mmzone.h 40 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277
  1. #ifndef _LINUX_MMZONE_H
  2. #define _LINUX_MMZONE_H
  3. #ifndef __ASSEMBLY__
  4. #ifndef __GENERATING_BOUNDS_H
  5. #include <linux/spinlock.h>
  6. #include <linux/list.h>
  7. #include <linux/wait.h>
  8. #include <linux/bitops.h>
  9. #include <linux/cache.h>
  10. #include <linux/threads.h>
  11. #include <linux/numa.h>
  12. #include <linux/init.h>
  13. #include <linux/seqlock.h>
  14. #include <linux/nodemask.h>
  15. #include <linux/pageblock-flags.h>
  16. #include <linux/page-flags-layout.h>
  17. #include <linux/atomic.h>
  18. #include <asm/page.h>
  19. /* Free memory management - zoned buddy allocator. */
  20. #ifndef CONFIG_FORCE_MAX_ZONEORDER
  21. #define MAX_ORDER 11
  22. #else
  23. #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
  24. #endif
  25. #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
  26. /*
  27. * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
  28. * costly to service. That is between allocation orders which should
  29. * coalesce naturally under reasonable reclaim pressure and those which
  30. * will not.
  31. */
  32. #define PAGE_ALLOC_COSTLY_ORDER 3
  33. enum {
  34. MIGRATE_UNMOVABLE,
  35. MIGRATE_RECLAIMABLE,
  36. MIGRATE_MOVABLE,
  37. MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
  38. MIGRATE_RESERVE = MIGRATE_PCPTYPES,
  39. #ifdef CONFIG_CMA
  40. /*
  41. * MIGRATE_CMA migration type is designed to mimic the way
  42. * ZONE_MOVABLE works. Only movable pages can be allocated
  43. * from MIGRATE_CMA pageblocks and page allocator never
  44. * implicitly change migration type of MIGRATE_CMA pageblock.
  45. *
  46. * The way to use it is to change migratetype of a range of
  47. * pageblocks to MIGRATE_CMA which can be done by
  48. * __free_pageblock_cma() function. What is important though
  49. * is that a range of pageblocks must be aligned to
  50. * MAX_ORDER_NR_PAGES should biggest page be bigger then
  51. * a single pageblock.
  52. */
  53. MIGRATE_CMA,
  54. #endif
  55. #ifdef CONFIG_MEMORY_ISOLATION
  56. MIGRATE_ISOLATE, /* can't allocate from here */
  57. #endif
  58. MIGRATE_TYPES
  59. };
  60. #ifdef CONFIG_CMA
  61. # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
  62. #else
  63. # define is_migrate_cma(migratetype) false
  64. #endif
  65. #define for_each_migratetype_order(order, type) \
  66. for (order = 0; order < MAX_ORDER; order++) \
  67. for (type = 0; type < MIGRATE_TYPES; type++)
  68. extern int page_group_by_mobility_disabled;
  69. static inline int get_pageblock_migratetype(struct page *page)
  70. {
  71. return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
  72. }
  73. struct free_area {
  74. struct list_head free_list[MIGRATE_TYPES];
  75. unsigned long nr_free;
  76. };
  77. struct pglist_data;
  78. /*
  79. * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
  80. * So add a wild amount of padding here to ensure that they fall into separate
  81. * cachelines. There are very few zone structures in the machine, so space
  82. * consumption is not a concern here.
  83. */
  84. #if defined(CONFIG_SMP)
  85. struct zone_padding {
  86. char x[0];
  87. } ____cacheline_internodealigned_in_smp;
  88. #define ZONE_PADDING(name) struct zone_padding name;
  89. #else
  90. #define ZONE_PADDING(name)
  91. #endif
  92. enum zone_stat_item {
  93. /* First 128 byte cacheline (assuming 64 bit words) */
  94. NR_FREE_PAGES,
  95. NR_ALLOC_BATCH,
  96. NR_LRU_BASE,
  97. NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
  98. NR_ACTIVE_ANON, /* " " " " " */
  99. NR_INACTIVE_FILE, /* " " " " " */
  100. NR_ACTIVE_FILE, /* " " " " " */
  101. NR_UNEVICTABLE, /* " " " " " */
  102. NR_MLOCK, /* mlock()ed pages found and moved off LRU */
  103. NR_ANON_PAGES, /* Mapped anonymous pages */
  104. NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
  105. only modified from process context */
  106. NR_FILE_PAGES,
  107. NR_FILE_DIRTY,
  108. NR_WRITEBACK,
  109. NR_SLAB_RECLAIMABLE,
  110. NR_SLAB_UNRECLAIMABLE,
  111. NR_PAGETABLE, /* used for pagetables */
  112. NR_KERNEL_STACK,
  113. /* Second 128 byte cacheline */
  114. NR_UNSTABLE_NFS, /* NFS unstable pages */
  115. NR_BOUNCE,
  116. NR_VMSCAN_WRITE,
  117. NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
  118. NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
  119. NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
  120. NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
  121. NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
  122. NR_DIRTIED, /* page dirtyings since bootup */
  123. NR_WRITTEN, /* page writings since bootup */
  124. #ifdef CONFIG_NUMA
  125. NUMA_HIT, /* allocated in intended node */
  126. NUMA_MISS, /* allocated in non intended node */
  127. NUMA_FOREIGN, /* was intended here, hit elsewhere */
  128. NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
  129. NUMA_LOCAL, /* allocation from local node */
  130. NUMA_OTHER, /* allocation from other node */
  131. #endif
  132. NR_ANON_TRANSPARENT_HUGEPAGES,
  133. NR_FREE_CMA_PAGES,
  134. NR_VM_ZONE_STAT_ITEMS };
  135. /*
  136. * We do arithmetic on the LRU lists in various places in the code,
  137. * so it is important to keep the active lists LRU_ACTIVE higher in
  138. * the array than the corresponding inactive lists, and to keep
  139. * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
  140. *
  141. * This has to be kept in sync with the statistics in zone_stat_item
  142. * above and the descriptions in vmstat_text in mm/vmstat.c
  143. */
  144. #define LRU_BASE 0
  145. #define LRU_ACTIVE 1
  146. #define LRU_FILE 2
  147. enum lru_list {
  148. LRU_INACTIVE_ANON = LRU_BASE,
  149. LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
  150. LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
  151. LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
  152. LRU_UNEVICTABLE,
  153. NR_LRU_LISTS
  154. };
  155. #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
  156. #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
  157. static inline int is_file_lru(enum lru_list lru)
  158. {
  159. return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
  160. }
  161. static inline int is_active_lru(enum lru_list lru)
  162. {
  163. return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
  164. }
  165. static inline int is_unevictable_lru(enum lru_list lru)
  166. {
  167. return (lru == LRU_UNEVICTABLE);
  168. }
  169. struct zone_reclaim_stat {
  170. /*
  171. * The pageout code in vmscan.c keeps track of how many of the
  172. * mem/swap backed and file backed pages are referenced.
