phy.c 80 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076
  1. /*
  2. * PHY functions
  3. *
  4. * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
  5. * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
  6. * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
  7. * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
  8. *
  9. * Permission to use, copy, modify, and distribute this software for any
  10. * purpose with or without fee is hereby granted, provided that the above
  11. * copyright notice and this permission notice appear in all copies.
  12. *
  13. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  14. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  15. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  16. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  17. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  18. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  19. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  20. *
  21. */
  22. #define _ATH5K_PHY
  23. #include <linux/delay.h>
  24. #include "ath5k.h"
  25. #include "reg.h"
  26. #include "base.h"
  27. #include "rfbuffer.h"
  28. #include "rfgain.h"
  29. /*
  30. * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
  31. */
  32. static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
  33. const struct ath5k_rf_reg *rf_regs,
  34. u32 val, u8 reg_id, bool set)
  35. {
  36. const struct ath5k_rf_reg *rfreg = NULL;
  37. u8 offset, bank, num_bits, col, position;
  38. u16 entry;
  39. u32 mask, data, last_bit, bits_shifted, first_bit;
  40. u32 *rfb;
  41. s32 bits_left;
  42. int i;
  43. data = 0;
  44. rfb = ah->ah_rf_banks;
  45. for (i = 0; i < ah->ah_rf_regs_count; i++) {
  46. if (rf_regs[i].index == reg_id) {
  47. rfreg = &rf_regs[i];
  48. break;
  49. }
  50. }
  51. if (rfb == NULL || rfreg == NULL) {
  52. ATH5K_PRINTF("Rf register not found!\n");
  53. /* should not happen */
  54. return 0;
  55. }
  56. bank = rfreg->bank;
  57. num_bits = rfreg->field.len;
  58. first_bit = rfreg->field.pos;
  59. col = rfreg->field.col;
  60. /* first_bit is an offset from bank's
  61. * start. Since we have all banks on
  62. * the same array, we use this offset
  63. * to mark each bank's start */
  64. offset = ah->ah_offset[bank];
  65. /* Boundary check */
  66. if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
  67. ATH5K_PRINTF("invalid values at offset %u\n", offset);
  68. return 0;
  69. }
  70. entry = ((first_bit - 1) / 8) + offset;
  71. position = (first_bit - 1) % 8;
  72. if (set)
  73. data = ath5k_hw_bitswap(val, num_bits);
  74. for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
  75. position = 0, entry++) {
  76. last_bit = (position + bits_left > 8) ? 8 :
  77. position + bits_left;
  78. mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
  79. (col * 8);
  80. if (set) {
  81. rfb[entry] &= ~mask;
  82. rfb[entry] |= ((data << position) << (col * 8)) & mask;
  83. data >>= (8 - position);
  84. } else {
  85. data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
  86. << bits_shifted;
  87. bits_shifted += last_bit - position;
  88. }
  89. bits_left -= 8 - position;
  90. }
  91. data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
  92. return data;
  93. }
  94. /**********************\
  95. * RF Gain optimization *
  96. \**********************/
  97. /*
  98. * This code is used to optimize rf gain on different environments
  99. * (temprature mostly) based on feedback from a power detector.
  100. *
  101. * It's only used on RF5111 and RF5112, later RF chips seem to have
  102. * auto adjustment on hw -notice they have a much smaller BANK 7 and
  103. * no gain optimization ladder-.
  104. *
  105. * For more infos check out this patent doc
  106. * http://www.freepatentsonline.com/7400691.html
  107. *
  108. * This paper describes power drops as seen on the receiver due to
  109. * probe packets
  110. * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
  111. * %20of%20Power%20Control.pdf
  112. *
  113. * And this is the MadWiFi bug entry related to the above
  114. * http://madwifi-project.org/ticket/1659
  115. * with various measurements and diagrams
  116. *
  117. * TODO: Deal with power drops due to probes by setting an apropriate
  118. * tx power on the probe packets ! Make this part of the calibration process.
  119. */
  120. /* Initialize ah_gain durring attach */
  121. int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
  122. {
  123. /* Initialize the gain optimization values */
  124. switch (ah->ah_radio) {
  125. case AR5K_RF5111:
  126. ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
  127. ah->ah_gain.g_low = 20;
  128. ah->ah_gain.g_high = 35;
  129. ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
  130. break;
  131. case AR5K_RF5112:
  132. ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
  133. ah->ah_gain.g_low = 20;
  134. ah->ah_gain.g_high = 85;
  135. ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
  136. break;
  137. default:
  138. return -EINVAL;
  139. }
  140. return 0;
  141. }
  142. /* Schedule a gain probe check on the next transmited packet.
  143. * That means our next packet is going to be sent with lower
  144. * tx power and a Peak to Average Power Detector (PAPD) will try
  145. * to measure the gain.
  146. *
  147. * XXX: How about forcing a tx packet (bypassing PCU arbitrator etc)
  148. * just after we enable the probe so that we don't mess with
  149. * standard traffic ? Maybe it's time to use sw interrupts and
  150. * a probe tasklet !!!
  151. */
  152. static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
  153. {
  154. /* Skip if gain calibration is inactive or
  155. * we already handle a probe request */
  156. if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
  157. return;
  158. /* Send the packet with 2dB below max power as
  159. * patent doc suggest */
  160. ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
  161. AR5K_PHY_PAPD_PROBE_TXPOWER) |
  162. AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
  163. ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
  164. }
  165. /* Calculate gain_F measurement correction
  166. * based on the current step for RF5112 rev. 2 */
  167. static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
  168. {
  169. u32 mix, step;
  170. u32 *rf;
  171. const struct ath5k_gain_opt *go;
  172. const struct ath5k_gain_opt_step *g_step;
  173. const struct ath5k_rf_reg *rf_regs;
  174. /* Only RF5112 Rev. 2 supports it */
  175. if ((ah->ah_radio != AR5K_RF5112) ||
  176. (ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
  177. return 0;
  178. go = &rfgain_opt_5112;
  179. rf_regs = rf_regs_5112a;
  180. ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
  181. g_step = &go->go_step[ah->ah_gain.g_step_idx];
  182. if (ah->ah_rf_banks == NULL)
  183. return 0;
  184. rf = ah->ah_rf_banks;
  185. ah->ah_gain.g_f_corr = 0;
  186. /* No VGA (Variable Gain Amplifier) override, skip */
  187. if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
  188. return 0;
  189. /* Mix gain stepping */
  190. step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
  191. /* Mix gain override */
  192. mix = g_step->gos_param[0];
  193. switch (mix) {
  194. case 3:
  195. ah->ah_gain.g_f_corr = step * 2;
  196. break;
  197. case 2:
  198. ah->ah_gain.g_f_corr = (step - 5) * 2;
  199. break;
  200. case 1:
  201. ah->ah_gain.g_f_corr = step;
  202. break;
  203. default:
  204. ah->ah_gain.g_f_corr = 0;
  205. break;
  206. }
  207. return ah->ah_gain.g_f_corr;
  208. }
  209. /* Check if current gain_F measurement is in the range of our
  210. * power detector windows. If we get a measurement outside range
  211. * we know it's not accurate (detectors can't measure anything outside
  212. * their detection window) so we must ignore it */
  213. static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
  214. {
  215. const struct ath5k_rf_reg *rf_regs;
  216. u32 step, mix_ovr, level[4];
  217. u32 *rf;
  218. if (ah->ah_rf_banks == NULL)
  219. return false;
  220. rf = ah->ah_rf_banks;
  221. if (ah->ah_radio == AR5K_RF5111) {
  222. rf_regs = rf_regs_5111;
  223. ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
  224. step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
  225. false);
  226. level[0] = 0;
  227. level[1] = (step == 63) ? 50 : step + 4;
  228. level[2] = (step != 63) ? 64 : level[0];
  229. level[3] = level[2] + 50 ;
  230. ah->ah_gain.g_high = level[3] -
  231. (step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
  232. ah->ah_gain.g_low = level[0] +
  233. (step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
  234. } else {
  235. rf_regs = rf_regs_5112;
  236. ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
  237. mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
  238. false);
  239. level[0] = level[2] = 0;
  240. if (mix_ovr == 1) {
  241. level[1] = level[3] = 83;
  242. } else {
  243. level[1] = level[3] = 107;
  244. ah->ah_gain.g_high = 55;
  245. }
  246. }
  247. return (ah->ah_gain.g_current >= level[0] &&
  248. ah->ah_gain.g_current <= level[1]) ||
  249. (ah->ah_gain.g_current >= level[2] &&
  250. ah->ah_gain.g_current <= level[3]);
  251. }
  252. /* Perform gain_F adjustment by choosing the right set
  253. * of parameters from rf gain optimization ladder */
  254. static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
  255. {
  256. const struct ath5k_gain_opt *go;
  257. const struct ath5k_gain_opt_step *g_step;
  258. int ret = 0;
  259. switch (ah->ah_radio) {
  260. case AR5K_RF5111:
  261. go = &rfgain_opt_5111;
  262. break;
  263. case AR5K_RF5112:
  264. go = &rfgain_opt_5112;
  265. break;
  266. default:
  267. return 0;
  268. }
  269. g_step = &go->go_step[ah->ah_gain.g_step_idx];
  270. if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
  271. /* Reached maximum */
  272. if (ah->ah_gain.g_step_idx == 0)
  273. return -1;
  274. for (ah->ah_gain.g_target = ah->ah_gain.g_current;
  275. ah->ah_gain.g_target >= ah->ah_gain.g_high &&
  276. ah->ah_gain.g_step_idx > 0;
  277. g_step = &go->go_step[ah->ah_gain.g_step_idx])
  278. ah->ah_gain.g_target -= 2 *
  279. (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
  280. g_step->gos_gain);
  281. ret = 1;
  282. goto done;
  283. }
  284. if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
  285. /* Reached minimum */
  286. if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
  287. return -2;
  288. for (ah->ah_gain.g_target = ah->ah_gain.g_current;
  289. ah->ah_gain.g_target <= ah->ah_gain.g_low &&
  290. ah->ah_gain.g_step_idx < go->go_steps_count-1;
  291. g_step = &go->go_step[ah->ah_gain.g_step_idx])
  292. ah->ah_gain.g_target -= 2 *
  293. (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
  294. g_step->gos_gain);
  295. ret = 2;
  296. goto done;
  297. }
  298. done:
  299. ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
  300. "ret %d, gain step %u, current gain %u, target gain %u\n",
  301. ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
  302. ah->ah_gain.g_target);
  303. return ret;
  304. }
  305. /* Main callback for thermal rf gain calibration engine
  306. * Check for a new gain reading and schedule an adjustment
  307. * if needed.
