ctree.c 112 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388
  1. /*
  2. * Copyright (C) 2007,2008 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/sched.h>
  19. #include "ctree.h"
  20. #include "disk-io.h"
  21. #include "transaction.h"
  22. #include "print-tree.h"
  23. #include "locking.h"
  24. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  25. *root, struct btrfs_path *path, int level);
  26. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  27. *root, struct btrfs_key *ins_key,
  28. struct btrfs_path *path, int data_size, int extend);
  29. static int push_node_left(struct btrfs_trans_handle *trans,
  30. struct btrfs_root *root, struct extent_buffer *dst,
  31. struct extent_buffer *src, int empty);
  32. static int balance_node_right(struct btrfs_trans_handle *trans,
  33. struct btrfs_root *root,
  34. struct extent_buffer *dst_buf,
  35. struct extent_buffer *src_buf);
  36. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  37. struct btrfs_path *path, int level, int slot);
  38. static int setup_items_for_insert(struct btrfs_trans_handle *trans,
  39. struct btrfs_root *root, struct btrfs_path *path,
  40. struct btrfs_key *cpu_key, u32 *data_size,
  41. u32 total_data, u32 total_size, int nr);
  42. struct btrfs_path *btrfs_alloc_path(void)
  43. {
  44. struct btrfs_path *path;
  45. path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
  46. if (path)
  47. path->reada = 1;
  48. return path;
  49. }
  50. /*
  51. * set all locked nodes in the path to blocking locks. This should
  52. * be done before scheduling
  53. */
  54. noinline void btrfs_set_path_blocking(struct btrfs_path *p)
  55. {
  56. int i;
  57. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  58. if (p->nodes[i] && p->locks[i])
  59. btrfs_set_lock_blocking(p->nodes[i]);
  60. }
  61. }
  62. /*
  63. * reset all the locked nodes in the patch to spinning locks.
  64. *
  65. * held is used to keep lockdep happy, when lockdep is enabled
  66. * we set held to a blocking lock before we go around and
  67. * retake all the spinlocks in the path. You can safely use NULL
  68. * for held
  69. */
  70. noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
  71. struct extent_buffer *held)
  72. {
  73. int i;
  74. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  75. /* lockdep really cares that we take all of these spinlocks
  76. * in the right order. If any of the locks in the path are not
  77. * currently blocking, it is going to complain. So, make really
  78. * really sure by forcing the path to blocking before we clear
  79. * the path blocking.
  80. */
  81. if (held)
  82. btrfs_set_lock_blocking(held);
  83. btrfs_set_path_blocking(p);
  84. #endif
  85. for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
  86. if (p->nodes[i] && p->locks[i])
  87. btrfs_clear_lock_blocking(p->nodes[i]);
  88. }
  89. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  90. if (held)
  91. btrfs_clear_lock_blocking(held);
  92. #endif
  93. }
  94. /* this also releases the path */
  95. void btrfs_free_path(struct btrfs_path *p)
  96. {
  97. btrfs_release_path(NULL, p);
  98. kmem_cache_free(btrfs_path_cachep, p);
  99. }
  100. /*
  101. * path release drops references on the extent buffers in the path
  102. * and it drops any locks held by this path
  103. *
  104. * It is safe to call this on paths that no locks or extent buffers held.
  105. */
  106. noinline void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
  107. {
  108. int i;
  109. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  110. p->slots[i] = 0;
  111. if (!p->nodes[i])
  112. continue;
  113. if (p->locks[i]) {
  114. btrfs_tree_unlock(p->nodes[i]);
  115. p->locks[i] = 0;
  116. }
  117. free_extent_buffer(p->nodes[i]);
  118. p->nodes[i] = NULL;
  119. }
  120. }
  121. /*
  122. * safely gets a reference on the root node of a tree. A lock
  123. * is not taken, so a concurrent writer may put a different node
  124. * at the root of the tree. See btrfs_lock_root_node for the
  125. * looping required.
  126. *
  127. * The extent buffer returned by this has a reference taken, so
  128. * it won't disappear. It may stop being the root of the tree
  129. * at any time because there are no locks held.
  130. */
  131. struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
  132. {
  133. struct extent_buffer *eb;
  134. spin_lock(&root->node_lock);
  135. eb = root->node;
  136. extent_buffer_get(eb);
  137. spin_unlock(&root->node_lock);
  138. return eb;
  139. }
  140. /* loop around taking references on and locking the root node of the
  141. * tree until you end up with a lock on the root. A locked buffer
  142. * is returned, with a reference held.
  143. */
  144. struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
  145. {
  146. struct extent_buffer *eb;
  147. while (1) {
  148. eb = btrfs_root_node(root);
  149. btrfs_tree_lock(eb);
  150. spin_lock(&root->node_lock);
  151. if (eb == root->node) {
  152. spin_unlock(&root->node_lock);
  153. break;
  154. }
  155. spin_unlock(&root->node_lock);
  156. btrfs_tree_unlock(eb);
  157. free_extent_buffer(eb);
  158. }
  159. return eb;
  160. }
  161. /* cowonly root (everything not a reference counted cow subvolume), just get
  162. * put onto a simple dirty list. transaction.c walks this to make sure they
  163. * get properly updated on disk.
  164. */
  165. static void add_root_to_dirty_list(struct btrfs_root *root)
  166. {
  167. if (root->track_dirty && list_empty(&root->dirty_list)) {
  168. list_add(&root->dirty_list,
  169. &root->fs_info->dirty_cowonly_roots);
  170. }
  171. }
  172. /*
  173. * used by snapshot creation to make a copy of a root for a tree with
  174. * a given objectid. The buffer with the new root node is returned in
  175. * cow_ret, and this func returns zero on success or a negative error code.
  176. */
  177. int btrfs_copy_root(struct btrfs_trans_handle *trans,
  178. struct btrfs_root *root,
  179. struct extent_buffer *buf,
  180. struct extent_buffer **cow_ret, u64 new_root_objectid)
  181. {
  182. struct extent_buffer *cow;
  183. u32 nritems;
  184. int ret = 0;
  185. int level;
  186. struct btrfs_disk_key disk_key;
  187. WARN_ON(root->ref_cows && trans->transid !=
  188. root->fs_info->running_transaction->transid);
  189. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  190. level = btrfs_header_level(buf);
  191. nritems = btrfs_header_nritems(buf);
  192. if (level == 0)
  193. btrfs_item_key(buf, &disk_key, 0);
  194. else
  195. btrfs_node_key(buf, &disk_key, 0);
  196. cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
  197. new_root_objectid, &disk_key, level,
  198. buf->start, 0);
  199. if (IS_ERR(cow))
  200. return PTR_ERR(cow);
  201. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  202. btrfs_set_header_bytenr(cow, cow->start);
  203. btrfs_set_header_generation(cow, trans->transid);
  204. btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
  205. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
  206. BTRFS_HEADER_FLAG_RELOC);
  207. if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
  208. btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
  209. else
  210. btrfs_set_header_owner(cow, new_root_objectid);
  211. write_extent_buffer(cow, root->fs_info->fsid,
  212. (unsigned long)btrfs_header_fsid(cow),
  213. BTRFS_FSID_SIZE);
  214. WARN_ON(btrfs_header_generation(buf) > trans->transid);
  215. if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
  216. ret = btrfs_inc_ref(trans, root, cow, 1);
  217. else
  218. ret = btrfs_inc_ref(trans, root, cow, 0);
  219. if (ret)
  220. return ret;
  221. btrfs_mark_buffer_dirty(cow);
  222. *cow_ret = cow;
  223. return 0;
  224. }
  225. /*
  226. * check if the tree block can be shared by multiple trees
  227. */
  228. int btrfs_block_can_be_shared(struct btrfs_root *root,
  229. struct extent_buffer *buf)
  230. {
  231. /*
  232. * Tree blocks not in refernece counted trees and tree roots
  233. * are never shared. If a block was allocated after the last
  234. * snapshot and the block was not allocated by tree relocation,
  235. * we know the block is not shared.
  236. */
  237. if (root->ref_cows &&
  238. buf != root->node && buf != root->commit_root &&
  239. (btrfs_header_generation(buf) <=
  240. btrfs_root_last_snapshot(&root->root_item) ||
  241. btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
  242. return 1;
  243. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  244. if (root->ref_cows &&
  245. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  246. return 1;
  247. #endif
  248. return 0;
  249. }
  250. static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
  251. struct btrfs_root *root,
  252. struct extent_buffer *buf,
  253. struct extent_buffer *cow)
  254. {
  255. u64 refs;
  256. u64 owner;
  257. u64 flags;
  258. u64 new_flags = 0;
  259. int ret;
  260. /*
  261. * Backrefs update rules:
  262. *
  263. * Always use full backrefs for extent pointers in tree block
  264. * allocated by tree relocation.
  265. *
  266. * If a shared tree block is no longer referenced by its owner
  267. * tree (btrfs_header_owner(buf) == root->root_key.objectid),
  268. * use full backrefs for extent pointers in tree block.
  269. *
  270. * If a tree block is been relocating
  271. * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
  272. * use full backrefs for extent pointers in tree block.
  273. * The reason for this is some operations (such as drop tree)
  274. * are only allowed for blocks use full backrefs.
  275. */
  276. if (btrfs_block_can_be_shared(root, buf)) {
  277. ret = btrfs_lookup_extent_info(trans, root, buf->start,
  278. buf->len, &refs, &flags);
  279. BUG_ON(ret);
  280. BUG_ON(refs == 0);
  281. } else {
  282. refs = 1;
  283. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
  284. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  285. flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
  286. else
  287. flags = 0;
  288. }
  289. owner = btrfs_header_owner(buf);
  290. BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
  291. !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
  292. if (refs > 1) {
  293. if ((owner == root->root_key.objectid ||
  294. root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
  295. !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
  296. ret = btrfs_inc_ref(trans, root, buf, 1);
  297. BUG_ON(ret);
  298. if (root->root_key.objectid ==
  299. BTRFS_TREE_RELOC_OBJECTID) {
  300. ret = btrfs_dec_ref(trans, root, buf, 0);
  301. BUG_ON(ret);
  302. ret = btrfs_inc_ref(trans, root, cow, 1);
  303. BUG_ON(ret);
  304. }
  305. new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
  306. } else {
  307. if (root->root_key.objectid ==
  308. BTRFS_TREE_RELOC_OBJECTID)
  309. ret = btrfs_inc_ref(trans, root, cow, 1);
  310. else
  311. ret = btrfs_inc_ref(trans, root, cow, 0);
  312. BUG_ON(ret);
  313. }
  314. if (new_flags != 0) {
  315. ret = btrfs_set_disk_extent_flags(trans, root,
  316. buf->start,
  317. buf->len,
  318. new_flags, 0);
  319. BUG_ON(ret);
  320. }
  321. } else {
  322. if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
  323. if (root->root_key.objectid ==
  324. BTRFS_TREE_RELOC_OBJECTID)
  325. ret = btrfs_inc_ref(trans, root, cow, 1);
  326. else
  327. ret = btrfs_inc_ref(trans, root, cow, 0);
  328. BUG_ON(ret);
  329. ret = btrfs_dec_ref(trans, root, buf, 1);
  330. BUG_ON(ret);
  331. }
  332. clean_tree_block(trans, root, buf);
  333. }
  334. return 0;
  335. }
  336. /*
  337. * does the dirty work in cow of a single block. The parent block (if
  338. * supplied) is updated to point to the new cow copy. The new buffer is marked
  339. * dirty and returned locked. If you modify the block it needs to be marked
  340. * dirty again.
  341. *
  342. * search_start -- an allocation hint for the new block
  343. *
  344. * empty_size -- a hint that you plan on doing more cow. This is the size in
  345. * bytes the allocator should try to find free next to the block it returns.
  346. * This is just a hint and may be ignored by the allocator.
  347. */
  348. static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
  349. struct btrfs_root *root,
  350. struct extent_buffer *buf,
  351. struct extent_buffer *parent, int parent_slot,
  352. struct extent_buffer **cow_ret,
  353. u64 search_start, u64 empty_size)
  354. {
  355. struct btrfs_disk_key disk_key;
  356. struct extent_buffer *cow;
  357. int level;
  358. int unlock_orig = 0;
  359. u64 parent_start;
  360. if (*cow_ret == buf)
  361. unlock_orig = 1;
  362. btrfs_assert_tree_locked(buf);
  363. WARN_ON(root->ref_cows && trans->transid !=
  364. root->fs_info->running_transaction->transid);
  365. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  366. level = btrfs_header_level(buf);
  367. if (level == 0)
  368. btrfs_item_key(buf, &disk_key, 0);
  369. else
  370. btrfs_node_key(buf, &disk_key, 0);
  371. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
  372. if (parent)
  373. parent_start = parent->start;
  374. else
  375. parent_start = 0;
  376. } else
  377. parent_start = 0;
  378. cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
  379. root->root_key.objectid, &disk_key,
  380. level, search_start, empty_size);
  381. if (IS_ERR(cow))
  382. return PTR_ERR(cow);
  383. /* cow is set to blocking by btrfs_init_new_buffer */
  384. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  385. btrfs_set_header_bytenr(cow, cow->start);
  386. btrfs_set_header_generation(cow, trans->transid);
  387. btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
  388. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
  389. BTRFS_HEADER_FLAG_RELOC);
  390. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  391. btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
  392. else
  393. btrfs_set_header_owner(cow, root->root_key.objectid);
  394. write_extent_buffer(cow, root->fs_info->fsid,
  395. (unsigned long)btrfs_header_fsid(cow),
  396. BTRFS_FSID_SIZE);
  397. update_ref_for_cow(trans, root, buf, cow);
  398. if (buf == root->node) {
  399. WARN_ON(parent && parent != buf);
  400. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
  401. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  402. parent_start = buf->start;
  403. else
  404. parent_start = 0;
  405. spin_lock(&root->node_lock);
  406. root->node = cow;
  407. extent_buffer_get(cow);
  408. spin_unlock(&root->node_lock);
  409. btrfs_free_tree_block(trans, root, buf->start, buf->len,
  410. parent_start, root->root_key.objectid, level);
  411. free_extent_buffer(buf);
  412. add_root_to_dirty_list(root);
  413. } else {
  414. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  415. parent_start = parent->start;
  416. else
  417. parent_start = 0;
  418. WARN_ON(trans->transid != btrfs_header_generation(parent));
  419. btrfs_set_node_blockptr(parent, parent_slot,
  420. cow->start);
  421. btrfs_set_node_ptr_generation(parent, parent_slot,
  422. trans->transid);
  423. btrfs_mark_buffer_dirty(parent);
  424. btrfs_free_tree_block(trans, root, buf->start, buf->len,
  425. parent_start, root->root_key.objectid, level);
  426. }
  427. if (unlock_orig)
  428. btrfs_tree_unlock(buf);
  429. free_extent_buffer(buf);
  430. btrfs_mark_buffer_dirty(cow);
  431. *cow_ret = cow;
  432. return 0;
  433. }
  434. static inline int should_cow_block(struct btrfs_trans_handle *trans,
  435. struct btrfs_root *root,
  436. struct extent_buffer *buf)
  437. {
  438. if (btrfs_header_generation(buf) == trans->transid &&
  439. !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
  440. !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
  441. btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
  442. return 0;
  443. return 1;
  444. }
  445. /*
  446. * cows a single block, see __btrfs_cow_block for the real work.
