ctree.c 100 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892
  1. /*
  2. * Copyright (C) 2007,2008 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/sched.h>
  19. #include "ctree.h"
  20. #include "disk-io.h"
  21. #include "transaction.h"
  22. #include "print-tree.h"
  23. #include "locking.h"
  24. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  25. *root, struct btrfs_path *path, int level);
  26. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  27. *root, struct btrfs_key *ins_key,
  28. struct btrfs_path *path, int data_size, int extend);
  29. static int push_node_left(struct btrfs_trans_handle *trans,
  30. struct btrfs_root *root, struct extent_buffer *dst,
  31. struct extent_buffer *src, int empty);
  32. static int balance_node_right(struct btrfs_trans_handle *trans,
  33. struct btrfs_root *root,
  34. struct extent_buffer *dst_buf,
  35. struct extent_buffer *src_buf);
  36. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  37. struct btrfs_path *path, int level, int slot);
  38. inline void btrfs_init_path(struct btrfs_path *p)
  39. {
  40. memset(p, 0, sizeof(*p));
  41. }
  42. struct btrfs_path *btrfs_alloc_path(void)
  43. {
  44. struct btrfs_path *path;
  45. path = kmem_cache_alloc(btrfs_path_cachep, GFP_NOFS);
  46. if (path) {
  47. btrfs_init_path(path);
  48. path->reada = 1;
  49. }
  50. return path;
  51. }
  52. /* this also releases the path */
  53. void btrfs_free_path(struct btrfs_path *p)
  54. {
  55. btrfs_release_path(NULL, p);
  56. kmem_cache_free(btrfs_path_cachep, p);
  57. }
  58. /*
  59. * path release drops references on the extent buffers in the path
  60. * and it drops any locks held by this path
  61. *
  62. * It is safe to call this on paths that no locks or extent buffers held.
  63. */
  64. void noinline btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
  65. {
  66. int i;
  67. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  68. p->slots[i] = 0;
  69. if (!p->nodes[i])
  70. continue;
  71. if (p->locks[i]) {
  72. btrfs_tree_unlock(p->nodes[i]);
  73. p->locks[i] = 0;
  74. }
  75. free_extent_buffer(p->nodes[i]);
  76. p->nodes[i] = NULL;
  77. }
  78. }
  79. /*
  80. * safely gets a reference on the root node of a tree. A lock
  81. * is not taken, so a concurrent writer may put a different node
  82. * at the root of the tree. See btrfs_lock_root_node for the
  83. * looping required.
  84. *
  85. * The extent buffer returned by this has a reference taken, so
  86. * it won't disappear. It may stop being the root of the tree
  87. * at any time because there are no locks held.
  88. */
  89. struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
  90. {
  91. struct extent_buffer *eb;
  92. spin_lock(&root->node_lock);
  93. eb = root->node;
  94. extent_buffer_get(eb);
  95. spin_unlock(&root->node_lock);
  96. return eb;
  97. }
  98. /* loop around taking references on and locking the root node of the
  99. * tree until you end up with a lock on the root. A locked buffer
  100. * is returned, with a reference held.
  101. */
  102. struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
  103. {
  104. struct extent_buffer *eb;
  105. while(1) {
  106. eb = btrfs_root_node(root);
  107. btrfs_tree_lock(eb);
  108. spin_lock(&root->node_lock);
  109. if (eb == root->node) {
  110. spin_unlock(&root->node_lock);
  111. break;
  112. }
  113. spin_unlock(&root->node_lock);
  114. btrfs_tree_unlock(eb);
  115. free_extent_buffer(eb);
  116. }
  117. return eb;
  118. }
  119. /* cowonly root (everything not a reference counted cow subvolume), just get
  120. * put onto a simple dirty list. transaction.c walks this to make sure they
  121. * get properly updated on disk.
  122. */
  123. static void add_root_to_dirty_list(struct btrfs_root *root)
  124. {
  125. if (root->track_dirty && list_empty(&root->dirty_list)) {
  126. list_add(&root->dirty_list,
  127. &root->fs_info->dirty_cowonly_roots);
  128. }
  129. }
  130. /*
  131. * used by snapshot creation to make a copy of a root for a tree with
  132. * a given objectid. The buffer with the new root node is returned in
  133. * cow_ret, and this func returns zero on success or a negative error code.
  134. */
  135. int btrfs_copy_root(struct btrfs_trans_handle *trans,
  136. struct btrfs_root *root,
  137. struct extent_buffer *buf,
  138. struct extent_buffer **cow_ret, u64 new_root_objectid)
  139. {
  140. struct extent_buffer *cow;
  141. u32 nritems;
  142. int ret = 0;
  143. int level;
  144. struct btrfs_root *new_root;
  145. new_root = kmalloc(sizeof(*new_root), GFP_NOFS);
  146. if (!new_root)
  147. return -ENOMEM;
  148. memcpy(new_root, root, sizeof(*new_root));
  149. new_root->root_key.objectid = new_root_objectid;
  150. WARN_ON(root->ref_cows && trans->transid !=
  151. root->fs_info->running_transaction->transid);
  152. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  153. level = btrfs_header_level(buf);
  154. nritems = btrfs_header_nritems(buf);
  155. cow = btrfs_alloc_free_block(trans, new_root, buf->len, 0,
  156. new_root_objectid, trans->transid,
  157. level, buf->start, 0);
  158. if (IS_ERR(cow)) {
  159. kfree(new_root);
  160. return PTR_ERR(cow);
  161. }
  162. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  163. btrfs_set_header_bytenr(cow, cow->start);
  164. btrfs_set_header_generation(cow, trans->transid);
  165. btrfs_set_header_owner(cow, new_root_objectid);
  166. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN);
  167. write_extent_buffer(cow, root->fs_info->fsid,
  168. (unsigned long)btrfs_header_fsid(cow),
  169. BTRFS_FSID_SIZE);
  170. WARN_ON(btrfs_header_generation(buf) > trans->transid);
  171. ret = btrfs_inc_ref(trans, new_root, buf, cow, NULL);
  172. kfree(new_root);
  173. if (ret)
  174. return ret;
  175. btrfs_mark_buffer_dirty(cow);
  176. *cow_ret = cow;
  177. return 0;
  178. }
  179. /*
  180. * does the dirty work in cow of a single block. The parent block
  181. * (if supplied) is updated to point to the new cow copy. The new
  182. * buffer is marked dirty and returned locked. If you modify the block
  183. * it needs to be marked dirty again.
  184. *
  185. * search_start -- an allocation hint for the new block
  186. *
  187. * empty_size -- a hint that you plan on doing more cow. This is the size in bytes
  188. * the allocator should try to find free next to the block it returns. This is
  189. * just a hint and may be ignored by the allocator.
  190. *
  191. * prealloc_dest -- if you have already reserved a destination for the cow,
  192. * this uses that block instead of allocating a new one. btrfs_alloc_reserved_extent
  193. * is used to finish the allocation.
  194. */
  195. static int noinline __btrfs_cow_block(struct btrfs_trans_handle *trans,
  196. struct btrfs_root *root,
  197. struct extent_buffer *buf,
  198. struct extent_buffer *parent, int parent_slot,
  199. struct extent_buffer **cow_ret,
  200. u64 search_start, u64 empty_size,
  201. u64 prealloc_dest)
  202. {
  203. u64 parent_start;
  204. struct extent_buffer *cow;
  205. u32 nritems;
  206. int ret = 0;
  207. int level;
  208. int unlock_orig = 0;
  209. if (*cow_ret == buf)
  210. unlock_orig = 1;
  211. WARN_ON(!btrfs_tree_locked(buf));
  212. if (parent)
  213. parent_start = parent->start;
  214. else
  215. parent_start = 0;
  216. WARN_ON(root->ref_cows && trans->transid !=
  217. root->fs_info->running_transaction->transid);
  218. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  219. level = btrfs_header_level(buf);
  220. nritems = btrfs_header_nritems(buf);
  221. if (prealloc_dest) {
  222. struct btrfs_key ins;
  223. ins.objectid = prealloc_dest;
  224. ins.offset = buf->len;
  225. ins.type = BTRFS_EXTENT_ITEM_KEY;
  226. ret = btrfs_alloc_reserved_extent(trans, root, parent_start,
  227. root->root_key.objectid,
  228. trans->transid, level, &ins);
  229. BUG_ON(ret);
  230. cow = btrfs_init_new_buffer(trans, root, prealloc_dest,
  231. buf->len);
  232. } else {
  233. cow = btrfs_alloc_free_block(trans, root, buf->len,
  234. parent_start,
  235. root->root_key.objectid,
  236. trans->transid, level,
  237. search_start, empty_size);
  238. }
  239. if (IS_ERR(cow))
  240. return PTR_ERR(cow);
  241. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  242. btrfs_set_header_bytenr(cow, cow->start);
  243. btrfs_set_header_generation(cow, trans->transid);
  244. btrfs_set_header_owner(cow, root->root_key.objectid);
  245. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN);
  246. write_extent_buffer(cow, root->fs_info->fsid,
  247. (unsigned long)btrfs_header_fsid(cow),
  248. BTRFS_FSID_SIZE);
  249. WARN_ON(btrfs_header_generation(buf) > trans->transid);
  250. if (btrfs_header_generation(buf) != trans->transid) {
  251. u32 nr_extents;
  252. ret = btrfs_inc_ref(trans, root, buf, cow, &nr_extents);
  253. if (ret)
  254. return ret;
  255. ret = btrfs_cache_ref(trans, root, buf, nr_extents);
  256. WARN_ON(ret);
  257. } else if (btrfs_header_owner(buf) == BTRFS_TREE_RELOC_OBJECTID) {
  258. /*
  259. * There are only two places that can drop reference to
  260. * tree blocks owned by living reloc trees, one is here,
  261. * the other place is btrfs_drop_subtree. In both places,
  262. * we check reference count while tree block is locked.
  263. * Furthermore, if reference count is one, it won't get
  264. * increased by someone else.
  265. */
  266. u32 refs;
  267. ret = btrfs_lookup_extent_ref(trans, root, buf->start,
  268. buf->len, &refs);
  269. BUG_ON(ret);
  270. if (refs == 1) {
  271. ret = btrfs_update_ref(trans, root, buf, cow,
  272. 0, nritems);
  273. clean_tree_block(trans, root, buf);
  274. } else {
  275. ret = btrfs_inc_ref(trans, root, buf, cow, NULL);
  276. }
  277. BUG_ON(ret);
  278. } else {
  279. ret = btrfs_update_ref(trans, root, buf, cow, 0, nritems);
  280. if (ret)
  281. return ret;
  282. clean_tree_block(trans, root, buf);
  283. }
  284. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
  285. ret = btrfs_reloc_tree_cache_ref(trans, root, cow, buf->start);
  286. WARN_ON(ret);
  287. }
  288. if (buf == root->node) {
  289. WARN_ON(parent && parent != buf);
  290. spin_lock(&root->node_lock);
  291. root->node = cow;
  292. extent_buffer_get(cow);
  293. spin_unlock(&root->node_lock);
  294. if (buf != root->commit_root) {
  295. btrfs_free_extent(trans, root, buf->start,
  296. buf->len, buf->start,
  297. root->root_key.objectid,
  298. btrfs_header_generation(buf),
  299. level, 1);
  300. }
  301. free_extent_buffer(buf);
  302. add_root_to_dirty_list(root);
  303. } else {
  304. btrfs_set_node_blockptr(parent, parent_slot,
  305. cow->start);
  306. WARN_ON(trans->transid == 0);
  307. btrfs_set_node_ptr_generation(parent, parent_slot,
  308. trans->transid);
  309. btrfs_mark_buffer_dirty(parent);
  310. WARN_ON(btrfs_header_generation(parent) != trans->transid);
  311. btrfs_free_extent(trans, root, buf->start, buf->len,
  312. parent_start, btrfs_header_owner(parent),
  313. btrfs_header_generation(parent), level, 1);
  314. }
  315. if (unlock_orig)
  316. btrfs_tree_unlock(buf);
  317. free_extent_buffer(buf);
  318. btrfs_mark_buffer_dirty(cow);
  319. *cow_ret = cow;
  320. return 0;
  321. }
  322. /*
  323. * cows a single block, see __btrfs_cow_block for the real work.
  324. * This version of it has extra checks so that a block isn't cow'd more than
  325. * once per transaction, as long as it hasn't been written yet
  326. */
  327. int noinline btrfs_cow_block(struct btrfs_trans_handle *trans,
  328. struct btrfs_root *root, struct extent_buffer *buf,
  329. struct extent_buffer *parent, int parent_slot,
  330. struct extent_buffer **cow_ret, u64 prealloc_dest)
  331. {
  332. u64 search_start;
  333. int ret;
  334. if (trans->transaction != root->fs_info->running_transaction) {
  335. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  336. root->fs_info->running_transaction->transid);
  337. WARN_ON(1);
  338. }
  339. if (trans->transid != root->fs_info->generation) {
  340. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  341. root->fs_info->generation);
  342. WARN_ON(1);
  343. }
  344. spin_lock(&root->fs_info->hash_lock);
  345. if (btrfs_header_generation(buf) == trans->transid &&
  346. btrfs_header_owner(buf) == root->root_key.objectid &&
  347. !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
  348. *cow_ret = buf;
  349. spin_unlock(&root->fs_info->hash_lock);
  350. WARN_ON(prealloc_dest);
  351. return 0;
  352. }
  353. spin_unlock(&root->fs_info->hash_lock);
  354. search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
  355. ret = __btrfs_cow_block(trans, root, buf, parent,
  356. parent_slot, cow_ret, search_start, 0,
  357. prealloc_dest);
  358. return ret;
  359. }
  360. /*
  361. * helper function for defrag to decide if two blocks pointed to by a
  362. * node are actually close by
  363. */
  364. static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
  365. {
  366. if (blocknr < other && other - (blocknr + blocksize) < 32768)
  367. return 1;
  368. if (blocknr > other && blocknr - (other + blocksize) < 32768)
  369. return 1;
  370. return 0;
  371. }
  372. /*
  373. * compare two keys in a memcmp fashion
  374. */
  375. static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
  376. {
  377. struct btrfs_key k1;
  378. btrfs_disk_key_to_cpu(&k1, disk);
  379. if (k1.objectid > k2->objectid)
  380. return 1;
  381. if (k1.objectid < k2->objectid)
  382. return -1;
  383. if (k1.type > k2->type)
  384. return 1;
  385. if (k1.type < k2->type)
  386. return -1;
  387. if (k1.offset > k2->offset)
  388. return 1;
  389. if (k1.offset < k2->offset)
  390. return -1;
  391. return 0;
  392. }
  393. /*
  394. * same as comp_keys only with two btrfs_key's
  395. */
  396. static int comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
  397. {
  398. if (k1->objectid > k2->objectid)
  399. return 1;
  400. if (k1->objectid < k2->objectid)
  401. return -1;
  402. if (k1->type > k2->type)
  403. return 1;
  404. if (k1->type < k2->type)
  405. return -1;
  406. if (k1->offset > k2->offset)
  407. return 1;
  408. if (k1->offset < k2->offset)
  409. return -1;
  410. return 0;
  411. }
  412. /*
  413. * this is used by the defrag code to go through all the
  414. * leaves pointed to by a node and reallocate them so that
  415. * disk order is close to key order
  416. */
  417. int btrfs_realloc_node(struct btrfs_trans_handle *trans,
  418. struct btrfs_root *root, struct extent_buffer *parent,
  419. int start_slot, int cache_only, u64 *last_ret,
  420. struct btrfs_key *progress)
  421. {
  422. struct extent_buffer *cur;
  423. u64 blocknr;
  424. u64 gen;
  425. u64 search_start = *last_ret;
  426. u64 last_block = 0;
  427. u64 other;
  428. u32 parent_nritems;
  429. int end_slot;
  430. int i;
  431. int err = 0;
  432. int parent_level;
  433. int uptodate;
  434. u32 blocksize;
  435. int progress_passed = 0;
  436. struct btrfs_disk_key disk_key;
  437. parent_level = btrfs_header_level(parent);
  438. if (cache_only && parent_level != 1)
  439. return 0;
  440. if (trans->transaction != root->fs_info->running_transaction) {
  441. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  442. root->fs_info->running_transaction->transid);
  443. WARN_ON(1);
  444. }
  445. if (trans->transid != root->fs_info->generation) {
  446. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  447. root->fs_info->generation);
  448. WARN_ON(1);
  449. }
  450. parent_nritems = btrfs_header_nritems(parent);
  451. blocksize = btrfs_level_size(root, parent_level - 1);
  452. end_slot = parent_nritems;
  453. if (parent_nritems == 1)
  454. return 0;
  455. for (i = start_slot; i < end_slot; i++) {
  456. int close = 1;
  457. if (!parent->map_token) {
  458. map_extent_buffer(parent,
  459. btrfs_node_key_ptr_offset(i),
  460. sizeof(struct btrfs_key_ptr),
  461. &parent->map_token, &parent->kaddr,
  462. &parent->map_start, &parent->map_len,
  463. KM_USER1);
  464. }
  465. btrfs_node_key(parent, &disk_key, i);
  466. if (!progress_passed && comp_keys(&disk_key, progress) < 0)
  467. continue;
  468. progress_passed = 1;
  469. blocknr = btrfs_node_blockptr(parent, i);
  470. gen = btrfs_node_ptr_generation(parent, i);
  471. if (last_block == 0)
  472. last_block = blocknr;
  473. if (i > 0) {
  474. other = btrfs_node_blockptr(parent, i - 1);
  475. close = close_blocks(blocknr, other, blocksize);
  476. }
  477. if (!close && i < end_slot - 2) {
  478. other = btrfs_node_blockptr(parent, i + 1);
  479. close = close_blocks(blocknr, other, blocksize);
  480. }
  481. if (close) {
  482. last_block = blocknr;
  483. continue;
  484. }
  485. if (parent->map_token) {
  486. unmap_extent_buffer(parent, parent->map_token,
  487. KM_USER1);
  488. parent->map_token = NULL;
  489. }
  490. cur = btrfs_find_tree_block(root, blocknr, blocksize);
  491. if (cur)
  492. uptodate = btrfs_buffer_uptodate(cur, gen);
  493. else
  494. uptodate = 0;
  495. if (!cur || !uptodate) {
  496. if (cache_only) {
  497. free_extent_buffer(cur);
  498. continue;
  499. }
  500. if (!cur) {
  501. cur = read_tree_block(root, blocknr,
  502. blocksize, gen);
  503. } else if (!uptodate) {
  504. btrfs_read_buffer(cur, gen);
  505. }
  506. }
  507. if (search_start == 0)
  508. search_start = last_block;
  509. btrfs_tree_lock(cur);
  510. err = __btrfs_cow_block(trans, root, cur, parent, i,
  511. &cur, search_start,
  512. min(16 * blocksize,
  513. (end_slot - i) * blocksize), 0);
  514. if (err) {
  515. btrfs_tree_unlock(cur);
  516. free_extent_buffer(cur);
  517. break;
  518. }
  519. search_start = cur->start;
  520. last_block = cur->start;
  521. *last_ret = search_start;
  522. btrfs_tree_unlock(cur);
  523. free_extent_buffer(cur);
  524. }
  525. if (parent->map_token) {
  526. unmap_extent_buffer(parent, parent->map_token,
  527. KM_USER1);
  528. parent->map_token = NULL;
  529. }
  530. return err;
  531. }
  532. /*
  533. * The leaf data grows from end-to-front in the node.
