page_alloc.c 179 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/compiler.h>
  25. #include <linux/kernel.h>
  26. #include <linux/kmemcheck.h>
  27. #include <linux/module.h>
  28. #include <linux/suspend.h>
  29. #include <linux/pagevec.h>
  30. #include <linux/blkdev.h>
  31. #include <linux/slab.h>
  32. #include <linux/ratelimit.h>
  33. #include <linux/oom.h>
  34. #include <linux/notifier.h>
  35. #include <linux/topology.h>
  36. #include <linux/sysctl.h>
  37. #include <linux/cpu.h>
  38. #include <linux/cpuset.h>
  39. #include <linux/memory_hotplug.h>
  40. #include <linux/nodemask.h>
  41. #include <linux/vmalloc.h>
  42. #include <linux/vmstat.h>
  43. #include <linux/mempolicy.h>
  44. #include <linux/stop_machine.h>
  45. #include <linux/sort.h>
  46. #include <linux/pfn.h>
  47. #include <linux/backing-dev.h>
  48. #include <linux/fault-inject.h>
  49. #include <linux/page-isolation.h>
  50. #include <linux/page_cgroup.h>
  51. #include <linux/debugobjects.h>
  52. #include <linux/kmemleak.h>
  53. #include <linux/compaction.h>
  54. #include <trace/events/kmem.h>
  55. #include <linux/ftrace_event.h>
  56. #include <linux/memcontrol.h>
  57. #include <linux/prefetch.h>
  58. #include <linux/mm_inline.h>
  59. #include <linux/migrate.h>
  60. #include <linux/page-debug-flags.h>
  61. #include <linux/hugetlb.h>
  62. #include <linux/sched/rt.h>
  63. #include <asm/sections.h>
  64. #include <asm/tlbflush.h>
  65. #include <asm/div64.h>
  66. #include "internal.h"
  67. /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
  68. static DEFINE_MUTEX(pcp_batch_high_lock);
  69. #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  70. DEFINE_PER_CPU(int, numa_node);
  71. EXPORT_PER_CPU_SYMBOL(numa_node);
  72. #endif
  73. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  74. /*
  75. * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  76. * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  77. * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  78. * defined in <linux/topology.h>.
  79. */
  80. DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
  81. EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  82. #endif
  83. /*
  84. * Array of node states.
  85. */
  86. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  87. [N_POSSIBLE] = NODE_MASK_ALL,
  88. [N_ONLINE] = { { [0] = 1UL } },
  89. #ifndef CONFIG_NUMA
  90. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  91. #ifdef CONFIG_HIGHMEM
  92. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  93. #endif
  94. #ifdef CONFIG_MOVABLE_NODE
  95. [N_MEMORY] = { { [0] = 1UL } },
  96. #endif
  97. [N_CPU] = { { [0] = 1UL } },
  98. #endif /* NUMA */
  99. };
  100. EXPORT_SYMBOL(node_states);
  101. /* Protect totalram_pages and zone->managed_pages */
  102. static DEFINE_SPINLOCK(managed_page_count_lock);
  103. unsigned long totalram_pages __read_mostly;
  104. unsigned long totalreserve_pages __read_mostly;
  105. /*
  106. * When calculating the number of globally allowed dirty pages, there
  107. * is a certain number of per-zone reserves that should not be
  108. * considered dirtyable memory. This is the sum of those reserves
  109. * over all existing zones that contribute dirtyable memory.
  110. */
  111. unsigned long dirty_balance_reserve __read_mostly;
  112. int percpu_pagelist_fraction;
  113. gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
  114. #ifdef CONFIG_PM_SLEEP
  115. /*
  116. * The following functions are used by the suspend/hibernate code to temporarily
  117. * change gfp_allowed_mask in order to avoid using I/O during memory allocations
  118. * while devices are suspended. To avoid races with the suspend/hibernate code,
  119. * they should always be called with pm_mutex held (gfp_allowed_mask also should
  120. * only be modified with pm_mutex held, unless the suspend/hibernate code is
  121. * guaranteed not to run in parallel with that modification).
  122. */
  123. static gfp_t saved_gfp_mask;
  124. void pm_restore_gfp_mask(void)
  125. {
  126. WARN_ON(!mutex_is_locked(&pm_mutex));
  127. if (saved_gfp_mask) {
  128. gfp_allowed_mask = saved_gfp_mask;
  129. saved_gfp_mask = 0;
  130. }
  131. }
  132. void pm_restrict_gfp_mask(void)
  133. {
  134. WARN_ON(!mutex_is_locked(&pm_mutex));
  135. WARN_ON(saved_gfp_mask);
  136. saved_gfp_mask = gfp_allowed_mask;
  137. gfp_allowed_mask &= ~GFP_IOFS;
  138. }
  139. bool pm_suspended_storage(void)
  140. {
  141. if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
  142. return false;
  143. return true;
  144. }
  145. #endif /* CONFIG_PM_SLEEP */
  146. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  147. int pageblock_order __read_mostly;
  148. #endif
  149. static void __free_pages_ok(struct page *page, unsigned int order);
  150. /*
  151. * results with 256, 32 in the lowmem_reserve sysctl:
  152. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  153. * 1G machine -> (16M dma, 784M normal, 224M high)
  154. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  155. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  156. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  157. *
  158. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  159. * don't need any ZONE_NORMAL reservation
  160. */
  161. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  162. #ifdef CONFIG_ZONE_DMA
  163. 256,
  164. #endif
  165. #ifdef CONFIG_ZONE_DMA32
  166. 256,
  167. #endif
  168. #ifdef CONFIG_HIGHMEM
  169. 32,
  170. #endif
  171. 32,
  172. };
  173. EXPORT_SYMBOL(totalram_pages);
  174. static char * const zone_names[MAX_NR_ZONES] = {
  175. #ifdef CONFIG_ZONE_DMA
  176. "DMA",
  177. #endif
  178. #ifdef CONFIG_ZONE_DMA32
  179. "DMA32",
  180. #endif
  181. "Normal",
  182. #ifdef CONFIG_HIGHMEM
  183. "HighMem",
  184. #endif
  185. "Movable",
  186. };
  187. int min_free_kbytes = 1024;
  188. int user_min_free_kbytes;
  189. static unsigned long __meminitdata nr_kernel_pages;
  190. static unsigned long __meminitdata nr_all_pages;
  191. static unsigned long __meminitdata dma_reserve;
  192. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  193. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  194. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  195. static unsigned long __initdata required_kernelcore;
  196. static unsigned long __initdata required_movablecore;
  197. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  198. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  199. int movable_zone;
  200. EXPORT_SYMBOL(movable_zone);
  201. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  202. #if MAX_NUMNODES > 1
  203. int nr_node_ids __read_mostly = MAX_NUMNODES;
  204. int nr_online_nodes __read_mostly = 1;
  205. EXPORT_SYMBOL(nr_node_ids);
  206. EXPORT_SYMBOL(nr_online_nodes);
  207. #endif
  208. int page_group_by_mobility_disabled __read_mostly;
  209. void set_pageblock_migratetype(struct page *page, int migratetype)
  210. {
  211. if (unlikely(page_group_by_mobility_disabled))
  212. migratetype = MIGRATE_UNMOVABLE;
  213. set_pageblock_flags_group(page, (unsigned long)migratetype,
  214. PB_migrate, PB_migrate_end);
  215. }
  216. bool oom_killer_disabled __read_mostly;
  217. #ifdef CONFIG_DEBUG_VM
  218. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  219. {
  220. int ret = 0;
  221. unsigned seq;
  222. unsigned long pfn = page_to_pfn(page);
  223. unsigned long sp, start_pfn;
  224. do {
  225. seq = zone_span_seqbegin(zone);
  226. start_pfn = zone->zone_start_pfn;
  227. sp = zone->spanned_pages;
  228. if (!zone_spans_pfn(zone, pfn))
  229. ret = 1;
  230. } while (zone_span_seqretry(zone, seq));
  231. if (ret)
  232. pr_err("page %lu outside zone [ %lu - %lu ]\n",
  233. pfn, start_pfn, start_pfn + sp);
  234. return ret;
  235. }
  236. static int page_is_consistent(struct zone *zone, struct page *page)
  237. {
  238. if (!pfn_valid_within(page_to_pfn(page)))
  239. return 0;
  240. if (zone != page_zone(page))
  241. return 0;
  242. return 1;
  243. }
  244. /*
  245. * Temporary debugging check for pages not lying within a given zone.
  246. */
  247. static int bad_range(struct zone *zone, struct page *page)
  248. {
  249. if (page_outside_zone_boundaries(zone, page))
  250. return 1;
  251. if (!page_is_consistent(zone, page))
  252. return 1;
  253. return 0;
  254. }
  255. #else
  256. static inline int bad_range(struct zone *zone, struct page *page)
  257. {
  258. return 0;
  259. }
  260. #endif
  261. static void bad_page(struct page *page)
  262. {
  263. static unsigned long resume;
  264. static unsigned long nr_shown;
  265. static unsigned long nr_unshown;
  266. /* Don't complain about poisoned pages */
  267. if (PageHWPoison(page)) {
  268. page_mapcount_reset(page); /* remove PageBuddy */
  269. return;
  270. }
  271. /*
  272. * Allow a burst of 60 reports, then keep quiet for that minute;
  273. * or allow a steady drip of one report per second.
  274. */
  275. if (nr_shown == 60) {
  276. if (time_before(jiffies, resume)) {
  277. nr_unshown++;
  278. goto out;
  279. }
  280. if (nr_unshown) {
  281. printk(KERN_ALERT
  282. "BUG: Bad page state: %lu messages suppressed\n",
  283. nr_unshown);
  284. nr_unshown = 0;
  285. }
  286. nr_shown = 0;
  287. }
  288. if (nr_shown++ == 0)
  289. resume = jiffies + 60 * HZ;
  290. printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
  291. current->comm, page_to_pfn(page));
  292. dump_page(page);
  293. print_modules();
  294. dump_stack();
  295. out:
  296. /* Leave bad fields for debug, except PageBuddy could make trouble */
  297. page_mapcount_reset(page); /* remove PageBuddy */
  298. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  299. }
  300. /*
  301. * Higher-order pages are called "compound pages". They are structured thusly:
  302. *
  303. * The first PAGE_SIZE page is called the "head page".
  304. *
  305. * The remaining PAGE_SIZE pages are called "tail pages".
  306. *
  307. * All pages have PG_compound set. All tail pages have their ->first_page
  308. * pointing at the head page.
  309. *
  310. * The first tail page's ->lru.next holds the address of the compound page's
  311. * put_page() function. Its ->lru.prev holds the order of allocation.
  312. * This usage means that zero-order pages may not be compound.
  313. */
  314. static void free_compound_page(struct page *page)
  315. {
  316. __free_pages_ok(page, compound_order(page));
  317. }
  318. void prep_compound_page(struct page *page, unsigned long order)
  319. {
  320. int i;
  321. int nr_pages = 1 << order;
  322. set_compound_page_dtor(page, free_compound_page);
  323. set_compound_order(page, order);
  324. __SetPageHead(page);
  325. for (i = 1; i < nr_pages; i++) {
  326. struct page *p = page + i;
  327. __SetPageTail(p);
  328. set_page_count(p, 0);
  329. p->first_page = page;
  330. }
  331. }
  332. /* update __split_huge_page_refcount if you change this function */
  333. static int destroy_compound_page(struct page *page, unsigned long order)
  334. {
  335. int i;
  336. int nr_pages = 1 << order;
  337. int bad = 0;
  338. if (unlikely(compound_order(page) != order)) {
  339. bad_page(page);
  340. bad++;
  341. }
  342. __ClearPageHead(page);
  343. for (i = 1; i < nr_pages; i++) {
  344. struct page *p = page + i;
  345. if (unlikely(!PageTail(p) || (p->first_page != page))) {
  346. bad_page(page);
  347. bad++;
  348. }
  349. __ClearPageTail(p);
  350. }
  351. return bad;
  352. }
  353. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  354. {
  355. int i;
  356. /*
  357. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  358. * and __GFP_HIGHMEM from hard or soft interrupt context.
  359. */
  360. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  361. for (i = 0; i < (1 << order); i++)
  362. clear_highpage(page + i);
  363. }
  364. #ifdef CONFIG_DEBUG_PAGEALLOC
  365. unsigned int _debug_guardpage_minorder;
  366. static int __init debug_guardpage_minorder_setup(char *buf)
  367. {
  368. unsigned long res;
  369. if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
  370. printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
  371. return 0;
  372. }
  373. _debug_guardpage_minorder = res;
  374. printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
  375. return 0;
  376. }
  377. __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
  378. static inline void set_page_guard_flag(struct page *page)
  379. {
  380. __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
  381. }
  382. static inline void clear_page_guard_flag(struct page *page)
  383. {
  384. __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
  385. }
  386. #else
  387. static inline void set_page_guard_flag(struct page *page) { }
  388. static inline void clear_page_guard_flag(struct page *page) { }
  389. #endif
  390. static inline void set_page_order(struct page *page, int order)
  391. {
  392. set_page_private(page, order);
  393. __SetPageBuddy(page);
  394. }
  395. static inline void rmv_page_order(struct page *page)
  396. {
  397. __ClearPageBuddy(page);
  398. set_page_private(page, 0);
  399. }
  400. /*
  401. * Locate the struct page for both the matching buddy in our
  402. * pair (buddy1) and the combined O(n+1) page they form (page).
  403. *
  404. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  405. * the following equation:
  406. * B2 = B1 ^ (1 << O)
  407. * For example, if the starting buddy (buddy2) is #8 its order
  408. * 1 buddy is #10:
  409. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  410. *
  411. * 2) Any buddy B will have an order O+1 parent P which
  412. * satisfies the following equation:
  413. * P = B & ~(1 << O)
  414. *
  415. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  416. */
  417. static inline unsigned long
  418. __find_buddy_index(unsigned long page_idx, unsigned int order)
  419. {
  420. return page_idx ^ (1 << order);
  421. }
  422. /*
  423. * This function checks whether a page is free && is the buddy
  424. * we can do coalesce a page and its buddy if
  425. * (a) the buddy is not in a hole &&
  426. * (b) the buddy is in the buddy system &&
  427. * (c) a page and its buddy have the same order &&
  428. * (d) a page and its buddy are in the same zone.
  429. *
  430. * For recording whether a page is in the buddy system, we set ->_mapcount -2.
  431. * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
  432. *
  433. * For recording page's order, we use page_private(page).
  434. */
  435. static inline int page_is_buddy(struct page *page, struct page *buddy,
  436. int order)
  437. {
  438. if (!pfn_valid_within(page_to_pfn(buddy)))
  439. return 0;
  440. if (page_zone_id(page) != page_zone_id(buddy))
  441. return 0;
  442. if (page_is_guard(buddy) && page_order(buddy) == order) {
  443. VM_BUG_ON(page_count(buddy) != 0);
  444. return 1;
  445. }
  446. if (PageBuddy(buddy) && page_order(buddy) == order) {
  447. VM_BUG_ON(page_count(buddy) != 0);
  448. return 1;
  449. }
  450. return 0;
  451. }
  452. /*
  453. * Freeing function for a buddy system allocator.
  454. *
  455. * The concept of a buddy system is to maintain direct-mapped table
  456. * (containing bit values) for memory blocks of various "orders".
  457. * The bottom level table contains the map for the smallest allocatable
  458. * units of memory (here, pages), and each level above it describes
  459. * pairs of units from the levels below, hence, "buddies".
  460. * At a high level, all that happens here is marking the table entry
  461. * at the bottom level available, and propagating the changes upward
  462. * as necessary, plus some accounting needed to play nicely with other
  463. * parts of the VM system.
  464. * At each level, we keep a list of pages, which are heads of continuous
  465. * free pages of length of (1 << order) and marked with _mapcount -2. Page's
  466. * order is recorded in page_private(page) field.
  467. * So when we are allocating or freeing one, we can derive the state of the
  468. * other. That is, if we allocate a small block, and both were
  469. * free, the remainder of the region must be split into blocks.
  470. * If a block is freed, and its buddy is also free, then this
  471. * triggers coalescing into a block of larger size.
  472. *
  473. * -- nyc
  474. */
  475. static inline void __free_one_page(struct page *page,
  476. struct zone *zone, unsigned int order,
  477. int migratetype)
  478. {
  479. unsigned long page_idx;
  480. unsigned long combined_idx;
  481. unsigned long uninitialized_var(buddy_idx);
  482. struct page *buddy;
  483. VM_BUG_ON(!zone_is_initialized(zone));
  484. if (unlikely(PageCompound(page)))
  485. if (unlikely(destroy_compound_page(page, order)))
  486. return;
  487. VM_BUG_ON(migratetype == -1);
  488. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  489. VM_BUG_ON(page_idx & ((1 << order) - 1));
  490. VM_BUG_ON(bad_range(zone, page));
  491. while (order < MAX_ORDER-1) {
  492. buddy_idx = __find_buddy_index(page_idx, order);
  493. buddy = page + (buddy_idx - page_idx);
  494. if (!page_is_buddy(page, buddy, order))
  495. break;
  496. /*
  497. * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
  498. * merge with it and move up one order.
  499. */
  500. if (page_is_guard(buddy)) {
  501. clear_page_guard_flag(buddy);
  502. set_page_private(page, 0);
  503. __mod_zone_freepage_state(zone, 1 << order,
  504. migratetype);
  505. } else {
  506. list_del(&buddy->lru);
  507. zone->free_area[order].nr_free--;
  508. rmv_page_order(buddy);
  509. }
  510. combined_idx = buddy_idx & page_idx;
  511. page = page + (combined_idx - page_idx);
  512. page_idx = combined_idx;
  513. order++;
  514. }
  515. set_page_order(page, order);
  516. /*
  517. * If this is not the largest possible page, check if the buddy
  518. * of the next-highest order is free. If it is, it's possible
  519. * that pages are being freed that will coalesce soon. In case,
  520. * that is happening, add the free page to the tail of the list
  521. * so it's less likely to be used soon and more likely to be merged
  522. * as a higher order page
  523. */
  524. if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
  525. struct page *higher_page, *higher_buddy;
  526. combined_idx = buddy_idx & page_idx;
  527. higher_page = page + (combined_idx - page_idx);
  528. buddy_idx = __find_buddy_index(combined_idx, order + 1);
  529. higher_buddy = higher_page + (buddy_idx - combined_idx);
  530. if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
  531. list_add_tail(&page->lru,
  532. &zone->free_area[order].free_list[migratetype]);
  533. goto out;
  534. }
  535. }
  536. list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
  537. out:
  538. zone->free_area[order].nr_free++;
  539. }
  540. static inline int free_pages_check(struct page *page)
  541. {
  542. if (unlikely(page_mapcount(page) |
  543. (page->mapping != NULL) |
  544. (atomic_read(&page->_count) != 0) |
  545. (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
  546. (mem_cgroup_bad_page_check(page)))) {
  547. bad_page(page);
  548. return 1;
  549. }
  550. page_nid_reset_last(page);
  551. if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
  552. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  553. return 0;
  554. }
  555. /*
  556. * Frees a number of pages from the PCP lists
  557. * Assumes all pages on list are in same zone, and of same order.
  558. * count is the number of pages to free.
  559. *
  560. * If the zone was previously in an "all pages pinned" state then look to
  561. * see if this freeing clears that state.
  562. *
  563. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  564. * pinned" detection logic.
  565. */
  566. static void free_pcppages_bulk(struct zone *zone, int count,
  567. struct per_cpu_pages *pcp)
  568. {
  569. int migratetype = 0;
  570. int batch_free = 0;
  571. int to_free = count;
  572. spin_lock(&zone->lock);
  573. zone->pages_scanned = 0;
  574. while (to_free) {
  575. struct page *page;
  576. struct list_head *list;
  577. /*
  578. * Remove pages from lists in a round-robin fashion. A
  579. * batch_free count is maintained that is incremented when an
  580. * empty list is encountered. This is so more pages are freed
  581. * off fuller lists instead of spinning excessively around empty
  582. * lists
  583. */
  584. do {
  585. batch_free++;
  586. if (++migratetype == MIGRATE_PCPTYPES)
  587. migratetype = 0;
  588. list = &pcp->lists[migratetype];
  589. } while (list_empty(list));
  590. /* This is the only non-empty list. Free them all. */
  591. if (batch_free == MIGRATE_PCPTYPES)
  592. batch_free = to_free;
  593. do {
  594. int mt; /* migratetype of the to-be-freed page */
  595. page = list_entry(list->prev, struct page, lru);
  596. /* must delete as __free_one_page list manipulates */
  597. list_del(&page->lru);
  598. mt = get_freepage_migratetype(page);
  599. /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
  600. __free_one_page(page, zone, 0, mt);
  601. trace_mm_page_pcpu_drain(page, 0, mt);
  602. if (likely(!is_migrate_isolate_page(page))) {
  603. __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
  604. if (is_migrate_cma(mt))
  605. __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
  606. }
  607. } while (--to_free && --batch_free && !list_empty(list));
  608. }
  609. spin_unlock(&zone->lock);
  610. }
  611. static void free_one_page(struct zone *zone, struct page *page, int order,
  612. int migratetype)
  613. {
  614. spin_lock(&zone->lock);
  615. zone->pages_scanned = 0;
  616. __free_one_page(page, zone, order, migratetype);
  617. if (unlikely(!is_migrate_isolate(migratetype)))
  618. __mod_zone_freepage_state(zone, 1 << order, migratetype);
  619. spin_unlock(&zone->lock);
  620. }
  621. static bool free_pages_prepare(struct page *page, unsigned int order)
  622. {
  623. int i;
  624. int bad = 0;
  625. trace_mm_page_free(page, order);
  626. kmemcheck_free_shadow(page, order);
  627. if (PageAnon(page))
  628. page->mapping = NULL;
  629. for (i = 0; i < (1 << order); i++)
  630. bad += free_pages_check(page + i);
  631. if (bad)
  632. return false;
  633. if (!PageHighMem(page)) {
  634. debug_check_no_locks_freed(page_address(page),
  635. PAGE_SIZE << order);
  636. debug_check_no_obj_freed(page_address(page),
  637. PAGE_SIZE << order);
  638. }
  639. arch_free_page(page, order);
  640. kernel_map_pages(page, 1 << order, 0);
  641. return true;
  642. }
  643. static void __free_pages_ok(struct page *page, unsigned int order)
  644. {
  645. unsigned long flags;
  646. int migratetype;
  647. if (!free_pages_prepare(page, order))
  648. return;
  649. local_irq_save(flags);
  650. __count_vm_events(PGFREE, 1 << order);
  651. migratetype = get_pageblock_migratetype(page);
  652. set_freepage_migratetype(page, migratetype);
  653. free_one_page(page_zone(page), page, order, migratetype);
  654. local_irq_restore(flags);
  655. }
  656. void __init __free_pages_bootmem(struct page *page, unsigned int order)
  657. {
  658. unsigned int nr_pages = 1 << order;
  659. struct page *p = page;
  660. unsigned int loop;
  661. prefetchw(p);
  662. for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
  663. prefetchw(p + 1);
  664. __ClearPageReserved(p);
  665. set_page_count(p, 0);
  666. }
  667. __ClearPageReserved(p);
  668. set_page_count(p, 0);
  669. page_zone(page)->managed_pages += nr_pages;
  670. set_page_refcounted(page);
  671. __free_pages(page, order);
  672. }
  673. #ifdef CONFIG_CMA
  674. /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
  675. void __init init_cma_reserved_pageblock(struct page *page)
  676. {
  677. unsigned i = pageblock_nr_pages;
  678. struct page *p = page;
  679. do {
  680. __ClearPageReserved(p);
  681. set_page_count(p, 0);
  682. } while (++p, --i);
  683. set_page_refcounted(page);
  684. set_pageblock_migratetype(page, MIGRATE_CMA);
  685. __free_pages(page, pageblock_order);
  686. adjust_managed_page_count(page, pageblock_nr_pages);
  687. }
  688. #endif
  689. /*
  690. * The order of subdivision here is critical for the IO subsystem.
  691. * Please do not alter this order without good reasons and regression
  692. * testing. Specifically, as large blocks of memory are subdivided,
  693. * the order in which smaller blocks are delivered depends on the order
  694. * they're subdivided in this function. This is the primary factor
  695. * influencing the order in which pages are delivered to the IO
  696. * subsystem according to empirical testing, and this is also justified
  697. * by considering the behavior of a buddy system containing a single
  698. * large block of memory acted on by a series of small allocations.
  699. * This behavior is a critical factor in sglist merging's success.
  700. *
  701. * -- nyc
  702. */
  703. static inline void expand(struct zone *zone, struct page *page,
  704. int low, int high, struct free_area *area,
  705. int migratetype)
  706. {
  707. unsigned long size = 1 << high;
  708. while (high > low) {
  709. area--;
  710. high--;
  711. size >>= 1;
  712. VM_BUG_ON(bad_range(zone, &page[size]));
  713. #ifdef CONFIG_DEBUG_PAGEALLOC
  714. if (high < debug_guardpage_minorder()) {
  715. /*
  716. * Mark as guard pages (or page), that will allow to
  717. * merge back to allocator when buddy will be freed.
