  861. if (reloc > start && reloc < end) {
  862. int reloc_off = reloc - start;
  863. long *relocp = (long *)(insnbuf + reloc_off);
  864. long delta = start - (char *)addr;
  865. *relocp += delta;
  866. }
  867. break;
  868. default_patch:
  869. default:
  870. ret = paravirt_patch_default(type, clobbers, insnbuf,
  871. addr, len);
  872. break;
  873. }
  874. return ret;
  875. }
  876. static void xen_set_fixmap(unsigned idx, unsigned long phys, pgprot_t prot)
  877. {
  878. pte_t pte;
  879. phys >>= PAGE_SHIFT;
  880. switch (idx) {
  881. case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
  882. #ifdef CONFIG_X86_F00F_BUG
  883. case FIX_F00F_IDT:
  884. #endif
  885. #ifdef CONFIG_X86_32
  886. case FIX_WP_TEST:
  887. case FIX_VDSO:
  888. # ifdef CONFIG_HIGHMEM
  889. case FIX_KMAP_BEGIN ... FIX_KMAP_END:
  890. # endif
  891. #else
  892. case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
  893. #endif
  894. #ifdef CONFIG_X86_LOCAL_APIC
  895. case FIX_APIC_BASE: /* maps dummy local APIC */
  896. #endif
  897. pte = pfn_pte(phys, prot);
  898. break;
  899. default:
  900. pte = mfn_pte(phys, prot);
  901. break;
  902. }
  903. __native_set_fixmap(idx, pte);
  904. #ifdef CONFIG_X86_64
  905. /* Replicate changes to map the vsyscall page into the user
  906. pagetable vsyscall mapping. */
  907. if (idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) {
  908. unsigned long vaddr = __fix_to_virt(idx);
  909. set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
  910. }
  911. #endif
  912. }
  913. static const struct pv_info xen_info __initdata = {
  914. .paravirt_enabled = 1,
  915. .shared_kernel_pmd = 0,
  916. .name = "Xen",
  917. };
  918. static const struct pv_init_ops xen_init_ops __initdata = {
  919. .patch = xen_patch,
  920. .banner = xen_banner,
  921. .memory_setup = xen_memory_setup,
  922. .arch_setup = xen_arch_setup,
  923. .post_allocator_init = xen_post_allocator_init,
  924. };
  925. static const struct pv_time_ops xen_time_ops __initdata = {
  926. .time_init = xen_time_init,
  927. .set_wallclock = xen_set_wallclock,
  928. .get_wallclock = xen_get_wallclock,
  929. .get_tsc_khz = xen_tsc_khz,
  930. .sched_clock = xen_sched_clock,
  931. };
  932. static const struct pv_cpu_ops xen_cpu_ops __initdata = {
  933. .cpuid = xen_cpuid,
  934. .set_debugreg = xen_set_debugreg,
  935. .get_debugreg = xen_get_debugreg,
  936. .clts = xen_clts,
  937. .read_cr0 = native_read_cr0,
  938. .write_cr0 = xen_write_cr0,
  939. .read_cr4 = native_read_cr4,
  940. .read_cr4_safe = native_read_cr4_safe,
  941. .write_cr4 = xen_write_cr4,
  942. .wbinvd = native_wbinvd,
  943. .read_msr = native_read_msr_safe,
  944. .write_msr = xen_write_msr_safe,
  945. .read_tsc = native_read_tsc,
  946. .read_pmc = native_read_pmc,
  947. .iret = xen_iret,
  948. .irq_enable_sysexit = xen_sysexit,
  949. #ifdef CONFIG_X86_64
  950. .usergs_sysret32 = xen_sysret32,
  951. .usergs_sysret64 = xen_sysret64,
  952. #endif
  953. .load_tr_desc = paravirt_nop,
  954. .set_ldt = xen_set_ldt,
  955. .load_gdt = xen_load_gdt,
  956. .load_idt = xen_load_idt,
  957. .load_tls = xen_load_tls,
  958. #ifdef CONFIG_X86_64
  959. .load_gs_index = xen_load_gs_index,
  960. #endif
  961. .alloc_ldt = xen_alloc_ldt,
  962. .free_ldt = xen_free_ldt,
  963. .store_gdt = native_store_gdt,
  964. .store_idt = native_store_idt,
  965. .store_tr = xen_store_tr,
  966. .write_ldt_entry = xen_write_ldt_entry,
  967. .write_gdt_entry = xen_write_gdt_entry,