  308. *
  309. * TODO: Use sw interrupt to schedule reset if gain_F needs
  310. * adjustment */
  311. enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
  312. {
  313. u32 data, type;
  314. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  315. ATH5K_TRACE(ah->ah_sc);
  316. if (ah->ah_rf_banks == NULL ||
  317. ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
  318. return AR5K_RFGAIN_INACTIVE;
  319. /* No check requested, either engine is inactive
  320. * or an adjustment is already requested */
  321. if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
  322. goto done;
  323. /* Read the PAPD (Peak to Average Power Detector)
  324. * register */
  325. data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
  326. /* No probe is scheduled, read gain_F measurement */
  327. if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
  328. ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
  329. type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
  330. /* If tx packet is CCK correct the gain_F measurement
  331. * by cck ofdm gain delta */
  332. if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
  333. if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
  334. ah->ah_gain.g_current +=
  335. ee->ee_cck_ofdm_gain_delta;
  336. else
  337. ah->ah_gain.g_current +=
  338. AR5K_GAIN_CCK_PROBE_CORR;
  339. }
  340. /* Further correct gain_F measurement for
  341. * RF5112A radios */
  342. if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
  343. ath5k_hw_rf_gainf_corr(ah);
  344. ah->ah_gain.g_current =
  345. ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
  346. (ah->ah_gain.g_current-ah->ah_gain.g_f_corr) :
  347. 0;
  348. }
  349. /* Check if measurement is ok and if we need
  350. * to adjust gain, schedule a gain adjustment,
  351. * else switch back to the acive state */
  352. if (ath5k_hw_rf_check_gainf_readback(ah) &&
  353. AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
  354. ath5k_hw_rf_gainf_adjust(ah)) {
  355. ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
  356. } else {
  357. ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
  358. }
  359. }
  360. done:
  361. return ah->ah_gain.g_state;
  362. }
  363. /* Write initial rf gain table to set the RF sensitivity
  364. * this one works on all RF chips and has nothing to do
  365. * with gain_F calibration */
  366. int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq)
  367. {
  368. const struct ath5k_ini_rfgain *ath5k_rfg;
  369. unsigned int i, size;
  370. switch (ah->ah_radio) {
  371. case AR5K_RF5111:
  372. ath5k_rfg = rfgain_5111;
  373. size = ARRAY_SIZE(rfgain_5111);
  374. break;
  375. case AR5K_RF5112:
  376. ath5k_rfg = rfgain_5112;
  377. size = ARRAY_SIZE(rfgain_5112);
  378. break;
  379. case AR5K_RF2413:
  380. ath5k_rfg = rfgain_2413;
  381. size = ARRAY_SIZE(rfgain_2413);
  382. break;
  383. case AR5K_RF2316:
  384. ath5k_rfg = rfgain_2316;
  385. size = ARRAY_SIZE(rfgain_2316);
  386. break;
  387. case AR5K_RF5413:
  388. ath5k_rfg = rfgain_5413;
  389. size = ARRAY_SIZE(rfgain_5413);
  390. break;
  391. case AR5K_RF2317:
  392. case AR5K_RF2425:
  393. ath5k_rfg = rfgain_2425;
  394. size = ARRAY_SIZE(rfgain_2425);
  395. break;
  396. default:
  397. return -EINVAL;
  398. }
  399. switch (freq) {
  400. case AR5K_INI_RFGAIN_2GHZ:
  401. case AR5K_INI_RFGAIN_5GHZ:
  402. break;
  403. default:
  404. return -EINVAL;
  405. }
  406. for (i = 0; i < size; i++) {
  407. AR5K_REG_WAIT(i);
  408. ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[freq],
  409. (u32)ath5k_rfg[i].rfg_register);
  410. }
  411. return 0;
  412. }
  413. /********************\
  414. * RF Registers setup *
  415. \********************/
  416. /*
  417. * Setup RF registers by writing rf buffer on hw
  418. */
  419. int ath5k_hw_rfregs_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
  420. unsigned int mode)
  421. {
  422. const struct ath5k_rf_reg *rf_regs;
  423. const struct ath5k_ini_rfbuffer *ini_rfb;
  424. const struct ath5k_gain_opt *go = NULL;
  425. const struct ath5k_gain_opt_step *g_step;
  426. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  427. u8 ee_mode = 0;
  428. u32 *rfb;
  429. int i, obdb = -1, bank = -1;
  430. switch (ah->ah_radio) {
  431. case AR5K_RF5111:
  432. rf_regs = rf_regs_5111;
  433. ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
  434. ini_rfb = rfb_5111;
  435. ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
  436. go = &rfgain_opt_5111;
  437. break;
  438. case AR5K_RF5112:
  439. if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
  440. rf_regs = rf_regs_5112a;
  441. ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
  442. ini_rfb = rfb_5112a;
  443. ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
  444. } else {
  445. rf_regs = rf_regs_5112;
  446. ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
  447. ini_rfb = rfb_5112;
  448. ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
  449. }
  450. go = &rfgain_opt_5112;
  451. break;
  452. case AR5K_RF2413:
  453. rf_regs = rf_regs_2413;
  454. ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
  455. ini_rfb = rfb_2413;
  456. ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
  457. break;
  458. case AR5K_RF2316:
  459. rf_regs = rf_regs_2316;
  460. ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
  461. ini_rfb = rfb_2316;
  462. ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
  463. break;
  464. case AR5K_RF5413:
  465. rf_regs = rf_regs_5413;
  466. ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
  467. ini_rfb = rfb_5413;
  468. ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
  469. break;
  470. case AR5K_RF2317:
  471. rf_regs = rf_regs_2425;
  472. ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
  473. ini_rfb = rfb_2317;
  474. ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
  475. break;
  476. case AR5K_RF2425:
  477. rf_regs = rf_regs_2425;
  478. ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
  479. if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
  480. ini_rfb = rfb_2425;
  481. ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
  482. } else {
  483. ini_rfb = rfb_2417;
  484. ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
  485. }
  486. break;
  487. default:
  488. return -EINVAL;
  489. }
  490. /* If it's the first time we set rf buffer, allocate
  491. * ah->ah_rf_banks based on ah->ah_rf_banks_size
  492. * we set above */
  493. if (ah->ah_rf_banks == NULL) {
  494. ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
  495. GFP_KERNEL);
  496. if (ah->ah_rf_banks == NULL) {
  497. ATH5K_ERR(ah->ah_sc, "out of memory\n");
  498. return -ENOMEM;
  499. }
  500. }
  501. /* Copy values to modify them */
  502. rfb = ah->ah_rf_banks;
  503. for (i = 0; i < ah->ah_rf_banks_size; i++) {
  504. if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
  505. ATH5K_ERR(ah->ah_sc, "invalid bank\n");
  506. return -EINVAL;
  507. }
  508. /* Bank changed, write down the offset */
  509. if (bank != ini_rfb[i].rfb_bank) {
  510. bank = ini_rfb[i].rfb_bank;
  511. ah->ah_offset[bank] = i;
  512. }
  513. rfb[i] = ini_rfb[i].rfb_mode_data[mode];
  514. }
  515. /* Set Output and Driver bias current (OB/DB) */
  516. if (channel->hw_value & CHANNEL_2GHZ) {
  517. if (channel->hw_value & CHANNEL_CCK)
  518. ee_mode = AR5K_EEPROM_MODE_11B;
  519. else
  520. ee_mode = AR5K_EEPROM_MODE_11G;
  521. /* For RF511X/RF211X combination we
  522. * use b_OB and b_DB parameters stored
  523. * in eeprom on ee->ee_ob[ee_mode][0]
  524. *
  525. * For all other chips we use OB/DB for 2Ghz
  526. * stored in the b/g modal section just like
  527. * 802.11a on ee->ee_ob[ee_mode][1] */
  528. if ((ah->ah_radio == AR5K_RF5111) ||
  529. (ah->ah_radio == AR5K_RF5112))
  530. obdb = 0;
  531. else
  532. obdb = 1;
  533. ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
  534. AR5K_RF_OB_2GHZ, true);
  535. ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
  536. AR5K_RF_DB_2GHZ, true);
  537. /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
  538. } else if ((channel->hw_value & CHANNEL_5GHZ) ||
  539. (ah->ah_radio == AR5K_RF5111)) {
  540. /* For 11a, Turbo and XR we need to choose
  541. * OB/DB based on frequency range */
  542. ee_mode = AR5K_EEPROM_MODE_11A;
  543. obdb = channel->center_freq >= 5725 ? 3 :
  544. (channel->center_freq >= 5500 ? 2 :
  545. (channel->center_freq >= 5260 ? 1 :
  546. (channel->center_freq > 4000 ? 0 : -1)));
  547. if (obdb < 0)
  548. return -EINVAL;
  549. ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
  550. AR5K_RF_OB_5GHZ, true);
  551. ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
  552. AR5K_RF_DB_5GHZ, true);
  553. }
  554. g_step = &go->go_step[ah->ah_gain.g_step_idx];
  555. /* Bank Modifications (chip-specific) */
  556. if (ah->ah_radio == AR5K_RF5111) {
  557. /* Set gain_F settings according to current step */
  558. if (channel->hw_value & CHANNEL_OFDM) {
  559. AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
  560. AR5K_PHY_FRAME_CTL_TX_CLIP,
  561. g_step->gos_param[0]);
  562. ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
  563. AR5K_RF_PWD_90, true);
  564. ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
  565. AR5K_RF_PWD_84, true);
  566. ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
  567. AR5K_RF_RFGAIN_SEL, true);
  568. /* We programmed gain_F parameters, switch back
  569. * to active state */
  570. ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
  571. }
  572. /* Bank 6/7 setup */
  573. ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
  574. AR5K_RF_PWD_XPD, true);
  575. ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
  576. AR5K_RF_XPD_GAIN, true);
  577. ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
  578. AR5K_RF_GAIN_I, true);
  579. ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
  580. AR5K_RF_PLO_SEL, true);
  581. /* TODO: Half/quarter channel support */
  582. }
  583. if (ah->ah_radio == AR5K_RF5112) {
  584. /* Set gain_F settings according to current step */
  585. if (channel->hw_value & CHANNEL_OFDM) {
  586. ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
  587. AR5K_RF_MIXGAIN_OVR, true);
  588. ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
  589. AR5K_RF_PWD_138, true);
  590. ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
  591. AR5K_RF_PWD_137, true);
  592. ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
  593. AR5K_RF_PWD_136, true);
  594. ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
  595. AR5K_RF_PWD_132, true);
  596. ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
  597. AR5K_RF_PWD_131, true);
  598. ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
  599. AR5K_RF_PWD_130, true);
  600. /* We programmed gain_F parameters, switch back
  601. * to active state */
  602. ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
  603. }
  604. /* Bank 6/7 setup */
  605. ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
  606. AR5K_RF_XPD_SEL, true);
  607. if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
  608. /* Rev. 1 supports only one xpd */
  609. ath5k_hw_rfb_op(ah, rf_regs,
  610. ee->ee_x_gain[ee_mode],
  611. AR5K_RF_XPD_GAIN, true);
  612. } else {
  613. u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
  614. if (ee->ee_pd_gains[ee_mode] > 1) {
  615. ath5k_hw_rfb_op(ah, rf_regs,
  616. pdg_curve_to_idx[0],
  617. AR5K_RF_PD_GAIN_LO, true);
  618. ath5k_hw_rfb_op(ah, rf_regs,
  619. pdg_curve_to_idx[1],
  620. AR5K_RF_PD_GAIN_HI, true);
  621. } else {
  622. ath5k_hw_rfb_op(ah, rf_regs,
  623. pdg_curve_to_idx[0],
  624. AR5K_RF_PD_GAIN_LO, true);
  625. ath5k_hw_rfb_op(ah, rf_regs,
  626. pdg_curve_to_idx[0],
  627. AR5K_RF_PD_GAIN_HI, true);
  628. }
  629. /* Lower synth voltage on Rev 2 */
  630. ath5k_hw_rfb_op(ah, rf_regs, 2,
  631. AR5K_RF_HIGH_VC_CP, true);
  632. ath5k_hw_rfb_op(ah, rf_regs, 2,
  633. AR5K_RF_MID_VC_CP, true);
  634. ath5k_hw_rfb_op(ah, rf_regs, 2,
  635. AR5K_RF_LOW_VC_CP, true);
  636. ath5k_hw_rfb_op(ah, rf_regs, 2,
  637. AR5K_RF_PUSH_UP, true);
  638. /* Decrease power consumption on 5213+ BaseBand */
  639. if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
  640. ath5k_hw_rfb_op(ah, rf_regs, 1,
  641. AR5K_RF_PAD2GND, true);
  642. ath5k_hw_rfb_op(ah, rf_regs, 1,
  643. AR5K_RF_XB2_LVL, true);
  644. ath5k_hw_rfb_op(ah, rf_regs, 1,
  645. AR5K_RF_XB5_LVL, true);
  646. ath5k_hw_rfb_op(ah, rf_regs, 1,
  647. AR5K_RF_PWD_167, true);
  648. ath5k_hw_rfb_op(ah, rf_regs, 1,
  649. AR5K_RF_PWD_166, true);
  650. }
  651. }
  652. ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
  653. AR5K_RF_GAIN_I, true);
  654. /* TODO: Half/quarter channel support */
  655. }
  656. if (ah->ah_radio == AR5K_RF5413 &&
  657. channel->hw_value & CHANNEL_2GHZ) {
  658. ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
  659. true);
  660. /* Set optimum value for early revisions (on pci-e chips) */
  661. if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
  662. ah->ah_mac_srev < AR5K_SREV_AR5413)
  663. ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
  664. AR5K_RF_PWD_ICLOBUF_2G, true);
  665. }
  666. /* Write RF banks on hw */
  667. for (i = 0; i < ah->ah_rf_banks_size; i++) {
  668. AR5K_REG_WAIT(i);
  669. ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
  670. }
  671. return 0;
  672. }
  673. /**************************\
  674. PHY/RF channel functions
  675. \**************************/
  676. /*
  677. * Check if a channel is supported
  678. */
  679. bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
  680. {
  681. /* Check if the channel is in our supported range */
  682. if (flags & CHANNEL_2GHZ) {
  683. if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
  684. (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
  685. return true;
  686. } else if (flags & CHANNEL_5GHZ)
  687. if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
  688. (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
  689. return true;
  690. return false;
  691. }
  692. /*
  693. * Convertion needed for RF5110
  694. */
  695. static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
  696. {
  697. u32 athchan;
  698. /*
  699. * Convert IEEE channel/MHz to an internal channel value used
  700. * by the AR5210 chipset. This has not been verified with
  701. * newer chipsets like the AR5212A who have a completely
  702. * different RF/PHY part.
