xmit.c 63 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448
  1. /*
  2. * Copyright (c) 2008-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/dma-mapping.h>
  17. #include "ath9k.h"
  18. #include "ar9003_mac.h"
  19. #define BITS_PER_BYTE 8
  20. #define OFDM_PLCP_BITS 22
  21. #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
  22. #define L_STF 8
  23. #define L_LTF 8
  24. #define L_SIG 4
  25. #define HT_SIG 8
  26. #define HT_STF 4
  27. #define HT_LTF(_ns) (4 * (_ns))
  28. #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
  29. #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
  30. #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
  31. #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
  32. static u16 bits_per_symbol[][2] = {
  33. /* 20MHz 40MHz */
  34. { 26, 54 }, /* 0: BPSK */
  35. { 52, 108 }, /* 1: QPSK 1/2 */
  36. { 78, 162 }, /* 2: QPSK 3/4 */
  37. { 104, 216 }, /* 3: 16-QAM 1/2 */
  38. { 156, 324 }, /* 4: 16-QAM 3/4 */
  39. { 208, 432 }, /* 5: 64-QAM 2/3 */
  40. { 234, 486 }, /* 6: 64-QAM 3/4 */
  41. { 260, 540 }, /* 7: 64-QAM 5/6 */
  42. };
  43. #define IS_HT_RATE(_rate) ((_rate) & 0x80)
  44. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  45. struct ath_atx_tid *tid, struct sk_buff *skb);
  46. static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
  47. int tx_flags, struct ath_txq *txq);
  48. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  49. struct ath_txq *txq, struct list_head *bf_q,
  50. struct ath_tx_status *ts, int txok, int sendbar);
  51. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  52. struct list_head *head, bool internal);
  53. static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
  54. struct ath_tx_status *ts, int nframes, int nbad,
  55. int txok);
  56. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  57. int seqno);
  58. static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
  59. struct ath_txq *txq,
  60. struct ath_atx_tid *tid,
  61. struct sk_buff *skb);
  62. enum {
  63. MCS_HT20,
  64. MCS_HT20_SGI,
  65. MCS_HT40,
  66. MCS_HT40_SGI,
  67. };
  68. static int ath_max_4ms_framelen[4][32] = {
  69. [MCS_HT20] = {
  70. 3212, 6432, 9648, 12864, 19300, 25736, 28952, 32172,
  71. 6424, 12852, 19280, 25708, 38568, 51424, 57852, 64280,
  72. 9628, 19260, 28896, 38528, 57792, 65532, 65532, 65532,
  73. 12828, 25656, 38488, 51320, 65532, 65532, 65532, 65532,
  74. },
  75. [MCS_HT20_SGI] = {
  76. 3572, 7144, 10720, 14296, 21444, 28596, 32172, 35744,
  77. 7140, 14284, 21428, 28568, 42856, 57144, 64288, 65532,
  78. 10700, 21408, 32112, 42816, 64228, 65532, 65532, 65532,
  79. 14256, 28516, 42780, 57040, 65532, 65532, 65532, 65532,
  80. },
  81. [MCS_HT40] = {
  82. 6680, 13360, 20044, 26724, 40092, 53456, 60140, 65532,
  83. 13348, 26700, 40052, 53400, 65532, 65532, 65532, 65532,
  84. 20004, 40008, 60016, 65532, 65532, 65532, 65532, 65532,
  85. 26644, 53292, 65532, 65532, 65532, 65532, 65532, 65532,
  86. },
  87. [MCS_HT40_SGI] = {
  88. 7420, 14844, 22272, 29696, 44544, 59396, 65532, 65532,
  89. 14832, 29668, 44504, 59340, 65532, 65532, 65532, 65532,
  90. 22232, 44464, 65532, 65532, 65532, 65532, 65532, 65532,
  91. 29616, 59232, 65532, 65532, 65532, 65532, 65532, 65532,
  92. }
  93. };
  94. /*********************/
  95. /* Aggregation logic */
  96. /*********************/
  97. static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
  98. {
  99. struct ath_atx_ac *ac = tid->ac;
  100. if (tid->paused)
  101. return;
  102. if (tid->sched)
  103. return;
  104. tid->sched = true;
  105. list_add_tail(&tid->list, &ac->tid_q);
  106. if (ac->sched)
  107. return;
  108. ac->sched = true;
  109. list_add_tail(&ac->list, &txq->axq_acq);
  110. }
  111. static void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  112. {
  113. struct ath_txq *txq = tid->ac->txq;
  114. WARN_ON(!tid->paused);
  115. spin_lock_bh(&txq->axq_lock);
  116. tid->paused = false;
  117. if (skb_queue_empty(&tid->buf_q))
  118. goto unlock;
  119. ath_tx_queue_tid(txq, tid);
  120. ath_txq_schedule(sc, txq);
  121. unlock:
  122. spin_unlock_bh(&txq->axq_lock);
  123. }
  124. static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
  125. {
  126. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  127. BUILD_BUG_ON(sizeof(struct ath_frame_info) >
  128. sizeof(tx_info->rate_driver_data));
  129. return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
  130. }
  131. static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  132. {
  133. struct ath_txq *txq = tid->ac->txq;
  134. struct sk_buff *skb;
  135. struct ath_buf *bf;
  136. struct list_head bf_head;
  137. struct ath_tx_status ts;
  138. struct ath_frame_info *fi;
  139. INIT_LIST_HEAD(&bf_head);
  140. memset(&ts, 0, sizeof(ts));
  141. spin_lock_bh(&txq->axq_lock);
  142. while ((skb = __skb_dequeue(&tid->buf_q))) {
  143. fi = get_frame_info(skb);
  144. bf = fi->bf;
  145. spin_unlock_bh(&txq->axq_lock);
  146. if (bf && fi->retries) {
  147. list_add_tail(&bf->list, &bf_head);
  148. ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
  149. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 1);
  150. } else {
  151. ath_tx_send_normal(sc, txq, NULL, skb);
  152. }
  153. spin_lock_bh(&txq->axq_lock);
  154. }
  155. spin_unlock_bh(&txq->axq_lock);
  156. }
  157. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  158. int seqno)
  159. {
  160. int index, cindex;
  161. index = ATH_BA_INDEX(tid->seq_start, seqno);
  162. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  163. __clear_bit(cindex, tid->tx_buf);
  164. while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
  165. INCR(tid->seq_start, IEEE80211_SEQ_MAX);
  166. INCR(tid->baw_head, ATH_TID_MAX_BUFS);
  167. }
  168. }
  169. static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  170. u16 seqno)
  171. {
  172. int index, cindex;
  173. index = ATH_BA_INDEX(tid->seq_start, seqno);
  174. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  175. __set_bit(cindex, tid->tx_buf);
  176. if (index >= ((tid->baw_tail - tid->baw_head) &
  177. (ATH_TID_MAX_BUFS - 1))) {
  178. tid->baw_tail = cindex;
  179. INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
  180. }
  181. }
  182. /*
  183. * TODO: For frame(s) that are in the retry state, we will reuse the
  184. * sequence number(s) without setting the retry bit. The
  185. * alternative is to give up on these and BAR the receiver's window
  186. * forward.
  187. */
  188. static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
  189. struct ath_atx_tid *tid)
  190. {
  191. struct sk_buff *skb;
  192. struct ath_buf *bf;
  193. struct list_head bf_head;
  194. struct ath_tx_status ts;
  195. struct ath_frame_info *fi;
  196. memset(&ts, 0, sizeof(ts));
  197. INIT_LIST_HEAD(&bf_head);
  198. while ((skb = __skb_dequeue(&tid->buf_q))) {
  199. fi = get_frame_info(skb);
  200. bf = fi->bf;
  201. if (!bf) {
  202. spin_unlock(&txq->axq_lock);
  203. ath_tx_complete(sc, skb, ATH_TX_ERROR, txq);
  204. spin_lock(&txq->axq_lock);
  205. continue;
  206. }
  207. list_add_tail(&bf->list, &bf_head);
  208. if (fi->retries)
  209. ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
  210. spin_unlock(&txq->axq_lock);
  211. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 0);
  212. spin_lock(&txq->axq_lock);
  213. }
  214. tid->seq_next = tid->seq_start;
  215. tid->baw_tail = tid->baw_head;
  216. }
  217. static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
  218. struct sk_buff *skb)
  219. {
  220. struct ath_frame_info *fi = get_frame_info(skb);
  221. struct ieee80211_hdr *hdr;
  222. TX_STAT_INC(txq->axq_qnum, a_retries);
  223. if (fi->retries++ > 0)
  224. return;
  225. hdr = (struct ieee80211_hdr *)skb->data;
  226. hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
  227. }
  228. static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
  229. {
  230. struct ath_buf *bf = NULL;
  231. spin_lock_bh(&sc->tx.txbuflock);
  232. if (unlikely(list_empty(&sc->tx.txbuf))) {
  233. spin_unlock_bh(&sc->tx.txbuflock);
  234. return NULL;
  235. }
  236. bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
  237. list_del(&bf->list);
  238. spin_unlock_bh(&sc->tx.txbuflock);
  239. return bf;
  240. }
  241. static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
  242. {
  243. spin_lock_bh(&sc->tx.txbuflock);
  244. list_add_tail(&bf->list, &sc->tx.txbuf);
  245. spin_unlock_bh(&sc->tx.txbuflock);
  246. }
  247. static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
  248. {
  249. struct ath_buf *tbf;
  250. tbf = ath_tx_get_buffer(sc);
  251. if (WARN_ON(!tbf))
  252. return NULL;
  253. ATH_TXBUF_RESET(tbf);
  254. tbf->bf_mpdu = bf->bf_mpdu;
  255. tbf->bf_buf_addr = bf->bf_buf_addr;
  256. memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
  257. tbf->bf_state = bf->bf_state;
  258. return tbf;
  259. }
  260. static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
  261. struct ath_tx_status *ts, int txok,
  262. int *nframes, int *nbad)
  263. {
  264. struct ath_frame_info *fi;
  265. u16 seq_st = 0;
  266. u32 ba[WME_BA_BMP_SIZE >> 5];
  267. int ba_index;
  268. int isaggr = 0;
  269. *nbad = 0;
  270. *nframes = 0;
  271. isaggr = bf_isaggr(bf);
  272. if (isaggr) {
  273. seq_st = ts->ts_seqnum;
  274. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  275. }
  276. while (bf) {
  277. fi = get_frame_info(bf->bf_mpdu);
  278. ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
  279. (*nframes)++;
  280. if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
  281. (*nbad)++;
  282. bf = bf->bf_next;
  283. }
  284. }
  285. static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
  286. struct ath_buf *bf, struct list_head *bf_q,
  287. struct ath_tx_status *ts, int txok, bool retry)
  288. {
  289. struct ath_node *an = NULL;
  290. struct sk_buff *skb;
  291. struct ieee80211_sta *sta;
  292. struct ieee80211_hw *hw = sc->hw;
  293. struct ieee80211_hdr *hdr;
  294. struct ieee80211_tx_info *tx_info;
  295. struct ath_atx_tid *tid = NULL;
  296. struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
  297. struct list_head bf_head;
  298. struct sk_buff_head bf_pending;
  299. u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0;
  300. u32 ba[WME_BA_BMP_SIZE >> 5];
  301. int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
  302. bool rc_update = true;
  303. struct ieee80211_tx_rate rates[4];
  304. struct ath_frame_info *fi;
  305. int nframes;
  306. u8 tidno;
  307. bool clear_filter;
  308. skb = bf->bf_mpdu;
  309. hdr = (struct ieee80211_hdr *)skb->data;
  310. tx_info = IEEE80211_SKB_CB(skb);
  311. memcpy(rates, tx_info->control.rates, sizeof(rates));
  312. rcu_read_lock();
  313. sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
  314. if (!sta) {
  315. rcu_read_unlock();
  316. INIT_LIST_HEAD(&bf_head);
  317. while (bf) {
  318. bf_next = bf->bf_next;
  319. if (!bf->bf_stale || bf_next != NULL)
  320. list_move_tail(&bf->list, &bf_head);
  321. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
  322. 0, 0);
  323. bf = bf_next;
  324. }
  325. return;
  326. }
  327. an = (struct ath_node *)sta->drv_priv;
  328. tidno = ieee80211_get_qos_ctl(hdr)[0] & IEEE80211_QOS_CTL_TID_MASK;
  329. tid = ATH_AN_2_TID(an, tidno);
  330. /*
  331. * The hardware occasionally sends a tx status for the wrong TID.
