123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855 |
- /*
- * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
- * policies)
- */
- #ifdef CONFIG_SMP
- /*
- * The "RT overload" flag: it gets set if a CPU has more than
- * one runnable RT task.
- */
- static cpumask_t rt_overload_mask;
- static atomic_t rto_count;
- static inline int rt_overloaded(void)
- {
- return atomic_read(&rto_count);
- }
- static inline void rt_set_overload(struct rq *rq)
- {
- rq->rt.overloaded = 1;
- cpu_set(rq->cpu, rt_overload_mask);
- /*
- * Make sure the mask is visible before we set
- * the overload count. That is checked to determine
- * if we should look at the mask. It would be a shame
- * if we looked at the mask, but the mask was not
- * updated yet.
- */
- wmb();
- atomic_inc(&rto_count);
- }
- static inline void rt_clear_overload(struct rq *rq)
- {
- /* the order here really doesn't matter */
- atomic_dec(&rto_count);
- cpu_clear(rq->cpu, rt_overload_mask);
- rq->rt.overloaded = 0;
- }
- static void update_rt_migration(struct rq *rq)
- {
- if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1))
- rt_set_overload(rq);
- else
- rt_clear_overload(rq);
- }
- #endif /* CONFIG_SMP */
- /*
- * Update the current task's runtime statistics. Skip current tasks that
- * are not in our scheduling class.
- */
- static void update_curr_rt(struct rq *rq)
- {
- struct task_struct *curr = rq->curr;
- u64 delta_exec;
- if (!task_has_rt_policy(curr))
- return;
- delta_exec = rq->clock - curr->se.exec_start;
- if (unlikely((s64)delta_exec < 0))
- delta_exec = 0;
- schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
- curr->se.sum_exec_runtime += delta_exec;
- curr->se.exec_start = rq->clock;
- cpuacct_charge(curr, delta_exec);
- }
- static inline void inc_rt_tasks(struct task_struct *p, struct rq *rq)
- {
- WARN_ON(!rt_task(p));
- rq->rt.rt_nr_running++;
- #ifdef CONFIG_SMP
- if (p->prio < rq->rt.highest_prio)
- rq->rt.highest_prio = p->prio;
- if (p->nr_cpus_allowed > 1)
- rq->rt.rt_nr_migratory++;
- update_rt_migration(rq);
- #endif /* CONFIG_SMP */
- }
- static inline void dec_rt_tasks(struct task_struct *p, struct rq *rq)
- {
- WARN_ON(!rt_task(p));
- WARN_ON(!rq->rt.rt_nr_running);
- rq->rt.rt_nr_running--;
- #ifdef CONFIG_SMP
- if (rq->rt.rt_nr_running) {
- struct rt_prio_array *array;
- WARN_ON(p->prio < rq->rt.highest_prio);
- if (p->prio == rq->rt.highest_prio) {
- /* recalculate */
- array = &rq->rt.active;
- rq->rt.highest_prio =
- sched_find_first_bit(array->bitmap);
- } /* otherwise leave rq->highest prio alone */
- } else
- rq->rt.highest_prio = MAX_RT_PRIO;
- if (p->nr_cpus_allowed > 1)
- rq->rt.rt_nr_migratory--;
- update_rt_migration(rq);
- #endif /* CONFIG_SMP */
- }
- static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
- {
- struct rt_prio_array *array = &rq->rt.active;
- list_add_tail(&p->run_list, array->queue + p->prio);
- __set_bit(p->prio, array->bitmap);
- inc_cpu_load(rq, p->se.load.weight);
- inc_rt_tasks(p, rq);
- }
- /*
- * Adding/removing a task to/from a priority array:
- */
- static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
- {
- struct rt_prio_array *array = &rq->rt.active;
- update_curr_rt(rq);
- list_del(&p->run_list);
- if (list_empty(array->queue + p->prio))
- __clear_bit(p->prio, array->bitmap);
- dec_cpu_load(rq, p->se.load.weight);
- dec_rt_tasks(p, rq);
- }
- /*
- * Put task to the end of the run list without the overhead of dequeue
- * followed by enqueue.