  968. .write_idt_entry = xen_write_idt_entry,
  969. .load_sp0 = xen_load_sp0,
  970. .set_iopl_mask = xen_set_iopl_mask,
  971. .io_delay = xen_io_delay,
  972. /* Xen takes care of %gs when switching to usermode for us */
  973. .swapgs = paravirt_nop,
  974. .lazy_mode = {
  975. .enter = paravirt_enter_lazy_cpu,
  976. .leave = xen_leave_lazy,
  977. },
  978. };
  979. static const struct pv_apic_ops xen_apic_ops __initdata = {
  980. #ifdef CONFIG_X86_LOCAL_APIC
  981. .apic_write = xen_apic_write,
  982. .apic_read = xen_apic_read,
  983. .setup_boot_clock = paravirt_nop,
  984. .setup_secondary_clock = paravirt_nop,
  985. .startup_ipi_hook = paravirt_nop,
  986. #endif
  987. };
  988. static const struct pv_mmu_ops xen_mmu_ops __initdata = {
  989. .pagetable_setup_start = xen_pagetable_setup_start,
  990. .pagetable_setup_done = xen_pagetable_setup_done,
  991. .read_cr2 = xen_read_cr2,
  992. .write_cr2 = xen_write_cr2,
  993. .read_cr3 = xen_read_cr3,
  994. .write_cr3 = xen_write_cr3,
  995. .flush_tlb_user = xen_flush_tlb,
  996. .flush_tlb_kernel = xen_flush_tlb,
  997. .flush_tlb_single = xen_flush_tlb_single,
  998. .flush_tlb_others = xen_flush_tlb_others,
  999. .pte_update = paravirt_nop,
  1000. .pte_update_defer = paravirt_nop,
  1001. .pgd_alloc = xen_pgd_alloc,
  1002. .pgd_free = xen_pgd_free,
  1003. .alloc_pte = xen_alloc_pte_init,
  1004. .release_pte = xen_release_pte_init,
  1005. .alloc_pmd = xen_alloc_pte_init,
  1006. .alloc_pmd_clone = paravirt_nop,
  1007. .release_pmd = xen_release_pte_init,
  1008. #ifdef CONFIG_HIGHPTE
  1009. .kmap_atomic_pte = xen_kmap_atomic_pte,
  1010. #endif
  1011. #ifdef CONFIG_X86_64
  1012. .set_pte = xen_set_pte,
  1013. #else
  1014. .set_pte = xen_set_pte_init,
  1015. #endif
  1016. .set_pte_at = xen_set_pte_at,
  1017. .set_pmd = xen_set_pmd_hyper,
  1018. .ptep_modify_prot_start = __ptep_modify_prot_start,
  1019. .ptep_modify_prot_commit = __ptep_modify_prot_commit,
  1020. .pte_val = xen_pte_val,
  1021. .pte_flags = native_pte_flags,
  1022. .pgd_val = xen_pgd_val,
  1023. .make_pte = xen_make_pte,
  1024. .make_pgd = xen_make_pgd,
  1025. #ifdef CONFIG_X86_PAE
  1026. .set_pte_atomic = xen_set_pte_atomic,
  1027. .set_pte_present = xen_set_pte_at,
  1028. .pte_clear = xen_pte_clear,
  1029. .pmd_clear = xen_pmd_clear,
  1030. #endif /* CONFIG_X86_PAE */
  1031. .set_pud = xen_set_pud_hyper,
  1032. .make_pmd = xen_make_pmd,
  1033. .pmd_val = xen_pmd_val,
  1034. #if PAGETABLE_LEVELS == 4
  1035. .pud_val = xen_pud_val,
  1036. .make_pud = xen_make_pud,
  1037. .set_pgd = xen_set_pgd_hyper,
  1038. .alloc_pud = xen_alloc_pte_init,
  1039. .release_pud = xen_release_pte_init,
  1040. #endif /* PAGETABLE_LEVELS == 4 */
  1041. .activate_mm = xen_activate_mm,
  1042. .dup_mmap = xen_dup_mmap,
  1043. .exit_mmap = xen_exit_mmap,
  1044. .lazy_mode = {
  1045. .enter = paravirt_enter_lazy_mmu,
  1046. .leave = xen_leave_lazy,
  1047. },
  1048. .set_fixmap = xen_set_fixmap,
  1049. };
  1050. static void xen_reboot(int reason)
  1051. {
  1052. struct sched_shutdown r = { .reason = reason };
  1053. #ifdef CONFIG_SMP
  1054. smp_send_stop();
  1055. #endif
  1056. if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
  1057. BUG();
  1058. }
  1059. static void xen_restart(char *msg)
  1060. {
  1061. xen_reboot(SHUTDOWN_reboot);
  1062. }
  1063. static void xen_emergency_restart(void)
  1064. {
  1065. xen_reboot(SHUTDOWN_reboot);
  1066. }
  1067. static void xen_machine_halt(void)