  332. * In this case, the BA status cannot be considered valid and all
  333. * subframes need to be retransmitted
  334. */
  335. if (tidno != ts->tid)
  336. txok = false;
  337. isaggr = bf_isaggr(bf);
  338. memset(ba, 0, WME_BA_BMP_SIZE >> 3);
  339. if (isaggr && txok) {
  340. if (ts->ts_flags & ATH9K_TX_BA) {
  341. seq_st = ts->ts_seqnum;
  342. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  343. } else {
  344. /*
  345. * AR5416 can become deaf/mute when BA
  346. * issue happens. Chip needs to be reset.
  347. * But AP code may have sychronization issues
  348. * when perform internal reset in this routine.
  349. * Only enable reset in STA mode for now.
  350. */
  351. if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
  352. needreset = 1;
  353. }
  354. }
  355. __skb_queue_head_init(&bf_pending);
  356. ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
  357. while (bf) {
  358. u16 seqno = bf->bf_state.seqno;
  359. txfail = txpending = sendbar = 0;
  360. bf_next = bf->bf_next;
  361. skb = bf->bf_mpdu;
  362. tx_info = IEEE80211_SKB_CB(skb);
  363. fi = get_frame_info(skb);
  364. if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
  365. /* transmit completion, subframe is
  366. * acked by block ack */
  367. acked_cnt++;
  368. } else if (!isaggr && txok) {
  369. /* transmit completion */
  370. acked_cnt++;
  371. } else {
  372. if ((tid->state & AGGR_CLEANUP) || !retry) {
  373. /*
  374. * cleanup in progress, just fail
  375. * the un-acked sub-frames
  376. */
  377. txfail = 1;
  378. } else if (fi->retries < ATH_MAX_SW_RETRIES) {
  379. if (!(ts->ts_status & ATH9K_TXERR_FILT) ||
  380. !an->sleeping)
  381. ath_tx_set_retry(sc, txq, bf->bf_mpdu);
  382. clear_filter = true;
  383. txpending = 1;
  384. } else {
  385. txfail = 1;
  386. sendbar = 1;
  387. txfail_cnt++;
  388. }
  389. }
  390. /*
  391. * Make sure the last desc is reclaimed if it
  392. * not a holding desc.
  393. */
  394. INIT_LIST_HEAD(&bf_head);
  395. if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) ||
  396. bf_next != NULL || !bf_last->bf_stale)
  397. list_move_tail(&bf->list, &bf_head);
  398. if (!txpending || (tid->state & AGGR_CLEANUP)) {
  399. /*
  400. * complete the acked-ones/xretried ones; update
  401. * block-ack window
  402. */
  403. spin_lock_bh(&txq->axq_lock);
  404. ath_tx_update_baw(sc, tid, seqno);
  405. spin_unlock_bh(&txq->axq_lock);
  406. if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
  407. memcpy(tx_info->control.rates, rates, sizeof(rates));
  408. ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
  409. rc_update = false;
  410. }
  411. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
  412. !txfail, sendbar);
  413. } else {
  414. /* retry the un-acked ones */
  415. if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)) {
  416. if (bf->bf_next == NULL && bf_last->bf_stale) {
  417. struct ath_buf *tbf;
  418. tbf = ath_clone_txbuf(sc, bf_last);
  419. /*
  420. * Update tx baw and complete the
  421. * frame with failed status if we
  422. * run out of tx buf.
  423. */
  424. if (!tbf) {
  425. spin_lock_bh(&txq->axq_lock);
  426. ath_tx_update_baw(sc, tid, seqno);
  427. spin_unlock_bh(&txq->axq_lock);
  428. ath_tx_complete_buf(sc, bf, txq,
  429. &bf_head,
  430. ts, 0, 1);
  431. break;
  432. }
  433. fi->bf = tbf;
  434. }
  435. }
  436. /*
  437. * Put this buffer to the temporary pending
  438. * queue to retain ordering
  439. */
  440. __skb_queue_tail(&bf_pending, skb);
  441. }
  442. bf = bf_next;
  443. }
  444. /* prepend un-acked frames to the beginning of the pending frame queue */
  445. if (!skb_queue_empty(&bf_pending)) {
  446. if (an->sleeping)
  447. ieee80211_sta_set_tim(sta);
  448. spin_lock_bh(&txq->axq_lock);
  449. if (clear_filter)
  450. tid->ac->clear_ps_filter = true;
  451. skb_queue_splice(&bf_pending, &tid->buf_q);
  452. if (!an->sleeping)
  453. ath_tx_queue_tid(txq, tid);
  454. spin_unlock_bh(&txq->axq_lock);
  455. }
  456. if (tid->state & AGGR_CLEANUP) {
  457. ath_tx_flush_tid(sc, tid);
  458. if (tid->baw_head == tid->baw_tail) {
  459. tid->state &= ~AGGR_ADDBA_COMPLETE;
  460. tid->state &= ~AGGR_CLEANUP;
  461. }
  462. }
  463. rcu_read_unlock();
  464. if (needreset)
  465. ieee80211_queue_work(sc->hw, &sc->hw_reset_work);
  466. }
  467. static bool ath_lookup_legacy(struct ath_buf *bf)
  468. {
  469. struct sk_buff *skb;
  470. struct ieee80211_tx_info *tx_info;
  471. struct ieee80211_tx_rate *rates;
  472. int i;
  473. skb = bf->bf_mpdu;
  474. tx_info = IEEE80211_SKB_CB(skb);
  475. rates = tx_info->control.rates;
  476. for (i = 0; i < 4; i++) {
  477. if (!rates[i].count || rates[i].idx < 0)
  478. break;
  479. if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
  480. return true;
  481. }
  482. return false;
  483. }
  484. static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
  485. struct ath_atx_tid *tid)
  486. {
  487. struct sk_buff *skb;
  488. struct ieee80211_tx_info *tx_info;
  489. struct ieee80211_tx_rate *rates;
  490. u32 max_4ms_framelen, frmlen;
  491. u16 aggr_limit, legacy = 0;
  492. int i;
  493. skb = bf->bf_mpdu;
  494. tx_info = IEEE80211_SKB_CB(skb);
  495. rates = tx_info->control.rates;
  496. /*
  497. * Find the lowest frame length among the rate series that will have a
  498. * 4ms transmit duration.
  499. * TODO - TXOP limit needs to be considered.
  500. */
  501. max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
  502. for (i = 0; i < 4; i++) {
  503. if (rates[i].count) {
  504. int modeidx;
  505. if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
  506. legacy = 1;
  507. break;
  508. }
  509. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  510. modeidx = MCS_HT40;
  511. else
  512. modeidx = MCS_HT20;
  513. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  514. modeidx++;
  515. frmlen = ath_max_4ms_framelen[modeidx][rates[i].idx];
  516. max_4ms_framelen = min(max_4ms_framelen, frmlen);
  517. }
  518. }
  519. /*
  520. * limit aggregate size by the minimum rate if rate selected is
  521. * not a probe rate, if rate selected is a probe rate then
  522. * avoid aggregation of this packet.
  523. */
  524. if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
  525. return 0;
  526. if (sc->sc_flags & SC_OP_BT_PRIORITY_DETECTED)
  527. aggr_limit = min((max_4ms_framelen * 3) / 8,
  528. (u32)ATH_AMPDU_LIMIT_MAX);
  529. else
  530. aggr_limit = min(max_4ms_framelen,
  531. (u32)ATH_AMPDU_LIMIT_MAX);
  532. /*
  533. * h/w can accept aggregates up to 16 bit lengths (65535).
  534. * The IE, however can hold up to 65536, which shows up here
  535. * as zero. Ignore 65536 since we are constrained by hw.