  173. * The higher the rotated/scanned ratio, the more valuable
  174. * that cache is.
  175. *
  176. * The anon LRU stats live in [0], file LRU stats in [1]
  177. */
  178. unsigned long recent_rotated[2];
  179. unsigned long recent_scanned[2];
  180. };
  181. struct lruvec {
  182. struct list_head lists[NR_LRU_LISTS];
  183. struct zone_reclaim_stat reclaim_stat;
  184. #ifdef CONFIG_MEMCG
  185. struct zone *zone;
  186. #endif
  187. };
  188. /* Mask used at gathering information at once (see memcontrol.c) */
  189. #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
  190. #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
  191. #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
  192. /* Isolate clean file */
  193. #define ISOLATE_CLEAN ((__force isolate_mode_t)0x1)
  194. /* Isolate unmapped file */
  195. #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
  196. /* Isolate for asynchronous migration */
  197. #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
  198. /* Isolate unevictable pages */
  199. #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
  200. /* LRU Isolation modes. */
  201. typedef unsigned __bitwise__ isolate_mode_t;
  202. enum zone_watermarks {
  203. WMARK_MIN,
  204. WMARK_LOW,
  205. WMARK_HIGH,
  206. NR_WMARK
  207. };
  208. #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
  209. #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
  210. #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
  211. struct per_cpu_pages {
  212. int count; /* number of pages in the list */
  213. int high; /* high watermark, emptying needed */
  214. int batch; /* chunk size for buddy add/remove */
  215. /* Lists of pages, one per migrate type stored on the pcp-lists */
  216. struct list_head lists[MIGRATE_PCPTYPES];
  217. };
  218. struct per_cpu_pageset {
  219. struct per_cpu_pages pcp;
  220. #ifdef CONFIG_NUMA
  221. s8 expire;
  222. #endif
  223. #ifdef CONFIG_SMP
  224. s8 stat_threshold;
  225. s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
  226. #endif
  227. };
  228. #endif /* !__GENERATING_BOUNDS.H */
  229. enum zone_type {
  230. #ifdef CONFIG_ZONE_DMA
  231. /*
  232. * ZONE_DMA is used when there are devices that are not able
  233. * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
  234. * carve out the portion of memory that is needed for these devices.
  235. * The range is arch specific.
  236. *
  237. * Some examples
  238. *
  239. * Architecture Limit
  240. * ---------------------------
  241. * parisc, ia64, sparc <4G
  242. * s390 <2G
  243. * arm Various
  244. * alpha Unlimited or 0-16MB.
  245. *
  246. * i386, x86_64 and multiple other arches
  247. * <16M.
  248. */
  249. ZONE_DMA,
  250. #endif
  251. #ifdef CONFIG_ZONE_DMA32
  252. /*
  253. * x86_64 needs two ZONE_DMAs because it supports devices that are
  254. * only able to do DMA to the lower 16M but also 32 bit devices that
  255. * can only do DMA areas below 4G.
  256. */
  257. ZONE_DMA32,
  258. #endif
  259. /*
  260. * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
  261. * performed on pages in ZONE_NORMAL if the DMA devices support
  262. * transfers to all addressable memory.
  263. */
  264. ZONE_NORMAL,
  265. #ifdef CONFIG_HIGHMEM
  266. /*
  267. * A memory area that is only addressable by the kernel through
  268. * mapping portions into its own address space. This is for example
  269. * used by i386 to allow the kernel to address the memory beyond
  270. * 900MB. The kernel will set up special mappings (page
  271. * table entries on i386) for each page that the kernel needs to
  272. * access.