  447. * This version of it has extra checks so that a block isn't cow'd more than
  448. * once per transaction, as long as it hasn't been written yet
  449. */
  450. noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
  451. struct btrfs_root *root, struct extent_buffer *buf,
  452. struct extent_buffer *parent, int parent_slot,
  453. struct extent_buffer **cow_ret)
  454. {
  455. u64 search_start;
  456. int ret;
  457. if (trans->transaction != root->fs_info->running_transaction) {
  458. printk(KERN_CRIT "trans %llu running %llu\n",
  459. (unsigned long long)trans->transid,
  460. (unsigned long long)
  461. root->fs_info->running_transaction->transid);
  462. WARN_ON(1);
  463. }
  464. if (trans->transid != root->fs_info->generation) {
  465. printk(KERN_CRIT "trans %llu running %llu\n",
  466. (unsigned long long)trans->transid,
  467. (unsigned long long)root->fs_info->generation);
  468. WARN_ON(1);
  469. }
  470. if (!should_cow_block(trans, root, buf)) {
  471. *cow_ret = buf;
  472. return 0;
  473. }
  474. search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
  475. if (parent)
  476. btrfs_set_lock_blocking(parent);
  477. btrfs_set_lock_blocking(buf);
  478. ret = __btrfs_cow_block(trans, root, buf, parent,
  479. parent_slot, cow_ret, search_start, 0);
  480. return ret;
  481. }
  482. /*
  483. * helper function for defrag to decide if two blocks pointed to by a
  484. * node are actually close by
  485. */
  486. static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
  487. {
  488. if (blocknr < other && other - (blocknr + blocksize) < 32768)
  489. return 1;
  490. if (blocknr > other && blocknr - (other + blocksize) < 32768)
  491. return 1;
  492. return 0;
  493. }
  494. /*
  495. * compare two keys in a memcmp fashion
  496. */
  497. static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
  498. {
  499. struct btrfs_key k1;
  500. btrfs_disk_key_to_cpu(&k1, disk);
  501. return btrfs_comp_cpu_keys(&k1, k2);
  502. }
  503. /*
  504. * same as comp_keys only with two btrfs_key's
  505. */
  506. int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
  507. {
  508. if (k1->objectid > k2->objectid)
  509. return 1;
  510. if (k1->objectid < k2->objectid)
  511. return -1;
  512. if (k1->type > k2->type)
  513. return 1;
  514. if (k1->type < k2->type)
  515. return -1;
  516. if (k1->offset > k2->offset)
  517. return 1;
  518. if (k1->offset < k2->offset)
  519. return -1;
  520. return 0;
  521. }
  522. /*
  523. * this is used by the defrag code to go through all the
  524. * leaves pointed to by a node and reallocate them so that
  525. * disk order is close to key order
  526. */
  527. int btrfs_realloc_node(struct btrfs_trans_handle *trans,
  528. struct btrfs_root *root, struct extent_buffer *parent,
  529. int start_slot, int cache_only, u64 *last_ret,
  530. struct btrfs_key *progress)
  531. {
  532. struct extent_buffer *cur;
  533. u64 blocknr;
  534. u64 gen;
  535. u64 search_start = *last_ret;
  536. u64 last_block = 0;
  537. u64 other;
  538. u32 parent_nritems;
  539. int end_slot;
  540. int i;
  541. int err = 0;
  542. int parent_level;
  543. int uptodate;
  544. u32 blocksize;
  545. int progress_passed = 0;
  546. struct btrfs_disk_key disk_key;
  547. parent_level = btrfs_header_level(parent);
  548. if (cache_only && parent_level != 1)
  549. return 0;
  550. if (trans->transaction != root->fs_info->running_transaction)
  551. WARN_ON(1);
  552. if (trans->transid != root->fs_info->generation)
  553. WARN_ON(1);
  554. parent_nritems = btrfs_header_nritems(parent);
  555. blocksize = btrfs_level_size(root, parent_level - 1);
  556. end_slot = parent_nritems;
  557. if (parent_nritems == 1)
  558. return 0;
  559. btrfs_set_lock_blocking(parent);
  560. for (i = start_slot; i < end_slot; i++) {
  561. int close = 1;
  562. if (!parent->map_token) {
  563. map_extent_buffer(parent,
  564. btrfs_node_key_ptr_offset(i),
  565. sizeof(struct btrfs_key_ptr),
  566. &parent->map_token, &parent->kaddr,
  567. &parent->map_start, &parent->map_len,
  568. KM_USER1);
  569. }
  570. btrfs_node_key(parent, &disk_key, i);
  571. if (!progress_passed && comp_keys(&disk_key, progress) < 0)
  572. continue;
  573. progress_passed = 1;
  574. blocknr = btrfs_node_blockptr(parent, i);
  575. gen = btrfs_node_ptr_generation(parent, i);
  576. if (last_block == 0)
  577. last_block = blocknr;
  578. if (i > 0) {
  579. other = btrfs_node_blockptr(parent, i - 1);
  580. close = close_blocks(blocknr, other, blocksize);
  581. }
  582. if (!close && i < end_slot - 2) {
  583. other = btrfs_node_blockptr(parent, i + 1);
  584. close = close_blocks(blocknr, other, blocksize);
  585. }
  586. if (close) {
  587. last_block = blocknr;
  588. continue;
  589. }
  590. if (parent->map_token) {
  591. unmap_extent_buffer(parent, parent->map_token,
  592. KM_USER1);
  593. parent->map_token = NULL;
  594. }
  595. cur = btrfs_find_tree_block(root, blocknr, blocksize);
  596. if (cur)
  597. uptodate = btrfs_buffer_uptodate(cur, gen);
  598. else
  599. uptodate = 0;
  600. if (!cur || !uptodate) {
  601. if (cache_only) {
  602. free_extent_buffer(cur);
  603. continue;
  604. }
  605. if (!cur) {
  606. cur = read_tree_block(root, blocknr,
  607. blocksize, gen);
  608. } else if (!uptodate) {
  609. btrfs_read_buffer(cur, gen);
  610. }
  611. }
  612. if (search_start == 0)
  613. search_start = last_block;
  614. btrfs_tree_lock(cur);
  615. btrfs_set_lock_blocking(cur);
  616. err = __btrfs_cow_block(trans, root, cur, parent, i,
  617. &cur, search_start,
  618. min(16 * blocksize,
  619. (end_slot - i) * blocksize));
  620. if (err) {
  621. btrfs_tree_unlock(cur);
  622. free_extent_buffer(cur);
  623. break;
  624. }
  625. search_start = cur->start;
  626. last_block = cur->start;
  627. *last_ret = search_start;
  628. btrfs_tree_unlock(cur);
  629. free_extent_buffer(cur);
  630. }
  631. if (parent->map_token) {
  632. unmap_extent_buffer(parent, parent->map_token,
  633. KM_USER1);
  634. parent->map_token = NULL;
  635. }
  636. return err;
  637. }
  638. /*
  639. * The leaf data grows from end-to-front in the node.
  640. * this returns the address of the start of the last item,
  641. * which is the stop of the leaf data stack
  642. */
  643. static inline unsigned int leaf_data_end(struct btrfs_root *root,
  644. struct extent_buffer *leaf)
  645. {
  646. u32 nr = btrfs_header_nritems(leaf);
  647. if (nr == 0)
  648. return BTRFS_LEAF_DATA_SIZE(root);
  649. return btrfs_item_offset_nr(leaf, nr - 1);
  650. }
  651. /*
  652. * extra debugging checks to make sure all the items in a key are
  653. * well formed and in the proper order
  654. */
  655. static int check_node(struct btrfs_root *root, struct btrfs_path *path,
  656. int level)
  657. {
  658. struct extent_buffer *parent = NULL;
  659. struct extent_buffer *node = path->nodes[level];
  660. struct btrfs_disk_key parent_key;
  661. struct btrfs_disk_key node_key;
  662. int parent_slot;
  663. int slot;
  664. struct btrfs_key cpukey;
  665. u32 nritems = btrfs_header_nritems(node);
  666. if (path->nodes[level + 1])
  667. parent = path->nodes[level + 1];
  668. slot = path->slots[level];
  669. BUG_ON(nritems == 0);
  670. if (parent) {
  671. parent_slot = path->slots[level + 1];
  672. btrfs_node_key(parent, &parent_key, parent_slot);
  673. btrfs_node_key(node, &node_key, 0);
  674. BUG_ON(memcmp(&parent_key, &node_key,
  675. sizeof(struct btrfs_disk_key)));
  676. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  677. btrfs_header_bytenr(node));
  678. }
  679. BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
  680. if (slot != 0) {
  681. btrfs_node_key_to_cpu(node, &cpukey, slot - 1);
  682. btrfs_node_key(node, &node_key, slot);
  683. BUG_ON(comp_keys(&node_key, &cpukey) <= 0);
  684. }
  685. if (slot < nritems - 1) {
  686. btrfs_node_key_to_cpu(node, &cpukey, slot + 1);
  687. btrfs_node_key(node, &node_key, slot);
  688. BUG_ON(comp_keys(&node_key, &cpukey) >= 0);
  689. }
  690. return 0;
  691. }
  692. /*
  693. * extra checking to make sure all the items in a leaf are
  694. * well formed and in the proper order
  695. */
  696. static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
  697. int level)
  698. {
  699. struct extent_buffer *leaf = path->nodes[level];
  700. struct extent_buffer *parent = NULL;
  701. int parent_slot;
  702. struct btrfs_key cpukey;
  703. struct btrfs_disk_key parent_key;
  704. struct btrfs_disk_key leaf_key;
  705. int slot = path->slots[0];
  706. u32 nritems = btrfs_header_nritems(leaf);
  707. if (path->nodes[level + 1])
  708. parent = path->nodes[level + 1];
  709. if (nritems == 0)
  710. return 0;
  711. if (parent) {
  712. parent_slot = path->slots[level + 1];
  713. btrfs_node_key(parent, &parent_key, parent_slot);
  714. btrfs_item_key(leaf, &leaf_key, 0);
  715. BUG_ON(memcmp(&parent_key, &leaf_key,
  716. sizeof(struct btrfs_disk_key)));
  717. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  718. btrfs_header_bytenr(leaf));
  719. }
  720. if (slot != 0 && slot < nritems - 1) {
  721. btrfs_item_key(leaf, &leaf_key, slot);
  722. btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1);
  723. if (comp_keys(&leaf_key, &cpukey) <= 0) {
  724. btrfs_print_leaf(root, leaf);
  725. printk(KERN_CRIT "slot %d offset bad key\n", slot);
  726. BUG_ON(1);
  727. }
  728. if (btrfs_item_offset_nr(leaf, slot - 1) !=
  729. btrfs_item_end_nr(leaf, slot)) {
  730. btrfs_print_leaf(root, leaf);
  731. printk(KERN_CRIT "slot %d offset bad\n", slot);
  732. BUG_ON(1);
  733. }
  734. }
  735. if (slot < nritems - 1) {
  736. btrfs_item_key(leaf, &leaf_key, slot);
  737. btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1);
  738. BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0);
  739. if (btrfs_item_offset_nr(leaf, slot) !=
  740. btrfs_item_end_nr(leaf, slot + 1)) {
  741. btrfs_print_leaf(root, leaf);
  742. printk(KERN_CRIT "slot %d offset bad\n", slot);
  743. BUG_ON(1);
  744. }
  745. }
  746. BUG_ON(btrfs_item_offset_nr(leaf, 0) +
  747. btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root));
  748. return 0;
  749. }
  750. static noinline int check_block(struct btrfs_root *root,
  751. struct btrfs_path *path, int level)
  752. {
  753. return 0;
  754. if (level == 0)
  755. return check_leaf(root, path, level);
  756. return check_node(root, path, level);
  757. }
  758. /*
  759. * search for key in the extent_buffer. The items start at offset p,
  760. * and they are item_size apart. There are 'max' items in p.
  761. *
  762. * the slot in the array is returned via slot, and it points to
  763. * the place where you would insert key if it is not found in
  764. * the array.
  765. *
  766. * slot may point to max if the key is bigger than all of the keys
  767. */
  768. static noinline int generic_bin_search(struct extent_buffer *eb,
  769. unsigned long p,
  770. int item_size, struct btrfs_key *key,
  771. int max, int *slot)
  772. {
  773. int low = 0;
  774. int high = max;
  775. int mid;
  776. int ret;
  777. struct btrfs_disk_key *tmp = NULL;
  778. struct btrfs_disk_key unaligned;
  779. unsigned long offset;
  780. char *map_token = NULL;
  781. char *kaddr = NULL;
  782. unsigned long map_start = 0;
  783. unsigned long map_len = 0;
  784. int err;
  785. while (low < high) {
  786. mid = (low + high) / 2;
  787. offset = p + mid * item_size;
  788. if (!map_token || offset < map_start ||
  789. (offset + sizeof(struct btrfs_disk_key)) >
  790. map_start + map_len) {
  791. if (map_token) {
  792. unmap_extent_buffer(eb, map_token, KM_USER0);
  793. map_token = NULL;
  794. }
  795. err = map_private_extent_buffer(eb, offset,
  796. sizeof(struct btrfs_disk_key),
  797. &map_token, &kaddr,
  798. &map_start, &map_len, KM_USER0);
  799. if (!err) {
  800. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  801. map_start);
  802. } else {
  803. read_extent_buffer(eb, &unaligned,
  804. offset, sizeof(unaligned));
  805. tmp = &unaligned;
  806. }
  807. } else {
  808. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  809. map_start);
  810. }
  811. ret = comp_keys(tmp, key);
  812. if (ret < 0)
  813. low = mid + 1;
  814. else if (ret > 0)
  815. high = mid;
  816. else {
  817. *slot = mid;
  818. if (map_token)
  819. unmap_extent_buffer(eb, map_token, KM_USER0);
  820. return 0;
  821. }
  822. }
  823. *slot = low;
  824. if (map_token)
  825. unmap_extent_buffer(eb, map_token, KM_USER0);
  826. return 1;
  827. }
  828. /*
  829. * simple bin_search frontend that does the right thing for
  830. * leaves vs nodes
  831. */
  832. static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  833. int level, int *slot)
  834. {
  835. if (level == 0) {
  836. return generic_bin_search(eb,
  837. offsetof(struct btrfs_leaf, items),
  838. sizeof(struct btrfs_item),
  839. key, btrfs_header_nritems(eb),
  840. slot);
  841. } else {
  842. return generic_bin_search(eb,
  843. offsetof(struct btrfs_node, ptrs),
  844. sizeof(struct btrfs_key_ptr),
  845. key, btrfs_header_nritems(eb),
  846. slot);
  847. }
  848. return -1;
  849. }
  850. int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  851. int level, int *slot)
  852. {
  853. return bin_search(eb, key, level, slot);
  854. }
  855. /* given a node and slot number, this reads the blocks it points to. The
  856. * extent buffer is returned with a reference taken (but unlocked).
  857. * NULL is returned on error.
  858. */
  859. static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
  860. struct extent_buffer *parent, int slot)
  861. {
  862. int level = btrfs_header_level(parent);
  863. if (slot < 0)
  864. return NULL;
  865. if (slot >= btrfs_header_nritems(parent))
  866. return NULL;
  867. BUG_ON(level == 0);
  868. return read_tree_block(root, btrfs_node_blockptr(parent, slot),
  869. btrfs_level_size(root, level - 1),
  870. btrfs_node_ptr_generation(parent, slot));
  871. }
  872. /*
  873. * node level balancing, used to make sure nodes are in proper order for
  874. * item deletion. We balance from the top down, so we have to make sure
  875. * that a deletion won't leave an node completely empty later on.
  876. */
  877. static noinline int balance_level(struct btrfs_trans_handle *trans,
  878. struct btrfs_root *root,
  879. struct btrfs_path *path, int level)
  880. {
  881. struct extent_buffer *right = NULL;
  882. struct extent_buffer *mid;
  883. struct extent_buffer *left = NULL;
  884. struct extent_buffer *parent = NULL;
  885. int ret = 0;
  886. int wret;
  887. int pslot;
  888. int orig_slot = path->slots[level];
  889. int err_on_enospc = 0;
  890. u64 orig_ptr;
  891. if (level == 0)
  892. return 0;
  893. mid = path->nodes[level];
  894. WARN_ON(!path->locks[level]);
  895. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  896. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  897. if (level < BTRFS_MAX_LEVEL - 1)
  898. parent = path->nodes[level + 1];
  899. pslot = path->slots[level + 1];
  900. /*
  901. * deal with the case where there is only one pointer in the root
  902. * by promoting the node below to a root
  903. */
  904. if (!parent) {
  905. struct extent_buffer *child;
  906. if (btrfs_header_nritems(mid) != 1)
  907. return 0;
  908. /* promote the child to a root */
  909. child = read_node_slot(root, mid, 0);
  910. BUG_ON(!child);
  911. btrfs_tree_lock(child);
  912. btrfs_set_lock_blocking(child);
  913. ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
  914. BUG_ON(ret);
  915. spin_lock(&root->node_lock);
  916. root->node = child;
  917. spin_unlock(&root->node_lock);
  918. add_root_to_dirty_list(root);
  919. btrfs_tree_unlock(child);
  920. path->locks[level] = 0;
  921. path->nodes[level] = NULL;
  922. clean_tree_block(trans, root, mid);
  923. btrfs_tree_unlock(mid);
  924. /* once for the path */
  925. free_extent_buffer(mid);
  926. ret = btrfs_free_tree_block(trans, root, mid->start, mid->len,
  927. 0, root->root_key.objectid, level);
  928. /* once for the root ptr */
  929. free_extent_buffer(mid);
  930. return ret;
  931. }
  932. if (btrfs_header_nritems(mid) >
  933. BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
  934. return 0;
  935. if (btrfs_header_nritems(mid) < 2)
  936. err_on_enospc = 1;
  937. left = read_node_slot(root, parent, pslot - 1);
  938. if (left) {
  939. btrfs_tree_lock(left);
  940. btrfs_set_lock_blocking(left);
  941. wret = btrfs_cow_block(trans, root, left,
  942. parent, pslot - 1, &left);
  943. if (wret) {
  944. ret = wret;
  945. goto enospc;
  946. }
  947. }
  948. right = read_node_slot(root, parent, pslot + 1);
  949. if (right) {
  950. btrfs_tree_lock(right);
  951. btrfs_set_lock_blocking(right);
  952. wret = btrfs_cow_block(trans, root, right,
  953. parent, pslot + 1, &right);
  954. if (wret) {
  955. ret = wret;
  956. goto enospc;
  957. }
  958. }
  959. /* first, try to make some room in the middle buffer */
  960. if (left) {
  961. orig_slot += btrfs_header_nritems(left);
  962. wret = push_node_left(trans, root, left, mid, 1);
  963. if (wret < 0)
  964. ret = wret;
  965. if (btrfs_header_nritems(mid) < 2)
  966. err_on_enospc = 1;
  967. }
  968. /*
  969. * then try to empty the right most buffer into the middle
  970. */
  971. if (right) {
  972. wret = push_node_left(trans, root, mid, right, 1);
  973. if (wret < 0 && wret != -ENOSPC)
  974. ret = wret;
  975. if (btrfs_header_nritems(right) == 0) {
  976. u64 bytenr = right->start;
  977. u32 blocksize = right->len;
  978. clean_tree_block(trans, root, right);
  979. btrfs_tree_unlock(right);
  980. free_extent_buffer(right);
  981. right = NULL;
  982. wret = del_ptr(trans, root, path, level + 1, pslot +
  983. 1);
  984. if (wret)
  985. ret = wret;
  986. wret = btrfs_free_tree_block(trans, root,
  987. bytenr, blocksize, 0,
  988. root->root_key.objectid,
  989. level);
  990. if (wret)
  991. ret = wret;
  992. } else {
  993. struct btrfs_disk_key right_key;
  994. btrfs_node_key(right, &right_key, 0);
  995. btrfs_set_node_key(parent, &right_key, pslot + 1);
  996. btrfs_mark_buffer_dirty(parent);
  997. }
  998. }
  999. if (btrfs_header_nritems(mid) == 1) {
  1000. /*
  1001. * we're not allowed to leave a node with one item in the
  1002. * tree during a delete. A deletion from lower in the tree
  1003. * could try to delete the only pointer in this node.
  1004. * So, pull some keys from the left.