  536. */
  537. if (tid->an->maxampdu)
  538. aggr_limit = min(aggr_limit, tid->an->maxampdu);
  539. return aggr_limit;
  540. }
  541. /*
  542. * Returns the number of delimiters to be added to
  543. * meet the minimum required mpdudensity.
  544. */
  545. static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
  546. struct ath_buf *bf, u16 frmlen,
  547. bool first_subfrm)
  548. {
  549. #define FIRST_DESC_NDELIMS 60
  550. struct sk_buff *skb = bf->bf_mpdu;
  551. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  552. u32 nsymbits, nsymbols;
  553. u16 minlen;
  554. u8 flags, rix;
  555. int width, streams, half_gi, ndelim, mindelim;
  556. struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
  557. /* Select standard number of delimiters based on frame length alone */
  558. ndelim = ATH_AGGR_GET_NDELIM(frmlen);
  559. /*
  560. * If encryption enabled, hardware requires some more padding between
  561. * subframes.
  562. * TODO - this could be improved to be dependent on the rate.
  563. * The hardware can keep up at lower rates, but not higher rates
  564. */
  565. if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
  566. !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
  567. ndelim += ATH_AGGR_ENCRYPTDELIM;
  568. /*
  569. * Add delimiter when using RTS/CTS with aggregation
  570. * and non enterprise AR9003 card
  571. */
  572. if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
  573. (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
  574. ndelim = max(ndelim, FIRST_DESC_NDELIMS);
  575. /*
  576. * Convert desired mpdu density from microeconds to bytes based
  577. * on highest rate in rate series (i.e. first rate) to determine
  578. * required minimum length for subframe. Take into account
  579. * whether high rate is 20 or 40Mhz and half or full GI.
  580. *
  581. * If there is no mpdu density restriction, no further calculation
  582. * is needed.
  583. */
  584. if (tid->an->mpdudensity == 0)
  585. return ndelim;
  586. rix = tx_info->control.rates[0].idx;
  587. flags = tx_info->control.rates[0].flags;
  588. width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
  589. half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
  590. if (half_gi)
  591. nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
  592. else
  593. nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
  594. if (nsymbols == 0)
  595. nsymbols = 1;
  596. streams = HT_RC_2_STREAMS(rix);
  597. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  598. minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
  599. if (frmlen < minlen) {
  600. mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
  601. ndelim = max(mindelim, ndelim);
  602. }
  603. return ndelim;
  604. }
  605. static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
  606. struct ath_txq *txq,
  607. struct ath_atx_tid *tid,
  608. struct list_head *bf_q,
  609. int *aggr_len)
  610. {
  611. #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
  612. struct ath_buf *bf, *bf_first = NULL, *bf_prev = NULL;
  613. int rl = 0, nframes = 0, ndelim, prev_al = 0;
  614. u16 aggr_limit = 0, al = 0, bpad = 0,
  615. al_delta, h_baw = tid->baw_size / 2;
  616. enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
  617. struct ieee80211_tx_info *tx_info;
  618. struct ath_frame_info *fi;
  619. struct sk_buff *skb;
  620. u16 seqno;
  621. do {
  622. skb = skb_peek(&tid->buf_q);
  623. fi = get_frame_info(skb);
  624. bf = fi->bf;
  625. if (!fi->bf)
  626. bf = ath_tx_setup_buffer(sc, txq, tid, skb);
  627. if (!bf)
  628. continue;
  629. bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
  630. seqno = bf->bf_state.seqno;
  631. if (!bf_first)
  632. bf_first = bf;
  633. /* do not step over block-ack window */
  634. if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) {
  635. status = ATH_AGGR_BAW_CLOSED;
  636. break;
  637. }
  638. if (!rl) {
  639. aggr_limit = ath_lookup_rate(sc, bf, tid);
  640. rl = 1;
  641. }
  642. /* do not exceed aggregation limit */
  643. al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
  644. if (nframes &&
  645. ((aggr_limit < (al + bpad + al_delta + prev_al)) ||
  646. ath_lookup_legacy(bf))) {
  647. status = ATH_AGGR_LIMITED;
  648. break;
  649. }
  650. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  651. if (nframes && (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE))
  652. break;
  653. /* do not exceed subframe limit */
  654. if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
  655. status = ATH_AGGR_LIMITED;
  656. break;
  657. }
  658. /* add padding for previous frame to aggregation length */
  659. al += bpad + al_delta;
  660. /*
  661. * Get the delimiters needed to meet the MPDU
  662. * density for this node.
  663. */
  664. ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
  665. !nframes);
  666. bpad = PADBYTES(al_delta) + (ndelim << 2);
  667. nframes++;
  668. bf->bf_next = NULL;
  669. /* link buffers of this frame to the aggregate */
  670. if (!fi->retries)
  671. ath_tx_addto_baw(sc, tid, seqno);
  672. bf->bf_state.ndelim = ndelim;
  673. __skb_unlink(skb, &tid->buf_q);
  674. list_add_tail(&bf->list, bf_q);
  675. if (bf_prev)
  676. bf_prev->bf_next = bf;
  677. bf_prev = bf;
  678. } while (!skb_queue_empty(&tid->buf_q));
  679. *aggr_len = al;
  680. return status;
  681. #undef PADBYTES
  682. }
  683. /*
  684. * rix - rate index
  685. * pktlen - total bytes (delims + data + fcs + pads + pad delims)
  686. * width - 0 for 20 MHz, 1 for 40 MHz
  687. * half_gi - to use 4us v/s 3.6 us for symbol time
  688. */
  689. static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
  690. int width, int half_gi, bool shortPreamble)
  691. {
  692. u32 nbits, nsymbits, duration, nsymbols;
  693. int streams;
  694. /* find number of symbols: PLCP + data */
  695. streams = HT_RC_2_STREAMS(rix);
  696. nbits = (pktlen << 3) + OFDM_PLCP_BITS;
  697. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  698. nsymbols = (nbits + nsymbits - 1) / nsymbits;
  699. if (!half_gi)
  700. duration = SYMBOL_TIME(nsymbols);
  701. else
  702. duration = SYMBOL_TIME_HALFGI(nsymbols);
  703. /* addup duration for legacy/ht training and signal fields */
  704. duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
  705. return duration;
  706. }
  707. static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
  708. struct ath_tx_info *info, int len)
  709. {
  710. struct ath_hw *ah = sc->sc_ah;
  711. struct sk_buff *skb;
  712. struct ieee80211_tx_info *tx_info;
  713. struct ieee80211_tx_rate *rates;
  714. const struct ieee80211_rate *rate;
  715. struct ieee80211_hdr *hdr;
  716. int i;
  717. u8 rix = 0;
  718. skb = bf->bf_mpdu;
  719. tx_info = IEEE80211_SKB_CB(skb);
  720. rates = tx_info->control.rates;
  721. hdr = (struct ieee80211_hdr *)skb->data;
  722. /* set dur_update_en for l-sig computation except for PS-Poll frames */
  723. info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
  724. /*
  725. * We check if Short Preamble is needed for the CTS rate by
  726. * checking the BSS's global flag.
  727. * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
  728. */
  729. rate = ieee80211_get_rts_cts_rate(sc->hw, tx_info);
  730. info->rtscts_rate = rate->hw_value;
  731. if (sc->sc_flags & SC_OP_PREAMBLE_SHORT)
  732. info->rtscts_rate |= rate->hw_value_short;
  733. for (i = 0; i < 4; i++) {
  734. bool is_40, is_sgi, is_sp;
  735. int phy;
  736. if (!rates[i].count || (rates[i].idx < 0))
  737. continue;
  738. rix = rates[i].idx;
  739. info->rates[i].Tries = rates[i].count;
  740. if (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
  741. info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  742. info->flags |= ATH9K_TXDESC_RTSENA;
  743. } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
  744. info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  745. info->flags |= ATH9K_TXDESC_CTSENA;
  746. }
  747. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  748. info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
  749. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  750. info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
  751. is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
  752. is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
  753. is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
  754. if (rates[i].flags & IEEE80211_TX_RC_MCS) {
  755. /* MCS rates */
  756. info->rates[i].Rate = rix | 0x80;
  757. info->rates[i].ChSel = ath_txchainmask_reduction(sc,
  758. ah->txchainmask, info->rates[i].Rate);
  759. info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
  760. is_40, is_sgi, is_sp);
  761. if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
  762. info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
  763. continue;
  764. }
  765. /* legacy rates */
  766. if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
  767. !(rate->flags & IEEE80211_RATE_ERP_G))
  768. phy = WLAN_RC_PHY_CCK;
  769. else
  770. phy = WLAN_RC_PHY_OFDM;
  771. rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
  772. info->rates[i].Rate = rate->hw_value;
  773. if (rate->hw_value_short) {
  774. if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
  775. info->rates[i].Rate |= rate->hw_value_short;
  776. } else {
  777. is_sp = false;
  778. }
  779. if (bf->bf_state.bfs_paprd)
  780. info->rates[i].ChSel = ah->txchainmask;
  781. else
  782. info->rates[i].ChSel = ath_txchainmask_reduction(sc,
  783. ah->txchainmask, info->rates[i].Rate);
  784. info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
  785. phy, rate->bitrate * 100, len, rix, is_sp);
  786. }
  787. /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
  788. if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
  789. info->flags &= ~ATH9K_TXDESC_RTSENA;
  790. /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
  791. if (info->flags & ATH9K_TXDESC_RTSENA)
  792. info->flags &= ~ATH9K_TXDESC_CTSENA;
  793. }
  794. static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
  795. {
  796. struct ieee80211_hdr *hdr;
  797. enum ath9k_pkt_type htype;
  798. __le16 fc;
  799. hdr = (struct ieee80211_hdr *)skb->data;
  800. fc = hdr->frame_control;
  801. if (ieee80211_is_beacon(fc))
  802. htype = ATH9K_PKT_TYPE_BEACON;
  803. else if (ieee80211_is_probe_resp(fc))
  804. htype = ATH9K_PKT_TYPE_PROBE_RESP;
  805. else if (ieee80211_is_atim(fc))
  806. htype = ATH9K_PKT_TYPE_ATIM;
  807. else if (ieee80211_is_pspoll(fc))
  808. htype = ATH9K_PKT_TYPE_PSPOLL;
  809. else
  810. htype = ATH9K_PKT_TYPE_NORMAL;
  811. return htype;
  812. }
  813. static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
  814. struct ath_txq *txq, int len)
  815. {
  816. struct ath_hw *ah = sc->sc_ah;
  817. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  818. struct ath_buf *bf_first = bf;
  819. struct ath_tx_info info;
  820. bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
  821. memset(&info, 0, sizeof(info));
  822. info.is_first = true;
  823. info.is_last = true;
  824. info.txpower = MAX_RATE_POWER;
  825. info.qcu = txq->axq_qnum;
  826. info.flags = ATH9K_TXDESC_INTREQ;
  827. if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
  828. info.flags |= ATH9K_TXDESC_NOACK;
  829. if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
  830. info.flags |= ATH9K_TXDESC_LDPC;
  831. ath_buf_set_rate(sc, bf, &info, len);
  832. if (tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT)
  833. info.flags |= ATH9K_TXDESC_CLRDMASK;
  834. if (bf->bf_state.bfs_paprd)
  835. info.flags |= (u32) bf->bf_state.bfs_paprd << ATH9K_TXDESC_PAPRD_S;
  836. while (bf) {
  837. struct sk_buff *skb = bf->bf_mpdu;
  838. struct ath_frame_info *fi = get_frame_info(skb);
  839. info.type = get_hw_packet_type(skb);
  840. if (bf->bf_next)
  841. info.link = bf->bf_next->bf_daddr;
  842. else
  843. info.link = 0;
  844. info.buf_addr[0] = bf->bf_buf_addr;
  845. info.buf_len[0] = skb->len;
  846. info.pkt_len = fi->framelen;
  847. info.keyix = fi->keyix;
  848. info.keytype = fi->keytype;
  849. if (aggr) {
  850. if (bf == bf_first)
  851. info.aggr = AGGR_BUF_FIRST;
  852. else if (!bf->bf_next)
  853. info.aggr = AGGR_BUF_LAST;
  854. else
  855. info.aggr = AGGR_BUF_MIDDLE;
  856. info.ndelim = bf->bf_state.ndelim;
  857. info.aggr_len = len;
  858. }
  859. ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
  860. bf = bf->bf_next;
  861. }
  862. }
  863. static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
  864. struct ath_atx_tid *tid)
  865. {
  866. struct ath_buf *bf;
  867. enum ATH_AGGR_STATUS status;
  868. struct ieee80211_tx_info *tx_info;
  869. struct list_head bf_q;
  870. int aggr_len;
  871. do {
  872. if (skb_queue_empty(&tid->buf_q))
  873. return;
  874. INIT_LIST_HEAD(&bf_q);
  875. status = ath_tx_form_aggr(sc, txq, tid, &bf_q, &aggr_len);
  876. /*
  877. * no frames picked up to be aggregated;
  878. * block-ack window is not open.