  718. * Corresponding page table entries will not be touched,
  719. * pages will stay not present in virtual address space
  720. */
  721. INIT_LIST_HEAD(&page[size].lru);
  722. set_page_guard_flag(&page[size]);
  723. set_page_private(&page[size], high);
  724. /* Guard pages are not available for any usage */
  725. __mod_zone_freepage_state(zone, -(1 << high),
  726. migratetype);
  727. continue;
  728. }
  729. #endif
  730. list_add(&page[size].lru, &area->free_list[migratetype]);
  731. area->nr_free++;
  732. set_page_order(&page[size], high);
  733. }
  734. }
  735. /*
  736. * This page is about to be returned from the page allocator
  737. */
  738. static inline int check_new_page(struct page *page)
  739. {
  740. if (unlikely(page_mapcount(page) |
  741. (page->mapping != NULL) |
  742. (atomic_read(&page->_count) != 0) |
  743. (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
  744. (mem_cgroup_bad_page_check(page)))) {
  745. bad_page(page);
  746. return 1;
  747. }
  748. return 0;
  749. }
  750. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  751. {
  752. int i;
  753. for (i = 0; i < (1 << order); i++) {
  754. struct page *p = page + i;
  755. if (unlikely(check_new_page(p)))
  756. return 1;
  757. }
  758. set_page_private(page, 0);
  759. set_page_refcounted(page);
  760. arch_alloc_page(page, order);
  761. kernel_map_pages(page, 1 << order, 1);
  762. if (gfp_flags & __GFP_ZERO)
  763. prep_zero_page(page, order, gfp_flags);
  764. if (order && (gfp_flags & __GFP_COMP))
  765. prep_compound_page(page, order);
  766. return 0;
  767. }
  768. /*
  769. * Go through the free lists for the given migratetype and remove
  770. * the smallest available page from the freelists
  771. */
  772. static inline
  773. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  774. int migratetype)
  775. {
  776. unsigned int current_order;
  777. struct free_area *area;
  778. struct page *page;
  779. /* Find a page of the appropriate size in the preferred list */
  780. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  781. area = &(zone->free_area[current_order]);
  782. if (list_empty(&area->free_list[migratetype]))
  783. continue;
  784. page = list_entry(area->free_list[migratetype].next,
  785. struct page, lru);
  786. list_del(&page->lru);
  787. rmv_page_order(page);
  788. area->nr_free--;
  789. expand(zone, page, order, current_order, area, migratetype);
  790. return page;
  791. }
  792. return NULL;
  793. }
  794. /*
  795. * This array describes the order lists are fallen back to when
  796. * the free lists for the desirable migrate type are depleted
  797. */
  798. static int fallbacks[MIGRATE_TYPES][4] = {
  799. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  800. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  801. #ifdef CONFIG_CMA
  802. [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  803. [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
  804. #else
  805. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  806. #endif
  807. [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
  808. #ifdef CONFIG_MEMORY_ISOLATION
  809. [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
  810. #endif
  811. };
  812. /*
  813. * Move the free pages in a range to the free lists of the requested type.
  814. * Note that start_page and end_pages are not aligned on a pageblock
  815. * boundary. If alignment is required, use move_freepages_block()
  816. */
  817. int move_freepages(struct zone *zone,
  818. struct page *start_page, struct page *end_page,
  819. int migratetype)
  820. {
  821. struct page *page;
  822. unsigned long order;
  823. int pages_moved = 0;
  824. #ifndef CONFIG_HOLES_IN_ZONE
  825. /*
  826. * page_zone is not safe to call in this context when
  827. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  828. * anyway as we check zone boundaries in move_freepages_block().
  829. * Remove at a later date when no bug reports exist related to
  830. * grouping pages by mobility
  831. */
  832. BUG_ON(page_zone(start_page) != page_zone(end_page));
  833. #endif
  834. for (page = start_page; page <= end_page;) {
  835. /* Make sure we are not inadvertently changing nodes */
  836. VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
  837. if (!pfn_valid_within(page_to_pfn(page))) {
  838. page++;
  839. continue;
  840. }
  841. if (!PageBuddy(page)) {
  842. page++;
  843. continue;
  844. }
  845. order = page_order(page);
  846. list_move(&page->lru,
  847. &zone->free_area[order].free_list[migratetype]);
  848. set_freepage_migratetype(page, migratetype);
  849. page += 1 << order;
  850. pages_moved += 1 << order;
  851. }
  852. return pages_moved;
  853. }
  854. int move_freepages_block(struct zone *zone, struct page *page,
  855. int migratetype)
  856. {
  857. unsigned long start_pfn, end_pfn;
  858. struct page *start_page, *end_page;
  859. start_pfn = page_to_pfn(page);
  860. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  861. start_page = pfn_to_page(start_pfn);
  862. end_page = start_page + pageblock_nr_pages - 1;
  863. end_pfn = start_pfn + pageblock_nr_pages - 1;
  864. /* Do not cross zone boundaries */
  865. if (!zone_spans_pfn(zone, start_pfn))
  866. start_page = page;
  867. if (!zone_spans_pfn(zone, end_pfn))
  868. return 0;
  869. return move_freepages(zone, start_page, end_page, migratetype);
  870. }
  871. static void change_pageblock_range(struct page *pageblock_page,
  872. int start_order, int migratetype)
  873. {
  874. int nr_pageblocks = 1 << (start_order - pageblock_order);
  875. while (nr_pageblocks--) {
  876. set_pageblock_migratetype(pageblock_page, migratetype);
  877. pageblock_page += pageblock_nr_pages;
  878. }
  879. }
  880. /*
  881. * If breaking a large block of pages, move all free pages to the preferred
  882. * allocation list. If falling back for a reclaimable kernel allocation, be
  883. * more aggressive about taking ownership of free pages.
  884. *
  885. * On the other hand, never change migration type of MIGRATE_CMA pageblocks
  886. * nor move CMA pages to different free lists. We don't want unmovable pages
  887. * to be allocated from MIGRATE_CMA areas.
  888. *
  889. * Returns the new migratetype of the pageblock (or the same old migratetype
  890. * if it was unchanged).
  891. */
  892. static int try_to_steal_freepages(struct zone *zone, struct page *page,
  893. int start_type, int fallback_type)
  894. {
  895. int current_order = page_order(page);
  896. if (is_migrate_cma(fallback_type))
  897. return fallback_type;
  898. /* Take ownership for orders >= pageblock_order */
  899. if (current_order >= pageblock_order) {
  900. change_pageblock_range(page, current_order, start_type);
  901. return start_type;
  902. }
  903. if (current_order >= pageblock_order / 2 ||
  904. start_type == MIGRATE_RECLAIMABLE ||
  905. page_group_by_mobility_disabled) {
  906. int pages;
  907. pages = move_freepages_block(zone, page, start_type);
  908. /* Claim the whole block if over half of it is free */
  909. if (pages >= (1 << (pageblock_order-1)) ||
  910. page_group_by_mobility_disabled) {
  911. set_pageblock_migratetype(page, start_type);
  912. return start_type;
  913. }
  914. }
  915. return fallback_type;
  916. }
  917. /* Remove an element from the buddy allocator from the fallback list */
  918. static inline struct page *
  919. __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
  920. {
  921. struct free_area *area;
  922. int current_order;
  923. struct page *page;
  924. int migratetype, new_type, i;
  925. /* Find the largest possible block of pages in the other list */
  926. for (current_order = MAX_ORDER-1; current_order >= order;
  927. --current_order) {
  928. for (i = 0;; i++) {
  929. migratetype = fallbacks[start_migratetype][i];
  930. /* MIGRATE_RESERVE handled later if necessary */
  931. if (migratetype == MIGRATE_RESERVE)
  932. break;
  933. area = &(zone->free_area[current_order]);
  934. if (list_empty(&area->free_list[migratetype]))
  935. continue;
  936. page = list_entry(area->free_list[migratetype].next,
  937. struct page, lru);
  938. area->nr_free--;
  939. new_type = try_to_steal_freepages(zone, page,
  940. start_migratetype,
  941. migratetype);
  942. /* Remove the page from the freelists */
  943. list_del(&page->lru);
  944. rmv_page_order(page);
  945. /*
  946. * Borrow the excess buddy pages as well, irrespective
  947. * of whether we stole freepages, or took ownership of
  948. * the pageblock or not.
  949. *
  950. * Exception: When borrowing from MIGRATE_CMA, release
  951. * the excess buddy pages to CMA itself.
  952. */
  953. expand(zone, page, order, current_order, area,
  954. is_migrate_cma(migratetype)
  955. ? migratetype : start_migratetype);
  956. trace_mm_page_alloc_extfrag(page, order,
  957. current_order, start_migratetype, migratetype,
  958. new_type == start_migratetype);
  959. return page;
  960. }
  961. }
  962. return NULL;
  963. }
  964. /*
  965. * Do the hard work of removing an element from the buddy allocator.
  966. * Call me with the zone->lock already held.
  967. */
  968. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  969. int migratetype)
  970. {
  971. struct page *page;
  972. retry_reserve:
  973. page = __rmqueue_smallest(zone, order, migratetype);
  974. if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
  975. page = __rmqueue_fallback(zone, order, migratetype);
  976. /*
  977. * Use MIGRATE_RESERVE rather than fail an allocation. goto
  978. * is used because __rmqueue_smallest is an inline function
  979. * and we want just one call site
  980. */
  981. if (!page) {
  982. migratetype = MIGRATE_RESERVE;
  983. goto retry_reserve;
  984. }
  985. }
  986. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  987. return page;
  988. }
  989. /*
  990. * Obtain a specified number of elements from the buddy allocator, all under
  991. * a single hold of the lock, for efficiency. Add them to the supplied list.
  992. * Returns the number of new pages which were placed at *list.
  993. */
  994. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  995. unsigned long count, struct list_head *list,
  996. int migratetype, int cold)
  997. {
  998. int mt = migratetype, i;
  999. spin_lock(&zone->lock);
  1000. for (i = 0; i < count; ++i) {
  1001. struct page *page = __rmqueue(zone, order, migratetype);
  1002. if (unlikely(page == NULL))
  1003. break;
  1004. /*
  1005. * Split buddy pages returned by expand() are received here
  1006. * in physical page order. The page is added to the callers and
  1007. * list and the list head then moves forward. From the callers
  1008. * perspective, the linked list is ordered by page number in
  1009. * some conditions. This is useful for IO devices that can
  1010. * merge IO requests if the physical pages are ordered
  1011. * properly.
  1012. */
  1013. if (likely(cold == 0))
  1014. list_add(&page->lru, list);
  1015. else
  1016. list_add_tail(&page->lru, list);
  1017. if (IS_ENABLED(CONFIG_CMA)) {
  1018. mt = get_pageblock_migratetype(page);
  1019. if (!is_migrate_cma(mt) && !is_migrate_isolate(mt))
  1020. mt = migratetype;
  1021. }
  1022. set_freepage_migratetype(page, mt);
  1023. list = &page->lru;
  1024. if (is_migrate_cma(mt))
  1025. __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
  1026. -(1 << order));
  1027. }
  1028. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  1029. spin_unlock(&zone->lock);
  1030. return i;
  1031. }
  1032. #ifdef CONFIG_NUMA
  1033. /*
  1034. * Called from the vmstat counter updater to drain pagesets of this
  1035. * currently executing processor on remote nodes after they have
  1036. * expired.
  1037. *
  1038. * Note that this function must be called with the thread pinned to
  1039. * a single processor.
  1040. */
  1041. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  1042. {
  1043. unsigned long flags;
  1044. int to_drain;
  1045. unsigned long batch;
  1046. local_irq_save(flags);
  1047. batch = ACCESS_ONCE(pcp->batch);
  1048. if (pcp->count >= batch)
  1049. to_drain = batch;
  1050. else
  1051. to_drain = pcp->count;
  1052. if (to_drain > 0) {
  1053. free_pcppages_bulk(zone, to_drain, pcp);
  1054. pcp->count -= to_drain;
  1055. }
  1056. local_irq_restore(flags);
  1057. }
  1058. #endif
  1059. /*
  1060. * Drain pages of the indicated processor.
  1061. *
  1062. * The processor must either be the current processor and the
  1063. * thread pinned to the current processor or a processor that
  1064. * is not online.
  1065. */
  1066. static void drain_pages(unsigned int cpu)
  1067. {
  1068. unsigned long flags;
  1069. struct zone *zone;
  1070. for_each_populated_zone(zone) {
  1071. struct per_cpu_pageset *pset;
  1072. struct per_cpu_pages *pcp;
  1073. local_irq_save(flags);
  1074. pset = per_cpu_ptr(zone->pageset, cpu);
  1075. pcp = &pset->pcp;
  1076. if (pcp->count) {
  1077. free_pcppages_bulk(zone, pcp->count, pcp);
  1078. pcp->count = 0;
  1079. }
  1080. local_irq_restore(flags);
  1081. }
  1082. }
  1083. /*
  1084. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  1085. */
  1086. void drain_local_pages(void *arg)
  1087. {
  1088. drain_pages(smp_processor_id());
  1089. }
  1090. /*
  1091. * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
  1092. *
  1093. * Note that this code is protected against sending an IPI to an offline
  1094. * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
  1095. * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
  1096. * nothing keeps CPUs from showing up after we populated the cpumask and
  1097. * before the call to on_each_cpu_mask().
  1098. */
  1099. void drain_all_pages(void)
  1100. {
  1101. int cpu;
  1102. struct per_cpu_pageset *pcp;
  1103. struct zone *zone;
  1104. /*
  1105. * Allocate in the BSS so we wont require allocation in
  1106. * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
  1107. */
  1108. static cpumask_t cpus_with_pcps;
  1109. /*
  1110. * We don't care about racing with CPU hotplug event
  1111. * as offline notification will cause the notified
  1112. * cpu to drain that CPU pcps and on_each_cpu_mask
  1113. * disables preemption as part of its processing
  1114. */
  1115. for_each_online_cpu(cpu) {
  1116. bool has_pcps = false;
  1117. for_each_populated_zone(zone) {
  1118. pcp = per_cpu_ptr(zone->pageset, cpu);
  1119. if (pcp->pcp.count) {
  1120. has_pcps = true;
  1121. break;
  1122. }
  1123. }
  1124. if (has_pcps)
  1125. cpumask_set_cpu(cpu, &cpus_with_pcps);
  1126. else
  1127. cpumask_clear_cpu(cpu, &cpus_with_pcps);
  1128. }
  1129. on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
  1130. }
  1131. #ifdef CONFIG_HIBERNATION
  1132. void mark_free_pages(struct zone *zone)
  1133. {
  1134. unsigned long pfn, max_zone_pfn;
  1135. unsigned long flags;
  1136. int order, t;
  1137. struct list_head *curr;
  1138. if (zone_is_empty(zone))
  1139. return;
  1140. spin_lock_irqsave(&zone->lock, flags);
  1141. max_zone_pfn = zone_end_pfn(zone);
  1142. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  1143. if (pfn_valid(pfn)) {
  1144. struct page *page = pfn_to_page(pfn);
  1145. if (!swsusp_page_is_forbidden(page))
  1146. swsusp_unset_page_free(page);
  1147. }
  1148. for_each_migratetype_order(order, t) {
  1149. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  1150. unsigned long i;
  1151. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  1152. for (i = 0; i < (1UL << order); i++)
  1153. swsusp_set_page_free(pfn_to_page(pfn + i));
  1154. }
  1155. }
  1156. spin_unlock_irqrestore(&zone->lock, flags);
  1157. }
  1158. #endif /* CONFIG_PM */
  1159. /*
  1160. * Free a 0-order page
  1161. * cold == 1 ? free a cold page : free a hot page
  1162. */
  1163. void free_hot_cold_page(struct page *page, int cold)
  1164. {
  1165. struct zone *zone = page_zone(page);
  1166. struct per_cpu_pages *pcp;
  1167. unsigned long flags;
  1168. int migratetype;
  1169. if (!free_pages_prepare(page, 0))
  1170. return;
  1171. migratetype = get_pageblock_migratetype(page);
  1172. set_freepage_migratetype(page, migratetype);
  1173. local_irq_save(flags);
  1174. __count_vm_event(PGFREE);
  1175. /*
  1176. * We only track unmovable, reclaimable and movable on pcp lists.
  1177. * Free ISOLATE pages back to the allocator because they are being
  1178. * offlined but treat RESERVE as movable pages so we can get those
  1179. * areas back if necessary. Otherwise, we may have to free
  1180. * excessively into the page allocator
  1181. */
  1182. if (migratetype >= MIGRATE_PCPTYPES) {
  1183. if (unlikely(is_migrate_isolate(migratetype))) {
  1184. free_one_page(zone, page, 0, migratetype);
  1185. goto out;
  1186. }
  1187. migratetype = MIGRATE_MOVABLE;
  1188. }
  1189. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1190. if (cold)
  1191. list_add_tail(&page->lru, &pcp->lists[migratetype]);
  1192. else
  1193. list_add(&page->lru, &pcp->lists[migratetype]);
  1194. pcp->count++;
  1195. if (pcp->count >= pcp->high) {
  1196. unsigned long batch = ACCESS_ONCE(pcp->batch);
  1197. free_pcppages_bulk(zone, batch, pcp);
  1198. pcp->count -= batch;
  1199. }
  1200. out:
  1201. local_irq_restore(flags);
  1202. }
  1203. /*
  1204. * Free a list of 0-order pages
  1205. */
  1206. void free_hot_cold_page_list(struct list_head *list, int cold)
  1207. {
  1208. struct page *page, *next;
  1209. list_for_each_entry_safe(page, next, list, lru) {
  1210. trace_mm_page_free_batched(page, cold);
  1211. free_hot_cold_page(page, cold);
  1212. }
  1213. }
  1214. /*
  1215. * split_page takes a non-compound higher-order page, and splits it into
  1216. * n (1<<order) sub-pages: page[0..n]
  1217. * Each sub-page must be freed individually.
  1218. *
  1219. * Note: this is probably too low level an operation for use in drivers.
  1220. * Please consult with lkml before using this in your driver.
  1221. */
  1222. void split_page(struct page *page, unsigned int order)
  1223. {
  1224. int i;
  1225. VM_BUG_ON(PageCompound(page));
  1226. VM_BUG_ON(!page_count(page));
  1227. #ifdef CONFIG_KMEMCHECK
  1228. /*
  1229. * Split shadow pages too, because free(page[0]) would
  1230. * otherwise free the whole shadow.
  1231. */
  1232. if (kmemcheck_page_is_tracked(page))
  1233. split_page(virt_to_page(page[0].shadow), order);
  1234. #endif
  1235. for (i = 1; i < (1 << order); i++)
  1236. set_page_refcounted(page + i);
  1237. }
  1238. EXPORT_SYMBOL_GPL(split_page);
  1239. static int __isolate_free_page(struct page *page, unsigned int order)
  1240. {
  1241. unsigned long watermark;
  1242. struct zone *zone;
  1243. int mt;
  1244. BUG_ON(!PageBuddy(page));
  1245. zone = page_zone(page);
  1246. mt = get_pageblock_migratetype(page);
  1247. if (!is_migrate_isolate(mt)) {
  1248. /* Obey watermarks as if the page was being allocated */
  1249. watermark = low_wmark_pages(zone) + (1 << order);
  1250. if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
  1251. return 0;
  1252. __mod_zone_freepage_state(zone, -(1UL << order), mt);
  1253. }
  1254. /* Remove page from free list */
  1255. list_del(&page->lru);
  1256. zone->free_area[order].nr_free--;
  1257. rmv_page_order(page);
  1258. /* Set the pageblock if the isolated page is at least a pageblock */
  1259. if (order >= pageblock_order - 1) {
  1260. struct page *endpage = page + (1 << order) - 1;
  1261. for (; page < endpage; page += pageblock_nr_pages) {
  1262. int mt = get_pageblock_migratetype(page);
  1263. if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
  1264. set_pageblock_migratetype(page,
  1265. MIGRATE_MOVABLE);
  1266. }
  1267. }
  1268. return 1UL << order;
  1269. }
  1270. /*
  1271. * Similar to split_page except the page is already free. As this is only
  1272. * being used for migration, the migratetype of the block also changes.
  1273. * As this is called with interrupts disabled, the caller is responsible
  1274. * for calling arch_alloc_page() and kernel_map_page() after interrupts
  1275. * are enabled.
  1276. *
  1277. * Note: this is probably too low level an operation for use in drivers.
  1278. * Please consult with lkml before using this in your driver.
  1279. */
  1280. int split_free_page(struct page *page)
  1281. {
  1282. unsigned int order;
  1283. int nr_pages;
  1284. order = page_order(page);
  1285. nr_pages = __isolate_free_page(page, order);
  1286. if (!nr_pages)
  1287. return 0;
  1288. /* Split into individual pages */
  1289. set_page_refcounted(page);
  1290. split_page(page, order);
  1291. return nr_pages;
  1292. }
  1293. /*
  1294. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  1295. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  1296. * or two.
  1297. */
  1298. static inline
  1299. struct page *buffered_rmqueue(struct zone *preferred_zone,
  1300. struct zone *zone, int order, gfp_t gfp_flags,
  1301. int migratetype)
  1302. {
  1303. unsigned long flags;
  1304. struct page *page;
  1305. int cold = !!(gfp_flags & __GFP_COLD);
  1306. again:
  1307. if (likely(order == 0)) {
  1308. struct per_cpu_pages *pcp;
  1309. struct list_head *list;
  1310. local_irq_save(flags);
  1311. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1312. list = &pcp->lists[migratetype];
  1313. if (list_empty(list)) {
  1314. pcp->count += rmqueue_bulk(zone, 0,
  1315. pcp->batch, list,
  1316. migratetype, cold);
  1317. if (unlikely(list_empty(list)))
  1318. goto failed;
  1319. }
  1320. if (cold)
  1321. page = list_entry(list->prev, struct page, lru);
  1322. else
  1323. page = list_entry(list->next, struct page, lru);
  1324. list_del(&page->lru);
  1325. pcp->count--;
  1326. } else {
  1327. if (unlikely(gfp_flags & __GFP_NOFAIL)) {
  1328. /*
  1329. * __GFP_NOFAIL is not to be used in new code.
  1330. *
  1331. * All __GFP_NOFAIL callers should be fixed so that they
  1332. * properly detect and handle allocation failures.
  1333. *
  1334. * We most definitely don't want callers attempting to
  1335. * allocate greater than order-1 page units with
  1336. * __GFP_NOFAIL.
  1337. */
  1338. WARN_ON_ONCE(order > 1);
  1339. }
  1340. spin_lock_irqsave(&zone->lock, flags);
  1341. page = __rmqueue(zone, order, migratetype);
  1342. spin_unlock(&zone->lock);
  1343. if (!page)
  1344. goto failed;
  1345. __mod_zone_freepage_state(zone, -(1 << order),
  1346. get_pageblock_migratetype(page));
  1347. }
  1348. __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
  1349. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  1350. zone_statistics(preferred_zone, zone, gfp_flags);
  1351. local_irq_restore(flags);
  1352. VM_BUG_ON(bad_range(zone, page));
  1353. if (prep_new_page(page, order, gfp_flags))
  1354. goto again;
  1355. return page;
  1356. failed:
  1357. local_irq_restore(flags);
  1358. return NULL;
  1359. }
  1360. #ifdef CONFIG_FAIL_PAGE_ALLOC
  1361. static struct {
  1362. struct fault_attr attr;
  1363. u32 ignore_gfp_highmem;
  1364. u32 ignore_gfp_wait;
  1365. u32 min_order;
  1366. } fail_page_alloc = {
  1367. .attr = FAULT_ATTR_INITIALIZER,
  1368. .ignore_gfp_wait = 1,
  1369. .ignore_gfp_highmem = 1,
  1370. .min_order = 1,
  1371. };
  1372. static int __init setup_fail_page_alloc(char *str)
  1373. {
  1374. return setup_fault_attr(&fail_page_alloc.attr, str);
  1375. }
  1376. __setup("fail_page_alloc=", setup_fail_page_alloc);
  1377. static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1378. {
  1379. if (order < fail_page_alloc.min_order)
  1380. return false;
  1381. if (gfp_mask & __GFP_NOFAIL)
  1382. return false;
  1383. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  1384. return false;
  1385. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  1386. return false;
  1387. return should_fail(&fail_page_alloc.attr, 1 << order);
  1388. }
  1389. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1390. static int __init fail_page_alloc_debugfs(void)
  1391. {
  1392. umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1393. struct dentry *dir;
  1394. dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
  1395. &fail_page_alloc.attr);
  1396. if (IS_ERR(dir))
  1397. return PTR_ERR(dir);
  1398. if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1399. &fail_page_alloc.ignore_gfp_wait))
  1400. goto fail;
  1401. if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1402. &fail_page_alloc.ignore_gfp_highmem))
  1403. goto fail;
  1404. if (!debugfs_create_u32("min-order", mode, dir,
  1405. &fail_page_alloc.min_order))
  1406. goto fail;
  1407. return 0;
  1408. fail:
  1409. debugfs_remove_recursive(dir);
  1410. return -ENOMEM;
  1411. }
  1412. late_initcall(fail_page_alloc_debugfs);
  1413. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1414. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1415. static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1416. {
  1417. return false;
  1418. }
  1419. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1420. /*
  1421. * Return true if free pages are above 'mark'. This takes into account the order
  1422. * of the allocation.
  1423. */
  1424. static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1425. int classzone_idx, int alloc_flags, long free_pages)
  1426. {
  1427. /* free_pages my go negative - that's OK */
  1428. long min = mark;
  1429. long lowmem_reserve = z->lowmem_reserve[classzone_idx];
  1430. int o;
  1431. long free_cma = 0;
  1432. free_pages -= (1 << order) - 1;
  1433. if (alloc_flags & ALLOC_HIGH)
  1434. min -= min / 2;
  1435. if (alloc_flags & ALLOC_HARDER)
  1436. min -= min / 4;
  1437. #ifdef CONFIG_CMA
  1438. /* If allocation can't use CMA areas don't use free CMA pages */
  1439. if (!(alloc_flags & ALLOC_CMA))
  1440. free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
  1441. #endif
  1442. if (free_pages - free_cma <= min + lowmem_reserve)
  1443. return false;
  1444. for (o = 0; o < order; o++) {
  1445. /* At the next order, this order's pages become unavailable */
  1446. free_pages -= z->free_area[o].nr_free << o;
  1447. /* Require fewer higher order pages to be free */
  1448. min >>= 1;
  1449. if (free_pages <= min)
  1450. return false;
  1451. }
  1452. return true;
  1453. }
  1454. bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1455. int classzone_idx, int alloc_flags)
  1456. {
  1457. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  1458. zone_page_state(z, NR_FREE_PAGES));
  1459. }
  1460. bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
  1461. int classzone_idx, int alloc_flags)
  1462. {
  1463. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  1464. if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
  1465. free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
  1466. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  1467. free_pages);
  1468. }
  1469. #ifdef CONFIG_NUMA
  1470. /*
  1471. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1472. * skip over zones that are not allowed by the cpuset, or that have
  1473. * been recently (in last second) found to be nearly full. See further
  1474. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1475. * that have to skip over a lot of full or unallowed zones.
  1476. *
  1477. * If the zonelist cache is present in the passed in zonelist, then
  1478. * returns a pointer to the allowed node mask (either the current
  1479. * tasks mems_allowed, or node_states[N_MEMORY].)
  1480. *
  1481. * If the zonelist cache is not available for this zonelist, does
  1482. * nothing and returns NULL.
  1483. *
  1484. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1485. * a second since last zap'd) then we zap it out (clear its bits.)
  1486. *
  1487. * We hold off even calling zlc_setup, until after we've checked the
  1488. * first zone in the zonelist, on the theory that most allocations will
  1489. * be satisfied from that first zone, so best to examine that zone as
  1490. * quickly as we can.