  273. */
  274. ZONE_HIGHMEM,
  275. #endif
  276. ZONE_MOVABLE,
  277. __MAX_NR_ZONES
  278. };
  279. #ifndef __GENERATING_BOUNDS_H
  280. struct zone {
  281. /* Fields commonly accessed by the page allocator */
  282. /* zone watermarks, access with *_wmark_pages(zone) macros */
  283. unsigned long watermark[NR_WMARK];
  284. /*
  285. * When free pages are below this point, additional steps are taken
  286. * when reading the number of free pages to avoid per-cpu counter
  287. * drift allowing watermarks to be breached
  288. */
  289. unsigned long percpu_drift_mark;
  290. /*
  291. * We don't know if the memory that we're going to allocate will be freeable
  292. * or/and it will be released eventually, so to avoid totally wasting several
  293. * GB of ram we must reserve some of the lower zone memory (otherwise we risk
  294. * to run OOM on the lower zones despite there's tons of freeable ram
  295. * on the higher zones). This array is recalculated at runtime if the
  296. * sysctl_lowmem_reserve_ratio sysctl changes.
  297. */
  298. unsigned long lowmem_reserve[MAX_NR_ZONES];
  299. /*
  300. * This is a per-zone reserve of pages that should not be
  301. * considered dirtyable memory.
  302. */
  303. unsigned long dirty_balance_reserve;
  304. #ifdef CONFIG_NUMA
  305. int node;
  306. /*
  307. * zone reclaim becomes active if more unmapped pages exist.
  308. */
  309. unsigned long min_unmapped_pages;
  310. unsigned long min_slab_pages;
  311. #endif
  312. struct per_cpu_pageset __percpu *pageset;
  313. /*
  314. * free areas of different sizes
  315. */
  316. spinlock_t lock;
  317. #if defined CONFIG_COMPACTION || defined CONFIG_CMA
  318. /* Set to true when the PG_migrate_skip bits should be cleared */
  319. bool compact_blockskip_flush;
  320. /* pfns where compaction scanners should start */
  321. unsigned long compact_cached_free_pfn;
  322. unsigned long compact_cached_migrate_pfn;
  323. #endif
  324. #ifdef CONFIG_MEMORY_HOTPLUG
  325. /* see spanned/present_pages for more description */
  326. seqlock_t span_seqlock;
  327. #endif
  328. struct free_area free_area[MAX_ORDER];
  329. #ifndef CONFIG_SPARSEMEM
  330. /*
  331. * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
  332. * In SPARSEMEM, this map is stored in struct mem_section
  333. */
  334. unsigned long *pageblock_flags;
  335. #endif /* CONFIG_SPARSEMEM */
  336. #ifdef CONFIG_COMPACTION
  337. /*
  338. * On compaction failure, 1<<compact_defer_shift compactions
  339. * are skipped before trying again. The number attempted since
  340. * last failure is tracked with compact_considered.
  341. */
  342. unsigned int compact_considered;
  343. unsigned int compact_defer_shift;
  344. int compact_order_failed;
  345. #endif
  346. ZONE_PADDING(_pad1_)
  347. /* Fields commonly accessed by the page reclaim scanner */
  348. spinlock_t lru_lock;
  349. struct lruvec lruvec;
  350. unsigned long pages_scanned; /* since last reclaim */
  351. unsigned long flags; /* zone flags, see below */
  352. /* Zone statistics */
  353. atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
  354. /*
  355. * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
  356. * this zone's LRU. Maintained by the pageout code.
  357. */
  358. unsigned int inactive_ratio;
  359. ZONE_PADDING(_pad2_)
  360. /* Rarely used or read-mostly fields */
  361. /*
  362. * wait_table -- the array holding the hash table
  363. * wait_table_hash_nr_entries -- the size of the hash table array
  364. * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
  365. *
  366. * The purpose of all these is to keep track of the people
  367. * waiting for a page to become available and make them
  368. * runnable again when possible. The trouble is that this
  369. * consumes a lot of space, especially when so few things
  370. * wait on pages at a given time. So instead of using
  371. * per-page waitqueues, we use a waitqueue hash table.
  372. *
  373. * The bucket discipline is to sleep on the same queue when
  374. * colliding and wake all in that wait queue when removing.
  375. * When something wakes, it must check to be sure its page is
  376. * truly available, a la thundering herd. The cost of a
  377. * collision is great, but given the expected load of the
  378. * table, they should be so rare as to be outweighed by the
  379. * benefits from the saved space.
  380. *
  381. * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
  382. * primary users of these fields, and in mm/page_alloc.c
  383. * free_area_init_core() performs the initialization of them.
  384. */
  385. wait_queue_head_t * wait_table;
  386. unsigned long wait_table_hash_nr_entries;
  387. unsigned long wait_table_bits;
  388. /*
  389. * Discontig memory support fields.
  390. */
  391. struct pglist_data *zone_pgdat;
  392. /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
  393. unsigned long zone_start_pfn;
  394. /*
  395. * spanned_pages is the total pages spanned by the zone, including
  396. * holes, which is calculated as:
  397. * spanned_pages = zone_end_pfn - zone_start_pfn;
  398. *
  399. * present_pages is physical pages existing within the zone, which
  400. * is calculated as:
  401. * present_pages = spanned_pages - absent_pages(pages in holes);
  402. *
  403. * managed_pages is present pages managed by the buddy system, which
  404. * is calculated as (reserved_pages includes pages allocated by the
  405. * bootmem allocator):
  406. * managed_pages = present_pages - reserved_pages;
  407. *
  408. * So present_pages may be used by memory hotplug or memory power
  409. * management logic to figure out unmanaged pages by checking
  410. * (present_pages - managed_pages). And managed_pages should be used
  411. * by page allocator and vm scanner to calculate all kinds of watermarks
  412. * and thresholds.