  1005. * There has to be a left pointer at this point because
  1006. * otherwise we would have pulled some pointers from the
  1007. * right
  1008. */
  1009. BUG_ON(!left);
  1010. wret = balance_node_right(trans, root, mid, left);
  1011. if (wret < 0) {
  1012. ret = wret;
  1013. goto enospc;
  1014. }
  1015. if (wret == 1) {
  1016. wret = push_node_left(trans, root, left, mid, 1);
  1017. if (wret < 0)
  1018. ret = wret;
  1019. }
  1020. BUG_ON(wret == 1);
  1021. }
  1022. if (btrfs_header_nritems(mid) == 0) {
  1023. /* we've managed to empty the middle node, drop it */
  1024. u64 bytenr = mid->start;
  1025. u32 blocksize = mid->len;
  1026. clean_tree_block(trans, root, mid);
  1027. btrfs_tree_unlock(mid);
  1028. free_extent_buffer(mid);
  1029. mid = NULL;
  1030. wret = del_ptr(trans, root, path, level + 1, pslot);
  1031. if (wret)
  1032. ret = wret;
  1033. wret = btrfs_free_tree_block(trans, root, bytenr, blocksize,
  1034. 0, root->root_key.objectid, level);
  1035. if (wret)
  1036. ret = wret;
  1037. } else {
  1038. /* update the parent key to reflect our changes */
  1039. struct btrfs_disk_key mid_key;
  1040. btrfs_node_key(mid, &mid_key, 0);
  1041. btrfs_set_node_key(parent, &mid_key, pslot);
  1042. btrfs_mark_buffer_dirty(parent);
  1043. }
  1044. /* update the path */
  1045. if (left) {
  1046. if (btrfs_header_nritems(left) > orig_slot) {
  1047. extent_buffer_get(left);
  1048. /* left was locked after cow */
  1049. path->nodes[level] = left;
  1050. path->slots[level + 1] -= 1;
  1051. path->slots[level] = orig_slot;
  1052. if (mid) {
  1053. btrfs_tree_unlock(mid);
  1054. free_extent_buffer(mid);
  1055. }
  1056. } else {
  1057. orig_slot -= btrfs_header_nritems(left);
  1058. path->slots[level] = orig_slot;
  1059. }
  1060. }
  1061. /* double check we haven't messed things up */
  1062. check_block(root, path, level);
  1063. if (orig_ptr !=
  1064. btrfs_node_blockptr(path->nodes[level], path->slots[level]))
  1065. BUG();
  1066. enospc:
  1067. if (right) {
  1068. btrfs_tree_unlock(right);
  1069. free_extent_buffer(right);
  1070. }
  1071. if (left) {
  1072. if (path->nodes[level] != left)
  1073. btrfs_tree_unlock(left);
  1074. free_extent_buffer(left);
  1075. }
  1076. return ret;
  1077. }
  1078. /* Node balancing for insertion. Here we only split or push nodes around
  1079. * when they are completely full. This is also done top down, so we
  1080. * have to be pessimistic.
  1081. */
  1082. static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
  1083. struct btrfs_root *root,
  1084. struct btrfs_path *path, int level)
  1085. {
  1086. struct extent_buffer *right = NULL;
  1087. struct extent_buffer *mid;
  1088. struct extent_buffer *left = NULL;
  1089. struct extent_buffer *parent = NULL;
  1090. int ret = 0;
  1091. int wret;
  1092. int pslot;
  1093. int orig_slot = path->slots[level];
  1094. u64 orig_ptr;
  1095. if (level == 0)
  1096. return 1;
  1097. mid = path->nodes[level];
  1098. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  1099. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  1100. if (level < BTRFS_MAX_LEVEL - 1)
  1101. parent = path->nodes[level + 1];
  1102. pslot = path->slots[level + 1];
  1103. if (!parent)
  1104. return 1;
  1105. left = read_node_slot(root, parent, pslot - 1);
  1106. /* first, try to make some room in the middle buffer */
  1107. if (left) {
  1108. u32 left_nr;
  1109. btrfs_tree_lock(left);
  1110. btrfs_set_lock_blocking(left);
  1111. left_nr = btrfs_header_nritems(left);
  1112. if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1113. wret = 1;
  1114. } else {
  1115. ret = btrfs_cow_block(trans, root, left, parent,
  1116. pslot - 1, &left);
  1117. if (ret)
  1118. wret = 1;
  1119. else {
  1120. wret = push_node_left(trans, root,
  1121. left, mid, 0);
  1122. }
  1123. }
  1124. if (wret < 0)
  1125. ret = wret;
  1126. if (wret == 0) {
  1127. struct btrfs_disk_key disk_key;
  1128. orig_slot += left_nr;
  1129. btrfs_node_key(mid, &disk_key, 0);
  1130. btrfs_set_node_key(parent, &disk_key, pslot);
  1131. btrfs_mark_buffer_dirty(parent);
  1132. if (btrfs_header_nritems(left) > orig_slot) {
  1133. path->nodes[level] = left;
  1134. path->slots[level + 1] -= 1;
  1135. path->slots[level] = orig_slot;
  1136. btrfs_tree_unlock(mid);
  1137. free_extent_buffer(mid);
  1138. } else {
  1139. orig_slot -=
  1140. btrfs_header_nritems(left);
  1141. path->slots[level] = orig_slot;
  1142. btrfs_tree_unlock(left);
  1143. free_extent_buffer(left);
  1144. }
  1145. return 0;
  1146. }
  1147. btrfs_tree_unlock(left);
  1148. free_extent_buffer(left);
  1149. }
  1150. right = read_node_slot(root, parent, pslot + 1);
  1151. /*
  1152. * then try to empty the right most buffer into the middle
  1153. */
  1154. if (right) {
  1155. u32 right_nr;
  1156. btrfs_tree_lock(right);
  1157. btrfs_set_lock_blocking(right);
  1158. right_nr = btrfs_header_nritems(right);
  1159. if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1160. wret = 1;
  1161. } else {
  1162. ret = btrfs_cow_block(trans, root, right,
  1163. parent, pslot + 1,
  1164. &right);
  1165. if (ret)
  1166. wret = 1;
  1167. else {
  1168. wret = balance_node_right(trans, root,
  1169. right, mid);
  1170. }
  1171. }
  1172. if (wret < 0)
  1173. ret = wret;
  1174. if (wret == 0) {
  1175. struct btrfs_disk_key disk_key;
  1176. btrfs_node_key(right, &disk_key, 0);
  1177. btrfs_set_node_key(parent, &disk_key, pslot + 1);
  1178. btrfs_mark_buffer_dirty(parent);
  1179. if (btrfs_header_nritems(mid) <= orig_slot) {
  1180. path->nodes[level] = right;
  1181. path->slots[level + 1] += 1;
  1182. path->slots[level] = orig_slot -
  1183. btrfs_header_nritems(mid);
  1184. btrfs_tree_unlock(mid);
  1185. free_extent_buffer(mid);
  1186. } else {
  1187. btrfs_tree_unlock(right);
  1188. free_extent_buffer(right);
  1189. }
  1190. return 0;
  1191. }
  1192. btrfs_tree_unlock(right);
  1193. free_extent_buffer(right);
  1194. }
  1195. return 1;
  1196. }
  1197. /*
  1198. * readahead one full node of leaves, finding things that are close
  1199. * to the block in 'slot', and triggering ra on them.
  1200. */
  1201. static void reada_for_search(struct btrfs_root *root,
  1202. struct btrfs_path *path,
  1203. int level, int slot, u64 objectid)
  1204. {
  1205. struct extent_buffer *node;
  1206. struct btrfs_disk_key disk_key;
  1207. u32 nritems;
  1208. u64 search;
  1209. u64 target;
  1210. u64 nread = 0;
  1211. int direction = path->reada;
  1212. struct extent_buffer *eb;
  1213. u32 nr;
  1214. u32 blocksize;
  1215. u32 nscan = 0;
  1216. if (level != 1)
  1217. return;
  1218. if (!path->nodes[level])
  1219. return;
  1220. node = path->nodes[level];
  1221. search = btrfs_node_blockptr(node, slot);
  1222. blocksize = btrfs_level_size(root, level - 1);
  1223. eb = btrfs_find_tree_block(root, search, blocksize);
  1224. if (eb) {
  1225. free_extent_buffer(eb);
  1226. return;
  1227. }
  1228. target = search;
  1229. nritems = btrfs_header_nritems(node);
  1230. nr = slot;
  1231. while (1) {
  1232. if (direction < 0) {
  1233. if (nr == 0)
  1234. break;
  1235. nr--;
  1236. } else if (direction > 0) {
  1237. nr++;
  1238. if (nr >= nritems)
  1239. break;
  1240. }
  1241. if (path->reada < 0 && objectid) {
  1242. btrfs_node_key(node, &disk_key, nr);
  1243. if (btrfs_disk_key_objectid(&disk_key) != objectid)
  1244. break;
  1245. }
  1246. search = btrfs_node_blockptr(node, nr);
  1247. if ((search <= target && target - search <= 65536) ||
  1248. (search > target && search - target <= 65536)) {
  1249. readahead_tree_block(root, search, blocksize,
  1250. btrfs_node_ptr_generation(node, nr));
  1251. nread += blocksize;
  1252. }
  1253. nscan++;
  1254. if ((nread > 65536 || nscan > 32))
  1255. break;
  1256. }
  1257. }
  1258. /*
  1259. * returns -EAGAIN if it had to drop the path, or zero if everything was in
  1260. * cache
  1261. */
  1262. static noinline int reada_for_balance(struct btrfs_root *root,
  1263. struct btrfs_path *path, int level)
  1264. {
  1265. int slot;
  1266. int nritems;
  1267. struct extent_buffer *parent;
  1268. struct extent_buffer *eb;
  1269. u64 gen;
  1270. u64 block1 = 0;
  1271. u64 block2 = 0;
  1272. int ret = 0;
  1273. int blocksize;
  1274. parent = path->nodes[level + 1];
  1275. if (!parent)
  1276. return 0;
  1277. nritems = btrfs_header_nritems(parent);
  1278. slot = path->slots[level + 1];
  1279. blocksize = btrfs_level_size(root, level);
  1280. if (slot > 0) {
  1281. block1 = btrfs_node_blockptr(parent, slot - 1);
  1282. gen = btrfs_node_ptr_generation(parent, slot - 1);
  1283. eb = btrfs_find_tree_block(root, block1, blocksize);
  1284. if (eb && btrfs_buffer_uptodate(eb, gen))
  1285. block1 = 0;
  1286. free_extent_buffer(eb);
  1287. }
  1288. if (slot + 1 < nritems) {
  1289. block2 = btrfs_node_blockptr(parent, slot + 1);
  1290. gen = btrfs_node_ptr_generation(parent, slot + 1);
  1291. eb = btrfs_find_tree_block(root, block2, blocksize);
  1292. if (eb && btrfs_buffer_uptodate(eb, gen))
  1293. block2 = 0;
  1294. free_extent_buffer(eb);
  1295. }
  1296. if (block1 || block2) {
  1297. ret = -EAGAIN;
  1298. /* release the whole path */
  1299. btrfs_release_path(root, path);
  1300. /* read the blocks */
  1301. if (block1)
  1302. readahead_tree_block(root, block1, blocksize, 0);
  1303. if (block2)
  1304. readahead_tree_block(root, block2, blocksize, 0);
  1305. if (block1) {
  1306. eb = read_tree_block(root, block1, blocksize, 0);
  1307. free_extent_buffer(eb);
  1308. }
  1309. if (block2) {
  1310. eb = read_tree_block(root, block2, blocksize, 0);
  1311. free_extent_buffer(eb);
  1312. }
  1313. }
  1314. return ret;
  1315. }
  1316. /*
  1317. * when we walk down the tree, it is usually safe to unlock the higher layers
  1318. * in the tree. The exceptions are when our path goes through slot 0, because
  1319. * operations on the tree might require changing key pointers higher up in the
  1320. * tree.
  1321. *
  1322. * callers might also have set path->keep_locks, which tells this code to keep
  1323. * the lock if the path points to the last slot in the block. This is part of
  1324. * walking through the tree, and selecting the next slot in the higher block.
  1325. *
  1326. * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
  1327. * if lowest_unlock is 1, level 0 won't be unlocked
  1328. */
  1329. static noinline void unlock_up(struct btrfs_path *path, int level,
  1330. int lowest_unlock)
  1331. {
  1332. int i;
  1333. int skip_level = level;
  1334. int no_skips = 0;
  1335. struct extent_buffer *t;
  1336. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1337. if (!path->nodes[i])
  1338. break;
  1339. if (!path->locks[i])
  1340. break;
  1341. if (!no_skips && path->slots[i] == 0) {
  1342. skip_level = i + 1;
  1343. continue;
  1344. }
  1345. if (!no_skips && path->keep_locks) {
  1346. u32 nritems;
  1347. t = path->nodes[i];
  1348. nritems = btrfs_header_nritems(t);
  1349. if (nritems < 1 || path->slots[i] >= nritems - 1) {
  1350. skip_level = i + 1;
  1351. continue;
  1352. }
  1353. }
  1354. if (skip_level < i && i >= lowest_unlock)
  1355. no_skips = 1;
  1356. t = path->nodes[i];
  1357. if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
  1358. btrfs_tree_unlock(t);
  1359. path->locks[i] = 0;
  1360. }
  1361. }
  1362. }
  1363. /*
  1364. * This releases any locks held in the path starting at level and
  1365. * going all the way up to the root.
  1366. *
  1367. * btrfs_search_slot will keep the lock held on higher nodes in a few
  1368. * corner cases, such as COW of the block at slot zero in the node. This
  1369. * ignores those rules, and it should only be called when there are no
  1370. * more updates to be done higher up in the tree.
  1371. */
  1372. noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
  1373. {
  1374. int i;
  1375. if (path->keep_locks)
  1376. return;
  1377. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1378. if (!path->nodes[i])
  1379. continue;
  1380. if (!path->locks[i])
  1381. continue;
  1382. btrfs_tree_unlock(path->nodes[i]);
  1383. path->locks[i] = 0;
  1384. }
  1385. }
  1386. /*
  1387. * helper function for btrfs_search_slot. The goal is to find a block
  1388. * in cache without setting the path to blocking. If we find the block
  1389. * we return zero and the path is unchanged.
  1390. *
  1391. * If we can't find the block, we set the path blocking and do some
  1392. * reada. -EAGAIN is returned and the search must be repeated.
  1393. */
  1394. static int
  1395. read_block_for_search(struct btrfs_trans_handle *trans,
  1396. struct btrfs_root *root, struct btrfs_path *p,
  1397. struct extent_buffer **eb_ret, int level, int slot,
  1398. struct btrfs_key *key)
  1399. {
  1400. u64 blocknr;
  1401. u64 gen;
  1402. u32 blocksize;
  1403. struct extent_buffer *b = *eb_ret;
  1404. struct extent_buffer *tmp;
  1405. int ret;
  1406. blocknr = btrfs_node_blockptr(b, slot);
  1407. gen = btrfs_node_ptr_generation(b, slot);
  1408. blocksize = btrfs_level_size(root, level - 1);
  1409. tmp = btrfs_find_tree_block(root, blocknr, blocksize);
  1410. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  1411. /*
  1412. * we found an up to date block without sleeping, return
  1413. * right away
  1414. */
  1415. *eb_ret = tmp;
  1416. return 0;
  1417. }
  1418. /*
  1419. * reduce lock contention at high levels
  1420. * of the btree by dropping locks before
  1421. * we read. Don't release the lock on the current
  1422. * level because we need to walk this node to figure
  1423. * out which blocks to read.
  1424. */
  1425. btrfs_unlock_up_safe(p, level + 1);
  1426. btrfs_set_path_blocking(p);
  1427. if (tmp)
  1428. free_extent_buffer(tmp);
  1429. if (p->reada)
  1430. reada_for_search(root, p, level, slot, key->objectid);
  1431. btrfs_release_path(NULL, p);
  1432. ret = -EAGAIN;
  1433. tmp = read_tree_block(root, blocknr, blocksize, gen);
  1434. if (tmp) {
  1435. /*
  1436. * If the read above didn't mark this buffer up to date,
  1437. * it will never end up being up to date. Set ret to EIO now
  1438. * and give up so that our caller doesn't loop forever
  1439. * on our EAGAINs.
  1440. */
  1441. if (!btrfs_buffer_uptodate(tmp, 0))
  1442. ret = -EIO;
  1443. free_extent_buffer(tmp);
  1444. }
  1445. return ret;
  1446. }
  1447. /*
  1448. * helper function for btrfs_search_slot. This does all of the checks
  1449. * for node-level blocks and does any balancing required based on
  1450. * the ins_len.
  1451. *
  1452. * If no extra work was required, zero is returned. If we had to
  1453. * drop the path, -EAGAIN is returned and btrfs_search_slot must
  1454. * start over
  1455. */
  1456. static int
  1457. setup_nodes_for_search(struct btrfs_trans_handle *trans,
  1458. struct btrfs_root *root, struct btrfs_path *p,
  1459. struct extent_buffer *b, int level, int ins_len)
  1460. {
  1461. int ret;
  1462. if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
  1463. BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
  1464. int sret;
  1465. sret = reada_for_balance(root, p, level);
  1466. if (sret)
  1467. goto again;
  1468. btrfs_set_path_blocking(p);
  1469. sret = split_node(trans, root, p, level);
  1470. btrfs_clear_path_blocking(p, NULL);
  1471. BUG_ON(sret > 0);
  1472. if (sret) {
  1473. ret = sret;
  1474. goto done;
  1475. }
  1476. b = p->nodes[level];
  1477. } else if (ins_len < 0 && btrfs_header_nritems(b) <
  1478. BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
  1479. int sret;
  1480. sret = reada_for_balance(root, p, level);
  1481. if (sret)
  1482. goto again;
  1483. btrfs_set_path_blocking(p);
  1484. sret = balance_level(trans, root, p, level);
  1485. btrfs_clear_path_blocking(p, NULL);
  1486. if (sret) {
  1487. ret = sret;
  1488. goto done;
  1489. }
  1490. b = p->nodes[level];
  1491. if (!b) {
  1492. btrfs_release_path(NULL, p);
  1493. goto again;
  1494. }
  1495. BUG_ON(btrfs_header_nritems(b) == 1);
  1496. }
  1497. return 0;
  1498. again:
  1499. ret = -EAGAIN;
  1500. done:
  1501. return ret;
  1502. }
  1503. /*
  1504. * look for key in the tree. path is filled in with nodes along the way
  1505. * if key is found, we return zero and you can find the item in the leaf
  1506. * level of the path (level 0)
  1507. *
  1508. * If the key isn't found, the path points to the slot where it should
  1509. * be inserted, and 1 is returned. If there are other errors during the
  1510. * search a negative error number is returned.
