builtin-stat.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516
  1. /*
  2. * builtin-stat.c
  3. *
  4. * Builtin stat command: Give a precise performance counters summary
  5. * overview about any workload, CPU or specific PID.
  6. *
  7. * Sample output:
  8. $ perf stat ~/hackbench 10
  9. Time: 0.104
  10. Performance counter stats for '/home/mingo/hackbench':
  11. 1255.538611 task clock ticks # 10.143 CPU utilization factor
  12. 54011 context switches # 0.043 M/sec
  13. 385 CPU migrations # 0.000 M/sec
  14. 17755 pagefaults # 0.014 M/sec
  15. 3808323185 CPU cycles # 3033.219 M/sec
  16. 1575111190 instructions # 1254.530 M/sec
  17. 17367895 cache references # 13.833 M/sec
  18. 7674421 cache misses # 6.112 M/sec
  19. Wall-clock time elapsed: 123.786620 msecs
  20. *
  21. * Copyright (C) 2008, Red Hat Inc, Ingo Molnar <mingo@redhat.com>
  22. *
  23. * Improvements and fixes by:
  24. *
  25. * Arjan van de Ven <arjan@linux.intel.com>
  26. * Yanmin Zhang <yanmin.zhang@intel.com>
  27. * Wu Fengguang <fengguang.wu@intel.com>
  28. * Mike Galbraith <efault@gmx.de>
  29. * Paul Mackerras <paulus@samba.org>
  30. * Jaswinder Singh Rajput <jaswinder@kernel.org>
  31. *
  32. * Released under the GPL v2. (and only v2, not any later version)
  33. */
  34. #include "perf.h"
  35. #include "builtin.h"
  36. #include "util/util.h"
  37. #include "util/parse-options.h"
  38. #include "util/parse-events.h"
  39. #include <sys/prctl.h>
  40. #include <math.h>
  41. static struct perf_counter_attr default_attrs[MAX_COUNTERS] = {
  42. { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_TASK_CLOCK },
  43. { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CONTEXT_SWITCHES},
  44. { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CPU_MIGRATIONS },
  45. { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_PAGE_FAULTS },
  46. { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CPU_CYCLES },
  47. { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_INSTRUCTIONS },
  48. { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CACHE_REFERENCES},
  49. { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CACHE_MISSES },
  50. };
  51. #define MAX_RUN 100
  52. static int system_wide = 0;
  53. static int verbose = 0;
  54. static int nr_cpus = 0;
  55. static int run_idx = 0;
  56. static int run_count = 1;
  57. static int inherit = 1;
  58. static int scale = 1;
  59. static int target_pid = -1;
  60. static int null_run = 0;
  61. static int fd[MAX_NR_CPUS][MAX_COUNTERS];
  62. static u64 runtime_nsecs[MAX_RUN];
  63. static u64 walltime_nsecs[MAX_RUN];
  64. static u64 runtime_cycles[MAX_RUN];
  65. static u64 event_res[MAX_RUN][MAX_COUNTERS][3];
  66. static u64 event_scaled[MAX_RUN][MAX_COUNTERS];
  67. static u64 event_res_avg[MAX_COUNTERS][3];
  68. static u64 event_res_noise[MAX_COUNTERS][3];
  69. static u64 event_scaled_avg[MAX_COUNTERS];
  70. static u64 runtime_nsecs_avg;
  71. static u64 runtime_nsecs_noise;
  72. static u64 walltime_nsecs_avg;
  73. static u64 walltime_nsecs_noise;
  74. static u64 runtime_cycles_avg;
  75. static u64 runtime_cycles_noise;
  76. #define ERR_PERF_OPEN \
  77. "Error: counter %d, sys_perf_counter_open() syscall returned with %d (%s)\n"
  78. static void create_perf_stat_counter(int counter)
  79. {
  80. struct perf_counter_attr *attr = attrs + counter;
  81. if (scale)
  82. attr->read_format = PERF_FORMAT_TOTAL_TIME_ENABLED |
  83. PERF_FORMAT_TOTAL_TIME_RUNNING;
  84. if (system_wide) {
  85. int cpu;
  86. for (cpu = 0; cpu < nr_cpus; cpu++) {
  87. fd[cpu][counter] = sys_perf_counter_open(attr, -1, cpu, -1, 0);
  88. if (fd[cpu][counter] < 0 && verbose)
  89. fprintf(stderr, ERR_PERF_OPEN, counter,
  90. fd[cpu][counter], strerror(errno));
  91. }
  92. } else {
  93. attr->inherit = inherit;
  94. attr->disabled = 1;
  95. fd[0][counter] = sys_perf_counter_open(attr, 0, -1, -1, 0);
  96. if (fd[0][counter] < 0 && verbose)
  97. fprintf(stderr, ERR_PERF_OPEN, counter,
  98. fd[0][counter], strerror(errno));
  99. }
  100. }
  101. /*
  102. * Does the counter have nsecs as a unit?