  703. */
  704. athchan = (ath5k_hw_bitswap(
  705. (ieee80211_frequency_to_channel(
  706. channel->center_freq) - 24) / 2, 5)
  707. << 1) | (1 << 6) | 0x1;
  708. return athchan;
  709. }
  710. /*
  711. * Set channel on RF5110
  712. */
  713. static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
  714. struct ieee80211_channel *channel)
  715. {
  716. u32 data;
  717. /*
  718. * Set the channel and wait
  719. */
  720. data = ath5k_hw_rf5110_chan2athchan(channel);
  721. ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
  722. ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
  723. mdelay(1);
  724. return 0;
  725. }
  726. /*
  727. * Convertion needed for 5111
  728. */
  729. static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
  730. struct ath5k_athchan_2ghz *athchan)
  731. {
  732. int channel;
  733. /* Cast this value to catch negative channel numbers (>= -19) */
  734. channel = (int)ieee;
  735. /*
  736. * Map 2GHz IEEE channel to 5GHz Atheros channel
  737. */
  738. if (channel <= 13) {
  739. athchan->a2_athchan = 115 + channel;
  740. athchan->a2_flags = 0x46;
  741. } else if (channel == 14) {
  742. athchan->a2_athchan = 124;
  743. athchan->a2_flags = 0x44;
  744. } else if (channel >= 15 && channel <= 26) {
  745. athchan->a2_athchan = ((channel - 14) * 4) + 132;
  746. athchan->a2_flags = 0x46;
  747. } else
  748. return -EINVAL;
  749. return 0;
  750. }
  751. /*
  752. * Set channel on 5111
  753. */
  754. static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
  755. struct ieee80211_channel *channel)
  756. {
  757. struct ath5k_athchan_2ghz ath5k_channel_2ghz;
  758. unsigned int ath5k_channel =
  759. ieee80211_frequency_to_channel(channel->center_freq);
  760. u32 data0, data1, clock;
  761. int ret;
  762. /*
  763. * Set the channel on the RF5111 radio
  764. */
  765. data0 = data1 = 0;
  766. if (channel->hw_value & CHANNEL_2GHZ) {
  767. /* Map 2GHz channel to 5GHz Atheros channel ID */
  768. ret = ath5k_hw_rf5111_chan2athchan(
  769. ieee80211_frequency_to_channel(channel->center_freq),
  770. &ath5k_channel_2ghz);
  771. if (ret)
  772. return ret;
  773. ath5k_channel = ath5k_channel_2ghz.a2_athchan;
  774. data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
  775. << 5) | (1 << 4);
  776. }
  777. if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
  778. clock = 1;
  779. data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
  780. (clock << 1) | (1 << 10) | 1;
  781. } else {
  782. clock = 0;
  783. data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
  784. << 2) | (clock << 1) | (1 << 10) | 1;
  785. }
  786. ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
  787. AR5K_RF_BUFFER);
  788. ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
  789. AR5K_RF_BUFFER_CONTROL_3);
  790. return 0;
  791. }
  792. /*
  793. * Set channel on 5112 and newer
  794. */
  795. static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
  796. struct ieee80211_channel *channel)
  797. {
  798. u32 data, data0, data1, data2;
  799. u16 c;
  800. data = data0 = data1 = data2 = 0;
  801. c = channel->center_freq;
  802. if (c < 4800) {
  803. if (!((c - 2224) % 5)) {
  804. data0 = ((2 * (c - 704)) - 3040) / 10;
  805. data1 = 1;
  806. } else if (!((c - 2192) % 5)) {
  807. data0 = ((2 * (c - 672)) - 3040) / 10;
  808. data1 = 0;
  809. } else
  810. return -EINVAL;
  811. data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
  812. } else if ((c - (c % 5)) != 2 || c > 5435) {
  813. if (!(c % 20) && c >= 5120) {
  814. data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
  815. data2 = ath5k_hw_bitswap(3, 2);
  816. } else if (!(c % 10)) {
  817. data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
  818. data2 = ath5k_hw_bitswap(2, 2);
  819. } else if (!(c % 5)) {
  820. data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
  821. data2 = ath5k_hw_bitswap(1, 2);
  822. } else
  823. return -EINVAL;
  824. } else {
  825. data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
  826. data2 = ath5k_hw_bitswap(0, 2);
  827. }
  828. data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
  829. ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
  830. ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
  831. return 0;
  832. }
  833. /*
  834. * Set the channel on the RF2425
  835. */
  836. static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
  837. struct ieee80211_channel *channel)
  838. {
  839. u32 data, data0, data2;
  840. u16 c;
  841. data = data0 = data2 = 0;
  842. c = channel->center_freq;
  843. if (c < 4800) {
  844. data0 = ath5k_hw_bitswap((c - 2272), 8);
  845. data2 = 0;
  846. /* ? 5GHz ? */
  847. } else if ((c - (c % 5)) != 2 || c > 5435) {
  848. if (!(c % 20) && c < 5120)
  849. data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
  850. else if (!(c % 10))
  851. data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
  852. else if (!(c % 5))
  853. data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
  854. else
  855. return -EINVAL;
  856. data2 = ath5k_hw_bitswap(1, 2);
  857. } else {
  858. data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
  859. data2 = ath5k_hw_bitswap(0, 2);
  860. }
  861. data = (data0 << 4) | data2 << 2 | 0x1001;
  862. ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
  863. ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
  864. return 0;
  865. }
  866. /*
  867. * Set a channel on the radio chip
  868. */
  869. int ath5k_hw_channel(struct ath5k_hw *ah, struct ieee80211_channel *channel)
  870. {
  871. int ret;
  872. /*
  873. * Check bounds supported by the PHY (we don't care about regultory
  874. * restrictions at this point). Note: hw_value already has the band
  875. * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
  876. * of the band by that */
  877. if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
  878. ATH5K_ERR(ah->ah_sc,
  879. "channel frequency (%u MHz) out of supported "
  880. "band range\n",
  881. channel->center_freq);
  882. return -EINVAL;
  883. }
  884. /*
  885. * Set the channel and wait
  886. */
  887. switch (ah->ah_radio) {
  888. case AR5K_RF5110:
  889. ret = ath5k_hw_rf5110_channel(ah, channel);
  890. break;
  891. case AR5K_RF5111:
  892. ret = ath5k_hw_rf5111_channel(ah, channel);
  893. break;
  894. case AR5K_RF2425:
  895. ret = ath5k_hw_rf2425_channel(ah, channel);
  896. break;
  897. default:
  898. ret = ath5k_hw_rf5112_channel(ah, channel);
  899. break;
  900. }
  901. if (ret)
  902. return ret;
  903. /* Set JAPAN setting for channel 14 */
  904. if (channel->center_freq == 2484) {
  905. AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
  906. AR5K_PHY_CCKTXCTL_JAPAN);
  907. } else {
  908. AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
  909. AR5K_PHY_CCKTXCTL_WORLD);
  910. }
  911. ah->ah_current_channel = channel;
  912. ah->ah_turbo = channel->hw_value == CHANNEL_T ? true : false;
  913. return 0;
  914. }
  915. /*****************\
  916. PHY calibration
  917. \*****************/
  918. void
  919. ath5k_hw_calibration_poll(struct ath5k_hw *ah)
  920. {
  921. /* Calibration interval in jiffies */
  922. unsigned long cal_intval;
  923. cal_intval = msecs_to_jiffies(ah->ah_cal_intval * 1000);
  924. /* Initialize timestamp if needed */
  925. if (!ah->ah_cal_tstamp)
  926. ah->ah_cal_tstamp = jiffies;
  927. /* For now we always do full calibration
  928. * Mark software interrupt mask and fire software
  929. * interrupt (bit gets auto-cleared) */
  930. if (time_is_before_eq_jiffies(ah->ah_cal_tstamp + cal_intval)) {
  931. ah->ah_cal_tstamp = jiffies;
  932. ah->ah_swi_mask = AR5K_SWI_FULL_CALIBRATION;
  933. AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI);
  934. }
  935. }
  936. /**
  937. * ath5k_hw_noise_floor_calibration - perform PHY noise floor calibration
  938. *
  939. * @ah: struct ath5k_hw pointer we are operating on
  940. * @freq: the channel frequency, just used for error logging
  941. *
  942. * This function performs a noise floor calibration of the PHY and waits for
  943. * it to complete. Then the noise floor value is compared to some maximum
  944. * noise floor we consider valid.
  945. *
  946. * Note that this is different from what the madwifi HAL does: it reads the
  947. * noise floor and afterwards initiates the calibration. Since the noise floor
  948. * calibration can take some time to finish, depending on the current channel
  949. * use, that avoids the occasional timeout warnings we are seeing now.
  950. *
  951. * See the following link for an Atheros patent on noise floor calibration:
  952. * http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL \
  953. * &p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=7245893.PN.&OS=PN/7
  954. *
  955. * XXX: Since during noise floor calibration antennas are detached according to
  956. * the patent, we should stop tx queues here.
