ds2490.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951
  1. /*
  2. * dscore.c
  3. *
  4. * Copyright (c) 2004 Evgeniy Polyakov <johnpol@2ka.mipt.ru>
  5. *
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  20. */
  21. #include <linux/module.h>
  22. #include <linux/kernel.h>
  23. #include <linux/mod_devicetable.h>
  24. #include <linux/usb.h>
  25. #include "../w1_int.h"
  26. #include "../w1.h"
  27. /* COMMAND TYPE CODES */
  28. #define CONTROL_CMD 0x00
  29. #define COMM_CMD 0x01
  30. #define MODE_CMD 0x02
  31. /* CONTROL COMMAND CODES */
  32. #define CTL_RESET_DEVICE 0x0000
  33. #define CTL_START_EXE 0x0001
  34. #define CTL_RESUME_EXE 0x0002
  35. #define CTL_HALT_EXE_IDLE 0x0003
  36. #define CTL_HALT_EXE_DONE 0x0004
  37. #define CTL_FLUSH_COMM_CMDS 0x0007
  38. #define CTL_FLUSH_RCV_BUFFER 0x0008
  39. #define CTL_FLUSH_XMT_BUFFER 0x0009
  40. #define CTL_GET_COMM_CMDS 0x000A
  41. /* MODE COMMAND CODES */
  42. #define MOD_PULSE_EN 0x0000
  43. #define MOD_SPEED_CHANGE_EN 0x0001
  44. #define MOD_1WIRE_SPEED 0x0002
  45. #define MOD_STRONG_PU_DURATION 0x0003
  46. #define MOD_PULLDOWN_SLEWRATE 0x0004
  47. #define MOD_PROG_PULSE_DURATION 0x0005
  48. #define MOD_WRITE1_LOWTIME 0x0006
  49. #define MOD_DSOW0_TREC 0x0007
  50. /* COMMUNICATION COMMAND CODES */
  51. #define COMM_ERROR_ESCAPE 0x0601
  52. #define COMM_SET_DURATION 0x0012
  53. #define COMM_BIT_IO 0x0020
  54. #define COMM_PULSE 0x0030
  55. #define COMM_1_WIRE_RESET 0x0042
  56. #define COMM_BYTE_IO 0x0052
  57. #define COMM_MATCH_ACCESS 0x0064
  58. #define COMM_BLOCK_IO 0x0074
  59. #define COMM_READ_STRAIGHT 0x0080
  60. #define COMM_DO_RELEASE 0x6092
  61. #define COMM_SET_PATH 0x00A2
  62. #define COMM_WRITE_SRAM_PAGE 0x00B2
  63. #define COMM_WRITE_EPROM 0x00C4
  64. #define COMM_READ_CRC_PROT_PAGE 0x00D4
  65. #define COMM_READ_REDIRECT_PAGE_CRC 0x21E4
  66. #define COMM_SEARCH_ACCESS 0x00F4
  67. /* Communication command bits */
  68. #define COMM_TYPE 0x0008
  69. #define COMM_SE 0x0008
  70. #define COMM_D 0x0008
  71. #define COMM_Z 0x0008
  72. #define COMM_CH 0x0008
  73. #define COMM_SM 0x0008
  74. #define COMM_R 0x0008
  75. #define COMM_IM 0x0001
  76. #define COMM_PS 0x4000
  77. #define COMM_PST 0x4000
  78. #define COMM_CIB 0x4000
  79. #define COMM_RTS 0x4000
  80. #define COMM_DT 0x2000
  81. #define COMM_SPU 0x1000
  82. #define COMM_F 0x0800
  83. #define COMM_NTP 0x0400
  84. #define COMM_ICP 0x0200
  85. #define COMM_RST 0x0100
  86. #define PULSE_PROG 0x01
  87. #define PULSE_SPUE 0x02
  88. #define BRANCH_MAIN 0xCC
  89. #define BRANCH_AUX 0x33
  90. /* Status flags */
  91. #define ST_SPUA 0x01 /* Strong Pull-up is active */
  92. #define ST_PRGA 0x02 /* 12V programming pulse is being generated */
  93. #define ST_12VP 0x04 /* external 12V programming voltage is present */
  94. #define ST_PMOD 0x08 /* DS2490 powered from USB and external sources */
  95. #define ST_HALT 0x10 /* DS2490 is currently halted */
  96. #define ST_IDLE 0x20 /* DS2490 is currently idle */
  97. #define ST_EPOF 0x80
  98. #define SPEED_NORMAL 0x00
  99. #define SPEED_FLEXIBLE 0x01
  100. #define SPEED_OVERDRIVE 0x02
  101. #define NUM_EP 4
  102. #define EP_CONTROL 0
  103. #define EP_STATUS 1
  104. #define EP_DATA_OUT 2
  105. #define EP_DATA_IN 3
  106. struct ds_device
  107. {
  108. struct list_head ds_entry;
  109. struct usb_device *udev;
  110. struct usb_interface *intf;
  111. int ep[NUM_EP];