- */
- static void requeue_task_rt(struct rq *rq, struct task_struct *p)
- {
- struct rt_prio_array *array = &rq->rt.active;
- list_move_tail(&p->run_list, array->queue + p->prio);
- }
- static void
- yield_task_rt(struct rq *rq)
- {
- requeue_task_rt(rq, rq->curr);
- }
- #ifdef CONFIG_SMP
- static int find_lowest_rq(struct task_struct *task);
- static int select_task_rq_rt(struct task_struct *p, int sync)
- {
- struct rq *rq = task_rq(p);
- /*
- * If the current task is an RT task, then
- * try to see if we can wake this RT task up on another
- * runqueue. Otherwise simply start this RT task
- * on its current runqueue.
- *
- * We want to avoid overloading runqueues. Even if
- * the RT task is of higher priority than the current RT task.
- * RT tasks behave differently than other tasks. If
- * one gets preempted, we try to push it off to another queue.
- * So trying to keep a preempting RT task on the same
- * cache hot CPU will force the running RT task to
- * a cold CPU. So we waste all the cache for the lower
- * RT task in hopes of saving some of a RT task
- * that is just being woken and probably will have
- * cold cache anyway.
- */
- if (unlikely(rt_task(rq->curr)) &&
- (p->nr_cpus_allowed > 1)) {
- int cpu = find_lowest_rq(p);
- return (cpu == -1) ? task_cpu(p) : cpu;
- }
- /*
- * Otherwise, just let it ride on the affined RQ and the
- * post-schedule router will push the preempted task away
- */
- return task_cpu(p);
- }
- #endif /* CONFIG_SMP */
- /*
- * Preempt the current task with a newly woken task if needed:
- */
- static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
- {
- if (p->prio < rq->curr->prio)
- resched_task(rq->curr);
- }
- static struct task_struct *pick_next_task_rt(struct rq *rq)
- {
- struct rt_prio_array *array = &rq->rt.active;
- struct task_struct *next;
- struct list_head *queue;
- int idx;
- idx = sched_find_first_bit(array->bitmap);
- if (idx >= MAX_RT_PRIO)
- return NULL;
- queue = array->queue + idx;
- next = list_entry(queue->next, struct task_struct, run_list);
- next->se.exec_start = rq->clock;
- return next;
- }
- static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
- {
- update_curr_rt(rq);
- p->se.exec_start = 0;
- }
- #ifdef CONFIG_SMP
- /* Only try algorithms three times */
- #define RT_MAX_TRIES 3
- static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
- static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
- static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
- {
- if (!task_running(rq, p) &&
- (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
- (p->nr_cpus_allowed > 1))
- return 1;
- return 0;
- }
- /* Return the second highest RT task, NULL otherwise */
- static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
- {
- struct rt_prio_array *array = &rq->rt.active;
- struct task_struct *next;
- struct list_head *queue;
- int idx;
- assert_spin_locked(&rq->lock);
- if (likely(rq->rt.rt_nr_running < 2))
- return NULL;
- idx = sched_find_first_bit(array->bitmap);
- if (unlikely(idx >= MAX_RT_PRIO)) {
- WARN_ON(1); /* rt_nr_running is bad */
- return NULL;
- }
- queue = array->queue + idx;
- BUG_ON(list_empty(queue));
- next = list_entry(queue->next, struct task_struct, run_list);
- if (unlikely(pick_rt_task(rq, next, cpu)))
- goto out;
- if (queue->next->next != queue) {
- /* same prio task */
- next = list_entry(queue->next->next, struct task_struct,
- run_list);
- if (pick_rt_task(rq, next, cpu))
- goto out;
- }
- retry:
- /* slower, but more flexible */
- idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
- if (unlikely(idx >= MAX_RT_PRIO))
- return NULL;
- queue = array->queue + idx;
- BUG_ON(list_empty(queue));
- list_for_each_entry(next, queue, run_list) {
- if (pick_rt_task(rq, next, cpu))
- goto out;
- }
- goto retry;
- out:
- return next;
- }
- static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
- static int find_lowest_cpus(struct task_struct *task, cpumask_t *lowest_mask)
- {
- int lowest_prio = -1;
- int lowest_cpu = -1;
- int count = 0;
- int cpu;
- cpus_and(*lowest_mask, cpu_online_map, task->cpus_allowed);
- /*
- * Scan each rq for the lowest prio.