  879. */
  880. if (list_empty(&bf_q))
  881. break;
  882. bf = list_first_entry(&bf_q, struct ath_buf, list);
  883. bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list);
  884. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  885. if (tid->ac->clear_ps_filter) {
  886. tid->ac->clear_ps_filter = false;
  887. tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
  888. } else {
  889. tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
  890. }
  891. /* if only one frame, send as non-aggregate */
  892. if (bf == bf->bf_lastbf) {
  893. aggr_len = get_frame_info(bf->bf_mpdu)->framelen;
  894. bf->bf_state.bf_type = BUF_AMPDU;
  895. } else {
  896. TX_STAT_INC(txq->axq_qnum, a_aggr);
  897. }
  898. ath_tx_fill_desc(sc, bf, txq, aggr_len);
  899. ath_tx_txqaddbuf(sc, txq, &bf_q, false);
  900. } while (txq->axq_ampdu_depth < ATH_AGGR_MIN_QDEPTH &&
  901. status != ATH_AGGR_BAW_CLOSED);
  902. }
  903. int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
  904. u16 tid, u16 *ssn)
  905. {
  906. struct ath_atx_tid *txtid;
  907. struct ath_node *an;
  908. an = (struct ath_node *)sta->drv_priv;
  909. txtid = ATH_AN_2_TID(an, tid);
  910. if (txtid->state & (AGGR_CLEANUP | AGGR_ADDBA_COMPLETE))
  911. return -EAGAIN;
  912. txtid->state |= AGGR_ADDBA_PROGRESS;
  913. txtid->paused = true;
  914. *ssn = txtid->seq_start = txtid->seq_next;
  915. memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
  916. txtid->baw_head = txtid->baw_tail = 0;
  917. return 0;
  918. }
  919. void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
  920. {
  921. struct ath_node *an = (struct ath_node *)sta->drv_priv;
  922. struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
  923. struct ath_txq *txq = txtid->ac->txq;
  924. if (txtid->state & AGGR_CLEANUP)
  925. return;
  926. if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
  927. txtid->state &= ~AGGR_ADDBA_PROGRESS;
  928. return;
  929. }
  930. spin_lock_bh(&txq->axq_lock);
  931. txtid->paused = true;
  932. /*
  933. * If frames are still being transmitted for this TID, they will be
  934. * cleaned up during tx completion. To prevent race conditions, this
  935. * TID can only be reused after all in-progress subframes have been
  936. * completed.
  937. */
  938. if (txtid->baw_head != txtid->baw_tail)
  939. txtid->state |= AGGR_CLEANUP;
  940. else
  941. txtid->state &= ~AGGR_ADDBA_COMPLETE;
  942. spin_unlock_bh(&txq->axq_lock);
  943. ath_tx_flush_tid(sc, txtid);
  944. }
  945. bool ath_tx_aggr_sleep(struct ath_softc *sc, struct ath_node *an)
  946. {
  947. struct ath_atx_tid *tid;
  948. struct ath_atx_ac *ac;
  949. struct ath_txq *txq;
  950. bool buffered = false;
  951. int tidno;
  952. for (tidno = 0, tid = &an->tid[tidno];
  953. tidno < WME_NUM_TID; tidno++, tid++) {
  954. if (!tid->sched)
  955. continue;
  956. ac = tid->ac;
  957. txq = ac->txq;
  958. spin_lock_bh(&txq->axq_lock);
  959. if (!skb_queue_empty(&tid->buf_q))
  960. buffered = true;
  961. tid->sched = false;
  962. list_del(&tid->list);
  963. if (ac->sched) {
  964. ac->sched = false;
  965. list_del(&ac->list);
  966. }
  967. spin_unlock_bh(&txq->axq_lock);
  968. }
  969. return buffered;
  970. }
  971. void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
  972. {
  973. struct ath_atx_tid *tid;
  974. struct ath_atx_ac *ac;
  975. struct ath_txq *txq;
  976. int tidno;
  977. for (tidno = 0, tid = &an->tid[tidno];
  978. tidno < WME_NUM_TID; tidno++, tid++) {
  979. ac = tid->ac;
  980. txq = ac->txq;
  981. spin_lock_bh(&txq->axq_lock);
  982. ac->clear_ps_filter = true;
  983. if (!skb_queue_empty(&tid->buf_q) && !tid->paused) {
  984. ath_tx_queue_tid(txq, tid);
  985. ath_txq_schedule(sc, txq);
  986. }
  987. spin_unlock_bh(&txq->axq_lock);
  988. }
  989. }
  990. void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
  991. {
  992. struct ath_atx_tid *txtid;
  993. struct ath_node *an;
  994. an = (struct ath_node *)sta->drv_priv;
  995. if (sc->sc_flags & SC_OP_TXAGGR) {
  996. txtid = ATH_AN_2_TID(an, tid);
  997. txtid->baw_size =
  998. IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
  999. txtid->state |= AGGR_ADDBA_COMPLETE;
  1000. txtid->state &= ~AGGR_ADDBA_PROGRESS;
  1001. ath_tx_resume_tid(sc, txtid);
  1002. }
  1003. }
  1004. /********************/
  1005. /* Queue Management */
  1006. /********************/
  1007. static void ath_txq_drain_pending_buffers(struct ath_softc *sc,
  1008. struct ath_txq *txq)
  1009. {
  1010. struct ath_atx_ac *ac, *ac_tmp;
  1011. struct ath_atx_tid *tid, *tid_tmp;
  1012. list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
  1013. list_del(&ac->list);
  1014. ac->sched = false;
  1015. list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) {
  1016. list_del(&tid->list);
  1017. tid->sched = false;
  1018. ath_tid_drain(sc, txq, tid);
  1019. }
  1020. }
  1021. }
  1022. struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
  1023. {
  1024. struct ath_hw *ah = sc->sc_ah;
  1025. struct ath_common *common = ath9k_hw_common(ah);
  1026. struct ath9k_tx_queue_info qi;
  1027. static const int subtype_txq_to_hwq[] = {
  1028. [WME_AC_BE] = ATH_TXQ_AC_BE,
  1029. [WME_AC_BK] = ATH_TXQ_AC_BK,
  1030. [WME_AC_VI] = ATH_TXQ_AC_VI,
  1031. [WME_AC_VO] = ATH_TXQ_AC_VO,
  1032. };
  1033. int axq_qnum, i;
  1034. memset(&qi, 0, sizeof(qi));
  1035. qi.tqi_subtype = subtype_txq_to_hwq[subtype];
  1036. qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
  1037. qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
  1038. qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
  1039. qi.tqi_physCompBuf = 0;
  1040. /*
  1041. * Enable interrupts only for EOL and DESC conditions.
  1042. * We mark tx descriptors to receive a DESC interrupt
  1043. * when a tx queue gets deep; otherwise waiting for the
  1044. * EOL to reap descriptors. Note that this is done to
  1045. * reduce interrupt load and this only defers reaping
  1046. * descriptors, never transmitting frames. Aside from
  1047. * reducing interrupts this also permits more concurrency.
  1048. * The only potential downside is if the tx queue backs
  1049. * up in which case the top half of the kernel may backup
  1050. * due to a lack of tx descriptors.