  413. *
  414. * Locking rules:
  415. *
  416. * zone_start_pfn and spanned_pages are protected by span_seqlock.
  417. * It is a seqlock because it has to be read outside of zone->lock,
  418. * and it is done in the main allocator path. But, it is written
  419. * quite infrequently.
  420. *
  421. * The span_seq lock is declared along with zone->lock because it is
  422. * frequently read in proximity to zone->lock. It's good to
  423. * give them a chance of being in the same cacheline.
  424. *
  425. * Write access to present_pages at runtime should be protected by
  426. * lock_memory_hotplug()/unlock_memory_hotplug(). Any reader who can't
  427. * tolerant drift of present_pages should hold memory hotplug lock to
  428. * get a stable value.
  429. *
  430. * Read access to managed_pages should be safe because it's unsigned
  431. * long. Write access to zone->managed_pages and totalram_pages are
  432. * protected by managed_page_count_lock at runtime. Idealy only
  433. * adjust_managed_page_count() should be used instead of directly
  434. * touching zone->managed_pages and totalram_pages.
  435. */
  436. unsigned long spanned_pages;
  437. unsigned long present_pages;
  438. unsigned long managed_pages;
  439. /*
  440. * rarely used fields:
  441. */
  442. const char *name;
  443. } ____cacheline_internodealigned_in_smp;
  444. typedef enum {
  445. ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
  446. ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
  447. ZONE_CONGESTED, /* zone has many dirty pages backed by
  448. * a congested BDI
  449. */
  450. ZONE_TAIL_LRU_DIRTY, /* reclaim scanning has recently found
  451. * many dirty file pages at the tail
  452. * of the LRU.
  453. */
  454. ZONE_WRITEBACK, /* reclaim scanning has recently found
  455. * many pages under writeback
  456. */
  457. } zone_flags_t;
  458. static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
  459. {
  460. set_bit(flag, &zone->flags);
  461. }
  462. static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
  463. {
  464. return test_and_set_bit(flag, &zone->flags);
  465. }
  466. static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
  467. {
  468. clear_bit(flag, &zone->flags);
  469. }
  470. static inline int zone_is_reclaim_congested(const struct zone *zone)
  471. {
  472. return test_bit(ZONE_CONGESTED, &zone->flags);
  473. }
  474. static inline int zone_is_reclaim_dirty(const struct zone *zone)
  475. {
  476. return test_bit(ZONE_TAIL_LRU_DIRTY, &zone->flags);
  477. }
  478. static inline int zone_is_reclaim_writeback(const struct zone *zone)
  479. {
  480. return test_bit(ZONE_WRITEBACK, &zone->flags);
  481. }
  482. static inline int zone_is_reclaim_locked(const struct zone *zone)
  483. {
  484. return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
  485. }
  486. static inline int zone_is_oom_locked(const struct zone *zone)
  487. {
  488. return test_bit(ZONE_OOM_LOCKED, &zone->flags);
  489. }
  490. static inline unsigned long zone_end_pfn(const struct zone *zone)
  491. {
  492. return zone->zone_start_pfn + zone->spanned_pages;
  493. }
  494. static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
  495. {
  496. return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
  497. }
  498. static inline bool zone_is_initialized(struct zone *zone)
  499. {
  500. return !!zone->wait_table;
  501. }
  502. static inline bool zone_is_empty(struct zone *zone)
  503. {
  504. return zone->spanned_pages == 0;
  505. }
  506. /*
  507. * The "priority" of VM scanning is how much of the queues we will scan in one
  508. * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
  509. * queues ("queue_length >> 12") during an aging round.
  510. */
  511. #define DEF_PRIORITY 12
  512. /* Maximum number of zones on a zonelist */
  513. #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
  514. #ifdef CONFIG_NUMA
  515. /*
  516. * The NUMA zonelists are doubled because we need zonelists that restrict the
  517. * allocations to a single node for GFP_THISNODE.
  518. *
  519. * [0] : Zonelist with fallback
  520. * [1] : No fallback (GFP_THISNODE)
  521. */
  522. #define MAX_ZONELISTS 2
  523. /*
  524. * We cache key information from each zonelist for smaller cache
  525. * footprint when scanning for free pages in get_page_from_freelist().
  526. *
  527. * 1) The BITMAP fullzones tracks which zones in a zonelist have come
  528. * up short of free memory since the last time (last_fullzone_zap)
  529. * we zero'd fullzones.
  530. * 2) The array z_to_n[] maps each zone in the zonelist to its node
  531. * id, so that we can efficiently evaluate whether that node is
  532. * set in the current tasks mems_allowed.
  533. *
  534. * Both fullzones and z_to_n[] are one-to-one with the zonelist,
  535. * indexed by a zones offset in the zonelist zones[] array.
  536. *
  537. * The get_page_from_freelist() routine does two scans. During the
  538. * first scan, we skip zones whose corresponding bit in 'fullzones'
  539. * is set or whose corresponding node in current->mems_allowed (which
  540. * comes from cpusets) is not set. During the second scan, we bypass
  541. * this zonelist_cache, to ensure we look methodically at each zone.
  542. *
  543. * Once per second, we zero out (zap) fullzones, forcing us to
  544. * reconsider nodes that might have regained more free memory.
  545. * The field last_full_zap is the time we last zapped fullzones.