  1491. */
  1492. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1493. {
  1494. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1495. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1496. zlc = zonelist->zlcache_ptr;
  1497. if (!zlc)
  1498. return NULL;
  1499. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1500. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1501. zlc->last_full_zap = jiffies;
  1502. }
  1503. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1504. &cpuset_current_mems_allowed :
  1505. &node_states[N_MEMORY];
  1506. return allowednodes;
  1507. }
  1508. /*
  1509. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1510. * if it is worth looking at further for free memory:
  1511. * 1) Check that the zone isn't thought to be full (doesn't have its
  1512. * bit set in the zonelist_cache fullzones BITMAP).
  1513. * 2) Check that the zones node (obtained from the zonelist_cache
  1514. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1515. * Return true (non-zero) if zone is worth looking at further, or
  1516. * else return false (zero) if it is not.
  1517. *
  1518. * This check -ignores- the distinction between various watermarks,
  1519. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1520. * found to be full for any variation of these watermarks, it will
  1521. * be considered full for up to one second by all requests, unless
  1522. * we are so low on memory on all allowed nodes that we are forced
  1523. * into the second scan of the zonelist.
  1524. *
  1525. * In the second scan we ignore this zonelist cache and exactly
  1526. * apply the watermarks to all zones, even it is slower to do so.
  1527. * We are low on memory in the second scan, and should leave no stone
  1528. * unturned looking for a free page.
  1529. */
  1530. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1531. nodemask_t *allowednodes)
  1532. {
  1533. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1534. int i; /* index of *z in zonelist zones */
  1535. int n; /* node that zone *z is on */
  1536. zlc = zonelist->zlcache_ptr;
  1537. if (!zlc)
  1538. return 1;
  1539. i = z - zonelist->_zonerefs;
  1540. n = zlc->z_to_n[i];
  1541. /* This zone is worth trying if it is allowed but not full */
  1542. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1543. }
  1544. /*
  1545. * Given 'z' scanning a zonelist, set the corresponding bit in
  1546. * zlc->fullzones, so that subsequent attempts to allocate a page
  1547. * from that zone don't waste time re-examining it.
  1548. */
  1549. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1550. {
  1551. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1552. int i; /* index of *z in zonelist zones */
  1553. zlc = zonelist->zlcache_ptr;
  1554. if (!zlc)
  1555. return;
  1556. i = z - zonelist->_zonerefs;
  1557. set_bit(i, zlc->fullzones);
  1558. }
  1559. /*
  1560. * clear all zones full, called after direct reclaim makes progress so that
  1561. * a zone that was recently full is not skipped over for up to a second
  1562. */
  1563. static void zlc_clear_zones_full(struct zonelist *zonelist)
  1564. {
  1565. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1566. zlc = zonelist->zlcache_ptr;
  1567. if (!zlc)
  1568. return;
  1569. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1570. }
  1571. static bool zone_local(struct zone *local_zone, struct zone *zone)
  1572. {
  1573. return node_distance(local_zone->node, zone->node) == LOCAL_DISTANCE;
  1574. }
  1575. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  1576. {
  1577. return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
  1578. }
  1579. static void __paginginit init_zone_allows_reclaim(int nid)
  1580. {
  1581. int i;
  1582. for_each_online_node(i)
  1583. if (node_distance(nid, i) <= RECLAIM_DISTANCE)
  1584. node_set(i, NODE_DATA(nid)->reclaim_nodes);
  1585. else
  1586. zone_reclaim_mode = 1;
  1587. }
  1588. #else /* CONFIG_NUMA */
  1589. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1590. {
  1591. return NULL;
  1592. }
  1593. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1594. nodemask_t *allowednodes)
  1595. {
  1596. return 1;
  1597. }
  1598. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1599. {
  1600. }
  1601. static void zlc_clear_zones_full(struct zonelist *zonelist)
  1602. {
  1603. }
  1604. static bool zone_local(struct zone *local_zone, struct zone *zone)
  1605. {
  1606. return true;
  1607. }
  1608. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  1609. {
  1610. return true;
  1611. }
  1612. static inline void init_zone_allows_reclaim(int nid)
  1613. {
  1614. }
  1615. #endif /* CONFIG_NUMA */
  1616. /*
  1617. * get_page_from_freelist goes through the zonelist trying to allocate
  1618. * a page.
  1619. */
  1620. static struct page *
  1621. get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
  1622. struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
  1623. struct zone *preferred_zone, int migratetype)
  1624. {
  1625. struct zoneref *z;
  1626. struct page *page = NULL;
  1627. int classzone_idx;
  1628. struct zone *zone;
  1629. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1630. int zlc_active = 0; /* set if using zonelist_cache */
  1631. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1632. classzone_idx = zone_idx(preferred_zone);
  1633. zonelist_scan:
  1634. /*
  1635. * Scan zonelist, looking for a zone with enough free.
  1636. * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
  1637. */
  1638. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1639. high_zoneidx, nodemask) {
  1640. unsigned long mark;
  1641. if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
  1642. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1643. continue;
  1644. if ((alloc_flags & ALLOC_CPUSET) &&
  1645. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1646. continue;
  1647. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  1648. if (unlikely(alloc_flags & ALLOC_NO_WATERMARKS))
  1649. goto try_this_zone;
  1650. /*
  1651. * Distribute pages in proportion to the individual
  1652. * zone size to ensure fair page aging. The zone a
  1653. * page was allocated in should have no effect on the
  1654. * time the page has in memory before being reclaimed.
  1655. *
  1656. * When zone_reclaim_mode is enabled, try to stay in
  1657. * local zones in the fastpath. If that fails, the
  1658. * slowpath is entered, which will do another pass
  1659. * starting with the local zones, but ultimately fall
  1660. * back to remote zones that do not partake in the
  1661. * fairness round-robin cycle of this zonelist.
  1662. */
  1663. if (alloc_flags & ALLOC_WMARK_LOW) {
  1664. if (zone_page_state(zone, NR_ALLOC_BATCH) <= 0)
  1665. continue;
  1666. if (zone_reclaim_mode &&
  1667. !zone_local(preferred_zone, zone))
  1668. continue;
  1669. }
  1670. /*
  1671. * When allocating a page cache page for writing, we
  1672. * want to get it from a zone that is within its dirty
  1673. * limit, such that no single zone holds more than its
  1674. * proportional share of globally allowed dirty pages.
  1675. * The dirty limits take into account the zone's
  1676. * lowmem reserves and high watermark so that kswapd
  1677. * should be able to balance it without having to
  1678. * write pages from its LRU list.
  1679. *
  1680. * This may look like it could increase pressure on
  1681. * lower zones by failing allocations in higher zones
  1682. * before they are full. But the pages that do spill
  1683. * over are limited as the lower zones are protected
  1684. * by this very same mechanism. It should not become
  1685. * a practical burden to them.
  1686. *
  1687. * XXX: For now, allow allocations to potentially
  1688. * exceed the per-zone dirty limit in the slowpath
  1689. * (ALLOC_WMARK_LOW unset) before going into reclaim,
  1690. * which is important when on a NUMA setup the allowed
  1691. * zones are together not big enough to reach the
  1692. * global limit. The proper fix for these situations
  1693. * will require awareness of zones in the
  1694. * dirty-throttling and the flusher threads.
  1695. */
  1696. if ((alloc_flags & ALLOC_WMARK_LOW) &&
  1697. (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
  1698. goto this_zone_full;
  1699. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  1700. if (!zone_watermark_ok(zone, order, mark,
  1701. classzone_idx, alloc_flags)) {
  1702. int ret;
  1703. if (IS_ENABLED(CONFIG_NUMA) &&
  1704. !did_zlc_setup && nr_online_nodes > 1) {
  1705. /*
  1706. * we do zlc_setup if there are multiple nodes
  1707. * and before considering the first zone allowed
  1708. * by the cpuset.
  1709. */
  1710. allowednodes = zlc_setup(zonelist, alloc_flags);
  1711. zlc_active = 1;
  1712. did_zlc_setup = 1;
  1713. }
  1714. if (zone_reclaim_mode == 0 ||
  1715. !zone_allows_reclaim(preferred_zone, zone))
  1716. goto this_zone_full;
  1717. /*
  1718. * As we may have just activated ZLC, check if the first
  1719. * eligible zone has failed zone_reclaim recently.
  1720. */
  1721. if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
  1722. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1723. continue;
  1724. ret = zone_reclaim(zone, gfp_mask, order);
  1725. switch (ret) {
  1726. case ZONE_RECLAIM_NOSCAN:
  1727. /* did not scan */
  1728. continue;
  1729. case ZONE_RECLAIM_FULL:
  1730. /* scanned but unreclaimable */
  1731. continue;
  1732. default:
  1733. /* did we reclaim enough */
  1734. if (zone_watermark_ok(zone, order, mark,
  1735. classzone_idx, alloc_flags))
  1736. goto try_this_zone;
  1737. /*
  1738. * Failed to reclaim enough to meet watermark.
  1739. * Only mark the zone full if checking the min
  1740. * watermark or if we failed to reclaim just
  1741. * 1<<order pages or else the page allocator
  1742. * fastpath will prematurely mark zones full
  1743. * when the watermark is between the low and
  1744. * min watermarks.
  1745. */
  1746. if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
  1747. ret == ZONE_RECLAIM_SOME)
  1748. goto this_zone_full;
  1749. continue;
  1750. }
  1751. }
  1752. try_this_zone:
  1753. page = buffered_rmqueue(preferred_zone, zone, order,
  1754. gfp_mask, migratetype);
  1755. if (page)
  1756. break;
  1757. this_zone_full:
  1758. if (IS_ENABLED(CONFIG_NUMA))
  1759. zlc_mark_zone_full(zonelist, z);
  1760. }
  1761. if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
  1762. /* Disable zlc cache for second zonelist scan */
  1763. zlc_active = 0;
  1764. goto zonelist_scan;
  1765. }
  1766. if (page)
  1767. /*
  1768. * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
  1769. * necessary to allocate the page. The expectation is
  1770. * that the caller is taking steps that will free more
  1771. * memory. The caller should avoid the page being used
  1772. * for !PFMEMALLOC purposes.
  1773. */
  1774. page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
  1775. return page;
  1776. }
  1777. /*
  1778. * Large machines with many possible nodes should not always dump per-node
  1779. * meminfo in irq context.
  1780. */
  1781. static inline bool should_suppress_show_mem(void)
  1782. {
  1783. bool ret = false;
  1784. #if NODES_SHIFT > 8
  1785. ret = in_interrupt();
  1786. #endif
  1787. return ret;
  1788. }
  1789. static DEFINE_RATELIMIT_STATE(nopage_rs,
  1790. DEFAULT_RATELIMIT_INTERVAL,
  1791. DEFAULT_RATELIMIT_BURST);
  1792. void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
  1793. {
  1794. unsigned int filter = SHOW_MEM_FILTER_NODES;
  1795. if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
  1796. debug_guardpage_minorder() > 0)
  1797. return;
  1798. /*
  1799. * Walking all memory to count page types is very expensive and should
  1800. * be inhibited in non-blockable contexts.
  1801. */
  1802. if (!(gfp_mask & __GFP_WAIT))
  1803. filter |= SHOW_MEM_FILTER_PAGE_COUNT;
  1804. /*
  1805. * This documents exceptions given to allocations in certain
  1806. * contexts that are allowed to allocate outside current's set
  1807. * of allowed nodes.
  1808. */
  1809. if (!(gfp_mask & __GFP_NOMEMALLOC))
  1810. if (test_thread_flag(TIF_MEMDIE) ||
  1811. (current->flags & (PF_MEMALLOC | PF_EXITING)))
  1812. filter &= ~SHOW_MEM_FILTER_NODES;
  1813. if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
  1814. filter &= ~SHOW_MEM_FILTER_NODES;
  1815. if (fmt) {
  1816. struct va_format vaf;
  1817. va_list args;
  1818. va_start(args, fmt);
  1819. vaf.fmt = fmt;
  1820. vaf.va = &args;
  1821. pr_warn("%pV", &vaf);
  1822. va_end(args);
  1823. }
  1824. pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
  1825. current->comm, order, gfp_mask);
  1826. dump_stack();
  1827. if (!should_suppress_show_mem())
  1828. show_mem(filter);
  1829. }
  1830. static inline int
  1831. should_alloc_retry(gfp_t gfp_mask, unsigned int order,
  1832. unsigned long did_some_progress,
  1833. unsigned long pages_reclaimed)
  1834. {
  1835. /* Do not loop if specifically requested */
  1836. if (gfp_mask & __GFP_NORETRY)
  1837. return 0;
  1838. /* Always retry if specifically requested */
  1839. if (gfp_mask & __GFP_NOFAIL)
  1840. return 1;
  1841. /*
  1842. * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
  1843. * making forward progress without invoking OOM. Suspend also disables
  1844. * storage devices so kswapd will not help. Bail if we are suspending.
  1845. */
  1846. if (!did_some_progress && pm_suspended_storage())
  1847. return 0;
  1848. /*
  1849. * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
  1850. * means __GFP_NOFAIL, but that may not be true in other
  1851. * implementations.
  1852. */
  1853. if (order <= PAGE_ALLOC_COSTLY_ORDER)
  1854. return 1;
  1855. /*
  1856. * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
  1857. * specified, then we retry until we no longer reclaim any pages
  1858. * (above), or we've reclaimed an order of pages at least as
  1859. * large as the allocation's order. In both cases, if the
  1860. * allocation still fails, we stop retrying.
  1861. */
  1862. if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
  1863. return 1;
  1864. return 0;
  1865. }
  1866. static inline struct page *
  1867. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  1868. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1869. nodemask_t *nodemask, struct zone *preferred_zone,
  1870. int migratetype)
  1871. {
  1872. struct page *page;
  1873. /* Acquire the OOM killer lock for the zones in zonelist */
  1874. if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
  1875. schedule_timeout_uninterruptible(1);
  1876. return NULL;
  1877. }
  1878. /*
  1879. * Go through the zonelist yet one more time, keep very high watermark
  1880. * here, this is only to catch a parallel oom killing, we must fail if
  1881. * we're still under heavy pressure.
  1882. */
  1883. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
  1884. order, zonelist, high_zoneidx,
  1885. ALLOC_WMARK_HIGH|ALLOC_CPUSET,
  1886. preferred_zone, migratetype);
  1887. if (page)
  1888. goto out;
  1889. if (!(gfp_mask & __GFP_NOFAIL)) {
  1890. /* The OOM killer will not help higher order allocs */
  1891. if (order > PAGE_ALLOC_COSTLY_ORDER)
  1892. goto out;
  1893. /* The OOM killer does not needlessly kill tasks for lowmem */
  1894. if (high_zoneidx < ZONE_NORMAL)
  1895. goto out;
  1896. /*
  1897. * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
  1898. * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
  1899. * The caller should handle page allocation failure by itself if
  1900. * it specifies __GFP_THISNODE.
  1901. * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
  1902. */
  1903. if (gfp_mask & __GFP_THISNODE)
  1904. goto out;
  1905. }
  1906. /* Exhausted what can be done so it's blamo time */
  1907. out_of_memory(zonelist, gfp_mask, order, nodemask, false);
  1908. out:
  1909. clear_zonelist_oom(zonelist, gfp_mask);
  1910. return page;
  1911. }
  1912. #ifdef CONFIG_COMPACTION
  1913. /* Try memory compaction for high-order allocations before reclaim */
  1914. static struct page *
  1915. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  1916. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1917. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1918. int migratetype, bool sync_migration,
  1919. bool *contended_compaction, bool *deferred_compaction,
  1920. unsigned long *did_some_progress)
  1921. {
  1922. if (!order)
  1923. return NULL;
  1924. if (compaction_deferred(preferred_zone, order)) {
  1925. *deferred_compaction = true;
  1926. return NULL;
  1927. }
  1928. current->flags |= PF_MEMALLOC;
  1929. *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
  1930. nodemask, sync_migration,
  1931. contended_compaction);
  1932. current->flags &= ~PF_MEMALLOC;
  1933. if (*did_some_progress != COMPACT_SKIPPED) {
  1934. struct page *page;
  1935. /* Page migration frees to the PCP lists but we want merging */
  1936. drain_pages(get_cpu());
  1937. put_cpu();
  1938. page = get_page_from_freelist(gfp_mask, nodemask,
  1939. order, zonelist, high_zoneidx,
  1940. alloc_flags & ~ALLOC_NO_WATERMARKS,
  1941. preferred_zone, migratetype);
  1942. if (page) {
  1943. preferred_zone->compact_blockskip_flush = false;
  1944. preferred_zone->compact_considered = 0;
  1945. preferred_zone->compact_defer_shift = 0;
  1946. if (order >= preferred_zone->compact_order_failed)
  1947. preferred_zone->compact_order_failed = order + 1;
  1948. count_vm_event(COMPACTSUCCESS);
  1949. return page;
  1950. }
  1951. /*
  1952. * It's bad if compaction run occurs and fails.
  1953. * The most likely reason is that pages exist,
  1954. * but not enough to satisfy watermarks.
  1955. */
  1956. count_vm_event(COMPACTFAIL);
  1957. /*
  1958. * As async compaction considers a subset of pageblocks, only
  1959. * defer if the failure was a sync compaction failure.
  1960. */
  1961. if (sync_migration)
  1962. defer_compaction(preferred_zone, order);
  1963. cond_resched();
  1964. }
  1965. return NULL;
  1966. }
  1967. #else
  1968. static inline struct page *
  1969. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  1970. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1971. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1972. int migratetype, bool sync_migration,
  1973. bool *contended_compaction, bool *deferred_compaction,
  1974. unsigned long *did_some_progress)
  1975. {
  1976. return NULL;
  1977. }
  1978. #endif /* CONFIG_COMPACTION */
  1979. /* Perform direct synchronous page reclaim */
  1980. static int
  1981. __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
  1982. nodemask_t *nodemask)
  1983. {
  1984. struct reclaim_state reclaim_state;
  1985. int progress;
  1986. cond_resched();
  1987. /* We now go into synchronous reclaim */
  1988. cpuset_memory_pressure_bump();
  1989. current->flags |= PF_MEMALLOC;
  1990. lockdep_set_current_reclaim_state(gfp_mask);
  1991. reclaim_state.reclaimed_slab = 0;
  1992. current->reclaim_state = &reclaim_state;
  1993. progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
  1994. current->reclaim_state = NULL;
  1995. lockdep_clear_current_reclaim_state();
  1996. current->flags &= ~PF_MEMALLOC;
  1997. cond_resched();
  1998. return progress;
  1999. }
  2000. /* The really slow allocator path where we enter direct reclaim */
  2001. static inline struct page *
  2002. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  2003. struct zonelist *zonelist, enum zone_type high_zoneidx,
  2004. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  2005. int migratetype, unsigned long *did_some_progress)
  2006. {
  2007. struct page *page = NULL;
  2008. bool drained = false;
  2009. *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
  2010. nodemask);
  2011. if (unlikely(!(*did_some_progress)))
  2012. return NULL;
  2013. /* After successful reclaim, reconsider all zones for allocation */
  2014. if (IS_ENABLED(CONFIG_NUMA))
  2015. zlc_clear_zones_full(zonelist);
  2016. retry:
  2017. page = get_page_from_freelist(gfp_mask, nodemask, order,
  2018. zonelist, high_zoneidx,
  2019. alloc_flags & ~ALLOC_NO_WATERMARKS,
  2020. preferred_zone, migratetype);
  2021. /*
  2022. * If an allocation failed after direct reclaim, it could be because
  2023. * pages are pinned on the per-cpu lists. Drain them and try again
  2024. */
  2025. if (!page && !drained) {
  2026. drain_all_pages();
  2027. drained = true;
  2028. goto retry;
  2029. }
  2030. return page;
  2031. }
  2032. /*
  2033. * This is called in the allocator slow-path if the allocation request is of
  2034. * sufficient urgency to ignore watermarks and take other desperate measures
  2035. */
  2036. static inline struct page *
  2037. __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
  2038. struct zonelist *zonelist, enum zone_type high_zoneidx,
  2039. nodemask_t *nodemask, struct zone *preferred_zone,
  2040. int migratetype)
  2041. {
  2042. struct page *page;
  2043. do {
  2044. page = get_page_from_freelist(gfp_mask, nodemask, order,
  2045. zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
  2046. preferred_zone, migratetype);
  2047. if (!page && gfp_mask & __GFP_NOFAIL)
  2048. wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
  2049. } while (!page && (gfp_mask & __GFP_NOFAIL));
  2050. return page;
  2051. }
  2052. static void prepare_slowpath(gfp_t gfp_mask, unsigned int order,
  2053. struct zonelist *zonelist,
  2054. enum zone_type high_zoneidx,
  2055. struct zone *preferred_zone)
  2056. {
  2057. struct zoneref *z;
  2058. struct zone *zone;
  2059. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  2060. if (!(gfp_mask & __GFP_NO_KSWAPD))
  2061. wakeup_kswapd(zone, order, zone_idx(preferred_zone));
  2062. /*
  2063. * Only reset the batches of zones that were actually
  2064. * considered in the fast path, we don't want to
  2065. * thrash fairness information for zones that are not
  2066. * actually part of this zonelist's round-robin cycle.
  2067. */
  2068. if (zone_reclaim_mode && !zone_local(preferred_zone, zone))
  2069. continue;
  2070. mod_zone_page_state(zone, NR_ALLOC_BATCH,
  2071. high_wmark_pages(zone) -
  2072. low_wmark_pages(zone) -
  2073. zone_page_state(zone, NR_ALLOC_BATCH));
  2074. }
  2075. }
  2076. static inline int
  2077. gfp_to_alloc_flags(gfp_t gfp_mask)
  2078. {
  2079. int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  2080. const gfp_t wait = gfp_mask & __GFP_WAIT;
  2081. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  2082. BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
  2083. /*
  2084. * The caller may dip into page reserves a bit more if the caller
  2085. * cannot run direct reclaim, or if the caller has realtime scheduling
  2086. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  2087. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  2088. */
  2089. alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
  2090. if (!wait) {
  2091. /*
  2092. * Not worth trying to allocate harder for
  2093. * __GFP_NOMEMALLOC even if it can't schedule.
  2094. */
  2095. if (!(gfp_mask & __GFP_NOMEMALLOC))
  2096. alloc_flags |= ALLOC_HARDER;
  2097. /*
  2098. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  2099. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  2100. */
  2101. alloc_flags &= ~ALLOC_CPUSET;
  2102. } else if (unlikely(rt_task(current)) && !in_interrupt())
  2103. alloc_flags |= ALLOC_HARDER;
  2104. if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
  2105. if (gfp_mask & __GFP_MEMALLOC)
  2106. alloc_flags |= ALLOC_NO_WATERMARKS;
  2107. else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
  2108. alloc_flags |= ALLOC_NO_WATERMARKS;
  2109. else if (!in_interrupt() &&
  2110. ((current->flags & PF_MEMALLOC) ||
  2111. unlikely(test_thread_flag(TIF_MEMDIE))))
  2112. alloc_flags |= ALLOC_NO_WATERMARKS;
  2113. }
  2114. #ifdef CONFIG_CMA
  2115. if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
  2116. alloc_flags |= ALLOC_CMA;
  2117. #endif
  2118. return alloc_flags;
  2119. }
  2120. bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
  2121. {
  2122. return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
  2123. }
  2124. static inline struct page *
  2125. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  2126. struct zonelist *zonelist, enum zone_type high_zoneidx,
  2127. nodemask_t *nodemask, struct zone *preferred_zone,
  2128. int migratetype)
  2129. {
  2130. const gfp_t wait = gfp_mask & __GFP_WAIT;
  2131. struct page *page = NULL;
  2132. int alloc_flags;
  2133. unsigned long pages_reclaimed = 0;
  2134. unsigned long did_some_progress;
  2135. bool sync_migration = false;
  2136. bool deferred_compaction = false;
  2137. bool contended_compaction = false;
  2138. /*
  2139. * In the slowpath, we sanity check order to avoid ever trying to
  2140. * reclaim >= MAX_ORDER areas which will never succeed. Callers may
  2141. * be using allocators in order of preference for an area that is
  2142. * too large.
  2143. */
  2144. if (order >= MAX_ORDER) {
  2145. WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
  2146. return NULL;
  2147. }
  2148. /*
  2149. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  2150. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  2151. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  2152. * using a larger set of nodes after it has established that the
  2153. * allowed per node queues are empty and that nodes are
  2154. * over allocated.
  2155. */
  2156. if (IS_ENABLED(CONFIG_NUMA) &&
  2157. (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  2158. goto nopage;
  2159. restart:
  2160. prepare_slowpath(gfp_mask, order, zonelist,
  2161. high_zoneidx, preferred_zone);
  2162. /*
  2163. * OK, we're below the kswapd watermark and have kicked background
  2164. * reclaim. Now things get more complex, so set up alloc_flags according
  2165. * to how we want to proceed.
  2166. */
  2167. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  2168. /*
  2169. * Find the true preferred zone if the allocation is unconstrained by
  2170. * cpusets.
  2171. */
  2172. if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
  2173. first_zones_zonelist(zonelist, high_zoneidx, NULL,
  2174. &preferred_zone);
  2175. rebalance:
  2176. /* This is the last chance, in general, before the goto nopage. */
  2177. page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
  2178. high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
  2179. preferred_zone, migratetype);
  2180. if (page)
  2181. goto got_pg;
  2182. /* Allocate without watermarks if the context allows */
  2183. if (alloc_flags & ALLOC_NO_WATERMARKS) {
  2184. /*
  2185. * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
  2186. * the allocation is high priority and these type of
  2187. * allocations are system rather than user orientated
  2188. */
  2189. zonelist = node_zonelist(numa_node_id(), gfp_mask);
  2190. page = __alloc_pages_high_priority(gfp_mask, order,
  2191. zonelist, high_zoneidx, nodemask,
  2192. preferred_zone, migratetype);
  2193. if (page) {
  2194. goto got_pg;
  2195. }
  2196. }
  2197. /* Atomic allocations - we can't balance anything */
  2198. if (!wait)
  2199. goto nopage;
  2200. /* Avoid recursion of direct reclaim */
  2201. if (current->flags & PF_MEMALLOC)
  2202. goto nopage;
  2203. /* Avoid allocations with no watermarks from looping endlessly */
  2204. if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
  2205. goto nopage;
  2206. /*
  2207. * Try direct compaction. The first pass is asynchronous. Subsequent
  2208. * attempts after direct reclaim are synchronous
  2209. */
  2210. page = __alloc_pages_direct_compact(gfp_mask, order,
  2211. zonelist, high_zoneidx,
  2212. nodemask,
  2213. alloc_flags, preferred_zone,
  2214. migratetype, sync_migration,
  2215. &contended_compaction,
  2216. &deferred_compaction,
  2217. &did_some_progress);
  2218. if (page)
  2219. goto got_pg;
  2220. sync_migration = true;
  2221. /*
  2222. * If compaction is deferred for high-order allocations, it is because
  2223. * sync compaction recently failed. In this is the case and the caller
  2224. * requested a movable allocation that does not heavily disrupt the
  2225. * system then fail the allocation instead of entering direct reclaim.