  1051. *
  1052. * The UAPSD queue is an exception, since we take a desc-
  1053. * based intr on the EOSP frames.
  1054. */
  1055. if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1056. qi.tqi_qflags = TXQ_FLAG_TXOKINT_ENABLE |
  1057. TXQ_FLAG_TXERRINT_ENABLE;
  1058. } else {
  1059. if (qtype == ATH9K_TX_QUEUE_UAPSD)
  1060. qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
  1061. else
  1062. qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
  1063. TXQ_FLAG_TXDESCINT_ENABLE;
  1064. }
  1065. axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
  1066. if (axq_qnum == -1) {
  1067. /*
  1068. * NB: don't print a message, this happens
  1069. * normally on parts with too few tx queues
  1070. */
  1071. return NULL;
  1072. }
  1073. if (axq_qnum >= ARRAY_SIZE(sc->tx.txq)) {
  1074. ath_err(common, "qnum %u out of range, max %zu!\n",
  1075. axq_qnum, ARRAY_SIZE(sc->tx.txq));
  1076. ath9k_hw_releasetxqueue(ah, axq_qnum);
  1077. return NULL;
  1078. }
  1079. if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
  1080. struct ath_txq *txq = &sc->tx.txq[axq_qnum];
  1081. txq->axq_qnum = axq_qnum;
  1082. txq->mac80211_qnum = -1;
  1083. txq->axq_link = NULL;
  1084. INIT_LIST_HEAD(&txq->axq_q);
  1085. INIT_LIST_HEAD(&txq->axq_acq);
  1086. spin_lock_init(&txq->axq_lock);
  1087. txq->axq_depth = 0;
  1088. txq->axq_ampdu_depth = 0;
  1089. txq->axq_tx_inprogress = false;
  1090. sc->tx.txqsetup |= 1<<axq_qnum;
  1091. txq->txq_headidx = txq->txq_tailidx = 0;
  1092. for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
  1093. INIT_LIST_HEAD(&txq->txq_fifo[i]);
  1094. }
  1095. return &sc->tx.txq[axq_qnum];
  1096. }
  1097. int ath_txq_update(struct ath_softc *sc, int qnum,
  1098. struct ath9k_tx_queue_info *qinfo)
  1099. {
  1100. struct ath_hw *ah = sc->sc_ah;
  1101. int error = 0;
  1102. struct ath9k_tx_queue_info qi;
  1103. if (qnum == sc->beacon.beaconq) {
  1104. /*
  1105. * XXX: for beacon queue, we just save the parameter.
  1106. * It will be picked up by ath_beaconq_config when
  1107. * it's necessary.
  1108. */
  1109. sc->beacon.beacon_qi = *qinfo;
  1110. return 0;
  1111. }
  1112. BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
  1113. ath9k_hw_get_txq_props(ah, qnum, &qi);
  1114. qi.tqi_aifs = qinfo->tqi_aifs;
  1115. qi.tqi_cwmin = qinfo->tqi_cwmin;
  1116. qi.tqi_cwmax = qinfo->tqi_cwmax;
  1117. qi.tqi_burstTime = qinfo->tqi_burstTime;
  1118. qi.tqi_readyTime = qinfo->tqi_readyTime;
  1119. if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
  1120. ath_err(ath9k_hw_common(sc->sc_ah),
  1121. "Unable to update hardware queue %u!\n", qnum);
  1122. error = -EIO;
  1123. } else {
  1124. ath9k_hw_resettxqueue(ah, qnum);
  1125. }
  1126. return error;
  1127. }
  1128. int ath_cabq_update(struct ath_softc *sc)
  1129. {
  1130. struct ath9k_tx_queue_info qi;
  1131. struct ath_beacon_config *cur_conf = &sc->cur_beacon_conf;
  1132. int qnum = sc->beacon.cabq->axq_qnum;
  1133. ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
  1134. /*
  1135. * Ensure the readytime % is within the bounds.
  1136. */
  1137. if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
  1138. sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
  1139. else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
  1140. sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
  1141. qi.tqi_readyTime = (cur_conf->beacon_interval *
  1142. sc->config.cabqReadytime) / 100;
  1143. ath_txq_update(sc, qnum, &qi);
  1144. return 0;
  1145. }
  1146. static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
  1147. {
  1148. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
  1149. return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
  1150. }
  1151. static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
  1152. struct list_head *list, bool retry_tx)
  1153. __releases(txq->axq_lock)
  1154. __acquires(txq->axq_lock)
  1155. {
  1156. struct ath_buf *bf, *lastbf;
  1157. struct list_head bf_head;
  1158. struct ath_tx_status ts;
  1159. memset(&ts, 0, sizeof(ts));
  1160. INIT_LIST_HEAD(&bf_head);
  1161. while (!list_empty(list)) {
  1162. bf = list_first_entry(list, struct ath_buf, list);
  1163. if (bf->bf_stale) {
  1164. list_del(&bf->list);
  1165. ath_tx_return_buffer(sc, bf);
  1166. continue;
  1167. }
  1168. lastbf = bf->bf_lastbf;
  1169. list_cut_position(&bf_head, list, &lastbf->list);
  1170. txq->axq_depth--;
  1171. if (bf_is_ampdu_not_probing(bf))
  1172. txq->axq_ampdu_depth--;
  1173. spin_unlock_bh(&txq->axq_lock);
  1174. if (bf_isampdu(bf))
  1175. ath_tx_complete_aggr(sc, txq, bf, &bf_head, &ts, 0,
  1176. retry_tx);
  1177. else
  1178. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 0);
  1179. spin_lock_bh(&txq->axq_lock);
  1180. }
  1181. }
  1182. /*
  1183. * Drain a given TX queue (could be Beacon or Data)
  1184. *
  1185. * This assumes output has been stopped and
  1186. * we do not need to block ath_tx_tasklet.
  1187. */
  1188. void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq, bool retry_tx)
  1189. {
  1190. spin_lock_bh(&txq->axq_lock);
  1191. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1192. int idx = txq->txq_tailidx;
  1193. while (!list_empty(&txq->txq_fifo[idx])) {
  1194. ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx],
  1195. retry_tx);
  1196. INCR(idx, ATH_TXFIFO_DEPTH);
  1197. }
  1198. txq->txq_tailidx = idx;
  1199. }
  1200. txq->axq_link = NULL;
  1201. txq->axq_tx_inprogress = false;
  1202. ath_drain_txq_list(sc, txq, &txq->axq_q, retry_tx);
  1203. /* flush any pending frames if aggregation is enabled */
  1204. if ((sc->sc_flags & SC_OP_TXAGGR) && !retry_tx)
  1205. ath_txq_drain_pending_buffers(sc, txq);
  1206. spin_unlock_bh(&txq->axq_lock);
  1207. }
  1208. bool ath_drain_all_txq(struct ath_softc *sc, bool retry_tx)
  1209. {
  1210. struct ath_hw *ah = sc->sc_ah;
  1211. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1212. struct ath_txq *txq;
  1213. int i, npend = 0;
  1214. if (sc->sc_flags & SC_OP_INVALID)
  1215. return true;
  1216. ath9k_hw_abort_tx_dma(ah);
  1217. /* Check if any queue remains active */
  1218. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1219. if (!ATH_TXQ_SETUP(sc, i))
  1220. continue;
  1221. npend += ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum);
  1222. }
  1223. if (npend)
  1224. ath_err(common, "Failed to stop TX DMA!\n");
  1225. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1226. if (!ATH_TXQ_SETUP(sc, i))
  1227. continue;
  1228. /*
  1229. * The caller will resume queues with ieee80211_wake_queues.
  1230. * Mark the queue as not stopped to prevent ath_tx_complete
  1231. * from waking the queue too early.
  1232. */
  1233. txq = &sc->tx.txq[i];
  1234. txq->stopped = false;
  1235. ath_draintxq(sc, txq, retry_tx);
  1236. }
  1237. return !npend;
  1238. }
  1239. void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
  1240. {
  1241. ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
  1242. sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
  1243. }
  1244. /* For each axq_acq entry, for each tid, try to schedule packets
  1245. * for transmit until ampdu_depth has reached min Q depth.
  1246. */
  1247. void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
  1248. {
  1249. struct ath_atx_ac *ac, *ac_tmp, *last_ac;
  1250. struct ath_atx_tid *tid, *last_tid;
  1251. if (work_pending(&sc->hw_reset_work) || list_empty(&txq->axq_acq) ||
  1252. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1253. return;
  1254. ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
  1255. last_ac = list_entry(txq->axq_acq.prev, struct ath_atx_ac, list);
  1256. list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
  1257. last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list);
  1258. list_del(&ac->list);
  1259. ac->sched = false;
  1260. while (!list_empty(&ac->tid_q)) {
  1261. tid = list_first_entry(&ac->tid_q, struct ath_atx_tid,
  1262. list);
  1263. list_del(&tid->list);
  1264. tid->sched = false;
  1265. if (tid->paused)
  1266. continue;
  1267. ath_tx_sched_aggr(sc, txq, tid);
  1268. /*
  1269. * add tid to round-robin queue if more frames
  1270. * are pending for the tid
  1271. */
  1272. if (!skb_queue_empty(&tid->buf_q))
  1273. ath_tx_queue_tid(txq, tid);
  1274. if (tid == last_tid ||
  1275. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1276. break;
  1277. }
  1278. if (!list_empty(&ac->tid_q)) {
  1279. if (!ac->sched) {
  1280. ac->sched = true;
  1281. list_add_tail(&ac->list, &txq->axq_acq);
  1282. }
  1283. }
  1284. if (ac == last_ac ||
  1285. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1286. return;
  1287. }
  1288. }
  1289. /***********/
  1290. /* TX, DMA */
  1291. /***********/
  1292. /*
  1293. * Insert a chain of ath_buf (descriptors) on a txq and
  1294. * assume the descriptors are already chained together by caller.