  546. *
  547. * This mechanism reduces the amount of time we waste repeatedly
  548. * reexaming zones for free memory when they just came up low on
  549. * memory momentarilly ago.
  550. *
  551. * The zonelist_cache struct members logically belong in struct
  552. * zonelist. However, the mempolicy zonelists constructed for
  553. * MPOL_BIND are intentionally variable length (and usually much
  554. * shorter). A general purpose mechanism for handling structs with
  555. * multiple variable length members is more mechanism than we want
  556. * here. We resort to some special case hackery instead.
  557. *
  558. * The MPOL_BIND zonelists don't need this zonelist_cache (in good
  559. * part because they are shorter), so we put the fixed length stuff
  560. * at the front of the zonelist struct, ending in a variable length
  561. * zones[], as is needed by MPOL_BIND.
  562. *
  563. * Then we put the optional zonelist cache on the end of the zonelist
  564. * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
  565. * the fixed length portion at the front of the struct. This pointer
  566. * both enables us to find the zonelist cache, and in the case of
  567. * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
  568. * to know that the zonelist cache is not there.
  569. *
  570. * The end result is that struct zonelists come in two flavors:
  571. * 1) The full, fixed length version, shown below, and
  572. * 2) The custom zonelists for MPOL_BIND.
  573. * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
  574. *
  575. * Even though there may be multiple CPU cores on a node modifying
  576. * fullzones or last_full_zap in the same zonelist_cache at the same
  577. * time, we don't lock it. This is just hint data - if it is wrong now
  578. * and then, the allocator will still function, perhaps a bit slower.
  579. */
  580. struct zonelist_cache {
  581. unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
  582. DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
  583. unsigned long last_full_zap; /* when last zap'd (jiffies) */
  584. };
  585. #else
  586. #define MAX_ZONELISTS 1
  587. struct zonelist_cache;
  588. #endif
  589. /*
  590. * This struct contains information about a zone in a zonelist. It is stored
  591. * here to avoid dereferences into large structures and lookups of tables
  592. */
  593. struct zoneref {
  594. struct zone *zone; /* Pointer to actual zone */
  595. int zone_idx; /* zone_idx(zoneref->zone) */
  596. };
  597. /*
  598. * One allocation request operates on a zonelist. A zonelist
  599. * is a list of zones, the first one is the 'goal' of the
  600. * allocation, the other zones are fallback zones, in decreasing
  601. * priority.
  602. *
  603. * If zlcache_ptr is not NULL, then it is just the address of zlcache,
  604. * as explained above. If zlcache_ptr is NULL, there is no zlcache.
  605. * *
  606. * To speed the reading of the zonelist, the zonerefs contain the zone index
  607. * of the entry being read. Helper functions to access information given
  608. * a struct zoneref are
  609. *
  610. * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
  611. * zonelist_zone_idx() - Return the index of the zone for an entry
  612. * zonelist_node_idx() - Return the index of the node for an entry
  613. */
  614. struct zonelist {
  615. struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
  616. struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
  617. #ifdef CONFIG_NUMA
  618. struct zonelist_cache zlcache; // optional ...
  619. #endif
  620. };
  621. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  622. struct node_active_region {
  623. unsigned long start_pfn;
  624. unsigned long end_pfn;
  625. int nid;
  626. };
  627. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  628. #ifndef CONFIG_DISCONTIGMEM
  629. /* The array of struct pages - for discontigmem use pgdat->lmem_map */
  630. extern struct page *mem_map;
  631. #endif
  632. /*
  633. * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
  634. * (mostly NUMA machines?) to denote a higher-level memory zone than the
  635. * zone denotes.
  636. *
  637. * On NUMA machines, each NUMA node would have a pg_data_t to describe
  638. * it's memory layout.
  639. *
  640. * Memory statistics and page replacement data structures are maintained on a
  641. * per-zone basis.
  642. */
  643. struct bootmem_data;
  644. typedef struct pglist_data {
  645. struct zone node_zones[MAX_NR_ZONES];
  646. struct zonelist node_zonelists[MAX_ZONELISTS];
  647. int nr_zones;
  648. #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
  649. struct page *node_mem_map;
  650. #ifdef CONFIG_MEMCG
  651. struct page_cgroup *node_page_cgroup;
  652. #endif
  653. #endif
  654. #ifndef CONFIG_NO_BOOTMEM
  655. struct bootmem_data *bdata;
  656. #endif
  657. #ifdef CONFIG_MEMORY_HOTPLUG
  658. /*
  659. * Must be held any time you expect node_start_pfn, node_present_pages
  660. * or node_spanned_pages stay constant. Holding this will also
  661. * guarantee that any pfn_valid() stays that way.
  662. *
  663. * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
  664. * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
  665. *
  666. * Nests above zone->lock and zone->span_seqlock
  667. */
  668. spinlock_t node_size_lock;
  669. #endif
  670. unsigned long node_start_pfn;
  671. unsigned long node_present_pages; /* total number of physical pages */
  672. unsigned long node_spanned_pages; /* total size of physical page
  673. range, including holes */
  674. int node_id;
  675. nodemask_t reclaim_nodes; /* Nodes allowed to reclaim from */
  676. wait_queue_head_t kswapd_wait;
  677. wait_queue_head_t pfmemalloc_wait;
  678. struct task_struct *kswapd; /* Protected by lock_memory_hotplug() */
  679. int kswapd_max_order;
  680. enum zone_type classzone_idx;
  681. #ifdef CONFIG_NUMA_BALANCING
  682. /*
  683. * Lock serializing the per destination node AutoNUMA memory
  684. * migration rate limiting data.