  534. * this returns the address of the start of the last item,
  535. * which is the stop of the leaf data stack
  536. */
  537. static inline unsigned int leaf_data_end(struct btrfs_root *root,
  538. struct extent_buffer *leaf)
  539. {
  540. u32 nr = btrfs_header_nritems(leaf);
  541. if (nr == 0)
  542. return BTRFS_LEAF_DATA_SIZE(root);
  543. return btrfs_item_offset_nr(leaf, nr - 1);
  544. }
  545. /*
  546. * extra debugging checks to make sure all the items in a key are
  547. * well formed and in the proper order
  548. */
  549. static int check_node(struct btrfs_root *root, struct btrfs_path *path,
  550. int level)
  551. {
  552. struct extent_buffer *parent = NULL;
  553. struct extent_buffer *node = path->nodes[level];
  554. struct btrfs_disk_key parent_key;
  555. struct btrfs_disk_key node_key;
  556. int parent_slot;
  557. int slot;
  558. struct btrfs_key cpukey;
  559. u32 nritems = btrfs_header_nritems(node);
  560. if (path->nodes[level + 1])
  561. parent = path->nodes[level + 1];
  562. slot = path->slots[level];
  563. BUG_ON(nritems == 0);
  564. if (parent) {
  565. parent_slot = path->slots[level + 1];
  566. btrfs_node_key(parent, &parent_key, parent_slot);
  567. btrfs_node_key(node, &node_key, 0);
  568. BUG_ON(memcmp(&parent_key, &node_key,
  569. sizeof(struct btrfs_disk_key)));
  570. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  571. btrfs_header_bytenr(node));
  572. }
  573. BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
  574. if (slot != 0) {
  575. btrfs_node_key_to_cpu(node, &cpukey, slot - 1);
  576. btrfs_node_key(node, &node_key, slot);
  577. BUG_ON(comp_keys(&node_key, &cpukey) <= 0);
  578. }
  579. if (slot < nritems - 1) {
  580. btrfs_node_key_to_cpu(node, &cpukey, slot + 1);
  581. btrfs_node_key(node, &node_key, slot);
  582. BUG_ON(comp_keys(&node_key, &cpukey) >= 0);
  583. }
  584. return 0;
  585. }
  586. /*
  587. * extra checking to make sure all the items in a leaf are
  588. * well formed and in the proper order
  589. */
  590. static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
  591. int level)
  592. {
  593. struct extent_buffer *leaf = path->nodes[level];
  594. struct extent_buffer *parent = NULL;
  595. int parent_slot;
  596. struct btrfs_key cpukey;
  597. struct btrfs_disk_key parent_key;
  598. struct btrfs_disk_key leaf_key;
  599. int slot = path->slots[0];
  600. u32 nritems = btrfs_header_nritems(leaf);
  601. if (path->nodes[level + 1])
  602. parent = path->nodes[level + 1];
  603. if (nritems == 0)
  604. return 0;
  605. if (parent) {
  606. parent_slot = path->slots[level + 1];
  607. btrfs_node_key(parent, &parent_key, parent_slot);
  608. btrfs_item_key(leaf, &leaf_key, 0);
  609. BUG_ON(memcmp(&parent_key, &leaf_key,
  610. sizeof(struct btrfs_disk_key)));
  611. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  612. btrfs_header_bytenr(leaf));
  613. }
  614. #if 0
  615. for (i = 0; nritems > 1 && i < nritems - 2; i++) {
  616. btrfs_item_key_to_cpu(leaf, &cpukey, i + 1);
  617. btrfs_item_key(leaf, &leaf_key, i);
  618. if (comp_keys(&leaf_key, &cpukey) >= 0) {
  619. btrfs_print_leaf(root, leaf);
  620. printk("slot %d offset bad key\n", i);
  621. BUG_ON(1);
  622. }
  623. if (btrfs_item_offset_nr(leaf, i) !=
  624. btrfs_item_end_nr(leaf, i + 1)) {
  625. btrfs_print_leaf(root, leaf);
  626. printk("slot %d offset bad\n", i);
  627. BUG_ON(1);
  628. }
  629. if (i == 0) {
  630. if (btrfs_item_offset_nr(leaf, i) +
  631. btrfs_item_size_nr(leaf, i) !=
  632. BTRFS_LEAF_DATA_SIZE(root)) {
  633. btrfs_print_leaf(root, leaf);
  634. printk("slot %d first offset bad\n", i);
  635. BUG_ON(1);
  636. }
  637. }
  638. }
  639. if (nritems > 0) {
  640. if (btrfs_item_size_nr(leaf, nritems - 1) > 4096) {
  641. btrfs_print_leaf(root, leaf);
  642. printk("slot %d bad size \n", nritems - 1);
  643. BUG_ON(1);
  644. }
  645. }
  646. #endif
  647. if (slot != 0 && slot < nritems - 1) {
  648. btrfs_item_key(leaf, &leaf_key, slot);
  649. btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1);
  650. if (comp_keys(&leaf_key, &cpukey) <= 0) {
  651. btrfs_print_leaf(root, leaf);
  652. printk("slot %d offset bad key\n", slot);
  653. BUG_ON(1);
  654. }
  655. if (btrfs_item_offset_nr(leaf, slot - 1) !=
  656. btrfs_item_end_nr(leaf, slot)) {
  657. btrfs_print_leaf(root, leaf);
  658. printk("slot %d offset bad\n", slot);
  659. BUG_ON(1);
  660. }
  661. }
  662. if (slot < nritems - 1) {
  663. btrfs_item_key(leaf, &leaf_key, slot);
  664. btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1);
  665. BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0);
  666. if (btrfs_item_offset_nr(leaf, slot) !=
  667. btrfs_item_end_nr(leaf, slot + 1)) {
  668. btrfs_print_leaf(root, leaf);
  669. printk("slot %d offset bad\n", slot);
  670. BUG_ON(1);
  671. }
  672. }
  673. BUG_ON(btrfs_item_offset_nr(leaf, 0) +
  674. btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root));
  675. return 0;
  676. }
  677. static int noinline check_block(struct btrfs_root *root,
  678. struct btrfs_path *path, int level)
  679. {
  680. u64 found_start;
  681. return 0;
  682. if (btrfs_header_level(path->nodes[level]) != level)
  683. printk("warning: bad level %Lu wanted %d found %d\n",
  684. path->nodes[level]->start, level,
  685. btrfs_header_level(path->nodes[level]));
  686. found_start = btrfs_header_bytenr(path->nodes[level]);
  687. if (found_start != path->nodes[level]->start) {
  688. printk("warning: bad bytentr %Lu found %Lu\n",
  689. path->nodes[level]->start, found_start);
  690. }
  691. #if 0
  692. struct extent_buffer *buf = path->nodes[level];
  693. if (memcmp_extent_buffer(buf, root->fs_info->fsid,
  694. (unsigned long)btrfs_header_fsid(buf),
  695. BTRFS_FSID_SIZE)) {
  696. printk("warning bad block %Lu\n", buf->start);
  697. return 1;
  698. }
  699. #endif
  700. if (level == 0)
  701. return check_leaf(root, path, level);
  702. return check_node(root, path, level);
  703. }
  704. /*
  705. * search for key in the extent_buffer. The items start at offset p,
  706. * and they are item_size apart. There are 'max' items in p.
  707. *
  708. * the slot in the array is returned via slot, and it points to
  709. * the place where you would insert key if it is not found in
  710. * the array.
  711. *
  712. * slot may point to max if the key is bigger than all of the keys
  713. */
  714. static noinline int generic_bin_search(struct extent_buffer *eb,
  715. unsigned long p,
  716. int item_size, struct btrfs_key *key,
  717. int max, int *slot)
  718. {
  719. int low = 0;
  720. int high = max;
  721. int mid;
  722. int ret;
  723. struct btrfs_disk_key *tmp = NULL;
  724. struct btrfs_disk_key unaligned;
  725. unsigned long offset;
  726. char *map_token = NULL;
  727. char *kaddr = NULL;
  728. unsigned long map_start = 0;
  729. unsigned long map_len = 0;
  730. int err;
  731. while(low < high) {
  732. mid = (low + high) / 2;
  733. offset = p + mid * item_size;
  734. if (!map_token || offset < map_start ||
  735. (offset + sizeof(struct btrfs_disk_key)) >
  736. map_start + map_len) {
  737. if (map_token) {
  738. unmap_extent_buffer(eb, map_token, KM_USER0);
  739. map_token = NULL;
  740. }
  741. err = map_extent_buffer(eb, offset,
  742. sizeof(struct btrfs_disk_key),
  743. &map_token, &kaddr,
  744. &map_start, &map_len, KM_USER0);
  745. if (!err) {
  746. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  747. map_start);
  748. } else {
  749. read_extent_buffer(eb, &unaligned,
  750. offset, sizeof(unaligned));
  751. tmp = &unaligned;
  752. }
  753. } else {
  754. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  755. map_start);
  756. }
  757. ret = comp_keys(tmp, key);
  758. if (ret < 0)
  759. low = mid + 1;
  760. else if (ret > 0)
  761. high = mid;
  762. else {
  763. *slot = mid;
  764. if (map_token)
  765. unmap_extent_buffer(eb, map_token, KM_USER0);
  766. return 0;
  767. }
  768. }
  769. *slot = low;
  770. if (map_token)
  771. unmap_extent_buffer(eb, map_token, KM_USER0);
  772. return 1;
  773. }
  774. /*
  775. * simple bin_search frontend that does the right thing for
  776. * leaves vs nodes
  777. */
  778. static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  779. int level, int *slot)
  780. {
  781. if (level == 0) {
  782. return generic_bin_search(eb,
  783. offsetof(struct btrfs_leaf, items),
  784. sizeof(struct btrfs_item),
  785. key, btrfs_header_nritems(eb),
  786. slot);
  787. } else {
  788. return generic_bin_search(eb,
  789. offsetof(struct btrfs_node, ptrs),
  790. sizeof(struct btrfs_key_ptr),
  791. key, btrfs_header_nritems(eb),
  792. slot);
  793. }
  794. return -1;
  795. }
  796. /* given a node and slot number, this reads the blocks it points to. The
  797. * extent buffer is returned with a reference taken (but unlocked).
  798. * NULL is returned on error.
  799. */
  800. static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
  801. struct extent_buffer *parent, int slot)
  802. {
  803. int level = btrfs_header_level(parent);
  804. if (slot < 0)
  805. return NULL;
  806. if (slot >= btrfs_header_nritems(parent))
  807. return NULL;
  808. BUG_ON(level == 0);
  809. return read_tree_block(root, btrfs_node_blockptr(parent, slot),
  810. btrfs_level_size(root, level - 1),
  811. btrfs_node_ptr_generation(parent, slot));
  812. }
  813. /*
  814. * node level balancing, used to make sure nodes are in proper order for
  815. * item deletion. We balance from the top down, so we have to make sure
  816. * that a deletion won't leave an node completely empty later on.
  817. */
  818. static noinline int balance_level(struct btrfs_trans_handle *trans,
  819. struct btrfs_root *root,
  820. struct btrfs_path *path, int level)
  821. {
  822. struct extent_buffer *right = NULL;
  823. struct extent_buffer *mid;
  824. struct extent_buffer *left = NULL;
  825. struct extent_buffer *parent = NULL;
  826. int ret = 0;
  827. int wret;
  828. int pslot;
  829. int orig_slot = path->slots[level];
  830. int err_on_enospc = 0;
  831. u64 orig_ptr;
  832. if (level == 0)
  833. return 0;
  834. mid = path->nodes[level];
  835. WARN_ON(!path->locks[level]);
  836. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  837. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  838. if (level < BTRFS_MAX_LEVEL - 1)
  839. parent = path->nodes[level + 1];
  840. pslot = path->slots[level + 1];
  841. /*
  842. * deal with the case where there is only one pointer in the root
  843. * by promoting the node below to a root
  844. */
  845. if (!parent) {
  846. struct extent_buffer *child;
  847. if (btrfs_header_nritems(mid) != 1)
  848. return 0;
  849. /* promote the child to a root */
  850. child = read_node_slot(root, mid, 0);
  851. btrfs_tree_lock(child);
  852. BUG_ON(!child);
  853. ret = btrfs_cow_block(trans, root, child, mid, 0, &child, 0);
  854. BUG_ON(ret);
  855. spin_lock(&root->node_lock);
  856. root->node = child;
  857. spin_unlock(&root->node_lock);
  858. ret = btrfs_update_extent_ref(trans, root, child->start,
  859. mid->start, child->start,
  860. root->root_key.objectid,
  861. trans->transid, level - 1);
  862. BUG_ON(ret);
  863. add_root_to_dirty_list(root);
  864. btrfs_tree_unlock(child);
  865. path->locks[level] = 0;
  866. path->nodes[level] = NULL;
  867. clean_tree_block(trans, root, mid);
  868. btrfs_tree_unlock(mid);
  869. /* once for the path */
  870. free_extent_buffer(mid);
  871. ret = btrfs_free_extent(trans, root, mid->start, mid->len,
  872. mid->start, root->root_key.objectid,
  873. btrfs_header_generation(mid),
  874. level, 1);
  875. /* once for the root ptr */
  876. free_extent_buffer(mid);
  877. return ret;
  878. }
  879. if (btrfs_header_nritems(mid) >
  880. BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
  881. return 0;
  882. if (btrfs_header_nritems(mid) < 2)
  883. err_on_enospc = 1;
  884. left = read_node_slot(root, parent, pslot - 1);
  885. if (left) {
  886. btrfs_tree_lock(left);
  887. wret = btrfs_cow_block(trans, root, left,
  888. parent, pslot - 1, &left, 0);
  889. if (wret) {
  890. ret = wret;
  891. goto enospc;
  892. }
  893. }
  894. right = read_node_slot(root, parent, pslot + 1);
  895. if (right) {
  896. btrfs_tree_lock(right);
  897. wret = btrfs_cow_block(trans, root, right,
  898. parent, pslot + 1, &right, 0);
  899. if (wret) {
  900. ret = wret;
  901. goto enospc;
  902. }
  903. }
  904. /* first, try to make some room in the middle buffer */
  905. if (left) {
  906. orig_slot += btrfs_header_nritems(left);
  907. wret = push_node_left(trans, root, left, mid, 1);
  908. if (wret < 0)
  909. ret = wret;
  910. if (btrfs_header_nritems(mid) < 2)
  911. err_on_enospc = 1;
  912. }
  913. /*
  914. * then try to empty the right most buffer into the middle
  915. */
  916. if (right) {
  917. wret = push_node_left(trans, root, mid, right, 1);
  918. if (wret < 0 && wret != -ENOSPC)
  919. ret = wret;
  920. if (btrfs_header_nritems(right) == 0) {
  921. u64 bytenr = right->start;
  922. u64 generation = btrfs_header_generation(parent);
  923. u32 blocksize = right->len;
  924. clean_tree_block(trans, root, right);
  925. btrfs_tree_unlock(right);
  926. free_extent_buffer(right);
  927. right = NULL;
  928. wret = del_ptr(trans, root, path, level + 1, pslot +
  929. 1);
  930. if (wret)
  931. ret = wret;
  932. wret = btrfs_free_extent(trans, root, bytenr,
  933. blocksize, parent->start,
  934. btrfs_header_owner(parent),
  935. generation, level, 1);
  936. if (wret)
  937. ret = wret;
  938. } else {
  939. struct btrfs_disk_key right_key;
  940. btrfs_node_key(right, &right_key, 0);
  941. btrfs_set_node_key(parent, &right_key, pslot + 1);
  942. btrfs_mark_buffer_dirty(parent);
  943. }
  944. }
  945. if (btrfs_header_nritems(mid) == 1) {
  946. /*
  947. * we're not allowed to leave a node with one item in the
  948. * tree during a delete. A deletion from lower in the tree
  949. * could try to delete the only pointer in this node.