  112. /* Strong PullUp
  113. * 0: pullup not active, else duration in milliseconds
  114. */
  115. int spu_sleep;
  116. struct w1_bus_master master;
  117. };
  118. struct ds_status
  119. {
  120. u8 enable;
  121. u8 speed;
  122. u8 pullup_dur;
  123. u8 ppuls_dur;
  124. u8 pulldown_slew;
  125. u8 write1_time;
  126. u8 write0_time;
  127. u8 reserved0;
  128. u8 status;
  129. u8 command0;
  130. u8 command1;
  131. u8 command_buffer_status;
  132. u8 data_out_buffer_status;
  133. u8 data_in_buffer_status;
  134. u8 reserved1;
  135. u8 reserved2;
  136. };
  137. static struct usb_device_id ds_id_table [] = {
  138. { USB_DEVICE(0x04fa, 0x2490) },
  139. { },
  140. };
  141. MODULE_DEVICE_TABLE(usb, ds_id_table);
  142. static int ds_probe(struct usb_interface *, const struct usb_device_id *);
  143. static void ds_disconnect(struct usb_interface *);
  144. static inline void ds_dump_status(unsigned char *, unsigned char *, int);
  145. static int ds_send_control(struct ds_device *, u16, u16);
  146. static int ds_send_control_cmd(struct ds_device *, u16, u16);
  147. static LIST_HEAD(ds_devices);
  148. static DEFINE_MUTEX(ds_mutex);
  149. static struct usb_driver ds_driver = {
  150. .name = "DS9490R",
  151. .probe = ds_probe,
  152. .disconnect = ds_disconnect,
  153. .id_table = ds_id_table,
  154. };
  155. static int ds_send_control_cmd(struct ds_device *dev, u16 value, u16 index)
  156. {
  157. int err;
  158. err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
  159. CONTROL_CMD, 0x40, value, index, NULL, 0, 1000);
  160. if (err < 0) {
  161. printk(KERN_ERR "Failed to send command control message %x.%x: err=%d.\n",
  162. value, index, err);
  163. return err;
  164. }
  165. return err;
  166. }
  167. static int ds_send_control_mode(struct ds_device *dev, u16 value, u16 index)
  168. {
  169. int err;
  170. err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
  171. MODE_CMD, 0x40, value, index, NULL, 0, 1000);
  172. if (err < 0) {
  173. printk(KERN_ERR "Failed to send mode control message %x.%x: err=%d.\n",
  174. value, index, err);
  175. return err;
  176. }
  177. return err;
  178. }
  179. static int ds_send_control(struct ds_device *dev, u16 value, u16 index)
  180. {
  181. int err;
  182. err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
  183. COMM_CMD, 0x40, value, index, NULL, 0, 1000);
  184. if (err < 0) {
  185. printk(KERN_ERR "Failed to send control message %x.%x: err=%d.\n",
  186. value, index, err);
  187. return err;
  188. }
  189. return err;
  190. }
  191. static inline void ds_dump_status(unsigned char *buf, unsigned char *str, int off)
  192. {
  193. printk("%45s: %8x\n", str, buf[off]);
  194. }
  195. static int ds_recv_status_nodump(struct ds_device *dev, struct ds_status *st,
  196. unsigned char *buf, int size)
  197. {
  198. int count, err;
  199. memset(st, 0, sizeof(*st));
  200. count = 0;
  201. err = usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_STATUS]), buf, size, &count, 100);
  202. if (err < 0) {
  203. printk(KERN_ERR "Failed to read 1-wire data from 0x%x: err=%d.\n", dev->ep[EP_STATUS], err);
  204. return err;
  205. }
  206. if (count >= sizeof(*st))
  207. memcpy(st, buf, sizeof(*st));
  208. return count;
  209. }
  210. static int ds_recv_status(struct ds_device *dev, struct ds_status *st)
  211. {
  212. unsigned char buf[64];
  213. int count, err = 0, i;