  685. */
  686. spinlock_t numabalancing_migrate_lock;
  687. /* Rate limiting time interval */
  688. unsigned long numabalancing_migrate_next_window;
  689. /* Number of pages migrated during the rate limiting time interval */
  690. unsigned long numabalancing_migrate_nr_pages;
  691. #endif
  692. } pg_data_t;
  693. #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
  694. #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
  695. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  696. #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
  697. #else
  698. #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
  699. #endif
  700. #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
  701. #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
  702. #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
  703. static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
  704. {
  705. return pgdat->node_start_pfn + pgdat->node_spanned_pages;
  706. }
  707. static inline bool pgdat_is_empty(pg_data_t *pgdat)
  708. {
  709. return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
  710. }
  711. #include <linux/memory_hotplug.h>
  712. extern struct mutex zonelists_mutex;
  713. void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
  714. void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
  715. bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  716. int classzone_idx, int alloc_flags);
  717. bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
  718. int classzone_idx, int alloc_flags);
  719. enum memmap_context {
  720. MEMMAP_EARLY,
  721. MEMMAP_HOTPLUG,
  722. };
  723. extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
  724. unsigned long size,
  725. enum memmap_context context);
  726. extern void lruvec_init(struct lruvec *lruvec);
  727. static inline struct zone *lruvec_zone(struct lruvec *lruvec)
  728. {
  729. #ifdef CONFIG_MEMCG
  730. return lruvec->zone;
  731. #else
  732. return container_of(lruvec, struct zone, lruvec);
  733. #endif
  734. }
  735. #ifdef CONFIG_HAVE_MEMORY_PRESENT
  736. void memory_present(int nid, unsigned long start, unsigned long end);
  737. #else
  738. static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
  739. #endif
  740. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  741. int local_memory_node(int node_id);
  742. #else
  743. static inline int local_memory_node(int node_id) { return node_id; };
  744. #endif
  745. #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
  746. unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
  747. #endif
  748. /*
  749. * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
  750. */
  751. #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
  752. static inline int populated_zone(struct zone *zone)
  753. {
  754. return (!!zone->present_pages);
  755. }
  756. extern int movable_zone;
  757. static inline int zone_movable_is_highmem(void)
  758. {
  759. #if defined(CONFIG_HIGHMEM) && defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
  760. return movable_zone == ZONE_HIGHMEM;
  761. #else
  762. return 0;
  763. #endif
  764. }
  765. static inline int is_highmem_idx(enum zone_type idx)
  766. {
  767. #ifdef CONFIG_HIGHMEM
  768. return (idx == ZONE_HIGHMEM ||
  769. (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
  770. #else
  771. return 0;
  772. #endif
  773. }
  774. /**
  775. * is_highmem - helper function to quickly check if a struct zone is a
  776. * highmem zone or not. This is an attempt to keep references
  777. * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
  778. * @zone - pointer to struct zone variable
  779. */
  780. static inline int is_highmem(struct zone *zone)
  781. {
  782. #ifdef CONFIG_HIGHMEM
  783. int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
  784. return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
  785. (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
  786. zone_movable_is_highmem());
  787. #else
  788. return 0;
  789. #endif
  790. }
  791. /* These two functions are used to setup the per zone pages min values */
  792. struct ctl_table;
  793. int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
  794. void __user *, size_t *, loff_t *);
  795. extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
  796. int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
  797. void __user *, size_t *, loff_t *);
  798. int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
  799. void __user *, size_t *, loff_t *);
  800. int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
  801. void __user *, size_t *, loff_t *);
  802. int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
  803. void __user *, size_t *, loff_t *);
  804. extern int numa_zonelist_order_handler(struct ctl_table *, int,
  805. void __user *, size_t *, loff_t *);
  806. extern char numa_zonelist_order[];
  807. #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
  808. #ifndef CONFIG_NEED_MULTIPLE_NODES
  809. extern struct pglist_data contig_page_data;
  810. #define NODE_DATA(nid) (&contig_page_data)
  811. #define NODE_MEM_MAP(nid) mem_map
  812. #else /* CONFIG_NEED_MULTIPLE_NODES */
  813. #include <asm/mmzone.h>
  814. #endif /* !CONFIG_NEED_MULTIPLE_NODES */
  815. extern struct pglist_data *first_online_pgdat(void);
  816. extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
  817. extern struct zone *next_zone(struct zone *zone);
  818. /**
  819. * for_each_online_pgdat - helper macro to iterate over all online nodes
  820. * @pgdat - pointer to a pg_data_t variable
  821. */
  822. #define for_each_online_pgdat(pgdat) \
  823. for (pgdat = first_online_pgdat(); \
  824. pgdat; \
  825. pgdat = next_online_pgdat(pgdat))
  826. /**
  827. * for_each_zone - helper macro to iterate over all memory zones
  828. * @zone - pointer to struct zone variable
  829. *
  830. * The user only needs to declare the zone variable, for_each_zone
  831. * fills it in.