- */
- for_each_cpu_mask(cpu, *lowest_mask) {
- struct rq *rq = cpu_rq(cpu);
- /* We look for lowest RT prio or non-rt CPU */
- if (rq->rt.highest_prio >= MAX_RT_PRIO) {
- /*
- * if we already found a low RT queue
- * and now we found this non-rt queue
- * clear the mask and set our bit.
- * Otherwise just return the queue as is
- * and the count==1 will cause the algorithm
- * to use the first bit found.
- */
- if (lowest_cpu != -1) {
- cpus_clear(*lowest_mask);
- cpu_set(rq->cpu, *lowest_mask);
- }
- return 1;
- }
- /* no locking for now */
- if ((rq->rt.highest_prio > task->prio)
- && (rq->rt.highest_prio >= lowest_prio)) {
- if (rq->rt.highest_prio > lowest_prio) {
- /* new low - clear old data */
- lowest_prio = rq->rt.highest_prio;
- lowest_cpu = cpu;
- count = 0;
- }
- count++;
- } else
- cpu_clear(cpu, *lowest_mask);
- }
- /*
- * Clear out all the set bits that represent
- * runqueues that were of higher prio than
- * the lowest_prio.
- */
- if (lowest_cpu > 0) {
- /*
- * Perhaps we could add another cpumask op to
- * zero out bits. Like cpu_zero_bits(cpumask, nrbits);
- * Then that could be optimized to use memset and such.
- */
- for_each_cpu_mask(cpu, *lowest_mask) {
- if (cpu >= lowest_cpu)
- break;
- cpu_clear(cpu, *lowest_mask);
- }
- }
- return count;
- }
- static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
- {
- int first;
- /* "this_cpu" is cheaper to preempt than a remote processor */
- if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
- return this_cpu;
- first = first_cpu(*mask);
- if (first != NR_CPUS)
- return first;
- return -1;
- }
- static int find_lowest_rq(struct task_struct *task)
- {
- struct sched_domain *sd;
- cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
- int this_cpu = smp_processor_id();
- int cpu = task_cpu(task);
- int count = find_lowest_cpus(task, lowest_mask);
- if (!count)
- return -1; /* No targets found */
- /*
- * There is no sense in performing an optimal search if only one
- * target is found.
- */
- if (count == 1)
- return first_cpu(*lowest_mask);
- /*
- * At this point we have built a mask of cpus representing the
- * lowest priority tasks in the system. Now we want to elect
- * the best one based on our affinity and topology.
- *
- * We prioritize the last cpu that the task executed on since
- * it is most likely cache-hot in that location.
- */
- if (cpu_isset(cpu, *lowest_mask))
- return cpu;
- /*
- * Otherwise, we consult the sched_domains span maps to figure
- * out which cpu is logically closest to our hot cache data.
- */
- if (this_cpu == cpu)
- this_cpu = -1; /* Skip this_cpu opt if the same */
- for_each_domain(cpu, sd) {
- if (sd->flags & SD_WAKE_AFFINE) {
- cpumask_t domain_mask;
- int best_cpu;
- cpus_and(domain_mask, sd->span, *lowest_mask);
- best_cpu = pick_optimal_cpu(this_cpu,
- &domain_mask);
- if (best_cpu != -1)
- return best_cpu;
- }
- }
- /*
- * And finally, if there were no matches within the domains
- * just give the caller *something* to work with from the compatible
- * locations.