  214. memcpy(st, buf, sizeof(*st));
  215. count = ds_recv_status_nodump(dev, st, buf, sizeof(buf));
  216. if (count < 0)
  217. return err;
  218. printk("0x%x: count=%d, status: ", dev->ep[EP_STATUS], count);
  219. for (i=0; i<count; ++i)
  220. printk("%02x ", buf[i]);
  221. printk("\n");
  222. if (count >= 16) {
  223. ds_dump_status(buf, "enable flag", 0);
  224. ds_dump_status(buf, "1-wire speed", 1);
  225. ds_dump_status(buf, "strong pullup duration", 2);
  226. ds_dump_status(buf, "programming pulse duration", 3);
  227. ds_dump_status(buf, "pulldown slew rate control", 4);
  228. ds_dump_status(buf, "write-1 low time", 5);
  229. ds_dump_status(buf, "data sample offset/write-0 recovery time", 6);
  230. ds_dump_status(buf, "reserved (test register)", 7);
  231. ds_dump_status(buf, "device status flags", 8);
  232. ds_dump_status(buf, "communication command byte 1", 9);
  233. ds_dump_status(buf, "communication command byte 2", 10);
  234. ds_dump_status(buf, "communication command buffer status", 11);
  235. ds_dump_status(buf, "1-wire data output buffer status", 12);
  236. ds_dump_status(buf, "1-wire data input buffer status", 13);
  237. ds_dump_status(buf, "reserved", 14);
  238. ds_dump_status(buf, "reserved", 15);
  239. }
  240. memcpy(st, buf, sizeof(*st));
  241. if (st->status & ST_EPOF) {
  242. printk(KERN_INFO "Resetting device after ST_EPOF.\n");
  243. err = ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
  244. if (err)
  245. return err;
  246. count = ds_recv_status_nodump(dev, st, buf, sizeof(buf));
  247. if (count < 0)
  248. return err;
  249. }
  250. return err;
  251. }
  252. static int ds_recv_data(struct ds_device *dev, unsigned char *buf, int size)
  253. {
  254. int count, err;
  255. struct ds_status st;
  256. count = 0;
  257. err = usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]),
  258. buf, size, &count, 1000);
  259. if (err < 0) {
  260. printk(KERN_INFO "Clearing ep0x%x.\n", dev->ep[EP_DATA_IN]);
  261. usb_clear_halt(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]));
  262. ds_recv_status(dev, &st);
  263. return err;
  264. }
  265. #if 0
  266. {
  267. int i;
  268. printk("%s: count=%d: ", __func__, count);
  269. for (i=0; i<count; ++i)
  270. printk("%02x ", buf[i]);
  271. printk("\n");
  272. }
  273. #endif
  274. return count;
  275. }
  276. static int ds_send_data(struct ds_device *dev, unsigned char *buf, int len)
  277. {
  278. int count, err;
  279. count = 0;
  280. err = usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, dev->ep[EP_DATA_OUT]), buf, len, &count, 1000);
  281. if (err < 0) {
  282. printk(KERN_ERR "Failed to write 1-wire data to ep0x%x: "
  283. "err=%d.\n", dev->ep[EP_DATA_OUT], err);
  284. return err;
  285. }
  286. return err;
  287. }
  288. #if 0
  289. int ds_stop_pulse(struct ds_device *dev, int limit)
  290. {
  291. struct ds_status st;
  292. int count = 0, err = 0;
  293. u8 buf[0x20];
  294. do {
  295. err = ds_send_control(dev, CTL_HALT_EXE_IDLE, 0);
  296. if (err)
  297. break;
  298. err = ds_send_control(dev, CTL_RESUME_EXE, 0);
  299. if (err)
  300. break;
  301. err = ds_recv_status_nodump(dev, &st, buf, sizeof(buf));
  302. if (err)
  303. break;
  304. if ((st.status & ST_SPUA) == 0) {
  305. err = ds_send_control_mode(dev, MOD_PULSE_EN, 0);
  306. if (err)
  307. break;
  308. }
  309. } while(++count < limit);
  310. return err;
  311. }