  1295. */
  1296. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  1297. struct list_head *head, bool internal)
  1298. {
  1299. struct ath_hw *ah = sc->sc_ah;
  1300. struct ath_common *common = ath9k_hw_common(ah);
  1301. struct ath_buf *bf, *bf_last;
  1302. bool puttxbuf = false;
  1303. bool edma;
  1304. /*
  1305. * Insert the frame on the outbound list and
  1306. * pass it on to the hardware.
  1307. */
  1308. if (list_empty(head))
  1309. return;
  1310. edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
  1311. bf = list_first_entry(head, struct ath_buf, list);
  1312. bf_last = list_entry(head->prev, struct ath_buf, list);
  1313. ath_dbg(common, ATH_DBG_QUEUE,
  1314. "qnum: %d, txq depth: %d\n", txq->axq_qnum, txq->axq_depth);
  1315. if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
  1316. list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
  1317. INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
  1318. puttxbuf = true;
  1319. } else {
  1320. list_splice_tail_init(head, &txq->axq_q);
  1321. if (txq->axq_link) {
  1322. ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
  1323. ath_dbg(common, ATH_DBG_XMIT,
  1324. "link[%u] (%p)=%llx (%p)\n",
  1325. txq->axq_qnum, txq->axq_link,
  1326. ito64(bf->bf_daddr), bf->bf_desc);
  1327. } else if (!edma)
  1328. puttxbuf = true;
  1329. txq->axq_link = bf_last->bf_desc;
  1330. }
  1331. if (puttxbuf) {
  1332. TX_STAT_INC(txq->axq_qnum, puttxbuf);
  1333. ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
  1334. ath_dbg(common, ATH_DBG_XMIT, "TXDP[%u] = %llx (%p)\n",
  1335. txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
  1336. }
  1337. if (!edma) {
  1338. TX_STAT_INC(txq->axq_qnum, txstart);
  1339. ath9k_hw_txstart(ah, txq->axq_qnum);
  1340. }
  1341. if (!internal) {
  1342. txq->axq_depth++;
  1343. if (bf_is_ampdu_not_probing(bf))
  1344. txq->axq_ampdu_depth++;
  1345. }
  1346. }
  1347. static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_atx_tid *tid,
  1348. struct sk_buff *skb, struct ath_tx_control *txctl)
  1349. {
  1350. struct ath_frame_info *fi = get_frame_info(skb);
  1351. struct list_head bf_head;
  1352. struct ath_buf *bf;
  1353. /*
  1354. * Do not queue to h/w when any of the following conditions is true:
  1355. * - there are pending frames in software queue
  1356. * - the TID is currently paused for ADDBA/BAR request
  1357. * - seqno is not within block-ack window
  1358. * - h/w queue depth exceeds low water mark
  1359. */
  1360. if (!skb_queue_empty(&tid->buf_q) || tid->paused ||
  1361. !BAW_WITHIN(tid->seq_start, tid->baw_size, tid->seq_next) ||
  1362. txctl->txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) {
  1363. /*
  1364. * Add this frame to software queue for scheduling later
  1365. * for aggregation.
  1366. */
  1367. TX_STAT_INC(txctl->txq->axq_qnum, a_queued_sw);
  1368. __skb_queue_tail(&tid->buf_q, skb);
  1369. if (!txctl->an || !txctl->an->sleeping)
  1370. ath_tx_queue_tid(txctl->txq, tid);
  1371. return;
  1372. }
  1373. bf = ath_tx_setup_buffer(sc, txctl->txq, tid, skb);
  1374. if (!bf)
  1375. return;
  1376. bf->bf_state.bf_type = BUF_AMPDU;
  1377. INIT_LIST_HEAD(&bf_head);
  1378. list_add(&bf->list, &bf_head);
  1379. /* Add sub-frame to BAW */
  1380. ath_tx_addto_baw(sc, tid, bf->bf_state.seqno);
  1381. /* Queue to h/w without aggregation */
  1382. TX_STAT_INC(txctl->txq->axq_qnum, a_queued_hw);
  1383. bf->bf_lastbf = bf;
  1384. ath_tx_fill_desc(sc, bf, txctl->txq, fi->framelen);
  1385. ath_tx_txqaddbuf(sc, txctl->txq, &bf_head, false);
  1386. }
  1387. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  1388. struct ath_atx_tid *tid, struct sk_buff *skb)
  1389. {
  1390. struct ath_frame_info *fi = get_frame_info(skb);
  1391. struct list_head bf_head;
  1392. struct ath_buf *bf;
  1393. bf = fi->bf;
  1394. if (!bf)
  1395. bf = ath_tx_setup_buffer(sc, txq, tid, skb);
  1396. if (!bf)
  1397. return;
  1398. INIT_LIST_HEAD(&bf_head);
  1399. list_add_tail(&bf->list, &bf_head);
  1400. bf->bf_state.bf_type = 0;
  1401. /* update starting sequence number for subsequent ADDBA request */
  1402. if (tid)
  1403. INCR(tid->seq_start, IEEE80211_SEQ_MAX);
  1404. bf->bf_lastbf = bf;
  1405. ath_tx_fill_desc(sc, bf, txq, fi->framelen);
  1406. ath_tx_txqaddbuf(sc, txq, &bf_head, false);
  1407. TX_STAT_INC(txq->axq_qnum, queued);
  1408. }
  1409. static void setup_frame_info(struct ieee80211_hw *hw, struct sk_buff *skb,
  1410. int framelen)
  1411. {
  1412. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1413. struct ieee80211_sta *sta = tx_info->control.sta;
  1414. struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
  1415. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1416. struct ath_frame_info *fi = get_frame_info(skb);
  1417. struct ath_node *an = NULL;
  1418. enum ath9k_key_type keytype;
  1419. keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
  1420. if (sta)
  1421. an = (struct ath_node *) sta->drv_priv;
  1422. memset(fi, 0, sizeof(*fi));
  1423. if (hw_key)
  1424. fi->keyix = hw_key->hw_key_idx;
  1425. else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
  1426. fi->keyix = an->ps_key;
  1427. else
  1428. fi->keyix = ATH9K_TXKEYIX_INVALID;
  1429. fi->keytype = keytype;
  1430. fi->framelen = framelen;
  1431. }
  1432. u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
  1433. {
  1434. struct ath_hw *ah = sc->sc_ah;
  1435. struct ath9k_channel *curchan = ah->curchan;
  1436. if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) &&
  1437. (curchan->channelFlags & CHANNEL_5GHZ) &&
  1438. (chainmask == 0x7) && (rate < 0x90))
  1439. return 0x3;
  1440. else
  1441. return chainmask;
  1442. }
  1443. /*
  1444. * Assign a descriptor (and sequence number if necessary,
  1445. * and map buffer for DMA. Frees skb on error
  1446. */
  1447. static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
  1448. struct ath_txq *txq,
  1449. struct ath_atx_tid *tid,
  1450. struct sk_buff *skb)
  1451. {
  1452. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1453. struct ath_frame_info *fi = get_frame_info(skb);
  1454. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1455. struct ath_buf *bf;
  1456. u16 seqno;
  1457. bf = ath_tx_get_buffer(sc);
  1458. if (!bf) {
  1459. ath_dbg(common, ATH_DBG_XMIT, "TX buffers are full\n");
  1460. goto error;
  1461. }
  1462. ATH_TXBUF_RESET(bf);
  1463. if (tid) {
  1464. seqno = tid->seq_next;
  1465. hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
  1466. INCR(tid->seq_next, IEEE80211_SEQ_MAX);
  1467. bf->bf_state.seqno = seqno;
  1468. }
  1469. bf->bf_mpdu = skb;
  1470. bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
  1471. skb->len, DMA_TO_DEVICE);
  1472. if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
  1473. bf->bf_mpdu = NULL;
  1474. bf->bf_buf_addr = 0;
  1475. ath_err(ath9k_hw_common(sc->sc_ah),
  1476. "dma_mapping_error() on TX\n");
  1477. ath_tx_return_buffer(sc, bf);
  1478. goto error;
  1479. }
  1480. fi->bf = bf;
  1481. return bf;
  1482. error:
  1483. dev_kfree_skb_any(skb);
  1484. return NULL;
  1485. }
  1486. /* FIXME: tx power */
  1487. static void ath_tx_start_dma(struct ath_softc *sc, struct sk_buff *skb,
  1488. struct ath_tx_control *txctl)
  1489. {
  1490. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1491. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1492. struct ath_atx_tid *tid = NULL;
  1493. struct ath_buf *bf;
  1494. u8 tidno;
  1495. spin_lock_bh(&txctl->txq->axq_lock);
  1496. if ((sc->sc_flags & SC_OP_TXAGGR) && txctl->an &&
  1497. ieee80211_is_data_qos(hdr->frame_control)) {
  1498. tidno = ieee80211_get_qos_ctl(hdr)[0] &
  1499. IEEE80211_QOS_CTL_TID_MASK;
  1500. tid = ATH_AN_2_TID(txctl->an, tidno);
  1501. WARN_ON(tid->ac->txq != txctl->txq);
  1502. }
  1503. if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && tid) {
  1504. /*
  1505. * Try aggregation if it's a unicast data frame
  1506. * and the destination is HT capable.
  1507. */
  1508. ath_tx_send_ampdu(sc, tid, skb, txctl);
  1509. } else {
  1510. bf = ath_tx_setup_buffer(sc, txctl->txq, tid, skb);
  1511. if (!bf)
  1512. goto out;
  1513. bf->bf_state.bfs_paprd = txctl->paprd;
  1514. if (txctl->paprd)
  1515. bf->bf_state.bfs_paprd_timestamp = jiffies;
  1516. ath_tx_send_normal(sc, txctl->txq, tid, skb);
  1517. }
  1518. out:
  1519. spin_unlock_bh(&txctl->txq->axq_lock);
  1520. }
  1521. /* Upon failure caller should free skb */
  1522. int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
  1523. struct ath_tx_control *txctl)
  1524. {
  1525. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  1526. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  1527. struct ieee80211_sta *sta = info->control.sta;
  1528. struct ieee80211_vif *vif = info->control.vif;
  1529. struct ath_softc *sc = hw->priv;
  1530. struct ath_txq *txq = txctl->txq;
  1531. int padpos, padsize;
  1532. int frmlen = skb->len + FCS_LEN;
  1533. int q;
  1534. /* NOTE: sta can be NULL according to net/mac80211.h */
  1535. if (sta)
  1536. txctl->an = (struct ath_node *)sta->drv_priv;
  1537. if (info->control.hw_key)
  1538. frmlen += info->control.hw_key->icv_len;
  1539. /*
  1540. * As a temporary workaround, assign seq# here; this will likely need
  1541. * to be cleaned up to work better with Beacon transmission and virtual
  1542. * BSSes.