  1068. {
  1069. xen_reboot(SHUTDOWN_poweroff);
  1070. }
  1071. static void xen_crash_shutdown(struct pt_regs *regs)
  1072. {
  1073. xen_reboot(SHUTDOWN_crash);
  1074. }
  1075. static const struct machine_ops __initdata xen_machine_ops = {
  1076. .restart = xen_restart,
  1077. .halt = xen_machine_halt,
  1078. .power_off = xen_machine_halt,
  1079. .shutdown = xen_machine_halt,
  1080. .crash_shutdown = xen_crash_shutdown,
  1081. .emergency_restart = xen_emergency_restart,
  1082. };
  1083. static void __init xen_reserve_top(void)
  1084. {
  1085. #ifdef CONFIG_X86_32
  1086. unsigned long top = HYPERVISOR_VIRT_START;
  1087. struct xen_platform_parameters pp;
  1088. if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
  1089. top = pp.virt_start;
  1090. reserve_top_address(-top + 2 * PAGE_SIZE);
  1091. #endif /* CONFIG_X86_32 */
  1092. }
  1093. /*
  1094. * Like __va(), but returns address in the kernel mapping (which is
  1095. * all we have until the physical memory mapping has been set up.
  1096. */
  1097. static void *__ka(phys_addr_t paddr)
  1098. {
  1099. #ifdef CONFIG_X86_64
  1100. return (void *)(paddr + __START_KERNEL_map);
  1101. #else
  1102. return __va(paddr);
  1103. #endif
  1104. }
  1105. /* Convert a machine address to physical address */
  1106. static unsigned long m2p(phys_addr_t maddr)
  1107. {
  1108. phys_addr_t paddr;
  1109. maddr &= PTE_PFN_MASK;
  1110. paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
  1111. return paddr;
  1112. }
  1113. /* Convert a machine address to kernel virtual */
  1114. static void *m2v(phys_addr_t maddr)
  1115. {
  1116. return __ka(m2p(maddr));
  1117. }
  1118. #ifdef CONFIG_X86_64
  1119. static void walk(pgd_t *pgd, unsigned long addr)
  1120. {
  1121. unsigned l4idx = pgd_index(addr);
  1122. unsigned l3idx = pud_index(addr);
  1123. unsigned l2idx = pmd_index(addr);
  1124. unsigned l1idx = pte_index(addr);
  1125. pgd_t l4;
  1126. pud_t l3;
  1127. pmd_t l2;
  1128. pte_t l1;
  1129. xen_raw_printk("walk %p, %lx -> %d %d %d %d\n",
  1130. pgd, addr, l4idx, l3idx, l2idx, l1idx);
  1131. l4 = pgd[l4idx];
  1132. xen_raw_printk(" l4: %016lx\n", l4.pgd);
  1133. xen_raw_printk(" %016lx\n", pgd_val(l4));
  1134. l3 = ((pud_t *)(m2v(l4.pgd)))[l3idx];
  1135. xen_raw_printk(" l3: %016lx\n", l3.pud);
  1136. xen_raw_printk(" %016lx\n", pud_val(l3));
  1137. l2 = ((pmd_t *)(m2v(l3.pud)))[l2idx];
  1138. xen_raw_printk(" l2: %016lx\n", l2.pmd);
  1139. xen_raw_printk(" %016lx\n", pmd_val(l2));
  1140. l1 = ((pte_t *)(m2v(l2.pmd)))[l1idx];
  1141. xen_raw_printk(" l1: %016lx\n", l1.pte);
  1142. xen_raw_printk(" %016lx\n", pte_val(l1));
  1143. }
  1144. #endif
  1145. static void set_page_prot(void *addr, pgprot_t prot)
  1146. {
  1147. unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
  1148. pte_t pte = pfn_pte(pfn, prot);
  1149. xen_raw_printk("addr=%p pfn=%lx mfn=%lx prot=%016llx pte=%016llx\n",
  1150. addr, pfn, get_phys_to_machine(pfn),
  1151. pgprot_val(prot), pte.pte);
  1152. if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
  1153. BUG();
  1154. }
  1155. static __init void xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
  1156. {
  1157. unsigned pmdidx, pteidx;
  1158. unsigned ident_pte;
  1159. unsigned long pfn;
  1160. ident_pte = 0;
  1161. pfn = 0;
  1162. for(pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
  1163. pte_t *pte_page;
  1164. /* Reuse or allocate a page of ptes */
  1165. if (pmd_present(pmd[pmdidx]))