  2226. */
  2227. if ((deferred_compaction || contended_compaction) &&
  2228. (gfp_mask & __GFP_NO_KSWAPD))
  2229. goto nopage;
  2230. /* Try direct reclaim and then allocating */
  2231. page = __alloc_pages_direct_reclaim(gfp_mask, order,
  2232. zonelist, high_zoneidx,
  2233. nodemask,
  2234. alloc_flags, preferred_zone,
  2235. migratetype, &did_some_progress);
  2236. if (page)
  2237. goto got_pg;
  2238. /*
  2239. * If we failed to make any progress reclaiming, then we are
  2240. * running out of options and have to consider going OOM
  2241. */
  2242. if (!did_some_progress) {
  2243. if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  2244. if (oom_killer_disabled)
  2245. goto nopage;
  2246. /* Coredumps can quickly deplete all memory reserves */
  2247. if ((current->flags & PF_DUMPCORE) &&
  2248. !(gfp_mask & __GFP_NOFAIL))
  2249. goto nopage;
  2250. page = __alloc_pages_may_oom(gfp_mask, order,
  2251. zonelist, high_zoneidx,
  2252. nodemask, preferred_zone,
  2253. migratetype);
  2254. if (page)
  2255. goto got_pg;
  2256. if (!(gfp_mask & __GFP_NOFAIL)) {
  2257. /*
  2258. * The oom killer is not called for high-order
  2259. * allocations that may fail, so if no progress
  2260. * is being made, there are no other options and
  2261. * retrying is unlikely to help.
  2262. */
  2263. if (order > PAGE_ALLOC_COSTLY_ORDER)
  2264. goto nopage;
  2265. /*
  2266. * The oom killer is not called for lowmem
  2267. * allocations to prevent needlessly killing
  2268. * innocent tasks.
  2269. */
  2270. if (high_zoneidx < ZONE_NORMAL)
  2271. goto nopage;
  2272. }
  2273. goto restart;
  2274. }
  2275. }
  2276. /* Check if we should retry the allocation */
  2277. pages_reclaimed += did_some_progress;
  2278. if (should_alloc_retry(gfp_mask, order, did_some_progress,
  2279. pages_reclaimed)) {
  2280. /* Wait for some write requests to complete then retry */
  2281. wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
  2282. goto rebalance;
  2283. } else {
  2284. /*
  2285. * High-order allocations do not necessarily loop after
  2286. * direct reclaim and reclaim/compaction depends on compaction
  2287. * being called after reclaim so call directly if necessary
  2288. */
  2289. page = __alloc_pages_direct_compact(gfp_mask, order,
  2290. zonelist, high_zoneidx,
  2291. nodemask,
  2292. alloc_flags, preferred_zone,
  2293. migratetype, sync_migration,
  2294. &contended_compaction,
  2295. &deferred_compaction,
  2296. &did_some_progress);
  2297. if (page)
  2298. goto got_pg;
  2299. }
  2300. nopage:
  2301. warn_alloc_failed(gfp_mask, order, NULL);
  2302. return page;
  2303. got_pg:
  2304. if (kmemcheck_enabled)
  2305. kmemcheck_pagealloc_alloc(page, order, gfp_mask);
  2306. return page;
  2307. }
  2308. /*
  2309. * This is the 'heart' of the zoned buddy allocator.
  2310. */
  2311. struct page *
  2312. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  2313. struct zonelist *zonelist, nodemask_t *nodemask)
  2314. {
  2315. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  2316. struct zone *preferred_zone;
  2317. struct page *page = NULL;
  2318. int migratetype = allocflags_to_migratetype(gfp_mask);
  2319. unsigned int cpuset_mems_cookie;
  2320. int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
  2321. struct mem_cgroup *memcg = NULL;
  2322. gfp_mask &= gfp_allowed_mask;
  2323. lockdep_trace_alloc(gfp_mask);
  2324. might_sleep_if(gfp_mask & __GFP_WAIT);
  2325. if (should_fail_alloc_page(gfp_mask, order))
  2326. return NULL;
  2327. /*
  2328. * Check the zones suitable for the gfp_mask contain at least one
  2329. * valid zone. It's possible to have an empty zonelist as a result
  2330. * of GFP_THISNODE and a memoryless node
  2331. */
  2332. if (unlikely(!zonelist->_zonerefs->zone))
  2333. return NULL;
  2334. /*
  2335. * Will only have any effect when __GFP_KMEMCG is set. This is
  2336. * verified in the (always inline) callee
  2337. */
  2338. if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
  2339. return NULL;
  2340. retry_cpuset:
  2341. cpuset_mems_cookie = get_mems_allowed();
  2342. /* The preferred zone is used for statistics later */
  2343. first_zones_zonelist(zonelist, high_zoneidx,
  2344. nodemask ? : &cpuset_current_mems_allowed,
  2345. &preferred_zone);
  2346. if (!preferred_zone)
  2347. goto out;
  2348. #ifdef CONFIG_CMA
  2349. if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
  2350. alloc_flags |= ALLOC_CMA;
  2351. #endif
  2352. /* First allocation attempt */
  2353. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
  2354. zonelist, high_zoneidx, alloc_flags,
  2355. preferred_zone, migratetype);
  2356. if (unlikely(!page)) {
  2357. /*
  2358. * Runtime PM, block IO and its error handling path
  2359. * can deadlock because I/O on the device might not
  2360. * complete.
  2361. */
  2362. gfp_mask = memalloc_noio_flags(gfp_mask);
  2363. page = __alloc_pages_slowpath(gfp_mask, order,
  2364. zonelist, high_zoneidx, nodemask,
  2365. preferred_zone, migratetype);
  2366. }
  2367. trace_mm_page_alloc(page, order, gfp_mask, migratetype);
  2368. out:
  2369. /*
  2370. * When updating a task's mems_allowed, it is possible to race with
  2371. * parallel threads in such a way that an allocation can fail while
  2372. * the mask is being updated. If a page allocation is about to fail,
  2373. * check if the cpuset changed during allocation and if so, retry.
  2374. */
  2375. if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
  2376. goto retry_cpuset;
  2377. memcg_kmem_commit_charge(page, memcg, order);
  2378. return page;
  2379. }
  2380. EXPORT_SYMBOL(__alloc_pages_nodemask);
  2381. /*
  2382. * Common helper functions.
  2383. */
  2384. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  2385. {
  2386. struct page *page;
  2387. /*
  2388. * __get_free_pages() returns a 32-bit address, which cannot represent
  2389. * a highmem page
  2390. */
  2391. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  2392. page = alloc_pages(gfp_mask, order);
  2393. if (!page)
  2394. return 0;
  2395. return (unsigned long) page_address(page);
  2396. }
  2397. EXPORT_SYMBOL(__get_free_pages);
  2398. unsigned long get_zeroed_page(gfp_t gfp_mask)
  2399. {
  2400. return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
  2401. }
  2402. EXPORT_SYMBOL(get_zeroed_page);
  2403. void __free_pages(struct page *page, unsigned int order)
  2404. {
  2405. if (put_page_testzero(page)) {
  2406. if (order == 0)
  2407. free_hot_cold_page(page, 0);
  2408. else
  2409. __free_pages_ok(page, order);
  2410. }
  2411. }
  2412. EXPORT_SYMBOL(__free_pages);
  2413. void free_pages(unsigned long addr, unsigned int order)
  2414. {
  2415. if (addr != 0) {
  2416. VM_BUG_ON(!virt_addr_valid((void *)addr));
  2417. __free_pages(virt_to_page((void *)addr), order);
  2418. }
  2419. }
  2420. EXPORT_SYMBOL(free_pages);
  2421. /*
  2422. * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
  2423. * pages allocated with __GFP_KMEMCG.
  2424. *
  2425. * Those pages are accounted to a particular memcg, embedded in the
  2426. * corresponding page_cgroup. To avoid adding a hit in the allocator to search
  2427. * for that information only to find out that it is NULL for users who have no
  2428. * interest in that whatsoever, we provide these functions.
  2429. *
  2430. * The caller knows better which flags it relies on.
  2431. */
  2432. void __free_memcg_kmem_pages(struct page *page, unsigned int order)
  2433. {
  2434. memcg_kmem_uncharge_pages(page, order);
  2435. __free_pages(page, order);
  2436. }
  2437. void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
  2438. {
  2439. if (addr != 0) {
  2440. VM_BUG_ON(!virt_addr_valid((void *)addr));
  2441. __free_memcg_kmem_pages(virt_to_page((void *)addr), order);
  2442. }
  2443. }
  2444. static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
  2445. {
  2446. if (addr) {
  2447. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  2448. unsigned long used = addr + PAGE_ALIGN(size);
  2449. split_page(virt_to_page((void *)addr), order);
  2450. while (used < alloc_end) {
  2451. free_page(used);
  2452. used += PAGE_SIZE;
  2453. }
  2454. }
  2455. return (void *)addr;
  2456. }
  2457. /**
  2458. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  2459. * @size: the number of bytes to allocate
  2460. * @gfp_mask: GFP flags for the allocation
  2461. *
  2462. * This function is similar to alloc_pages(), except that it allocates the
  2463. * minimum number of pages to satisfy the request. alloc_pages() can only
  2464. * allocate memory in power-of-two pages.
  2465. *
  2466. * This function is also limited by MAX_ORDER.
  2467. *
  2468. * Memory allocated by this function must be released by free_pages_exact().
  2469. */
  2470. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  2471. {
  2472. unsigned int order = get_order(size);
  2473. unsigned long addr;
  2474. addr = __get_free_pages(gfp_mask, order);
  2475. return make_alloc_exact(addr, order, size);
  2476. }
  2477. EXPORT_SYMBOL(alloc_pages_exact);
  2478. /**
  2479. * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
  2480. * pages on a node.
  2481. * @nid: the preferred node ID where memory should be allocated
  2482. * @size: the number of bytes to allocate
  2483. * @gfp_mask: GFP flags for the allocation
  2484. *
  2485. * Like alloc_pages_exact(), but try to allocate on node nid first before falling
  2486. * back.
  2487. * Note this is not alloc_pages_exact_node() which allocates on a specific node,
  2488. * but is not exact.
  2489. */
  2490. void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
  2491. {
  2492. unsigned order = get_order(size);
  2493. struct page *p = alloc_pages_node(nid, gfp_mask, order);
  2494. if (!p)
  2495. return NULL;
  2496. return make_alloc_exact((unsigned long)page_address(p), order, size);
  2497. }
  2498. EXPORT_SYMBOL(alloc_pages_exact_nid);
  2499. /**
  2500. * free_pages_exact - release memory allocated via alloc_pages_exact()
  2501. * @virt: the value returned by alloc_pages_exact.
  2502. * @size: size of allocation, same value as passed to alloc_pages_exact().
  2503. *
  2504. * Release the memory allocated by a previous call to alloc_pages_exact.
  2505. */
  2506. void free_pages_exact(void *virt, size_t size)
  2507. {
  2508. unsigned long addr = (unsigned long)virt;
  2509. unsigned long end = addr + PAGE_ALIGN(size);
  2510. while (addr < end) {
  2511. free_page(addr);
  2512. addr += PAGE_SIZE;
  2513. }
  2514. }
  2515. EXPORT_SYMBOL(free_pages_exact);
  2516. /**
  2517. * nr_free_zone_pages - count number of pages beyond high watermark
  2518. * @offset: The zone index of the highest zone
  2519. *
  2520. * nr_free_zone_pages() counts the number of counts pages which are beyond the
  2521. * high watermark within all zones at or below a given zone index. For each
  2522. * zone, the number of pages is calculated as:
  2523. * managed_pages - high_pages
  2524. */
  2525. static unsigned long nr_free_zone_pages(int offset)
  2526. {
  2527. struct zoneref *z;
  2528. struct zone *zone;
  2529. /* Just pick one node, since fallback list is circular */
  2530. unsigned long sum = 0;
  2531. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  2532. for_each_zone_zonelist(zone, z, zonelist, offset) {
  2533. unsigned long size = zone->managed_pages;
  2534. unsigned long high = high_wmark_pages(zone);
  2535. if (size > high)
  2536. sum += size - high;
  2537. }
  2538. return sum;
  2539. }
  2540. /**
  2541. * nr_free_buffer_pages - count number of pages beyond high watermark
  2542. *
  2543. * nr_free_buffer_pages() counts the number of pages which are beyond the high
  2544. * watermark within ZONE_DMA and ZONE_NORMAL.
  2545. */
  2546. unsigned long nr_free_buffer_pages(void)
  2547. {
  2548. return nr_free_zone_pages(gfp_zone(GFP_USER));
  2549. }
  2550. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  2551. /**
  2552. * nr_free_pagecache_pages - count number of pages beyond high watermark
  2553. *
  2554. * nr_free_pagecache_pages() counts the number of pages which are beyond the
  2555. * high watermark within all zones.
  2556. */
  2557. unsigned long nr_free_pagecache_pages(void)
  2558. {
  2559. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  2560. }
  2561. static inline void show_node(struct zone *zone)
  2562. {
  2563. if (IS_ENABLED(CONFIG_NUMA))
  2564. printk("Node %d ", zone_to_nid(zone));
  2565. }
  2566. void si_meminfo(struct sysinfo *val)
  2567. {
  2568. val->totalram = totalram_pages;
  2569. val->sharedram = 0;
  2570. val->freeram = global_page_state(NR_FREE_PAGES);
  2571. val->bufferram = nr_blockdev_pages();
  2572. val->totalhigh = totalhigh_pages;
  2573. val->freehigh = nr_free_highpages();
  2574. val->mem_unit = PAGE_SIZE;
  2575. }
  2576. EXPORT_SYMBOL(si_meminfo);
  2577. #ifdef CONFIG_NUMA
  2578. void si_meminfo_node(struct sysinfo *val, int nid)
  2579. {
  2580. int zone_type; /* needs to be signed */
  2581. unsigned long managed_pages = 0;
  2582. pg_data_t *pgdat = NODE_DATA(nid);
  2583. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
  2584. managed_pages += pgdat->node_zones[zone_type].managed_pages;
  2585. val->totalram = managed_pages;
  2586. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  2587. #ifdef CONFIG_HIGHMEM
  2588. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
  2589. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  2590. NR_FREE_PAGES);
  2591. #else
  2592. val->totalhigh = 0;
  2593. val->freehigh = 0;
  2594. #endif
  2595. val->mem_unit = PAGE_SIZE;
  2596. }
  2597. #endif
  2598. /*
  2599. * Determine whether the node should be displayed or not, depending on whether
  2600. * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
  2601. */
  2602. bool skip_free_areas_node(unsigned int flags, int nid)
  2603. {
  2604. bool ret = false;
  2605. unsigned int cpuset_mems_cookie;
  2606. if (!(flags & SHOW_MEM_FILTER_NODES))
  2607. goto out;
  2608. do {
  2609. cpuset_mems_cookie = get_mems_allowed();
  2610. ret = !node_isset(nid, cpuset_current_mems_allowed);
  2611. } while (!put_mems_allowed(cpuset_mems_cookie));
  2612. out:
  2613. return ret;
  2614. }
  2615. #define K(x) ((x) << (PAGE_SHIFT-10))
  2616. static void show_migration_types(unsigned char type)
  2617. {
  2618. static const char types[MIGRATE_TYPES] = {
  2619. [MIGRATE_UNMOVABLE] = 'U',
  2620. [MIGRATE_RECLAIMABLE] = 'E',
  2621. [MIGRATE_MOVABLE] = 'M',
  2622. [MIGRATE_RESERVE] = 'R',
  2623. #ifdef CONFIG_CMA
  2624. [MIGRATE_CMA] = 'C',
  2625. #endif
  2626. #ifdef CONFIG_MEMORY_ISOLATION
  2627. [MIGRATE_ISOLATE] = 'I',
  2628. #endif
  2629. };
  2630. char tmp[MIGRATE_TYPES + 1];
  2631. char *p = tmp;
  2632. int i;
  2633. for (i = 0; i < MIGRATE_TYPES; i++) {
  2634. if (type & (1 << i))
  2635. *p++ = types[i];
  2636. }
  2637. *p = '\0';
  2638. printk("(%s) ", tmp);
  2639. }
  2640. /*
  2641. * Show free area list (used inside shift_scroll-lock stuff)
  2642. * We also calculate the percentage fragmentation. We do this by counting the
  2643. * memory on each free list with the exception of the first item on the list.
  2644. * Suppresses nodes that are not allowed by current's cpuset if
  2645. * SHOW_MEM_FILTER_NODES is passed.
  2646. */
  2647. void show_free_areas(unsigned int filter)
  2648. {
  2649. int cpu;
  2650. struct zone *zone;
  2651. for_each_populated_zone(zone) {
  2652. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2653. continue;
  2654. show_node(zone);
  2655. printk("%s per-cpu:\n", zone->name);
  2656. for_each_online_cpu(cpu) {
  2657. struct per_cpu_pageset *pageset;
  2658. pageset = per_cpu_ptr(zone->pageset, cpu);
  2659. printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
  2660. cpu, pageset->pcp.high,
  2661. pageset->pcp.batch, pageset->pcp.count);
  2662. }
  2663. }
  2664. printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
  2665. " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
  2666. " unevictable:%lu"
  2667. " dirty:%lu writeback:%lu unstable:%lu\n"
  2668. " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
  2669. " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
  2670. " free_cma:%lu\n",
  2671. global_page_state(NR_ACTIVE_ANON),
  2672. global_page_state(NR_INACTIVE_ANON),
  2673. global_page_state(NR_ISOLATED_ANON),
  2674. global_page_state(NR_ACTIVE_FILE),
  2675. global_page_state(NR_INACTIVE_FILE),
  2676. global_page_state(NR_ISOLATED_FILE),
  2677. global_page_state(NR_UNEVICTABLE),
  2678. global_page_state(NR_FILE_DIRTY),
  2679. global_page_state(NR_WRITEBACK),
  2680. global_page_state(NR_UNSTABLE_NFS),
  2681. global_page_state(NR_FREE_PAGES),
  2682. global_page_state(NR_SLAB_RECLAIMABLE),
  2683. global_page_state(NR_SLAB_UNRECLAIMABLE),
  2684. global_page_state(NR_FILE_MAPPED),
  2685. global_page_state(NR_SHMEM),
  2686. global_page_state(NR_PAGETABLE),
  2687. global_page_state(NR_BOUNCE),
  2688. global_page_state(NR_FREE_CMA_PAGES));
  2689. for_each_populated_zone(zone) {
  2690. int i;
  2691. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2692. continue;
  2693. show_node(zone);
  2694. printk("%s"
  2695. " free:%lukB"
  2696. " min:%lukB"
  2697. " low:%lukB"
  2698. " high:%lukB"
  2699. " active_anon:%lukB"
  2700. " inactive_anon:%lukB"
  2701. " active_file:%lukB"
  2702. " inactive_file:%lukB"
  2703. " unevictable:%lukB"
  2704. " isolated(anon):%lukB"
  2705. " isolated(file):%lukB"
  2706. " present:%lukB"
  2707. " managed:%lukB"
  2708. " mlocked:%lukB"
  2709. " dirty:%lukB"
  2710. " writeback:%lukB"
  2711. " mapped:%lukB"
  2712. " shmem:%lukB"
  2713. " slab_reclaimable:%lukB"
  2714. " slab_unreclaimable:%lukB"
  2715. " kernel_stack:%lukB"
  2716. " pagetables:%lukB"
  2717. " unstable:%lukB"
  2718. " bounce:%lukB"
  2719. " free_cma:%lukB"
  2720. " writeback_tmp:%lukB"
  2721. " pages_scanned:%lu"
  2722. " all_unreclaimable? %s"
  2723. "\n",
  2724. zone->name,
  2725. K(zone_page_state(zone, NR_FREE_PAGES)),
  2726. K(min_wmark_pages(zone)),
  2727. K(low_wmark_pages(zone)),
  2728. K(high_wmark_pages(zone)),
  2729. K(zone_page_state(zone, NR_ACTIVE_ANON)),
  2730. K(zone_page_state(zone, NR_INACTIVE_ANON)),
  2731. K(zone_page_state(zone, NR_ACTIVE_FILE)),
  2732. K(zone_page_state(zone, NR_INACTIVE_FILE)),
  2733. K(zone_page_state(zone, NR_UNEVICTABLE)),
  2734. K(zone_page_state(zone, NR_ISOLATED_ANON)),
  2735. K(zone_page_state(zone, NR_ISOLATED_FILE)),
  2736. K(zone->present_pages),
  2737. K(zone->managed_pages),
  2738. K(zone_page_state(zone, NR_MLOCK)),
  2739. K(zone_page_state(zone, NR_FILE_DIRTY)),
  2740. K(zone_page_state(zone, NR_WRITEBACK)),
  2741. K(zone_page_state(zone, NR_FILE_MAPPED)),
  2742. K(zone_page_state(zone, NR_SHMEM)),
  2743. K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
  2744. K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
  2745. zone_page_state(zone, NR_KERNEL_STACK) *
  2746. THREAD_SIZE / 1024,
  2747. K(zone_page_state(zone, NR_PAGETABLE)),
  2748. K(zone_page_state(zone, NR_UNSTABLE_NFS)),
  2749. K(zone_page_state(zone, NR_BOUNCE)),
  2750. K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
  2751. K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
  2752. zone->pages_scanned,
  2753. (!zone_reclaimable(zone) ? "yes" : "no")
  2754. );
  2755. printk("lowmem_reserve[]:");
  2756. for (i = 0; i < MAX_NR_ZONES; i++)
  2757. printk(" %lu", zone->lowmem_reserve[i]);
  2758. printk("\n");
  2759. }
  2760. for_each_populated_zone(zone) {
  2761. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  2762. unsigned char types[MAX_ORDER];
  2763. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2764. continue;
  2765. show_node(zone);
  2766. printk("%s: ", zone->name);
  2767. spin_lock_irqsave(&zone->lock, flags);
  2768. for (order = 0; order < MAX_ORDER; order++) {
  2769. struct free_area *area = &zone->free_area[order];
  2770. int type;
  2771. nr[order] = area->nr_free;
  2772. total += nr[order] << order;
  2773. types[order] = 0;
  2774. for (type = 0; type < MIGRATE_TYPES; type++) {
  2775. if (!list_empty(&area->free_list[type]))
  2776. types[order] |= 1 << type;
  2777. }
  2778. }
  2779. spin_unlock_irqrestore(&zone->lock, flags);
  2780. for (order = 0; order < MAX_ORDER; order++) {
  2781. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  2782. if (nr[order])
  2783. show_migration_types(types[order]);
  2784. }
  2785. printk("= %lukB\n", K(total));
  2786. }
  2787. hugetlb_show_meminfo();
  2788. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  2789. show_swap_cache_info();
  2790. }
  2791. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  2792. {
  2793. zoneref->zone = zone;
  2794. zoneref->zone_idx = zone_idx(zone);
  2795. }
  2796. /*
  2797. * Builds allocation fallback zone lists.
  2798. *
  2799. * Add all populated zones of a node to the zonelist.
  2800. */
  2801. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  2802. int nr_zones)
  2803. {
  2804. struct zone *zone;
  2805. enum zone_type zone_type = MAX_NR_ZONES;
  2806. do {
  2807. zone_type--;
  2808. zone = pgdat->node_zones + zone_type;
  2809. if (populated_zone(zone)) {
  2810. zoneref_set_zone(zone,
  2811. &zonelist->_zonerefs[nr_zones++]);
  2812. check_highest_zone(zone_type);
  2813. }
  2814. } while (zone_type);
  2815. return nr_zones;
  2816. }
  2817. /*
  2818. * zonelist_order:
  2819. * 0 = automatic detection of better ordering.
  2820. * 1 = order by ([node] distance, -zonetype)
  2821. * 2 = order by (-zonetype, [node] distance)
  2822. *
  2823. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  2824. * the same zonelist. So only NUMA can configure this param.
  2825. */
  2826. #define ZONELIST_ORDER_DEFAULT 0
  2827. #define ZONELIST_ORDER_NODE 1
  2828. #define ZONELIST_ORDER_ZONE 2
  2829. /* zonelist order in the kernel.
  2830. * set_zonelist_order() will set this to NODE or ZONE.
  2831. */
  2832. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2833. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  2834. #ifdef CONFIG_NUMA
  2835. /* The value user specified ....changed by config */
  2836. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2837. /* string for sysctl */
  2838. #define NUMA_ZONELIST_ORDER_LEN 16
  2839. char numa_zonelist_order[16] = "default";
  2840. /*
  2841. * interface for configure zonelist ordering.
  2842. * command line option "numa_zonelist_order"
  2843. * = "[dD]efault - default, automatic configuration.