  950. * So, pull some keys from the left.
  951. * There has to be a left pointer at this point because
  952. * otherwise we would have pulled some pointers from the
  953. * right
  954. */
  955. BUG_ON(!left);
  956. wret = balance_node_right(trans, root, mid, left);
  957. if (wret < 0) {
  958. ret = wret;
  959. goto enospc;
  960. }
  961. if (wret == 1) {
  962. wret = push_node_left(trans, root, left, mid, 1);
  963. if (wret < 0)
  964. ret = wret;
  965. }
  966. BUG_ON(wret == 1);
  967. }
  968. if (btrfs_header_nritems(mid) == 0) {
  969. /* we've managed to empty the middle node, drop it */
  970. u64 root_gen = btrfs_header_generation(parent);
  971. u64 bytenr = mid->start;
  972. u32 blocksize = mid->len;
  973. clean_tree_block(trans, root, mid);
  974. btrfs_tree_unlock(mid);
  975. free_extent_buffer(mid);
  976. mid = NULL;
  977. wret = del_ptr(trans, root, path, level + 1, pslot);
  978. if (wret)
  979. ret = wret;
  980. wret = btrfs_free_extent(trans, root, bytenr, blocksize,
  981. parent->start,
  982. btrfs_header_owner(parent),
  983. root_gen, level, 1);
  984. if (wret)
  985. ret = wret;
  986. } else {
  987. /* update the parent key to reflect our changes */
  988. struct btrfs_disk_key mid_key;
  989. btrfs_node_key(mid, &mid_key, 0);
  990. btrfs_set_node_key(parent, &mid_key, pslot);
  991. btrfs_mark_buffer_dirty(parent);
  992. }
  993. /* update the path */
  994. if (left) {
  995. if (btrfs_header_nritems(left) > orig_slot) {
  996. extent_buffer_get(left);
  997. /* left was locked after cow */
  998. path->nodes[level] = left;
  999. path->slots[level + 1] -= 1;
  1000. path->slots[level] = orig_slot;
  1001. if (mid) {
  1002. btrfs_tree_unlock(mid);
  1003. free_extent_buffer(mid);
  1004. }
  1005. } else {
  1006. orig_slot -= btrfs_header_nritems(left);
  1007. path->slots[level] = orig_slot;
  1008. }
  1009. }
  1010. /* double check we haven't messed things up */
  1011. check_block(root, path, level);
  1012. if (orig_ptr !=
  1013. btrfs_node_blockptr(path->nodes[level], path->slots[level]))
  1014. BUG();
  1015. enospc:
  1016. if (right) {
  1017. btrfs_tree_unlock(right);
  1018. free_extent_buffer(right);
  1019. }
  1020. if (left) {
  1021. if (path->nodes[level] != left)
  1022. btrfs_tree_unlock(left);
  1023. free_extent_buffer(left);
  1024. }
  1025. return ret;
  1026. }
  1027. /* Node balancing for insertion. Here we only split or push nodes around
  1028. * when they are completely full. This is also done top down, so we
  1029. * have to be pessimistic.
  1030. */
  1031. static int noinline push_nodes_for_insert(struct btrfs_trans_handle *trans,
  1032. struct btrfs_root *root,
  1033. struct btrfs_path *path, int level)
  1034. {
  1035. struct extent_buffer *right = NULL;
  1036. struct extent_buffer *mid;
  1037. struct extent_buffer *left = NULL;
  1038. struct extent_buffer *parent = NULL;
  1039. int ret = 0;
  1040. int wret;
  1041. int pslot;
  1042. int orig_slot = path->slots[level];
  1043. u64 orig_ptr;
  1044. if (level == 0)
  1045. return 1;
  1046. mid = path->nodes[level];
  1047. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  1048. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  1049. if (level < BTRFS_MAX_LEVEL - 1)
  1050. parent = path->nodes[level + 1];
  1051. pslot = path->slots[level + 1];
  1052. if (!parent)
  1053. return 1;
  1054. left = read_node_slot(root, parent, pslot - 1);
  1055. /* first, try to make some room in the middle buffer */
  1056. if (left) {
  1057. u32 left_nr;
  1058. btrfs_tree_lock(left);
  1059. left_nr = btrfs_header_nritems(left);
  1060. if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1061. wret = 1;
  1062. } else {
  1063. ret = btrfs_cow_block(trans, root, left, parent,
  1064. pslot - 1, &left, 0);
  1065. if (ret)
  1066. wret = 1;
  1067. else {
  1068. wret = push_node_left(trans, root,
  1069. left, mid, 0);
  1070. }
  1071. }
  1072. if (wret < 0)
  1073. ret = wret;
  1074. if (wret == 0) {
  1075. struct btrfs_disk_key disk_key;
  1076. orig_slot += left_nr;
  1077. btrfs_node_key(mid, &disk_key, 0);
  1078. btrfs_set_node_key(parent, &disk_key, pslot);
  1079. btrfs_mark_buffer_dirty(parent);
  1080. if (btrfs_header_nritems(left) > orig_slot) {
  1081. path->nodes[level] = left;
  1082. path->slots[level + 1] -= 1;
  1083. path->slots[level] = orig_slot;
  1084. btrfs_tree_unlock(mid);
  1085. free_extent_buffer(mid);
  1086. } else {
  1087. orig_slot -=
  1088. btrfs_header_nritems(left);
  1089. path->slots[level] = orig_slot;
  1090. btrfs_tree_unlock(left);
  1091. free_extent_buffer(left);
  1092. }
  1093. return 0;
  1094. }
  1095. btrfs_tree_unlock(left);
  1096. free_extent_buffer(left);
  1097. }
  1098. right = read_node_slot(root, parent, pslot + 1);
  1099. /*
  1100. * then try to empty the right most buffer into the middle
  1101. */
  1102. if (right) {
  1103. u32 right_nr;
  1104. btrfs_tree_lock(right);
  1105. right_nr = btrfs_header_nritems(right);
  1106. if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1107. wret = 1;
  1108. } else {
  1109. ret = btrfs_cow_block(trans, root, right,
  1110. parent, pslot + 1,
  1111. &right, 0);
  1112. if (ret)
  1113. wret = 1;
  1114. else {
  1115. wret = balance_node_right(trans, root,
  1116. right, mid);
  1117. }
  1118. }
  1119. if (wret < 0)
  1120. ret = wret;
  1121. if (wret == 0) {
  1122. struct btrfs_disk_key disk_key;
  1123. btrfs_node_key(right, &disk_key, 0);
  1124. btrfs_set_node_key(parent, &disk_key, pslot + 1);
  1125. btrfs_mark_buffer_dirty(parent);
  1126. if (btrfs_header_nritems(mid) <= orig_slot) {
  1127. path->nodes[level] = right;
  1128. path->slots[level + 1] += 1;
  1129. path->slots[level] = orig_slot -
  1130. btrfs_header_nritems(mid);
  1131. btrfs_tree_unlock(mid);
  1132. free_extent_buffer(mid);
  1133. } else {
  1134. btrfs_tree_unlock(right);
  1135. free_extent_buffer(right);
  1136. }
  1137. return 0;
  1138. }
  1139. btrfs_tree_unlock(right);
  1140. free_extent_buffer(right);
  1141. }
  1142. return 1;
  1143. }
  1144. /*
  1145. * readahead one full node of leaves, finding things that are close
  1146. * to the block in 'slot', and triggering ra on them.
  1147. */
  1148. static noinline void reada_for_search(struct btrfs_root *root,
  1149. struct btrfs_path *path,
  1150. int level, int slot, u64 objectid)
  1151. {
  1152. struct extent_buffer *node;
  1153. struct btrfs_disk_key disk_key;
  1154. u32 nritems;
  1155. u64 search;
  1156. u64 lowest_read;
  1157. u64 highest_read;
  1158. u64 nread = 0;
  1159. int direction = path->reada;
  1160. struct extent_buffer *eb;
  1161. u32 nr;
  1162. u32 blocksize;
  1163. u32 nscan = 0;
  1164. if (level != 1)
  1165. return;
  1166. if (!path->nodes[level])
  1167. return;
  1168. node = path->nodes[level];
  1169. search = btrfs_node_blockptr(node, slot);
  1170. blocksize = btrfs_level_size(root, level - 1);
  1171. eb = btrfs_find_tree_block(root, search, blocksize);
  1172. if (eb) {
  1173. free_extent_buffer(eb);
  1174. return;
  1175. }
  1176. highest_read = search;
  1177. lowest_read = search;
  1178. nritems = btrfs_header_nritems(node);
  1179. nr = slot;
  1180. while(1) {
  1181. if (direction < 0) {
  1182. if (nr == 0)
  1183. break;
  1184. nr--;
  1185. } else if (direction > 0) {
  1186. nr++;
  1187. if (nr >= nritems)
  1188. break;
  1189. }
  1190. if (path->reada < 0 && objectid) {
  1191. btrfs_node_key(node, &disk_key, nr);
  1192. if (btrfs_disk_key_objectid(&disk_key) != objectid)
  1193. break;
  1194. }
  1195. search = btrfs_node_blockptr(node, nr);
  1196. if ((search >= lowest_read && search <= highest_read) ||
  1197. (search < lowest_read && lowest_read - search <= 16384) ||
  1198. (search > highest_read && search - highest_read <= 16384)) {
  1199. readahead_tree_block(root, search, blocksize,
  1200. btrfs_node_ptr_generation(node, nr));
  1201. nread += blocksize;
  1202. }
  1203. nscan++;
  1204. if (path->reada < 2 && (nread > (64 * 1024) || nscan > 32))
  1205. break;
  1206. if(nread > (256 * 1024) || nscan > 128)
  1207. break;
  1208. if (search < lowest_read)
  1209. lowest_read = search;
  1210. if (search > highest_read)
  1211. highest_read = search;
  1212. }
  1213. }
  1214. /*
  1215. * when we walk down the tree, it is usually safe to unlock the higher layers in
  1216. * the tree. The exceptions are when our path goes through slot 0, because operations
  1217. * on the tree might require changing key pointers higher up in the tree.
  1218. *
  1219. * callers might also have set path->keep_locks, which tells this code to
  1220. * keep the lock if the path points to the last slot in the block. This is
  1221. * part of walking through the tree, and selecting the next slot in the higher
  1222. * block.
  1223. *
  1224. * lowest_unlock sets the lowest level in the tree we're allowed to unlock.
  1225. * so if lowest_unlock is 1, level 0 won't be unlocked
  1226. */
  1227. static noinline void unlock_up(struct btrfs_path *path, int level,
  1228. int lowest_unlock)
  1229. {
  1230. int i;
  1231. int skip_level = level;
  1232. int no_skips = 0;
  1233. struct extent_buffer *t;
  1234. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1235. if (!path->nodes[i])
  1236. break;
  1237. if (!path->locks[i])
  1238. break;
  1239. if (!no_skips && path->slots[i] == 0) {
  1240. skip_level = i + 1;
  1241. continue;
  1242. }
  1243. if (!no_skips && path->keep_locks) {
  1244. u32 nritems;
  1245. t = path->nodes[i];
  1246. nritems = btrfs_header_nritems(t);
  1247. if (nritems < 1 || path->slots[i] >= nritems - 1) {
  1248. skip_level = i + 1;
  1249. continue;
  1250. }
  1251. }
  1252. if (skip_level < i && i >= lowest_unlock)
  1253. no_skips = 1;
  1254. t = path->nodes[i];
  1255. if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
  1256. btrfs_tree_unlock(t);
  1257. path->locks[i] = 0;
  1258. }
  1259. }
  1260. }
  1261. /*
  1262. * look for key in the tree. path is filled in with nodes along the way
  1263. * if key is found, we return zero and you can find the item in the leaf
  1264. * level of the path (level 0)
  1265. *
  1266. * If the key isn't found, the path points to the slot where it should
  1267. * be inserted, and 1 is returned. If there are other errors during the
  1268. * search a negative error number is returned.
  1269. *
  1270. * if ins_len > 0, nodes and leaves will be split as we walk down the
  1271. * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
  1272. * possible)
  1273. */
  1274. int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
  1275. *root, struct btrfs_key *key, struct btrfs_path *p, int
  1276. ins_len, int cow)
  1277. {
  1278. struct extent_buffer *b;
  1279. struct extent_buffer *tmp;
  1280. int slot;
  1281. int ret;
  1282. int level;
  1283. int should_reada = p->reada;
  1284. int lowest_unlock = 1;
  1285. int blocksize;
  1286. u8 lowest_level = 0;
  1287. u64 blocknr;
  1288. u64 gen;
  1289. struct btrfs_key prealloc_block;
  1290. lowest_level = p->lowest_level;
  1291. WARN_ON(lowest_level && ins_len > 0);
  1292. WARN_ON(p->nodes[0] != NULL);
  1293. if (ins_len < 0)
  1294. lowest_unlock = 2;
  1295. prealloc_block.objectid = 0;
  1296. again:
  1297. if (p->skip_locking)
  1298. b = btrfs_root_node(root);
  1299. else
  1300. b = btrfs_lock_root_node(root);
  1301. while (b) {
  1302. level = btrfs_header_level(b);
  1303. /*
  1304. * setup the path here so we can release it under lock
  1305. * contention with the cow code
  1306. */
  1307. p->nodes[level] = b;
  1308. if (!p->skip_locking)
  1309. p->locks[level] = 1;
  1310. if (cow) {
  1311. int wret;
  1312. /* is a cow on this block not required */
  1313. spin_lock(&root->fs_info->hash_lock);
  1314. if (btrfs_header_generation(b) == trans->transid &&
  1315. btrfs_header_owner(b) == root->root_key.objectid &&
  1316. !btrfs_header_flag(b, BTRFS_HEADER_FLAG_WRITTEN)) {
  1317. spin_unlock(&root->fs_info->hash_lock);
  1318. goto cow_done;
  1319. }
  1320. spin_unlock(&root->fs_info->hash_lock);
  1321. /* ok, we have to cow, is our old prealloc the right
  1322. * size?
  1323. */
  1324. if (prealloc_block.objectid &&
  1325. prealloc_block.offset != b->len) {
  1326. btrfs_free_reserved_extent(root,
  1327. prealloc_block.objectid,
  1328. prealloc_block.offset);
  1329. prealloc_block.objectid = 0;
  1330. }
  1331. /*
  1332. * for higher level blocks, try not to allocate blocks
  1333. * with the block and the parent locks held.