  1166. pte_page = m2v(pmd[pmdidx].pmd);
  1167. else {
  1168. /* Check for free pte pages */
  1169. if (ident_pte == ARRAY_SIZE(level1_ident_pgt))
  1170. break;
  1171. pte_page = &level1_ident_pgt[ident_pte];
  1172. ident_pte += PTRS_PER_PTE;
  1173. pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
  1174. }
  1175. /* Install mappings */
  1176. for(pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
  1177. pte_t pte;
  1178. if (pfn > max_pfn_mapped)
  1179. max_pfn_mapped = pfn;
  1180. if (!pte_none(pte_page[pteidx]))
  1181. continue;
  1182. pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
  1183. pte_page[pteidx] = pte;
  1184. }
  1185. }
  1186. for(pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
  1187. set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
  1188. set_page_prot(pmd, PAGE_KERNEL_RO);
  1189. }
  1190. #ifdef CONFIG_X86_64
  1191. static void convert_pfn_mfn(void *v)
  1192. {
  1193. pte_t *pte = v;
  1194. int i;
  1195. /* All levels are converted the same way, so just treat them
  1196. as ptes. */
  1197. for(i = 0; i < PTRS_PER_PTE; i++)
  1198. pte[i] = xen_make_pte(pte[i].pte);
  1199. }
  1200. /*
  1201. * Set up the inital kernel pagetable.
  1202. *
  1203. * We can construct this by grafting the Xen provided pagetable into
  1204. * head_64.S's preconstructed pagetables. We copy the Xen L2's into
  1205. * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This
  1206. * means that only the kernel has a physical mapping to start with -
  1207. * but that's enough to get __va working. We need to fill in the rest
  1208. * of the physical mapping once some sort of allocator has been set
  1209. * up.
  1210. */
  1211. static __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
  1212. {
  1213. pud_t *l3;
  1214. pmd_t *l2;
  1215. /* Zap identity mapping */
  1216. init_level4_pgt[0] = __pgd(0);
  1217. /* Pre-constructed entries are in pfn, so convert to mfn */
  1218. convert_pfn_mfn(init_level4_pgt);
  1219. convert_pfn_mfn(level3_ident_pgt);
  1220. convert_pfn_mfn(level3_kernel_pgt);
  1221. l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
  1222. l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
  1223. memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
  1224. memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
  1225. l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
  1226. l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
  1227. memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
  1228. /* Set up identity map */
  1229. xen_map_identity_early(level2_ident_pgt, max_pfn);
  1230. /* Make pagetable pieces RO */
  1231. set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
  1232. set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
  1233. set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
  1234. set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
  1235. set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
  1236. set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
  1237. /* Pin down new L4 */
  1238. pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
  1239. PFN_DOWN(__pa_symbol(init_level4_pgt)));
  1240. /* Unpin Xen-provided one */
  1241. pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
  1242. /* Switch over */
  1243. pgd = init_level4_pgt;
  1244. /*
  1245. * At this stage there can be no user pgd, and no page
  1246. * structure to attach it to, so make sure we just set kernel
  1247. * pgd.