  2844. * = "[nN]ode - order by node locality, then by zone within node
  2845. * = "[zZ]one - order by zone, then by locality within zone
  2846. */
  2847. static int __parse_numa_zonelist_order(char *s)
  2848. {
  2849. if (*s == 'd' || *s == 'D') {
  2850. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2851. } else if (*s == 'n' || *s == 'N') {
  2852. user_zonelist_order = ZONELIST_ORDER_NODE;
  2853. } else if (*s == 'z' || *s == 'Z') {
  2854. user_zonelist_order = ZONELIST_ORDER_ZONE;
  2855. } else {
  2856. printk(KERN_WARNING
  2857. "Ignoring invalid numa_zonelist_order value: "
  2858. "%s\n", s);
  2859. return -EINVAL;
  2860. }
  2861. return 0;
  2862. }
  2863. static __init int setup_numa_zonelist_order(char *s)
  2864. {
  2865. int ret;
  2866. if (!s)
  2867. return 0;
  2868. ret = __parse_numa_zonelist_order(s);
  2869. if (ret == 0)
  2870. strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
  2871. return ret;
  2872. }
  2873. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  2874. /*
  2875. * sysctl handler for numa_zonelist_order
  2876. */
  2877. int numa_zonelist_order_handler(ctl_table *table, int write,
  2878. void __user *buffer, size_t *length,
  2879. loff_t *ppos)
  2880. {
  2881. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  2882. int ret;
  2883. static DEFINE_MUTEX(zl_order_mutex);
  2884. mutex_lock(&zl_order_mutex);
  2885. if (write) {
  2886. if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
  2887. ret = -EINVAL;
  2888. goto out;
  2889. }
  2890. strcpy(saved_string, (char *)table->data);
  2891. }
  2892. ret = proc_dostring(table, write, buffer, length, ppos);
  2893. if (ret)
  2894. goto out;
  2895. if (write) {
  2896. int oldval = user_zonelist_order;
  2897. ret = __parse_numa_zonelist_order((char *)table->data);
  2898. if (ret) {
  2899. /*
  2900. * bogus value. restore saved string
  2901. */
  2902. strncpy((char *)table->data, saved_string,
  2903. NUMA_ZONELIST_ORDER_LEN);
  2904. user_zonelist_order = oldval;
  2905. } else if (oldval != user_zonelist_order) {
  2906. mutex_lock(&zonelists_mutex);
  2907. build_all_zonelists(NULL, NULL);
  2908. mutex_unlock(&zonelists_mutex);
  2909. }
  2910. }
  2911. out:
  2912. mutex_unlock(&zl_order_mutex);
  2913. return ret;
  2914. }
  2915. #define MAX_NODE_LOAD (nr_online_nodes)
  2916. static int node_load[MAX_NUMNODES];
  2917. /**
  2918. * find_next_best_node - find the next node that should appear in a given node's fallback list
  2919. * @node: node whose fallback list we're appending
  2920. * @used_node_mask: nodemask_t of already used nodes
  2921. *
  2922. * We use a number of factors to determine which is the next node that should
  2923. * appear on a given node's fallback list. The node should not have appeared
  2924. * already in @node's fallback list, and it should be the next closest node
  2925. * according to the distance array (which contains arbitrary distance values
  2926. * from each node to each node in the system), and should also prefer nodes
  2927. * with no CPUs, since presumably they'll have very little allocation pressure
  2928. * on them otherwise.
  2929. * It returns -1 if no node is found.
  2930. */
  2931. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  2932. {
  2933. int n, val;
  2934. int min_val = INT_MAX;
  2935. int best_node = NUMA_NO_NODE;
  2936. const struct cpumask *tmp = cpumask_of_node(0);
  2937. /* Use the local node if we haven't already */
  2938. if (!node_isset(node, *used_node_mask)) {
  2939. node_set(node, *used_node_mask);
  2940. return node;
  2941. }
  2942. for_each_node_state(n, N_MEMORY) {
  2943. /* Don't want a node to appear more than once */
  2944. if (node_isset(n, *used_node_mask))
  2945. continue;
  2946. /* Use the distance array to find the distance */
  2947. val = node_distance(node, n);
  2948. /* Penalize nodes under us ("prefer the next node") */
  2949. val += (n < node);
  2950. /* Give preference to headless and unused nodes */
  2951. tmp = cpumask_of_node(n);
  2952. if (!cpumask_empty(tmp))
  2953. val += PENALTY_FOR_NODE_WITH_CPUS;
  2954. /* Slight preference for less loaded node */
  2955. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  2956. val += node_load[n];
  2957. if (val < min_val) {
  2958. min_val = val;
  2959. best_node = n;
  2960. }
  2961. }
  2962. if (best_node >= 0)
  2963. node_set(best_node, *used_node_mask);
  2964. return best_node;
  2965. }
  2966. /*
  2967. * Build zonelists ordered by node and zones within node.
  2968. * This results in maximum locality--normal zone overflows into local
  2969. * DMA zone, if any--but risks exhausting DMA zone.
  2970. */
  2971. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  2972. {
  2973. int j;
  2974. struct zonelist *zonelist;
  2975. zonelist = &pgdat->node_zonelists[0];
  2976. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  2977. ;
  2978. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  2979. zonelist->_zonerefs[j].zone = NULL;
  2980. zonelist->_zonerefs[j].zone_idx = 0;
  2981. }
  2982. /*
  2983. * Build gfp_thisnode zonelists
  2984. */
  2985. static void build_thisnode_zonelists(pg_data_t *pgdat)
  2986. {
  2987. int j;
  2988. struct zonelist *zonelist;
  2989. zonelist = &pgdat->node_zonelists[1];
  2990. j = build_zonelists_node(pgdat, zonelist, 0);
  2991. zonelist->_zonerefs[j].zone = NULL;
  2992. zonelist->_zonerefs[j].zone_idx = 0;
  2993. }
  2994. /*
  2995. * Build zonelists ordered by zone and nodes within zones.
  2996. * This results in conserving DMA zone[s] until all Normal memory is
  2997. * exhausted, but results in overflowing to remote node while memory
  2998. * may still exist in local DMA zone.
  2999. */
  3000. static int node_order[MAX_NUMNODES];
  3001. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  3002. {
  3003. int pos, j, node;
  3004. int zone_type; /* needs to be signed */
  3005. struct zone *z;
  3006. struct zonelist *zonelist;
  3007. zonelist = &pgdat->node_zonelists[0];
  3008. pos = 0;
  3009. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  3010. for (j = 0; j < nr_nodes; j++) {
  3011. node = node_order[j];
  3012. z = &NODE_DATA(node)->node_zones[zone_type];
  3013. if (populated_zone(z)) {
  3014. zoneref_set_zone(z,
  3015. &zonelist->_zonerefs[pos++]);
  3016. check_highest_zone(zone_type);
  3017. }
  3018. }
  3019. }
  3020. zonelist->_zonerefs[pos].zone = NULL;
  3021. zonelist->_zonerefs[pos].zone_idx = 0;
  3022. }
  3023. static int default_zonelist_order(void)
  3024. {
  3025. int nid, zone_type;
  3026. unsigned long low_kmem_size, total_size;
  3027. struct zone *z;
  3028. int average_size;
  3029. /*
  3030. * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
  3031. * If they are really small and used heavily, the system can fall
  3032. * into OOM very easily.
  3033. * This function detect ZONE_DMA/DMA32 size and configures zone order.
  3034. */
  3035. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  3036. low_kmem_size = 0;
  3037. total_size = 0;
  3038. for_each_online_node(nid) {
  3039. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  3040. z = &NODE_DATA(nid)->node_zones[zone_type];
  3041. if (populated_zone(z)) {
  3042. if (zone_type < ZONE_NORMAL)
  3043. low_kmem_size += z->managed_pages;
  3044. total_size += z->managed_pages;
  3045. } else if (zone_type == ZONE_NORMAL) {
  3046. /*
  3047. * If any node has only lowmem, then node order
  3048. * is preferred to allow kernel allocations
  3049. * locally; otherwise, they can easily infringe
  3050. * on other nodes when there is an abundance of
  3051. * lowmem available to allocate from.
  3052. */
  3053. return ZONELIST_ORDER_NODE;
  3054. }
  3055. }
  3056. }
  3057. if (!low_kmem_size || /* there are no DMA area. */
  3058. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  3059. return ZONELIST_ORDER_NODE;
  3060. /*
  3061. * look into each node's config.
  3062. * If there is a node whose DMA/DMA32 memory is very big area on
  3063. * local memory, NODE_ORDER may be suitable.
  3064. */
  3065. average_size = total_size /
  3066. (nodes_weight(node_states[N_MEMORY]) + 1);
  3067. for_each_online_node(nid) {
  3068. low_kmem_size = 0;
  3069. total_size = 0;
  3070. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  3071. z = &NODE_DATA(nid)->node_zones[zone_type];
  3072. if (populated_zone(z)) {
  3073. if (zone_type < ZONE_NORMAL)
  3074. low_kmem_size += z->present_pages;
  3075. total_size += z->present_pages;
  3076. }
  3077. }
  3078. if (low_kmem_size &&
  3079. total_size > average_size && /* ignore small node */
  3080. low_kmem_size > total_size * 70/100)
  3081. return ZONELIST_ORDER_NODE;
  3082. }
  3083. return ZONELIST_ORDER_ZONE;
  3084. }
  3085. static void set_zonelist_order(void)
  3086. {
  3087. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  3088. current_zonelist_order = default_zonelist_order();
  3089. else
  3090. current_zonelist_order = user_zonelist_order;
  3091. }
  3092. static void build_zonelists(pg_data_t *pgdat)
  3093. {
  3094. int j, node, load;
  3095. enum zone_type i;
  3096. nodemask_t used_mask;
  3097. int local_node, prev_node;
  3098. struct zonelist *zonelist;
  3099. int order = current_zonelist_order;
  3100. /* initialize zonelists */
  3101. for (i = 0; i < MAX_ZONELISTS; i++) {
  3102. zonelist = pgdat->node_zonelists + i;
  3103. zonelist->_zonerefs[0].zone = NULL;
  3104. zonelist->_zonerefs[0].zone_idx = 0;
  3105. }
  3106. /* NUMA-aware ordering of nodes */
  3107. local_node = pgdat->node_id;
  3108. load = nr_online_nodes;
  3109. prev_node = local_node;
  3110. nodes_clear(used_mask);
  3111. memset(node_order, 0, sizeof(node_order));
  3112. j = 0;
  3113. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  3114. /*
  3115. * We don't want to pressure a particular node.
  3116. * So adding penalty to the first node in same
  3117. * distance group to make it round-robin.
  3118. */
  3119. if (node_distance(local_node, node) !=
  3120. node_distance(local_node, prev_node))
  3121. node_load[node] = load;
  3122. prev_node = node;
  3123. load--;
  3124. if (order == ZONELIST_ORDER_NODE)
  3125. build_zonelists_in_node_order(pgdat, node);
  3126. else
  3127. node_order[j++] = node; /* remember order */
  3128. }
  3129. if (order == ZONELIST_ORDER_ZONE) {
  3130. /* calculate node order -- i.e., DMA last! */
  3131. build_zonelists_in_zone_order(pgdat, j);
  3132. }
  3133. build_thisnode_zonelists(pgdat);
  3134. }
  3135. /* Construct the zonelist performance cache - see further mmzone.h */
  3136. static void build_zonelist_cache(pg_data_t *pgdat)
  3137. {
  3138. struct zonelist *zonelist;
  3139. struct zonelist_cache *zlc;
  3140. struct zoneref *z;
  3141. zonelist = &pgdat->node_zonelists[0];
  3142. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  3143. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  3144. for (z = zonelist->_zonerefs; z->zone; z++)
  3145. zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
  3146. }
  3147. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  3148. /*
  3149. * Return node id of node used for "local" allocations.
  3150. * I.e., first node id of first zone in arg node's generic zonelist.
  3151. * Used for initializing percpu 'numa_mem', which is used primarily
  3152. * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
  3153. */
  3154. int local_memory_node(int node)
  3155. {
  3156. struct zone *zone;
  3157. (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
  3158. gfp_zone(GFP_KERNEL),
  3159. NULL,
  3160. &zone);
  3161. return zone->node;
  3162. }
  3163. #endif
  3164. #else /* CONFIG_NUMA */
  3165. static void set_zonelist_order(void)
  3166. {
  3167. current_zonelist_order = ZONELIST_ORDER_ZONE;
  3168. }
  3169. static void build_zonelists(pg_data_t *pgdat)
  3170. {
  3171. int node, local_node;
  3172. enum zone_type j;
  3173. struct zonelist *zonelist;
  3174. local_node = pgdat->node_id;
  3175. zonelist = &pgdat->node_zonelists[0];
  3176. j = build_zonelists_node(pgdat, zonelist, 0);
  3177. /*
  3178. * Now we build the zonelist so that it contains the zones
  3179. * of all the other nodes.
  3180. * We don't want to pressure a particular node, so when
  3181. * building the zones for node N, we make sure that the
  3182. * zones coming right after the local ones are those from
  3183. * node N+1 (modulo N)
  3184. */
  3185. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  3186. if (!node_online(node))
  3187. continue;
  3188. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  3189. }
  3190. for (node = 0; node < local_node; node++) {
  3191. if (!node_online(node))
  3192. continue;
  3193. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  3194. }
  3195. zonelist->_zonerefs[j].zone = NULL;
  3196. zonelist->_zonerefs[j].zone_idx = 0;
  3197. }
  3198. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  3199. static void build_zonelist_cache(pg_data_t *pgdat)
  3200. {
  3201. pgdat->node_zonelists[0].zlcache_ptr = NULL;
  3202. }
  3203. #endif /* CONFIG_NUMA */
  3204. /*
  3205. * Boot pageset table. One per cpu which is going to be used for all
  3206. * zones and all nodes. The parameters will be set in such a way
  3207. * that an item put on a list will immediately be handed over to
  3208. * the buddy list. This is safe since pageset manipulation is done
  3209. * with interrupts disabled.
  3210. *
  3211. * The boot_pagesets must be kept even after bootup is complete for
  3212. * unused processors and/or zones. They do play a role for bootstrapping
  3213. * hotplugged processors.
  3214. *
  3215. * zoneinfo_show() and maybe other functions do
  3216. * not check if the processor is online before following the pageset pointer.
  3217. * Other parts of the kernel may not check if the zone is available.
  3218. */
  3219. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
  3220. static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
  3221. static void setup_zone_pageset(struct zone *zone);
  3222. /*
  3223. * Global mutex to protect against size modification of zonelists
  3224. * as well as to serialize pageset setup for the new populated zone.
  3225. */
  3226. DEFINE_MUTEX(zonelists_mutex);
  3227. /* return values int ....just for stop_machine() */
  3228. static int __build_all_zonelists(void *data)
  3229. {
  3230. int nid;
  3231. int cpu;
  3232. pg_data_t *self = data;
  3233. #ifdef CONFIG_NUMA
  3234. memset(node_load, 0, sizeof(node_load));
  3235. #endif
  3236. if (self && !node_online(self->node_id)) {
  3237. build_zonelists(self);
  3238. build_zonelist_cache(self);
  3239. }
  3240. for_each_online_node(nid) {
  3241. pg_data_t *pgdat = NODE_DATA(nid);
  3242. build_zonelists(pgdat);
  3243. build_zonelist_cache(pgdat);
  3244. }
  3245. /*
  3246. * Initialize the boot_pagesets that are going to be used
  3247. * for bootstrapping processors. The real pagesets for
  3248. * each zone will be allocated later when the per cpu
  3249. * allocator is available.
  3250. *
  3251. * boot_pagesets are used also for bootstrapping offline
  3252. * cpus if the system is already booted because the pagesets
  3253. * are needed to initialize allocators on a specific cpu too.
  3254. * F.e. the percpu allocator needs the page allocator which
  3255. * needs the percpu allocator in order to allocate its pagesets
  3256. * (a chicken-egg dilemma).
  3257. */
  3258. for_each_possible_cpu(cpu) {
  3259. setup_pageset(&per_cpu(boot_pageset, cpu), 0);
  3260. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  3261. /*
  3262. * We now know the "local memory node" for each node--
  3263. * i.e., the node of the first zone in the generic zonelist.
  3264. * Set up numa_mem percpu variable for on-line cpus. During
  3265. * boot, only the boot cpu should be on-line; we'll init the
  3266. * secondary cpus' numa_mem as they come on-line. During
  3267. * node/memory hotplug, we'll fixup all on-line cpus.
  3268. */
  3269. if (cpu_online(cpu))
  3270. set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
  3271. #endif
  3272. }
  3273. return 0;
  3274. }
  3275. /*
  3276. * Called with zonelists_mutex held always
  3277. * unless system_state == SYSTEM_BOOTING.
  3278. */
  3279. void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
  3280. {
  3281. set_zonelist_order();
  3282. if (system_state == SYSTEM_BOOTING) {
  3283. __build_all_zonelists(NULL);
  3284. mminit_verify_zonelist();
  3285. cpuset_init_current_mems_allowed();
  3286. } else {
  3287. #ifdef CONFIG_MEMORY_HOTPLUG
  3288. if (zone)
  3289. setup_zone_pageset(zone);
  3290. #endif
  3291. /* we have to stop all cpus to guarantee there is no user
  3292. of zonelist */
  3293. stop_machine(__build_all_zonelists, pgdat, NULL);
  3294. /* cpuset refresh routine should be here */
  3295. }
  3296. vm_total_pages = nr_free_pagecache_pages();
  3297. /*
  3298. * Disable grouping by mobility if the number of pages in the
  3299. * system is too low to allow the mechanism to work. It would be
  3300. * more accurate, but expensive to check per-zone. This check is
  3301. * made on memory-hotadd so a system can start with mobility
  3302. * disabled and enable it later
  3303. */
  3304. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  3305. page_group_by_mobility_disabled = 1;
  3306. else
  3307. page_group_by_mobility_disabled = 0;
  3308. printk("Built %i zonelists in %s order, mobility grouping %s. "
  3309. "Total pages: %ld\n",
  3310. nr_online_nodes,
  3311. zonelist_order_name[current_zonelist_order],
  3312. page_group_by_mobility_disabled ? "off" : "on",
  3313. vm_total_pages);
  3314. #ifdef CONFIG_NUMA
  3315. printk("Policy zone: %s\n", zone_names[policy_zone]);
  3316. #endif
  3317. }
  3318. /*
  3319. * Helper functions to size the waitqueue hash table.
  3320. * Essentially these want to choose hash table sizes sufficiently
  3321. * large so that collisions trying to wait on pages are rare.
  3322. * But in fact, the number of active page waitqueues on typical
  3323. * systems is ridiculously low, less than 200. So this is even
  3324. * conservative, even though it seems large.
  3325. *
  3326. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  3327. * waitqueues, i.e. the size of the waitq table given the number of pages.
  3328. */
  3329. #define PAGES_PER_WAITQUEUE 256
  3330. #ifndef CONFIG_MEMORY_HOTPLUG
  3331. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  3332. {
  3333. unsigned long size = 1;
  3334. pages /= PAGES_PER_WAITQUEUE;
  3335. while (size < pages)
  3336. size <<= 1;
  3337. /*
  3338. * Once we have dozens or even hundreds of threads sleeping
  3339. * on IO we've got bigger problems than wait queue collision.
  3340. * Limit the size of the wait table to a reasonable size.
  3341. */
  3342. size = min(size, 4096UL);
  3343. return max(size, 4UL);
  3344. }
  3345. #else
  3346. /*
  3347. * A zone's size might be changed by hot-add, so it is not possible to determine
  3348. * a suitable size for its wait_table. So we use the maximum size now.
  3349. *
  3350. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  3351. *
  3352. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  3353. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  3354. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  3355. *
  3356. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  3357. * or more by the traditional way. (See above). It equals:
  3358. *
  3359. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  3360. * ia64(16K page size) : = ( 8G + 4M)byte.
  3361. * powerpc (64K page size) : = (32G +16M)byte.
  3362. */
  3363. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  3364. {
  3365. return 4096UL;
  3366. }
  3367. #endif
  3368. /*
  3369. * This is an integer logarithm so that shifts can be used later
  3370. * to extract the more random high bits from the multiplicative
  3371. * hash function before the remainder is taken.
  3372. */
  3373. static inline unsigned long wait_table_bits(unsigned long size)
  3374. {
  3375. return ffz(~size);
  3376. }
  3377. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  3378. /*
  3379. * Check if a pageblock contains reserved pages
  3380. */
  3381. static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
  3382. {
  3383. unsigned long pfn;
  3384. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  3385. if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
  3386. return 1;
  3387. }
  3388. return 0;
  3389. }
  3390. /*
  3391. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  3392. * of blocks reserved is based on min_wmark_pages(zone). The memory within
  3393. * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
  3394. * higher will lead to a bigger reserve which will get freed as contiguous
  3395. * blocks as reclaim kicks in
  3396. */
  3397. static void setup_zone_migrate_reserve(struct zone *zone)
  3398. {
  3399. unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
  3400. struct page *page;
  3401. unsigned long block_migratetype;
  3402. int reserve;
  3403. /*
  3404. * Get the start pfn, end pfn and the number of blocks to reserve
  3405. * We have to be careful to be aligned to pageblock_nr_pages to
  3406. * make sure that we always check pfn_valid for the first page in
  3407. * the block.
  3408. */
  3409. start_pfn = zone->zone_start_pfn;
  3410. end_pfn = zone_end_pfn(zone);
  3411. start_pfn = roundup(start_pfn, pageblock_nr_pages);
  3412. reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
  3413. pageblock_order;
  3414. /*
  3415. * Reserve blocks are generally in place to help high-order atomic
  3416. * allocations that are short-lived. A min_free_kbytes value that
  3417. * would result in more than 2 reserve blocks for atomic allocations
  3418. * is assumed to be in place to help anti-fragmentation for the
  3419. * future allocation of hugepages at runtime.
  3420. */
  3421. reserve = min(2, reserve);
  3422. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  3423. if (!pfn_valid(pfn))
  3424. continue;
  3425. page = pfn_to_page(pfn);
  3426. /* Watch out for overlapping nodes */
  3427. if (page_to_nid(page) != zone_to_nid(zone))
  3428. continue;
  3429. block_migratetype = get_pageblock_migratetype(page);
  3430. /* Only test what is necessary when the reserves are not met */
  3431. if (reserve > 0) {
  3432. /*
  3433. * Blocks with reserved pages will never free, skip
  3434. * them.
  3435. */
  3436. block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
  3437. if (pageblock_is_reserved(pfn, block_end_pfn))
  3438. continue;
  3439. /* If this block is reserved, account for it */
  3440. if (block_migratetype == MIGRATE_RESERVE) {
  3441. reserve--;
  3442. continue;
  3443. }
  3444. /* Suitable for reserving if this block is movable */
  3445. if (block_migratetype == MIGRATE_MOVABLE) {
  3446. set_pageblock_migratetype(page,
  3447. MIGRATE_RESERVE);
  3448. move_freepages_block(zone, page,
  3449. MIGRATE_RESERVE);
  3450. reserve--;
  3451. continue;
  3452. }
  3453. }
  3454. /*
  3455. * If the reserve is met and this is a previous reserved block,
  3456. * take it back
  3457. */
  3458. if (block_migratetype == MIGRATE_RESERVE) {
  3459. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3460. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  3461. }
  3462. }
  3463. }
  3464. /*
  3465. * Initially all pages are reserved - free ones are freed
  3466. * up by free_all_bootmem() once the early boot process is
  3467. * done. Non-atomic initialization, single-pass.
  3468. */
  3469. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  3470. unsigned long start_pfn, enum memmap_context context)
  3471. {
  3472. struct page *page;
  3473. unsigned long end_pfn = start_pfn + size;
  3474. unsigned long pfn;
  3475. struct zone *z;
  3476. if (highest_memmap_pfn < end_pfn - 1)
  3477. highest_memmap_pfn = end_pfn - 1;
  3478. z = &NODE_DATA(nid)->node_zones[zone];
  3479. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  3480. /*
  3481. * There can be holes in boot-time mem_map[]s
  3482. * handed to this function. They do not
  3483. * exist on hotplugged memory.
  3484. */
  3485. if (context == MEMMAP_EARLY) {
  3486. if (!early_pfn_valid(pfn))
  3487. continue;
  3488. if (!early_pfn_in_nid(pfn, nid))
  3489. continue;
  3490. }
  3491. page = pfn_to_page(pfn);
  3492. set_page_links(page, zone, nid, pfn);
  3493. mminit_verify_page_links(page, zone, nid, pfn);
  3494. init_page_count(page);
  3495. page_mapcount_reset(page);
  3496. page_nid_reset_last(page);
  3497. SetPageReserved(page);
  3498. /*
  3499. * Mark the block movable so that blocks are reserved for
  3500. * movable at startup. This will force kernel allocations
  3501. * to reserve their blocks rather than leaking throughout
  3502. * the address space during boot when many long-lived
  3503. * kernel allocations are made. Later some blocks near
  3504. * the start are marked MIGRATE_RESERVE by
  3505. * setup_zone_migrate_reserve()
  3506. *
  3507. * bitmap is created for zone's valid pfn range. but memmap
  3508. * can be created for invalid pages (for alignment)
  3509. * check here not to call set_pageblock_migratetype() against
  3510. * pfn out of zone.
  3511. */
  3512. if ((z->zone_start_pfn <= pfn)
  3513. && (pfn < zone_end_pfn(z))
  3514. && !(pfn & (pageblock_nr_pages - 1)))
  3515. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3516. INIT_LIST_HEAD(&page->lru);
  3517. #ifdef WANT_PAGE_VIRTUAL
  3518. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  3519. if (!is_highmem_idx(zone))
  3520. set_page_address(page, __va(pfn << PAGE_SHIFT));
  3521. #endif
  3522. }
  3523. }
  3524. static void __meminit zone_init_free_lists(struct zone *zone)
  3525. {
  3526. int order, t;
  3527. for_each_migratetype_order(order, t) {
  3528. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  3529. zone->free_area[order].nr_free = 0;
  3530. }
  3531. }
  3532. #ifndef __HAVE_ARCH_MEMMAP_INIT
  3533. #define memmap_init(size, nid, zone, start_pfn) \
  3534. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  3535. #endif
  3536. static int __meminit zone_batchsize(struct zone *zone)
  3537. {
  3538. #ifdef CONFIG_MMU
  3539. int batch;
  3540. /*
  3541. * The per-cpu-pages pools are set to around 1000th of the
  3542. * size of the zone. But no more than 1/2 of a meg.
  3543. *
  3544. * OK, so we don't know how big the cache is. So guess.
  3545. */
  3546. batch = zone->managed_pages / 1024;
  3547. if (batch * PAGE_SIZE > 512 * 1024)
  3548. batch = (512 * 1024) / PAGE_SIZE;
  3549. batch /= 4; /* We effectively *= 4 below */
  3550. if (batch < 1)
  3551. batch = 1;
  3552. /*
  3553. * Clamp the batch to a 2^n - 1 value. Having a power
  3554. * of 2 value was found to be more likely to have
  3555. * suboptimal cache aliasing properties in some cases.
  3556. *
  3557. * For example if 2 tasks are alternately allocating
  3558. * batches of pages, one task can end up with a lot
  3559. * of pages of one half of the possible page colors
  3560. * and the other with pages of the other colors.
  3561. */
  3562. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  3563. return batch;
  3564. #else
  3565. /* The deferral and batching of frees should be suppressed under NOMMU
  3566. * conditions.
  3567. *
  3568. * The problem is that NOMMU needs to be able to allocate large chunks
  3569. * of contiguous memory as there's no hardware page translation to
  3570. * assemble apparent contiguous memory from discontiguous pages.