  1511. *
  1512. * if ins_len > 0, nodes and leaves will be split as we walk down the
  1513. * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
  1514. * possible)
  1515. */
  1516. int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
  1517. *root, struct btrfs_key *key, struct btrfs_path *p, int
  1518. ins_len, int cow)
  1519. {
  1520. struct extent_buffer *b;
  1521. int slot;
  1522. int ret;
  1523. int err;
  1524. int level;
  1525. int lowest_unlock = 1;
  1526. u8 lowest_level = 0;
  1527. lowest_level = p->lowest_level;
  1528. WARN_ON(lowest_level && ins_len > 0);
  1529. WARN_ON(p->nodes[0] != NULL);
  1530. if (ins_len < 0)
  1531. lowest_unlock = 2;
  1532. again:
  1533. if (p->search_commit_root) {
  1534. b = root->commit_root;
  1535. extent_buffer_get(b);
  1536. if (!p->skip_locking)
  1537. btrfs_tree_lock(b);
  1538. } else {
  1539. if (p->skip_locking)
  1540. b = btrfs_root_node(root);
  1541. else
  1542. b = btrfs_lock_root_node(root);
  1543. }
  1544. while (b) {
  1545. level = btrfs_header_level(b);
  1546. /*
  1547. * setup the path here so we can release it under lock
  1548. * contention with the cow code
  1549. */
  1550. p->nodes[level] = b;
  1551. if (!p->skip_locking)
  1552. p->locks[level] = 1;
  1553. if (cow) {
  1554. /*
  1555. * if we don't really need to cow this block
  1556. * then we don't want to set the path blocking,
  1557. * so we test it here
  1558. */
  1559. if (!should_cow_block(trans, root, b))
  1560. goto cow_done;
  1561. btrfs_set_path_blocking(p);
  1562. err = btrfs_cow_block(trans, root, b,
  1563. p->nodes[level + 1],
  1564. p->slots[level + 1], &b);
  1565. if (err) {
  1566. free_extent_buffer(b);
  1567. ret = err;
  1568. goto done;
  1569. }
  1570. }
  1571. cow_done:
  1572. BUG_ON(!cow && ins_len);
  1573. if (level != btrfs_header_level(b))
  1574. WARN_ON(1);
  1575. level = btrfs_header_level(b);
  1576. p->nodes[level] = b;
  1577. if (!p->skip_locking)
  1578. p->locks[level] = 1;
  1579. btrfs_clear_path_blocking(p, NULL);
  1580. /*
  1581. * we have a lock on b and as long as we aren't changing
  1582. * the tree, there is no way to for the items in b to change.
  1583. * It is safe to drop the lock on our parent before we
  1584. * go through the expensive btree search on b.
  1585. *
  1586. * If cow is true, then we might be changing slot zero,
  1587. * which may require changing the parent. So, we can't
  1588. * drop the lock until after we know which slot we're
  1589. * operating on.
  1590. */
  1591. if (!cow)
  1592. btrfs_unlock_up_safe(p, level + 1);
  1593. ret = check_block(root, p, level);
  1594. if (ret) {
  1595. ret = -1;
  1596. goto done;
  1597. }
  1598. ret = bin_search(b, key, level, &slot);
  1599. if (level != 0) {
  1600. int dec = 0;
  1601. if (ret && slot > 0) {
  1602. dec = 1;
  1603. slot -= 1;
  1604. }
  1605. p->slots[level] = slot;
  1606. err = setup_nodes_for_search(trans, root, p, b, level,
  1607. ins_len);
  1608. if (err == -EAGAIN)
  1609. goto again;
  1610. if (err) {
  1611. ret = err;
  1612. goto done;
  1613. }
  1614. b = p->nodes[level];
  1615. slot = p->slots[level];
  1616. unlock_up(p, level, lowest_unlock);
  1617. if (level == lowest_level) {
  1618. if (dec)
  1619. p->slots[level]++;
  1620. goto done;
  1621. }
  1622. err = read_block_for_search(trans, root, p,
  1623. &b, level, slot, key);
  1624. if (err == -EAGAIN)
  1625. goto again;
  1626. if (err) {
  1627. ret = err;
  1628. goto done;
  1629. }
  1630. if (!p->skip_locking) {
  1631. btrfs_clear_path_blocking(p, NULL);
  1632. err = btrfs_try_spin_lock(b);
  1633. if (!err) {
  1634. btrfs_set_path_blocking(p);
  1635. btrfs_tree_lock(b);
  1636. btrfs_clear_path_blocking(p, b);
  1637. }
  1638. }
  1639. } else {
  1640. p->slots[level] = slot;
  1641. if (ins_len > 0 &&
  1642. btrfs_leaf_free_space(root, b) < ins_len) {
  1643. btrfs_set_path_blocking(p);
  1644. err = split_leaf(trans, root, key,
  1645. p, ins_len, ret == 0);
  1646. btrfs_clear_path_blocking(p, NULL);
  1647. BUG_ON(err > 0);
  1648. if (err) {
  1649. ret = err;
  1650. goto done;
  1651. }
  1652. }
  1653. if (!p->search_for_split)
  1654. unlock_up(p, level, lowest_unlock);
  1655. goto done;
  1656. }
  1657. }
  1658. ret = 1;
  1659. done:
  1660. /*
  1661. * we don't really know what they plan on doing with the path
  1662. * from here on, so for now just mark it as blocking
  1663. */
  1664. if (!p->leave_spinning)
  1665. btrfs_set_path_blocking(p);
  1666. if (ret < 0)
  1667. btrfs_release_path(root, p);
  1668. return ret;
  1669. }
  1670. /*
  1671. * adjust the pointers going up the tree, starting at level
  1672. * making sure the right key of each node is points to 'key'.
  1673. * This is used after shifting pointers to the left, so it stops
  1674. * fixing up pointers when a given leaf/node is not in slot 0 of the
  1675. * higher levels
  1676. *
  1677. * If this fails to write a tree block, it returns -1, but continues
  1678. * fixing up the blocks in ram so the tree is consistent.
  1679. */
  1680. static int fixup_low_keys(struct btrfs_trans_handle *trans,
  1681. struct btrfs_root *root, struct btrfs_path *path,
  1682. struct btrfs_disk_key *key, int level)
  1683. {
  1684. int i;
  1685. int ret = 0;
  1686. struct extent_buffer *t;
  1687. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1688. int tslot = path->slots[i];
  1689. if (!path->nodes[i])
  1690. break;
  1691. t = path->nodes[i];
  1692. btrfs_set_node_key(t, key, tslot);
  1693. btrfs_mark_buffer_dirty(path->nodes[i]);
  1694. if (tslot != 0)
  1695. break;
  1696. }
  1697. return ret;
  1698. }
  1699. /*
  1700. * update item key.
  1701. *
  1702. * This function isn't completely safe. It's the caller's responsibility
  1703. * that the new key won't break the order
  1704. */
  1705. int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
  1706. struct btrfs_root *root, struct btrfs_path *path,
  1707. struct btrfs_key *new_key)
  1708. {
  1709. struct btrfs_disk_key disk_key;
  1710. struct extent_buffer *eb;
  1711. int slot;
  1712. eb = path->nodes[0];
  1713. slot = path->slots[0];
  1714. if (slot > 0) {
  1715. btrfs_item_key(eb, &disk_key, slot - 1);
  1716. if (comp_keys(&disk_key, new_key) >= 0)
  1717. return -1;
  1718. }
  1719. if (slot < btrfs_header_nritems(eb) - 1) {
  1720. btrfs_item_key(eb, &disk_key, slot + 1);
  1721. if (comp_keys(&disk_key, new_key) <= 0)
  1722. return -1;
  1723. }
  1724. btrfs_cpu_key_to_disk(&disk_key, new_key);
  1725. btrfs_set_item_key(eb, &disk_key, slot);
  1726. btrfs_mark_buffer_dirty(eb);
  1727. if (slot == 0)
  1728. fixup_low_keys(trans, root, path, &disk_key, 1);
  1729. return 0;
  1730. }
  1731. /*
  1732. * try to push data from one node into the next node left in the
  1733. * tree.
  1734. *
  1735. * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
  1736. * error, and > 0 if there was no room in the left hand block.
  1737. */
  1738. static int push_node_left(struct btrfs_trans_handle *trans,
  1739. struct btrfs_root *root, struct extent_buffer *dst,
  1740. struct extent_buffer *src, int empty)
  1741. {
  1742. int push_items = 0;
  1743. int src_nritems;
  1744. int dst_nritems;
  1745. int ret = 0;
  1746. src_nritems = btrfs_header_nritems(src);
  1747. dst_nritems = btrfs_header_nritems(dst);
  1748. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1749. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1750. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1751. if (!empty && src_nritems <= 8)
  1752. return 1;
  1753. if (push_items <= 0)
  1754. return 1;
  1755. if (empty) {
  1756. push_items = min(src_nritems, push_items);
  1757. if (push_items < src_nritems) {
  1758. /* leave at least 8 pointers in the node if
  1759. * we aren't going to empty it
  1760. */
  1761. if (src_nritems - push_items < 8) {
  1762. if (push_items <= 8)
  1763. return 1;
  1764. push_items -= 8;
  1765. }
  1766. }
  1767. } else
  1768. push_items = min(src_nritems - 8, push_items);
  1769. copy_extent_buffer(dst, src,
  1770. btrfs_node_key_ptr_offset(dst_nritems),
  1771. btrfs_node_key_ptr_offset(0),
  1772. push_items * sizeof(struct btrfs_key_ptr));
  1773. if (push_items < src_nritems) {
  1774. memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
  1775. btrfs_node_key_ptr_offset(push_items),
  1776. (src_nritems - push_items) *
  1777. sizeof(struct btrfs_key_ptr));
  1778. }
  1779. btrfs_set_header_nritems(src, src_nritems - push_items);
  1780. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1781. btrfs_mark_buffer_dirty(src);
  1782. btrfs_mark_buffer_dirty(dst);
  1783. return ret;
  1784. }
  1785. /*
  1786. * try to push data from one node into the next node right in the
  1787. * tree.
  1788. *
  1789. * returns 0 if some ptrs were pushed, < 0 if there was some horrible
  1790. * error, and > 0 if there was no room in the right hand block.
  1791. *
  1792. * this will only push up to 1/2 the contents of the left node over
  1793. */
  1794. static int balance_node_right(struct btrfs_trans_handle *trans,
  1795. struct btrfs_root *root,
  1796. struct extent_buffer *dst,
  1797. struct extent_buffer *src)
  1798. {
  1799. int push_items = 0;
  1800. int max_push;
  1801. int src_nritems;
  1802. int dst_nritems;
  1803. int ret = 0;
  1804. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1805. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1806. src_nritems = btrfs_header_nritems(src);
  1807. dst_nritems = btrfs_header_nritems(dst);
  1808. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1809. if (push_items <= 0)
  1810. return 1;
  1811. if (src_nritems < 4)
  1812. return 1;
  1813. max_push = src_nritems / 2 + 1;
  1814. /* don't try to empty the node */
  1815. if (max_push >= src_nritems)
  1816. return 1;
  1817. if (max_push < push_items)
  1818. push_items = max_push;
  1819. memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
  1820. btrfs_node_key_ptr_offset(0),
  1821. (dst_nritems) *
  1822. sizeof(struct btrfs_key_ptr));
  1823. copy_extent_buffer(dst, src,
  1824. btrfs_node_key_ptr_offset(0),
  1825. btrfs_node_key_ptr_offset(src_nritems - push_items),
  1826. push_items * sizeof(struct btrfs_key_ptr));
  1827. btrfs_set_header_nritems(src, src_nritems - push_items);
  1828. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1829. btrfs_mark_buffer_dirty(src);
  1830. btrfs_mark_buffer_dirty(dst);
  1831. return ret;
  1832. }
  1833. /*
  1834. * helper function to insert a new root level in the tree.
  1835. * A new node is allocated, and a single item is inserted to
  1836. * point to the existing root
  1837. *
  1838. * returns zero on success or < 0 on failure.
  1839. */
  1840. static noinline int insert_new_root(struct btrfs_trans_handle *trans,
  1841. struct btrfs_root *root,
  1842. struct btrfs_path *path, int level)
  1843. {
  1844. u64 lower_gen;
  1845. struct extent_buffer *lower;
  1846. struct extent_buffer *c;
  1847. struct extent_buffer *old;
  1848. struct btrfs_disk_key lower_key;
  1849. BUG_ON(path->nodes[level]);
  1850. BUG_ON(path->nodes[level-1] != root->node);
  1851. lower = path->nodes[level-1];
  1852. if (level == 1)
  1853. btrfs_item_key(lower, &lower_key, 0);
  1854. else
  1855. btrfs_node_key(lower, &lower_key, 0);
  1856. c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
  1857. root->root_key.objectid, &lower_key,
  1858. level, root->node->start, 0);
  1859. if (IS_ERR(c))
  1860. return PTR_ERR(c);
  1861. memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
  1862. btrfs_set_header_nritems(c, 1);
  1863. btrfs_set_header_level(c, level);
  1864. btrfs_set_header_bytenr(c, c->start);
  1865. btrfs_set_header_generation(c, trans->transid);
  1866. btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
  1867. btrfs_set_header_owner(c, root->root_key.objectid);
  1868. write_extent_buffer(c, root->fs_info->fsid,
  1869. (unsigned long)btrfs_header_fsid(c),
  1870. BTRFS_FSID_SIZE);
  1871. write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
  1872. (unsigned long)btrfs_header_chunk_tree_uuid(c),
  1873. BTRFS_UUID_SIZE);
  1874. btrfs_set_node_key(c, &lower_key, 0);
  1875. btrfs_set_node_blockptr(c, 0, lower->start);
  1876. lower_gen = btrfs_header_generation(lower);
  1877. WARN_ON(lower_gen != trans->transid);
  1878. btrfs_set_node_ptr_generation(c, 0, lower_gen);
  1879. btrfs_mark_buffer_dirty(c);
  1880. spin_lock(&root->node_lock);
  1881. old = root->node;
  1882. root->node = c;
  1883. spin_unlock(&root->node_lock);
  1884. /* the super has an extra ref to root->node */
  1885. free_extent_buffer(old);
  1886. add_root_to_dirty_list(root);
  1887. extent_buffer_get(c);
  1888. path->nodes[level] = c;
  1889. path->locks[level] = 1;
  1890. path->slots[level] = 0;
  1891. return 0;
  1892. }
  1893. /*
  1894. * worker function to insert a single pointer in a node.
  1895. * the node should have enough room for the pointer already
  1896. *
  1897. * slot and level indicate where you want the key to go, and
  1898. * blocknr is the block the key points to.
  1899. *
  1900. * returns zero on success and < 0 on any error
  1901. */
  1902. static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
  1903. *root, struct btrfs_path *path, struct btrfs_disk_key
  1904. *key, u64 bytenr, int slot, int level)
  1905. {
  1906. struct extent_buffer *lower;
  1907. int nritems;
  1908. BUG_ON(!path->nodes[level]);
  1909. lower = path->nodes[level];
  1910. nritems = btrfs_header_nritems(lower);
  1911. BUG_ON(slot > nritems);
  1912. if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
  1913. BUG();
  1914. if (slot != nritems) {
  1915. memmove_extent_buffer(lower,
  1916. btrfs_node_key_ptr_offset(slot + 1),
  1917. btrfs_node_key_ptr_offset(slot),
  1918. (nritems - slot) * sizeof(struct btrfs_key_ptr));
  1919. }
  1920. btrfs_set_node_key(lower, key, slot);
  1921. btrfs_set_node_blockptr(lower, slot, bytenr);
  1922. WARN_ON(trans->transid == 0);
  1923. btrfs_set_node_ptr_generation(lower, slot, trans->transid);
  1924. btrfs_set_header_nritems(lower, nritems + 1);
  1925. btrfs_mark_buffer_dirty(lower);
  1926. return 0;
  1927. }
  1928. /*
  1929. * split the node at the specified level in path in two.
  1930. * The path is corrected to point to the appropriate node after the split
  1931. *
  1932. * Before splitting this tries to make some room in the node by pushing
  1933. * left and right, if either one works, it returns right away.