  832. */
  833. #define for_each_zone(zone) \
  834. for (zone = (first_online_pgdat())->node_zones; \
  835. zone; \
  836. zone = next_zone(zone))
  837. #define for_each_populated_zone(zone) \
  838. for (zone = (first_online_pgdat())->node_zones; \
  839. zone; \
  840. zone = next_zone(zone)) \
  841. if (!populated_zone(zone)) \
  842. ; /* do nothing */ \
  843. else
  844. static inline struct zone *zonelist_zone(struct zoneref *zoneref)
  845. {
  846. return zoneref->zone;
  847. }
  848. static inline int zonelist_zone_idx(struct zoneref *zoneref)
  849. {
  850. return zoneref->zone_idx;
  851. }
  852. static inline int zonelist_node_idx(struct zoneref *zoneref)
  853. {
  854. #ifdef CONFIG_NUMA
  855. /* zone_to_nid not available in this context */
  856. return zoneref->zone->node;
  857. #else
  858. return 0;
  859. #endif /* CONFIG_NUMA */
  860. }
  861. /**
  862. * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
  863. * @z - The cursor used as a starting point for the search
  864. * @highest_zoneidx - The zone index of the highest zone to return
  865. * @nodes - An optional nodemask to filter the zonelist with
  866. * @zone - The first suitable zone found is returned via this parameter
  867. *
  868. * This function returns the next zone at or below a given zone index that is
  869. * within the allowed nodemask using a cursor as the starting point for the
  870. * search. The zoneref returned is a cursor that represents the current zone
  871. * being examined. It should be advanced by one before calling
  872. * next_zones_zonelist again.
  873. */
  874. struct zoneref *next_zones_zonelist(struct zoneref *z,
  875. enum zone_type highest_zoneidx,
  876. nodemask_t *nodes,
  877. struct zone **zone);
  878. /**
  879. * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
  880. * @zonelist - The zonelist to search for a suitable zone
  881. * @highest_zoneidx - The zone index of the highest zone to return
  882. * @nodes - An optional nodemask to filter the zonelist with
  883. * @zone - The first suitable zone found is returned via this parameter
  884. *
  885. * This function returns the first zone at or below a given zone index that is
  886. * within the allowed nodemask. The zoneref returned is a cursor that can be
  887. * used to iterate the zonelist with next_zones_zonelist by advancing it by
  888. * one before calling.
  889. */
  890. static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
  891. enum zone_type highest_zoneidx,
  892. nodemask_t *nodes,
  893. struct zone **zone)
  894. {
  895. return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
  896. zone);
  897. }
  898. /**
  899. * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
  900. * @zone - The current zone in the iterator
  901. * @z - The current pointer within zonelist->zones being iterated
  902. * @zlist - The zonelist being iterated
  903. * @highidx - The zone index of the highest zone to return
  904. * @nodemask - Nodemask allowed by the allocator
  905. *
  906. * This iterator iterates though all zones at or below a given zone index and
  907. * within a given nodemask
  908. */
  909. #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
  910. for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
  911. zone; \
  912. z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
  913. /**
  914. * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
  915. * @zone - The current zone in the iterator
  916. * @z - The current pointer within zonelist->zones being iterated
  917. * @zlist - The zonelist being iterated
  918. * @highidx - The zone index of the highest zone to return
  919. *
  920. * This iterator iterates though all zones at or below a given zone index.
  921. */
  922. #define for_each_zone_zonelist(zone, z, zlist, highidx) \
  923. for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
  924. #ifdef CONFIG_SPARSEMEM
  925. #include <asm/sparsemem.h>
  926. #endif
  927. #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
  928. !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
  929. static inline unsigned long early_pfn_to_nid(unsigned long pfn)
  930. {
  931. return 0;
  932. }
  933. #endif
  934. #ifdef CONFIG_FLATMEM
  935. #define pfn_to_nid(pfn) (0)
  936. #endif
  937. #ifdef CONFIG_SPARSEMEM
  938. /*
  939. * SECTION_SHIFT #bits space required to store a section #
  940. *
  941. * PA_SECTION_SHIFT physical address to/from section number
  942. * PFN_SECTION_SHIFT pfn to/from section number
  943. */
  944. #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
  945. #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
  946. #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
  947. #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
  948. #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
  949. #define SECTION_BLOCKFLAGS_BITS \
  950. ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
  951. #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
  952. #error Allocator MAX_ORDER exceeds SECTION_SIZE
  953. #endif
  954. #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
  955. #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
  956. #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
  957. #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
  958. struct page;
  959. struct page_cgroup;
  960. struct mem_section {
  961. /*
  962. * This is, logically, a pointer to an array of struct
  963. * pages. However, it is stored with some other magic.
  964. * (see sparse.c::sparse_init_one_section())
  965. *
  966. * Additionally during early boot we encode node id of
  967. * the location of the section here to guide allocation.
  968. * (see sparse.c::memory_present())
  969. *
  970. * Making it a UL at least makes someone do a cast
  971. * before using it wrong.
  972. */
  973. unsigned long section_mem_map;
  974. /* See declaration of similar field in struct zone */
  975. unsigned long *pageblock_flags;
  976. #ifdef CONFIG_MEMCG
  977. /*
  978. * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
  979. * section. (see memcontrol.h/page_cgroup.h about this.)
  980. */
  981. struct page_cgroup *page_cgroup;
  982. unsigned long pad;
  983. #endif
  984. /*
  985. * WARNING: mem_section must be a power-of-2 in size for the
  986. * calculation and use of SECTION_ROOT_MASK to make sense.