  1334. */
  1335. if (level > 1 && !prealloc_block.objectid &&
  1336. btrfs_path_lock_waiting(p, level)) {
  1337. u32 size = b->len;
  1338. u64 hint = b->start;
  1339. btrfs_release_path(root, p);
  1340. ret = btrfs_reserve_extent(trans, root,
  1341. size, size, 0,
  1342. hint, (u64)-1,
  1343. &prealloc_block, 0);
  1344. BUG_ON(ret);
  1345. goto again;
  1346. }
  1347. wret = btrfs_cow_block(trans, root, b,
  1348. p->nodes[level + 1],
  1349. p->slots[level + 1],
  1350. &b, prealloc_block.objectid);
  1351. prealloc_block.objectid = 0;
  1352. if (wret) {
  1353. free_extent_buffer(b);
  1354. ret = wret;
  1355. goto done;
  1356. }
  1357. }
  1358. cow_done:
  1359. BUG_ON(!cow && ins_len);
  1360. if (level != btrfs_header_level(b))
  1361. WARN_ON(1);
  1362. level = btrfs_header_level(b);
  1363. p->nodes[level] = b;
  1364. if (!p->skip_locking)
  1365. p->locks[level] = 1;
  1366. ret = check_block(root, p, level);
  1367. if (ret) {
  1368. ret = -1;
  1369. goto done;
  1370. }
  1371. ret = bin_search(b, key, level, &slot);
  1372. if (level != 0) {
  1373. if (ret && slot > 0)
  1374. slot -= 1;
  1375. p->slots[level] = slot;
  1376. if (ins_len > 0 && btrfs_header_nritems(b) >=
  1377. BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
  1378. int sret = split_node(trans, root, p, level);
  1379. BUG_ON(sret > 0);
  1380. if (sret) {
  1381. ret = sret;
  1382. goto done;
  1383. }
  1384. b = p->nodes[level];
  1385. slot = p->slots[level];
  1386. } else if (ins_len < 0) {
  1387. int sret = balance_level(trans, root, p,
  1388. level);
  1389. if (sret) {
  1390. ret = sret;
  1391. goto done;
  1392. }
  1393. b = p->nodes[level];
  1394. if (!b) {
  1395. btrfs_release_path(NULL, p);
  1396. goto again;
  1397. }
  1398. slot = p->slots[level];
  1399. BUG_ON(btrfs_header_nritems(b) == 1);
  1400. }
  1401. unlock_up(p, level, lowest_unlock);
  1402. /* this is only true while dropping a snapshot */
  1403. if (level == lowest_level) {
  1404. ret = 0;
  1405. goto done;
  1406. }
  1407. blocknr = btrfs_node_blockptr(b, slot);
  1408. gen = btrfs_node_ptr_generation(b, slot);
  1409. blocksize = btrfs_level_size(root, level - 1);
  1410. tmp = btrfs_find_tree_block(root, blocknr, blocksize);
  1411. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  1412. b = tmp;
  1413. } else {
  1414. /*
  1415. * reduce lock contention at high levels
  1416. * of the btree by dropping locks before
  1417. * we read.
  1418. */
  1419. if (level > 1) {
  1420. btrfs_release_path(NULL, p);
  1421. if (tmp)
  1422. free_extent_buffer(tmp);
  1423. if (should_reada)
  1424. reada_for_search(root, p,
  1425. level, slot,
  1426. key->objectid);
  1427. tmp = read_tree_block(root, blocknr,
  1428. blocksize, gen);
  1429. if (tmp)
  1430. free_extent_buffer(tmp);
  1431. goto again;
  1432. } else {
  1433. if (tmp)
  1434. free_extent_buffer(tmp);
  1435. if (should_reada)
  1436. reada_for_search(root, p,
  1437. level, slot,
  1438. key->objectid);
  1439. b = read_node_slot(root, b, slot);
  1440. }
  1441. }
  1442. if (!p->skip_locking)
  1443. btrfs_tree_lock(b);
  1444. } else {
  1445. p->slots[level] = slot;
  1446. if (ins_len > 0 && btrfs_leaf_free_space(root, b) <
  1447. sizeof(struct btrfs_item) + ins_len) {
  1448. int sret = split_leaf(trans, root, key,
  1449. p, ins_len, ret == 0);
  1450. BUG_ON(sret > 0);
  1451. if (sret) {
  1452. ret = sret;
  1453. goto done;
  1454. }
  1455. }
  1456. unlock_up(p, level, lowest_unlock);
  1457. goto done;
  1458. }
  1459. }
  1460. ret = 1;
  1461. done:
  1462. if (prealloc_block.objectid) {
  1463. btrfs_free_reserved_extent(root,
  1464. prealloc_block.objectid,
  1465. prealloc_block.offset);
  1466. }
  1467. return ret;
  1468. }
  1469. int btrfs_merge_path(struct btrfs_trans_handle *trans,
  1470. struct btrfs_root *root,
  1471. struct btrfs_key *node_keys,
  1472. u64 *nodes, int lowest_level)
  1473. {
  1474. struct extent_buffer *eb;
  1475. struct extent_buffer *parent;
  1476. struct btrfs_key key;
  1477. u64 bytenr;
  1478. u64 generation;
  1479. u32 blocksize;
  1480. int level;
  1481. int slot;
  1482. int key_match;
  1483. int ret;
  1484. eb = btrfs_lock_root_node(root);
  1485. ret = btrfs_cow_block(trans, root, eb, NULL, 0, &eb, 0);
  1486. BUG_ON(ret);
  1487. parent = eb;
  1488. while (1) {
  1489. level = btrfs_header_level(parent);
  1490. if (level == 0 || level <= lowest_level)
  1491. break;
  1492. ret = bin_search(parent, &node_keys[lowest_level], level,
  1493. &slot);
  1494. if (ret && slot > 0)
  1495. slot--;
  1496. bytenr = btrfs_node_blockptr(parent, slot);
  1497. if (nodes[level - 1] == bytenr)
  1498. break;
  1499. blocksize = btrfs_level_size(root, level - 1);
  1500. generation = btrfs_node_ptr_generation(parent, slot);
  1501. btrfs_node_key_to_cpu(eb, &key, slot);
  1502. key_match = !memcmp(&key, &node_keys[level - 1], sizeof(key));
  1503. if (generation == trans->transid) {
  1504. eb = read_tree_block(root, bytenr, blocksize,
  1505. generation);
  1506. btrfs_tree_lock(eb);
  1507. }
  1508. /*
  1509. * if node keys match and node pointer hasn't been modified
  1510. * in the running transaction, we can merge the path. for
  1511. * blocks owened by reloc trees, the node pointer check is
  1512. * skipped, this is because these blocks are fully controlled
  1513. * by the space balance code, no one else can modify them.
  1514. */
  1515. if (!nodes[level - 1] || !key_match ||
  1516. (generation == trans->transid &&
  1517. btrfs_header_owner(eb) != BTRFS_TREE_RELOC_OBJECTID)) {
  1518. if (level == 1 || level == lowest_level + 1) {
  1519. if (generation == trans->transid) {
  1520. btrfs_tree_unlock(eb);
  1521. free_extent_buffer(eb);
  1522. }
  1523. break;
  1524. }
  1525. if (generation != trans->transid) {
  1526. eb = read_tree_block(root, bytenr, blocksize,
  1527. generation);
  1528. btrfs_tree_lock(eb);
  1529. }
  1530. ret = btrfs_cow_block(trans, root, eb, parent, slot,
  1531. &eb, 0);
  1532. BUG_ON(ret);
  1533. if (root->root_key.objectid ==
  1534. BTRFS_TREE_RELOC_OBJECTID) {
  1535. if (!nodes[level - 1]) {
  1536. nodes[level - 1] = eb->start;
  1537. memcpy(&node_keys[level - 1], &key,
  1538. sizeof(node_keys[0]));
  1539. } else {
  1540. WARN_ON(1);
  1541. }
  1542. }
  1543. btrfs_tree_unlock(parent);
  1544. free_extent_buffer(parent);
  1545. parent = eb;
  1546. continue;
  1547. }
  1548. btrfs_set_node_blockptr(parent, slot, nodes[level - 1]);
  1549. btrfs_set_node_ptr_generation(parent, slot, trans->transid);
  1550. btrfs_mark_buffer_dirty(parent);
  1551. ret = btrfs_inc_extent_ref(trans, root,
  1552. nodes[level - 1],
  1553. blocksize, parent->start,
  1554. btrfs_header_owner(parent),
  1555. btrfs_header_generation(parent),
  1556. level - 1);
  1557. BUG_ON(ret);
  1558. /*
  1559. * If the block was created in the running transaction,
  1560. * it's possible this is the last reference to it, so we
  1561. * should drop the subtree.
  1562. */
  1563. if (generation == trans->transid) {
  1564. ret = btrfs_drop_subtree(trans, root, eb, parent);
  1565. BUG_ON(ret);
  1566. btrfs_tree_unlock(eb);
  1567. free_extent_buffer(eb);
  1568. } else {
  1569. ret = btrfs_free_extent(trans, root, bytenr,
  1570. blocksize, parent->start,
  1571. btrfs_header_owner(parent),
  1572. btrfs_header_generation(parent),
  1573. level - 1, 1);
  1574. BUG_ON(ret);
  1575. }
  1576. break;
  1577. }
  1578. btrfs_tree_unlock(parent);
  1579. free_extent_buffer(parent);
  1580. return 0;
  1581. }
  1582. /*
  1583. * adjust the pointers going up the tree, starting at level
  1584. * making sure the right key of each node is points to 'key'.
  1585. * This is used after shifting pointers to the left, so it stops
  1586. * fixing up pointers when a given leaf/node is not in slot 0 of the
  1587. * higher levels
  1588. *
  1589. * If this fails to write a tree block, it returns -1, but continues
  1590. * fixing up the blocks in ram so the tree is consistent.
  1591. */
  1592. static int fixup_low_keys(struct btrfs_trans_handle *trans,
  1593. struct btrfs_root *root, struct btrfs_path *path,
  1594. struct btrfs_disk_key *key, int level)
  1595. {
  1596. int i;
  1597. int ret = 0;
  1598. struct extent_buffer *t;
  1599. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1600. int tslot = path->slots[i];
  1601. if (!path->nodes[i])
  1602. break;
  1603. t = path->nodes[i];
  1604. btrfs_set_node_key(t, key, tslot);
  1605. btrfs_mark_buffer_dirty(path->nodes[i]);
  1606. if (tslot != 0)
  1607. break;
  1608. }
  1609. return ret;
  1610. }
  1611. /*
  1612. * update item key.
  1613. *
  1614. * This function isn't completely safe. It's the caller's responsibility
  1615. * that the new key won't break the order
  1616. */
  1617. int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
  1618. struct btrfs_root *root, struct btrfs_path *path,
  1619. struct btrfs_key *new_key)
  1620. {
  1621. struct btrfs_disk_key disk_key;
  1622. struct extent_buffer *eb;
  1623. int slot;
  1624. eb = path->nodes[0];
  1625. slot = path->slots[0];
  1626. if (slot > 0) {
  1627. btrfs_item_key(eb, &disk_key, slot - 1);
  1628. if (comp_keys(&disk_key, new_key) >= 0)
  1629. return -1;
  1630. }
  1631. if (slot < btrfs_header_nritems(eb) - 1) {
  1632. btrfs_item_key(eb, &disk_key, slot + 1);
  1633. if (comp_keys(&disk_key, new_key) <= 0)
  1634. return -1;
  1635. }
  1636. btrfs_cpu_key_to_disk(&disk_key, new_key);
  1637. btrfs_set_item_key(eb, &disk_key, slot);
  1638. btrfs_mark_buffer_dirty(eb);
  1639. if (slot == 0)
  1640. fixup_low_keys(trans, root, path, &disk_key, 1);
  1641. return 0;
  1642. }
  1643. /*
  1644. * try to push data from one node into the next node left in the
  1645. * tree.
  1646. *
  1647. * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
  1648. * error, and > 0 if there was no room in the left hand block.
  1649. */
  1650. static int push_node_left(struct btrfs_trans_handle *trans,
  1651. struct btrfs_root *root, struct extent_buffer *dst,
  1652. struct extent_buffer *src, int empty)
  1653. {
  1654. int push_items = 0;
  1655. int src_nritems;
  1656. int dst_nritems;
  1657. int ret = 0;
  1658. src_nritems = btrfs_header_nritems(src);
  1659. dst_nritems = btrfs_header_nritems(dst);
  1660. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1661. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1662. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1663. if (!empty && src_nritems <= 8)
  1664. return 1;
  1665. if (push_items <= 0) {
  1666. return 1;
  1667. }
  1668. if (empty) {
  1669. push_items = min(src_nritems, push_items);
  1670. if (push_items < src_nritems) {
  1671. /* leave at least 8 pointers in the node if
  1672. * we aren't going to empty it
  1673. */
  1674. if (src_nritems - push_items < 8) {
  1675. if (push_items <= 8)
  1676. return 1;
  1677. push_items -= 8;
  1678. }
  1679. }
  1680. } else
  1681. push_items = min(src_nritems - 8, push_items);
  1682. copy_extent_buffer(dst, src,
  1683. btrfs_node_key_ptr_offset(dst_nritems),
  1684. btrfs_node_key_ptr_offset(0),
  1685. push_items * sizeof(struct btrfs_key_ptr));
  1686. if (push_items < src_nritems) {
  1687. memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
  1688. btrfs_node_key_ptr_offset(push_items),
  1689. (src_nritems - push_items) *
  1690. sizeof(struct btrfs_key_ptr));
  1691. }
  1692. btrfs_set_header_nritems(src, src_nritems - push_items);
  1693. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1694. btrfs_mark_buffer_dirty(src);
  1695. btrfs_mark_buffer_dirty(dst);
  1696. ret = btrfs_update_ref(trans, root, src, dst, dst_nritems, push_items);
  1697. BUG_ON(ret);
  1698. return ret;
  1699. }
  1700. /*
  1701. * try to push data from one node into the next node right in the
  1702. * tree.
  1703. *
  1704. * returns 0 if some ptrs were pushed, < 0 if there was some horrible
  1705. * error, and > 0 if there was no room in the right hand block.
  1706. *
  1707. * this will only push up to 1/2 the contents of the left node over
  1708. */
  1709. static int balance_node_right(struct btrfs_trans_handle *trans,
  1710. struct btrfs_root *root,
  1711. struct extent_buffer *dst,
  1712. struct extent_buffer *src)
  1713. {
  1714. int push_items = 0;
  1715. int max_push;
  1716. int src_nritems;
  1717. int dst_nritems;
  1718. int ret = 0;
  1719. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1720. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1721. src_nritems = btrfs_header_nritems(src);
  1722. dst_nritems = btrfs_header_nritems(dst);
  1723. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1724. if (push_items <= 0) {
  1725. return 1;
  1726. }
  1727. if (src_nritems < 4) {
  1728. return 1;
  1729. }
  1730. max_push = src_nritems / 2 + 1;
  1731. /* don't try to empty the node */
  1732. if (max_push >= src_nritems) {
  1733. return 1;
  1734. }
  1735. if (max_push < push_items)
  1736. push_items = max_push;
  1737. memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
  1738. btrfs_node_key_ptr_offset(0),
  1739. (dst_nritems) *
  1740. sizeof(struct btrfs_key_ptr));
  1741. copy_extent_buffer(dst, src,
  1742. btrfs_node_key_ptr_offset(0),
  1743. btrfs_node_key_ptr_offset(src_nritems - push_items),
  1744. push_items * sizeof(struct btrfs_key_ptr));
  1745. btrfs_set_header_nritems(src, src_nritems - push_items);
  1746. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1747. btrfs_mark_buffer_dirty(src);
  1748. btrfs_mark_buffer_dirty(dst);
  1749. ret = btrfs_update_ref(trans, root, src, dst, 0, push_items);
  1750. BUG_ON(ret);
  1751. return ret;
  1752. }
  1753. /*
  1754. * helper function to insert a new root level in the tree.
  1755. * A new node is allocated, and a single item is inserted to
  1756. * point to the existing root
  1757. *
  1758. * returns zero on success or < 0 on failure.