  312. int ds_detect(struct ds_device *dev, struct ds_status *st)
  313. {
  314. int err;
  315. err = ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
  316. if (err)
  317. return err;
  318. err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, 0);
  319. if (err)
  320. return err;
  321. err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM | COMM_TYPE, 0x40);
  322. if (err)
  323. return err;
  324. err = ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_PROG);
  325. if (err)
  326. return err;
  327. err = ds_recv_status(dev, st);
  328. return err;
  329. }
  330. #endif /* 0 */
  331. static int ds_wait_status(struct ds_device *dev, struct ds_status *st)
  332. {
  333. u8 buf[0x20];
  334. int err, count = 0;
  335. do {
  336. err = ds_recv_status_nodump(dev, st, buf, sizeof(buf));
  337. #if 0
  338. if (err >= 0) {
  339. int i;
  340. printk("0x%x: count=%d, status: ", dev->ep[EP_STATUS], err);
  341. for (i=0; i<err; ++i)
  342. printk("%02x ", buf[i]);
  343. printk("\n");
  344. }
  345. #endif
  346. } while(!(buf[0x08] & 0x20) && !(err < 0) && ++count < 100);
  347. if (((err > 16) && (buf[0x10] & 0x01)) || count >= 100 || err < 0) {
  348. ds_recv_status(dev, st);
  349. return -1;
  350. } else
  351. return 0;
  352. }
  353. static int ds_reset(struct ds_device *dev, struct ds_status *st)
  354. {
  355. int err;
  356. //err = ds_send_control(dev, COMM_1_WIRE_RESET | COMM_F | COMM_IM | COMM_SE, SPEED_FLEXIBLE);
  357. err = ds_send_control(dev, 0x43, SPEED_NORMAL);
  358. if (err)
  359. return err;
  360. ds_wait_status(dev, st);
  361. #if 0
  362. if (st->command_buffer_status) {
  363. printk(KERN_INFO "Short circuit.\n");
  364. return -EIO;
  365. }
  366. #endif
  367. return 0;
  368. }
  369. #if 0
  370. static int ds_set_speed(struct ds_device *dev, int speed)
  371. {
  372. int err;
  373. if (speed != SPEED_NORMAL && speed != SPEED_FLEXIBLE && speed != SPEED_OVERDRIVE)
  374. return -EINVAL;
  375. if (speed != SPEED_OVERDRIVE)
  376. speed = SPEED_FLEXIBLE;
  377. speed &= 0xff;
  378. err = ds_send_control_mode(dev, MOD_1WIRE_SPEED, speed);
  379. if (err)
  380. return err;
  381. return err;
  382. }
  383. #endif /* 0 */
  384. static int ds_set_pullup(struct ds_device *dev, int delay)
  385. {
  386. int err;
  387. u8 del = 1 + (u8)(delay >> 4);
  388. dev->spu_sleep = 0;
  389. err = ds_send_control_mode(dev, MOD_PULSE_EN, delay ? PULSE_SPUE : 0);
  390. if (err)
  391. return err;
  392. if (delay) {
  393. err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del);
  394. if (err)
  395. return err;
  396. /* Just storing delay would not get the trunication and
  397. * roundup.
  398. */
  399. dev->spu_sleep = del<<4;
  400. }
  401. return err;
  402. }
  403. static int ds_touch_bit(struct ds_device *dev, u8 bit, u8 *tbit)
  404. {
  405. int err;
  406. struct ds_status st;
  407. err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | (bit ? COMM_D : 0),
  408. 0);
  409. if (err)
  410. return err;
  411. ds_wait_status(dev, &st);
  412. err = ds_recv_data(dev, tbit, sizeof(*tbit));
  413. if (err < 0)
  414. return err;
  415. return 0;
  416. }
  417. #if 0
  418. static int ds_write_bit(struct ds_device *dev, u8 bit)
  419. {
  420. int err;
  421. struct ds_status st;
  422. /* Set COMM_ICP to write without a readback. Note, this will
  423. * produce one time slot, a down followed by an up with COMM_D
  424. * only determing the timing.