- */
- return pick_optimal_cpu(this_cpu, lowest_mask);
- }
- /* Will lock the rq it finds */
- static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
- {
- struct rq *lowest_rq = NULL;
- int tries;
- int cpu;
- for (tries = 0; tries < RT_MAX_TRIES; tries++) {
- cpu = find_lowest_rq(task);
- if ((cpu == -1) || (cpu == rq->cpu))
- break;
- lowest_rq = cpu_rq(cpu);
- /* if the prio of this runqueue changed, try again */
- if (double_lock_balance(rq, lowest_rq)) {
- /*
- * We had to unlock the run queue. In
- * the mean time, task could have
- * migrated already or had its affinity changed.
- * Also make sure that it wasn't scheduled on its rq.
- */
- if (unlikely(task_rq(task) != rq ||
- !cpu_isset(lowest_rq->cpu,
- task->cpus_allowed) ||
- task_running(rq, task) ||
- !task->se.on_rq)) {
- spin_unlock(&lowest_rq->lock);
- lowest_rq = NULL;
- break;
- }
- }
- /* If this rq is still suitable use it. */
- if (lowest_rq->rt.highest_prio > task->prio)
- break;
- /* try again */
- spin_unlock(&lowest_rq->lock);
- lowest_rq = NULL;
- }
- return lowest_rq;
- }
- /*
- * If the current CPU has more than one RT task, see if the non
- * running task can migrate over to a CPU that is running a task
- * of lesser priority.
- */
- static int push_rt_task(struct rq *rq)
- {
- struct task_struct *next_task;
- struct rq *lowest_rq;
- int ret = 0;
- int paranoid = RT_MAX_TRIES;
- assert_spin_locked(&rq->lock);
- if (!rq->rt.overloaded)
- return 0;
- next_task = pick_next_highest_task_rt(rq, -1);
- if (!next_task)
- return 0;
- retry:
- if (unlikely(next_task == rq->curr)) {
- WARN_ON(1);
- return 0;
- }
- /*
- * It's possible that the next_task slipped in of
- * higher priority than current. If that's the case
- * just reschedule current.
- */
- if (unlikely(next_task->prio < rq->curr->prio)) {
- resched_task(rq->curr);
- return 0;
- }
- /* We might release rq lock */
- get_task_struct(next_task);
- /* find_lock_lowest_rq locks the rq if found */
- lowest_rq = find_lock_lowest_rq(next_task, rq);
- if (!lowest_rq) {
- struct task_struct *task;
- /*
- * find lock_lowest_rq releases rq->lock
- * so it is possible that next_task has changed.
- * If it has, then try again.
- */
- task = pick_next_highest_task_rt(rq, -1);
- if (unlikely(task != next_task) && task && paranoid--) {
- put_task_struct(next_task);
- next_task = task;
- goto retry;
- }
- goto out;
- }
- assert_spin_locked(&lowest_rq->lock);
- deactivate_task(rq, next_task, 0);
- set_task_cpu(next_task, lowest_rq->cpu);
- activate_task(lowest_rq, next_task, 0);
- resched_task(lowest_rq->curr);
- spin_unlock(&lowest_rq->lock);
- ret = 1;
- out:
- put_task_struct(next_task);
- return ret;
- }
- /*
- * TODO: Currently we just use the second highest prio task on
- * the queue, and stop when it can't migrate (or there's
- * no more RT tasks). There may be a case where a lower
- * priority RT task has a different affinity than the
- * higher RT task. In this case the lower RT task could
- * possibly be able to migrate where as the higher priority
- * RT task could not. We currently ignore this issue.
- * Enhancements are welcome!