  3571. *
  3572. * Queueing large contiguous runs of pages for batching, however,
  3573. * causes the pages to actually be freed in smaller chunks. As there
  3574. * can be a significant delay between the individual batches being
  3575. * recycled, this leads to the once large chunks of space being
  3576. * fragmented and becoming unavailable for high-order allocations.
  3577. */
  3578. return 0;
  3579. #endif
  3580. }
  3581. /*
  3582. * pcp->high and pcp->batch values are related and dependent on one another:
  3583. * ->batch must never be higher then ->high.
  3584. * The following function updates them in a safe manner without read side
  3585. * locking.
  3586. *
  3587. * Any new users of pcp->batch and pcp->high should ensure they can cope with
  3588. * those fields changing asynchronously (acording the the above rule).
  3589. *
  3590. * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
  3591. * outside of boot time (or some other assurance that no concurrent updaters
  3592. * exist).
  3593. */
  3594. static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
  3595. unsigned long batch)
  3596. {
  3597. /* start with a fail safe value for batch */
  3598. pcp->batch = 1;
  3599. smp_wmb();
  3600. /* Update high, then batch, in order */
  3601. pcp->high = high;
  3602. smp_wmb();
  3603. pcp->batch = batch;
  3604. }
  3605. /* a companion to pageset_set_high() */
  3606. static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
  3607. {
  3608. pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
  3609. }
  3610. static void pageset_init(struct per_cpu_pageset *p)
  3611. {
  3612. struct per_cpu_pages *pcp;
  3613. int migratetype;
  3614. memset(p, 0, sizeof(*p));
  3615. pcp = &p->pcp;
  3616. pcp->count = 0;
  3617. for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
  3618. INIT_LIST_HEAD(&pcp->lists[migratetype]);
  3619. }
  3620. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  3621. {
  3622. pageset_init(p);
  3623. pageset_set_batch(p, batch);
  3624. }
  3625. /*
  3626. * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
  3627. * to the value high for the pageset p.
  3628. */
  3629. static void pageset_set_high(struct per_cpu_pageset *p,
  3630. unsigned long high)
  3631. {
  3632. unsigned long batch = max(1UL, high / 4);
  3633. if ((high / 4) > (PAGE_SHIFT * 8))
  3634. batch = PAGE_SHIFT * 8;
  3635. pageset_update(&p->pcp, high, batch);
  3636. }
  3637. static void __meminit pageset_set_high_and_batch(struct zone *zone,
  3638. struct per_cpu_pageset *pcp)
  3639. {
  3640. if (percpu_pagelist_fraction)
  3641. pageset_set_high(pcp,
  3642. (zone->managed_pages /
  3643. percpu_pagelist_fraction));
  3644. else
  3645. pageset_set_batch(pcp, zone_batchsize(zone));
  3646. }
  3647. static void __meminit zone_pageset_init(struct zone *zone, int cpu)
  3648. {
  3649. struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
  3650. pageset_init(pcp);
  3651. pageset_set_high_and_batch(zone, pcp);
  3652. }
  3653. static void __meminit setup_zone_pageset(struct zone *zone)
  3654. {
  3655. int cpu;
  3656. zone->pageset = alloc_percpu(struct per_cpu_pageset);
  3657. for_each_possible_cpu(cpu)
  3658. zone_pageset_init(zone, cpu);
  3659. }
  3660. /*
  3661. * Allocate per cpu pagesets and initialize them.
  3662. * Before this call only boot pagesets were available.
  3663. */
  3664. void __init setup_per_cpu_pageset(void)
  3665. {
  3666. struct zone *zone;
  3667. for_each_populated_zone(zone)
  3668. setup_zone_pageset(zone);
  3669. }
  3670. static noinline __init_refok
  3671. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  3672. {
  3673. int i;
  3674. struct pglist_data *pgdat = zone->zone_pgdat;
  3675. size_t alloc_size;
  3676. /*
  3677. * The per-page waitqueue mechanism uses hashed waitqueues
  3678. * per zone.
  3679. */
  3680. zone->wait_table_hash_nr_entries =
  3681. wait_table_hash_nr_entries(zone_size_pages);
  3682. zone->wait_table_bits =
  3683. wait_table_bits(zone->wait_table_hash_nr_entries);
  3684. alloc_size = zone->wait_table_hash_nr_entries
  3685. * sizeof(wait_queue_head_t);
  3686. if (!slab_is_available()) {
  3687. zone->wait_table = (wait_queue_head_t *)
  3688. alloc_bootmem_node_nopanic(pgdat, alloc_size);
  3689. } else {
  3690. /*
  3691. * This case means that a zone whose size was 0 gets new memory
  3692. * via memory hot-add.
  3693. * But it may be the case that a new node was hot-added. In
  3694. * this case vmalloc() will not be able to use this new node's
  3695. * memory - this wait_table must be initialized to use this new
  3696. * node itself as well.
  3697. * To use this new node's memory, further consideration will be
  3698. * necessary.
  3699. */
  3700. zone->wait_table = vmalloc(alloc_size);
  3701. }
  3702. if (!zone->wait_table)
  3703. return -ENOMEM;
  3704. for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  3705. init_waitqueue_head(zone->wait_table + i);
  3706. return 0;
  3707. }
  3708. static __meminit void zone_pcp_init(struct zone *zone)
  3709. {
  3710. /*
  3711. * per cpu subsystem is not up at this point. The following code
  3712. * relies on the ability of the linker to provide the
  3713. * offset of a (static) per cpu variable into the per cpu area.
  3714. */
  3715. zone->pageset = &boot_pageset;
  3716. if (zone->present_pages)
  3717. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
  3718. zone->name, zone->present_pages,
  3719. zone_batchsize(zone));
  3720. }
  3721. int __meminit init_currently_empty_zone(struct zone *zone,
  3722. unsigned long zone_start_pfn,
  3723. unsigned long size,
  3724. enum memmap_context context)
  3725. {
  3726. struct pglist_data *pgdat = zone->zone_pgdat;
  3727. int ret;
  3728. ret = zone_wait_table_init(zone, size);
  3729. if (ret)
  3730. return ret;
  3731. pgdat->nr_zones = zone_idx(zone) + 1;
  3732. zone->zone_start_pfn = zone_start_pfn;
  3733. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  3734. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  3735. pgdat->node_id,
  3736. (unsigned long)zone_idx(zone),
  3737. zone_start_pfn, (zone_start_pfn + size));
  3738. zone_init_free_lists(zone);
  3739. return 0;
  3740. }
  3741. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  3742. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  3743. /*
  3744. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  3745. * Architectures may implement their own version but if add_active_range()
  3746. * was used and there are no special requirements, this is a convenient
  3747. * alternative
  3748. */
  3749. int __meminit __early_pfn_to_nid(unsigned long pfn)
  3750. {
  3751. unsigned long start_pfn, end_pfn;
  3752. int nid;
  3753. /*
  3754. * NOTE: The following SMP-unsafe globals are only used early in boot
  3755. * when the kernel is running single-threaded.
  3756. */
  3757. static unsigned long __meminitdata last_start_pfn, last_end_pfn;
  3758. static int __meminitdata last_nid;
  3759. if (last_start_pfn <= pfn && pfn < last_end_pfn)
  3760. return last_nid;
  3761. nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
  3762. if (nid != -1) {
  3763. last_start_pfn = start_pfn;
  3764. last_end_pfn = end_pfn;
  3765. last_nid = nid;
  3766. }
  3767. return nid;
  3768. }
  3769. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  3770. int __meminit early_pfn_to_nid(unsigned long pfn)
  3771. {
  3772. int nid;
  3773. nid = __early_pfn_to_nid(pfn);
  3774. if (nid >= 0)
  3775. return nid;
  3776. /* just returns 0 */
  3777. return 0;
  3778. }
  3779. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  3780. bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  3781. {
  3782. int nid;
  3783. nid = __early_pfn_to_nid(pfn);
  3784. if (nid >= 0 && nid != node)
  3785. return false;
  3786. return true;
  3787. }
  3788. #endif
  3789. /**
  3790. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  3791. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  3792. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  3793. *
  3794. * If an architecture guarantees that all ranges registered with
  3795. * add_active_ranges() contain no holes and may be freed, this
  3796. * this function may be used instead of calling free_bootmem() manually.
  3797. */
  3798. void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
  3799. {
  3800. unsigned long start_pfn, end_pfn;
  3801. int i, this_nid;
  3802. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
  3803. start_pfn = min(start_pfn, max_low_pfn);
  3804. end_pfn = min(end_pfn, max_low_pfn);
  3805. if (start_pfn < end_pfn)
  3806. free_bootmem_node(NODE_DATA(this_nid),
  3807. PFN_PHYS(start_pfn),
  3808. (end_pfn - start_pfn) << PAGE_SHIFT);
  3809. }
  3810. }
  3811. /**
  3812. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  3813. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  3814. *
  3815. * If an architecture guarantees that all ranges registered with
  3816. * add_active_ranges() contain no holes and may be freed, this
  3817. * function may be used instead of calling memory_present() manually.
  3818. */
  3819. void __init sparse_memory_present_with_active_regions(int nid)
  3820. {
  3821. unsigned long start_pfn, end_pfn;
  3822. int i, this_nid;
  3823. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
  3824. memory_present(this_nid, start_pfn, end_pfn);
  3825. }
  3826. /**
  3827. * get_pfn_range_for_nid - Return the start and end page frames for a node
  3828. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  3829. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  3830. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  3831. *
  3832. * It returns the start and end page frame of a node based on information
  3833. * provided by an arch calling add_active_range(). If called for a node
  3834. * with no available memory, a warning is printed and the start and end
  3835. * PFNs will be 0.
  3836. */
  3837. void __meminit get_pfn_range_for_nid(unsigned int nid,
  3838. unsigned long *start_pfn, unsigned long *end_pfn)
  3839. {
  3840. unsigned long this_start_pfn, this_end_pfn;
  3841. int i;
  3842. *start_pfn = -1UL;
  3843. *end_pfn = 0;
  3844. for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
  3845. *start_pfn = min(*start_pfn, this_start_pfn);
  3846. *end_pfn = max(*end_pfn, this_end_pfn);
  3847. }
  3848. if (*start_pfn == -1UL)
  3849. *start_pfn = 0;
  3850. }
  3851. /*
  3852. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  3853. * assumption is made that zones within a node are ordered in monotonic
  3854. * increasing memory addresses so that the "highest" populated zone is used
  3855. */
  3856. static void __init find_usable_zone_for_movable(void)
  3857. {
  3858. int zone_index;
  3859. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  3860. if (zone_index == ZONE_MOVABLE)
  3861. continue;
  3862. if (arch_zone_highest_possible_pfn[zone_index] >
  3863. arch_zone_lowest_possible_pfn[zone_index])
  3864. break;
  3865. }
  3866. VM_BUG_ON(zone_index == -1);
  3867. movable_zone = zone_index;
  3868. }
  3869. /*
  3870. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  3871. * because it is sized independent of architecture. Unlike the other zones,
  3872. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  3873. * in each node depending on the size of each node and how evenly kernelcore
  3874. * is distributed. This helper function adjusts the zone ranges
  3875. * provided by the architecture for a given node by using the end of the
  3876. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  3877. * zones within a node are in order of monotonic increases memory addresses
  3878. */
  3879. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  3880. unsigned long zone_type,
  3881. unsigned long node_start_pfn,
  3882. unsigned long node_end_pfn,
  3883. unsigned long *zone_start_pfn,
  3884. unsigned long *zone_end_pfn)
  3885. {
  3886. /* Only adjust if ZONE_MOVABLE is on this node */
  3887. if (zone_movable_pfn[nid]) {
  3888. /* Size ZONE_MOVABLE */
  3889. if (zone_type == ZONE_MOVABLE) {
  3890. *zone_start_pfn = zone_movable_pfn[nid];
  3891. *zone_end_pfn = min(node_end_pfn,
  3892. arch_zone_highest_possible_pfn[movable_zone]);
  3893. /* Adjust for ZONE_MOVABLE starting within this range */
  3894. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  3895. *zone_end_pfn > zone_movable_pfn[nid]) {
  3896. *zone_end_pfn = zone_movable_pfn[nid];
  3897. /* Check if this whole range is within ZONE_MOVABLE */
  3898. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  3899. *zone_start_pfn = *zone_end_pfn;
  3900. }
  3901. }
  3902. /*
  3903. * Return the number of pages a zone spans in a node, including holes
  3904. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  3905. */
  3906. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3907. unsigned long zone_type,
  3908. unsigned long node_start_pfn,
  3909. unsigned long node_end_pfn,
  3910. unsigned long *ignored)
  3911. {
  3912. unsigned long zone_start_pfn, zone_end_pfn;
  3913. /* Get the start and end of the zone */
  3914. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  3915. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  3916. adjust_zone_range_for_zone_movable(nid, zone_type,
  3917. node_start_pfn, node_end_pfn,
  3918. &zone_start_pfn, &zone_end_pfn);
  3919. /* Check that this node has pages within the zone's required range */
  3920. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  3921. return 0;
  3922. /* Move the zone boundaries inside the node if necessary */
  3923. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  3924. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  3925. /* Return the spanned pages */
  3926. return zone_end_pfn - zone_start_pfn;
  3927. }
  3928. /*
  3929. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  3930. * then all holes in the requested range will be accounted for.
  3931. */
  3932. unsigned long __meminit __absent_pages_in_range(int nid,
  3933. unsigned long range_start_pfn,
  3934. unsigned long range_end_pfn)
  3935. {
  3936. unsigned long nr_absent = range_end_pfn - range_start_pfn;
  3937. unsigned long start_pfn, end_pfn;
  3938. int i;
  3939. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  3940. start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
  3941. end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
  3942. nr_absent -= end_pfn - start_pfn;
  3943. }
  3944. return nr_absent;
  3945. }
  3946. /**
  3947. * absent_pages_in_range - Return number of page frames in holes within a range
  3948. * @start_pfn: The start PFN to start searching for holes
  3949. * @end_pfn: The end PFN to stop searching for holes
  3950. *
  3951. * It returns the number of pages frames in memory holes within a range.
  3952. */
  3953. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  3954. unsigned long end_pfn)
  3955. {
  3956. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  3957. }
  3958. /* Return the number of page frames in holes in a zone on a node */
  3959. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  3960. unsigned long zone_type,
  3961. unsigned long node_start_pfn,
  3962. unsigned long node_end_pfn,
  3963. unsigned long *ignored)
  3964. {
  3965. unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
  3966. unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
  3967. unsigned long zone_start_pfn, zone_end_pfn;
  3968. zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
  3969. zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
  3970. adjust_zone_range_for_zone_movable(nid, zone_type,
  3971. node_start_pfn, node_end_pfn,
  3972. &zone_start_pfn, &zone_end_pfn);
  3973. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  3974. }
  3975. #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  3976. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3977. unsigned long zone_type,
  3978. unsigned long node_start_pfn,
  3979. unsigned long node_end_pfn,
  3980. unsigned long *zones_size)
  3981. {
  3982. return zones_size[zone_type];
  3983. }
  3984. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  3985. unsigned long zone_type,
  3986. unsigned long node_start_pfn,
  3987. unsigned long node_end_pfn,
  3988. unsigned long *zholes_size)
  3989. {
  3990. if (!zholes_size)
  3991. return 0;
  3992. return zholes_size[zone_type];
  3993. }
  3994. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  3995. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  3996. unsigned long node_start_pfn,
  3997. unsigned long node_end_pfn,
  3998. unsigned long *zones_size,
  3999. unsigned long *zholes_size)
  4000. {
  4001. unsigned long realtotalpages, totalpages = 0;
  4002. enum zone_type i;
  4003. for (i = 0; i < MAX_NR_ZONES; i++)
  4004. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  4005. node_start_pfn,
  4006. node_end_pfn,
  4007. zones_size);
  4008. pgdat->node_spanned_pages = totalpages;
  4009. realtotalpages = totalpages;
  4010. for (i = 0; i < MAX_NR_ZONES; i++)
  4011. realtotalpages -=
  4012. zone_absent_pages_in_node(pgdat->node_id, i,
  4013. node_start_pfn, node_end_pfn,
  4014. zholes_size);
  4015. pgdat->node_present_pages = realtotalpages;
  4016. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  4017. realtotalpages);
  4018. }
  4019. #ifndef CONFIG_SPARSEMEM
  4020. /*
  4021. * Calculate the size of the zone->blockflags rounded to an unsigned long
  4022. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  4023. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  4024. * round what is now in bits to nearest long in bits, then return it in
  4025. * bytes.
  4026. */
  4027. static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
  4028. {
  4029. unsigned long usemapsize;
  4030. zonesize += zone_start_pfn & (pageblock_nr_pages-1);
  4031. usemapsize = roundup(zonesize, pageblock_nr_pages);
  4032. usemapsize = usemapsize >> pageblock_order;
  4033. usemapsize *= NR_PAGEBLOCK_BITS;
  4034. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  4035. return usemapsize / 8;
  4036. }
  4037. static void __init setup_usemap(struct pglist_data *pgdat,
  4038. struct zone *zone,
  4039. unsigned long zone_start_pfn,
  4040. unsigned long zonesize)
  4041. {
  4042. unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
  4043. zone->pageblock_flags = NULL;
  4044. if (usemapsize)
  4045. zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
  4046. usemapsize);
  4047. }
  4048. #else
  4049. static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
  4050. unsigned long zone_start_pfn, unsigned long zonesize) {}
  4051. #endif /* CONFIG_SPARSEMEM */
  4052. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  4053. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  4054. void __paginginit set_pageblock_order(void)
  4055. {
  4056. unsigned int order;
  4057. /* Check that pageblock_nr_pages has not already been setup */
  4058. if (pageblock_order)
  4059. return;
  4060. if (HPAGE_SHIFT > PAGE_SHIFT)
  4061. order = HUGETLB_PAGE_ORDER;
  4062. else
  4063. order = MAX_ORDER - 1;
  4064. /*
  4065. * Assume the largest contiguous order of interest is a huge page.
  4066. * This value may be variable depending on boot parameters on IA64 and
  4067. * powerpc.
  4068. */
  4069. pageblock_order = order;
  4070. }
  4071. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  4072. /*
  4073. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  4074. * is unused as pageblock_order is set at compile-time. See
  4075. * include/linux/pageblock-flags.h for the values of pageblock_order based on
  4076. * the kernel config
  4077. */
  4078. void __paginginit set_pageblock_order(void)
  4079. {
  4080. }
  4081. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  4082. static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
  4083. unsigned long present_pages)
  4084. {
  4085. unsigned long pages = spanned_pages;
  4086. /*
  4087. * Provide a more accurate estimation if there are holes within
  4088. * the zone and SPARSEMEM is in use. If there are holes within the
  4089. * zone, each populated memory region may cost us one or two extra
  4090. * memmap pages due to alignment because memmap pages for each
  4091. * populated regions may not naturally algined on page boundary.
  4092. * So the (present_pages >> 4) heuristic is a tradeoff for that.
  4093. */
  4094. if (spanned_pages > present_pages + (present_pages >> 4) &&
  4095. IS_ENABLED(CONFIG_SPARSEMEM))
  4096. pages = present_pages;
  4097. return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
  4098. }
  4099. /*
  4100. * Set up the zone data structures:
  4101. * - mark all pages reserved
  4102. * - mark all memory queues empty
  4103. * - clear the memory bitmaps
  4104. *
  4105. * NOTE: pgdat should get zeroed by caller.
  4106. */
  4107. static void __paginginit free_area_init_core(struct pglist_data *pgdat,
  4108. unsigned long node_start_pfn, unsigned long node_end_pfn,
  4109. unsigned long *zones_size, unsigned long *zholes_size)
  4110. {
  4111. enum zone_type j;
  4112. int nid = pgdat->node_id;
  4113. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  4114. int ret;
  4115. pgdat_resize_init(pgdat);
  4116. #ifdef CONFIG_NUMA_BALANCING
  4117. spin_lock_init(&pgdat->numabalancing_migrate_lock);
  4118. pgdat->numabalancing_migrate_nr_pages = 0;
  4119. pgdat->numabalancing_migrate_next_window = jiffies;
  4120. #endif
  4121. init_waitqueue_head(&pgdat->kswapd_wait);
  4122. init_waitqueue_head(&pgdat->pfmemalloc_wait);
  4123. pgdat_page_cgroup_init(pgdat);
  4124. for (j = 0; j < MAX_NR_ZONES; j++) {
  4125. struct zone *zone = pgdat->node_zones + j;
  4126. unsigned long size, realsize, freesize, memmap_pages;
  4127. size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
  4128. node_end_pfn, zones_size);
  4129. realsize = freesize = size - zone_absent_pages_in_node(nid, j,
  4130. node_start_pfn,
  4131. node_end_pfn,
  4132. zholes_size);
  4133. /*
  4134. * Adjust freesize so that it accounts for how much memory
  4135. * is used by this zone for memmap. This affects the watermark
  4136. * and per-cpu initialisations
  4137. */
  4138. memmap_pages = calc_memmap_size(size, realsize);
  4139. if (freesize >= memmap_pages) {
  4140. freesize -= memmap_pages;
  4141. if (memmap_pages)
  4142. printk(KERN_DEBUG
  4143. " %s zone: %lu pages used for memmap\n",
  4144. zone_names[j], memmap_pages);
  4145. } else
  4146. printk(KERN_WARNING
  4147. " %s zone: %lu pages exceeds freesize %lu\n",
  4148. zone_names[j], memmap_pages, freesize);
  4149. /* Account for reserved pages */
  4150. if (j == 0 && freesize > dma_reserve) {
  4151. freesize -= dma_reserve;
  4152. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  4153. zone_names[0], dma_reserve);
  4154. }
  4155. if (!is_highmem_idx(j))
  4156. nr_kernel_pages += freesize;
  4157. /* Charge for highmem memmap if there are enough kernel pages */
  4158. else if (nr_kernel_pages > memmap_pages * 2)
  4159. nr_kernel_pages -= memmap_pages;
  4160. nr_all_pages += freesize;
  4161. zone->spanned_pages = size;
  4162. zone->present_pages = realsize;
  4163. /*
  4164. * Set an approximate value for lowmem here, it will be adjusted
  4165. * when the bootmem allocator frees pages into the buddy system.
  4166. * And all highmem pages will be managed by the buddy system.
  4167. */
  4168. zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
  4169. #ifdef CONFIG_NUMA
  4170. zone->node = nid;
  4171. zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
  4172. / 100;
  4173. zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
  4174. #endif
  4175. zone->name = zone_names[j];
  4176. spin_lock_init(&zone->lock);
  4177. spin_lock_init(&zone->lru_lock);
  4178. zone_seqlock_init(zone);
  4179. zone->zone_pgdat = pgdat;
  4180. zone_pcp_init(zone);
  4181. /* For bootup, initialized properly in watermark setup */
  4182. mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
  4183. lruvec_init(&zone->lruvec);
  4184. if (!size)
  4185. continue;
  4186. set_pageblock_order();
  4187. setup_usemap(pgdat, zone, zone_start_pfn, size);
  4188. ret = init_currently_empty_zone(zone, zone_start_pfn,
  4189. size, MEMMAP_EARLY);
  4190. BUG_ON(ret);
  4191. memmap_init(size, nid, j, zone_start_pfn);
  4192. zone_start_pfn += size;
  4193. }
  4194. }
  4195. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  4196. {
  4197. /* Skip empty nodes */
  4198. if (!pgdat->node_spanned_pages)
  4199. return;
  4200. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  4201. /* ia64 gets its own node_mem_map, before this, without bootmem */
  4202. if (!pgdat->node_mem_map) {
  4203. unsigned long size, start, end;
  4204. struct page *map;
  4205. /*
  4206. * The zone's endpoints aren't required to be MAX_ORDER
  4207. * aligned but the node_mem_map endpoints must be in order
  4208. * for the buddy allocator to function correctly.
  4209. */
  4210. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  4211. end = pgdat_end_pfn(pgdat);
  4212. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  4213. size = (end - start) * sizeof(struct page);
  4214. map = alloc_remap(pgdat->node_id, size);
  4215. if (!map)
  4216. map = alloc_bootmem_node_nopanic(pgdat, size);
  4217. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  4218. }
  4219. #ifndef CONFIG_NEED_MULTIPLE_NODES
  4220. /*
  4221. * With no DISCONTIG, the global mem_map is just set as node 0's
  4222. */
  4223. if (pgdat == NODE_DATA(0)) {
  4224. mem_map = NODE_DATA(0)->node_mem_map;
  4225. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4226. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  4227. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  4228. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4229. }
  4230. #endif
  4231. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  4232. }
  4233. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  4234. unsigned long node_start_pfn, unsigned long *zholes_size)
  4235. {
  4236. pg_data_t *pgdat = NODE_DATA(nid);
  4237. unsigned long start_pfn = 0;
  4238. unsigned long end_pfn = 0;
  4239. /* pg_data_t should be reset to zero when it's allocated */
  4240. WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
  4241. pgdat->node_id = nid;
  4242. pgdat->node_start_pfn = node_start_pfn;
  4243. init_zone_allows_reclaim(nid);
  4244. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4245. get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
  4246. #endif
  4247. calculate_node_totalpages(pgdat, start_pfn, end_pfn,
  4248. zones_size, zholes_size);
  4249. alloc_node_mem_map(pgdat);
  4250. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  4251. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  4252. nid, (unsigned long)pgdat,
  4253. (unsigned long)pgdat->node_mem_map);
  4254. #endif
  4255. free_area_init_core(pgdat, start_pfn, end_pfn,
  4256. zones_size, zholes_size);
  4257. }
  4258. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4259. #if MAX_NUMNODES > 1
  4260. /*
  4261. * Figure out the number of possible node ids.
  4262. */
  4263. void __init setup_nr_node_ids(void)
  4264. {
  4265. unsigned int node;
  4266. unsigned int highest = 0;
  4267. for_each_node_mask(node, node_possible_map)
  4268. highest = node;
  4269. nr_node_ids = highest + 1;
  4270. }
  4271. #endif
  4272. /**
  4273. * node_map_pfn_alignment - determine the maximum internode alignment
  4274. *
  4275. * This function should be called after node map is populated and sorted.
  4276. * It calculates the maximum power of two alignment which can distinguish
  4277. * all the nodes.
  4278. *
  4279. * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
  4280. * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
  4281. * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
  4282. * shifted, 1GiB is enough and this function will indicate so.