  1759. */
  1760. static int noinline insert_new_root(struct btrfs_trans_handle *trans,
  1761. struct btrfs_root *root,
  1762. struct btrfs_path *path, int level)
  1763. {
  1764. u64 lower_gen;
  1765. struct extent_buffer *lower;
  1766. struct extent_buffer *c;
  1767. struct extent_buffer *old;
  1768. struct btrfs_disk_key lower_key;
  1769. int ret;
  1770. BUG_ON(path->nodes[level]);
  1771. BUG_ON(path->nodes[level-1] != root->node);
  1772. lower = path->nodes[level-1];
  1773. if (level == 1)
  1774. btrfs_item_key(lower, &lower_key, 0);
  1775. else
  1776. btrfs_node_key(lower, &lower_key, 0);
  1777. c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
  1778. root->root_key.objectid, trans->transid,
  1779. level, root->node->start, 0);
  1780. if (IS_ERR(c))
  1781. return PTR_ERR(c);
  1782. memset_extent_buffer(c, 0, 0, root->nodesize);
  1783. btrfs_set_header_nritems(c, 1);
  1784. btrfs_set_header_level(c, level);
  1785. btrfs_set_header_bytenr(c, c->start);
  1786. btrfs_set_header_generation(c, trans->transid);
  1787. btrfs_set_header_owner(c, root->root_key.objectid);
  1788. write_extent_buffer(c, root->fs_info->fsid,
  1789. (unsigned long)btrfs_header_fsid(c),
  1790. BTRFS_FSID_SIZE);
  1791. write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
  1792. (unsigned long)btrfs_header_chunk_tree_uuid(c),
  1793. BTRFS_UUID_SIZE);
  1794. btrfs_set_node_key(c, &lower_key, 0);
  1795. btrfs_set_node_blockptr(c, 0, lower->start);
  1796. lower_gen = btrfs_header_generation(lower);
  1797. WARN_ON(lower_gen != trans->transid);
  1798. btrfs_set_node_ptr_generation(c, 0, lower_gen);
  1799. btrfs_mark_buffer_dirty(c);
  1800. spin_lock(&root->node_lock);
  1801. old = root->node;
  1802. root->node = c;
  1803. spin_unlock(&root->node_lock);
  1804. ret = btrfs_update_extent_ref(trans, root, lower->start,
  1805. lower->start, c->start,
  1806. root->root_key.objectid,
  1807. trans->transid, level - 1);
  1808. BUG_ON(ret);
  1809. /* the super has an extra ref to root->node */
  1810. free_extent_buffer(old);
  1811. add_root_to_dirty_list(root);
  1812. extent_buffer_get(c);
  1813. path->nodes[level] = c;
  1814. path->locks[level] = 1;
  1815. path->slots[level] = 0;
  1816. return 0;
  1817. }
  1818. /*
  1819. * worker function to insert a single pointer in a node.
  1820. * the node should have enough room for the pointer already
  1821. *
  1822. * slot and level indicate where you want the key to go, and
  1823. * blocknr is the block the key points to.
  1824. *
  1825. * returns zero on success and < 0 on any error
  1826. */
  1827. static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
  1828. *root, struct btrfs_path *path, struct btrfs_disk_key
  1829. *key, u64 bytenr, int slot, int level)
  1830. {
  1831. struct extent_buffer *lower;
  1832. int nritems;
  1833. BUG_ON(!path->nodes[level]);
  1834. lower = path->nodes[level];
  1835. nritems = btrfs_header_nritems(lower);
  1836. if (slot > nritems)
  1837. BUG();
  1838. if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
  1839. BUG();
  1840. if (slot != nritems) {
  1841. memmove_extent_buffer(lower,
  1842. btrfs_node_key_ptr_offset(slot + 1),
  1843. btrfs_node_key_ptr_offset(slot),
  1844. (nritems - slot) * sizeof(struct btrfs_key_ptr));
  1845. }
  1846. btrfs_set_node_key(lower, key, slot);
  1847. btrfs_set_node_blockptr(lower, slot, bytenr);
  1848. WARN_ON(trans->transid == 0);
  1849. btrfs_set_node_ptr_generation(lower, slot, trans->transid);
  1850. btrfs_set_header_nritems(lower, nritems + 1);
  1851. btrfs_mark_buffer_dirty(lower);
  1852. return 0;
  1853. }
  1854. /*
  1855. * split the node at the specified level in path in two.
  1856. * The path is corrected to point to the appropriate node after the split
  1857. *
  1858. * Before splitting this tries to make some room in the node by pushing
  1859. * left and right, if either one works, it returns right away.
  1860. *
  1861. * returns 0 on success and < 0 on failure
  1862. */
  1863. static noinline int split_node(struct btrfs_trans_handle *trans,
  1864. struct btrfs_root *root,
  1865. struct btrfs_path *path, int level)
  1866. {
  1867. struct extent_buffer *c;
  1868. struct extent_buffer *split;
  1869. struct btrfs_disk_key disk_key;
  1870. int mid;
  1871. int ret;
  1872. int wret;
  1873. u32 c_nritems;
  1874. c = path->nodes[level];
  1875. WARN_ON(btrfs_header_generation(c) != trans->transid);
  1876. if (c == root->node) {
  1877. /* trying to split the root, lets make a new one */
  1878. ret = insert_new_root(trans, root, path, level + 1);
  1879. if (ret)
  1880. return ret;
  1881. } else {
  1882. ret = push_nodes_for_insert(trans, root, path, level);
  1883. c = path->nodes[level];
  1884. if (!ret && btrfs_header_nritems(c) <
  1885. BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
  1886. return 0;
  1887. if (ret < 0)
  1888. return ret;
  1889. }
  1890. c_nritems = btrfs_header_nritems(c);
  1891. split = btrfs_alloc_free_block(trans, root, root->nodesize,
  1892. path->nodes[level + 1]->start,
  1893. root->root_key.objectid,
  1894. trans->transid, level, c->start, 0);
  1895. if (IS_ERR(split))
  1896. return PTR_ERR(split);
  1897. btrfs_set_header_flags(split, btrfs_header_flags(c));
  1898. btrfs_set_header_level(split, btrfs_header_level(c));
  1899. btrfs_set_header_bytenr(split, split->start);
  1900. btrfs_set_header_generation(split, trans->transid);
  1901. btrfs_set_header_owner(split, root->root_key.objectid);
  1902. btrfs_set_header_flags(split, 0);
  1903. write_extent_buffer(split, root->fs_info->fsid,
  1904. (unsigned long)btrfs_header_fsid(split),
  1905. BTRFS_FSID_SIZE);
  1906. write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
  1907. (unsigned long)btrfs_header_chunk_tree_uuid(split),
  1908. BTRFS_UUID_SIZE);
  1909. mid = (c_nritems + 1) / 2;
  1910. copy_extent_buffer(split, c,
  1911. btrfs_node_key_ptr_offset(0),
  1912. btrfs_node_key_ptr_offset(mid),
  1913. (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
  1914. btrfs_set_header_nritems(split, c_nritems - mid);
  1915. btrfs_set_header_nritems(c, mid);
  1916. ret = 0;
  1917. btrfs_mark_buffer_dirty(c);
  1918. btrfs_mark_buffer_dirty(split);
  1919. btrfs_node_key(split, &disk_key, 0);
  1920. wret = insert_ptr(trans, root, path, &disk_key, split->start,
  1921. path->slots[level + 1] + 1,
  1922. level + 1);
  1923. if (wret)
  1924. ret = wret;
  1925. ret = btrfs_update_ref(trans, root, c, split, 0, c_nritems - mid);
  1926. BUG_ON(ret);
  1927. if (path->slots[level] >= mid) {
  1928. path->slots[level] -= mid;
  1929. btrfs_tree_unlock(c);
  1930. free_extent_buffer(c);
  1931. path->nodes[level] = split;
  1932. path->slots[level + 1] += 1;
  1933. } else {
  1934. btrfs_tree_unlock(split);
  1935. free_extent_buffer(split);
  1936. }
  1937. return ret;
  1938. }
  1939. /*
  1940. * how many bytes are required to store the items in a leaf. start
  1941. * and nr indicate which items in the leaf to check. This totals up the
  1942. * space used both by the item structs and the item data
  1943. */
  1944. static int leaf_space_used(struct extent_buffer *l, int start, int nr)
  1945. {
  1946. int data_len;
  1947. int nritems = btrfs_header_nritems(l);
  1948. int end = min(nritems, start + nr) - 1;
  1949. if (!nr)
  1950. return 0;
  1951. data_len = btrfs_item_end_nr(l, start);
  1952. data_len = data_len - btrfs_item_offset_nr(l, end);
  1953. data_len += sizeof(struct btrfs_item) * nr;
  1954. WARN_ON(data_len < 0);
  1955. return data_len;
  1956. }
  1957. /*
  1958. * The space between the end of the leaf items and
  1959. * the start of the leaf data. IOW, how much room
  1960. * the leaf has left for both items and data
  1961. */
  1962. int noinline btrfs_leaf_free_space(struct btrfs_root *root,
  1963. struct extent_buffer *leaf)
  1964. {
  1965. int nritems = btrfs_header_nritems(leaf);
  1966. int ret;
  1967. ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
  1968. if (ret < 0) {
  1969. printk("leaf free space ret %d, leaf data size %lu, used %d nritems %d\n",
  1970. ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
  1971. leaf_space_used(leaf, 0, nritems), nritems);
  1972. }
  1973. return ret;
  1974. }
  1975. /*
  1976. * push some data in the path leaf to the right, trying to free up at
  1977. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  1978. *
  1979. * returns 1 if the push failed because the other node didn't have enough
  1980. * room, 0 if everything worked out and < 0 if there were major errors.
  1981. */
  1982. static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
  1983. *root, struct btrfs_path *path, int data_size,
  1984. int empty)
  1985. {
  1986. struct extent_buffer *left = path->nodes[0];
  1987. struct extent_buffer *right;
  1988. struct extent_buffer *upper;
  1989. struct btrfs_disk_key disk_key;
  1990. int slot;
  1991. u32 i;
  1992. int free_space;
  1993. int push_space = 0;
  1994. int push_items = 0;
  1995. struct btrfs_item *item;
  1996. u32 left_nritems;
  1997. u32 nr;
  1998. u32 right_nritems;
  1999. u32 data_end;
  2000. u32 this_item_size;
  2001. int ret;
  2002. slot = path->slots[1];
  2003. if (!path->nodes[1]) {
  2004. return 1;
  2005. }
  2006. upper = path->nodes[1];
  2007. if (slot >= btrfs_header_nritems(upper) - 1)
  2008. return 1;
  2009. WARN_ON(!btrfs_tree_locked(path->nodes[1]));
  2010. right = read_node_slot(root, upper, slot + 1);
  2011. btrfs_tree_lock(right);
  2012. free_space = btrfs_leaf_free_space(root, right);
  2013. if (free_space < data_size + sizeof(struct btrfs_item))
  2014. goto out_unlock;
  2015. /* cow and double check */
  2016. ret = btrfs_cow_block(trans, root, right, upper,
  2017. slot + 1, &right, 0);
  2018. if (ret)
  2019. goto out_unlock;
  2020. free_space = btrfs_leaf_free_space(root, right);
  2021. if (free_space < data_size + sizeof(struct btrfs_item))
  2022. goto out_unlock;
  2023. left_nritems = btrfs_header_nritems(left);
  2024. if (left_nritems == 0)
  2025. goto out_unlock;
  2026. if (empty)
  2027. nr = 0;
  2028. else
  2029. nr = 1;
  2030. if (path->slots[0] >= left_nritems)
  2031. push_space += data_size + sizeof(*item);
  2032. i = left_nritems - 1;
  2033. while (i >= nr) {
  2034. item = btrfs_item_nr(left, i);
  2035. if (!empty && push_items > 0) {
  2036. if (path->slots[0] > i)
  2037. break;
  2038. if (path->slots[0] == i) {
  2039. int space = btrfs_leaf_free_space(root, left);
  2040. if (space + push_space * 2 > free_space)
  2041. break;
  2042. }
  2043. }
  2044. if (path->slots[0] == i)
  2045. push_space += data_size + sizeof(*item);
  2046. if (!left->map_token) {
  2047. map_extent_buffer(left, (unsigned long)item,
  2048. sizeof(struct btrfs_item),
  2049. &left->map_token, &left->kaddr,
  2050. &left->map_start, &left->map_len,
  2051. KM_USER1);
  2052. }
  2053. this_item_size = btrfs_item_size(left, item);
  2054. if (this_item_size + sizeof(*item) + push_space > free_space)
  2055. break;
  2056. push_items++;
  2057. push_space += this_item_size + sizeof(*item);
  2058. if (i == 0)
  2059. break;
  2060. i--;
  2061. }
  2062. if (left->map_token) {
  2063. unmap_extent_buffer(left, left->map_token, KM_USER1);
  2064. left->map_token = NULL;
  2065. }
  2066. if (push_items == 0)
  2067. goto out_unlock;
  2068. if (!empty && push_items == left_nritems)
  2069. WARN_ON(1);
  2070. /* push left to right */
  2071. right_nritems = btrfs_header_nritems(right);
  2072. push_space = btrfs_item_end_nr(left, left_nritems - push_items);
  2073. push_space -= leaf_data_end(root, left);
  2074. /* make room in the right data area */
  2075. data_end = leaf_data_end(root, right);
  2076. memmove_extent_buffer(right,
  2077. btrfs_leaf_data(right) + data_end - push_space,
  2078. btrfs_leaf_data(right) + data_end,
  2079. BTRFS_LEAF_DATA_SIZE(root) - data_end);
  2080. /* copy from the left data area */
  2081. copy_extent_buffer(right, left, btrfs_leaf_data(right) +
  2082. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2083. btrfs_leaf_data(left) + leaf_data_end(root, left),
  2084. push_space);
  2085. memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
  2086. btrfs_item_nr_offset(0),
  2087. right_nritems * sizeof(struct btrfs_item));
  2088. /* copy the items from left to right */
  2089. copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
  2090. btrfs_item_nr_offset(left_nritems - push_items),
  2091. push_items * sizeof(struct btrfs_item));
  2092. /* update the item pointers */
  2093. right_nritems += push_items;
  2094. btrfs_set_header_nritems(right, right_nritems);
  2095. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2096. for (i = 0; i < right_nritems; i++) {
  2097. item = btrfs_item_nr(right, i);
  2098. if (!right->map_token) {
  2099. map_extent_buffer(right, (unsigned long)item,
  2100. sizeof(struct btrfs_item),
  2101. &right->map_token, &right->kaddr,
  2102. &right->map_start, &right->map_len,
  2103. KM_USER1);
  2104. }
  2105. push_space -= btrfs_item_size(right, item);
  2106. btrfs_set_item_offset(right, item, push_space);
  2107. }
  2108. if (right->map_token) {
  2109. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2110. right->map_token = NULL;
  2111. }
  2112. left_nritems -= push_items;
  2113. btrfs_set_header_nritems(left, left_nritems);
  2114. if (left_nritems)
  2115. btrfs_mark_buffer_dirty(left);
  2116. btrfs_mark_buffer_dirty(right);
  2117. ret = btrfs_update_ref(trans, root, left, right, 0, push_items);
  2118. BUG_ON(ret);
  2119. btrfs_item_key(right, &disk_key, 0);
  2120. btrfs_set_node_key(upper, &disk_key, slot + 1);
  2121. btrfs_mark_buffer_dirty(upper);
  2122. /* then fixup the leaf pointer in the path */
  2123. if (path->slots[0] >= left_nritems) {
  2124. path->slots[0] -= left_nritems;
  2125. if (btrfs_header_nritems(path->nodes[0]) == 0)
  2126. clean_tree_block(trans, root, path->nodes[0]);
  2127. btrfs_tree_unlock(path->nodes[0]);
  2128. free_extent_buffer(path->nodes[0]);