- */
- static void push_rt_tasks(struct rq *rq)
- {
- /* push_rt_task will return true if it moved an RT */
- while (push_rt_task(rq))
- ;
- }
- static int pull_rt_task(struct rq *this_rq)
- {
- struct task_struct *next;
- struct task_struct *p;
- struct rq *src_rq;
- int this_cpu = this_rq->cpu;
- int cpu;
- int ret = 0;
- assert_spin_locked(&this_rq->lock);
- /*
- * If cpusets are used, and we have overlapping
- * run queue cpusets, then this algorithm may not catch all.
- * This is just the price you pay on trying to keep
- * dirtying caches down on large SMP machines.
- */
- if (likely(!rt_overloaded()))
- return 0;
- next = pick_next_task_rt(this_rq);
- for_each_cpu_mask(cpu, rt_overload_mask) {
- if (this_cpu == cpu)
- continue;
- src_rq = cpu_rq(cpu);
- if (unlikely(src_rq->rt.rt_nr_running <= 1)) {
- /*
- * It is possible that overlapping cpusets
- * will miss clearing a non overloaded runqueue.
- * Clear it now.
- */
- if (double_lock_balance(this_rq, src_rq)) {
- /* unlocked our runqueue lock */
- struct task_struct *old_next = next;
- next = pick_next_task_rt(this_rq);
- if (next != old_next)
- ret = 1;
- }
- if (likely(src_rq->rt.rt_nr_running <= 1))
- /*
- * Small chance that this_rq->curr changed
- * but it's really harmless here.
- */
- rt_clear_overload(this_rq);
- else
- /*
- * Heh, the src_rq is now overloaded, since
- * we already have the src_rq lock, go straight
- * to pulling tasks from it.
- */
- goto try_pulling;
- spin_unlock(&src_rq->lock);
- continue;
- }
- /*
- * We can potentially drop this_rq's lock in
- * double_lock_balance, and another CPU could
- * steal our next task - hence we must cause
- * the caller to recalculate the next task
- * in that case:
- */
- if (double_lock_balance(this_rq, src_rq)) {
- struct task_struct *old_next = next;
- next = pick_next_task_rt(this_rq);
- if (next != old_next)
- ret = 1;
- }
- /*
- * Are there still pullable RT tasks?
- */
- if (src_rq->rt.rt_nr_running <= 1) {
- spin_unlock(&src_rq->lock);
- continue;
- }
- try_pulling:
- p = pick_next_highest_task_rt(src_rq, this_cpu);
- /*
- * Do we have an RT task that preempts
- * the to-be-scheduled task?
- */
- if (p && (!next || (p->prio < next->prio))) {
- WARN_ON(p == src_rq->curr);
- WARN_ON(!p->se.on_rq);
- /*
- * There's a chance that p is higher in priority
- * than what's currently running on its cpu.
- * This is just that p is wakeing up and hasn't
- * had a chance to schedule. We only pull
- * p if it is lower in priority than the
- * current task on the run queue or
- * this_rq next task is lower in prio than
- * the current task on that rq.
- */
- if (p->prio < src_rq->curr->prio ||
- (next && next->prio < src_rq->curr->prio))
- goto bail;
- ret = 1;
- deactivate_task(src_rq, p, 0);
- set_task_cpu(p, this_cpu);
- activate_task(this_rq, p, 0);
- /*
- * We continue with the search, just in
- * case there's an even higher prio task
- * in another runqueue. (low likelyhood
- * but possible)
- */
- /*
- * Update next so that we won't pick a task
- * on another cpu with a priority lower (or equal)
- * than the one we just picked.
- */
- next = p;
- }
- bail:
- spin_unlock(&src_rq->lock);
- }
- return ret;
- }
- static void schedule_balance_rt(struct rq *rq,
- struct task_struct *prev)
- {
- /* Try to pull RT tasks here if we lower this rq's prio */
- if (unlikely(rt_task(prev)) &&
- rq->rt.highest_prio > prev->prio)
- pull_rt_task(rq);
- }
- static void schedule_tail_balance_rt(struct rq *rq)
- {
- /*
- * If we have more than one rt_task queued, then
- * see if we can push the other rt_tasks off to other CPUS.