  1543. */
  1544. if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
  1545. if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
  1546. sc->tx.seq_no += 0x10;
  1547. hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
  1548. hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
  1549. }
  1550. /* Add the padding after the header if this is not already done */
  1551. padpos = ath9k_cmn_padpos(hdr->frame_control);
  1552. padsize = padpos & 3;
  1553. if (padsize && skb->len > padpos) {
  1554. if (skb_headroom(skb) < padsize)
  1555. return -ENOMEM;
  1556. skb_push(skb, padsize);
  1557. memmove(skb->data, skb->data + padsize, padpos);
  1558. hdr = (struct ieee80211_hdr *) skb->data;
  1559. }
  1560. if ((vif && vif->type != NL80211_IFTYPE_AP &&
  1561. vif->type != NL80211_IFTYPE_AP_VLAN) ||
  1562. !ieee80211_is_data(hdr->frame_control))
  1563. info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
  1564. setup_frame_info(hw, skb, frmlen);
  1565. /*
  1566. * At this point, the vif, hw_key and sta pointers in the tx control
  1567. * info are no longer valid (overwritten by the ath_frame_info data.
  1568. */
  1569. q = skb_get_queue_mapping(skb);
  1570. spin_lock_bh(&txq->axq_lock);
  1571. if (txq == sc->tx.txq_map[q] &&
  1572. ++txq->pending_frames > ATH_MAX_QDEPTH && !txq->stopped) {
  1573. ieee80211_stop_queue(sc->hw, q);
  1574. txq->stopped = 1;
  1575. }
  1576. spin_unlock_bh(&txq->axq_lock);
  1577. ath_tx_start_dma(sc, skb, txctl);
  1578. return 0;
  1579. }
  1580. /*****************/
  1581. /* TX Completion */
  1582. /*****************/
  1583. static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
  1584. int tx_flags, struct ath_txq *txq)
  1585. {
  1586. struct ieee80211_hw *hw = sc->hw;
  1587. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1588. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1589. struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
  1590. int q, padpos, padsize;
  1591. ath_dbg(common, ATH_DBG_XMIT, "TX complete: skb: %p\n", skb);
  1592. if (tx_flags & ATH_TX_BAR)
  1593. tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
  1594. if (!(tx_flags & ATH_TX_ERROR))
  1595. /* Frame was ACKed */
  1596. tx_info->flags |= IEEE80211_TX_STAT_ACK;
  1597. padpos = ath9k_cmn_padpos(hdr->frame_control);
  1598. padsize = padpos & 3;
  1599. if (padsize && skb->len>padpos+padsize) {
  1600. /*
  1601. * Remove MAC header padding before giving the frame back to
  1602. * mac80211.
  1603. */
  1604. memmove(skb->data + padsize, skb->data, padpos);
  1605. skb_pull(skb, padsize);
  1606. }
  1607. if (sc->ps_flags & PS_WAIT_FOR_TX_ACK) {
  1608. sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
  1609. ath_dbg(common, ATH_DBG_PS,
  1610. "Going back to sleep after having received TX status (0x%lx)\n",
  1611. sc->ps_flags & (PS_WAIT_FOR_BEACON |
  1612. PS_WAIT_FOR_CAB |
  1613. PS_WAIT_FOR_PSPOLL_DATA |
  1614. PS_WAIT_FOR_TX_ACK));
  1615. }
  1616. q = skb_get_queue_mapping(skb);
  1617. if (txq == sc->tx.txq_map[q]) {
  1618. spin_lock_bh(&txq->axq_lock);
  1619. if (WARN_ON(--txq->pending_frames < 0))
  1620. txq->pending_frames = 0;
  1621. if (txq->stopped && txq->pending_frames < ATH_MAX_QDEPTH) {
  1622. ieee80211_wake_queue(sc->hw, q);
  1623. txq->stopped = 0;
  1624. }
  1625. spin_unlock_bh(&txq->axq_lock);
  1626. }
  1627. ieee80211_tx_status(hw, skb);
  1628. }
  1629. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  1630. struct ath_txq *txq, struct list_head *bf_q,
  1631. struct ath_tx_status *ts, int txok, int sendbar)
  1632. {
  1633. struct sk_buff *skb = bf->bf_mpdu;
  1634. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1635. unsigned long flags;
  1636. int tx_flags = 0;
  1637. if (sendbar)
  1638. tx_flags = ATH_TX_BAR;
  1639. if (!txok)
  1640. tx_flags |= ATH_TX_ERROR;
  1641. if (ts->ts_status & ATH9K_TXERR_FILT)
  1642. tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
  1643. dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
  1644. bf->bf_buf_addr = 0;
  1645. if (bf->bf_state.bfs_paprd) {
  1646. if (time_after(jiffies,
  1647. bf->bf_state.bfs_paprd_timestamp +
  1648. msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
  1649. dev_kfree_skb_any(skb);
  1650. else
  1651. complete(&sc->paprd_complete);
  1652. } else {
  1653. ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
  1654. ath_tx_complete(sc, skb, tx_flags, txq);
  1655. }
  1656. /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
  1657. * accidentally reference it later.
  1658. */
  1659. bf->bf_mpdu = NULL;
  1660. /*
  1661. * Return the list of ath_buf of this mpdu to free queue
  1662. */
  1663. spin_lock_irqsave(&sc->tx.txbuflock, flags);
  1664. list_splice_tail_init(bf_q, &sc->tx.txbuf);
  1665. spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
  1666. }
  1667. static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
  1668. struct ath_tx_status *ts, int nframes, int nbad,
  1669. int txok)
  1670. {
  1671. struct sk_buff *skb = bf->bf_mpdu;
  1672. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1673. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1674. struct ieee80211_hw *hw = sc->hw;
  1675. struct ath_hw *ah = sc->sc_ah;
  1676. u8 i, tx_rateindex;
  1677. if (txok)
  1678. tx_info->status.ack_signal = ts->ts_rssi;
  1679. tx_rateindex = ts->ts_rateindex;
  1680. WARN_ON(tx_rateindex >= hw->max_rates);
  1681. if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
  1682. tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
  1683. BUG_ON(nbad > nframes);
  1684. tx_info->status.ampdu_len = nframes;
  1685. tx_info->status.ampdu_ack_len = nframes - nbad;
  1686. }
  1687. if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
  1688. (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
  1689. /*
  1690. * If an underrun error is seen assume it as an excessive
  1691. * retry only if max frame trigger level has been reached
  1692. * (2 KB for single stream, and 4 KB for dual stream).
  1693. * Adjust the long retry as if the frame was tried
  1694. * hw->max_rate_tries times to affect how rate control updates
  1695. * PER for the failed rate.
  1696. * In case of congestion on the bus penalizing this type of
  1697. * underruns should help hardware actually transmit new frames
  1698. * successfully by eventually preferring slower rates.
  1699. * This itself should also alleviate congestion on the bus.
  1700. */
  1701. if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
  1702. ATH9K_TX_DELIM_UNDERRUN)) &&
  1703. ieee80211_is_data(hdr->frame_control) &&
  1704. ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
  1705. tx_info->status.rates[tx_rateindex].count =
  1706. hw->max_rate_tries;
  1707. }
  1708. for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
  1709. tx_info->status.rates[i].count = 0;
  1710. tx_info->status.rates[i].idx = -1;
  1711. }
  1712. tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
  1713. }
  1714. static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
  1715. struct ath_tx_status *ts, struct ath_buf *bf,
  1716. struct list_head *bf_head)
  1717. __releases(txq->axq_lock)
  1718. __acquires(txq->axq_lock)
  1719. {
  1720. int txok;
  1721. txq->axq_depth--;
  1722. txok = !(ts->ts_status & ATH9K_TXERR_MASK);
  1723. txq->axq_tx_inprogress = false;
  1724. if (bf_is_ampdu_not_probing(bf))
  1725. txq->axq_ampdu_depth--;
  1726. spin_unlock_bh(&txq->axq_lock);
  1727. if (!bf_isampdu(bf)) {
  1728. ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
  1729. ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok, 0);
  1730. } else
  1731. ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok, true);
  1732. spin_lock_bh(&txq->axq_lock);
  1733. if (sc->sc_flags & SC_OP_TXAGGR)
  1734. ath_txq_schedule(sc, txq);
  1735. }
  1736. static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
  1737. {
  1738. struct ath_hw *ah = sc->sc_ah;
  1739. struct ath_common *common = ath9k_hw_common(ah);
  1740. struct ath_buf *bf, *lastbf, *bf_held = NULL;
  1741. struct list_head bf_head;
  1742. struct ath_desc *ds;
  1743. struct ath_tx_status ts;
  1744. int status;
  1745. ath_dbg(common, ATH_DBG_QUEUE, "tx queue %d (%x), link %p\n",
  1746. txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
  1747. txq->axq_link);
  1748. spin_lock_bh(&txq->axq_lock);
  1749. for (;;) {
  1750. if (work_pending(&sc->hw_reset_work))
  1751. break;
  1752. if (list_empty(&txq->axq_q)) {
  1753. txq->axq_link = NULL;
  1754. if (sc->sc_flags & SC_OP_TXAGGR)
  1755. ath_txq_schedule(sc, txq);
  1756. break;
  1757. }
  1758. bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
  1759. /*
  1760. * There is a race condition that a BH gets scheduled
  1761. * after sw writes TxE and before hw re-load the last
  1762. * descriptor to get the newly chained one.
  1763. * Software must keep the last DONE descriptor as a
  1764. * holding descriptor - software does so by marking
  1765. * it with the STALE flag.