  103. */
  104. static inline int nsec_counter(int counter)
  105. {
  106. if (attrs[counter].type != PERF_TYPE_SOFTWARE)
  107. return 0;
  108. if (attrs[counter].config == PERF_COUNT_SW_CPU_CLOCK)
  109. return 1;
  110. if (attrs[counter].config == PERF_COUNT_SW_TASK_CLOCK)
  111. return 1;
  112. return 0;
  113. }
  114. /*
  115. * Read out the results of a single counter:
  116. */
  117. static void read_counter(int counter)
  118. {
  119. u64 *count, single_count[3];
  120. ssize_t res;
  121. int cpu, nv;
  122. int scaled;
  123. count = event_res[run_idx][counter];
  124. count[0] = count[1] = count[2] = 0;
  125. nv = scale ? 3 : 1;
  126. for (cpu = 0; cpu < nr_cpus; cpu++) {
  127. if (fd[cpu][counter] < 0)
  128. continue;
  129. res = read(fd[cpu][counter], single_count, nv * sizeof(u64));
  130. assert(res == nv * sizeof(u64));
  131. close(fd[cpu][counter]);
  132. fd[cpu][counter] = -1;
  133. count[0] += single_count[0];
  134. if (scale) {
  135. count[1] += single_count[1];
  136. count[2] += single_count[2];
  137. }
  138. }
  139. scaled = 0;
  140. if (scale) {
  141. if (count[2] == 0) {
  142. event_scaled[run_idx][counter] = -1;
  143. count[0] = 0;
  144. return;
  145. }
  146. if (count[2] < count[1]) {
  147. event_scaled[run_idx][counter] = 1;
  148. count[0] = (unsigned long long)
  149. ((double)count[0] * count[1] / count[2] + 0.5);
  150. }
  151. }
  152. /*
  153. * Save the full runtime - to allow normalization during printout:
  154. */
  155. if (attrs[counter].type == PERF_TYPE_SOFTWARE &&
  156. attrs[counter].config == PERF_COUNT_SW_TASK_CLOCK)
  157. runtime_nsecs[run_idx] = count[0];
  158. if (attrs[counter].type == PERF_TYPE_HARDWARE &&
  159. attrs[counter].config == PERF_COUNT_HW_CPU_CYCLES)
  160. runtime_cycles[run_idx] = count[0];
  161. }
  162. static int run_perf_stat(int argc, const char **argv)
  163. {
  164. unsigned long long t0, t1;
  165. int status = 0;
  166. int counter;
  167. int pid;
  168. if (!system_wide)
  169. nr_cpus = 1;
  170. for (counter = 0; counter < nr_counters; counter++)
  171. create_perf_stat_counter(counter);
  172. /*
  173. * Enable counters and exec the command:
  174. */
  175. t0 = rdclock();
  176. prctl(PR_TASK_PERF_COUNTERS_ENABLE);
  177. if ((pid = fork()) < 0)
  178. perror("failed to fork");
  179. if (!pid) {
  180. if (execvp(argv[0], (char **)argv)) {
  181. perror(argv[0]);
  182. exit(-1);
  183. }
  184. }
  185. wait(&status);
  186. prctl(PR_TASK_PERF_COUNTERS_DISABLE);
  187. t1 = rdclock();
  188. walltime_nsecs[run_idx] = t1 - t0;
  189. for (counter = 0; counter < nr_counters; counter++)
  190. read_counter(counter);
  191. return WEXITSTATUS(status);
  192. }
  193. static void print_noise(u64 *count, u64 *noise)
  194. {
  195. if (run_count > 1)
  196. fprintf(stderr, " ( +- %7.3f%% )",
  197. (double)noise[0]/(count[0]+1)*100.0);
  198. }
  199. static void nsec_printout(int counter, u64 *count, u64 *noise)
  200. {
  201. double msecs = (double)count[0] / 1000000;
  202. fprintf(stderr, " %14.6f %-24s", msecs, event_name(counter));
  203. if (attrs[counter].type == PERF_TYPE_SOFTWARE &&
  204. attrs[counter].config == PERF_COUNT_SW_TASK_CLOCK) {
  205. if (walltime_nsecs_avg)
  206. fprintf(stderr, " # %10.3f CPUs ",
  207. (double)count[0] / (double)walltime_nsecs_avg);
  208. }
  209. print_noise(count, noise);
  210. }
  211. static void abs_printout(int counter, u64 *count, u64 *noise)
  212. {
  213. fprintf(stderr, " %14Ld %-24s", count[0], event_name(counter));
  214. if (runtime_cycles_avg &&