  2129. path->nodes[0] = right;
  2130. path->slots[1] += 1;
  2131. } else {
  2132. btrfs_tree_unlock(right);
  2133. free_extent_buffer(right);
  2134. }
  2135. return 0;
  2136. out_unlock:
  2137. btrfs_tree_unlock(right);
  2138. free_extent_buffer(right);
  2139. return 1;
  2140. }
  2141. /*
  2142. * push some data in the path leaf to the left, trying to free up at
  2143. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2144. */
  2145. static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
  2146. *root, struct btrfs_path *path, int data_size,
  2147. int empty)
  2148. {
  2149. struct btrfs_disk_key disk_key;
  2150. struct extent_buffer *right = path->nodes[0];
  2151. struct extent_buffer *left;
  2152. int slot;
  2153. int i;
  2154. int free_space;
  2155. int push_space = 0;
  2156. int push_items = 0;
  2157. struct btrfs_item *item;
  2158. u32 old_left_nritems;
  2159. u32 right_nritems;
  2160. u32 nr;
  2161. int ret = 0;
  2162. int wret;
  2163. u32 this_item_size;
  2164. u32 old_left_item_size;
  2165. slot = path->slots[1];
  2166. if (slot == 0)
  2167. return 1;
  2168. if (!path->nodes[1])
  2169. return 1;
  2170. right_nritems = btrfs_header_nritems(right);
  2171. if (right_nritems == 0) {
  2172. return 1;
  2173. }
  2174. WARN_ON(!btrfs_tree_locked(path->nodes[1]));
  2175. left = read_node_slot(root, path->nodes[1], slot - 1);
  2176. btrfs_tree_lock(left);
  2177. free_space = btrfs_leaf_free_space(root, left);
  2178. if (free_space < data_size + sizeof(struct btrfs_item)) {
  2179. ret = 1;
  2180. goto out;
  2181. }
  2182. /* cow and double check */
  2183. ret = btrfs_cow_block(trans, root, left,
  2184. path->nodes[1], slot - 1, &left, 0);
  2185. if (ret) {
  2186. /* we hit -ENOSPC, but it isn't fatal here */
  2187. ret = 1;
  2188. goto out;
  2189. }
  2190. free_space = btrfs_leaf_free_space(root, left);
  2191. if (free_space < data_size + sizeof(struct btrfs_item)) {
  2192. ret = 1;
  2193. goto out;
  2194. }
  2195. if (empty)
  2196. nr = right_nritems;
  2197. else
  2198. nr = right_nritems - 1;
  2199. for (i = 0; i < nr; i++) {
  2200. item = btrfs_item_nr(right, i);
  2201. if (!right->map_token) {
  2202. map_extent_buffer(right, (unsigned long)item,
  2203. sizeof(struct btrfs_item),
  2204. &right->map_token, &right->kaddr,
  2205. &right->map_start, &right->map_len,
  2206. KM_USER1);
  2207. }
  2208. if (!empty && push_items > 0) {
  2209. if (path->slots[0] < i)
  2210. break;
  2211. if (path->slots[0] == i) {
  2212. int space = btrfs_leaf_free_space(root, right);
  2213. if (space + push_space * 2 > free_space)
  2214. break;
  2215. }
  2216. }
  2217. if (path->slots[0] == i)
  2218. push_space += data_size + sizeof(*item);
  2219. this_item_size = btrfs_item_size(right, item);
  2220. if (this_item_size + sizeof(*item) + push_space > free_space)
  2221. break;
  2222. push_items++;
  2223. push_space += this_item_size + sizeof(*item);
  2224. }
  2225. if (right->map_token) {
  2226. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2227. right->map_token = NULL;
  2228. }
  2229. if (push_items == 0) {
  2230. ret = 1;
  2231. goto out;
  2232. }
  2233. if (!empty && push_items == btrfs_header_nritems(right))
  2234. WARN_ON(1);
  2235. /* push data from right to left */
  2236. copy_extent_buffer(left, right,
  2237. btrfs_item_nr_offset(btrfs_header_nritems(left)),
  2238. btrfs_item_nr_offset(0),
  2239. push_items * sizeof(struct btrfs_item));
  2240. push_space = BTRFS_LEAF_DATA_SIZE(root) -
  2241. btrfs_item_offset_nr(right, push_items -1);
  2242. copy_extent_buffer(left, right, btrfs_leaf_data(left) +
  2243. leaf_data_end(root, left) - push_space,
  2244. btrfs_leaf_data(right) +
  2245. btrfs_item_offset_nr(right, push_items - 1),
  2246. push_space);
  2247. old_left_nritems = btrfs_header_nritems(left);
  2248. BUG_ON(old_left_nritems < 0);
  2249. old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
  2250. for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
  2251. u32 ioff;
  2252. item = btrfs_item_nr(left, i);
  2253. if (!left->map_token) {
  2254. map_extent_buffer(left, (unsigned long)item,
  2255. sizeof(struct btrfs_item),
  2256. &left->map_token, &left->kaddr,
  2257. &left->map_start, &left->map_len,
  2258. KM_USER1);
  2259. }
  2260. ioff = btrfs_item_offset(left, item);
  2261. btrfs_set_item_offset(left, item,
  2262. ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
  2263. }
  2264. btrfs_set_header_nritems(left, old_left_nritems + push_items);
  2265. if (left->map_token) {
  2266. unmap_extent_buffer(left, left->map_token, KM_USER1);
  2267. left->map_token = NULL;
  2268. }
  2269. /* fixup right node */
  2270. if (push_items > right_nritems) {
  2271. printk("push items %d nr %u\n", push_items, right_nritems);
  2272. WARN_ON(1);
  2273. }
  2274. if (push_items < right_nritems) {
  2275. push_space = btrfs_item_offset_nr(right, push_items - 1) -
  2276. leaf_data_end(root, right);
  2277. memmove_extent_buffer(right, btrfs_leaf_data(right) +
  2278. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2279. btrfs_leaf_data(right) +
  2280. leaf_data_end(root, right), push_space);
  2281. memmove_extent_buffer(right, btrfs_item_nr_offset(0),
  2282. btrfs_item_nr_offset(push_items),
  2283. (btrfs_header_nritems(right) - push_items) *
  2284. sizeof(struct btrfs_item));
  2285. }
  2286. right_nritems -= push_items;
  2287. btrfs_set_header_nritems(right, right_nritems);
  2288. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2289. for (i = 0; i < right_nritems; i++) {
  2290. item = btrfs_item_nr(right, i);
  2291. if (!right->map_token) {
  2292. map_extent_buffer(right, (unsigned long)item,
  2293. sizeof(struct btrfs_item),
  2294. &right->map_token, &right->kaddr,
  2295. &right->map_start, &right->map_len,
  2296. KM_USER1);
  2297. }
  2298. push_space = push_space - btrfs_item_size(right, item);
  2299. btrfs_set_item_offset(right, item, push_space);
  2300. }
  2301. if (right->map_token) {
  2302. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2303. right->map_token = NULL;
  2304. }
  2305. btrfs_mark_buffer_dirty(left);
  2306. if (right_nritems)
  2307. btrfs_mark_buffer_dirty(right);
  2308. ret = btrfs_update_ref(trans, root, right, left,
  2309. old_left_nritems, push_items);
  2310. BUG_ON(ret);
  2311. btrfs_item_key(right, &disk_key, 0);
  2312. wret = fixup_low_keys(trans, root, path, &disk_key, 1);
  2313. if (wret)
  2314. ret = wret;
  2315. /* then fixup the leaf pointer in the path */
  2316. if (path->slots[0] < push_items) {
  2317. path->slots[0] += old_left_nritems;
  2318. if (btrfs_header_nritems(path->nodes[0]) == 0)
  2319. clean_tree_block(trans, root, path->nodes[0]);
  2320. btrfs_tree_unlock(path->nodes[0]);
  2321. free_extent_buffer(path->nodes[0]);
  2322. path->nodes[0] = left;
  2323. path->slots[1] -= 1;
  2324. } else {
  2325. btrfs_tree_unlock(left);
  2326. free_extent_buffer(left);
  2327. path->slots[0] -= push_items;
  2328. }
  2329. BUG_ON(path->slots[0] < 0);
  2330. return ret;
  2331. out:
  2332. btrfs_tree_unlock(left);
  2333. free_extent_buffer(left);
  2334. return ret;
  2335. }
  2336. /*
  2337. * split the path's leaf in two, making sure there is at least data_size
  2338. * available for the resulting leaf level of the path.
  2339. *
  2340. * returns 0 if all went well and < 0 on failure.
  2341. */
  2342. static noinline int split_leaf(struct btrfs_trans_handle *trans,
  2343. struct btrfs_root *root,
  2344. struct btrfs_key *ins_key,
  2345. struct btrfs_path *path, int data_size,
  2346. int extend)
  2347. {
  2348. struct extent_buffer *l;
  2349. u32 nritems;
  2350. int mid;
  2351. int slot;
  2352. struct extent_buffer *right;
  2353. int space_needed = data_size + sizeof(struct btrfs_item);
  2354. int data_copy_size;
  2355. int rt_data_off;
  2356. int i;
  2357. int ret = 0;
  2358. int wret;
  2359. int double_split;
  2360. int num_doubles = 0;
  2361. struct btrfs_disk_key disk_key;
  2362. if (extend)
  2363. space_needed = data_size;
  2364. /* first try to make some room by pushing left and right */
  2365. if (ins_key->type != BTRFS_DIR_ITEM_KEY) {
  2366. wret = push_leaf_right(trans, root, path, data_size, 0);
  2367. if (wret < 0) {
  2368. return wret;
  2369. }
  2370. if (wret) {
  2371. wret = push_leaf_left(trans, root, path, data_size, 0);
  2372. if (wret < 0)
  2373. return wret;
  2374. }
  2375. l = path->nodes[0];
  2376. /* did the pushes work? */
  2377. if (btrfs_leaf_free_space(root, l) >= space_needed)
  2378. return 0;
  2379. }
  2380. if (!path->nodes[1]) {
  2381. ret = insert_new_root(trans, root, path, 1);
  2382. if (ret)
  2383. return ret;
  2384. }
  2385. again:
  2386. double_split = 0;
  2387. l = path->nodes[0];
  2388. slot = path->slots[0];
  2389. nritems = btrfs_header_nritems(l);
  2390. mid = (nritems + 1)/ 2;
  2391. right = btrfs_alloc_free_block(trans, root, root->leafsize,
  2392. path->nodes[1]->start,
  2393. root->root_key.objectid,
  2394. trans->transid, 0, l->start, 0);
  2395. if (IS_ERR(right)) {
  2396. BUG_ON(1);
  2397. return PTR_ERR(right);
  2398. }
  2399. memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
  2400. btrfs_set_header_bytenr(right, right->start);
  2401. btrfs_set_header_generation(right, trans->transid);
  2402. btrfs_set_header_owner(right, root->root_key.objectid);
  2403. btrfs_set_header_level(right, 0);
  2404. write_extent_buffer(right, root->fs_info->fsid,
  2405. (unsigned long)btrfs_header_fsid(right),
  2406. BTRFS_FSID_SIZE);
  2407. write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
  2408. (unsigned long)btrfs_header_chunk_tree_uuid(right),
  2409. BTRFS_UUID_SIZE);
  2410. if (mid <= slot) {
  2411. if (nritems == 1 ||
  2412. leaf_space_used(l, mid, nritems - mid) + space_needed >
  2413. BTRFS_LEAF_DATA_SIZE(root)) {
  2414. if (slot >= nritems) {
  2415. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  2416. btrfs_set_header_nritems(right, 0);
  2417. wret = insert_ptr(trans, root, path,
  2418. &disk_key, right->start,
  2419. path->slots[1] + 1, 1);
  2420. if (wret)
  2421. ret = wret;
  2422. btrfs_tree_unlock(path->nodes[0]);
  2423. free_extent_buffer(path->nodes[0]);
  2424. path->nodes[0] = right;
  2425. path->slots[0] = 0;
  2426. path->slots[1] += 1;
  2427. btrfs_mark_buffer_dirty(right);
  2428. return ret;
  2429. }
  2430. mid = slot;
  2431. if (mid != nritems &&
  2432. leaf_space_used(l, mid, nritems - mid) +
  2433. space_needed > BTRFS_LEAF_DATA_SIZE(root)) {
  2434. double_split = 1;
  2435. }
  2436. }
  2437. } else {
  2438. if (leaf_space_used(l, 0, mid + 1) + space_needed >
  2439. BTRFS_LEAF_DATA_SIZE(root)) {
  2440. if (!extend && slot == 0) {
  2441. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  2442. btrfs_set_header_nritems(right, 0);
  2443. wret = insert_ptr(trans, root, path,
  2444. &disk_key,
  2445. right->start,
  2446. path->slots[1], 1);
  2447. if (wret)
  2448. ret = wret;
  2449. btrfs_tree_unlock(path->nodes[0]);
  2450. free_extent_buffer(path->nodes[0]);
  2451. path->nodes[0] = right;
  2452. path->slots[0] = 0;
  2453. if (path->slots[1] == 0) {
  2454. wret = fixup_low_keys(trans, root,
  2455. path, &disk_key, 1);
  2456. if (wret)
  2457. ret = wret;
  2458. }
  2459. btrfs_mark_buffer_dirty(right);
  2460. return ret;
  2461. } else if (extend && slot == 0) {
  2462. mid = 1;
  2463. } else {
  2464. mid = slot;
  2465. if (mid != nritems &&
  2466. leaf_space_used(l, mid, nritems - mid) +
  2467. space_needed > BTRFS_LEAF_DATA_SIZE(root)) {
  2468. double_split = 1;
  2469. }
  2470. }
  2471. }
  2472. }
  2473. nritems = nritems - mid;
  2474. btrfs_set_header_nritems(right, nritems);
  2475. data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
  2476. copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
  2477. btrfs_item_nr_offset(mid),
  2478. nritems * sizeof(struct btrfs_item));
  2479. copy_extent_buffer(right, l,
  2480. btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
  2481. data_copy_size, btrfs_leaf_data(l) +
  2482. leaf_data_end(root, l), data_copy_size);
  2483. rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
  2484. btrfs_item_end_nr(l, mid);
  2485. for (i = 0; i < nritems; i++) {
  2486. struct btrfs_item *item = btrfs_item_nr(right, i);
  2487. u32 ioff;
  2488. if (!right->map_token) {
  2489. map_extent_buffer(right, (unsigned long)item,
  2490. sizeof(struct btrfs_item),
  2491. &right->map_token, &right->kaddr,
  2492. &right->map_start, &right->map_len,
  2493. KM_USER1);
  2494. }
  2495. ioff = btrfs_item_offset(right, item);
  2496. btrfs_set_item_offset(right, item, ioff + rt_data_off);
  2497. }
  2498. if (right->map_token) {
  2499. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2500. right->map_token = NULL;
  2501. }
  2502. btrfs_set_header_nritems(l, mid);
  2503. ret = 0;
  2504. btrfs_item_key(right, &disk_key, 0);
  2505. wret = insert_ptr(trans, root, path, &disk_key, right->start,
  2506. path->slots[1] + 1, 1);
  2507. if (wret)
  2508. ret = wret;
  2509. btrfs_mark_buffer_dirty(right);
  2510. btrfs_mark_buffer_dirty(l);
  2511. BUG_ON(path->slots[0] != slot);
  2512. ret = btrfs_update_ref(trans, root, l, right, 0, nritems);
  2513. BUG_ON(ret);
  2514. if (mid <= slot) {
  2515. btrfs_tree_unlock(path->nodes[0]);
  2516. free_extent_buffer(path->nodes[0]);
  2517. path->nodes[0] = right;
  2518. path->slots[0] -= mid;
  2519. path->slots[1] += 1;
  2520. } else {
  2521. btrfs_tree_unlock(right);
  2522. free_extent_buffer(right);
  2523. }
  2524. BUG_ON(path->slots[0] < 0);
  2525. if (double_split) {
  2526. BUG_ON(num_doubles != 0);
  2527. num_doubles++;
  2528. goto again;
  2529. }
  2530. return ret;
  2531. }
  2532. /*
  2533. * make the item pointed to by the path smaller. new_size indicates
  2534. * how small to make it, and from_end tells us if we just chop bytes
  2535. * off the end of the item or if we shift the item to chop bytes off
  2536. * the front.