  1934. *
  1935. * returns 0 on success and < 0 on failure
  1936. */
  1937. static noinline int split_node(struct btrfs_trans_handle *trans,
  1938. struct btrfs_root *root,
  1939. struct btrfs_path *path, int level)
  1940. {
  1941. struct extent_buffer *c;
  1942. struct extent_buffer *split;
  1943. struct btrfs_disk_key disk_key;
  1944. int mid;
  1945. int ret;
  1946. int wret;
  1947. u32 c_nritems;
  1948. c = path->nodes[level];
  1949. WARN_ON(btrfs_header_generation(c) != trans->transid);
  1950. if (c == root->node) {
  1951. /* trying to split the root, lets make a new one */
  1952. ret = insert_new_root(trans, root, path, level + 1);
  1953. if (ret)
  1954. return ret;
  1955. } else {
  1956. ret = push_nodes_for_insert(trans, root, path, level);
  1957. c = path->nodes[level];
  1958. if (!ret && btrfs_header_nritems(c) <
  1959. BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
  1960. return 0;
  1961. if (ret < 0)
  1962. return ret;
  1963. }
  1964. c_nritems = btrfs_header_nritems(c);
  1965. mid = (c_nritems + 1) / 2;
  1966. btrfs_node_key(c, &disk_key, mid);
  1967. split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
  1968. root->root_key.objectid,
  1969. &disk_key, level, c->start, 0);
  1970. if (IS_ERR(split))
  1971. return PTR_ERR(split);
  1972. memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
  1973. btrfs_set_header_level(split, btrfs_header_level(c));
  1974. btrfs_set_header_bytenr(split, split->start);
  1975. btrfs_set_header_generation(split, trans->transid);
  1976. btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
  1977. btrfs_set_header_owner(split, root->root_key.objectid);
  1978. write_extent_buffer(split, root->fs_info->fsid,
  1979. (unsigned long)btrfs_header_fsid(split),
  1980. BTRFS_FSID_SIZE);
  1981. write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
  1982. (unsigned long)btrfs_header_chunk_tree_uuid(split),
  1983. BTRFS_UUID_SIZE);
  1984. copy_extent_buffer(split, c,
  1985. btrfs_node_key_ptr_offset(0),
  1986. btrfs_node_key_ptr_offset(mid),
  1987. (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
  1988. btrfs_set_header_nritems(split, c_nritems - mid);
  1989. btrfs_set_header_nritems(c, mid);
  1990. ret = 0;
  1991. btrfs_mark_buffer_dirty(c);
  1992. btrfs_mark_buffer_dirty(split);
  1993. wret = insert_ptr(trans, root, path, &disk_key, split->start,
  1994. path->slots[level + 1] + 1,
  1995. level + 1);
  1996. if (wret)
  1997. ret = wret;
  1998. if (path->slots[level] >= mid) {
  1999. path->slots[level] -= mid;
  2000. btrfs_tree_unlock(c);
  2001. free_extent_buffer(c);
  2002. path->nodes[level] = split;
  2003. path->slots[level + 1] += 1;
  2004. } else {
  2005. btrfs_tree_unlock(split);
  2006. free_extent_buffer(split);
  2007. }
  2008. return ret;
  2009. }
  2010. /*
  2011. * how many bytes are required to store the items in a leaf. start
  2012. * and nr indicate which items in the leaf to check. This totals up the
  2013. * space used both by the item structs and the item data
  2014. */
  2015. static int leaf_space_used(struct extent_buffer *l, int start, int nr)
  2016. {
  2017. int data_len;
  2018. int nritems = btrfs_header_nritems(l);
  2019. int end = min(nritems, start + nr) - 1;
  2020. if (!nr)
  2021. return 0;
  2022. data_len = btrfs_item_end_nr(l, start);
  2023. data_len = data_len - btrfs_item_offset_nr(l, end);
  2024. data_len += sizeof(struct btrfs_item) * nr;
  2025. WARN_ON(data_len < 0);
  2026. return data_len;
  2027. }
  2028. /*
  2029. * The space between the end of the leaf items and
  2030. * the start of the leaf data. IOW, how much room
  2031. * the leaf has left for both items and data
  2032. */
  2033. noinline int btrfs_leaf_free_space(struct btrfs_root *root,
  2034. struct extent_buffer *leaf)
  2035. {
  2036. int nritems = btrfs_header_nritems(leaf);
  2037. int ret;
  2038. ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
  2039. if (ret < 0) {
  2040. printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
  2041. "used %d nritems %d\n",
  2042. ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
  2043. leaf_space_used(leaf, 0, nritems), nritems);
  2044. }
  2045. return ret;
  2046. }
  2047. static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
  2048. struct btrfs_root *root,
  2049. struct btrfs_path *path,
  2050. int data_size, int empty,
  2051. struct extent_buffer *right,
  2052. int free_space, u32 left_nritems)
  2053. {
  2054. struct extent_buffer *left = path->nodes[0];
  2055. struct extent_buffer *upper = path->nodes[1];
  2056. struct btrfs_disk_key disk_key;
  2057. int slot;
  2058. u32 i;
  2059. int push_space = 0;
  2060. int push_items = 0;
  2061. struct btrfs_item *item;
  2062. u32 nr;
  2063. u32 right_nritems;
  2064. u32 data_end;
  2065. u32 this_item_size;
  2066. if (empty)
  2067. nr = 0;
  2068. else
  2069. nr = 1;
  2070. if (path->slots[0] >= left_nritems)
  2071. push_space += data_size;
  2072. slot = path->slots[1];
  2073. i = left_nritems - 1;
  2074. while (i >= nr) {
  2075. item = btrfs_item_nr(left, i);
  2076. if (!empty && push_items > 0) {
  2077. if (path->slots[0] > i)
  2078. break;
  2079. if (path->slots[0] == i) {
  2080. int space = btrfs_leaf_free_space(root, left);
  2081. if (space + push_space * 2 > free_space)
  2082. break;
  2083. }
  2084. }
  2085. if (path->slots[0] == i)
  2086. push_space += data_size;
  2087. if (!left->map_token) {
  2088. map_extent_buffer(left, (unsigned long)item,
  2089. sizeof(struct btrfs_item),
  2090. &left->map_token, &left->kaddr,
  2091. &left->map_start, &left->map_len,
  2092. KM_USER1);
  2093. }
  2094. this_item_size = btrfs_item_size(left, item);
  2095. if (this_item_size + sizeof(*item) + push_space > free_space)
  2096. break;
  2097. push_items++;
  2098. push_space += this_item_size + sizeof(*item);
  2099. if (i == 0)
  2100. break;
  2101. i--;
  2102. }
  2103. if (left->map_token) {
  2104. unmap_extent_buffer(left, left->map_token, KM_USER1);
  2105. left->map_token = NULL;
  2106. }
  2107. if (push_items == 0)
  2108. goto out_unlock;
  2109. if (!empty && push_items == left_nritems)
  2110. WARN_ON(1);
  2111. /* push left to right */
  2112. right_nritems = btrfs_header_nritems(right);
  2113. push_space = btrfs_item_end_nr(left, left_nritems - push_items);
  2114. push_space -= leaf_data_end(root, left);
  2115. /* make room in the right data area */
  2116. data_end = leaf_data_end(root, right);
  2117. memmove_extent_buffer(right,
  2118. btrfs_leaf_data(right) + data_end - push_space,
  2119. btrfs_leaf_data(right) + data_end,
  2120. BTRFS_LEAF_DATA_SIZE(root) - data_end);
  2121. /* copy from the left data area */
  2122. copy_extent_buffer(right, left, btrfs_leaf_data(right) +
  2123. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2124. btrfs_leaf_data(left) + leaf_data_end(root, left),
  2125. push_space);
  2126. memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
  2127. btrfs_item_nr_offset(0),
  2128. right_nritems * sizeof(struct btrfs_item));
  2129. /* copy the items from left to right */
  2130. copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
  2131. btrfs_item_nr_offset(left_nritems - push_items),
  2132. push_items * sizeof(struct btrfs_item));
  2133. /* update the item pointers */
  2134. right_nritems += push_items;
  2135. btrfs_set_header_nritems(right, right_nritems);
  2136. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2137. for (i = 0; i < right_nritems; i++) {
  2138. item = btrfs_item_nr(right, i);
  2139. if (!right->map_token) {
  2140. map_extent_buffer(right, (unsigned long)item,
  2141. sizeof(struct btrfs_item),
  2142. &right->map_token, &right->kaddr,
  2143. &right->map_start, &right->map_len,
  2144. KM_USER1);
  2145. }
  2146. push_space -= btrfs_item_size(right, item);
  2147. btrfs_set_item_offset(right, item, push_space);
  2148. }
  2149. if (right->map_token) {
  2150. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2151. right->map_token = NULL;
  2152. }
  2153. left_nritems -= push_items;
  2154. btrfs_set_header_nritems(left, left_nritems);
  2155. if (left_nritems)
  2156. btrfs_mark_buffer_dirty(left);
  2157. btrfs_mark_buffer_dirty(right);
  2158. btrfs_item_key(right, &disk_key, 0);
  2159. btrfs_set_node_key(upper, &disk_key, slot + 1);
  2160. btrfs_mark_buffer_dirty(upper);
  2161. /* then fixup the leaf pointer in the path */
  2162. if (path->slots[0] >= left_nritems) {
  2163. path->slots[0] -= left_nritems;
  2164. if (btrfs_header_nritems(path->nodes[0]) == 0)
  2165. clean_tree_block(trans, root, path->nodes[0]);
  2166. btrfs_tree_unlock(path->nodes[0]);
  2167. free_extent_buffer(path->nodes[0]);
  2168. path->nodes[0] = right;
  2169. path->slots[1] += 1;
  2170. } else {
  2171. btrfs_tree_unlock(right);
  2172. free_extent_buffer(right);
  2173. }
  2174. return 0;
  2175. out_unlock:
  2176. btrfs_tree_unlock(right);
  2177. free_extent_buffer(right);
  2178. return 1;
  2179. }
  2180. /*
  2181. * push some data in the path leaf to the right, trying to free up at
  2182. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2183. *
  2184. * returns 1 if the push failed because the other node didn't have enough
  2185. * room, 0 if everything worked out and < 0 if there were major errors.
  2186. */
  2187. static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
  2188. *root, struct btrfs_path *path, int data_size,
  2189. int empty)
  2190. {
  2191. struct extent_buffer *left = path->nodes[0];
  2192. struct extent_buffer *right;
  2193. struct extent_buffer *upper;
  2194. int slot;
  2195. int free_space;
  2196. u32 left_nritems;
  2197. int ret;
  2198. if (!path->nodes[1])
  2199. return 1;
  2200. slot = path->slots[1];
  2201. upper = path->nodes[1];
  2202. if (slot >= btrfs_header_nritems(upper) - 1)
  2203. return 1;
  2204. btrfs_assert_tree_locked(path->nodes[1]);
  2205. right = read_node_slot(root, upper, slot + 1);
  2206. btrfs_tree_lock(right);
  2207. btrfs_set_lock_blocking(right);
  2208. free_space = btrfs_leaf_free_space(root, right);
  2209. if (free_space < data_size)
  2210. goto out_unlock;
  2211. /* cow and double check */
  2212. ret = btrfs_cow_block(trans, root, right, upper,
  2213. slot + 1, &right);
  2214. if (ret)
  2215. goto out_unlock;
  2216. free_space = btrfs_leaf_free_space(root, right);
  2217. if (free_space < data_size)
  2218. goto out_unlock;
  2219. left_nritems = btrfs_header_nritems(left);
  2220. if (left_nritems == 0)
  2221. goto out_unlock;
  2222. return __push_leaf_right(trans, root, path, data_size, empty,
  2223. right, free_space, left_nritems);
  2224. out_unlock:
  2225. btrfs_tree_unlock(right);
  2226. free_extent_buffer(right);
  2227. return 1;
  2228. }
  2229. /*
  2230. * push some data in the path leaf to the left, trying to free up at
  2231. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2232. */
  2233. static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
  2234. struct btrfs_root *root,
  2235. struct btrfs_path *path, int data_size,
  2236. int empty, struct extent_buffer *left,
  2237. int free_space, int right_nritems)
  2238. {
  2239. struct btrfs_disk_key disk_key;
  2240. struct extent_buffer *right = path->nodes[0];
  2241. int slot;
  2242. int i;
  2243. int push_space = 0;
  2244. int push_items = 0;
  2245. struct btrfs_item *item;
  2246. u32 old_left_nritems;
  2247. u32 nr;
  2248. int ret = 0;
  2249. int wret;
  2250. u32 this_item_size;
  2251. u32 old_left_item_size;
  2252. slot = path->slots[1];
  2253. if (empty)
  2254. nr = right_nritems;
  2255. else
  2256. nr = right_nritems - 1;
  2257. for (i = 0; i < nr; i++) {
  2258. item = btrfs_item_nr(right, i);
  2259. if (!right->map_token) {
  2260. map_extent_buffer(right, (unsigned long)item,
  2261. sizeof(struct btrfs_item),
  2262. &right->map_token, &right->kaddr,
  2263. &right->map_start, &right->map_len,
  2264. KM_USER1);
  2265. }
  2266. if (!empty && push_items > 0) {
  2267. if (path->slots[0] < i)
  2268. break;
  2269. if (path->slots[0] == i) {
  2270. int space = btrfs_leaf_free_space(root, right);
  2271. if (space + push_space * 2 > free_space)
  2272. break;
  2273. }
  2274. }
  2275. if (path->slots[0] == i)
  2276. push_space += data_size;
  2277. this_item_size = btrfs_item_size(right, item);
  2278. if (this_item_size + sizeof(*item) + push_space > free_space)
  2279. break;
  2280. push_items++;
  2281. push_space += this_item_size + sizeof(*item);
  2282. }
  2283. if (right->map_token) {
  2284. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2285. right->map_token = NULL;
  2286. }
  2287. if (push_items == 0) {
  2288. ret = 1;
  2289. goto out;
  2290. }
  2291. if (!empty && push_items == btrfs_header_nritems(right))
  2292. WARN_ON(1);
  2293. /* push data from right to left */
  2294. copy_extent_buffer(left, right,
  2295. btrfs_item_nr_offset(btrfs_header_nritems(left)),
  2296. btrfs_item_nr_offset(0),
  2297. push_items * sizeof(struct btrfs_item));
  2298. push_space = BTRFS_LEAF_DATA_SIZE(root) -
  2299. btrfs_item_offset_nr(right, push_items - 1);
  2300. copy_extent_buffer(left, right, btrfs_leaf_data(left) +
  2301. leaf_data_end(root, left) - push_space,
  2302. btrfs_leaf_data(right) +
  2303. btrfs_item_offset_nr(right, push_items - 1),
  2304. push_space);
  2305. old_left_nritems = btrfs_header_nritems(left);
  2306. BUG_ON(old_left_nritems <= 0);
  2307. old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
  2308. for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
  2309. u32 ioff;
  2310. item = btrfs_item_nr(left, i);
  2311. if (!left->map_token) {
  2312. map_extent_buffer(left, (unsigned long)item,
  2313. sizeof(struct btrfs_item),
  2314. &left->map_token, &left->kaddr,
  2315. &left->map_start, &left->map_len,
  2316. KM_USER1);
  2317. }
  2318. ioff = btrfs_item_offset(left, item);
  2319. btrfs_set_item_offset(left, item,
  2320. ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
  2321. }
  2322. btrfs_set_header_nritems(left, old_left_nritems + push_items);
  2323. if (left->map_token) {
  2324. unmap_extent_buffer(left, left->map_token, KM_USER1);
  2325. left->map_token = NULL;
  2326. }
  2327. /* fixup right node */
  2328. if (push_items > right_nritems) {
  2329. printk(KERN_CRIT "push items %d nr %u\n", push_items,
  2330. right_nritems);
  2331. WARN_ON(1);
  2332. }
  2333. if (push_items < right_nritems) {
  2334. push_space = btrfs_item_offset_nr(right, push_items - 1) -
  2335. leaf_data_end(root, right);
  2336. memmove_extent_buffer(right, btrfs_leaf_data(right) +
  2337. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2338. btrfs_leaf_data(right) +
  2339. leaf_data_end(root, right), push_space);
  2340. memmove_extent_buffer(right, btrfs_item_nr_offset(0),
  2341. btrfs_item_nr_offset(push_items),
  2342. (btrfs_header_nritems(right) - push_items) *
  2343. sizeof(struct btrfs_item));
  2344. }
  2345. right_nritems -= push_items;
  2346. btrfs_set_header_nritems(right, right_nritems);
  2347. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2348. for (i = 0; i < right_nritems; i++) {
  2349. item = btrfs_item_nr(right, i);
  2350. if (!right->map_token) {
  2351. map_extent_buffer(right, (unsigned long)item,
  2352. sizeof(struct btrfs_item),
  2353. &right->map_token, &right->kaddr,
  2354. &right->map_start, &right->map_len,
  2355. KM_USER1);
  2356. }
  2357. push_space = push_space - btrfs_item_size(right, item);
  2358. btrfs_set_item_offset(right, item, push_space);
  2359. }
  2360. if (right->map_token) {
  2361. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2362. right->map_token = NULL;
  2363. }
  2364. btrfs_mark_buffer_dirty(left);
  2365. if (right_nritems)
  2366. btrfs_mark_buffer_dirty(right);
  2367. btrfs_item_key(right, &disk_key, 0);
  2368. wret = fixup_low_keys(trans, root, path, &disk_key, 1);
  2369. if (wret)
  2370. ret = wret;
  2371. /* then fixup the leaf pointer in the path */
  2372. if (path->slots[0] < push_items) {
  2373. path->slots[0] += old_left_nritems;
  2374. if (btrfs_header_nritems(path->nodes[0]) == 0)
  2375. clean_tree_block(trans, root, path->nodes[0]);
  2376. btrfs_tree_unlock(path->nodes[0]);
  2377. free_extent_buffer(path->nodes[0]);
  2378. path->nodes[0] = left;
  2379. path->slots[1] -= 1;
  2380. } else {
  2381. btrfs_tree_unlock(left);
  2382. free_extent_buffer(left);
  2383. path->slots[0] -= push_items;
  2384. }
  2385. BUG_ON(path->slots[0] < 0);
  2386. return ret;
  2387. out:
  2388. btrfs_tree_unlock(left);
  2389. free_extent_buffer(left);
  2390. return ret;
  2391. }
  2392. /*
  2393. * push some data in the path leaf to the left, trying to free up at
  2394. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2395. */
  2396. static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
  2397. *root, struct btrfs_path *path, int data_size,
  2398. int empty)
  2399. {
  2400. struct extent_buffer *right = path->nodes[0];
  2401. struct extent_buffer *left;
  2402. int slot;
  2403. int free_space;
  2404. u32 right_nritems;
  2405. int ret = 0;
  2406. slot = path->slots[1];
  2407. if (slot == 0)
  2408. return 1;
  2409. if (!path->nodes[1])
  2410. return 1;
  2411. right_nritems = btrfs_header_nritems(right);
  2412. if (right_nritems == 0)
  2413. return 1;
  2414. btrfs_assert_tree_locked(path->nodes[1]);
  2415. left = read_node_slot(root, path->nodes[1], slot - 1);
  2416. btrfs_tree_lock(left);
  2417. btrfs_set_lock_blocking(left);
  2418. free_space = btrfs_leaf_free_space(root, left);
  2419. if (free_space < data_size) {
  2420. ret = 1;
  2421. goto out;
  2422. }
  2423. /* cow and double check */
  2424. ret = btrfs_cow_block(trans, root, left,
  2425. path->nodes[1], slot - 1, &left);
  2426. if (ret) {
  2427. /* we hit -ENOSPC, but it isn't fatal here */
  2428. ret = 1;
  2429. goto out;
  2430. }
  2431. free_space = btrfs_leaf_free_space(root, left);
  2432. if (free_space < data_size) {
  2433. ret = 1;
  2434. goto out;
  2435. }
  2436. return __push_leaf_left(trans, root, path, data_size,
  2437. empty, left, free_space, right_nritems);
  2438. out:
  2439. btrfs_tree_unlock(left);
  2440. free_extent_buffer(left);
  2441. return ret;
  2442. }
  2443. /*
  2444. * split the path's leaf in two, making sure there is at least data_size
  2445. * available for the resulting leaf level of the path.