  425. */
  426. err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | COMM_ICP |
  427. (bit ? COMM_D : 0), 0);
  428. if (err)
  429. return err;
  430. ds_wait_status(dev, &st);
  431. return 0;
  432. }
  433. #endif
  434. static int ds_write_byte(struct ds_device *dev, u8 byte)
  435. {
  436. int err;
  437. struct ds_status st;
  438. u8 rbyte;
  439. err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM | COMM_SPU, byte);
  440. if (err)
  441. return err;
  442. if (dev->spu_sleep)
  443. msleep(dev->spu_sleep);
  444. err = ds_wait_status(dev, &st);
  445. if (err)
  446. return err;
  447. err = ds_recv_data(dev, &rbyte, sizeof(rbyte));
  448. if (err < 0)
  449. return err;
  450. return !(byte == rbyte);
  451. }
  452. static int ds_read_byte(struct ds_device *dev, u8 *byte)
  453. {
  454. int err;
  455. struct ds_status st;
  456. err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM , 0xff);
  457. if (err)
  458. return err;
  459. ds_wait_status(dev, &st);
  460. err = ds_recv_data(dev, byte, sizeof(*byte));
  461. if (err < 0)
  462. return err;
  463. return 0;
  464. }
  465. static int ds_read_block(struct ds_device *dev, u8 *buf, int len)
  466. {
  467. struct ds_status st;
  468. int err;
  469. if (len > 64*1024)
  470. return -E2BIG;
  471. memset(buf, 0xFF, len);
  472. err = ds_send_data(dev, buf, len);
  473. if (err < 0)
  474. return err;
  475. err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM, len);
  476. if (err)
  477. return err;
  478. ds_wait_status(dev, &st);
  479. memset(buf, 0x00, len);
  480. err = ds_recv_data(dev, buf, len);
  481. return err;
  482. }
  483. static int ds_write_block(struct ds_device *dev, u8 *buf, int len)
  484. {
  485. int err;
  486. struct ds_status st;
  487. err = ds_send_data(dev, buf, len);
  488. if (err < 0)
  489. return err;
  490. ds_wait_status(dev, &st);
  491. err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM | COMM_SPU, len);
  492. if (err)
  493. return err;
  494. if (dev->spu_sleep)
  495. msleep(dev->spu_sleep);
  496. ds_wait_status(dev, &st);
  497. err = ds_recv_data(dev, buf, len);
  498. if (err < 0)
  499. return err;
  500. return !(err == len);
  501. }
  502. #if 0
  503. static int ds_search(struct ds_device *dev, u64 init, u64 *buf, u8 id_number, int conditional_search)
  504. {
  505. int err;
  506. u16 value, index;
  507. struct ds_status st;
  508. memset(buf, 0, sizeof(buf));
  509. err = ds_send_data(ds_dev, (unsigned char *)&init, 8);
  510. if (err)
  511. return err;
  512. ds_wait_status(ds_dev, &st);
  513. value = COMM_SEARCH_ACCESS | COMM_IM | COMM_SM | COMM_F | COMM_RTS;
  514. index = (conditional_search ? 0xEC : 0xF0) | (id_number << 8);
  515. err = ds_send_control(ds_dev, value, index);
  516. if (err)
  517. return err;
  518. ds_wait_status(ds_dev, &st);
  519. err = ds_recv_data(ds_dev, (unsigned char *)buf, 8*id_number);
  520. if (err < 0)
  521. return err;
  522. return err/8;
  523. }
  524. static int ds_match_access(struct ds_device *dev, u64 init)
  525. {
  526. int err;
  527. struct ds_status st;
  528. err = ds_send_data(dev, (unsigned char *)&init, sizeof(init));
  529. if (err)