  2537. */
  2538. int btrfs_truncate_item(struct btrfs_trans_handle *trans,
  2539. struct btrfs_root *root,
  2540. struct btrfs_path *path,
  2541. u32 new_size, int from_end)
  2542. {
  2543. int ret = 0;
  2544. int slot;
  2545. int slot_orig;
  2546. struct extent_buffer *leaf;
  2547. struct btrfs_item *item;
  2548. u32 nritems;
  2549. unsigned int data_end;
  2550. unsigned int old_data_start;
  2551. unsigned int old_size;
  2552. unsigned int size_diff;
  2553. int i;
  2554. slot_orig = path->slots[0];
  2555. leaf = path->nodes[0];
  2556. slot = path->slots[0];
  2557. old_size = btrfs_item_size_nr(leaf, slot);
  2558. if (old_size == new_size)
  2559. return 0;
  2560. nritems = btrfs_header_nritems(leaf);
  2561. data_end = leaf_data_end(root, leaf);
  2562. old_data_start = btrfs_item_offset_nr(leaf, slot);
  2563. size_diff = old_size - new_size;
  2564. BUG_ON(slot < 0);
  2565. BUG_ON(slot >= nritems);
  2566. /*
  2567. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2568. */
  2569. /* first correct the data pointers */
  2570. for (i = slot; i < nritems; i++) {
  2571. u32 ioff;
  2572. item = btrfs_item_nr(leaf, i);
  2573. if (!leaf->map_token) {
  2574. map_extent_buffer(leaf, (unsigned long)item,
  2575. sizeof(struct btrfs_item),
  2576. &leaf->map_token, &leaf->kaddr,
  2577. &leaf->map_start, &leaf->map_len,
  2578. KM_USER1);
  2579. }
  2580. ioff = btrfs_item_offset(leaf, item);
  2581. btrfs_set_item_offset(leaf, item, ioff + size_diff);
  2582. }
  2583. if (leaf->map_token) {
  2584. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2585. leaf->map_token = NULL;
  2586. }
  2587. /* shift the data */
  2588. if (from_end) {
  2589. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2590. data_end + size_diff, btrfs_leaf_data(leaf) +
  2591. data_end, old_data_start + new_size - data_end);
  2592. } else {
  2593. struct btrfs_disk_key disk_key;
  2594. u64 offset;
  2595. btrfs_item_key(leaf, &disk_key, slot);
  2596. if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
  2597. unsigned long ptr;
  2598. struct btrfs_file_extent_item *fi;
  2599. fi = btrfs_item_ptr(leaf, slot,
  2600. struct btrfs_file_extent_item);
  2601. fi = (struct btrfs_file_extent_item *)(
  2602. (unsigned long)fi - size_diff);
  2603. if (btrfs_file_extent_type(leaf, fi) ==
  2604. BTRFS_FILE_EXTENT_INLINE) {
  2605. ptr = btrfs_item_ptr_offset(leaf, slot);
  2606. memmove_extent_buffer(leaf, ptr,
  2607. (unsigned long)fi,
  2608. offsetof(struct btrfs_file_extent_item,
  2609. disk_bytenr));
  2610. }
  2611. }
  2612. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2613. data_end + size_diff, btrfs_leaf_data(leaf) +
  2614. data_end, old_data_start - data_end);
  2615. offset = btrfs_disk_key_offset(&disk_key);
  2616. btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
  2617. btrfs_set_item_key(leaf, &disk_key, slot);
  2618. if (slot == 0)
  2619. fixup_low_keys(trans, root, path, &disk_key, 1);
  2620. }
  2621. item = btrfs_item_nr(leaf, slot);
  2622. btrfs_set_item_size(leaf, item, new_size);
  2623. btrfs_mark_buffer_dirty(leaf);
  2624. ret = 0;
  2625. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2626. btrfs_print_leaf(root, leaf);
  2627. BUG();
  2628. }
  2629. return ret;
  2630. }
  2631. /*
  2632. * make the item pointed to by the path bigger, data_size is the new size.
  2633. */
  2634. int btrfs_extend_item(struct btrfs_trans_handle *trans,
  2635. struct btrfs_root *root, struct btrfs_path *path,
  2636. u32 data_size)
  2637. {
  2638. int ret = 0;
  2639. int slot;
  2640. int slot_orig;
  2641. struct extent_buffer *leaf;
  2642. struct btrfs_item *item;
  2643. u32 nritems;
  2644. unsigned int data_end;
  2645. unsigned int old_data;
  2646. unsigned int old_size;
  2647. int i;
  2648. slot_orig = path->slots[0];
  2649. leaf = path->nodes[0];
  2650. nritems = btrfs_header_nritems(leaf);
  2651. data_end = leaf_data_end(root, leaf);
  2652. if (btrfs_leaf_free_space(root, leaf) < data_size) {
  2653. btrfs_print_leaf(root, leaf);
  2654. BUG();
  2655. }
  2656. slot = path->slots[0];
  2657. old_data = btrfs_item_end_nr(leaf, slot);
  2658. BUG_ON(slot < 0);
  2659. if (slot >= nritems) {
  2660. btrfs_print_leaf(root, leaf);
  2661. printk("slot %d too large, nritems %d\n", slot, nritems);
  2662. BUG_ON(1);
  2663. }
  2664. /*
  2665. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2666. */
  2667. /* first correct the data pointers */
  2668. for (i = slot; i < nritems; i++) {
  2669. u32 ioff;
  2670. item = btrfs_item_nr(leaf, i);
  2671. if (!leaf->map_token) {
  2672. map_extent_buffer(leaf, (unsigned long)item,
  2673. sizeof(struct btrfs_item),
  2674. &leaf->map_token, &leaf->kaddr,
  2675. &leaf->map_start, &leaf->map_len,
  2676. KM_USER1);
  2677. }
  2678. ioff = btrfs_item_offset(leaf, item);
  2679. btrfs_set_item_offset(leaf, item, ioff - data_size);
  2680. }
  2681. if (leaf->map_token) {
  2682. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2683. leaf->map_token = NULL;
  2684. }
  2685. /* shift the data */
  2686. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2687. data_end - data_size, btrfs_leaf_data(leaf) +
  2688. data_end, old_data - data_end);
  2689. data_end = old_data;
  2690. old_size = btrfs_item_size_nr(leaf, slot);
  2691. item = btrfs_item_nr(leaf, slot);
  2692. btrfs_set_item_size(leaf, item, old_size + data_size);
  2693. btrfs_mark_buffer_dirty(leaf);
  2694. ret = 0;
  2695. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2696. btrfs_print_leaf(root, leaf);
  2697. BUG();
  2698. }
  2699. return ret;
  2700. }
  2701. /*
  2702. * Given a key and some data, insert items into the tree.
  2703. * This does all the path init required, making room in the tree if needed.
  2704. * Returns the number of keys that were inserted.
  2705. */
  2706. int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
  2707. struct btrfs_root *root,
  2708. struct btrfs_path *path,
  2709. struct btrfs_key *cpu_key, u32 *data_size,
  2710. int nr)
  2711. {
  2712. struct extent_buffer *leaf;
  2713. struct btrfs_item *item;
  2714. int ret = 0;
  2715. int slot;
  2716. int i;
  2717. u32 nritems;
  2718. u32 total_data = 0;
  2719. u32 total_size = 0;
  2720. unsigned int data_end;
  2721. struct btrfs_disk_key disk_key;
  2722. struct btrfs_key found_key;
  2723. found_key.objectid = 0;
  2724. nr = min_t(int, nr, BTRFS_NODEPTRS_PER_BLOCK(root));
  2725. for (i = 0; i < nr; i++)
  2726. total_data += data_size[i];
  2727. total_data = min_t(u32, total_data, BTRFS_LEAF_DATA_SIZE(root));
  2728. total_size = total_data + (nr * sizeof(struct btrfs_item));
  2729. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  2730. if (ret == 0)
  2731. return -EEXIST;
  2732. if (ret < 0)
  2733. goto out;
  2734. leaf = path->nodes[0];
  2735. nritems = btrfs_header_nritems(leaf);
  2736. data_end = leaf_data_end(root, leaf);
  2737. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  2738. for (i = nr; i >= 0; i--) {
  2739. total_data -= data_size[i];
  2740. total_size -= data_size[i] + sizeof(struct btrfs_item);
  2741. if (total_size < btrfs_leaf_free_space(root, leaf))
  2742. break;
  2743. }
  2744. nr = i;
  2745. }
  2746. slot = path->slots[0];
  2747. BUG_ON(slot < 0);
  2748. if (slot != nritems) {
  2749. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  2750. item = btrfs_item_nr(leaf, slot);
  2751. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  2752. /* figure out how many keys we can insert in here */
  2753. total_data = data_size[0];
  2754. for (i = 1; i < nr; i++) {
  2755. if (comp_cpu_keys(&found_key, cpu_key + i) <= 0)
  2756. break;
  2757. total_data += data_size[i];
  2758. }
  2759. nr = i;
  2760. if (old_data < data_end) {
  2761. btrfs_print_leaf(root, leaf);
  2762. printk("slot %d old_data %d data_end %d\n",
  2763. slot, old_data, data_end);
  2764. BUG_ON(1);
  2765. }
  2766. /*
  2767. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2768. */
  2769. /* first correct the data pointers */
  2770. WARN_ON(leaf->map_token);
  2771. for (i = slot; i < nritems; i++) {
  2772. u32 ioff;
  2773. item = btrfs_item_nr(leaf, i);
  2774. if (!leaf->map_token) {
  2775. map_extent_buffer(leaf, (unsigned long)item,
  2776. sizeof(struct btrfs_item),
  2777. &leaf->map_token, &leaf->kaddr,
  2778. &leaf->map_start, &leaf->map_len,
  2779. KM_USER1);
  2780. }
  2781. ioff = btrfs_item_offset(leaf, item);
  2782. btrfs_set_item_offset(leaf, item, ioff - total_data);
  2783. }
  2784. if (leaf->map_token) {
  2785. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2786. leaf->map_token = NULL;
  2787. }
  2788. /* shift the items */
  2789. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  2790. btrfs_item_nr_offset(slot),
  2791. (nritems - slot) * sizeof(struct btrfs_item));
  2792. /* shift the data */
  2793. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2794. data_end - total_data, btrfs_leaf_data(leaf) +
  2795. data_end, old_data - data_end);
  2796. data_end = old_data;
  2797. } else {
  2798. /*
  2799. * this sucks but it has to be done, if we are inserting at
  2800. * the end of the leaf only insert 1 of the items, since we
  2801. * have no way of knowing whats on the next leaf and we'd have
  2802. * to drop our current locks to figure it out
  2803. */
  2804. nr = 1;
  2805. }
  2806. /* setup the item for the new data */
  2807. for (i = 0; i < nr; i++) {
  2808. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  2809. btrfs_set_item_key(leaf, &disk_key, slot + i);
  2810. item = btrfs_item_nr(leaf, slot + i);
  2811. btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
  2812. data_end -= data_size[i];
  2813. btrfs_set_item_size(leaf, item, data_size[i]);
  2814. }
  2815. btrfs_set_header_nritems(leaf, nritems + nr);
  2816. btrfs_mark_buffer_dirty(leaf);
  2817. ret = 0;
  2818. if (slot == 0) {
  2819. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  2820. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  2821. }
  2822. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2823. btrfs_print_leaf(root, leaf);
  2824. BUG();
  2825. }
  2826. out:
  2827. if (!ret)
  2828. ret = nr;
  2829. return ret;
  2830. }
  2831. /*
  2832. * Given a key and some data, insert items into the tree.
  2833. * This does all the path init required, making room in the tree if needed.
  2834. */
  2835. int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
  2836. struct btrfs_root *root,
  2837. struct btrfs_path *path,
  2838. struct btrfs_key *cpu_key, u32 *data_size,
  2839. int nr)
  2840. {
  2841. struct extent_buffer *leaf;
  2842. struct btrfs_item *item;
  2843. int ret = 0;
  2844. int slot;
  2845. int slot_orig;
  2846. int i;
  2847. u32 nritems;
  2848. u32 total_size = 0;
  2849. u32 total_data = 0;
  2850. unsigned int data_end;
  2851. struct btrfs_disk_key disk_key;
  2852. for (i = 0; i < nr; i++) {
  2853. total_data += data_size[i];
  2854. }
  2855. total_size = total_data + (nr * sizeof(struct btrfs_item));
  2856. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  2857. if (ret == 0)
  2858. return -EEXIST;
  2859. if (ret < 0)
  2860. goto out;
  2861. slot_orig = path->slots[0];
  2862. leaf = path->nodes[0];
  2863. nritems = btrfs_header_nritems(leaf);
  2864. data_end = leaf_data_end(root, leaf);
  2865. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  2866. btrfs_print_leaf(root, leaf);
  2867. printk("not enough freespace need %u have %d\n",
  2868. total_size, btrfs_leaf_free_space(root, leaf));
  2869. BUG();
  2870. }
  2871. slot = path->slots[0];
  2872. BUG_ON(slot < 0);
  2873. if (slot != nritems) {
  2874. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  2875. if (old_data < data_end) {
  2876. btrfs_print_leaf(root, leaf);
  2877. printk("slot %d old_data %d data_end %d\n",
  2878. slot, old_data, data_end);
  2879. BUG_ON(1);
  2880. }
  2881. /*
  2882. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2883. */
  2884. /* first correct the data pointers */
  2885. WARN_ON(leaf->map_token);
  2886. for (i = slot; i < nritems; i++) {
  2887. u32 ioff;
  2888. item = btrfs_item_nr(leaf, i);
  2889. if (!leaf->map_token) {
  2890. map_extent_buffer(leaf, (unsigned long)item,
  2891. sizeof(struct btrfs_item),
  2892. &leaf->map_token, &leaf->kaddr,
  2893. &leaf->map_start, &leaf->map_len,
  2894. KM_USER1);
  2895. }
  2896. ioff = btrfs_item_offset(leaf, item);
  2897. btrfs_set_item_offset(leaf, item, ioff - total_data);
  2898. }
  2899. if (leaf->map_token) {
  2900. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2901. leaf->map_token = NULL;
  2902. }
  2903. /* shift the items */
  2904. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  2905. btrfs_item_nr_offset(slot),
  2906. (nritems - slot) * sizeof(struct btrfs_item));
  2907. /* shift the data */
  2908. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2909. data_end - total_data, btrfs_leaf_data(leaf) +
  2910. data_end, old_data - data_end);
  2911. data_end = old_data;
  2912. }
  2913. /* setup the item for the new data */
  2914. for (i = 0; i < nr; i++) {
  2915. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  2916. btrfs_set_item_key(leaf, &disk_key, slot + i);
  2917. item = btrfs_item_nr(leaf, slot + i);
  2918. btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
  2919. data_end -= data_size[i];
  2920. btrfs_set_item_size(leaf, item, data_size[i]);
  2921. }
  2922. btrfs_set_header_nritems(leaf, nritems + nr);
  2923. btrfs_mark_buffer_dirty(leaf);
  2924. ret = 0;
  2925. if (slot == 0) {
  2926. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  2927. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  2928. }
  2929. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2930. btrfs_print_leaf(root, leaf);
  2931. BUG();
  2932. }
  2933. out:
  2934. return ret;
  2935. }
  2936. /*
  2937. * Given a key and some data, insert an item into the tree.
  2938. * This does all the path init required, making room in the tree if needed.
  2939. */
  2940. int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
  2941. *root, struct btrfs_key *cpu_key, void *data, u32
  2942. data_size)
  2943. {
  2944. int ret = 0;
  2945. struct btrfs_path *path;
  2946. struct extent_buffer *leaf;
  2947. unsigned long ptr;
  2948. path = btrfs_alloc_path();
  2949. BUG_ON(!path);
  2950. ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
  2951. if (!ret) {
  2952. leaf = path->nodes[0];
  2953. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  2954. write_extent_buffer(leaf, data, ptr, data_size);
  2955. btrfs_mark_buffer_dirty(leaf);
  2956. }
  2957. btrfs_free_path(path);
  2958. return ret;
  2959. }
  2960. /*
  2961. * delete the pointer from a given node.
  2962. *
  2963. * the tree should have been previously balanced so the deletion does not
  2964. * empty a node.
  2965. */
  2966. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  2967. struct btrfs_path *path, int level, int slot)
  2968. {
  2969. struct extent_buffer *parent = path->nodes[level];
  2970. u32 nritems;
  2971. int ret = 0;
  2972. int wret;
  2973. nritems = btrfs_header_nritems(parent);
  2974. if (slot != nritems -1) {
  2975. memmove_extent_buffer(parent,
  2976. btrfs_node_key_ptr_offset(slot),
  2977. btrfs_node_key_ptr_offset(slot + 1),
  2978. sizeof(struct btrfs_key_ptr) *
  2979. (nritems - slot - 1));
  2980. }
  2981. nritems--;
  2982. btrfs_set_header_nritems(parent, nritems);
  2983. if (nritems == 0 && parent == root->node) {
  2984. BUG_ON(btrfs_header_level(root->node) != 1);
  2985. /* just turn the root into a leaf and break */
  2986. btrfs_set_header_level(root->node, 0);
  2987. } else if (slot == 0) {
  2988. struct btrfs_disk_key disk_key;
  2989. btrfs_node_key(parent, &disk_key, 0);
  2990. wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
  2991. if (wret)
  2992. ret = wret;
  2993. }
  2994. btrfs_mark_buffer_dirty(parent);
  2995. return ret;
  2996. }
  2997. /*
  2998. * a helper function to delete the leaf pointed to by path->slots[1] and
  2999. * path->nodes[1]. bytenr is the node block pointer, but since the callers
  3000. * already know it, it is faster to have them pass it down than to
  3001. * read it out of the node again.
  3002. *
  3003. * This deletes the pointer in path->nodes[1] and frees the leaf
  3004. * block extent. zero is returned if it all worked out, < 0 otherwise.
  3005. *
  3006. * The path must have already been setup for deleting the leaf, including
  3007. * all the proper balancing. path->nodes[1] must be locked.