  957. */
  958. int
  959. ath5k_hw_noise_floor_calibration(struct ath5k_hw *ah, short freq)
  960. {
  961. int ret;
  962. unsigned int i;
  963. s32 noise_floor;
  964. /*
  965. * Enable noise floor calibration
  966. */
  967. AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
  968. AR5K_PHY_AGCCTL_NF);
  969. ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
  970. AR5K_PHY_AGCCTL_NF, 0, false);
  971. if (ret) {
  972. ATH5K_ERR(ah->ah_sc,
  973. "noise floor calibration timeout (%uMHz)\n", freq);
  974. return -EAGAIN;
  975. }
  976. /* Wait until the noise floor is calibrated and read the value */
  977. for (i = 20; i > 0; i--) {
  978. mdelay(1);
  979. noise_floor = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
  980. noise_floor = AR5K_PHY_NF_RVAL(noise_floor);
  981. if (noise_floor & AR5K_PHY_NF_ACTIVE) {
  982. noise_floor = AR5K_PHY_NF_AVAL(noise_floor);
  983. if (noise_floor <= AR5K_TUNE_NOISE_FLOOR)
  984. break;
  985. }
  986. }
  987. ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
  988. "noise floor %d\n", noise_floor);
  989. if (noise_floor > AR5K_TUNE_NOISE_FLOOR) {
  990. ATH5K_ERR(ah->ah_sc,
  991. "noise floor calibration failed (%uMHz)\n", freq);
  992. return -EAGAIN;
  993. }
  994. ah->ah_noise_floor = noise_floor;
  995. return 0;
  996. }
  997. /*
  998. * Perform a PHY calibration on RF5110
  999. * -Fix BPSK/QAM Constellation (I/Q correction)
  1000. * -Calculate Noise Floor
  1001. */
  1002. static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
  1003. struct ieee80211_channel *channel)
  1004. {
  1005. u32 phy_sig, phy_agc, phy_sat, beacon;
  1006. int ret;
  1007. /*
  1008. * Disable beacons and RX/TX queues, wait
  1009. */
  1010. AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
  1011. AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
  1012. beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
  1013. ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
  1014. mdelay(2);
  1015. /*
  1016. * Set the channel (with AGC turned off)
  1017. */
  1018. AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
  1019. udelay(10);
  1020. ret = ath5k_hw_channel(ah, channel);
  1021. /*
  1022. * Activate PHY and wait
  1023. */
  1024. ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
  1025. mdelay(1);
  1026. AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
  1027. if (ret)
  1028. return ret;
  1029. /*
  1030. * Calibrate the radio chip
  1031. */
  1032. /* Remember normal state */
  1033. phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
  1034. phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
  1035. phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
  1036. /* Update radio registers */
  1037. ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
  1038. AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
  1039. ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
  1040. AR5K_PHY_AGCCOARSE_LO)) |
  1041. AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
  1042. AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
  1043. ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
  1044. AR5K_PHY_ADCSAT_THR)) |
  1045. AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
  1046. AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
  1047. udelay(20);
  1048. AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
  1049. udelay(10);
  1050. ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
  1051. AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
  1052. mdelay(1);
  1053. /*
  1054. * Enable calibration and wait until completion
  1055. */
  1056. AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
  1057. ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
  1058. AR5K_PHY_AGCCTL_CAL, 0, false);
  1059. /* Reset to normal state */
  1060. ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
  1061. ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
  1062. ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
  1063. if (ret) {
  1064. ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
  1065. channel->center_freq);
  1066. return ret;
  1067. }
  1068. ath5k_hw_noise_floor_calibration(ah, channel->center_freq);
  1069. /*
  1070. * Re-enable RX/TX and beacons
  1071. */
  1072. AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
  1073. AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
  1074. ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
  1075. return 0;
  1076. }
  1077. /*
  1078. * Perform a PHY calibration on RF5111/5112 and newer chips
  1079. */
  1080. static int ath5k_hw_rf511x_calibrate(struct ath5k_hw *ah,
  1081. struct ieee80211_channel *channel)
  1082. {
  1083. u32 i_pwr, q_pwr;
  1084. s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
  1085. int i;
  1086. ATH5K_TRACE(ah->ah_sc);
  1087. if (!ah->ah_calibration ||
  1088. ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
  1089. goto done;
  1090. /* Calibration has finished, get the results and re-run */
  1091. for (i = 0; i <= 10; i++) {
  1092. iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
  1093. i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
  1094. q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
  1095. }
  1096. i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
  1097. q_coffd = q_pwr >> 7;
  1098. /* No correction */
  1099. if (i_coffd == 0 || q_coffd == 0)
  1100. goto done;
  1101. i_coff = ((-iq_corr) / i_coffd) & 0x3f;
  1102. /* Boundary check */
  1103. if (i_coff > 31)
  1104. i_coff = 31;
  1105. if (i_coff < -32)
  1106. i_coff = -32;
  1107. q_coff = (((s32)i_pwr / q_coffd) - 128) & 0x1f;
  1108. /* Boundary check */
  1109. if (q_coff > 15)
  1110. q_coff = 15;
  1111. if (q_coff < -16)
  1112. q_coff = -16;
  1113. /* Commit new I/Q value */
  1114. AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE |
  1115. ((u32)q_coff) | ((u32)i_coff << AR5K_PHY_IQ_CORR_Q_I_COFF_S));
  1116. /* Re-enable calibration -if we don't we'll commit
  1117. * the same values again and again */
  1118. AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
  1119. AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
  1120. AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
  1121. done:
  1122. /* TODO: Separate noise floor calibration from I/Q calibration
  1123. * since noise floor calibration interrupts rx path while I/Q
  1124. * calibration doesn't. We don't need to run noise floor calibration
  1125. * as often as I/Q calibration.*/
  1126. ath5k_hw_noise_floor_calibration(ah, channel->center_freq);
  1127. /* Initiate a gain_F calibration */
  1128. ath5k_hw_request_rfgain_probe(ah);
  1129. return 0;
  1130. }
  1131. /*
  1132. * Perform a PHY calibration
  1133. */
  1134. int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
  1135. struct ieee80211_channel *channel)
  1136. {
  1137. int ret;
  1138. if (ah->ah_radio == AR5K_RF5110)
  1139. ret = ath5k_hw_rf5110_calibrate(ah, channel);
  1140. else
  1141. ret = ath5k_hw_rf511x_calibrate(ah, channel);
  1142. return ret;
  1143. }
  1144. /***************************\
  1145. * Spur mitigation functions *
  1146. \***************************/
  1147. bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
  1148. struct ieee80211_channel *channel)
  1149. {
  1150. u8 refclk_freq;
  1151. if ((ah->ah_radio == AR5K_RF5112) ||
  1152. (ah->ah_radio == AR5K_RF5413) ||
  1153. (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
  1154. refclk_freq = 40;
  1155. else
  1156. refclk_freq = 32;
  1157. if ((channel->center_freq % refclk_freq != 0) &&
  1158. ((channel->center_freq % refclk_freq < 10) ||
  1159. (channel->center_freq % refclk_freq > 22)))
  1160. return true;
  1161. else
  1162. return false;
  1163. }
  1164. void
  1165. ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
  1166. struct ieee80211_channel *channel)
  1167. {
  1168. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1169. u32 mag_mask[4] = {0, 0, 0, 0};
  1170. u32 pilot_mask[2] = {0, 0};
  1171. /* Note: fbin values are scaled up by 2 */
  1172. u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
  1173. s32 spur_delta_phase, spur_freq_sigma_delta;
  1174. s32 spur_offset, num_symbols_x16;
  1175. u8 num_symbol_offsets, i, freq_band;
  1176. /* Convert current frequency to fbin value (the same way channels
  1177. * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
  1178. * up by 2 so we can compare it later */
  1179. if (channel->hw_value & CHANNEL_2GHZ) {
  1180. chan_fbin = (channel->center_freq - 2300) * 10;
  1181. freq_band = AR5K_EEPROM_BAND_2GHZ;
  1182. } else {
  1183. chan_fbin = (channel->center_freq - 4900) * 10;
  1184. freq_band = AR5K_EEPROM_BAND_5GHZ;
  1185. }
  1186. /* Check if any spur_chan_fbin from EEPROM is
  1187. * within our current channel's spur detection range */
  1188. spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
  1189. spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
  1190. /* XXX: Half/Quarter channels ?*/
  1191. if (channel->hw_value & CHANNEL_TURBO)
  1192. spur_detection_window *= 2;
  1193. for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
  1194. spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
  1195. /* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
  1196. * so it's zero if we got nothing from EEPROM */
  1197. if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
  1198. spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
  1199. break;
  1200. }
  1201. if ((chan_fbin - spur_detection_window <=
  1202. (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
  1203. (chan_fbin + spur_detection_window >=
  1204. (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
  1205. spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
  1206. break;
  1207. }
  1208. }
  1209. /* We need to enable spur filter for this channel */
  1210. if (spur_chan_fbin) {
  1211. spur_offset = spur_chan_fbin - chan_fbin;
  1212. /*
  1213. * Calculate deltas:
  1214. * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
  1215. * spur_delta_phase -> spur_offset / chip_freq << 11
  1216. * Note: Both values have 100KHz resolution
  1217. */
  1218. /* XXX: Half/Quarter rate channels ? */
  1219. switch (channel->hw_value) {
  1220. case CHANNEL_A:
  1221. /* Both sample_freq and chip_freq are 40MHz */
  1222. spur_delta_phase = (spur_offset << 17) / 25;
  1223. spur_freq_sigma_delta = (spur_delta_phase >> 10);
  1224. symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
  1225. break;
  1226. case CHANNEL_G:
  1227. /* sample_freq -> 40MHz chip_freq -> 44MHz
  1228. * (for b compatibility) */
  1229. spur_freq_sigma_delta = (spur_offset << 8) / 55;
  1230. spur_delta_phase = (spur_offset << 17) / 25;
  1231. symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
  1232. break;
  1233. case CHANNEL_T:
  1234. case CHANNEL_TG:
  1235. /* Both sample_freq and chip_freq are 80MHz */
  1236. spur_delta_phase = (spur_offset << 16) / 25;
  1237. spur_freq_sigma_delta = (spur_delta_phase >> 10);
  1238. symbol_width = AR5K_SPUR_SYMBOL_WIDTH_TURBO_100Hz;
  1239. break;
  1240. default:
  1241. return;
  1242. }
  1243. /* Calculate pilot and magnitude masks */
  1244. /* Scale up spur_offset by 1000 to switch to 100HZ resolution
  1245. * and divide by symbol_width to find how many symbols we have
  1246. * Note: number of symbols is scaled up by 16 */
  1247. num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
  1248. /* Spur is on a symbol if num_symbols_x16 % 16 is zero */
  1249. if (!(num_symbols_x16 & 0xF))
  1250. /* _X_ */
  1251. num_symbol_offsets = 3;
  1252. else
  1253. /* _xx_ */
  1254. num_symbol_offsets = 4;
  1255. for (i = 0; i < num_symbol_offsets; i++) {
  1256. /* Calculate pilot mask */
  1257. s32 curr_sym_off =
  1258. (num_symbols_x16 / 16) + i + 25;
  1259. /* Pilot magnitude mask seems to be a way to
  1260. * declare the boundaries for our detection
  1261. * window or something, it's 2 for the middle
  1262. * value(s) where the symbol is expected to be
  1263. * and 1 on the boundary values */
  1264. u8 plt_mag_map =
  1265. (i == 0 || i == (num_symbol_offsets - 1))
  1266. ? 1 : 2;
  1267. if (curr_sym_off >= 0 && curr_sym_off <= 32) {
  1268. if (curr_sym_off <= 25)
  1269. pilot_mask[0] |= 1 << curr_sym_off;
  1270. else if (curr_sym_off >= 27)
  1271. pilot_mask[0] |= 1 << (curr_sym_off - 1);
  1272. } else if (curr_sym_off >= 33 && curr_sym_off <= 52)
  1273. pilot_mask[1] |= 1 << (curr_sym_off - 33);
  1274. /* Calculate magnitude mask (for viterbi decoder) */
  1275. if (curr_sym_off >= -1 && curr_sym_off <= 14)
  1276. mag_mask[0] |=
  1277. plt_mag_map << (curr_sym_off + 1) * 2;
  1278. else if (curr_sym_off >= 15 && curr_sym_off <= 30)
  1279. mag_mask[1] |=
  1280. plt_mag_map << (curr_sym_off - 15) * 2;
  1281. else if (curr_sym_off >= 31 && curr_sym_off <= 46)
  1282. mag_mask[2] |=
  1283. plt_mag_map << (curr_sym_off - 31) * 2;
  1284. else if (curr_sym_off >= 46 && curr_sym_off <= 53)
  1285. mag_mask[3] |=
  1286. plt_mag_map << (curr_sym_off - 47) * 2;
  1287. }
  1288. /* Write settings on hw to enable spur filter */
  1289. AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
  1290. AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
  1291. /* XXX: Self correlator also ? */
  1292. AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
  1293. AR5K_PHY_IQ_PILOT_MASK_EN |
  1294. AR5K_PHY_IQ_CHAN_MASK_EN |
  1295. AR5K_PHY_IQ_SPUR_FILT_EN);
  1296. /* Set delta phase and freq sigma delta */
  1297. ath5k_hw_reg_write(ah,
  1298. AR5K_REG_SM(spur_delta_phase,
  1299. AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
  1300. AR5K_REG_SM(spur_freq_sigma_delta,
  1301. AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
  1302. AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
  1303. AR5K_PHY_TIMING_11);
  1304. /* Write pilot masks */
  1305. ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