  2446. *
  2447. * returns 0 if all went well and < 0 on failure.
  2448. */
  2449. static noinline int copy_for_split(struct btrfs_trans_handle *trans,
  2450. struct btrfs_root *root,
  2451. struct btrfs_path *path,
  2452. struct extent_buffer *l,
  2453. struct extent_buffer *right,
  2454. int slot, int mid, int nritems)
  2455. {
  2456. int data_copy_size;
  2457. int rt_data_off;
  2458. int i;
  2459. int ret = 0;
  2460. int wret;
  2461. struct btrfs_disk_key disk_key;
  2462. nritems = nritems - mid;
  2463. btrfs_set_header_nritems(right, nritems);
  2464. data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
  2465. copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
  2466. btrfs_item_nr_offset(mid),
  2467. nritems * sizeof(struct btrfs_item));
  2468. copy_extent_buffer(right, l,
  2469. btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
  2470. data_copy_size, btrfs_leaf_data(l) +
  2471. leaf_data_end(root, l), data_copy_size);
  2472. rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
  2473. btrfs_item_end_nr(l, mid);
  2474. for (i = 0; i < nritems; i++) {
  2475. struct btrfs_item *item = btrfs_item_nr(right, i);
  2476. u32 ioff;
  2477. if (!right->map_token) {
  2478. map_extent_buffer(right, (unsigned long)item,
  2479. sizeof(struct btrfs_item),
  2480. &right->map_token, &right->kaddr,
  2481. &right->map_start, &right->map_len,
  2482. KM_USER1);
  2483. }
  2484. ioff = btrfs_item_offset(right, item);
  2485. btrfs_set_item_offset(right, item, ioff + rt_data_off);
  2486. }
  2487. if (right->map_token) {
  2488. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2489. right->map_token = NULL;
  2490. }
  2491. btrfs_set_header_nritems(l, mid);
  2492. ret = 0;
  2493. btrfs_item_key(right, &disk_key, 0);
  2494. wret = insert_ptr(trans, root, path, &disk_key, right->start,
  2495. path->slots[1] + 1, 1);
  2496. if (wret)
  2497. ret = wret;
  2498. btrfs_mark_buffer_dirty(right);
  2499. btrfs_mark_buffer_dirty(l);
  2500. BUG_ON(path->slots[0] != slot);
  2501. if (mid <= slot) {
  2502. btrfs_tree_unlock(path->nodes[0]);
  2503. free_extent_buffer(path->nodes[0]);
  2504. path->nodes[0] = right;
  2505. path->slots[0] -= mid;
  2506. path->slots[1] += 1;
  2507. } else {
  2508. btrfs_tree_unlock(right);
  2509. free_extent_buffer(right);
  2510. }
  2511. BUG_ON(path->slots[0] < 0);
  2512. return ret;
  2513. }
  2514. /*
  2515. * split the path's leaf in two, making sure there is at least data_size
  2516. * available for the resulting leaf level of the path.
  2517. *
  2518. * returns 0 if all went well and < 0 on failure.
  2519. */
  2520. static noinline int split_leaf(struct btrfs_trans_handle *trans,
  2521. struct btrfs_root *root,
  2522. struct btrfs_key *ins_key,
  2523. struct btrfs_path *path, int data_size,
  2524. int extend)
  2525. {
  2526. struct btrfs_disk_key disk_key;
  2527. struct extent_buffer *l;
  2528. u32 nritems;
  2529. int mid;
  2530. int slot;
  2531. struct extent_buffer *right;
  2532. int ret = 0;
  2533. int wret;
  2534. int split;
  2535. int num_doubles = 0;
  2536. l = path->nodes[0];
  2537. slot = path->slots[0];
  2538. if (extend && data_size + btrfs_item_size_nr(l, slot) +
  2539. sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
  2540. return -EOVERFLOW;
  2541. /* first try to make some room by pushing left and right */
  2542. if (data_size && ins_key->type != BTRFS_DIR_ITEM_KEY) {
  2543. wret = push_leaf_right(trans, root, path, data_size, 0);
  2544. if (wret < 0)
  2545. return wret;
  2546. if (wret) {
  2547. wret = push_leaf_left(trans, root, path, data_size, 0);
  2548. if (wret < 0)
  2549. return wret;
  2550. }
  2551. l = path->nodes[0];
  2552. /* did the pushes work? */
  2553. if (btrfs_leaf_free_space(root, l) >= data_size)
  2554. return 0;
  2555. }
  2556. if (!path->nodes[1]) {
  2557. ret = insert_new_root(trans, root, path, 1);
  2558. if (ret)
  2559. return ret;
  2560. }
  2561. again:
  2562. split = 1;
  2563. l = path->nodes[0];
  2564. slot = path->slots[0];
  2565. nritems = btrfs_header_nritems(l);
  2566. mid = (nritems + 1) / 2;
  2567. if (mid <= slot) {
  2568. if (nritems == 1 ||
  2569. leaf_space_used(l, mid, nritems - mid) + data_size >
  2570. BTRFS_LEAF_DATA_SIZE(root)) {
  2571. if (slot >= nritems) {
  2572. split = 0;
  2573. } else {
  2574. mid = slot;
  2575. if (mid != nritems &&
  2576. leaf_space_used(l, mid, nritems - mid) +
  2577. data_size > BTRFS_LEAF_DATA_SIZE(root)) {
  2578. split = 2;
  2579. }
  2580. }
  2581. }
  2582. } else {
  2583. if (leaf_space_used(l, 0, mid) + data_size >
  2584. BTRFS_LEAF_DATA_SIZE(root)) {
  2585. if (!extend && data_size && slot == 0) {
  2586. split = 0;
  2587. } else if ((extend || !data_size) && slot == 0) {
  2588. mid = 1;
  2589. } else {
  2590. mid = slot;
  2591. if (mid != nritems &&
  2592. leaf_space_used(l, mid, nritems - mid) +
  2593. data_size > BTRFS_LEAF_DATA_SIZE(root)) {
  2594. split = 2 ;
  2595. }
  2596. }
  2597. }
  2598. }
  2599. if (split == 0)
  2600. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  2601. else
  2602. btrfs_item_key(l, &disk_key, mid);
  2603. right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  2604. root->root_key.objectid,
  2605. &disk_key, 0, l->start, 0);
  2606. if (IS_ERR(right)) {
  2607. BUG_ON(1);
  2608. return PTR_ERR(right);
  2609. }
  2610. memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
  2611. btrfs_set_header_bytenr(right, right->start);
  2612. btrfs_set_header_generation(right, trans->transid);
  2613. btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
  2614. btrfs_set_header_owner(right, root->root_key.objectid);
  2615. btrfs_set_header_level(right, 0);
  2616. write_extent_buffer(right, root->fs_info->fsid,
  2617. (unsigned long)btrfs_header_fsid(right),
  2618. BTRFS_FSID_SIZE);
  2619. write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
  2620. (unsigned long)btrfs_header_chunk_tree_uuid(right),
  2621. BTRFS_UUID_SIZE);
  2622. if (split == 0) {
  2623. if (mid <= slot) {
  2624. btrfs_set_header_nritems(right, 0);
  2625. wret = insert_ptr(trans, root, path,
  2626. &disk_key, right->start,
  2627. path->slots[1] + 1, 1);
  2628. if (wret)
  2629. ret = wret;
  2630. btrfs_tree_unlock(path->nodes[0]);
  2631. free_extent_buffer(path->nodes[0]);
  2632. path->nodes[0] = right;
  2633. path->slots[0] = 0;
  2634. path->slots[1] += 1;
  2635. } else {
  2636. btrfs_set_header_nritems(right, 0);
  2637. wret = insert_ptr(trans, root, path,
  2638. &disk_key,
  2639. right->start,
  2640. path->slots[1], 1);
  2641. if (wret)
  2642. ret = wret;
  2643. btrfs_tree_unlock(path->nodes[0]);
  2644. free_extent_buffer(path->nodes[0]);
  2645. path->nodes[0] = right;
  2646. path->slots[0] = 0;
  2647. if (path->slots[1] == 0) {
  2648. wret = fixup_low_keys(trans, root,
  2649. path, &disk_key, 1);
  2650. if (wret)
  2651. ret = wret;
  2652. }
  2653. }
  2654. btrfs_mark_buffer_dirty(right);
  2655. return ret;
  2656. }
  2657. ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
  2658. BUG_ON(ret);
  2659. if (split == 2) {
  2660. BUG_ON(num_doubles != 0);
  2661. num_doubles++;
  2662. goto again;
  2663. }
  2664. return ret;
  2665. }
  2666. static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
  2667. struct btrfs_root *root,
  2668. struct btrfs_path *path, int ins_len)
  2669. {
  2670. struct btrfs_key key;
  2671. struct extent_buffer *leaf;
  2672. struct btrfs_file_extent_item *fi;
  2673. u64 extent_len = 0;
  2674. u32 item_size;
  2675. int ret;
  2676. leaf = path->nodes[0];
  2677. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  2678. BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
  2679. key.type != BTRFS_EXTENT_CSUM_KEY);
  2680. if (btrfs_leaf_free_space(root, leaf) >= ins_len)
  2681. return 0;
  2682. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  2683. if (key.type == BTRFS_EXTENT_DATA_KEY) {
  2684. fi = btrfs_item_ptr(leaf, path->slots[0],
  2685. struct btrfs_file_extent_item);
  2686. extent_len = btrfs_file_extent_num_bytes(leaf, fi);
  2687. }
  2688. btrfs_release_path(root, path);
  2689. path->keep_locks = 1;
  2690. path->search_for_split = 1;
  2691. ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
  2692. path->search_for_split = 0;
  2693. if (ret < 0)
  2694. goto err;
  2695. ret = -EAGAIN;
  2696. leaf = path->nodes[0];
  2697. /* if our item isn't there or got smaller, return now */
  2698. if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
  2699. goto err;
  2700. if (key.type == BTRFS_EXTENT_DATA_KEY) {
  2701. fi = btrfs_item_ptr(leaf, path->slots[0],
  2702. struct btrfs_file_extent_item);
  2703. if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
  2704. goto err;
  2705. }
  2706. btrfs_set_path_blocking(path);
  2707. ret = split_leaf(trans, root, &key, path, ins_len, 1);
  2708. BUG_ON(ret);
  2709. path->keep_locks = 0;
  2710. btrfs_unlock_up_safe(path, 1);
  2711. return 0;
  2712. err:
  2713. path->keep_locks = 0;
  2714. return ret;
  2715. }
  2716. static noinline int split_item(struct btrfs_trans_handle *trans,
  2717. struct btrfs_root *root,
  2718. struct btrfs_path *path,
  2719. struct btrfs_key *new_key,
  2720. unsigned long split_offset)
  2721. {
  2722. struct extent_buffer *leaf;
  2723. struct btrfs_item *item;
  2724. struct btrfs_item *new_item;
  2725. int slot;
  2726. char *buf;
  2727. u32 nritems;
  2728. u32 item_size;
  2729. u32 orig_offset;
  2730. struct btrfs_disk_key disk_key;
  2731. leaf = path->nodes[0];
  2732. BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
  2733. btrfs_set_path_blocking(path);
  2734. item = btrfs_item_nr(leaf, path->slots[0]);
  2735. orig_offset = btrfs_item_offset(leaf, item);
  2736. item_size = btrfs_item_size(leaf, item);
  2737. buf = kmalloc(item_size, GFP_NOFS);
  2738. if (!buf)
  2739. return -ENOMEM;
  2740. read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
  2741. path->slots[0]), item_size);
  2742. slot = path->slots[0] + 1;
  2743. nritems = btrfs_header_nritems(leaf);
  2744. if (slot != nritems) {
  2745. /* shift the items */
  2746. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
  2747. btrfs_item_nr_offset(slot),
  2748. (nritems - slot) * sizeof(struct btrfs_item));
  2749. }
  2750. btrfs_cpu_key_to_disk(&disk_key, new_key);
  2751. btrfs_set_item_key(leaf, &disk_key, slot);
  2752. new_item = btrfs_item_nr(leaf, slot);
  2753. btrfs_set_item_offset(leaf, new_item, orig_offset);
  2754. btrfs_set_item_size(leaf, new_item, item_size - split_offset);
  2755. btrfs_set_item_offset(leaf, item,
  2756. orig_offset + item_size - split_offset);
  2757. btrfs_set_item_size(leaf, item, split_offset);
  2758. btrfs_set_header_nritems(leaf, nritems + 1);
  2759. /* write the data for the start of the original item */
  2760. write_extent_buffer(leaf, buf,
  2761. btrfs_item_ptr_offset(leaf, path->slots[0]),
  2762. split_offset);
  2763. /* write the data for the new item */
  2764. write_extent_buffer(leaf, buf + split_offset,
  2765. btrfs_item_ptr_offset(leaf, slot),
  2766. item_size - split_offset);
  2767. btrfs_mark_buffer_dirty(leaf);
  2768. BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
  2769. kfree(buf);
  2770. return 0;
  2771. }
  2772. /*
  2773. * This function splits a single item into two items,
  2774. * giving 'new_key' to the new item and splitting the
  2775. * old one at split_offset (from the start of the item).
  2776. *
  2777. * The path may be released by this operation. After
  2778. * the split, the path is pointing to the old item. The
  2779. * new item is going to be in the same node as the old one.
  2780. *
  2781. * Note, the item being split must be smaller enough to live alone on
  2782. * a tree block with room for one extra struct btrfs_item
  2783. *
  2784. * This allows us to split the item in place, keeping a lock on the
  2785. * leaf the entire time.
  2786. */
  2787. int btrfs_split_item(struct btrfs_trans_handle *trans,
  2788. struct btrfs_root *root,
  2789. struct btrfs_path *path,
  2790. struct btrfs_key *new_key,
  2791. unsigned long split_offset)
  2792. {
  2793. int ret;
  2794. ret = setup_leaf_for_split(trans, root, path,
  2795. sizeof(struct btrfs_item));
  2796. if (ret)
  2797. return ret;
  2798. ret = split_item(trans, root, path, new_key, split_offset);
  2799. return ret;
  2800. }
  2801. /*
  2802. * This function duplicate a item, giving 'new_key' to the new item.
  2803. * It guarantees both items live in the same tree leaf and the new item
  2804. * is contiguous with the original item.
  2805. *
  2806. * This allows us to split file extent in place, keeping a lock on the
  2807. * leaf the entire time.
  2808. */
  2809. int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
  2810. struct btrfs_root *root,
  2811. struct btrfs_path *path,
  2812. struct btrfs_key *new_key)
  2813. {
  2814. struct extent_buffer *leaf;
  2815. int ret;
  2816. u32 item_size;
  2817. leaf = path->nodes[0];
  2818. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  2819. ret = setup_leaf_for_split(trans, root, path,
  2820. item_size + sizeof(struct btrfs_item));
  2821. if (ret)
  2822. return ret;
  2823. path->slots[0]++;
  2824. ret = setup_items_for_insert(trans, root, path, new_key, &item_size,
  2825. item_size, item_size +
  2826. sizeof(struct btrfs_item), 1);
  2827. BUG_ON(ret);
  2828. leaf = path->nodes[0];
  2829. memcpy_extent_buffer(leaf,
  2830. btrfs_item_ptr_offset(leaf, path->slots[0]),
  2831. btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
  2832. item_size);
  2833. return 0;
  2834. }
  2835. /*
  2836. * make the item pointed to by the path smaller. new_size indicates
  2837. * how small to make it, and from_end tells us if we just chop bytes
  2838. * off the end of the item or if we shift the item to chop bytes off
  2839. * the front.
  2840. */
  2841. int btrfs_truncate_item(struct btrfs_trans_handle *trans,
  2842. struct btrfs_root *root,
  2843. struct btrfs_path *path,
  2844. u32 new_size, int from_end)
  2845. {
  2846. int ret = 0;
  2847. int slot;
  2848. int slot_orig;
  2849. struct extent_buffer *leaf;
  2850. struct btrfs_item *item;
  2851. u32 nritems;
  2852. unsigned int data_end;
  2853. unsigned int old_data_start;
  2854. unsigned int old_size;
  2855. unsigned int size_diff;
  2856. int i;
  2857. slot_orig = path->slots[0];
  2858. leaf = path->nodes[0];
  2859. slot = path->slots[0];
  2860. old_size = btrfs_item_size_nr(leaf, slot);
  2861. if (old_size == new_size)
  2862. return 0;
  2863. nritems = btrfs_header_nritems(leaf);
  2864. data_end = leaf_data_end(root, leaf);
  2865. old_data_start = btrfs_item_offset_nr(leaf, slot);
  2866. size_diff = old_size - new_size;
  2867. BUG_ON(slot < 0);
  2868. BUG_ON(slot >= nritems);
  2869. /*
  2870. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2871. */
  2872. /* first correct the data pointers */
  2873. for (i = slot; i < nritems; i++) {
  2874. u32 ioff;
  2875. item = btrfs_item_nr(leaf, i);
  2876. if (!leaf->map_token) {
  2877. map_extent_buffer(leaf, (unsigned long)item,
  2878. sizeof(struct btrfs_item),
  2879. &leaf->map_token, &leaf->kaddr,
  2880. &leaf->map_start, &leaf->map_len,
  2881. KM_USER1);
  2882. }
  2883. ioff = btrfs_item_offset(leaf, item);
  2884. btrfs_set_item_offset(leaf, item, ioff + size_diff);
  2885. }
  2886. if (leaf->map_token) {
  2887. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2888. leaf->map_token = NULL;
  2889. }
  2890. /* shift the data */
  2891. if (from_end) {
  2892. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2893. data_end + size_diff, btrfs_leaf_data(leaf) +
  2894. data_end, old_data_start + new_size - data_end);
  2895. } else {
  2896. struct btrfs_disk_key disk_key;
  2897. u64 offset;
  2898. btrfs_item_key(leaf, &disk_key, slot);
  2899. if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
  2900. unsigned long ptr;
  2901. struct btrfs_file_extent_item *fi;
  2902. fi = btrfs_item_ptr(leaf, slot,
  2903. struct btrfs_file_extent_item);
  2904. fi = (struct btrfs_file_extent_item *)(
  2905. (unsigned long)fi - size_diff);
  2906. if (btrfs_file_extent_type(leaf, fi) ==
  2907. BTRFS_FILE_EXTENT_INLINE) {
  2908. ptr = btrfs_item_ptr_offset(leaf, slot);
  2909. memmove_extent_buffer(leaf, ptr,
  2910. (unsigned long)fi,
  2911. offsetof(struct btrfs_file_extent_item,
  2912. disk_bytenr));
  2913. }
  2914. }
  2915. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2916. data_end + size_diff, btrfs_leaf_data(leaf) +
  2917. data_end, old_data_start - data_end);
  2918. offset = btrfs_disk_key_offset(&disk_key);
  2919. btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
  2920. btrfs_set_item_key(leaf, &disk_key, slot);
  2921. if (slot == 0)
  2922. fixup_low_keys(trans, root, path, &disk_key, 1);
  2923. }
  2924. item = btrfs_item_nr(leaf, slot);
  2925. btrfs_set_item_size(leaf, item, new_size);
  2926. btrfs_mark_buffer_dirty(leaf);
  2927. ret = 0;
  2928. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2929. btrfs_print_leaf(root, leaf);
  2930. BUG();
  2931. }
  2932. return ret;
  2933. }
  2934. /*
  2935. * make the item pointed to by the path bigger, data_size is the new size.