  1766. */
  1767. bf_held = NULL;
  1768. if (bf->bf_stale) {
  1769. bf_held = bf;
  1770. if (list_is_last(&bf_held->list, &txq->axq_q))
  1771. break;
  1772. bf = list_entry(bf_held->list.next, struct ath_buf,
  1773. list);
  1774. }
  1775. lastbf = bf->bf_lastbf;
  1776. ds = lastbf->bf_desc;
  1777. memset(&ts, 0, sizeof(ts));
  1778. status = ath9k_hw_txprocdesc(ah, ds, &ts);
  1779. if (status == -EINPROGRESS)
  1780. break;
  1781. TX_STAT_INC(txq->axq_qnum, txprocdesc);
  1782. /*
  1783. * Remove ath_buf's of the same transmit unit from txq,
  1784. * however leave the last descriptor back as the holding
  1785. * descriptor for hw.
  1786. */
  1787. lastbf->bf_stale = true;
  1788. INIT_LIST_HEAD(&bf_head);
  1789. if (!list_is_singular(&lastbf->list))
  1790. list_cut_position(&bf_head,
  1791. &txq->axq_q, lastbf->list.prev);
  1792. if (bf_held) {
  1793. list_del(&bf_held->list);
  1794. ath_tx_return_buffer(sc, bf_held);
  1795. }
  1796. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  1797. }
  1798. spin_unlock_bh(&txq->axq_lock);
  1799. }
  1800. static void ath_tx_complete_poll_work(struct work_struct *work)
  1801. {
  1802. struct ath_softc *sc = container_of(work, struct ath_softc,
  1803. tx_complete_work.work);
  1804. struct ath_txq *txq;
  1805. int i;
  1806. bool needreset = false;
  1807. #ifdef CONFIG_ATH9K_DEBUGFS
  1808. sc->tx_complete_poll_work_seen++;
  1809. #endif
  1810. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  1811. if (ATH_TXQ_SETUP(sc, i)) {
  1812. txq = &sc->tx.txq[i];
  1813. spin_lock_bh(&txq->axq_lock);
  1814. if (txq->axq_depth) {
  1815. if (txq->axq_tx_inprogress) {
  1816. needreset = true;
  1817. spin_unlock_bh(&txq->axq_lock);
  1818. break;
  1819. } else {
  1820. txq->axq_tx_inprogress = true;
  1821. }
  1822. }
  1823. spin_unlock_bh(&txq->axq_lock);
  1824. }
  1825. if (needreset) {
  1826. ath_dbg(ath9k_hw_common(sc->sc_ah), ATH_DBG_RESET,
  1827. "tx hung, resetting the chip\n");
  1828. ieee80211_queue_work(sc->hw, &sc->hw_reset_work);
  1829. }
  1830. ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work,
  1831. msecs_to_jiffies(ATH_TX_COMPLETE_POLL_INT));
  1832. }
  1833. void ath_tx_tasklet(struct ath_softc *sc)
  1834. {
  1835. int i;
  1836. u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1);
  1837. ath9k_hw_gettxintrtxqs(sc->sc_ah, &qcumask);
  1838. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1839. if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
  1840. ath_tx_processq(sc, &sc->tx.txq[i]);
  1841. }
  1842. }
  1843. void ath_tx_edma_tasklet(struct ath_softc *sc)
  1844. {
  1845. struct ath_tx_status ts;
  1846. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1847. struct ath_hw *ah = sc->sc_ah;
  1848. struct ath_txq *txq;
  1849. struct ath_buf *bf, *lastbf;
  1850. struct list_head bf_head;
  1851. int status;
  1852. for (;;) {
  1853. if (work_pending(&sc->hw_reset_work))
  1854. break;
  1855. status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
  1856. if (status == -EINPROGRESS)
  1857. break;
  1858. if (status == -EIO) {
  1859. ath_dbg(common, ATH_DBG_XMIT,
  1860. "Error processing tx status\n");
  1861. break;
  1862. }
  1863. /* Skip beacon completions */
  1864. if (ts.qid == sc->beacon.beaconq)
  1865. continue;
  1866. txq = &sc->tx.txq[ts.qid];
  1867. spin_lock_bh(&txq->axq_lock);
  1868. if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
  1869. spin_unlock_bh(&txq->axq_lock);
  1870. return;
  1871. }
  1872. bf = list_first_entry(&txq->txq_fifo[txq->txq_tailidx],
  1873. struct ath_buf, list);
  1874. lastbf = bf->bf_lastbf;
  1875. INIT_LIST_HEAD(&bf_head);
  1876. list_cut_position(&bf_head, &txq->txq_fifo[txq->txq_tailidx],
  1877. &lastbf->list);
  1878. if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
  1879. INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
  1880. if (!list_empty(&txq->axq_q)) {
  1881. struct list_head bf_q;
  1882. INIT_LIST_HEAD(&bf_q);
  1883. txq->axq_link = NULL;
  1884. list_splice_tail_init(&txq->axq_q, &bf_q);
  1885. ath_tx_txqaddbuf(sc, txq, &bf_q, true);
  1886. }
  1887. }
  1888. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  1889. spin_unlock_bh(&txq->axq_lock);
  1890. }
  1891. }
  1892. /*****************/
  1893. /* Init, Cleanup */
  1894. /*****************/
  1895. static int ath_txstatus_setup(struct ath_softc *sc, int size)
  1896. {
  1897. struct ath_descdma *dd = &sc->txsdma;
  1898. u8 txs_len = sc->sc_ah->caps.txs_len;
  1899. dd->dd_desc_len = size * txs_len;
  1900. dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
  1901. &dd->dd_desc_paddr, GFP_KERNEL);
  1902. if (!dd->dd_desc)
  1903. return -ENOMEM;
  1904. return 0;
  1905. }
  1906. static int ath_tx_edma_init(struct ath_softc *sc)
  1907. {
  1908. int err;
  1909. err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
  1910. if (!err)
  1911. ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
  1912. sc->txsdma.dd_desc_paddr,
  1913. ATH_TXSTATUS_RING_SIZE);
  1914. return err;
  1915. }
  1916. static void ath_tx_edma_cleanup(struct ath_softc *sc)
  1917. {
  1918. struct ath_descdma *dd = &sc->txsdma;
  1919. dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
  1920. dd->dd_desc_paddr);
  1921. }
  1922. int ath_tx_init(struct ath_softc *sc, int nbufs)
  1923. {
  1924. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1925. int error = 0;
  1926. spin_lock_init(&sc->tx.txbuflock);
  1927. error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
  1928. "tx", nbufs, 1, 1);
  1929. if (error != 0) {
  1930. ath_err(common,
  1931. "Failed to allocate tx descriptors: %d\n", error);
  1932. goto err;
  1933. }
  1934. error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
  1935. "beacon", ATH_BCBUF, 1, 1);
  1936. if (error != 0) {
  1937. ath_err(common,
  1938. "Failed to allocate beacon descriptors: %d\n", error);
  1939. goto err;
  1940. }
  1941. INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
  1942. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1943. error = ath_tx_edma_init(sc);
  1944. if (error)
  1945. goto err;
  1946. }
  1947. err:
  1948. if (error != 0)
  1949. ath_tx_cleanup(sc);
  1950. return error;
  1951. }
  1952. void ath_tx_cleanup(struct ath_softc *sc)
  1953. {
  1954. if (sc->beacon.bdma.dd_desc_len != 0)
  1955. ath_descdma_cleanup(sc, &sc->beacon.bdma, &sc->beacon.bbuf);
  1956. if (sc->tx.txdma.dd_desc_len != 0)
  1957. ath_descdma_cleanup(sc, &sc->tx.txdma, &sc->tx.txbuf);
  1958. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
  1959. ath_tx_edma_cleanup(sc);
  1960. }
  1961. void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
  1962. {
  1963. struct ath_atx_tid *tid;
  1964. struct ath_atx_ac *ac;
  1965. int tidno, acno;
  1966. for (tidno = 0, tid = &an->tid[tidno];
  1967. tidno < WME_NUM_TID;
  1968. tidno++, tid++) {
  1969. tid->an = an;
  1970. tid->tidno = tidno;
  1971. tid->seq_start = tid->seq_next = 0;
  1972. tid->baw_size = WME_MAX_BA;
  1973. tid->baw_head = tid->baw_tail = 0;
  1974. tid->sched = false;
  1975. tid->paused = false;
  1976. tid->state &= ~AGGR_CLEANUP;
  1977. __skb_queue_head_init(&tid->buf_q);
  1978. acno = TID_TO_WME_AC(tidno);
  1979. tid->ac = &an->ac[acno];
  1980. tid->state &= ~AGGR_ADDBA_COMPLETE;
  1981. tid->state &= ~AGGR_ADDBA_PROGRESS;
  1982. }
  1983. for (acno = 0, ac = &an->ac[acno];
  1984. acno < WME_NUM_AC; acno++, ac++) {
  1985. ac->sched = false;
  1986. ac->txq = sc->tx.txq_map[acno];
  1987. INIT_LIST_HEAD(&ac->tid_q);
  1988. }
  1989. }
  1990. void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
  1991. {
  1992. struct ath_atx_ac *ac;
  1993. struct ath_atx_tid *tid;
  1994. struct ath_txq *txq;
  1995. int tidno;
  1996. for (tidno = 0, tid = &an->tid[tidno];
  1997. tidno < WME_NUM_TID; tidno++, tid++) {
  1998. ac = tid->ac;
  1999. txq = ac->txq;
  2000. spin_lock_bh(&txq->axq_lock);
  2001. if (tid->sched) {
  2002. list_del(&tid->list);
  2003. tid->sched = false;
  2004. }
  2005. if (ac->sched) {
  2006. list_del(&ac->list);
  2007. tid->ac->sched = false;
  2008. }
  2009. ath_tid_drain(sc, txq, tid);
  2010. tid->state &= ~AGGR_ADDBA_COMPLETE;
  2011. tid->state &= ~AGGR_CLEANUP;
  2012. spin_unlock_bh(&txq->axq_lock);
  2013. }
  2014. }