  1306. AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
  1307. AR5K_PHY_TIMING_8_PILOT_MASK_2,
  1308. pilot_mask[1]);
  1309. ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
  1310. AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
  1311. AR5K_PHY_TIMING_10_PILOT_MASK_2,
  1312. pilot_mask[1]);
  1313. /* Write magnitude masks */
  1314. ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
  1315. ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
  1316. ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
  1317. AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
  1318. AR5K_PHY_BIN_MASK_CTL_MASK_4,
  1319. mag_mask[3]);
  1320. ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
  1321. ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
  1322. ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
  1323. AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
  1324. AR5K_PHY_BIN_MASK2_4_MASK_4,
  1325. mag_mask[3]);
  1326. } else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
  1327. AR5K_PHY_IQ_SPUR_FILT_EN) {
  1328. /* Clean up spur mitigation settings and disable fliter */
  1329. AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
  1330. AR5K_PHY_BIN_MASK_CTL_RATE, 0);
  1331. AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
  1332. AR5K_PHY_IQ_PILOT_MASK_EN |
  1333. AR5K_PHY_IQ_CHAN_MASK_EN |
  1334. AR5K_PHY_IQ_SPUR_FILT_EN);
  1335. ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
  1336. /* Clear pilot masks */
  1337. ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
  1338. AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
  1339. AR5K_PHY_TIMING_8_PILOT_MASK_2,
  1340. 0);
  1341. ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
  1342. AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
  1343. AR5K_PHY_TIMING_10_PILOT_MASK_2,
  1344. 0);
  1345. /* Clear magnitude masks */
  1346. ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
  1347. ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
  1348. ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
  1349. AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
  1350. AR5K_PHY_BIN_MASK_CTL_MASK_4,
  1351. 0);
  1352. ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
  1353. ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
  1354. ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
  1355. AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
  1356. AR5K_PHY_BIN_MASK2_4_MASK_4,
  1357. 0);
  1358. }
  1359. }
  1360. /********************\
  1361. Misc PHY functions
  1362. \********************/
  1363. int ath5k_hw_phy_disable(struct ath5k_hw *ah)
  1364. {
  1365. ATH5K_TRACE(ah->ah_sc);
  1366. /*Just a try M.F.*/
  1367. ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
  1368. return 0;
  1369. }
  1370. /*
  1371. * Get the PHY Chip revision
  1372. */
  1373. u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
  1374. {
  1375. unsigned int i;
  1376. u32 srev;
  1377. u16 ret;
  1378. ATH5K_TRACE(ah->ah_sc);
  1379. /*
  1380. * Set the radio chip access register
  1381. */
  1382. switch (chan) {
  1383. case CHANNEL_2GHZ:
  1384. ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
  1385. break;
  1386. case CHANNEL_5GHZ:
  1387. ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
  1388. break;
  1389. default:
  1390. return 0;
  1391. }
  1392. mdelay(2);
  1393. /* ...wait until PHY is ready and read the selected radio revision */
  1394. ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
  1395. for (i = 0; i < 8; i++)
  1396. ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
  1397. if (ah->ah_version == AR5K_AR5210) {
  1398. srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
  1399. ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
  1400. } else {
  1401. srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
  1402. ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
  1403. ((srev & 0x0f) << 4), 8);
  1404. }
  1405. /* Reset to the 5GHz mode */
  1406. ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
  1407. return ret;
  1408. }
  1409. /*****************\
  1410. * Antenna control *
  1411. \*****************/
  1412. void /*TODO:Boundary check*/
  1413. ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
  1414. {
  1415. ATH5K_TRACE(ah->ah_sc);
  1416. if (ah->ah_version != AR5K_AR5210)
  1417. ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
  1418. }
  1419. unsigned int ath5k_hw_get_def_antenna(struct ath5k_hw *ah)
  1420. {
  1421. ATH5K_TRACE(ah->ah_sc);
  1422. if (ah->ah_version != AR5K_AR5210)
  1423. return ath5k_hw_reg_read(ah, AR5K_DEFAULT_ANTENNA) & 0x7;
  1424. return false; /*XXX: What do we return for 5210 ?*/
  1425. }
  1426. /*
  1427. * Enable/disable fast rx antenna diversity
  1428. */
  1429. static void
  1430. ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
  1431. {
  1432. switch (ee_mode) {
  1433. case AR5K_EEPROM_MODE_11G:
  1434. /* XXX: This is set to
  1435. * disabled on initvals !!! */
  1436. case AR5K_EEPROM_MODE_11A:
  1437. if (enable)
  1438. AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
  1439. AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
  1440. else
  1441. AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
  1442. AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
  1443. break;
  1444. case AR5K_EEPROM_MODE_11B:
  1445. AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
  1446. AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
  1447. break;
  1448. default:
  1449. return;
  1450. }
  1451. if (enable) {
  1452. AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
  1453. AR5K_PHY_RESTART_DIV_GC, 0xc);
  1454. AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
  1455. AR5K_PHY_FAST_ANT_DIV_EN);
  1456. } else {
  1457. AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
  1458. AR5K_PHY_RESTART_DIV_GC, 0x8);
  1459. AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
  1460. AR5K_PHY_FAST_ANT_DIV_EN);
  1461. }
  1462. }
  1463. /*
  1464. * Set antenna operating mode
  1465. */
  1466. void
  1467. ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
  1468. {
  1469. struct ieee80211_channel *channel = ah->ah_current_channel;
  1470. bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
  1471. bool use_def_for_sg;
  1472. u8 def_ant, tx_ant, ee_mode;
  1473. u32 sta_id1 = 0;
  1474. def_ant = ah->ah_def_ant;
  1475. ATH5K_TRACE(ah->ah_sc);
  1476. switch (channel->hw_value & CHANNEL_MODES) {
  1477. case CHANNEL_A:
  1478. case CHANNEL_T:
  1479. case CHANNEL_XR:
  1480. ee_mode = AR5K_EEPROM_MODE_11A;
  1481. break;
  1482. case CHANNEL_G:
  1483. case CHANNEL_TG:
  1484. ee_mode = AR5K_EEPROM_MODE_11G;
  1485. break;
  1486. case CHANNEL_B:
  1487. ee_mode = AR5K_EEPROM_MODE_11B;
  1488. break;
  1489. default:
  1490. ATH5K_ERR(ah->ah_sc,
  1491. "invalid channel: %d\n", channel->center_freq);
  1492. return;
  1493. }
  1494. switch (ant_mode) {
  1495. case AR5K_ANTMODE_DEFAULT:
  1496. tx_ant = 0;
  1497. use_def_for_tx = false;
  1498. update_def_on_tx = false;
  1499. use_def_for_rts = false;
  1500. use_def_for_sg = false;
  1501. fast_div = true;
  1502. break;
  1503. case AR5K_ANTMODE_FIXED_A:
  1504. def_ant = 1;
  1505. tx_ant = 0;
  1506. use_def_for_tx = true;
  1507. update_def_on_tx = false;
  1508. use_def_for_rts = true;
  1509. use_def_for_sg = true;
  1510. fast_div = false;
  1511. break;
  1512. case AR5K_ANTMODE_FIXED_B:
  1513. def_ant = 2;
  1514. tx_ant = 0;
  1515. use_def_for_tx = true;
  1516. update_def_on_tx = false;
  1517. use_def_for_rts = true;
  1518. use_def_for_sg = true;
  1519. fast_div = false;
  1520. break;
  1521. case AR5K_ANTMODE_SINGLE_AP:
  1522. def_ant = 1; /* updated on tx */
  1523. tx_ant = 0;
  1524. use_def_for_tx = true;
  1525. update_def_on_tx = true;
  1526. use_def_for_rts = true;
  1527. use_def_for_sg = true;
  1528. fast_div = true;
  1529. break;
  1530. case AR5K_ANTMODE_SECTOR_AP:
  1531. tx_ant = 1; /* variable */
  1532. use_def_for_tx = false;
  1533. update_def_on_tx = false;
  1534. use_def_for_rts = true;
  1535. use_def_for_sg = false;
  1536. fast_div = false;
  1537. break;
  1538. case AR5K_ANTMODE_SECTOR_STA:
  1539. tx_ant = 1; /* variable */
  1540. use_def_for_tx = true;
  1541. update_def_on_tx = false;
  1542. use_def_for_rts = true;
  1543. use_def_for_sg = false;
  1544. fast_div = true;
  1545. break;
  1546. case AR5K_ANTMODE_DEBUG:
  1547. def_ant = 1;
  1548. tx_ant = 2;
  1549. use_def_for_tx = false;
  1550. update_def_on_tx = false;
  1551. use_def_for_rts = false;
  1552. use_def_for_sg = false;
  1553. fast_div = false;
  1554. break;
  1555. default:
  1556. return;
  1557. }
  1558. ah->ah_tx_ant = tx_ant;
  1559. ah->ah_ant_mode = ant_mode;
  1560. sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
  1561. sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
  1562. sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
  1563. sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
  1564. AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
  1565. if (sta_id1)
  1566. AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
  1567. /* Note: set diversity before default antenna
  1568. * because it won't work correctly */
  1569. ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
  1570. ath5k_hw_set_def_antenna(ah, def_ant);
  1571. }
  1572. /****************\
  1573. * TX power setup *
  1574. \****************/
  1575. /*
  1576. * Helper functions
  1577. */
  1578. /*
  1579. * Do linear interpolation between two given (x, y) points
  1580. */
  1581. static s16
  1582. ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
  1583. s16 y_left, s16 y_right)
  1584. {
  1585. s16 ratio, result;
  1586. /* Avoid divide by zero and skip interpolation
  1587. * if we have the same point */
  1588. if ((x_left == x_right) || (y_left == y_right))
  1589. return y_left;
  1590. /*
  1591. * Since we use ints and not fps, we need to scale up in
  1592. * order to get a sane ratio value (or else we 'll eg. get
  1593. * always 1 instead of 1.25, 1.75 etc). We scale up by 100
  1594. * to have some accuracy both for 0.5 and 0.25 steps.
  1595. */
  1596. ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left));
  1597. /* Now scale down to be in range */
  1598. result = y_left + (ratio * (target - x_left) / 100);
  1599. return result;
  1600. }
  1601. /*
  1602. * Find vertical boundary (min pwr) for the linear PCDAC curve.
  1603. *
  1604. * Since we have the top of the curve and we draw the line below
  1605. * until we reach 1 (1 pcdac step) we need to know which point
  1606. * (x value) that is so that we don't go below y axis and have negative
  1607. * pcdac values when creating the curve, or fill the table with zeroes.
  1608. */
  1609. static s16
  1610. ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
  1611. const s16 *pwrL, const s16 *pwrR)
  1612. {
  1613. s8 tmp;
  1614. s16 min_pwrL, min_pwrR;
  1615. s16 pwr_i;
  1616. /* Some vendors write the same pcdac value twice !!! */
  1617. if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
  1618. return max(pwrL[0], pwrR[0]);
  1619. if (pwrL[0] == pwrL[1])
  1620. min_pwrL = pwrL[0];
  1621. else {
  1622. pwr_i = pwrL[0];
  1623. do {
  1624. pwr_i--;
  1625. tmp = (s8) ath5k_get_interpolated_value(pwr_i,
  1626. pwrL[0], pwrL[1],
  1627. stepL[0], stepL[1]);
  1628. } while (tmp > 1);
  1629. min_pwrL = pwr_i;
  1630. }
  1631. if (pwrR[0] == pwrR[1])
  1632. min_pwrR = pwrR[0];
  1633. else {
  1634. pwr_i = pwrR[0];
  1635. do {
  1636. pwr_i--;
  1637. tmp = (s8) ath5k_get_interpolated_value(pwr_i,
  1638. pwrR[0], pwrR[1],
  1639. stepR[0], stepR[1]);
  1640. } while (tmp > 1);
  1641. min_pwrR = pwr_i;
  1642. }
  1643. /* Keep the right boundary so that it works for both curves */
  1644. return max(min_pwrL, min_pwrR);
  1645. }
  1646. /*
  1647. * Interpolate (pwr,vpd) points to create a Power to PDADC or a
  1648. * Power to PCDAC curve.
  1649. *
  1650. * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
  1651. * steps (offsets) on y axis. Power can go up to 31.5dB and max
  1652. * PCDAC/PDADC step for each curve is 64 but we can write more than
  1653. * one curves on hw so we can go up to 128 (which is the max step we
  1654. * can write on the final table).
  1655. *
  1656. * We write y values (PCDAC/PDADC steps) on hw.
  1657. */
  1658. static void
  1659. ath5k_create_power_curve(s16 pmin, s16 pmax,
  1660. const s16 *pwr, const u8 *vpd,
  1661. u8 num_points,
  1662. u8 *vpd_table, u8 type)
  1663. {
  1664. u8 idx[2] = { 0, 1 };
  1665. s16 pwr_i = 2*pmin;
  1666. int i;
  1667. if (num_points < 2)
  1668. return;
  1669. /* We want the whole line, so adjust boundaries
  1670. * to cover the entire power range. Note that
  1671. * power values are already 0.25dB so no need
  1672. * to multiply pwr_i by 2 */
  1673. if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
  1674. pwr_i = pmin;
  1675. pmin = 0;
  1676. pmax = 63;
  1677. }
  1678. /* Find surrounding turning points (TPs)
  1679. * and interpolate between them */
  1680. for (i = 0; (i <= (u16) (pmax - pmin)) &&
  1681. (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
  1682. /* We passed the right TP, move to the next set of TPs
  1683. * if we pass the last TP, extrapolate above using the last
  1684. * two TPs for ratio */
  1685. if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
  1686. idx[0]++;
  1687. idx[1]++;
  1688. }
  1689. vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
  1690. pwr[idx[0]], pwr[idx[1]],
  1691. vpd[idx[0]], vpd[idx[1]]);
  1692. /* Increase by 0.5dB
  1693. * (0.25 dB units) */
  1694. pwr_i += 2;
  1695. }
  1696. }
  1697. /*
  1698. * Get the surrounding per-channel power calibration piers
  1699. * for a given frequency so that we can interpolate between
  1700. * them and come up with an apropriate dataset for our current
  1701. * channel.