  215. attrs[counter].type == PERF_TYPE_HARDWARE &&
  216. attrs[counter].config == PERF_COUNT_HW_INSTRUCTIONS) {
  217. fprintf(stderr, " # %10.3f IPC ",
  218. (double)count[0] / (double)runtime_cycles_avg);
  219. } else {
  220. if (runtime_nsecs_avg) {
  221. fprintf(stderr, " # %10.3f M/sec",
  222. (double)count[0]/runtime_nsecs_avg*1000.0);
  223. }
  224. }
  225. print_noise(count, noise);
  226. }
  227. /*
  228. * Print out the results of a single counter:
  229. */
  230. static void print_counter(int counter)
  231. {
  232. u64 *count, *noise;
  233. int scaled;
  234. count = event_res_avg[counter];
  235. noise = event_res_noise[counter];
  236. scaled = event_scaled_avg[counter];
  237. if (scaled == -1) {
  238. fprintf(stderr, " %14s %-24s\n",
  239. "<not counted>", event_name(counter));
  240. return;
  241. }
  242. if (nsec_counter(counter))
  243. nsec_printout(counter, count, noise);
  244. else
  245. abs_printout(counter, count, noise);
  246. if (scaled)
  247. fprintf(stderr, " (%7.2fx scaled)", (double)count[1]/count[2]);
  248. fprintf(stderr, "\n");
  249. }
  250. /*
  251. * normalize_noise noise values down to stddev:
  252. */
  253. static void normalize_noise(u64 *val)
  254. {
  255. double res;
  256. res = (double)*val / (run_count * sqrt((double)run_count));
  257. *val = (u64)res;
  258. }
  259. static void update_avg(const char *name, int idx, u64 *avg, u64 *val)
  260. {
  261. *avg += *val;
  262. if (verbose > 1)
  263. fprintf(stderr, "debug: %20s[%d]: %Ld\n", name, idx, *val);
  264. }
  265. /*
  266. * Calculate the averages and noises:
  267. */
  268. static void calc_avg(void)
  269. {
  270. int i, j;
  271. if (verbose > 1)
  272. fprintf(stderr, "\n");
  273. for (i = 0; i < run_count; i++) {
  274. update_avg("runtime", 0, &runtime_nsecs_avg, runtime_nsecs + i);
  275. update_avg("walltime", 0, &walltime_nsecs_avg, walltime_nsecs + i);
  276. update_avg("runtime_cycles", 0, &runtime_cycles_avg, runtime_cycles + i);
  277. for (j = 0; j < nr_counters; j++) {
  278. update_avg("counter/0", j,
  279. event_res_avg[j]+0, event_res[i][j]+0);
  280. update_avg("counter/1", j,
  281. event_res_avg[j]+1, event_res[i][j]+1);
  282. update_avg("counter/2", j,
  283. event_res_avg[j]+2, event_res[i][j]+2);
  284. if (event_scaled[i][j] != -1)
  285. update_avg("scaled", j,
  286. event_scaled_avg + j, event_scaled[i]+j);
  287. else
  288. event_scaled_avg[j] = -1;
  289. }
  290. }
  291. runtime_nsecs_avg /= run_count;
  292. walltime_nsecs_avg /= run_count;
  293. runtime_cycles_avg /= run_count;
  294. for (j = 0; j < nr_counters; j++) {
  295. event_res_avg[j][0] /= run_count;
  296. event_res_avg[j][1] /= run_count;
  297. event_res_avg[j][2] /= run_count;
  298. }
  299. for (i = 0; i < run_count; i++) {
  300. runtime_nsecs_noise +=
  301. abs((s64)(runtime_nsecs[i] - runtime_nsecs_avg));
  302. walltime_nsecs_noise +=
  303. abs((s64)(walltime_nsecs[i] - walltime_nsecs_avg));
  304. runtime_cycles_noise +=
  305. abs((s64)(runtime_cycles[i] - runtime_cycles_avg));
  306. for (j = 0; j < nr_counters; j++) {
  307. event_res_noise[j][0] +=
  308. abs((s64)(event_res[i][j][0] - event_res_avg[j][0]));
  309. event_res_noise[j][1] +=
  310. abs((s64)(event_res[i][j][1] - event_res_avg[j][1]));
  311. event_res_noise[j][2] +=
  312. abs((s64)(event_res[i][j][2] - event_res_avg[j][2]));
  313. }
  314. }
  315. normalize_noise(&runtime_nsecs_noise);
  316. normalize_noise(&walltime_nsecs_noise);
  317. normalize_noise(&runtime_cycles_noise);