  1248. */
  1249. xen_mc_batch();
  1250. __xen_write_cr3(true, __pa(pgd));
  1251. xen_mc_issue(PARAVIRT_LAZY_CPU);
  1252. reserve_early(__pa(xen_start_info->pt_base),
  1253. __pa(xen_start_info->pt_base +
  1254. xen_start_info->nr_pt_frames * PAGE_SIZE),
  1255. "XEN PAGETABLES");
  1256. return pgd;
  1257. }
  1258. #else /* !CONFIG_X86_64 */
  1259. static pmd_t level2_kernel_pgt[PTRS_PER_PMD] __page_aligned_bss;
  1260. static __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
  1261. {
  1262. pmd_t *kernel_pmd;
  1263. init_pg_tables_start = __pa(pgd);
  1264. init_pg_tables_end = __pa(pgd) + xen_start_info->nr_pt_frames*PAGE_SIZE;
  1265. max_pfn_mapped = PFN_DOWN(init_pg_tables_end + 512*1024);
  1266. kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
  1267. memcpy(level2_kernel_pgt, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
  1268. xen_map_identity_early(level2_kernel_pgt, max_pfn);
  1269. memcpy(swapper_pg_dir, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
  1270. set_pgd(&swapper_pg_dir[KERNEL_PGD_BOUNDARY],
  1271. __pgd(__pa(level2_kernel_pgt) | _PAGE_PRESENT));
  1272. set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
  1273. set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
  1274. set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
  1275. pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
  1276. xen_write_cr3(__pa(swapper_pg_dir));
  1277. pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(swapper_pg_dir)));
  1278. return swapper_pg_dir;
  1279. }
  1280. #endif /* CONFIG_X86_64 */
  1281. /* First C function to be called on Xen boot */
  1282. asmlinkage void __init xen_start_kernel(void)
  1283. {
  1284. pgd_t *pgd;
  1285. if (!xen_start_info)
  1286. return;
  1287. xen_domain_type = XEN_PV_DOMAIN;
  1288. BUG_ON(memcmp(xen_start_info->magic, "xen-3", 5) != 0);
  1289. xen_setup_features();
  1290. /* Install Xen paravirt ops */
  1291. pv_info = xen_info;
  1292. pv_init_ops = xen_init_ops;
  1293. pv_time_ops = xen_time_ops;
  1294. pv_cpu_ops = xen_cpu_ops;
  1295. pv_apic_ops = xen_apic_ops;
  1296. pv_mmu_ops = xen_mmu_ops;
  1297. xen_init_irq_ops();
  1298. if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
  1299. pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
  1300. pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
  1301. }
  1302. machine_ops = xen_machine_ops;
  1303. #ifdef CONFIG_X86_64
  1304. /* Disable until direct per-cpu data access. */
  1305. have_vcpu_info_placement = 0;
  1306. x86_64_init_pda();
  1307. #endif
  1308. xen_smp_init();
  1309. /* Get mfn list */
  1310. if (!xen_feature(XENFEAT_auto_translated_physmap))
  1311. xen_build_dynamic_phys_to_machine();
  1312. pgd = (pgd_t *)xen_start_info->pt_base;
  1313. /* Prevent unwanted bits from being set in PTEs. */
  1314. __supported_pte_mask &= ~_PAGE_GLOBAL;
  1315. if (!xen_initial_domain())
  1316. __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
  1317. /* Don't do the full vcpu_info placement stuff until we have a
  1318. possible map and a non-dummy shared_info. */
  1319. per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
  1320. xen_raw_console_write("mapping kernel into physical memory\n");
  1321. pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
  1322. init_mm.pgd = pgd;
  1323. /* keep using Xen gdt for now; no urgent need to change it */
  1324. pv_info.kernel_rpl = 1;
  1325. if (xen_feature(XENFEAT_supervisor_mode_kernel))
  1326. pv_info.kernel_rpl = 0;
  1327. /* set the limit of our address space */
  1328. xen_reserve_top();
  1329. #ifdef CONFIG_X86_32
  1330. /* set up basic CPUID stuff */
  1331. cpu_detect(&new_cpu_data);
  1332. new_cpu_data.hard_math = 1;
  1333. new_cpu_data.x86_capability[0] = cpuid_edx(1);
  1334. #endif
  1335. /* Poke various useful things into boot_params */
  1336. boot_params.hdr.type_of_loader = (9 << 4) | 0;
  1337. boot_params.hdr.ramdisk_image = xen_start_info->mod_start
  1338. ? __pa(xen_start_info->mod_start) : 0;
  1339. boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
  1340. boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
  1341. if (!xen_initial_domain()) {
  1342. add_preferred_console("xenboot", 0, NULL);
  1343. add_preferred_console("tty", 0, NULL);
  1344. add_preferred_console("hvc", 0, NULL);
  1345. }
  1346. xen_raw_console_write("about to get started...\n");
  1347. #if 0
  1348. xen_raw_printk("&boot_params=%p __pa(&boot_params)=%lx __va(__pa(&boot_params))=%lx\n",
  1349. &boot_params, __pa_symbol(&boot_params),
  1350. __va(__pa_symbol(&boot_params)));
  1351. walk(pgd, &boot_params);
  1352. walk(pgd, __va(__pa(&boot_params)));
  1353. #endif
  1354. /* Start the world */
  1355. #ifdef CONFIG_X86_32
  1356. i386_start_kernel();
  1357. #else
  1358. x86_64_start_reservations((char *)__pa_symbol(&boot_params));
  1359. #endif
  1360. }