  1702. */
  1703. static void
  1704. ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
  1705. struct ieee80211_channel *channel,
  1706. struct ath5k_chan_pcal_info **pcinfo_l,
  1707. struct ath5k_chan_pcal_info **pcinfo_r)
  1708. {
  1709. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1710. struct ath5k_chan_pcal_info *pcinfo;
  1711. u8 idx_l, idx_r;
  1712. u8 mode, max, i;
  1713. u32 target = channel->center_freq;
  1714. idx_l = 0;
  1715. idx_r = 0;
  1716. if (!(channel->hw_value & CHANNEL_OFDM)) {
  1717. pcinfo = ee->ee_pwr_cal_b;
  1718. mode = AR5K_EEPROM_MODE_11B;
  1719. } else if (channel->hw_value & CHANNEL_2GHZ) {
  1720. pcinfo = ee->ee_pwr_cal_g;
  1721. mode = AR5K_EEPROM_MODE_11G;
  1722. } else {
  1723. pcinfo = ee->ee_pwr_cal_a;
  1724. mode = AR5K_EEPROM_MODE_11A;
  1725. }
  1726. max = ee->ee_n_piers[mode] - 1;
  1727. /* Frequency is below our calibrated
  1728. * range. Use the lowest power curve
  1729. * we have */
  1730. if (target < pcinfo[0].freq) {
  1731. idx_l = idx_r = 0;
  1732. goto done;
  1733. }
  1734. /* Frequency is above our calibrated
  1735. * range. Use the highest power curve
  1736. * we have */
  1737. if (target > pcinfo[max].freq) {
  1738. idx_l = idx_r = max;
  1739. goto done;
  1740. }
  1741. /* Frequency is inside our calibrated
  1742. * channel range. Pick the surrounding
  1743. * calibration piers so that we can
  1744. * interpolate */
  1745. for (i = 0; i <= max; i++) {
  1746. /* Frequency matches one of our calibration
  1747. * piers, no need to interpolate, just use
  1748. * that calibration pier */
  1749. if (pcinfo[i].freq == target) {
  1750. idx_l = idx_r = i;
  1751. goto done;
  1752. }
  1753. /* We found a calibration pier that's above
  1754. * frequency, use this pier and the previous
  1755. * one to interpolate */
  1756. if (target < pcinfo[i].freq) {
  1757. idx_r = i;
  1758. idx_l = idx_r - 1;
  1759. goto done;
  1760. }
  1761. }
  1762. done:
  1763. *pcinfo_l = &pcinfo[idx_l];
  1764. *pcinfo_r = &pcinfo[idx_r];
  1765. return;
  1766. }
  1767. /*
  1768. * Get the surrounding per-rate power calibration data
  1769. * for a given frequency and interpolate between power
  1770. * values to set max target power supported by hw for
  1771. * each rate.
  1772. */
  1773. static void
  1774. ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
  1775. struct ieee80211_channel *channel,
  1776. struct ath5k_rate_pcal_info *rates)
  1777. {
  1778. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1779. struct ath5k_rate_pcal_info *rpinfo;
  1780. u8 idx_l, idx_r;
  1781. u8 mode, max, i;
  1782. u32 target = channel->center_freq;
  1783. idx_l = 0;
  1784. idx_r = 0;
  1785. if (!(channel->hw_value & CHANNEL_OFDM)) {
  1786. rpinfo = ee->ee_rate_tpwr_b;
  1787. mode = AR5K_EEPROM_MODE_11B;
  1788. } else if (channel->hw_value & CHANNEL_2GHZ) {
  1789. rpinfo = ee->ee_rate_tpwr_g;
  1790. mode = AR5K_EEPROM_MODE_11G;
  1791. } else {
  1792. rpinfo = ee->ee_rate_tpwr_a;
  1793. mode = AR5K_EEPROM_MODE_11A;
  1794. }
  1795. max = ee->ee_rate_target_pwr_num[mode] - 1;
  1796. /* Get the surrounding calibration
  1797. * piers - same as above */
  1798. if (target < rpinfo[0].freq) {
  1799. idx_l = idx_r = 0;
  1800. goto done;
  1801. }
  1802. if (target > rpinfo[max].freq) {
  1803. idx_l = idx_r = max;
  1804. goto done;
  1805. }
  1806. for (i = 0; i <= max; i++) {
  1807. if (rpinfo[i].freq == target) {
  1808. idx_l = idx_r = i;
  1809. goto done;
  1810. }
  1811. if (target < rpinfo[i].freq) {
  1812. idx_r = i;
  1813. idx_l = idx_r - 1;
  1814. goto done;
  1815. }
  1816. }
  1817. done:
  1818. /* Now interpolate power value, based on the frequency */
  1819. rates->freq = target;
  1820. rates->target_power_6to24 =
  1821. ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
  1822. rpinfo[idx_r].freq,
  1823. rpinfo[idx_l].target_power_6to24,
  1824. rpinfo[idx_r].target_power_6to24);
  1825. rates->target_power_36 =
  1826. ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
  1827. rpinfo[idx_r].freq,
  1828. rpinfo[idx_l].target_power_36,
  1829. rpinfo[idx_r].target_power_36);
  1830. rates->target_power_48 =
  1831. ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
  1832. rpinfo[idx_r].freq,
  1833. rpinfo[idx_l].target_power_48,
  1834. rpinfo[idx_r].target_power_48);
  1835. rates->target_power_54 =
  1836. ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
  1837. rpinfo[idx_r].freq,
  1838. rpinfo[idx_l].target_power_54,
  1839. rpinfo[idx_r].target_power_54);
  1840. }
  1841. /*
  1842. * Get the max edge power for this channel if
  1843. * we have such data from EEPROM's Conformance Test
  1844. * Limits (CTL), and limit max power if needed.
  1845. */
  1846. static void
  1847. ath5k_get_max_ctl_power(struct ath5k_hw *ah,
  1848. struct ieee80211_channel *channel)
  1849. {
  1850. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1851. struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
  1852. u8 *ctl_val = ee->ee_ctl;
  1853. s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
  1854. s16 edge_pwr = 0;
  1855. u8 rep_idx;
  1856. u8 i, ctl_mode;
  1857. u8 ctl_idx = 0xFF;
  1858. u32 target = channel->center_freq;
  1859. ctl_mode = ath_regd_get_band_ctl(&ah->ah_regulatory, channel->band);
  1860. switch (channel->hw_value & CHANNEL_MODES) {
  1861. case CHANNEL_A:
  1862. ctl_mode |= AR5K_CTL_11A;
  1863. break;
  1864. case CHANNEL_G:
  1865. ctl_mode |= AR5K_CTL_11G;
  1866. break;
  1867. case CHANNEL_B:
  1868. ctl_mode |= AR5K_CTL_11B;
  1869. break;
  1870. case CHANNEL_T:
  1871. ctl_mode |= AR5K_CTL_TURBO;
  1872. break;
  1873. case CHANNEL_TG:
  1874. ctl_mode |= AR5K_CTL_TURBOG;
  1875. break;
  1876. case CHANNEL_XR:
  1877. /* Fall through */
  1878. default:
  1879. return;
  1880. }
  1881. for (i = 0; i < ee->ee_ctls; i++) {
  1882. if (ctl_val[i] == ctl_mode) {
  1883. ctl_idx = i;
  1884. break;
  1885. }
  1886. }
  1887. /* If we have a CTL dataset available grab it and find the
  1888. * edge power for our frequency */
  1889. if (ctl_idx == 0xFF)
  1890. return;
  1891. /* Edge powers are sorted by frequency from lower
  1892. * to higher. Each CTL corresponds to 8 edge power
  1893. * measurements. */
  1894. rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
  1895. /* Don't do boundaries check because we
  1896. * might have more that one bands defined
  1897. * for this mode */
  1898. /* Get the edge power that's closer to our
  1899. * frequency */
  1900. for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
  1901. rep_idx += i;
  1902. if (target <= rep[rep_idx].freq)
  1903. edge_pwr = (s16) rep[rep_idx].edge;
  1904. }
  1905. if (edge_pwr)
  1906. ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr);
  1907. }
  1908. /*
  1909. * Power to PCDAC table functions
  1910. */
  1911. /*
  1912. * Fill Power to PCDAC table on RF5111
  1913. *
  1914. * No further processing is needed for RF5111, the only thing we have to
  1915. * do is fill the values below and above calibration range since eeprom data
  1916. * may not cover the entire PCDAC table.
  1917. */
  1918. static void
  1919. ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
  1920. s16 *table_max)
  1921. {
  1922. u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
  1923. u8 *pcdac_tmp = ah->ah_txpower.tmpL[0];
  1924. u8 pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
  1925. s16 min_pwr, max_pwr;
  1926. /* Get table boundaries */
  1927. min_pwr = table_min[0];
  1928. pcdac_0 = pcdac_tmp[0];
  1929. max_pwr = table_max[0];
  1930. pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
  1931. /* Extrapolate below minimum using pcdac_0 */
  1932. pcdac_i = 0;
  1933. for (i = 0; i < min_pwr; i++)
  1934. pcdac_out[pcdac_i++] = pcdac_0;
  1935. /* Copy values from pcdac_tmp */
  1936. pwr_idx = min_pwr;
  1937. for (i = 0 ; pwr_idx <= max_pwr &&
  1938. pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
  1939. pcdac_out[pcdac_i++] = pcdac_tmp[i];
  1940. pwr_idx++;
  1941. }
  1942. /* Extrapolate above maximum */
  1943. while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
  1944. pcdac_out[pcdac_i++] = pcdac_n;
  1945. }
  1946. /*
  1947. * Combine available XPD Curves and fill Linear Power to PCDAC table
  1948. * on RF5112
  1949. *
  1950. * RFX112 can have up to 2 curves (one for low txpower range and one for
  1951. * higher txpower range). We need to put them both on pcdac_out and place
  1952. * them in the correct location. In case we only have one curve available
  1953. * just fit it on pcdac_out (it's supposed to cover the entire range of
  1954. * available pwr levels since it's always the higher power curve). Extrapolate
  1955. * below and above final table if needed.
  1956. */
  1957. static void
  1958. ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
  1959. s16 *table_max, u8 pdcurves)
  1960. {
  1961. u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
  1962. u8 *pcdac_low_pwr;
  1963. u8 *pcdac_high_pwr;
  1964. u8 *pcdac_tmp;
  1965. u8 pwr;
  1966. s16 max_pwr_idx;
  1967. s16 min_pwr_idx;
  1968. s16 mid_pwr_idx = 0;
  1969. /* Edge flag turs on the 7nth bit on the PCDAC
  1970. * to delcare the higher power curve (force values
  1971. * to be greater than 64). If we only have one curve
  1972. * we don't need to set this, if we have 2 curves and
  1973. * fill the table backwards this can also be used to
  1974. * switch from higher power curve to lower power curve */
  1975. u8 edge_flag;
  1976. int i;
  1977. /* When we have only one curve available
  1978. * that's the higher power curve. If we have
  1979. * two curves the first is the high power curve
  1980. * and the next is the low power curve. */
  1981. if (pdcurves > 1) {
  1982. pcdac_low_pwr = ah->ah_txpower.tmpL[1];
  1983. pcdac_high_pwr = ah->ah_txpower.tmpL[0];
  1984. mid_pwr_idx = table_max[1] - table_min[1] - 1;
  1985. max_pwr_idx = (table_max[0] - table_min[0]) / 2;
  1986. /* If table size goes beyond 31.5dB, keep the
  1987. * upper 31.5dB range when setting tx power.