  4283. *
  4284. * This is used to test whether pfn -> nid mapping of the chosen memory
  4285. * model has fine enough granularity to avoid incorrect mapping for the
  4286. * populated node map.
  4287. *
  4288. * Returns the determined alignment in pfn's. 0 if there is no alignment
  4289. * requirement (single node).
  4290. */
  4291. unsigned long __init node_map_pfn_alignment(void)
  4292. {
  4293. unsigned long accl_mask = 0, last_end = 0;
  4294. unsigned long start, end, mask;
  4295. int last_nid = -1;
  4296. int i, nid;
  4297. for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
  4298. if (!start || last_nid < 0 || last_nid == nid) {
  4299. last_nid = nid;
  4300. last_end = end;
  4301. continue;
  4302. }
  4303. /*
  4304. * Start with a mask granular enough to pin-point to the
  4305. * start pfn and tick off bits one-by-one until it becomes
  4306. * too coarse to separate the current node from the last.
  4307. */
  4308. mask = ~((1 << __ffs(start)) - 1);
  4309. while (mask && last_end <= (start & (mask << 1)))
  4310. mask <<= 1;
  4311. /* accumulate all internode masks */
  4312. accl_mask |= mask;
  4313. }
  4314. /* convert mask to number of pages */
  4315. return ~accl_mask + 1;
  4316. }
  4317. /* Find the lowest pfn for a node */
  4318. static unsigned long __init find_min_pfn_for_node(int nid)
  4319. {
  4320. unsigned long min_pfn = ULONG_MAX;
  4321. unsigned long start_pfn;
  4322. int i;
  4323. for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
  4324. min_pfn = min(min_pfn, start_pfn);
  4325. if (min_pfn == ULONG_MAX) {
  4326. printk(KERN_WARNING
  4327. "Could not find start_pfn for node %d\n", nid);
  4328. return 0;
  4329. }
  4330. return min_pfn;
  4331. }
  4332. /**
  4333. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  4334. *
  4335. * It returns the minimum PFN based on information provided via
  4336. * add_active_range().
  4337. */
  4338. unsigned long __init find_min_pfn_with_active_regions(void)
  4339. {
  4340. return find_min_pfn_for_node(MAX_NUMNODES);
  4341. }
  4342. /*
  4343. * early_calculate_totalpages()
  4344. * Sum pages in active regions for movable zone.
  4345. * Populate N_MEMORY for calculating usable_nodes.
  4346. */
  4347. static unsigned long __init early_calculate_totalpages(void)
  4348. {
  4349. unsigned long totalpages = 0;
  4350. unsigned long start_pfn, end_pfn;
  4351. int i, nid;
  4352. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
  4353. unsigned long pages = end_pfn - start_pfn;
  4354. totalpages += pages;
  4355. if (pages)
  4356. node_set_state(nid, N_MEMORY);
  4357. }
  4358. return totalpages;
  4359. }
  4360. /*
  4361. * Find the PFN the Movable zone begins in each node. Kernel memory
  4362. * is spread evenly between nodes as long as the nodes have enough
  4363. * memory. When they don't, some nodes will have more kernelcore than
  4364. * others
  4365. */
  4366. static void __init find_zone_movable_pfns_for_nodes(void)
  4367. {
  4368. int i, nid;
  4369. unsigned long usable_startpfn;
  4370. unsigned long kernelcore_node, kernelcore_remaining;
  4371. /* save the state before borrow the nodemask */
  4372. nodemask_t saved_node_state = node_states[N_MEMORY];
  4373. unsigned long totalpages = early_calculate_totalpages();
  4374. int usable_nodes = nodes_weight(node_states[N_MEMORY]);
  4375. /*
  4376. * If movablecore was specified, calculate what size of
  4377. * kernelcore that corresponds so that memory usable for
  4378. * any allocation type is evenly spread. If both kernelcore
  4379. * and movablecore are specified, then the value of kernelcore
  4380. * will be used for required_kernelcore if it's greater than
  4381. * what movablecore would have allowed.
  4382. */
  4383. if (required_movablecore) {
  4384. unsigned long corepages;
  4385. /*
  4386. * Round-up so that ZONE_MOVABLE is at least as large as what
  4387. * was requested by the user
  4388. */
  4389. required_movablecore =
  4390. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  4391. corepages = totalpages - required_movablecore;
  4392. required_kernelcore = max(required_kernelcore, corepages);
  4393. }
  4394. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  4395. if (!required_kernelcore)
  4396. goto out;
  4397. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  4398. find_usable_zone_for_movable();
  4399. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  4400. restart:
  4401. /* Spread kernelcore memory as evenly as possible throughout nodes */
  4402. kernelcore_node = required_kernelcore / usable_nodes;
  4403. for_each_node_state(nid, N_MEMORY) {
  4404. unsigned long start_pfn, end_pfn;
  4405. /*
  4406. * Recalculate kernelcore_node if the division per node
  4407. * now exceeds what is necessary to satisfy the requested
  4408. * amount of memory for the kernel
  4409. */
  4410. if (required_kernelcore < kernelcore_node)
  4411. kernelcore_node = required_kernelcore / usable_nodes;
  4412. /*
  4413. * As the map is walked, we track how much memory is usable
  4414. * by the kernel using kernelcore_remaining. When it is
  4415. * 0, the rest of the node is usable by ZONE_MOVABLE
  4416. */
  4417. kernelcore_remaining = kernelcore_node;
  4418. /* Go through each range of PFNs within this node */
  4419. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  4420. unsigned long size_pages;
  4421. start_pfn = max(start_pfn, zone_movable_pfn[nid]);
  4422. if (start_pfn >= end_pfn)
  4423. continue;
  4424. /* Account for what is only usable for kernelcore */
  4425. if (start_pfn < usable_startpfn) {
  4426. unsigned long kernel_pages;
  4427. kernel_pages = min(end_pfn, usable_startpfn)
  4428. - start_pfn;
  4429. kernelcore_remaining -= min(kernel_pages,
  4430. kernelcore_remaining);
  4431. required_kernelcore -= min(kernel_pages,
  4432. required_kernelcore);
  4433. /* Continue if range is now fully accounted */
  4434. if (end_pfn <= usable_startpfn) {
  4435. /*
  4436. * Push zone_movable_pfn to the end so
  4437. * that if we have to rebalance
  4438. * kernelcore across nodes, we will
  4439. * not double account here
  4440. */
  4441. zone_movable_pfn[nid] = end_pfn;
  4442. continue;
  4443. }
  4444. start_pfn = usable_startpfn;
  4445. }
  4446. /*
  4447. * The usable PFN range for ZONE_MOVABLE is from
  4448. * start_pfn->end_pfn. Calculate size_pages as the
  4449. * number of pages used as kernelcore
  4450. */
  4451. size_pages = end_pfn - start_pfn;
  4452. if (size_pages > kernelcore_remaining)
  4453. size_pages = kernelcore_remaining;
  4454. zone_movable_pfn[nid] = start_pfn + size_pages;
  4455. /*
  4456. * Some kernelcore has been met, update counts and
  4457. * break if the kernelcore for this node has been
  4458. * satisfied
  4459. */
  4460. required_kernelcore -= min(required_kernelcore,
  4461. size_pages);
  4462. kernelcore_remaining -= size_pages;
  4463. if (!kernelcore_remaining)
  4464. break;
  4465. }
  4466. }
  4467. /*
  4468. * If there is still required_kernelcore, we do another pass with one
  4469. * less node in the count. This will push zone_movable_pfn[nid] further
  4470. * along on the nodes that still have memory until kernelcore is
  4471. * satisfied
  4472. */
  4473. usable_nodes--;
  4474. if (usable_nodes && required_kernelcore > usable_nodes)
  4475. goto restart;
  4476. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  4477. for (nid = 0; nid < MAX_NUMNODES; nid++)
  4478. zone_movable_pfn[nid] =
  4479. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  4480. out:
  4481. /* restore the node_state */
  4482. node_states[N_MEMORY] = saved_node_state;
  4483. }
  4484. /* Any regular or high memory on that node ? */
  4485. static void check_for_memory(pg_data_t *pgdat, int nid)
  4486. {
  4487. enum zone_type zone_type;
  4488. if (N_MEMORY == N_NORMAL_MEMORY)
  4489. return;
  4490. for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
  4491. struct zone *zone = &pgdat->node_zones[zone_type];
  4492. if (zone->present_pages) {
  4493. node_set_state(nid, N_HIGH_MEMORY);
  4494. if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
  4495. zone_type <= ZONE_NORMAL)
  4496. node_set_state(nid, N_NORMAL_MEMORY);
  4497. break;
  4498. }
  4499. }
  4500. }
  4501. /**
  4502. * free_area_init_nodes - Initialise all pg_data_t and zone data
  4503. * @max_zone_pfn: an array of max PFNs for each zone
  4504. *
  4505. * This will call free_area_init_node() for each active node in the system.
  4506. * Using the page ranges provided by add_active_range(), the size of each
  4507. * zone in each node and their holes is calculated. If the maximum PFN
  4508. * between two adjacent zones match, it is assumed that the zone is empty.
  4509. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  4510. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  4511. * starts where the previous one ended. For example, ZONE_DMA32 starts
  4512. * at arch_max_dma_pfn.
  4513. */
  4514. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  4515. {
  4516. unsigned long start_pfn, end_pfn;
  4517. int i, nid;
  4518. /* Record where the zone boundaries are */
  4519. memset(arch_zone_lowest_possible_pfn, 0,
  4520. sizeof(arch_zone_lowest_possible_pfn));
  4521. memset(arch_zone_highest_possible_pfn, 0,
  4522. sizeof(arch_zone_highest_possible_pfn));
  4523. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  4524. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  4525. for (i = 1; i < MAX_NR_ZONES; i++) {
  4526. if (i == ZONE_MOVABLE)
  4527. continue;
  4528. arch_zone_lowest_possible_pfn[i] =
  4529. arch_zone_highest_possible_pfn[i-1];
  4530. arch_zone_highest_possible_pfn[i] =
  4531. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  4532. }
  4533. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  4534. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  4535. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  4536. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  4537. find_zone_movable_pfns_for_nodes();
  4538. /* Print out the zone ranges */
  4539. printk("Zone ranges:\n");
  4540. for (i = 0; i < MAX_NR_ZONES; i++) {
  4541. if (i == ZONE_MOVABLE)
  4542. continue;
  4543. printk(KERN_CONT " %-8s ", zone_names[i]);
  4544. if (arch_zone_lowest_possible_pfn[i] ==
  4545. arch_zone_highest_possible_pfn[i])
  4546. printk(KERN_CONT "empty\n");
  4547. else
  4548. printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
  4549. arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
  4550. (arch_zone_highest_possible_pfn[i]
  4551. << PAGE_SHIFT) - 1);
  4552. }
  4553. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  4554. printk("Movable zone start for each node\n");
  4555. for (i = 0; i < MAX_NUMNODES; i++) {
  4556. if (zone_movable_pfn[i])
  4557. printk(" Node %d: %#010lx\n", i,
  4558. zone_movable_pfn[i] << PAGE_SHIFT);
  4559. }
  4560. /* Print out the early node map */
  4561. printk("Early memory node ranges\n");
  4562. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
  4563. printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
  4564. start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
  4565. /* Initialise every node */
  4566. mminit_verify_pageflags_layout();
  4567. setup_nr_node_ids();
  4568. for_each_online_node(nid) {
  4569. pg_data_t *pgdat = NODE_DATA(nid);
  4570. free_area_init_node(nid, NULL,
  4571. find_min_pfn_for_node(nid), NULL);
  4572. /* Any memory on that node */
  4573. if (pgdat->node_present_pages)
  4574. node_set_state(nid, N_MEMORY);
  4575. check_for_memory(pgdat, nid);
  4576. }
  4577. }
  4578. static int __init cmdline_parse_core(char *p, unsigned long *core)
  4579. {
  4580. unsigned long long coremem;
  4581. if (!p)
  4582. return -EINVAL;
  4583. coremem = memparse(p, &p);
  4584. *core = coremem >> PAGE_SHIFT;
  4585. /* Paranoid check that UL is enough for the coremem value */
  4586. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  4587. return 0;
  4588. }
  4589. /*
  4590. * kernelcore=size sets the amount of memory for use for allocations that
  4591. * cannot be reclaimed or migrated.
  4592. */
  4593. static int __init cmdline_parse_kernelcore(char *p)
  4594. {
  4595. return cmdline_parse_core(p, &required_kernelcore);
  4596. }
  4597. /*
  4598. * movablecore=size sets the amount of memory for use for allocations that
  4599. * can be reclaimed or migrated.
  4600. */
  4601. static int __init cmdline_parse_movablecore(char *p)
  4602. {
  4603. return cmdline_parse_core(p, &required_movablecore);
  4604. }
  4605. early_param("kernelcore", cmdline_parse_kernelcore);
  4606. early_param("movablecore", cmdline_parse_movablecore);
  4607. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4608. void adjust_managed_page_count(struct page *page, long count)
  4609. {
  4610. spin_lock(&managed_page_count_lock);
  4611. page_zone(page)->managed_pages += count;
  4612. totalram_pages += count;
  4613. #ifdef CONFIG_HIGHMEM
  4614. if (PageHighMem(page))
  4615. totalhigh_pages += count;
  4616. #endif
  4617. spin_unlock(&managed_page_count_lock);
  4618. }
  4619. EXPORT_SYMBOL(adjust_managed_page_count);
  4620. unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
  4621. {
  4622. void *pos;
  4623. unsigned long pages = 0;
  4624. start = (void *)PAGE_ALIGN((unsigned long)start);
  4625. end = (void *)((unsigned long)end & PAGE_MASK);
  4626. for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
  4627. if ((unsigned int)poison <= 0xFF)
  4628. memset(pos, poison, PAGE_SIZE);
  4629. free_reserved_page(virt_to_page(pos));
  4630. }
  4631. if (pages && s)
  4632. pr_info("Freeing %s memory: %ldK (%p - %p)\n",
  4633. s, pages << (PAGE_SHIFT - 10), start, end);
  4634. return pages;
  4635. }
  4636. EXPORT_SYMBOL(free_reserved_area);
  4637. #ifdef CONFIG_HIGHMEM
  4638. void free_highmem_page(struct page *page)
  4639. {
  4640. __free_reserved_page(page);
  4641. totalram_pages++;
  4642. page_zone(page)->managed_pages++;
  4643. totalhigh_pages++;
  4644. }
  4645. #endif
  4646. void __init mem_init_print_info(const char *str)
  4647. {
  4648. unsigned long physpages, codesize, datasize, rosize, bss_size;
  4649. unsigned long init_code_size, init_data_size;
  4650. physpages = get_num_physpages();
  4651. codesize = _etext - _stext;
  4652. datasize = _edata - _sdata;
  4653. rosize = __end_rodata - __start_rodata;
  4654. bss_size = __bss_stop - __bss_start;
  4655. init_data_size = __init_end - __init_begin;
  4656. init_code_size = _einittext - _sinittext;
  4657. /*
  4658. * Detect special cases and adjust section sizes accordingly:
  4659. * 1) .init.* may be embedded into .data sections
  4660. * 2) .init.text.* may be out of [__init_begin, __init_end],
  4661. * please refer to arch/tile/kernel/vmlinux.lds.S.
  4662. * 3) .rodata.* may be embedded into .text or .data sections.
  4663. */
  4664. #define adj_init_size(start, end, size, pos, adj) \
  4665. do { \
  4666. if (start <= pos && pos < end && size > adj) \
  4667. size -= adj; \
  4668. } while (0)
  4669. adj_init_size(__init_begin, __init_end, init_data_size,
  4670. _sinittext, init_code_size);
  4671. adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
  4672. adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
  4673. adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
  4674. adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
  4675. #undef adj_init_size
  4676. printk("Memory: %luK/%luK available "
  4677. "(%luK kernel code, %luK rwdata, %luK rodata, "
  4678. "%luK init, %luK bss, %luK reserved"
  4679. #ifdef CONFIG_HIGHMEM
  4680. ", %luK highmem"
  4681. #endif
  4682. "%s%s)\n",
  4683. nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
  4684. codesize >> 10, datasize >> 10, rosize >> 10,
  4685. (init_data_size + init_code_size) >> 10, bss_size >> 10,
  4686. (physpages - totalram_pages) << (PAGE_SHIFT-10),
  4687. #ifdef CONFIG_HIGHMEM
  4688. totalhigh_pages << (PAGE_SHIFT-10),
  4689. #endif
  4690. str ? ", " : "", str ? str : "");
  4691. }
  4692. /**
  4693. * set_dma_reserve - set the specified number of pages reserved in the first zone
  4694. * @new_dma_reserve: The number of pages to mark reserved
  4695. *
  4696. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  4697. * In the DMA zone, a significant percentage may be consumed by kernel image
  4698. * and other unfreeable allocations which can skew the watermarks badly. This
  4699. * function may optionally be used to account for unfreeable pages in the
  4700. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  4701. * smaller per-cpu batchsize.
  4702. */
  4703. void __init set_dma_reserve(unsigned long new_dma_reserve)
  4704. {
  4705. dma_reserve = new_dma_reserve;
  4706. }
  4707. void __init free_area_init(unsigned long *zones_size)
  4708. {
  4709. free_area_init_node(0, zones_size,
  4710. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  4711. }
  4712. static int page_alloc_cpu_notify(struct notifier_block *self,
  4713. unsigned long action, void *hcpu)
  4714. {
  4715. int cpu = (unsigned long)hcpu;
  4716. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  4717. lru_add_drain_cpu(cpu);
  4718. drain_pages(cpu);
  4719. /*
  4720. * Spill the event counters of the dead processor
  4721. * into the current processors event counters.
  4722. * This artificially elevates the count of the current
  4723. * processor.
  4724. */
  4725. vm_events_fold_cpu(cpu);
  4726. /*
  4727. * Zero the differential counters of the dead processor
  4728. * so that the vm statistics are consistent.
  4729. *
  4730. * This is only okay since the processor is dead and cannot
  4731. * race with what we are doing.
  4732. */
  4733. cpu_vm_stats_fold(cpu);
  4734. }
  4735. return NOTIFY_OK;
  4736. }
  4737. void __init page_alloc_init(void)
  4738. {
  4739. hotcpu_notifier(page_alloc_cpu_notify, 0);
  4740. }
  4741. /*
  4742. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  4743. * or min_free_kbytes changes.
  4744. */
  4745. static void calculate_totalreserve_pages(void)
  4746. {
  4747. struct pglist_data *pgdat;
  4748. unsigned long reserve_pages = 0;
  4749. enum zone_type i, j;
  4750. for_each_online_pgdat(pgdat) {
  4751. for (i = 0; i < MAX_NR_ZONES; i++) {
  4752. struct zone *zone = pgdat->node_zones + i;
  4753. unsigned long max = 0;
  4754. /* Find valid and maximum lowmem_reserve in the zone */
  4755. for (j = i; j < MAX_NR_ZONES; j++) {
  4756. if (zone->lowmem_reserve[j] > max)
  4757. max = zone->lowmem_reserve[j];
  4758. }
  4759. /* we treat the high watermark as reserved pages. */
  4760. max += high_wmark_pages(zone);
  4761. if (max > zone->managed_pages)
  4762. max = zone->managed_pages;
  4763. reserve_pages += max;
  4764. /*
  4765. * Lowmem reserves are not available to
  4766. * GFP_HIGHUSER page cache allocations and
  4767. * kswapd tries to balance zones to their high
  4768. * watermark. As a result, neither should be
  4769. * regarded as dirtyable memory, to prevent a
  4770. * situation where reclaim has to clean pages
  4771. * in order to balance the zones.
  4772. */
  4773. zone->dirty_balance_reserve = max;
  4774. }
  4775. }
  4776. dirty_balance_reserve = reserve_pages;
  4777. totalreserve_pages = reserve_pages;
  4778. }
  4779. /*
  4780. * setup_per_zone_lowmem_reserve - called whenever
  4781. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  4782. * has a correct pages reserved value, so an adequate number of
  4783. * pages are left in the zone after a successful __alloc_pages().
  4784. */
  4785. static void setup_per_zone_lowmem_reserve(void)
  4786. {
  4787. struct pglist_data *pgdat;
  4788. enum zone_type j, idx;
  4789. for_each_online_pgdat(pgdat) {
  4790. for (j = 0; j < MAX_NR_ZONES; j++) {
  4791. struct zone *zone = pgdat->node_zones + j;
  4792. unsigned long managed_pages = zone->managed_pages;
  4793. zone->lowmem_reserve[j] = 0;
  4794. idx = j;
  4795. while (idx) {
  4796. struct zone *lower_zone;
  4797. idx--;
  4798. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  4799. sysctl_lowmem_reserve_ratio[idx] = 1;
  4800. lower_zone = pgdat->node_zones + idx;
  4801. lower_zone->lowmem_reserve[j] = managed_pages /
  4802. sysctl_lowmem_reserve_ratio[idx];
  4803. managed_pages += lower_zone->managed_pages;
  4804. }
  4805. }
  4806. }
  4807. /* update totalreserve_pages */
  4808. calculate_totalreserve_pages();
  4809. }
  4810. static void __setup_per_zone_wmarks(void)
  4811. {
  4812. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  4813. unsigned long lowmem_pages = 0;
  4814. struct zone *zone;
  4815. unsigned long flags;
  4816. /* Calculate total number of !ZONE_HIGHMEM pages */
  4817. for_each_zone(zone) {
  4818. if (!is_highmem(zone))
  4819. lowmem_pages += zone->managed_pages;
  4820. }
  4821. for_each_zone(zone) {
  4822. u64 tmp;
  4823. spin_lock_irqsave(&zone->lock, flags);
  4824. tmp = (u64)pages_min * zone->managed_pages;
  4825. do_div(tmp, lowmem_pages);
  4826. if (is_highmem(zone)) {
  4827. /*
  4828. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  4829. * need highmem pages, so cap pages_min to a small
  4830. * value here.
  4831. *
  4832. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  4833. * deltas controls asynch page reclaim, and so should
  4834. * not be capped for highmem.
  4835. */
  4836. unsigned long min_pages;
  4837. min_pages = zone->managed_pages / 1024;
  4838. min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
  4839. zone->watermark[WMARK_MIN] = min_pages;
  4840. } else {
  4841. /*
  4842. * If it's a lowmem zone, reserve a number of pages
  4843. * proportionate to the zone's size.
  4844. */
  4845. zone->watermark[WMARK_MIN] = tmp;
  4846. }
  4847. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
  4848. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
  4849. __mod_zone_page_state(zone, NR_ALLOC_BATCH,
  4850. high_wmark_pages(zone) -
  4851. low_wmark_pages(zone) -
  4852. zone_page_state(zone, NR_ALLOC_BATCH));
  4853. setup_zone_migrate_reserve(zone);
  4854. spin_unlock_irqrestore(&zone->lock, flags);
  4855. }
  4856. /* update totalreserve_pages */
  4857. calculate_totalreserve_pages();
  4858. }
  4859. /**
  4860. * setup_per_zone_wmarks - called when min_free_kbytes changes
  4861. * or when memory is hot-{added|removed}
  4862. *
  4863. * Ensures that the watermark[min,low,high] values for each zone are set
  4864. * correctly with respect to min_free_kbytes.
  4865. */
  4866. void setup_per_zone_wmarks(void)
  4867. {
  4868. mutex_lock(&zonelists_mutex);
  4869. __setup_per_zone_wmarks();
  4870. mutex_unlock(&zonelists_mutex);
  4871. }
  4872. /*
  4873. * The inactive anon list should be small enough that the VM never has to
  4874. * do too much work, but large enough that each inactive page has a chance
  4875. * to be referenced again before it is swapped out.
  4876. *
  4877. * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
  4878. * INACTIVE_ANON pages on this zone's LRU, maintained by the
  4879. * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
  4880. * the anonymous pages are kept on the inactive list.
  4881. *
  4882. * total target max
  4883. * memory ratio inactive anon
  4884. * -------------------------------------
  4885. * 10MB 1 5MB
  4886. * 100MB 1 50MB
  4887. * 1GB 3 250MB
  4888. * 10GB 10 0.9GB
  4889. * 100GB 31 3GB
  4890. * 1TB 101 10GB
  4891. * 10TB 320 32GB
  4892. */
  4893. static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
  4894. {
  4895. unsigned int gb, ratio;
  4896. /* Zone size in gigabytes */
  4897. gb = zone->managed_pages >> (30 - PAGE_SHIFT);
  4898. if (gb)
  4899. ratio = int_sqrt(10 * gb);
  4900. else
  4901. ratio = 1;
  4902. zone->inactive_ratio = ratio;
  4903. }
  4904. static void __meminit setup_per_zone_inactive_ratio(void)
  4905. {
  4906. struct zone *zone;
  4907. for_each_zone(zone)
  4908. calculate_zone_inactive_ratio(zone);
  4909. }
  4910. /*
  4911. * Initialise min_free_kbytes.
  4912. *
  4913. * For small machines we want it small (128k min). For large machines
  4914. * we want it large (64MB max). But it is not linear, because network
  4915. * bandwidth does not increase linearly with machine size. We use
  4916. *
  4917. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  4918. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  4919. *
  4920. * which yields
  4921. *
  4922. * 16MB: 512k
  4923. * 32MB: 724k
  4924. * 64MB: 1024k
  4925. * 128MB: 1448k
  4926. * 256MB: 2048k
  4927. * 512MB: 2896k
  4928. * 1024MB: 4096k
  4929. * 2048MB: 5792k
  4930. * 4096MB: 8192k
  4931. * 8192MB: 11584k
  4932. * 16384MB: 16384k
  4933. */
  4934. int __meminit init_per_zone_wmark_min(void)
  4935. {
  4936. unsigned long lowmem_kbytes;
  4937. int new_min_free_kbytes;
  4938. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  4939. new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  4940. if (new_min_free_kbytes > user_min_free_kbytes) {
  4941. min_free_kbytes = new_min_free_kbytes;
  4942. if (min_free_kbytes < 128)
  4943. min_free_kbytes = 128;
  4944. if (min_free_kbytes > 65536)
  4945. min_free_kbytes = 65536;
  4946. } else {
  4947. pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
  4948. new_min_free_kbytes, user_min_free_kbytes);
  4949. }
  4950. setup_per_zone_wmarks();
  4951. refresh_zone_stat_thresholds();
  4952. setup_per_zone_lowmem_reserve();
  4953. setup_per_zone_inactive_ratio();
  4954. return 0;
  4955. }
  4956. module_init(init_per_zone_wmark_min)
  4957. /*
  4958. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  4959. * that we can call two helper functions whenever min_free_kbytes
  4960. * changes.