  987. */
  988. };
  989. #ifdef CONFIG_SPARSEMEM_EXTREME
  990. #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
  991. #else
  992. #define SECTIONS_PER_ROOT 1
  993. #endif
  994. #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
  995. #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
  996. #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
  997. #ifdef CONFIG_SPARSEMEM_EXTREME
  998. extern struct mem_section *mem_section[NR_SECTION_ROOTS];
  999. #else
  1000. extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
  1001. #endif
  1002. static inline struct mem_section *__nr_to_section(unsigned long nr)
  1003. {
  1004. if (!mem_section[SECTION_NR_TO_ROOT(nr)])
  1005. return NULL;
  1006. return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
  1007. }
  1008. extern int __section_nr(struct mem_section* ms);
  1009. extern unsigned long usemap_size(void);
  1010. /*
  1011. * We use the lower bits of the mem_map pointer to store
  1012. * a little bit of information. There should be at least
  1013. * 3 bits here due to 32-bit alignment.
  1014. */
  1015. #define SECTION_MARKED_PRESENT (1UL<<0)
  1016. #define SECTION_HAS_MEM_MAP (1UL<<1)
  1017. #define SECTION_MAP_LAST_BIT (1UL<<2)
  1018. #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
  1019. #define SECTION_NID_SHIFT 2
  1020. static inline struct page *__section_mem_map_addr(struct mem_section *section)
  1021. {
  1022. unsigned long map = section->section_mem_map;
  1023. map &= SECTION_MAP_MASK;
  1024. return (struct page *)map;
  1025. }
  1026. static inline int present_section(struct mem_section *section)
  1027. {
  1028. return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
  1029. }
  1030. static inline int present_section_nr(unsigned long nr)
  1031. {
  1032. return present_section(__nr_to_section(nr));
  1033. }
  1034. static inline int valid_section(struct mem_section *section)
  1035. {
  1036. return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
  1037. }
  1038. static inline int valid_section_nr(unsigned long nr)
  1039. {
  1040. return valid_section(__nr_to_section(nr));
  1041. }
  1042. static inline struct mem_section *__pfn_to_section(unsigned long pfn)
  1043. {
  1044. return __nr_to_section(pfn_to_section_nr(pfn));
  1045. }
  1046. #ifndef CONFIG_HAVE_ARCH_PFN_VALID
  1047. static inline int pfn_valid(unsigned long pfn)
  1048. {
  1049. if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
  1050. return 0;
  1051. return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
  1052. }
  1053. #endif
  1054. static inline int pfn_present(unsigned long pfn)
  1055. {
  1056. if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
  1057. return 0;
  1058. return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
  1059. }
  1060. /*
  1061. * These are _only_ used during initialisation, therefore they
  1062. * can use __initdata ... They could have names to indicate
  1063. * this restriction.
  1064. */
  1065. #ifdef CONFIG_NUMA
  1066. #define pfn_to_nid(pfn) \
  1067. ({ \
  1068. unsigned long __pfn_to_nid_pfn = (pfn); \
  1069. page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
  1070. })
  1071. #else
  1072. #define pfn_to_nid(pfn) (0)
  1073. #endif
  1074. #define early_pfn_valid(pfn) pfn_valid(pfn)
  1075. void sparse_init(void);
  1076. #else
  1077. #define sparse_init() do {} while (0)
  1078. #define sparse_index_init(_sec, _nid) do {} while (0)
  1079. #endif /* CONFIG_SPARSEMEM */
  1080. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  1081. bool early_pfn_in_nid(unsigned long pfn, int nid);
  1082. #else
  1083. #define early_pfn_in_nid(pfn, nid) (1)
  1084. #endif
  1085. #ifndef early_pfn_valid
  1086. #define early_pfn_valid(pfn) (1)
  1087. #endif
  1088. void memory_present(int nid, unsigned long start, unsigned long end);
  1089. unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
  1090. /*
  1091. * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
  1092. * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
  1093. * pfn_valid_within() should be used in this case; we optimise this away
  1094. * when we have no holes within a MAX_ORDER_NR_PAGES block.
  1095. */
  1096. #ifdef CONFIG_HOLES_IN_ZONE
  1097. #define pfn_valid_within(pfn) pfn_valid(pfn)
  1098. #else
  1099. #define pfn_valid_within(pfn) (1)
  1100. #endif
  1101. #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
  1102. /*
  1103. * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
  1104. * associated with it or not. In FLATMEM, it is expected that holes always
  1105. * have valid memmap as long as there is valid PFNs either side of the hole.
  1106. * In SPARSEMEM, it is assumed that a valid section has a memmap for the
  1107. * entire section.
  1108. *
  1109. * However, an ARM, and maybe other embedded architectures in the future
  1110. * free memmap backing holes to save memory on the assumption the memmap is
  1111. * never used. The page_zone linkages are then broken even though pfn_valid()
  1112. * returns true. A walker of the full memmap must then do this additional
  1113. * check to ensure the memmap they are looking at is sane by making sure
  1114. * the zone and PFN linkages are still valid. This is expensive, but walkers
  1115. * of the full memmap are extremely rare.
  1116. */
  1117. int memmap_valid_within(unsigned long pfn,
  1118. struct page *page, struct zone *zone);
  1119. #else
  1120. static inline int memmap_valid_within(unsigned long pfn,
  1121. struct page *page, struct zone *zone)
  1122. {
  1123. return 1;
  1124. }
  1125. #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
  1126. #endif /* !__GENERATING_BOUNDS.H */
  1127. #endif /* !__ASSEMBLY__ */
  1128. #endif /* _LINUX_MMZONE_H */