  2936. */
  2937. int btrfs_extend_item(struct btrfs_trans_handle *trans,
  2938. struct btrfs_root *root, struct btrfs_path *path,
  2939. u32 data_size)
  2940. {
  2941. int ret = 0;
  2942. int slot;
  2943. int slot_orig;
  2944. struct extent_buffer *leaf;
  2945. struct btrfs_item *item;
  2946. u32 nritems;
  2947. unsigned int data_end;
  2948. unsigned int old_data;
  2949. unsigned int old_size;
  2950. int i;
  2951. slot_orig = path->slots[0];
  2952. leaf = path->nodes[0];
  2953. nritems = btrfs_header_nritems(leaf);
  2954. data_end = leaf_data_end(root, leaf);
  2955. if (btrfs_leaf_free_space(root, leaf) < data_size) {
  2956. btrfs_print_leaf(root, leaf);
  2957. BUG();
  2958. }
  2959. slot = path->slots[0];
  2960. old_data = btrfs_item_end_nr(leaf, slot);
  2961. BUG_ON(slot < 0);
  2962. if (slot >= nritems) {
  2963. btrfs_print_leaf(root, leaf);
  2964. printk(KERN_CRIT "slot %d too large, nritems %d\n",
  2965. slot, nritems);
  2966. BUG_ON(1);
  2967. }
  2968. /*
  2969. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2970. */
  2971. /* first correct the data pointers */
  2972. for (i = slot; i < nritems; i++) {
  2973. u32 ioff;
  2974. item = btrfs_item_nr(leaf, i);
  2975. if (!leaf->map_token) {
  2976. map_extent_buffer(leaf, (unsigned long)item,
  2977. sizeof(struct btrfs_item),
  2978. &leaf->map_token, &leaf->kaddr,
  2979. &leaf->map_start, &leaf->map_len,
  2980. KM_USER1);
  2981. }
  2982. ioff = btrfs_item_offset(leaf, item);
  2983. btrfs_set_item_offset(leaf, item, ioff - data_size);
  2984. }
  2985. if (leaf->map_token) {
  2986. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2987. leaf->map_token = NULL;
  2988. }
  2989. /* shift the data */
  2990. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2991. data_end - data_size, btrfs_leaf_data(leaf) +
  2992. data_end, old_data - data_end);
  2993. data_end = old_data;
  2994. old_size = btrfs_item_size_nr(leaf, slot);
  2995. item = btrfs_item_nr(leaf, slot);
  2996. btrfs_set_item_size(leaf, item, old_size + data_size);
  2997. btrfs_mark_buffer_dirty(leaf);
  2998. ret = 0;
  2999. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3000. btrfs_print_leaf(root, leaf);
  3001. BUG();
  3002. }
  3003. return ret;
  3004. }
  3005. /*
  3006. * Given a key and some data, insert items into the tree.
  3007. * This does all the path init required, making room in the tree if needed.
  3008. * Returns the number of keys that were inserted.
  3009. */
  3010. int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
  3011. struct btrfs_root *root,
  3012. struct btrfs_path *path,
  3013. struct btrfs_key *cpu_key, u32 *data_size,
  3014. int nr)
  3015. {
  3016. struct extent_buffer *leaf;
  3017. struct btrfs_item *item;
  3018. int ret = 0;
  3019. int slot;
  3020. int i;
  3021. u32 nritems;
  3022. u32 total_data = 0;
  3023. u32 total_size = 0;
  3024. unsigned int data_end;
  3025. struct btrfs_disk_key disk_key;
  3026. struct btrfs_key found_key;
  3027. for (i = 0; i < nr; i++) {
  3028. if (total_size + data_size[i] + sizeof(struct btrfs_item) >
  3029. BTRFS_LEAF_DATA_SIZE(root)) {
  3030. break;
  3031. nr = i;
  3032. }
  3033. total_data += data_size[i];
  3034. total_size += data_size[i] + sizeof(struct btrfs_item);
  3035. }
  3036. BUG_ON(nr == 0);
  3037. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  3038. if (ret == 0)
  3039. return -EEXIST;
  3040. if (ret < 0)
  3041. goto out;
  3042. leaf = path->nodes[0];
  3043. nritems = btrfs_header_nritems(leaf);
  3044. data_end = leaf_data_end(root, leaf);
  3045. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  3046. for (i = nr; i >= 0; i--) {
  3047. total_data -= data_size[i];
  3048. total_size -= data_size[i] + sizeof(struct btrfs_item);
  3049. if (total_size < btrfs_leaf_free_space(root, leaf))
  3050. break;
  3051. }
  3052. nr = i;
  3053. }
  3054. slot = path->slots[0];
  3055. BUG_ON(slot < 0);
  3056. if (slot != nritems) {
  3057. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  3058. item = btrfs_item_nr(leaf, slot);
  3059. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  3060. /* figure out how many keys we can insert in here */
  3061. total_data = data_size[0];
  3062. for (i = 1; i < nr; i++) {
  3063. if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
  3064. break;
  3065. total_data += data_size[i];
  3066. }
  3067. nr = i;
  3068. if (old_data < data_end) {
  3069. btrfs_print_leaf(root, leaf);
  3070. printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
  3071. slot, old_data, data_end);
  3072. BUG_ON(1);
  3073. }
  3074. /*
  3075. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  3076. */
  3077. /* first correct the data pointers */
  3078. WARN_ON(leaf->map_token);
  3079. for (i = slot; i < nritems; i++) {
  3080. u32 ioff;
  3081. item = btrfs_item_nr(leaf, i);
  3082. if (!leaf->map_token) {
  3083. map_extent_buffer(leaf, (unsigned long)item,
  3084. sizeof(struct btrfs_item),
  3085. &leaf->map_token, &leaf->kaddr,
  3086. &leaf->map_start, &leaf->map_len,
  3087. KM_USER1);
  3088. }
  3089. ioff = btrfs_item_offset(leaf, item);
  3090. btrfs_set_item_offset(leaf, item, ioff - total_data);
  3091. }
  3092. if (leaf->map_token) {
  3093. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  3094. leaf->map_token = NULL;
  3095. }
  3096. /* shift the items */
  3097. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  3098. btrfs_item_nr_offset(slot),
  3099. (nritems - slot) * sizeof(struct btrfs_item));
  3100. /* shift the data */
  3101. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3102. data_end - total_data, btrfs_leaf_data(leaf) +
  3103. data_end, old_data - data_end);
  3104. data_end = old_data;
  3105. } else {
  3106. /*
  3107. * this sucks but it has to be done, if we are inserting at
  3108. * the end of the leaf only insert 1 of the items, since we
  3109. * have no way of knowing whats on the next leaf and we'd have
  3110. * to drop our current locks to figure it out
  3111. */
  3112. nr = 1;
  3113. }
  3114. /* setup the item for the new data */
  3115. for (i = 0; i < nr; i++) {
  3116. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  3117. btrfs_set_item_key(leaf, &disk_key, slot + i);
  3118. item = btrfs_item_nr(leaf, slot + i);
  3119. btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
  3120. data_end -= data_size[i];
  3121. btrfs_set_item_size(leaf, item, data_size[i]);
  3122. }
  3123. btrfs_set_header_nritems(leaf, nritems + nr);
  3124. btrfs_mark_buffer_dirty(leaf);
  3125. ret = 0;
  3126. if (slot == 0) {
  3127. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  3128. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  3129. }
  3130. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3131. btrfs_print_leaf(root, leaf);
  3132. BUG();
  3133. }
  3134. out:
  3135. if (!ret)
  3136. ret = nr;
  3137. return ret;
  3138. }
  3139. /*
  3140. * this is a helper for btrfs_insert_empty_items, the main goal here is
  3141. * to save stack depth by doing the bulk of the work in a function
  3142. * that doesn't call btrfs_search_slot
  3143. */
  3144. static noinline_for_stack int
  3145. setup_items_for_insert(struct btrfs_trans_handle *trans,
  3146. struct btrfs_root *root, struct btrfs_path *path,
  3147. struct btrfs_key *cpu_key, u32 *data_size,
  3148. u32 total_data, u32 total_size, int nr)
  3149. {
  3150. struct btrfs_item *item;
  3151. int i;
  3152. u32 nritems;
  3153. unsigned int data_end;
  3154. struct btrfs_disk_key disk_key;
  3155. int ret;
  3156. struct extent_buffer *leaf;
  3157. int slot;
  3158. leaf = path->nodes[0];
  3159. slot = path->slots[0];
  3160. nritems = btrfs_header_nritems(leaf);
  3161. data_end = leaf_data_end(root, leaf);
  3162. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  3163. btrfs_print_leaf(root, leaf);
  3164. printk(KERN_CRIT "not enough freespace need %u have %d\n",
  3165. total_size, btrfs_leaf_free_space(root, leaf));
  3166. BUG();
  3167. }
  3168. if (slot != nritems) {
  3169. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  3170. if (old_data < data_end) {
  3171. btrfs_print_leaf(root, leaf);
  3172. printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
  3173. slot, old_data, data_end);
  3174. BUG_ON(1);
  3175. }
  3176. /*
  3177. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  3178. */
  3179. /* first correct the data pointers */
  3180. WARN_ON(leaf->map_token);
  3181. for (i = slot; i < nritems; i++) {
  3182. u32 ioff;
  3183. item = btrfs_item_nr(leaf, i);
  3184. if (!leaf->map_token) {
  3185. map_extent_buffer(leaf, (unsigned long)item,
  3186. sizeof(struct btrfs_item),
  3187. &leaf->map_token, &leaf->kaddr,
  3188. &leaf->map_start, &leaf->map_len,
  3189. KM_USER1);
  3190. }
  3191. ioff = btrfs_item_offset(leaf, item);
  3192. btrfs_set_item_offset(leaf, item, ioff - total_data);
  3193. }
  3194. if (leaf->map_token) {
  3195. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  3196. leaf->map_token = NULL;
  3197. }
  3198. /* shift the items */
  3199. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  3200. btrfs_item_nr_offset(slot),
  3201. (nritems - slot) * sizeof(struct btrfs_item));
  3202. /* shift the data */
  3203. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3204. data_end - total_data, btrfs_leaf_data(leaf) +
  3205. data_end, old_data - data_end);
  3206. data_end = old_data;
  3207. }
  3208. /* setup the item for the new data */
  3209. for (i = 0; i < nr; i++) {
  3210. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  3211. btrfs_set_item_key(leaf, &disk_key, slot + i);
  3212. item = btrfs_item_nr(leaf, slot + i);
  3213. btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
  3214. data_end -= data_size[i];
  3215. btrfs_set_item_size(leaf, item, data_size[i]);
  3216. }
  3217. btrfs_set_header_nritems(leaf, nritems + nr);
  3218. ret = 0;
  3219. if (slot == 0) {
  3220. struct btrfs_disk_key disk_key;
  3221. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  3222. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  3223. }
  3224. btrfs_unlock_up_safe(path, 1);
  3225. btrfs_mark_buffer_dirty(leaf);
  3226. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3227. btrfs_print_leaf(root, leaf);
  3228. BUG();
  3229. }
  3230. return ret;
  3231. }
  3232. /*
  3233. * Given a key and some data, insert items into the tree.
  3234. * This does all the path init required, making room in the tree if needed.
  3235. */
  3236. int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
  3237. struct btrfs_root *root,
  3238. struct btrfs_path *path,
  3239. struct btrfs_key *cpu_key, u32 *data_size,
  3240. int nr)
  3241. {
  3242. struct extent_buffer *leaf;
  3243. int ret = 0;
  3244. int slot;
  3245. int i;
  3246. u32 total_size = 0;
  3247. u32 total_data = 0;
  3248. for (i = 0; i < nr; i++)
  3249. total_data += data_size[i];
  3250. total_size = total_data + (nr * sizeof(struct btrfs_item));
  3251. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  3252. if (ret == 0)
  3253. return -EEXIST;
  3254. if (ret < 0)
  3255. goto out;
  3256. leaf = path->nodes[0];
  3257. slot = path->slots[0];
  3258. BUG_ON(slot < 0);
  3259. ret = setup_items_for_insert(trans, root, path, cpu_key, data_size,
  3260. total_data, total_size, nr);
  3261. out:
  3262. return ret;
  3263. }
  3264. /*
  3265. * Given a key and some data, insert an item into the tree.
  3266. * This does all the path init required, making room in the tree if needed.
  3267. */
  3268. int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
  3269. *root, struct btrfs_key *cpu_key, void *data, u32
  3270. data_size)
  3271. {
  3272. int ret = 0;
  3273. struct btrfs_path *path;
  3274. struct extent_buffer *leaf;
  3275. unsigned long ptr;
  3276. path = btrfs_alloc_path();
  3277. BUG_ON(!path);
  3278. ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
  3279. if (!ret) {
  3280. leaf = path->nodes[0];
  3281. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  3282. write_extent_buffer(leaf, data, ptr, data_size);
  3283. btrfs_mark_buffer_dirty(leaf);
  3284. }
  3285. btrfs_free_path(path);
  3286. return ret;
  3287. }
  3288. /*
  3289. * delete the pointer from a given node.
  3290. *
  3291. * the tree should have been previously balanced so the deletion does not
  3292. * empty a node.
  3293. */
  3294. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  3295. struct btrfs_path *path, int level, int slot)
  3296. {
  3297. struct extent_buffer *parent = path->nodes[level];
  3298. u32 nritems;
  3299. int ret = 0;
  3300. int wret;
  3301. nritems = btrfs_header_nritems(parent);
  3302. if (slot != nritems - 1) {
  3303. memmove_extent_buffer(parent,
  3304. btrfs_node_key_ptr_offset(slot),
  3305. btrfs_node_key_ptr_offset(slot + 1),
  3306. sizeof(struct btrfs_key_ptr) *
  3307. (nritems - slot - 1));
  3308. }
  3309. nritems--;
  3310. btrfs_set_header_nritems(parent, nritems);
  3311. if (nritems == 0 && parent == root->node) {
  3312. BUG_ON(btrfs_header_level(root->node) != 1);
  3313. /* just turn the root into a leaf and break */
  3314. btrfs_set_header_level(root->node, 0);
  3315. } else if (slot == 0) {
  3316. struct btrfs_disk_key disk_key;
  3317. btrfs_node_key(parent, &disk_key, 0);
  3318. wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
  3319. if (wret)
  3320. ret = wret;
  3321. }
  3322. btrfs_mark_buffer_dirty(parent);
  3323. return ret;
  3324. }
  3325. /*
  3326. * a helper function to delete the leaf pointed to by path->slots[1] and
  3327. * path->nodes[1].
  3328. *
  3329. * This deletes the pointer in path->nodes[1] and frees the leaf
  3330. * block extent. zero is returned if it all worked out, < 0 otherwise.
  3331. *
  3332. * The path must have already been setup for deleting the leaf, including
  3333. * all the proper balancing. path->nodes[1] must be locked.