  1988. * Note: 126 = 31.5 dB in quarter dB steps */
  1989. if (table_max[0] - table_min[1] > 126)
  1990. min_pwr_idx = table_max[0] - 126;
  1991. else
  1992. min_pwr_idx = table_min[1];
  1993. /* Since we fill table backwards
  1994. * start from high power curve */
  1995. pcdac_tmp = pcdac_high_pwr;
  1996. edge_flag = 0x40;
  1997. #if 0
  1998. /* If both min and max power limits are in lower
  1999. * power curve's range, only use the low power curve.
  2000. * TODO: min/max levels are related to target
  2001. * power values requested from driver/user
  2002. * XXX: Is this really needed ? */
  2003. if (min_pwr < table_max[1] &&
  2004. max_pwr < table_max[1]) {
  2005. edge_flag = 0;
  2006. pcdac_tmp = pcdac_low_pwr;
  2007. max_pwr_idx = (table_max[1] - table_min[1])/2;
  2008. }
  2009. #endif
  2010. } else {
  2011. pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
  2012. pcdac_high_pwr = ah->ah_txpower.tmpL[0];
  2013. min_pwr_idx = table_min[0];
  2014. max_pwr_idx = (table_max[0] - table_min[0]) / 2;
  2015. pcdac_tmp = pcdac_high_pwr;
  2016. edge_flag = 0;
  2017. }
  2018. /* This is used when setting tx power*/
  2019. ah->ah_txpower.txp_min_idx = min_pwr_idx/2;
  2020. /* Fill Power to PCDAC table backwards */
  2021. pwr = max_pwr_idx;
  2022. for (i = 63; i >= 0; i--) {
  2023. /* Entering lower power range, reset
  2024. * edge flag and set pcdac_tmp to lower
  2025. * power curve.*/
  2026. if (edge_flag == 0x40 &&
  2027. (2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
  2028. edge_flag = 0x00;
  2029. pcdac_tmp = pcdac_low_pwr;
  2030. pwr = mid_pwr_idx/2;
  2031. }
  2032. /* Don't go below 1, extrapolate below if we have
  2033. * already swithced to the lower power curve -or
  2034. * we only have one curve and edge_flag is zero
  2035. * anyway */
  2036. if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
  2037. while (i >= 0) {
  2038. pcdac_out[i] = pcdac_out[i + 1];
  2039. i--;
  2040. }
  2041. break;
  2042. }
  2043. pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
  2044. /* Extrapolate above if pcdac is greater than
  2045. * 126 -this can happen because we OR pcdac_out
  2046. * value with edge_flag on high power curve */
  2047. if (pcdac_out[i] > 126)
  2048. pcdac_out[i] = 126;
  2049. /* Decrease by a 0.5dB step */
  2050. pwr--;
  2051. }
  2052. }
  2053. /* Write PCDAC values on hw */
  2054. static void
  2055. ath5k_setup_pcdac_table(struct ath5k_hw *ah)
  2056. {
  2057. u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
  2058. int i;
  2059. /*
  2060. * Write TX power values
  2061. */
  2062. for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
  2063. ath5k_hw_reg_write(ah,
  2064. (((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) |
  2065. (((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16),
  2066. AR5K_PHY_PCDAC_TXPOWER(i));
  2067. }
  2068. }
  2069. /*
  2070. * Power to PDADC table functions
  2071. */
  2072. /*
  2073. * Set the gain boundaries and create final Power to PDADC table
  2074. *
  2075. * We can have up to 4 pd curves, we need to do a simmilar process
  2076. * as we do for RF5112. This time we don't have an edge_flag but we
  2077. * set the gain boundaries on a separate register.
  2078. */
  2079. static void
  2080. ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
  2081. s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
  2082. {
  2083. u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
  2084. u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
  2085. u8 *pdadc_tmp;
  2086. s16 pdadc_0;
  2087. u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
  2088. u8 pd_gain_overlap;
  2089. /* Note: Register value is initialized on initvals
  2090. * there is no feedback from hw.
  2091. * XXX: What about pd_gain_overlap from EEPROM ? */
  2092. pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
  2093. AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
  2094. /* Create final PDADC table */
  2095. for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
  2096. pdadc_tmp = ah->ah_txpower.tmpL[pdg];
  2097. if (pdg == pdcurves - 1)
  2098. /* 2 dB boundary stretch for last
  2099. * (higher power) curve */
  2100. gain_boundaries[pdg] = pwr_max[pdg] + 4;
  2101. else
  2102. /* Set gain boundary in the middle
  2103. * between this curve and the next one */
  2104. gain_boundaries[pdg] =
  2105. (pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
  2106. /* Sanity check in case our 2 db stretch got out of
  2107. * range. */
  2108. if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
  2109. gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
  2110. /* For the first curve (lower power)
  2111. * start from 0 dB */
  2112. if (pdg == 0)
  2113. pdadc_0 = 0;
  2114. else
  2115. /* For the other curves use the gain overlap */
  2116. pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
  2117. pd_gain_overlap;
  2118. /* Force each power step to be at least 0.5 dB */
  2119. if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
  2120. pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
  2121. else
  2122. pwr_step = 1;
  2123. /* If pdadc_0 is negative, we need to extrapolate
  2124. * below this pdgain by a number of pwr_steps */
  2125. while ((pdadc_0 < 0) && (pdadc_i < 128)) {
  2126. s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
  2127. pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
  2128. pdadc_0++;
  2129. }
  2130. /* Set last pwr level, using gain boundaries */
  2131. pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
  2132. /* Limit it to be inside pwr range */
  2133. table_size = pwr_max[pdg] - pwr_min[pdg];
  2134. max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
  2135. /* Fill pdadc_out table */
  2136. while (pdadc_0 < max_idx)
  2137. pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
  2138. /* Need to extrapolate above this pdgain? */
  2139. if (pdadc_n <= max_idx)
  2140. continue;
  2141. /* Force each power step to be at least 0.5 dB */
  2142. if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
  2143. pwr_step = pdadc_tmp[table_size - 1] -
  2144. pdadc_tmp[table_size - 2];
  2145. else
  2146. pwr_step = 1;
  2147. /* Extrapolate above */
  2148. while ((pdadc_0 < (s16) pdadc_n) &&
  2149. (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
  2150. s16 tmp = pdadc_tmp[table_size - 1] +
  2151. (pdadc_0 - max_idx) * pwr_step;
  2152. pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
  2153. pdadc_0++;
  2154. }
  2155. }
  2156. while (pdg < AR5K_EEPROM_N_PD_GAINS) {
  2157. gain_boundaries[pdg] = gain_boundaries[pdg - 1];
  2158. pdg++;
  2159. }
  2160. while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
  2161. pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
  2162. pdadc_i++;
  2163. }
  2164. /* Set gain boundaries */
  2165. ath5k_hw_reg_write(ah,
  2166. AR5K_REG_SM(pd_gain_overlap,
  2167. AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
  2168. AR5K_REG_SM(gain_boundaries[0],
  2169. AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
  2170. AR5K_REG_SM(gain_boundaries[1],
  2171. AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
  2172. AR5K_REG_SM(gain_boundaries[2],
  2173. AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
  2174. AR5K_REG_SM(gain_boundaries[3],
  2175. AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
  2176. AR5K_PHY_TPC_RG5);
  2177. /* Used for setting rate power table */
  2178. ah->ah_txpower.txp_min_idx = pwr_min[0];
  2179. }
  2180. /* Write PDADC values on hw */
  2181. static void
  2182. ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw *ah,
  2183. u8 pdcurves, u8 *pdg_to_idx)
  2184. {
  2185. u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
  2186. u32 reg;
  2187. u8 i;
  2188. /* Select the right pdgain curves */
  2189. /* Clear current settings */
  2190. reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
  2191. reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
  2192. AR5K_PHY_TPC_RG1_PDGAIN_2 |
  2193. AR5K_PHY_TPC_RG1_PDGAIN_3 |
  2194. AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
  2195. /*
  2196. * Use pd_gains curve from eeprom
  2197. *
  2198. * This overrides the default setting from initvals
  2199. * in case some vendors (e.g. Zcomax) don't use the default
  2200. * curves. If we don't honor their settings we 'll get a
  2201. * 5dB (1 * gain overlap ?) drop.
  2202. */
  2203. reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
  2204. switch (pdcurves) {
  2205. case 3:
  2206. reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
  2207. /* Fall through */
  2208. case 2:
  2209. reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
  2210. /* Fall through */
  2211. case 1:
  2212. reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
  2213. break;
  2214. }
  2215. ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
  2216. /*
  2217. * Write TX power values
  2218. */
  2219. for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
  2220. ath5k_hw_reg_write(ah,
  2221. ((pdadc_out[4*i + 0] & 0xff) << 0) |
  2222. ((pdadc_out[4*i + 1] & 0xff) << 8) |
  2223. ((pdadc_out[4*i + 2] & 0xff) << 16) |
  2224. ((pdadc_out[4*i + 3] & 0xff) << 24),
  2225. AR5K_PHY_PDADC_TXPOWER(i));
  2226. }
  2227. }
  2228. /*
  2229. * Common code for PCDAC/PDADC tables
  2230. */
  2231. /*
  2232. * This is the main function that uses all of the above
  2233. * to set PCDAC/PDADC table on hw for the current channel.
  2234. * This table is used for tx power calibration on the basband,
  2235. * without it we get weird tx power levels and in some cases
  2236. * distorted spectral mask
  2237. */
  2238. static int
  2239. ath5k_setup_channel_powertable(struct ath5k_hw *ah,
  2240. struct ieee80211_channel *channel,
  2241. u8 ee_mode, u8 type)
  2242. {
  2243. struct ath5k_pdgain_info *pdg_L, *pdg_R;
  2244. struct ath5k_chan_pcal_info *pcinfo_L;
  2245. struct ath5k_chan_pcal_info *pcinfo_R;
  2246. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  2247. u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
  2248. s16 table_min[AR5K_EEPROM_N_PD_GAINS];
  2249. s16 table_max[AR5K_EEPROM_N_PD_GAINS];
  2250. u8 *tmpL;
  2251. u8 *tmpR;
  2252. u32 target = channel->center_freq;
  2253. int pdg, i;
  2254. /* Get surounding freq piers for this channel */
  2255. ath5k_get_chan_pcal_surrounding_piers(ah, channel,
  2256. &pcinfo_L,
  2257. &pcinfo_R);
  2258. /* Loop over pd gain curves on
  2259. * surounding freq piers by index */
  2260. for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
  2261. /* Fill curves in reverse order
  2262. * from lower power (max gain)
  2263. * to higher power. Use curve -> idx
  2264. * backmaping we did on eeprom init */
  2265. u8 idx = pdg_curve_to_idx[pdg];
  2266. /* Grab the needed curves by index */
  2267. pdg_L = &pcinfo_L->pd_curves[idx];
  2268. pdg_R = &pcinfo_R->pd_curves[idx];
  2269. /* Initialize the temp tables */
  2270. tmpL = ah->ah_txpower.tmpL[pdg];
  2271. tmpR = ah->ah_txpower.tmpR[pdg];
  2272. /* Set curve's x boundaries and create
  2273. * curves so that they cover the same
  2274. * range (if we don't do that one table
  2275. * will have values on some range and the
  2276. * other one won't have any so interpolation
  2277. * will fail) */
  2278. table_min[pdg] = min(pdg_L->pd_pwr[0],
  2279. pdg_R->pd_pwr[0]) / 2;
  2280. table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
  2281. pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
  2282. /* Now create the curves on surrounding channels
  2283. * and interpolate if needed to get the final
  2284. * curve for this gain on this channel */
  2285. switch (type) {
  2286. case AR5K_PWRTABLE_LINEAR_PCDAC:
  2287. /* Override min/max so that we don't loose
  2288. * accuracy (don't divide by 2) */
  2289. table_min[pdg] = min(pdg_L->pd_pwr[0],
  2290. pdg_R->pd_pwr[0]);
  2291. table_max[pdg] =
  2292. max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
  2293. pdg_R->pd_pwr[pdg_R->pd_points - 1]);
  2294. /* Override minimum so that we don't get
  2295. * out of bounds while extrapolating
  2296. * below. Don't do this when we have 2
  2297. * curves and we are on the high power curve
  2298. * because table_min is ok in this case */
  2299. if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
  2300. table_min[pdg] =
  2301. ath5k_get_linear_pcdac_min(pdg_L->pd_step,
  2302. pdg_R->pd_step,
  2303. pdg_L->pd_pwr,
  2304. pdg_R->pd_pwr);
  2305. /* Don't go too low because we will
  2306. * miss the upper part of the curve.