- * Note we may release the rq lock, and since
- * the lock was owned by prev, we need to release it
- * first via finish_lock_switch and then reaquire it here.
- */
- if (unlikely(rq->rt.overloaded)) {
- spin_lock_irq(&rq->lock);
- push_rt_tasks(rq);
- spin_unlock_irq(&rq->lock);
- }
- }
- static void wakeup_balance_rt(struct rq *rq, struct task_struct *p)
- {
- if (unlikely(rt_task(p)) &&
- !task_running(rq, p) &&
- (p->prio >= rq->rt.highest_prio) &&
- rq->rt.overloaded)
- push_rt_tasks(rq);
- }
- static unsigned long
- load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
- unsigned long max_load_move,
- struct sched_domain *sd, enum cpu_idle_type idle,
- int *all_pinned, int *this_best_prio)
- {
- /* don't touch RT tasks */
- return 0;
- }
- static int
- move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
- struct sched_domain *sd, enum cpu_idle_type idle)
- {
- /* don't touch RT tasks */
- return 0;
- }
- static void set_cpus_allowed_rt(struct task_struct *p, cpumask_t *new_mask)
- {
- int weight = cpus_weight(*new_mask);
- BUG_ON(!rt_task(p));
- /*
- * Update the migration status of the RQ if we have an RT task
- * which is running AND changing its weight value.
- */
- if (p->se.on_rq && (weight != p->nr_cpus_allowed)) {
- struct rq *rq = task_rq(p);
- if ((p->nr_cpus_allowed <= 1) && (weight > 1)) {
- rq->rt.rt_nr_migratory++;
- } else if ((p->nr_cpus_allowed > 1) && (weight <= 1)) {
- BUG_ON(!rq->rt.rt_nr_migratory);
- rq->rt.rt_nr_migratory--;
- }
- update_rt_migration(rq);
- }
- p->cpus_allowed = *new_mask;
- p->nr_cpus_allowed = weight;
- }
- #else /* CONFIG_SMP */
- # define schedule_tail_balance_rt(rq) do { } while (0)
- # define schedule_balance_rt(rq, prev) do { } while (0)
- # define wakeup_balance_rt(rq, p) do { } while (0)
- #endif /* CONFIG_SMP */
- static void task_tick_rt(struct rq *rq, struct task_struct *p)
- {
- update_curr_rt(rq);
- /*
- * RR tasks need a special form of timeslice management.
- * FIFO tasks have no timeslices.
- */
- if (p->policy != SCHED_RR)
- return;
- if (--p->time_slice)
- return;
- p->time_slice = DEF_TIMESLICE;
- /*
- * Requeue to the end of queue if we are not the only element
- * on the queue:
- */
- if (p->run_list.prev != p->run_list.next) {
- requeue_task_rt(rq, p);
- set_tsk_need_resched(p);
- }
- }
- static void set_curr_task_rt(struct rq *rq)
- {
- struct task_struct *p = rq->curr;
- p->se.exec_start = rq->clock;
- }
- const struct sched_class rt_sched_class = {
- .next = &fair_sched_class,
- .enqueue_task = enqueue_task_rt,
- .dequeue_task = dequeue_task_rt,
- .yield_task = yield_task_rt,
- #ifdef CONFIG_SMP
- .select_task_rq = select_task_rq_rt,
- #endif /* CONFIG_SMP */
- .check_preempt_curr = check_preempt_curr_rt,
- .pick_next_task = pick_next_task_rt,
- .put_prev_task = put_prev_task_rt,
- #ifdef CONFIG_SMP
- .load_balance = load_balance_rt,
- .move_one_task = move_one_task_rt,
- .set_cpus_allowed = set_cpus_allowed_rt,
- #endif
- .set_curr_task = set_curr_task_rt,
- .task_tick = task_tick_rt,
- };
|