  3334. */
  3335. static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
  3336. struct btrfs_root *root,
  3337. struct btrfs_path *path,
  3338. struct extent_buffer *leaf)
  3339. {
  3340. int ret;
  3341. WARN_ON(btrfs_header_generation(leaf) != trans->transid);
  3342. ret = del_ptr(trans, root, path, 1, path->slots[1]);
  3343. if (ret)
  3344. return ret;
  3345. /*
  3346. * btrfs_free_extent is expensive, we want to make sure we
  3347. * aren't holding any locks when we call it
  3348. */
  3349. btrfs_unlock_up_safe(path, 0);
  3350. ret = btrfs_free_tree_block(trans, root, leaf->start, leaf->len,
  3351. 0, root->root_key.objectid, 0);
  3352. return ret;
  3353. }
  3354. /*
  3355. * delete the item at the leaf level in path. If that empties
  3356. * the leaf, remove it from the tree
  3357. */
  3358. int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  3359. struct btrfs_path *path, int slot, int nr)
  3360. {
  3361. struct extent_buffer *leaf;
  3362. struct btrfs_item *item;
  3363. int last_off;
  3364. int dsize = 0;
  3365. int ret = 0;
  3366. int wret;
  3367. int i;
  3368. u32 nritems;
  3369. leaf = path->nodes[0];
  3370. last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
  3371. for (i = 0; i < nr; i++)
  3372. dsize += btrfs_item_size_nr(leaf, slot + i);
  3373. nritems = btrfs_header_nritems(leaf);
  3374. if (slot + nr != nritems) {
  3375. int data_end = leaf_data_end(root, leaf);
  3376. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3377. data_end + dsize,
  3378. btrfs_leaf_data(leaf) + data_end,
  3379. last_off - data_end);
  3380. for (i = slot + nr; i < nritems; i++) {
  3381. u32 ioff;
  3382. item = btrfs_item_nr(leaf, i);
  3383. if (!leaf->map_token) {
  3384. map_extent_buffer(leaf, (unsigned long)item,
  3385. sizeof(struct btrfs_item),
  3386. &leaf->map_token, &leaf->kaddr,
  3387. &leaf->map_start, &leaf->map_len,
  3388. KM_USER1);
  3389. }
  3390. ioff = btrfs_item_offset(leaf, item);
  3391. btrfs_set_item_offset(leaf, item, ioff + dsize);
  3392. }
  3393. if (leaf->map_token) {
  3394. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  3395. leaf->map_token = NULL;
  3396. }
  3397. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
  3398. btrfs_item_nr_offset(slot + nr),
  3399. sizeof(struct btrfs_item) *
  3400. (nritems - slot - nr));
  3401. }
  3402. btrfs_set_header_nritems(leaf, nritems - nr);
  3403. nritems -= nr;
  3404. /* delete the leaf if we've emptied it */
  3405. if (nritems == 0) {
  3406. if (leaf == root->node) {
  3407. btrfs_set_header_level(leaf, 0);
  3408. } else {
  3409. ret = btrfs_del_leaf(trans, root, path, leaf);
  3410. BUG_ON(ret);
  3411. }
  3412. } else {
  3413. int used = leaf_space_used(leaf, 0, nritems);
  3414. if (slot == 0) {
  3415. struct btrfs_disk_key disk_key;
  3416. btrfs_item_key(leaf, &disk_key, 0);
  3417. wret = fixup_low_keys(trans, root, path,
  3418. &disk_key, 1);
  3419. if (wret)
  3420. ret = wret;
  3421. }
  3422. /* delete the leaf if it is mostly empty */
  3423. if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
  3424. /* push_leaf_left fixes the path.
  3425. * make sure the path still points to our leaf
  3426. * for possible call to del_ptr below
  3427. */
  3428. slot = path->slots[1];
  3429. extent_buffer_get(leaf);
  3430. btrfs_set_path_blocking(path);
  3431. wret = push_leaf_left(trans, root, path, 1, 1);
  3432. if (wret < 0 && wret != -ENOSPC)
  3433. ret = wret;
  3434. if (path->nodes[0] == leaf &&
  3435. btrfs_header_nritems(leaf)) {
  3436. wret = push_leaf_right(trans, root, path, 1, 1);
  3437. if (wret < 0 && wret != -ENOSPC)
  3438. ret = wret;
  3439. }
  3440. if (btrfs_header_nritems(leaf) == 0) {
  3441. path->slots[1] = slot;
  3442. ret = btrfs_del_leaf(trans, root, path, leaf);
  3443. BUG_ON(ret);
  3444. free_extent_buffer(leaf);
  3445. } else {
  3446. /* if we're still in the path, make sure
  3447. * we're dirty. Otherwise, one of the
  3448. * push_leaf functions must have already
  3449. * dirtied this buffer
  3450. */
  3451. if (path->nodes[0] == leaf)
  3452. btrfs_mark_buffer_dirty(leaf);
  3453. free_extent_buffer(leaf);
  3454. }
  3455. } else {
  3456. btrfs_mark_buffer_dirty(leaf);
  3457. }
  3458. }
  3459. return ret;
  3460. }
  3461. /*
  3462. * search the tree again to find a leaf with lesser keys
  3463. * returns 0 if it found something or 1 if there are no lesser leaves.
  3464. * returns < 0 on io errors.
  3465. *
  3466. * This may release the path, and so you may lose any locks held at the
  3467. * time you call it.
  3468. */
  3469. int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3470. {
  3471. struct btrfs_key key;
  3472. struct btrfs_disk_key found_key;
  3473. int ret;
  3474. btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
  3475. if (key.offset > 0)
  3476. key.offset--;
  3477. else if (key.type > 0)
  3478. key.type--;
  3479. else if (key.objectid > 0)
  3480. key.objectid--;
  3481. else
  3482. return 1;
  3483. btrfs_release_path(root, path);
  3484. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3485. if (ret < 0)
  3486. return ret;
  3487. btrfs_item_key(path->nodes[0], &found_key, 0);
  3488. ret = comp_keys(&found_key, &key);
  3489. if (ret < 0)
  3490. return 0;
  3491. return 1;
  3492. }
  3493. /*
  3494. * A helper function to walk down the tree starting at min_key, and looking
  3495. * for nodes or leaves that are either in cache or have a minimum
  3496. * transaction id. This is used by the btree defrag code, and tree logging
  3497. *
  3498. * This does not cow, but it does stuff the starting key it finds back
  3499. * into min_key, so you can call btrfs_search_slot with cow=1 on the
  3500. * key and get a writable path.
  3501. *
  3502. * This does lock as it descends, and path->keep_locks should be set
  3503. * to 1 by the caller.
  3504. *
  3505. * This honors path->lowest_level to prevent descent past a given level
  3506. * of the tree.
  3507. *
  3508. * min_trans indicates the oldest transaction that you are interested
  3509. * in walking through. Any nodes or leaves older than min_trans are
  3510. * skipped over (without reading them).
  3511. *
  3512. * returns zero if something useful was found, < 0 on error and 1 if there
  3513. * was nothing in the tree that matched the search criteria.
  3514. */
  3515. int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
  3516. struct btrfs_key *max_key,
  3517. struct btrfs_path *path, int cache_only,
  3518. u64 min_trans)
  3519. {
  3520. struct extent_buffer *cur;
  3521. struct btrfs_key found_key;
  3522. int slot;
  3523. int sret;
  3524. u32 nritems;
  3525. int level;
  3526. int ret = 1;
  3527. WARN_ON(!path->keep_locks);
  3528. again:
  3529. cur = btrfs_lock_root_node(root);
  3530. level = btrfs_header_level(cur);
  3531. WARN_ON(path->nodes[level]);
  3532. path->nodes[level] = cur;
  3533. path->locks[level] = 1;
  3534. if (btrfs_header_generation(cur) < min_trans) {
  3535. ret = 1;
  3536. goto out;
  3537. }
  3538. while (1) {
  3539. nritems = btrfs_header_nritems(cur);
  3540. level = btrfs_header_level(cur);
  3541. sret = bin_search(cur, min_key, level, &slot);
  3542. /* at the lowest level, we're done, setup the path and exit */
  3543. if (level == path->lowest_level) {
  3544. if (slot >= nritems)
  3545. goto find_next_key;
  3546. ret = 0;
  3547. path->slots[level] = slot;
  3548. btrfs_item_key_to_cpu(cur, &found_key, slot);
  3549. goto out;
  3550. }
  3551. if (sret && slot > 0)
  3552. slot--;
  3553. /*
  3554. * check this node pointer against the cache_only and
  3555. * min_trans parameters. If it isn't in cache or is too
  3556. * old, skip to the next one.
  3557. */
  3558. while (slot < nritems) {
  3559. u64 blockptr;
  3560. u64 gen;
  3561. struct extent_buffer *tmp;
  3562. struct btrfs_disk_key disk_key;
  3563. blockptr = btrfs_node_blockptr(cur, slot);
  3564. gen = btrfs_node_ptr_generation(cur, slot);
  3565. if (gen < min_trans) {
  3566. slot++;
  3567. continue;
  3568. }
  3569. if (!cache_only)
  3570. break;
  3571. if (max_key) {
  3572. btrfs_node_key(cur, &disk_key, slot);
  3573. if (comp_keys(&disk_key, max_key) >= 0) {
  3574. ret = 1;
  3575. goto out;
  3576. }
  3577. }
  3578. tmp = btrfs_find_tree_block(root, blockptr,
  3579. btrfs_level_size(root, level - 1));
  3580. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  3581. free_extent_buffer(tmp);
  3582. break;
  3583. }
  3584. if (tmp)
  3585. free_extent_buffer(tmp);
  3586. slot++;
  3587. }
  3588. find_next_key:
  3589. /*
  3590. * we didn't find a candidate key in this node, walk forward
  3591. * and find another one
  3592. */
  3593. if (slot >= nritems) {
  3594. path->slots[level] = slot;
  3595. btrfs_set_path_blocking(path);
  3596. sret = btrfs_find_next_key(root, path, min_key, level,
  3597. cache_only, min_trans);
  3598. if (sret == 0) {
  3599. btrfs_release_path(root, path);
  3600. goto again;
  3601. } else {
  3602. goto out;
  3603. }
  3604. }
  3605. /* save our key for returning back */
  3606. btrfs_node_key_to_cpu(cur, &found_key, slot);
  3607. path->slots[level] = slot;
  3608. if (level == path->lowest_level) {
  3609. ret = 0;
  3610. unlock_up(path, level, 1);
  3611. goto out;
  3612. }
  3613. btrfs_set_path_blocking(path);
  3614. cur = read_node_slot(root, cur, slot);
  3615. btrfs_tree_lock(cur);
  3616. path->locks[level - 1] = 1;
  3617. path->nodes[level - 1] = cur;
  3618. unlock_up(path, level, 1);
  3619. btrfs_clear_path_blocking(path, NULL);
  3620. }
  3621. out:
  3622. if (ret == 0)
  3623. memcpy(min_key, &found_key, sizeof(found_key));
  3624. btrfs_set_path_blocking(path);
  3625. return ret;
  3626. }
  3627. /*
  3628. * this is similar to btrfs_next_leaf, but does not try to preserve
  3629. * and fixup the path. It looks for and returns the next key in the
  3630. * tree based on the current path and the cache_only and min_trans
  3631. * parameters.
  3632. *
  3633. * 0 is returned if another key is found, < 0 if there are any errors
  3634. * and 1 is returned if there are no higher keys in the tree
  3635. *
  3636. * path->keep_locks should be set to 1 on the search made before
  3637. * calling this function.
  3638. */
  3639. int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
  3640. struct btrfs_key *key, int level,
  3641. int cache_only, u64 min_trans)
  3642. {
  3643. int slot;
  3644. struct extent_buffer *c;
  3645. WARN_ON(!path->keep_locks);
  3646. while (level < BTRFS_MAX_LEVEL) {
  3647. if (!path->nodes[level])
  3648. return 1;
  3649. slot = path->slots[level] + 1;
  3650. c = path->nodes[level];
  3651. next:
  3652. if (slot >= btrfs_header_nritems(c)) {
  3653. int ret;
  3654. int orig_lowest;
  3655. struct btrfs_key cur_key;
  3656. if (level + 1 >= BTRFS_MAX_LEVEL ||
  3657. !path->nodes[level + 1])
  3658. return 1;
  3659. if (path->locks[level + 1]) {
  3660. level++;
  3661. continue;
  3662. }
  3663. slot = btrfs_header_nritems(c) - 1;
  3664. if (level == 0)
  3665. btrfs_item_key_to_cpu(c, &cur_key, slot);
  3666. else
  3667. btrfs_node_key_to_cpu(c, &cur_key, slot);
  3668. orig_lowest = path->lowest_level;
  3669. btrfs_release_path(root, path);
  3670. path->lowest_level = level;
  3671. ret = btrfs_search_slot(NULL, root, &cur_key, path,
  3672. 0, 0);
  3673. path->lowest_level = orig_lowest;
  3674. if (ret < 0)
  3675. return ret;
  3676. c = path->nodes[level];
  3677. slot = path->slots[level];
  3678. if (ret == 0)
  3679. slot++;
  3680. goto next;
  3681. }
  3682. if (level == 0)
  3683. btrfs_item_key_to_cpu(c, key, slot);
  3684. else {
  3685. u64 blockptr = btrfs_node_blockptr(c, slot);
  3686. u64 gen = btrfs_node_ptr_generation(c, slot);
  3687. if (cache_only) {
  3688. struct extent_buffer *cur;
  3689. cur = btrfs_find_tree_block(root, blockptr,
  3690. btrfs_level_size(root, level - 1));
  3691. if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
  3692. slot++;
  3693. if (cur)
  3694. free_extent_buffer(cur);
  3695. goto next;
  3696. }
  3697. free_extent_buffer(cur);
  3698. }
  3699. if (gen < min_trans) {
  3700. slot++;
  3701. goto next;
  3702. }
  3703. btrfs_node_key_to_cpu(c, key, slot);
  3704. }
  3705. return 0;
  3706. }
  3707. return 1;
  3708. }
  3709. /*
  3710. * search the tree again to find a leaf with greater keys
  3711. * returns 0 if it found something or 1 if there are no greater leaves.
  3712. * returns < 0 on io errors.
  3713. */
  3714. int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3715. {
  3716. int slot;
  3717. int level;
  3718. struct extent_buffer *c;
  3719. struct extent_buffer *next;
  3720. struct btrfs_key key;
  3721. u32 nritems;
  3722. int ret;
  3723. int old_spinning = path->leave_spinning;
  3724. int force_blocking = 0;
  3725. nritems = btrfs_header_nritems(path->nodes[0]);
  3726. if (nritems == 0)
  3727. return 1;
  3728. /*
  3729. * we take the blocks in an order that upsets lockdep. Using
  3730. * blocking mode is the only way around it.
  3731. */
  3732. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  3733. force_blocking = 1;
  3734. #endif
  3735. btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
  3736. again:
  3737. level = 1;
  3738. next = NULL;
  3739. btrfs_release_path(root, path);
  3740. path->keep_locks = 1;
  3741. if (!force_blocking)
  3742. path->leave_spinning = 1;
  3743. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3744. path->keep_locks = 0;
  3745. if (ret < 0)
  3746. return ret;
  3747. nritems = btrfs_header_nritems(path->nodes[0]);
  3748. /*
  3749. * by releasing the path above we dropped all our locks. A balance
  3750. * could have added more items next to the key that used to be
  3751. * at the very end of the block. So, check again here and
  3752. * advance the path if there are now more items available.
  3753. */
  3754. if (nritems > 0 && path->slots[0] < nritems - 1) {
  3755. if (ret == 0)
  3756. path->slots[0]++;
  3757. ret = 0;
  3758. goto done;
  3759. }
  3760. while (level < BTRFS_MAX_LEVEL) {
  3761. if (!path->nodes[level]) {
  3762. ret = 1;
  3763. goto done;
  3764. }
  3765. slot = path->slots[level] + 1;
  3766. c = path->nodes[level];
  3767. if (slot >= btrfs_header_nritems(c)) {
  3768. level++;
  3769. if (level == BTRFS_MAX_LEVEL) {
  3770. ret = 1;
  3771. goto done;
  3772. }
  3773. continue;
  3774. }
  3775. if (next) {
  3776. btrfs_tree_unlock(next);
  3777. free_extent_buffer(next);
  3778. }
  3779. next = c;
  3780. ret = read_block_for_search(NULL, root, path, &next, level,
  3781. slot, &key);
  3782. if (ret == -EAGAIN)
  3783. goto again;
  3784. if (ret < 0) {
  3785. btrfs_release_path(root, path);
  3786. goto done;
  3787. }
  3788. if (!path->skip_locking) {
  3789. ret = btrfs_try_spin_lock(next);
  3790. if (!ret) {
  3791. btrfs_set_path_blocking(path);
  3792. btrfs_tree_lock(next);
  3793. if (!force_blocking)
  3794. btrfs_clear_path_blocking(path, next);
  3795. }
  3796. if (force_blocking)
  3797. btrfs_set_lock_blocking(next);
  3798. }
  3799. break;
  3800. }
  3801. path->slots[level] = slot;
  3802. while (1) {
  3803. level--;
  3804. c = path->nodes[level];
  3805. if (path->locks[level])
  3806. btrfs_tree_unlock(c);
  3807. free_extent_buffer(c);
  3808. path->nodes[level] = next;
  3809. path->slots[level] = 0;
  3810. if (!path->skip_locking)
  3811. path->locks[level] = 1;
  3812. if (!level)
  3813. break;
  3814. ret = read_block_for_search(NULL, root, path, &next, level,
  3815. 0, &key);
  3816. if (ret == -EAGAIN)
  3817. goto again;
  3818. if (ret < 0) {
  3819. btrfs_release_path(root, path);
  3820. goto done;
  3821. }
  3822. if (!path->skip_locking) {
  3823. btrfs_assert_tree_locked(path->nodes[level]);
  3824. ret = btrfs_try_spin_lock(next);
  3825. if (!ret) {
  3826. btrfs_set_path_blocking(path);
  3827. btrfs_tree_lock(next);
  3828. if (!force_blocking)
  3829. btrfs_clear_path_blocking(path, next);
  3830. }
  3831. if (force_blocking)
  3832. btrfs_set_lock_blocking(next);
  3833. }
  3834. }
  3835. ret = 0;
  3836. done:
  3837. unlock_up(path, 0, 1);
  3838. path->leave_spinning = old_spinning;
  3839. if (!old_spinning)
  3840. btrfs_set_path_blocking(path);
  3841. return ret;
  3842. }
  3843. /*
  3844. * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
  3845. * searching until it gets past min_objectid or finds an item of 'type'
  3846. *
  3847. * returns 0 if something is found, 1 if nothing was found and < 0 on error
  3848. */
  3849. int btrfs_previous_item(struct btrfs_root *root,
  3850. struct btrfs_path *path, u64 min_objectid,
  3851. int type)
  3852. {
  3853. struct btrfs_key found_key;
  3854. struct extent_buffer *leaf;
  3855. u32 nritems;
  3856. int ret;
  3857. while (1) {
  3858. if (path->slots[0] == 0) {
  3859. btrfs_set_path_blocking(path);
  3860. ret = btrfs_prev_leaf(root, path);
  3861. if (ret != 0)
  3862. return ret;
  3863. } else {
  3864. path->slots[0]--;
  3865. }
  3866. leaf = path->nodes[0];
  3867. nritems = btrfs_header_nritems(leaf);
  3868. if (nritems == 0)
  3869. return 1;
  3870. if (path->slots[0] == nritems)
  3871. path->slots[0]--;
  3872. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  3873. if (found_key.objectid < min_objectid)
  3874. break;
  3875. if (found_key.type == type)
  3876. return 0;
  3877. if (found_key.objectid == min_objectid &&
  3878. found_key.type < type)
  3879. break;
  3880. }
  3881. return 1;
  3882. }