  2307. * Note: 126 = 31.5dB (max power supported)
  2308. * in 0.25dB units */
  2309. if (table_max[pdg] - table_min[pdg] > 126)
  2310. table_min[pdg] = table_max[pdg] - 126;
  2311. }
  2312. /* Fall through */
  2313. case AR5K_PWRTABLE_PWR_TO_PCDAC:
  2314. case AR5K_PWRTABLE_PWR_TO_PDADC:
  2315. ath5k_create_power_curve(table_min[pdg],
  2316. table_max[pdg],
  2317. pdg_L->pd_pwr,
  2318. pdg_L->pd_step,
  2319. pdg_L->pd_points, tmpL, type);
  2320. /* We are in a calibration
  2321. * pier, no need to interpolate
  2322. * between freq piers */
  2323. if (pcinfo_L == pcinfo_R)
  2324. continue;
  2325. ath5k_create_power_curve(table_min[pdg],
  2326. table_max[pdg],
  2327. pdg_R->pd_pwr,
  2328. pdg_R->pd_step,
  2329. pdg_R->pd_points, tmpR, type);
  2330. break;
  2331. default:
  2332. return -EINVAL;
  2333. }
  2334. /* Interpolate between curves
  2335. * of surounding freq piers to
  2336. * get the final curve for this
  2337. * pd gain. Re-use tmpL for interpolation
  2338. * output */
  2339. for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
  2340. (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
  2341. tmpL[i] = (u8) ath5k_get_interpolated_value(target,
  2342. (s16) pcinfo_L->freq,
  2343. (s16) pcinfo_R->freq,
  2344. (s16) tmpL[i],
  2345. (s16) tmpR[i]);
  2346. }
  2347. }
  2348. /* Now we have a set of curves for this
  2349. * channel on tmpL (x range is table_max - table_min
  2350. * and y values are tmpL[pdg][]) sorted in the same
  2351. * order as EEPROM (because we've used the backmaping).
  2352. * So for RF5112 it's from higher power to lower power
  2353. * and for RF2413 it's from lower power to higher power.
  2354. * For RF5111 we only have one curve. */
  2355. /* Fill min and max power levels for this
  2356. * channel by interpolating the values on
  2357. * surounding channels to complete the dataset */
  2358. ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
  2359. (s16) pcinfo_L->freq,
  2360. (s16) pcinfo_R->freq,
  2361. pcinfo_L->min_pwr, pcinfo_R->min_pwr);
  2362. ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
  2363. (s16) pcinfo_L->freq,
  2364. (s16) pcinfo_R->freq,
  2365. pcinfo_L->max_pwr, pcinfo_R->max_pwr);
  2366. /* We are ready to go, fill PCDAC/PDADC
  2367. * table and write settings on hardware */
  2368. switch (type) {
  2369. case AR5K_PWRTABLE_LINEAR_PCDAC:
  2370. /* For RF5112 we can have one or two curves
  2371. * and each curve covers a certain power lvl
  2372. * range so we need to do some more processing */
  2373. ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
  2374. ee->ee_pd_gains[ee_mode]);
  2375. /* Set txp.offset so that we can
  2376. * match max power value with max
  2377. * table index */
  2378. ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
  2379. /* Write settings on hw */
  2380. ath5k_setup_pcdac_table(ah);
  2381. break;
  2382. case AR5K_PWRTABLE_PWR_TO_PCDAC:
  2383. /* We are done for RF5111 since it has only
  2384. * one curve, just fit the curve on the table */
  2385. ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
  2386. /* No rate powertable adjustment for RF5111 */
  2387. ah->ah_txpower.txp_min_idx = 0;
  2388. ah->ah_txpower.txp_offset = 0;
  2389. /* Write settings on hw */
  2390. ath5k_setup_pcdac_table(ah);
  2391. break;
  2392. case AR5K_PWRTABLE_PWR_TO_PDADC:
  2393. /* Set PDADC boundaries and fill
  2394. * final PDADC table */
  2395. ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
  2396. ee->ee_pd_gains[ee_mode]);
  2397. /* Write settings on hw */
  2398. ath5k_setup_pwr_to_pdadc_table(ah, pdg, pdg_curve_to_idx);
  2399. /* Set txp.offset, note that table_min
  2400. * can be negative */
  2401. ah->ah_txpower.txp_offset = table_min[0];
  2402. break;
  2403. default:
  2404. return -EINVAL;
  2405. }
  2406. return 0;
  2407. }
  2408. /*
  2409. * Per-rate tx power setting
  2410. *
  2411. * This is the code that sets the desired tx power (below
  2412. * maximum) on hw for each rate (we also have TPC that sets
  2413. * power per packet). We do that by providing an index on the
  2414. * PCDAC/PDADC table we set up.
  2415. */
  2416. /*
  2417. * Set rate power table
  2418. *
  2419. * For now we only limit txpower based on maximum tx power
  2420. * supported by hw (what's inside rate_info). We need to limit
  2421. * this even more, based on regulatory domain etc.
  2422. *
  2423. * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
  2424. * and is indexed as follows:
  2425. * rates[0] - rates[7] -> OFDM rates
  2426. * rates[8] - rates[14] -> CCK rates
  2427. * rates[15] -> XR rates (they all have the same power)
  2428. */
  2429. static void
  2430. ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
  2431. struct ath5k_rate_pcal_info *rate_info,
  2432. u8 ee_mode)
  2433. {
  2434. unsigned int i;
  2435. u16 *rates;
  2436. /* max_pwr is power level we got from driver/user in 0.5dB
  2437. * units, switch to 0.25dB units so we can compare */
  2438. max_pwr *= 2;
  2439. max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
  2440. /* apply rate limits */
  2441. rates = ah->ah_txpower.txp_rates_power_table;
  2442. /* OFDM rates 6 to 24Mb/s */
  2443. for (i = 0; i < 5; i++)
  2444. rates[i] = min(max_pwr, rate_info->target_power_6to24);
  2445. /* Rest OFDM rates */
  2446. rates[5] = min(rates[0], rate_info->target_power_36);
  2447. rates[6] = min(rates[0], rate_info->target_power_48);
  2448. rates[7] = min(rates[0], rate_info->target_power_54);
  2449. /* CCK rates */
  2450. /* 1L */
  2451. rates[8] = min(rates[0], rate_info->target_power_6to24);
  2452. /* 2L */
  2453. rates[9] = min(rates[0], rate_info->target_power_36);
  2454. /* 2S */
  2455. rates[10] = min(rates[0], rate_info->target_power_36);
  2456. /* 5L */
  2457. rates[11] = min(rates[0], rate_info->target_power_48);
  2458. /* 5S */
  2459. rates[12] = min(rates[0], rate_info->target_power_48);
  2460. /* 11L */
  2461. rates[13] = min(rates[0], rate_info->target_power_54);
  2462. /* 11S */
  2463. rates[14] = min(rates[0], rate_info->target_power_54);
  2464. /* XR rates */
  2465. rates[15] = min(rates[0], rate_info->target_power_6to24);
  2466. /* CCK rates have different peak to average ratio
  2467. * so we have to tweak their power so that gainf
  2468. * correction works ok. For this we use OFDM to
  2469. * CCK delta from eeprom */
  2470. if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
  2471. (ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
  2472. for (i = 8; i <= 15; i++)
  2473. rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
  2474. /* Now that we have all rates setup use table offset to
  2475. * match the power range set by user with the power indices
  2476. * on PCDAC/PDADC table */
  2477. for (i = 0; i < 16; i++) {
  2478. rates[i] += ah->ah_txpower.txp_offset;
  2479. /* Don't get out of bounds */
  2480. if (rates[i] > 63)
  2481. rates[i] = 63;
  2482. }
  2483. /* Min/max in 0.25dB units */
  2484. ah->ah_txpower.txp_min_pwr = 2 * rates[7];
  2485. ah->ah_txpower.txp_max_pwr = 2 * rates[0];
  2486. ah->ah_txpower.txp_ofdm = rates[7];
  2487. }
  2488. /*
  2489. * Set transmition power
  2490. */
  2491. int
  2492. ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
  2493. u8 ee_mode, u8 txpower)
  2494. {
  2495. struct ath5k_rate_pcal_info rate_info;
  2496. u8 type;
  2497. int ret;
  2498. ATH5K_TRACE(ah->ah_sc);
  2499. if (txpower > AR5K_TUNE_MAX_TXPOWER) {
  2500. ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower);
  2501. return -EINVAL;
  2502. }
  2503. if (txpower == 0)
  2504. txpower = AR5K_TUNE_DEFAULT_TXPOWER;
  2505. /* Reset TX power values */
  2506. memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
  2507. ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
  2508. ah->ah_txpower.txp_min_pwr = 0;
  2509. ah->ah_txpower.txp_max_pwr = AR5K_TUNE_MAX_TXPOWER;
  2510. /* Initialize TX power table */
  2511. switch (ah->ah_radio) {
  2512. case AR5K_RF5111:
  2513. type = AR5K_PWRTABLE_PWR_TO_PCDAC;
  2514. break;
  2515. case AR5K_RF5112:
  2516. type = AR5K_PWRTABLE_LINEAR_PCDAC;
  2517. break;
  2518. case AR5K_RF2413:
  2519. case AR5K_RF5413:
  2520. case AR5K_RF2316:
  2521. case AR5K_RF2317:
  2522. case AR5K_RF2425:
  2523. type = AR5K_PWRTABLE_PWR_TO_PDADC;
  2524. break;
  2525. default:
  2526. return -EINVAL;
  2527. }
  2528. /* FIXME: Only on channel/mode change */
  2529. ret = ath5k_setup_channel_powertable(ah, channel, ee_mode, type);
  2530. if (ret)
  2531. return ret;
  2532. /* Limit max power if we have a CTL available */
  2533. ath5k_get_max_ctl_power(ah, channel);
  2534. /* FIXME: Tx power limit for this regdomain
  2535. * XXX: Mac80211/CRDA will do that anyway ? */
  2536. /* FIXME: Antenna reduction stuff */
  2537. /* FIXME: Limit power on turbo modes */
  2538. /* FIXME: TPC scale reduction */
  2539. /* Get surounding channels for per-rate power table
  2540. * calibration */
  2541. ath5k_get_rate_pcal_data(ah, channel, &rate_info);
  2542. /* Setup rate power table */
  2543. ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
  2544. /* Write rate power table on hw */
  2545. ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
  2546. AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
  2547. AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
  2548. ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
  2549. AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
  2550. AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
  2551. ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
  2552. AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
  2553. AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
  2554. ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
  2555. AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
  2556. AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
  2557. /* FIXME: TPC support */
  2558. if (ah->ah_txpower.txp_tpc) {
  2559. ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
  2560. AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
  2561. ath5k_hw_reg_write(ah,
  2562. AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
  2563. AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
  2564. AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
  2565. AR5K_TPC);
  2566. } else {
  2567. ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
  2568. AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
  2569. }
  2570. return 0;
  2571. }
  2572. int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
  2573. {
  2574. /*Just a try M.F.*/
  2575. struct ieee80211_channel *channel = ah->ah_current_channel;
  2576. u8 ee_mode;
  2577. ATH5K_TRACE(ah->ah_sc);
  2578. switch (channel->hw_value & CHANNEL_MODES) {
  2579. case CHANNEL_A:
  2580. case CHANNEL_T:
  2581. case CHANNEL_XR:
  2582. ee_mode = AR5K_EEPROM_MODE_11A;
  2583. break;
  2584. case CHANNEL_G:
  2585. case CHANNEL_TG:
  2586. ee_mode = AR5K_EEPROM_MODE_11G;
  2587. break;
  2588. case CHANNEL_B:
  2589. ee_mode = AR5K_EEPROM_MODE_11B;
  2590. break;
  2591. default:
  2592. ATH5K_ERR(ah->ah_sc,
  2593. "invalid channel: %d\n", channel->center_freq);
  2594. return -EINVAL;
  2595. }
  2596. ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER,
  2597. "changing txpower to %d\n", txpower);
  2598. return ath5k_hw_txpower(ah, channel, ee_mode, txpower);
  2599. }
  2600. #undef _ATH5K_PHY