  530. return err;
  531. ds_wait_status(dev, &st);
  532. err = ds_send_control(dev, COMM_MATCH_ACCESS | COMM_IM | COMM_RST, 0x0055);
  533. if (err)
  534. return err;
  535. ds_wait_status(dev, &st);
  536. return 0;
  537. }
  538. static int ds_set_path(struct ds_device *dev, u64 init)
  539. {
  540. int err;
  541. struct ds_status st;
  542. u8 buf[9];
  543. memcpy(buf, &init, 8);
  544. buf[8] = BRANCH_MAIN;
  545. err = ds_send_data(dev, buf, sizeof(buf));
  546. if (err)
  547. return err;
  548. ds_wait_status(dev, &st);
  549. err = ds_send_control(dev, COMM_SET_PATH | COMM_IM | COMM_RST, 0);
  550. if (err)
  551. return err;
  552. ds_wait_status(dev, &st);
  553. return 0;
  554. }
  555. #endif /* 0 */
  556. static u8 ds9490r_touch_bit(void *data, u8 bit)
  557. {
  558. u8 ret;
  559. struct ds_device *dev = data;
  560. if (ds_touch_bit(dev, bit, &ret))
  561. return 0;
  562. return ret;
  563. }
  564. #if 0
  565. static void ds9490r_write_bit(void *data, u8 bit)
  566. {
  567. struct ds_device *dev = data;
  568. ds_write_bit(dev, bit);
  569. }
  570. static u8 ds9490r_read_bit(void *data)
  571. {
  572. struct ds_device *dev = data;
  573. int err;
  574. u8 bit = 0;
  575. err = ds_touch_bit(dev, 1, &bit);
  576. if (err)
  577. return 0;
  578. return bit & 1;
  579. }
  580. #endif
  581. static void ds9490r_write_byte(void *data, u8 byte)
  582. {
  583. struct ds_device *dev = data;
  584. ds_write_byte(dev, byte);
  585. }
  586. static u8 ds9490r_read_byte(void *data)
  587. {
  588. struct ds_device *dev = data;
  589. int err;
  590. u8 byte = 0;
  591. err = ds_read_byte(dev, &byte);
  592. if (err)
  593. return 0;
  594. return byte;
  595. }
  596. static void ds9490r_write_block(void *data, const u8 *buf, int len)
  597. {
  598. struct ds_device *dev = data;
  599. ds_write_block(dev, (u8 *)buf, len);
  600. }
  601. static u8 ds9490r_read_block(void *data, u8 *buf, int len)
  602. {
  603. struct ds_device *dev = data;
  604. int err;
  605. err = ds_read_block(dev, buf, len);
  606. if (err < 0)
  607. return 0;
  608. return len;
  609. }
  610. static u8 ds9490r_reset(void *data)
  611. {
  612. struct ds_device *dev = data;
  613. struct ds_status st;
  614. int err;
  615. memset(&st, 0, sizeof(st));
  616. err = ds_reset(dev, &st);
  617. if (err)
  618. return 1;
  619. return 0;
  620. }
  621. static u8 ds9490r_set_pullup(void *data, int delay)
  622. {
  623. struct ds_device *dev = data;
  624. if (ds_set_pullup(dev, delay))
  625. return 1;
  626. return 0;
  627. }
  628. static int ds_w1_init(struct ds_device *dev)
  629. {
  630. memset(&dev->master, 0, sizeof(struct w1_bus_master));
  631. dev->master.data = dev;
  632. dev->master.touch_bit = &ds9490r_touch_bit;
  633. /* read_bit and write_bit in w1_bus_master are expected to set and
  634. * sample the line level. For write_bit that means it is expected to
  635. * set it to that value and leave it there. ds2490 only supports an
  636. * individual time slot at the lowest level. The requirement from
  637. * pulling the bus state down to reading the state is 15us, something
  638. * that isn't realistic on the USB bus anyway.