  318. for (j = 0; j < nr_counters; j++) {
  319. normalize_noise(&event_res_noise[j][0]);
  320. normalize_noise(&event_res_noise[j][1]);
  321. normalize_noise(&event_res_noise[j][2]);
  322. }
  323. }
  324. static void print_stat(int argc, const char **argv)
  325. {
  326. int i, counter;
  327. calc_avg();
  328. fflush(stdout);
  329. fprintf(stderr, "\n");
  330. fprintf(stderr, " Performance counter stats for \'%s", argv[0]);
  331. for (i = 1; i < argc; i++)
  332. fprintf(stderr, " %s", argv[i]);
  333. fprintf(stderr, "\'");
  334. if (run_count > 1)
  335. fprintf(stderr, " (%d runs)", run_count);
  336. fprintf(stderr, ":\n\n");
  337. for (counter = 0; counter < nr_counters; counter++)
  338. print_counter(counter);
  339. fprintf(stderr, "\n");
  340. fprintf(stderr, " %14.9f seconds time elapsed",
  341. (double)walltime_nsecs_avg/1e9);
  342. if (run_count > 1) {
  343. fprintf(stderr, " ( +- %7.3f%% )",
  344. 100.0*(double)walltime_nsecs_noise/(double)walltime_nsecs_avg);
  345. }
  346. fprintf(stderr, "\n\n");
  347. }
  348. static volatile int signr = -1;
  349. static void skip_signal(int signo)
  350. {
  351. signr = signo;
  352. }
  353. static void sig_atexit(void)
  354. {
  355. if (signr == -1)
  356. return;
  357. signal(signr, SIG_DFL);
  358. kill(getpid(), signr);
  359. }
  360. static const char * const stat_usage[] = {
  361. "perf stat [<options>] <command>",
  362. NULL
  363. };
  364. static const struct option options[] = {
  365. OPT_CALLBACK('e', "event", NULL, "event",
  366. "event selector. use 'perf list' to list available events",
  367. parse_events),
  368. OPT_BOOLEAN('i', "inherit", &inherit,
  369. "child tasks inherit counters"),
  370. OPT_INTEGER('p', "pid", &target_pid,
  371. "stat events on existing pid"),
  372. OPT_BOOLEAN('a', "all-cpus", &system_wide,
  373. "system-wide collection from all CPUs"),
  374. OPT_BOOLEAN('S', "scale", &scale,
  375. "scale/normalize counters"),
  376. OPT_BOOLEAN('v', "verbose", &verbose,
  377. "be more verbose (show counter open errors, etc)"),
  378. OPT_INTEGER('r', "repeat", &run_count,
  379. "repeat command and print average + stddev (max: 100)"),
  380. OPT_BOOLEAN('n', "null", &null_run,
  381. "null run - dont start any counters"),
  382. OPT_END()
  383. };
  384. int cmd_stat(int argc, const char **argv, const char *prefix)
  385. {
  386. int status;
  387. memcpy(attrs, default_attrs, sizeof(attrs));
  388. argc = parse_options(argc, argv, options, stat_usage, 0);
  389. if (!argc)
  390. usage_with_options(stat_usage, options);
  391. if (run_count <= 0 || run_count > MAX_RUN)
  392. usage_with_options(stat_usage, options);
  393. if (!null_run && !nr_counters)
  394. nr_counters = 8;
  395. nr_cpus = sysconf(_SC_NPROCESSORS_ONLN);
  396. assert(nr_cpus <= MAX_NR_CPUS);
  397. assert(nr_cpus >= 0);
  398. /*
  399. * We dont want to block the signals - that would cause
  400. * child tasks to inherit that and Ctrl-C would not work.
  401. * What we want is for Ctrl-C to work in the exec()-ed
  402. * task, but being ignored by perf stat itself:
  403. */
  404. atexit(sig_atexit);
  405. signal(SIGINT, skip_signal);
  406. signal(SIGALRM, skip_signal);
  407. signal(SIGABRT, skip_signal);
  408. status = 0;
  409. for (run_idx = 0; run_idx < run_count; run_idx++) {
  410. if (run_count != 1 && verbose)
  411. fprintf(stderr, "[ perf stat: executing run #%d ... ]\n", run_idx + 1);
  412. status = run_perf_stat(argc, argv);
  413. }
  414. print_stat(argc, argv);
  415. return status;
  416. }