  4961. */
  4962. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  4963. void __user *buffer, size_t *length, loff_t *ppos)
  4964. {
  4965. proc_dointvec(table, write, buffer, length, ppos);
  4966. if (write) {
  4967. user_min_free_kbytes = min_free_kbytes;
  4968. setup_per_zone_wmarks();
  4969. }
  4970. return 0;
  4971. }
  4972. #ifdef CONFIG_NUMA
  4973. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  4974. void __user *buffer, size_t *length, loff_t *ppos)
  4975. {
  4976. struct zone *zone;
  4977. int rc;
  4978. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4979. if (rc)
  4980. return rc;
  4981. for_each_zone(zone)
  4982. zone->min_unmapped_pages = (zone->managed_pages *
  4983. sysctl_min_unmapped_ratio) / 100;
  4984. return 0;
  4985. }
  4986. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  4987. void __user *buffer, size_t *length, loff_t *ppos)
  4988. {
  4989. struct zone *zone;
  4990. int rc;
  4991. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4992. if (rc)
  4993. return rc;
  4994. for_each_zone(zone)
  4995. zone->min_slab_pages = (zone->managed_pages *
  4996. sysctl_min_slab_ratio) / 100;
  4997. return 0;
  4998. }
  4999. #endif
  5000. /*
  5001. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  5002. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  5003. * whenever sysctl_lowmem_reserve_ratio changes.
  5004. *
  5005. * The reserve ratio obviously has absolutely no relation with the
  5006. * minimum watermarks. The lowmem reserve ratio can only make sense
  5007. * if in function of the boot time zone sizes.
  5008. */
  5009. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  5010. void __user *buffer, size_t *length, loff_t *ppos)
  5011. {
  5012. proc_dointvec_minmax(table, write, buffer, length, ppos);
  5013. setup_per_zone_lowmem_reserve();
  5014. return 0;
  5015. }
  5016. /*
  5017. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  5018. * cpu. It is the fraction of total pages in each zone that a hot per cpu
  5019. * pagelist can have before it gets flushed back to buddy allocator.
  5020. */
  5021. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  5022. void __user *buffer, size_t *length, loff_t *ppos)
  5023. {
  5024. struct zone *zone;
  5025. unsigned int cpu;
  5026. int ret;
  5027. ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5028. if (!write || (ret < 0))
  5029. return ret;
  5030. mutex_lock(&pcp_batch_high_lock);
  5031. for_each_populated_zone(zone) {
  5032. unsigned long high;
  5033. high = zone->managed_pages / percpu_pagelist_fraction;
  5034. for_each_possible_cpu(cpu)
  5035. pageset_set_high(per_cpu_ptr(zone->pageset, cpu),
  5036. high);
  5037. }
  5038. mutex_unlock(&pcp_batch_high_lock);
  5039. return 0;
  5040. }
  5041. int hashdist = HASHDIST_DEFAULT;
  5042. #ifdef CONFIG_NUMA
  5043. static int __init set_hashdist(char *str)
  5044. {
  5045. if (!str)
  5046. return 0;
  5047. hashdist = simple_strtoul(str, &str, 0);
  5048. return 1;
  5049. }
  5050. __setup("hashdist=", set_hashdist);
  5051. #endif
  5052. /*
  5053. * allocate a large system hash table from bootmem
  5054. * - it is assumed that the hash table must contain an exact power-of-2
  5055. * quantity of entries
  5056. * - limit is the number of hash buckets, not the total allocation size
  5057. */
  5058. void *__init alloc_large_system_hash(const char *tablename,
  5059. unsigned long bucketsize,
  5060. unsigned long numentries,
  5061. int scale,
  5062. int flags,
  5063. unsigned int *_hash_shift,
  5064. unsigned int *_hash_mask,
  5065. unsigned long low_limit,
  5066. unsigned long high_limit)
  5067. {
  5068. unsigned long long max = high_limit;
  5069. unsigned long log2qty, size;
  5070. void *table = NULL;
  5071. /* allow the kernel cmdline to have a say */
  5072. if (!numentries) {
  5073. /* round applicable memory size up to nearest megabyte */
  5074. numentries = nr_kernel_pages;
  5075. /* It isn't necessary when PAGE_SIZE >= 1MB */
  5076. if (PAGE_SHIFT < 20)
  5077. numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
  5078. /* limit to 1 bucket per 2^scale bytes of low memory */
  5079. if (scale > PAGE_SHIFT)
  5080. numentries >>= (scale - PAGE_SHIFT);
  5081. else
  5082. numentries <<= (PAGE_SHIFT - scale);
  5083. /* Make sure we've got at least a 0-order allocation.. */
  5084. if (unlikely(flags & HASH_SMALL)) {
  5085. /* Makes no sense without HASH_EARLY */
  5086. WARN_ON(!(flags & HASH_EARLY));
  5087. if (!(numentries >> *_hash_shift)) {
  5088. numentries = 1UL << *_hash_shift;
  5089. BUG_ON(!numentries);
  5090. }
  5091. } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  5092. numentries = PAGE_SIZE / bucketsize;
  5093. }
  5094. numentries = roundup_pow_of_two(numentries);
  5095. /* limit allocation size to 1/16 total memory by default */
  5096. if (max == 0) {
  5097. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  5098. do_div(max, bucketsize);
  5099. }
  5100. max = min(max, 0x80000000ULL);
  5101. if (numentries < low_limit)
  5102. numentries = low_limit;
  5103. if (numentries > max)
  5104. numentries = max;
  5105. log2qty = ilog2(numentries);
  5106. do {
  5107. size = bucketsize << log2qty;
  5108. if (flags & HASH_EARLY)
  5109. table = alloc_bootmem_nopanic(size);
  5110. else if (hashdist)
  5111. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  5112. else {
  5113. /*
  5114. * If bucketsize is not a power-of-two, we may free
  5115. * some pages at the end of hash table which
  5116. * alloc_pages_exact() automatically does
  5117. */
  5118. if (get_order(size) < MAX_ORDER) {
  5119. table = alloc_pages_exact(size, GFP_ATOMIC);
  5120. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  5121. }
  5122. }
  5123. } while (!table && size > PAGE_SIZE && --log2qty);
  5124. if (!table)
  5125. panic("Failed to allocate %s hash table\n", tablename);
  5126. printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
  5127. tablename,
  5128. (1UL << log2qty),
  5129. ilog2(size) - PAGE_SHIFT,
  5130. size);
  5131. if (_hash_shift)
  5132. *_hash_shift = log2qty;
  5133. if (_hash_mask)
  5134. *_hash_mask = (1 << log2qty) - 1;
  5135. return table;
  5136. }
  5137. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  5138. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  5139. unsigned long pfn)
  5140. {
  5141. #ifdef CONFIG_SPARSEMEM
  5142. return __pfn_to_section(pfn)->pageblock_flags;
  5143. #else
  5144. return zone->pageblock_flags;
  5145. #endif /* CONFIG_SPARSEMEM */
  5146. }
  5147. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  5148. {
  5149. #ifdef CONFIG_SPARSEMEM
  5150. pfn &= (PAGES_PER_SECTION-1);
  5151. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  5152. #else
  5153. pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
  5154. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  5155. #endif /* CONFIG_SPARSEMEM */
  5156. }
  5157. /**
  5158. * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
  5159. * @page: The page within the block of interest
  5160. * @start_bitidx: The first bit of interest to retrieve
  5161. * @end_bitidx: The last bit of interest
  5162. * returns pageblock_bits flags
  5163. */
  5164. unsigned long get_pageblock_flags_group(struct page *page,
  5165. int start_bitidx, int end_bitidx)
  5166. {
  5167. struct zone *zone;
  5168. unsigned long *bitmap;
  5169. unsigned long pfn, bitidx;
  5170. unsigned long flags = 0;
  5171. unsigned long value = 1;
  5172. zone = page_zone(page);
  5173. pfn = page_to_pfn(page);
  5174. bitmap = get_pageblock_bitmap(zone, pfn);
  5175. bitidx = pfn_to_bitidx(zone, pfn);
  5176. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  5177. if (test_bit(bitidx + start_bitidx, bitmap))
  5178. flags |= value;
  5179. return flags;
  5180. }
  5181. /**
  5182. * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
  5183. * @page: The page within the block of interest
  5184. * @start_bitidx: The first bit of interest
  5185. * @end_bitidx: The last bit of interest
  5186. * @flags: The flags to set
  5187. */
  5188. void set_pageblock_flags_group(struct page *page, unsigned long flags,
  5189. int start_bitidx, int end_bitidx)
  5190. {
  5191. struct zone *zone;
  5192. unsigned long *bitmap;
  5193. unsigned long pfn, bitidx;
  5194. unsigned long value = 1;
  5195. zone = page_zone(page);
  5196. pfn = page_to_pfn(page);
  5197. bitmap = get_pageblock_bitmap(zone, pfn);
  5198. bitidx = pfn_to_bitidx(zone, pfn);
  5199. VM_BUG_ON(!zone_spans_pfn(zone, pfn));
  5200. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  5201. if (flags & value)
  5202. __set_bit(bitidx + start_bitidx, bitmap);
  5203. else
  5204. __clear_bit(bitidx + start_bitidx, bitmap);
  5205. }
  5206. /*
  5207. * This function checks whether pageblock includes unmovable pages or not.
  5208. * If @count is not zero, it is okay to include less @count unmovable pages
  5209. *
  5210. * PageLRU check without isolation or lru_lock could race so that
  5211. * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
  5212. * expect this function should be exact.
  5213. */
  5214. bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
  5215. bool skip_hwpoisoned_pages)
  5216. {
  5217. unsigned long pfn, iter, found;
  5218. int mt;
  5219. /*
  5220. * For avoiding noise data, lru_add_drain_all() should be called
  5221. * If ZONE_MOVABLE, the zone never contains unmovable pages
  5222. */
  5223. if (zone_idx(zone) == ZONE_MOVABLE)
  5224. return false;
  5225. mt = get_pageblock_migratetype(page);
  5226. if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
  5227. return false;
  5228. pfn = page_to_pfn(page);
  5229. for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
  5230. unsigned long check = pfn + iter;
  5231. if (!pfn_valid_within(check))
  5232. continue;
  5233. page = pfn_to_page(check);
  5234. /*
  5235. * Hugepages are not in LRU lists, but they're movable.
  5236. * We need not scan over tail pages bacause we don't
  5237. * handle each tail page individually in migration.
  5238. */
  5239. if (PageHuge(page)) {
  5240. iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
  5241. continue;
  5242. }
  5243. /*
  5244. * We can't use page_count without pin a page
  5245. * because another CPU can free compound page.
  5246. * This check already skips compound tails of THP
  5247. * because their page->_count is zero at all time.
  5248. */
  5249. if (!atomic_read(&page->_count)) {
  5250. if (PageBuddy(page))
  5251. iter += (1 << page_order(page)) - 1;
  5252. continue;
  5253. }
  5254. /*
  5255. * The HWPoisoned page may be not in buddy system, and
  5256. * page_count() is not 0.
  5257. */
  5258. if (skip_hwpoisoned_pages && PageHWPoison(page))
  5259. continue;
  5260. if (!PageLRU(page))
  5261. found++;
  5262. /*
  5263. * If there are RECLAIMABLE pages, we need to check it.
  5264. * But now, memory offline itself doesn't call shrink_slab()
  5265. * and it still to be fixed.
  5266. */
  5267. /*
  5268. * If the page is not RAM, page_count()should be 0.
  5269. * we don't need more check. This is an _used_ not-movable page.
  5270. *
  5271. * The problematic thing here is PG_reserved pages. PG_reserved
  5272. * is set to both of a memory hole page and a _used_ kernel
  5273. * page at boot.
  5274. */
  5275. if (found > count)
  5276. return true;
  5277. }
  5278. return false;
  5279. }
  5280. bool is_pageblock_removable_nolock(struct page *page)
  5281. {
  5282. struct zone *zone;
  5283. unsigned long pfn;
  5284. /*
  5285. * We have to be careful here because we are iterating over memory
  5286. * sections which are not zone aware so we might end up outside of
  5287. * the zone but still within the section.
  5288. * We have to take care about the node as well. If the node is offline
  5289. * its NODE_DATA will be NULL - see page_zone.
  5290. */
  5291. if (!node_online(page_to_nid(page)))
  5292. return false;
  5293. zone = page_zone(page);
  5294. pfn = page_to_pfn(page);
  5295. if (!zone_spans_pfn(zone, pfn))
  5296. return false;
  5297. return !has_unmovable_pages(zone, page, 0, true);
  5298. }
  5299. #ifdef CONFIG_CMA
  5300. static unsigned long pfn_max_align_down(unsigned long pfn)
  5301. {
  5302. return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
  5303. pageblock_nr_pages) - 1);
  5304. }
  5305. static unsigned long pfn_max_align_up(unsigned long pfn)
  5306. {
  5307. return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
  5308. pageblock_nr_pages));
  5309. }
  5310. /* [start, end) must belong to a single zone. */
  5311. static int __alloc_contig_migrate_range(struct compact_control *cc,
  5312. unsigned long start, unsigned long end)
  5313. {
  5314. /* This function is based on compact_zone() from compaction.c. */
  5315. unsigned long nr_reclaimed;
  5316. unsigned long pfn = start;
  5317. unsigned int tries = 0;
  5318. int ret = 0;
  5319. migrate_prep();
  5320. while (pfn < end || !list_empty(&cc->migratepages)) {
  5321. if (fatal_signal_pending(current)) {
  5322. ret = -EINTR;
  5323. break;
  5324. }
  5325. if (list_empty(&cc->migratepages)) {
  5326. cc->nr_migratepages = 0;
  5327. pfn = isolate_migratepages_range(cc->zone, cc,
  5328. pfn, end, true);
  5329. if (!pfn) {
  5330. ret = -EINTR;
  5331. break;
  5332. }
  5333. tries = 0;
  5334. } else if (++tries == 5) {
  5335. ret = ret < 0 ? ret : -EBUSY;
  5336. break;
  5337. }
  5338. nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
  5339. &cc->migratepages);
  5340. cc->nr_migratepages -= nr_reclaimed;
  5341. ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
  5342. 0, MIGRATE_SYNC, MR_CMA);
  5343. }
  5344. if (ret < 0) {
  5345. putback_movable_pages(&cc->migratepages);
  5346. return ret;
  5347. }
  5348. return 0;
  5349. }
  5350. /**
  5351. * alloc_contig_range() -- tries to allocate given range of pages
  5352. * @start: start PFN to allocate
  5353. * @end: one-past-the-last PFN to allocate
  5354. * @migratetype: migratetype of the underlaying pageblocks (either
  5355. * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
  5356. * in range must have the same migratetype and it must
  5357. * be either of the two.
  5358. *
  5359. * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
  5360. * aligned, however it's the caller's responsibility to guarantee that
  5361. * we are the only thread that changes migrate type of pageblocks the
  5362. * pages fall in.
  5363. *
  5364. * The PFN range must belong to a single zone.
  5365. *
  5366. * Returns zero on success or negative error code. On success all
  5367. * pages which PFN is in [start, end) are allocated for the caller and
  5368. * need to be freed with free_contig_range().
  5369. */
  5370. int alloc_contig_range(unsigned long start, unsigned long end,
  5371. unsigned migratetype)
  5372. {
  5373. unsigned long outer_start, outer_end;
  5374. int ret = 0, order;
  5375. struct compact_control cc = {
  5376. .nr_migratepages = 0,
  5377. .order = -1,
  5378. .zone = page_zone(pfn_to_page(start)),
  5379. .sync = true,
  5380. .ignore_skip_hint = true,
  5381. };
  5382. INIT_LIST_HEAD(&cc.migratepages);
  5383. /*
  5384. * What we do here is we mark all pageblocks in range as
  5385. * MIGRATE_ISOLATE. Because pageblock and max order pages may
  5386. * have different sizes, and due to the way page allocator
  5387. * work, we align the range to biggest of the two pages so
  5388. * that page allocator won't try to merge buddies from
  5389. * different pageblocks and change MIGRATE_ISOLATE to some
  5390. * other migration type.
  5391. *
  5392. * Once the pageblocks are marked as MIGRATE_ISOLATE, we
  5393. * migrate the pages from an unaligned range (ie. pages that
  5394. * we are interested in). This will put all the pages in
  5395. * range back to page allocator as MIGRATE_ISOLATE.
  5396. *
  5397. * When this is done, we take the pages in range from page
  5398. * allocator removing them from the buddy system. This way
  5399. * page allocator will never consider using them.
  5400. *
  5401. * This lets us mark the pageblocks back as
  5402. * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
  5403. * aligned range but not in the unaligned, original range are
  5404. * put back to page allocator so that buddy can use them.
  5405. */
  5406. ret = start_isolate_page_range(pfn_max_align_down(start),
  5407. pfn_max_align_up(end), migratetype,
  5408. false);
  5409. if (ret)
  5410. return ret;
  5411. ret = __alloc_contig_migrate_range(&cc, start, end);
  5412. if (ret)
  5413. goto done;
  5414. /*
  5415. * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
  5416. * aligned blocks that are marked as MIGRATE_ISOLATE. What's
  5417. * more, all pages in [start, end) are free in page allocator.
  5418. * What we are going to do is to allocate all pages from
  5419. * [start, end) (that is remove them from page allocator).
  5420. *
  5421. * The only problem is that pages at the beginning and at the
  5422. * end of interesting range may be not aligned with pages that
  5423. * page allocator holds, ie. they can be part of higher order
  5424. * pages. Because of this, we reserve the bigger range and
  5425. * once this is done free the pages we are not interested in.
  5426. *
  5427. * We don't have to hold zone->lock here because the pages are
  5428. * isolated thus they won't get removed from buddy.
  5429. */
  5430. lru_add_drain_all();
  5431. drain_all_pages();
  5432. order = 0;
  5433. outer_start = start;
  5434. while (!PageBuddy(pfn_to_page(outer_start))) {
  5435. if (++order >= MAX_ORDER) {
  5436. ret = -EBUSY;
  5437. goto done;
  5438. }
  5439. outer_start &= ~0UL << order;
  5440. }
  5441. /* Make sure the range is really isolated. */
  5442. if (test_pages_isolated(outer_start, end, false)) {
  5443. pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
  5444. outer_start, end);
  5445. ret = -EBUSY;
  5446. goto done;
  5447. }
  5448. /* Grab isolated pages from freelists. */
  5449. outer_end = isolate_freepages_range(&cc, outer_start, end);
  5450. if (!outer_end) {
  5451. ret = -EBUSY;
  5452. goto done;
  5453. }
  5454. /* Free head and tail (if any) */
  5455. if (start != outer_start)
  5456. free_contig_range(outer_start, start - outer_start);
  5457. if (end != outer_end)
  5458. free_contig_range(end, outer_end - end);
  5459. done:
  5460. undo_isolate_page_range(pfn_max_align_down(start),
  5461. pfn_max_align_up(end), migratetype);
  5462. return ret;
  5463. }
  5464. void free_contig_range(unsigned long pfn, unsigned nr_pages)
  5465. {
  5466. unsigned int count = 0;
  5467. for (; nr_pages--; pfn++) {
  5468. struct page *page = pfn_to_page(pfn);
  5469. count += page_count(page) != 1;
  5470. __free_page(page);
  5471. }
  5472. WARN(count != 0, "%d pages are still in use!\n", count);
  5473. }
  5474. #endif
  5475. #ifdef CONFIG_MEMORY_HOTPLUG
  5476. /*
  5477. * The zone indicated has a new number of managed_pages; batch sizes and percpu
  5478. * page high values need to be recalulated.
  5479. */
  5480. void __meminit zone_pcp_update(struct zone *zone)
  5481. {
  5482. unsigned cpu;
  5483. mutex_lock(&pcp_batch_high_lock);
  5484. for_each_possible_cpu(cpu)
  5485. pageset_set_high_and_batch(zone,
  5486. per_cpu_ptr(zone->pageset, cpu));
  5487. mutex_unlock(&pcp_batch_high_lock);
  5488. }
  5489. #endif
  5490. void zone_pcp_reset(struct zone *zone)
  5491. {
  5492. unsigned long flags;
  5493. int cpu;
  5494. struct per_cpu_pageset *pset;
  5495. /* avoid races with drain_pages() */
  5496. local_irq_save(flags);
  5497. if (zone->pageset != &boot_pageset) {
  5498. for_each_online_cpu(cpu) {
  5499. pset = per_cpu_ptr(zone->pageset, cpu);
  5500. drain_zonestat(zone, pset);
  5501. }
  5502. free_percpu(zone->pageset);
  5503. zone->pageset = &boot_pageset;
  5504. }
  5505. local_irq_restore(flags);
  5506. }
  5507. #ifdef CONFIG_MEMORY_HOTREMOVE
  5508. /*
  5509. * All pages in the range must be isolated before calling this.
  5510. */
  5511. void
  5512. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  5513. {
  5514. struct page *page;
  5515. struct zone *zone;
  5516. int order, i;
  5517. unsigned long pfn;
  5518. unsigned long flags;
  5519. /* find the first valid pfn */
  5520. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  5521. if (pfn_valid(pfn))
  5522. break;
  5523. if (pfn == end_pfn)
  5524. return;
  5525. zone = page_zone(pfn_to_page(pfn));
  5526. spin_lock_irqsave(&zone->lock, flags);
  5527. pfn = start_pfn;
  5528. while (pfn < end_pfn) {
  5529. if (!pfn_valid(pfn)) {
  5530. pfn++;
  5531. continue;
  5532. }
  5533. page = pfn_to_page(pfn);
  5534. /*
  5535. * The HWPoisoned page may be not in buddy system, and
  5536. * page_count() is not 0.
  5537. */
  5538. if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
  5539. pfn++;
  5540. SetPageReserved(page);
  5541. continue;
  5542. }
  5543. BUG_ON(page_count(page));
  5544. BUG_ON(!PageBuddy(page));
  5545. order = page_order(page);
  5546. #ifdef CONFIG_DEBUG_VM
  5547. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  5548. pfn, 1 << order, end_pfn);
  5549. #endif
  5550. list_del(&page->lru);
  5551. rmv_page_order(page);
  5552. zone->free_area[order].nr_free--;
  5553. #ifdef CONFIG_HIGHMEM
  5554. if (PageHighMem(page))
  5555. totalhigh_pages -= 1 << order;
  5556. #endif
  5557. for (i = 0; i < (1 << order); i++)
  5558. SetPageReserved((page+i));
  5559. pfn += (1 << order);
  5560. }
  5561. spin_unlock_irqrestore(&zone->lock, flags);
  5562. }
  5563. #endif
  5564. #ifdef CONFIG_MEMORY_FAILURE
  5565. bool is_free_buddy_page(struct page *page)
  5566. {
  5567. struct zone *zone = page_zone(page);
  5568. unsigned long pfn = page_to_pfn(page);
  5569. unsigned long flags;
  5570. int order;
  5571. spin_lock_irqsave(&zone->lock, flags);
  5572. for (order = 0; order < MAX_ORDER; order++) {
  5573. struct page *page_head = page - (pfn & ((1 << order) - 1));
  5574. if (PageBuddy(page_head) && page_order(page_head) >= order)
  5575. break;
  5576. }
  5577. spin_unlock_irqrestore(&zone->lock, flags);
  5578. return order < MAX_ORDER;
  5579. }
  5580. #endif
  5581. static const struct trace_print_flags pageflag_names[] = {
  5582. {1UL << PG_locked, "locked" },
  5583. {1UL << PG_error, "error" },
  5584. {1UL << PG_referenced, "referenced" },
  5585. {1UL << PG_uptodate, "uptodate" },
  5586. {1UL << PG_dirty, "dirty" },
  5587. {1UL << PG_lru, "lru" },
  5588. {1UL << PG_active, "active" },
  5589. {1UL << PG_slab, "slab" },
  5590. {1UL << PG_owner_priv_1, "owner_priv_1" },
  5591. {1UL << PG_arch_1, "arch_1" },
  5592. {1UL << PG_reserved, "reserved" },
  5593. {1UL << PG_private, "private" },
  5594. {1UL << PG_private_2, "private_2" },
  5595. {1UL << PG_writeback, "writeback" },
  5596. #ifdef CONFIG_PAGEFLAGS_EXTENDED
  5597. {1UL << PG_head, "head" },
  5598. {1UL << PG_tail, "tail" },
  5599. #else
  5600. {1UL << PG_compound, "compound" },
  5601. #endif
  5602. {1UL << PG_swapcache, "swapcache" },
  5603. {1UL << PG_mappedtodisk, "mappedtodisk" },
  5604. {1UL << PG_reclaim, "reclaim" },
  5605. {1UL << PG_swapbacked, "swapbacked" },
  5606. {1UL << PG_unevictable, "unevictable" },
  5607. #ifdef CONFIG_MMU
  5608. {1UL << PG_mlocked, "mlocked" },
  5609. #endif
  5610. #ifdef CONFIG_ARCH_USES_PG_UNCACHED
  5611. {1UL << PG_uncached, "uncached" },
  5612. #endif
  5613. #ifdef CONFIG_MEMORY_FAILURE
  5614. {1UL << PG_hwpoison, "hwpoison" },
  5615. #endif
  5616. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  5617. {1UL << PG_compound_lock, "compound_lock" },
  5618. #endif
  5619. };
  5620. static void dump_page_flags(unsigned long flags)
  5621. {
  5622. const char *delim = "";
  5623. unsigned long mask;
  5624. int i;
  5625. BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
  5626. printk(KERN_ALERT "page flags: %#lx(", flags);
  5627. /* remove zone id */
  5628. flags &= (1UL << NR_PAGEFLAGS) - 1;
  5629. for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
  5630. mask = pageflag_names[i].mask;
  5631. if ((flags & mask) != mask)
  5632. continue;
  5633. flags &= ~mask;
  5634. printk("%s%s", delim, pageflag_names[i].name);
  5635. delim = "|";
  5636. }
  5637. /* check for left over flags */
  5638. if (flags)
  5639. printk("%s%#lx", delim, flags);
  5640. printk(")\n");
  5641. }
  5642. void dump_page(struct page *page)
  5643. {
  5644. printk(KERN_ALERT
  5645. "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
  5646. page, atomic_read(&page->_count), page_mapcount(page),
  5647. page->mapping, page->index);
  5648. dump_page_flags(page->flags);
  5649. mem_cgroup_print_bad_page(page);
  5650. }