  639. dev->master.read_bit = &ds9490r_read_bit;
  640. dev->master.write_bit = &ds9490r_write_bit;
  641. */
  642. dev->master.read_byte = &ds9490r_read_byte;
  643. dev->master.write_byte = &ds9490r_write_byte;
  644. dev->master.read_block = &ds9490r_read_block;
  645. dev->master.write_block = &ds9490r_write_block;
  646. dev->master.reset_bus = &ds9490r_reset;
  647. dev->master.set_pullup = &ds9490r_set_pullup;
  648. return w1_add_master_device(&dev->master);
  649. }
  650. static void ds_w1_fini(struct ds_device *dev)
  651. {
  652. w1_remove_master_device(&dev->master);
  653. }
  654. static int ds_probe(struct usb_interface *intf,
  655. const struct usb_device_id *udev_id)
  656. {
  657. struct usb_device *udev = interface_to_usbdev(intf);
  658. struct usb_endpoint_descriptor *endpoint;
  659. struct usb_host_interface *iface_desc;
  660. struct ds_device *dev;
  661. int i, err;
  662. dev = kmalloc(sizeof(struct ds_device), GFP_KERNEL);
  663. if (!dev) {
  664. printk(KERN_INFO "Failed to allocate new DS9490R structure.\n");
  665. return -ENOMEM;
  666. }
  667. dev->spu_sleep = 0;
  668. dev->udev = usb_get_dev(udev);
  669. if (!dev->udev) {
  670. err = -ENOMEM;
  671. goto err_out_free;
  672. }
  673. memset(dev->ep, 0, sizeof(dev->ep));
  674. usb_set_intfdata(intf, dev);
  675. err = usb_set_interface(dev->udev, intf->altsetting[0].desc.bInterfaceNumber, 3);
  676. if (err) {
  677. printk(KERN_ERR "Failed to set alternative setting 3 for %d interface: err=%d.\n",
  678. intf->altsetting[0].desc.bInterfaceNumber, err);
  679. goto err_out_clear;
  680. }
  681. err = usb_reset_configuration(dev->udev);
  682. if (err) {
  683. printk(KERN_ERR "Failed to reset configuration: err=%d.\n", err);
  684. goto err_out_clear;
  685. }
  686. iface_desc = &intf->altsetting[0];
  687. if (iface_desc->desc.bNumEndpoints != NUM_EP-1) {
  688. printk(KERN_INFO "Num endpoints=%d. It is not DS9490R.\n", iface_desc->desc.bNumEndpoints);
  689. err = -EINVAL;
  690. goto err_out_clear;
  691. }
  692. /*
  693. * This loop doesn'd show control 0 endpoint,
  694. * so we will fill only 1-3 endpoints entry.
  695. */
  696. for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {
  697. endpoint = &iface_desc->endpoint[i].desc;
  698. dev->ep[i+1] = endpoint->bEndpointAddress;
  699. #if 0
  700. printk("%d: addr=%x, size=%d, dir=%s, type=%x\n",
  701. i, endpoint->bEndpointAddress, le16_to_cpu(endpoint->wMaxPacketSize),
  702. (endpoint->bEndpointAddress & USB_DIR_IN)?"IN":"OUT",
  703. endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK);
  704. #endif
  705. }
  706. err = ds_w1_init(dev);
  707. if (err)
  708. goto err_out_clear;
  709. mutex_lock(&ds_mutex);
  710. list_add_tail(&dev->ds_entry, &ds_devices);
  711. mutex_unlock(&ds_mutex);
  712. return 0;
  713. err_out_clear:
  714. usb_set_intfdata(intf, NULL);
  715. usb_put_dev(dev->udev);
  716. err_out_free:
  717. kfree(dev);
  718. return err;
  719. }
  720. static void ds_disconnect(struct usb_interface *intf)
  721. {
  722. struct ds_device *dev;
  723. dev = usb_get_intfdata(intf);
  724. if (!dev)
  725. return;
  726. mutex_lock(&ds_mutex);
  727. list_del(&dev->ds_entry);
  728. mutex_unlock(&ds_mutex);
  729. ds_w1_fini(dev);
  730. usb_set_intfdata(intf, NULL);
  731. usb_put_dev(dev->udev);
  732. kfree(dev);
  733. }
  734. static int ds_init(void)
  735. {
  736. int err;
  737. err = usb_register(&ds_driver);
  738. if (err) {
  739. printk(KERN_INFO "Failed to register DS9490R USB device: err=%d.\n", err);
  740. return err;
  741. }
  742. return 0;
  743. }
  744. static void ds_fini(void)
  745. {
  746. usb_deregister(&ds_driver);
  747. }
  748. module_init(ds_init);
  749. module_exit(ds_fini);
  750. MODULE_LICENSE("GPL");
  751. MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>");
  752. MODULE_DESCRIPTION("DS2490 USB <-> W1 bus master driver (DS9490*)");