  3008. */
  3009. noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
  3010. struct btrfs_root *root,
  3011. struct btrfs_path *path, u64 bytenr)
  3012. {
  3013. int ret;
  3014. u64 root_gen = btrfs_header_generation(path->nodes[1]);
  3015. ret = del_ptr(trans, root, path, 1, path->slots[1]);
  3016. if (ret)
  3017. return ret;
  3018. ret = btrfs_free_extent(trans, root, bytenr,
  3019. btrfs_level_size(root, 0),
  3020. path->nodes[1]->start,
  3021. btrfs_header_owner(path->nodes[1]),
  3022. root_gen, 0, 1);
  3023. return ret;
  3024. }
  3025. /*
  3026. * delete the item at the leaf level in path. If that empties
  3027. * the leaf, remove it from the tree
  3028. */
  3029. int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  3030. struct btrfs_path *path, int slot, int nr)
  3031. {
  3032. struct extent_buffer *leaf;
  3033. struct btrfs_item *item;
  3034. int last_off;
  3035. int dsize = 0;
  3036. int ret = 0;
  3037. int wret;
  3038. int i;
  3039. u32 nritems;
  3040. leaf = path->nodes[0];
  3041. last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
  3042. for (i = 0; i < nr; i++)
  3043. dsize += btrfs_item_size_nr(leaf, slot + i);
  3044. nritems = btrfs_header_nritems(leaf);
  3045. if (slot + nr != nritems) {
  3046. int data_end = leaf_data_end(root, leaf);
  3047. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3048. data_end + dsize,
  3049. btrfs_leaf_data(leaf) + data_end,
  3050. last_off - data_end);
  3051. for (i = slot + nr; i < nritems; i++) {
  3052. u32 ioff;
  3053. item = btrfs_item_nr(leaf, i);
  3054. if (!leaf->map_token) {
  3055. map_extent_buffer(leaf, (unsigned long)item,
  3056. sizeof(struct btrfs_item),
  3057. &leaf->map_token, &leaf->kaddr,
  3058. &leaf->map_start, &leaf->map_len,
  3059. KM_USER1);
  3060. }
  3061. ioff = btrfs_item_offset(leaf, item);
  3062. btrfs_set_item_offset(leaf, item, ioff + dsize);
  3063. }
  3064. if (leaf->map_token) {
  3065. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  3066. leaf->map_token = NULL;
  3067. }
  3068. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
  3069. btrfs_item_nr_offset(slot + nr),
  3070. sizeof(struct btrfs_item) *
  3071. (nritems - slot - nr));
  3072. }
  3073. btrfs_set_header_nritems(leaf, nritems - nr);
  3074. nritems -= nr;
  3075. /* delete the leaf if we've emptied it */
  3076. if (nritems == 0) {
  3077. if (leaf == root->node) {
  3078. btrfs_set_header_level(leaf, 0);
  3079. } else {
  3080. ret = btrfs_del_leaf(trans, root, path, leaf->start);
  3081. BUG_ON(ret);
  3082. }
  3083. } else {
  3084. int used = leaf_space_used(leaf, 0, nritems);
  3085. if (slot == 0) {
  3086. struct btrfs_disk_key disk_key;
  3087. btrfs_item_key(leaf, &disk_key, 0);
  3088. wret = fixup_low_keys(trans, root, path,
  3089. &disk_key, 1);
  3090. if (wret)
  3091. ret = wret;
  3092. }
  3093. /* delete the leaf if it is mostly empty */
  3094. if (used < BTRFS_LEAF_DATA_SIZE(root) / 4) {
  3095. /* push_leaf_left fixes the path.
  3096. * make sure the path still points to our leaf
  3097. * for possible call to del_ptr below
  3098. */
  3099. slot = path->slots[1];
  3100. extent_buffer_get(leaf);
  3101. wret = push_leaf_left(trans, root, path, 1, 1);
  3102. if (wret < 0 && wret != -ENOSPC)
  3103. ret = wret;
  3104. if (path->nodes[0] == leaf &&
  3105. btrfs_header_nritems(leaf)) {
  3106. wret = push_leaf_right(trans, root, path, 1, 1);
  3107. if (wret < 0 && wret != -ENOSPC)
  3108. ret = wret;
  3109. }
  3110. if (btrfs_header_nritems(leaf) == 0) {
  3111. path->slots[1] = slot;
  3112. ret = btrfs_del_leaf(trans, root, path, leaf->start);
  3113. BUG_ON(ret);
  3114. free_extent_buffer(leaf);
  3115. } else {
  3116. /* if we're still in the path, make sure
  3117. * we're dirty. Otherwise, one of the
  3118. * push_leaf functions must have already
  3119. * dirtied this buffer
  3120. */
  3121. if (path->nodes[0] == leaf)
  3122. btrfs_mark_buffer_dirty(leaf);
  3123. free_extent_buffer(leaf);
  3124. }
  3125. } else {
  3126. btrfs_mark_buffer_dirty(leaf);
  3127. }
  3128. }
  3129. return ret;
  3130. }
  3131. /*
  3132. * search the tree again to find a leaf with lesser keys
  3133. * returns 0 if it found something or 1 if there are no lesser leaves.
  3134. * returns < 0 on io errors.
  3135. *
  3136. * This may release the path, and so you may lose any locks held at the
  3137. * time you call it.
  3138. */
  3139. int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3140. {
  3141. struct btrfs_key key;
  3142. struct btrfs_disk_key found_key;
  3143. int ret;
  3144. btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
  3145. if (key.offset > 0)
  3146. key.offset--;
  3147. else if (key.type > 0)
  3148. key.type--;
  3149. else if (key.objectid > 0)
  3150. key.objectid--;
  3151. else
  3152. return 1;
  3153. btrfs_release_path(root, path);
  3154. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3155. if (ret < 0)
  3156. return ret;
  3157. btrfs_item_key(path->nodes[0], &found_key, 0);
  3158. ret = comp_keys(&found_key, &key);
  3159. if (ret < 0)
  3160. return 0;
  3161. return 1;
  3162. }
  3163. /*
  3164. * A helper function to walk down the tree starting at min_key, and looking
  3165. * for nodes or leaves that are either in cache or have a minimum
  3166. * transaction id. This is used by the btree defrag code, and tree logging
  3167. *
  3168. * This does not cow, but it does stuff the starting key it finds back
  3169. * into min_key, so you can call btrfs_search_slot with cow=1 on the
  3170. * key and get a writable path.
  3171. *
  3172. * This does lock as it descends, and path->keep_locks should be set
  3173. * to 1 by the caller.
  3174. *
  3175. * This honors path->lowest_level to prevent descent past a given level
  3176. * of the tree.
  3177. *
  3178. * min_trans indicates the oldest transaction that you are interested
  3179. * in walking through. Any nodes or leaves older than min_trans are
  3180. * skipped over (without reading them).
  3181. *
  3182. * returns zero if something useful was found, < 0 on error and 1 if there
  3183. * was nothing in the tree that matched the search criteria.
  3184. */
  3185. int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
  3186. struct btrfs_key *max_key,
  3187. struct btrfs_path *path, int cache_only,
  3188. u64 min_trans)
  3189. {
  3190. struct extent_buffer *cur;
  3191. struct btrfs_key found_key;
  3192. int slot;
  3193. int sret;
  3194. u32 nritems;
  3195. int level;
  3196. int ret = 1;
  3197. again:
  3198. cur = btrfs_lock_root_node(root);
  3199. level = btrfs_header_level(cur);
  3200. WARN_ON(path->nodes[level]);
  3201. path->nodes[level] = cur;
  3202. path->locks[level] = 1;
  3203. if (btrfs_header_generation(cur) < min_trans) {
  3204. ret = 1;
  3205. goto out;
  3206. }
  3207. while(1) {
  3208. nritems = btrfs_header_nritems(cur);
  3209. level = btrfs_header_level(cur);
  3210. sret = bin_search(cur, min_key, level, &slot);
  3211. /* at the lowest level, we're done, setup the path and exit */
  3212. if (level == path->lowest_level) {
  3213. if (slot >= nritems)
  3214. goto find_next_key;
  3215. ret = 0;
  3216. path->slots[level] = slot;
  3217. btrfs_item_key_to_cpu(cur, &found_key, slot);
  3218. goto out;
  3219. }
  3220. if (sret && slot > 0)
  3221. slot--;
  3222. /*
  3223. * check this node pointer against the cache_only and
  3224. * min_trans parameters. If it isn't in cache or is too
  3225. * old, skip to the next one.
  3226. */
  3227. while(slot < nritems) {
  3228. u64 blockptr;
  3229. u64 gen;
  3230. struct extent_buffer *tmp;
  3231. struct btrfs_disk_key disk_key;
  3232. blockptr = btrfs_node_blockptr(cur, slot);
  3233. gen = btrfs_node_ptr_generation(cur, slot);
  3234. if (gen < min_trans) {
  3235. slot++;
  3236. continue;
  3237. }
  3238. if (!cache_only)
  3239. break;
  3240. if (max_key) {
  3241. btrfs_node_key(cur, &disk_key, slot);
  3242. if (comp_keys(&disk_key, max_key) >= 0) {
  3243. ret = 1;
  3244. goto out;
  3245. }
  3246. }
  3247. tmp = btrfs_find_tree_block(root, blockptr,
  3248. btrfs_level_size(root, level - 1));
  3249. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  3250. free_extent_buffer(tmp);
  3251. break;
  3252. }
  3253. if (tmp)
  3254. free_extent_buffer(tmp);
  3255. slot++;
  3256. }
  3257. find_next_key:
  3258. /*
  3259. * we didn't find a candidate key in this node, walk forward
  3260. * and find another one
  3261. */
  3262. if (slot >= nritems) {
  3263. path->slots[level] = slot;
  3264. sret = btrfs_find_next_key(root, path, min_key, level,
  3265. cache_only, min_trans);
  3266. if (sret == 0) {
  3267. btrfs_release_path(root, path);
  3268. goto again;
  3269. } else {
  3270. goto out;
  3271. }
  3272. }
  3273. /* save our key for returning back */
  3274. btrfs_node_key_to_cpu(cur, &found_key, slot);
  3275. path->slots[level] = slot;
  3276. if (level == path->lowest_level) {
  3277. ret = 0;
  3278. unlock_up(path, level, 1);
  3279. goto out;
  3280. }
  3281. cur = read_node_slot(root, cur, slot);
  3282. btrfs_tree_lock(cur);
  3283. path->locks[level - 1] = 1;
  3284. path->nodes[level - 1] = cur;
  3285. unlock_up(path, level, 1);
  3286. }
  3287. out:
  3288. if (ret == 0)
  3289. memcpy(min_key, &found_key, sizeof(found_key));
  3290. return ret;
  3291. }
  3292. /*
  3293. * this is similar to btrfs_next_leaf, but does not try to preserve
  3294. * and fixup the path. It looks for and returns the next key in the
  3295. * tree based on the current path and the cache_only and min_trans
  3296. * parameters.
  3297. *
  3298. * 0 is returned if another key is found, < 0 if there are any errors
  3299. * and 1 is returned if there are no higher keys in the tree
  3300. *
  3301. * path->keep_locks should be set to 1 on the search made before
  3302. * calling this function.
  3303. */
  3304. int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
  3305. struct btrfs_key *key, int lowest_level,
  3306. int cache_only, u64 min_trans)
  3307. {
  3308. int level = lowest_level;
  3309. int slot;
  3310. struct extent_buffer *c;
  3311. while(level < BTRFS_MAX_LEVEL) {
  3312. if (!path->nodes[level])
  3313. return 1;
  3314. slot = path->slots[level] + 1;
  3315. c = path->nodes[level];
  3316. next:
  3317. if (slot >= btrfs_header_nritems(c)) {
  3318. level++;
  3319. if (level == BTRFS_MAX_LEVEL) {
  3320. return 1;
  3321. }
  3322. continue;
  3323. }
  3324. if (level == 0)
  3325. btrfs_item_key_to_cpu(c, key, slot);
  3326. else {
  3327. u64 blockptr = btrfs_node_blockptr(c, slot);
  3328. u64 gen = btrfs_node_ptr_generation(c, slot);
  3329. if (cache_only) {
  3330. struct extent_buffer *cur;
  3331. cur = btrfs_find_tree_block(root, blockptr,
  3332. btrfs_level_size(root, level - 1));
  3333. if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
  3334. slot++;
  3335. if (cur)
  3336. free_extent_buffer(cur);
  3337. goto next;
  3338. }
  3339. free_extent_buffer(cur);
  3340. }
  3341. if (gen < min_trans) {
  3342. slot++;
  3343. goto next;
  3344. }
  3345. btrfs_node_key_to_cpu(c, key, slot);
  3346. }
  3347. return 0;
  3348. }
  3349. return 1;
  3350. }
  3351. /*
  3352. * search the tree again to find a leaf with greater keys
  3353. * returns 0 if it found something or 1 if there are no greater leaves.
  3354. * returns < 0 on io errors.
  3355. */
  3356. int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3357. {
  3358. int slot;
  3359. int level = 1;
  3360. struct extent_buffer *c;
  3361. struct extent_buffer *next = NULL;
  3362. struct btrfs_key key;
  3363. u32 nritems;
  3364. int ret;
  3365. nritems = btrfs_header_nritems(path->nodes[0]);
  3366. if (nritems == 0) {
  3367. return 1;
  3368. }
  3369. btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
  3370. btrfs_release_path(root, path);
  3371. path->keep_locks = 1;
  3372. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3373. path->keep_locks = 0;
  3374. if (ret < 0)
  3375. return ret;
  3376. nritems = btrfs_header_nritems(path->nodes[0]);
  3377. /*
  3378. * by releasing the path above we dropped all our locks. A balance
  3379. * could have added more items next to the key that used to be
  3380. * at the very end of the block. So, check again here and
  3381. * advance the path if there are now more items available.
  3382. */
  3383. if (nritems > 0 && path->slots[0] < nritems - 1) {
  3384. path->slots[0]++;
  3385. goto done;
  3386. }
  3387. while(level < BTRFS_MAX_LEVEL) {
  3388. if (!path->nodes[level])
  3389. return 1;
  3390. slot = path->slots[level] + 1;
  3391. c = path->nodes[level];
  3392. if (slot >= btrfs_header_nritems(c)) {
  3393. level++;
  3394. if (level == BTRFS_MAX_LEVEL) {
  3395. return 1;
  3396. }
  3397. continue;
  3398. }
  3399. if (next) {
  3400. btrfs_tree_unlock(next);
  3401. free_extent_buffer(next);
  3402. }
  3403. if (level == 1 && (path->locks[1] || path->skip_locking) &&
  3404. path->reada)
  3405. reada_for_search(root, path, level, slot, 0);
  3406. next = read_node_slot(root, c, slot);
  3407. if (!path->skip_locking) {
  3408. WARN_ON(!btrfs_tree_locked(c));
  3409. btrfs_tree_lock(next);
  3410. }
  3411. break;
  3412. }
  3413. path->slots[level] = slot;
  3414. while(1) {
  3415. level--;
  3416. c = path->nodes[level];
  3417. if (path->locks[level])
  3418. btrfs_tree_unlock(c);
  3419. free_extent_buffer(c);
  3420. path->nodes[level] = next;
  3421. path->slots[level] = 0;
  3422. if (!path->skip_locking)
  3423. path->locks[level] = 1;
  3424. if (!level)
  3425. break;
  3426. if (level == 1 && path->locks[1] && path->reada)
  3427. reada_for_search(root, path, level, slot, 0);
  3428. next = read_node_slot(root, next, 0);
  3429. if (!path->skip_locking) {
  3430. WARN_ON(!btrfs_tree_locked(path->nodes[level]));
  3431. btrfs_tree_lock(next);
  3432. }
  3433. }
  3434. done:
  3435. unlock_up(path, 0, 1);
  3436. return 0;
  3437. }
  3438. /*
  3439. * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
  3440. * searching until it gets past min_objectid or finds an item of 'type'
  3441. *
  3442. * returns 0 if something is found, 1 if nothing was found and < 0 on error
  3443. */
  3444. int btrfs_previous_item(struct btrfs_root *root,
  3445. struct btrfs_path *path, u64 min_objectid,
  3446. int type)
  3447. {
  3448. struct btrfs_key found_key;
  3449. struct extent_buffer *leaf;
  3450. u32 nritems;
  3451. int ret;
  3452. while(1) {
  3453. if (path->slots[0] == 0) {
  3454. ret = btrfs_prev_leaf(root, path);
  3455. if (ret != 0)
  3456. return ret;
  3457. } else {
  3458. path->slots[0]--;
  3459. }
  3460. leaf = path->nodes[0];
  3461. nritems = btrfs_header_nritems(leaf);
  3462. if (nritems == 0)
  3463. return 1;
  3464. if (path->slots[0] == nritems)
  3465. path->slots[0]--;
  3466. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  3467. if (found_key.type == type)
  3468. return 0;
  3469. if (found_key.objectid < min_objectid)
  3470. break;
  3471. if (found_key.objectid == min_objectid &&
  3472. found_key.type < type)
  3473. break;
  3474. }
  3475. return 1;
  3476. }